1
|
Stocksdale JT, Leventhal MJ, Lam S, Xu YX, Wang YO, Wang KQ, Thomas R, Faghihmonzavi Z, Raghav Y, Smith C, Wu J, Miramontes R, Sarda K, Johnston H, Shin MG, Huang T, Foster M, Barch M, Amirani N, Paiz C, Easter L, Duderstadt E, Vaibhav V, Sundararaman N, Felsenfeld DP, Vogt TF, Van Eyk J, Finkbeiner S, Kaye JA, Fraenkel E, Thompson LM. Intersecting impact of CAG repeat and huntingtin knockout in stem cell-derived cortical neurons. Neurobiol Dis 2025; 210:106914. [PMID: 40258535 DOI: 10.1016/j.nbd.2025.106914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Revised: 04/13/2025] [Accepted: 04/14/2025] [Indexed: 04/23/2025] Open
Abstract
Huntington's Disease (HD) is caused by a CAG repeat expansion in the gene encoding huntingtin (HTT). While normal HTT function appears impacted by the mutation, the specific pathways unique to CAG repeat expansion versus loss of normal function are unclear. To understand the impact of the CAG repeat expansion, we evaluated biological signatures of HTT knockout (HTT KO) versus those that occur from the CAG repeat expansion by applying multi-omics, live cell imaging, survival analysis and a novel feature-based pipeline to study cortical neurons (eCNs) derived from an isogenic human embryonic stem cell series (RUES2). HTT KO and the CAG repeat expansion influence developmental trajectories of eCNs, with opposing effects on growth. Network analyses of differentially expressed genes and proteins associated with enriched epigenetic motifs identified subnetworks common to CAG repeat expansion and HTT KO that include neuronal differentiation, cell cycle regulation, and mechanisms related to transcriptional repression, and may represent gain-of-function mechanisms that cannot be explained by HTT loss of function alone. A combination of dominant and loss-of-function mechanisms are likely involved in the aberrant neurodevelopmental and neurodegenerative features of HD that can help inform therapeutic strategies.
Collapse
Affiliation(s)
| | - Matthew J Leventhal
- MIT PhD Program in Computational and Systems Biology, Cambridge, MA 02139, USA; MIT Department of Biological Engineering, Cambridge, MA 02139, USA; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Stephanie Lam
- Center for Systems and Therapeutics, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Yu-Xin Xu
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Yang Oliver Wang
- Advanced Clinical Biosystems Research Institute, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Keona Q Wang
- Department of Neurobiology and Behavior, UC Irvine, Irvine, CA 92677, USA
| | - Reuben Thomas
- Institute of Data Science and Biotechnology, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Zohreh Faghihmonzavi
- Center for Systems and Therapeutics, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Yogindra Raghav
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Charlene Smith
- Department of Psychiatry and Human Behavior, UC Irvine, Irvine, CA 92697, USA
| | - Jie Wu
- Department of Biological Chemistry, UC Irvine, Irvine, CA 92697, USA
| | - Ricardo Miramontes
- Institute for Memory Impairments and Neurological Disorders, UC Irvine, Irvine, CA 92697, USA
| | - Kanchan Sarda
- Center for Systems and Therapeutics, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Heather Johnston
- Center for Systems and Therapeutics, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Min-Gyoung Shin
- Institute of Data Science and Biotechnology, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Terry Huang
- Center for Systems and Therapeutics, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Mikelle Foster
- Center for Systems and Therapeutics, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Mariya Barch
- Center for Systems and Therapeutics, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Naufa Amirani
- Center for Systems and Therapeutics, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Chris Paiz
- Center for Systems and Therapeutics, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Lindsay Easter
- Center for Systems and Therapeutics, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Erse Duderstadt
- Center for Systems and Therapeutics, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Vineet Vaibhav
- Advanced Clinical Biosystems Research Institute, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Niveda Sundararaman
- Advanced Clinical Biosystems Research Institute, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | | | | | - Jennifer Van Eyk
- Advanced Clinical Biosystems Research Institute, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Steve Finkbeiner
- Institute of Data Science and Biotechnology, Gladstone Institutes, San Francisco, CA 94158, USA; Department of Physiology, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Neurology, University of California San Francisco, San Francisco, CA 94158, USA; Taube/Koret Center for Neurodegenerative Disease Research, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Julia A Kaye
- Center for Systems and Therapeutics, Gladstone Institutes, San Francisco, CA 94158, USA; Taube/Koret Center for Neurodegenerative Disease Research, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Ernest Fraenkel
- MIT PhD Program in Computational and Systems Biology, Cambridge, MA 02139, USA; MIT Department of Biological Engineering, Cambridge, MA 02139, USA
| | - Leslie M Thompson
- Department of Neurobiology and Behavior, UC Irvine, Irvine, CA 92677, USA; Department of Psychiatry and Human Behavior, UC Irvine, Irvine, CA 92697, USA; Department of Biological Chemistry, UC Irvine, Irvine, CA 92697, USA; Institute for Memory Impairments and Neurological Disorders, UC Irvine, Irvine, CA 92697, USA.
| |
Collapse
|
2
|
Stocksdale JT, Leventhal MJ, Lam S, Xu YX, Wang YO, Wang KQ, Tomas R, Faghihmonzavi Z, Raghav Y, Smith C, Wu J, Miramontes R, Sarda K, Johnson H, Shin MG, Huang T, Foster M, Barch M, Armani N, Paiz C, Easter L, Duderstadt E, Vaibhav V, Sundararaman N, Felsenfeld DP, Vogt TF, Van Eyk J, Finkbeiner S, Kaye JA, Fraenkel E, Thompson LM. Intersecting impact of CAG repeat and Huntingtin knockout in stem cell-derived cortical neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.24.639958. [PMID: 40060574 PMCID: PMC11888261 DOI: 10.1101/2025.02.24.639958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
Huntington's Disease (HD) is caused by a CAG repeat expansion in the gene encoding Huntingtin (HTT ) . While normal HTT function appears impacted by the mutation, the specific pathways unique to CAG repeat expansion versus loss of normal function are unclear. To understand the impact of the CAG repeat expansion, we evaluated biological signatures of HTT knockout ( HTT KO) versus those that occur from the CAG repeat expansion by applying multi-omics, live cell imaging, survival analysis and a novel feature-based pipeline to study cortical neurons (eCNs) derived from an isogenic human embryonic stem cell series (RUES2). HTT KO and the CAG repeat expansion influence developmental trajectories of eCNs, with opposing effects on the growth. Network analyses of differentially expressed genes and proteins associated with enriched epigenetic motifs identified subnetworks common to CAG repeat expansion and HTT KO that include neuronal differentiation, cell cycle regulation, and mechanisms related to transcriptional repression and may represent gain-of-function mechanisms that cannot be explained by HTT loss of function alone. A combination of dominant and loss-of-function mechanisms are likely involved in the aberrant neurodevelopmental and neurodegenerative features of HD that can help inform therapeutic strategies.
Collapse
|
3
|
Savinkova LK, Sharypova EB, Kolchanov NA. On the Role of TATA Boxes and TATA-Binding Protein in Arabidopsis thaliana. PLANTS (BASEL, SWITZERLAND) 2023; 12:1000. [PMID: 36903861 PMCID: PMC10005294 DOI: 10.3390/plants12051000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/13/2023] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
For transcription initiation by RNA polymerase II (Pol II), all eukaryotes require assembly of basal transcription machinery on the core promoter, a region located approximately in the locus spanning a transcription start site (-50; +50 bp). Although Pol II is a complex multi-subunit enzyme conserved among all eukaryotes, it cannot initiate transcription without the participation of many other proteins. Transcription initiation on TATA-containing promoters requires the assembly of the preinitiation complex; this process is triggered by an interaction of TATA-binding protein (TBP, a component of the general transcription factor TFIID (transcription factor II D)) with a TATA box. The interaction of TBP with various TATA boxes in plants, in particular Arabidopsis thaliana, has hardly been investigated, except for a few early studies that addressed the role of a TATA box and substitutions in it in plant transcription systems. This is despite the fact that the interaction of TBP with TATA boxes and their variants can be used to regulate transcription. In this review, we examine the roles of some general transcription factors in the assembly of the basal transcription complex, as well as functions of TATA boxes of the model plant A. thaliana. We review examples showing not only the involvement of TATA boxes in the initiation of transcription machinery assembly but also their indirect participation in plant adaptation to environmental conditions in responses to light and other phenomena. Examples of an influence of the expression levels of A. thaliana TBP1 and TBP2 on morphological traits of the plants are also examined. We summarize available functional data on these two early players that trigger the assembly of transcription machinery. This information will deepen the understanding of the mechanisms underlying transcription by Pol II in plants and will help to utilize the functions of the interaction of TBP with TATA boxes in practice.
Collapse
|
4
|
van Riet J, Saha C, Strepis N, Brouwer RWW, Martens-Uzunova ES, van de Geer WS, Swagemakers SMA, Stubbs A, Halimi Y, Voogd S, Tanmoy AM, Komor MA, Hoogstrate Y, Janssen B, Fijneman RJA, Niknafs YS, Chinnaiyan AM, van IJcken WFJ, van der Spek PJ, Jenster G, Louwen R. CRISPRs in the human genome are differentially expressed between malignant and normal adjacent to tumor tissue. Commun Biol 2022; 5:338. [PMID: 35396392 PMCID: PMC8993844 DOI: 10.1038/s42003-022-03249-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 03/09/2022] [Indexed: 11/09/2022] Open
Abstract
Clustered Regularly Interspaced Short Palindromic Repeats (CRISPRs) have been identified in bacteria, archaea and mitochondria of plants, but not in eukaryotes. Here, we report the discovery of 12,572 putative CRISPRs randomly distributed across the human chromosomes, which we termed hCRISPRs. By using available transcriptome datasets, we demonstrate that hCRISPRs are distinctively expressed as small non-coding RNAs (sncRNAs) in cell lines and human tissues. Moreover, expression patterns thereof enabled us to distinguish normal from malignant tissues. In prostate cancer, we confirmed the differential hCRISPR expression between normal adjacent and malignant primary prostate tissue by RT-qPCR and demonstrate that the SHERLOCK and DETECTR dipstick tools are suitable to detect these sncRNAs. We anticipate that the discovery of CRISPRs in the human genome can be further exploited for diagnostic purposes in cancer and other medical conditions, which certainly will lead to the development of point-of-care tests based on the differential expression of the hCRISPRs.
Collapse
Affiliation(s)
- Job van Riet
- Department of Urology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, Netherlands
- Cancer Computational Biology Center, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, Netherlands
- Department of Medical Oncology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Chinmoy Saha
- Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Nikolaos Strepis
- Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Rutger W W Brouwer
- Center for Biomics, Erasmus University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Elena S Martens-Uzunova
- Department of Urology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Wesley S van de Geer
- Cancer Computational Biology Center, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, Netherlands
- Department of Medical Oncology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Sigrid M A Swagemakers
- Clinical Bioinformatics, Department of Pathology, Erasmus University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Andrew Stubbs
- Clinical Bioinformatics, Department of Pathology, Erasmus University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Yassir Halimi
- Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Sanne Voogd
- Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Arif Mohammad Tanmoy
- Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Center Rotterdam, Rotterdam, Netherlands
- Child Health Research Foundation, 23/2 SEL Huq Skypark, Block-B, Khilji Rd, Dhaka, 1207, Bangladesh
| | - Malgorzata A Komor
- Translational Gastrointestinal Oncology, Department of Pathology, Netherlands Cancer Institute, Amsterdam, Netherlands
- Oncoproteomics Laboratory, Department of Medical Oncology, VU University Medical Center, Amsterdam, Netherlands
| | - Youri Hoogstrate
- Department of Neurology, Erasmus University Medical Center Rotterdam, Rotterdam, Netherlands
| | | | - Remond J A Fijneman
- Translational Gastrointestinal Oncology, Department of Pathology, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Yashar S Niknafs
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Arul M Chinnaiyan
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
| | | | - Peter J van der Spek
- Clinical Bioinformatics, Department of Pathology, Erasmus University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Guido Jenster
- Department of Urology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Rogier Louwen
- Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Center Rotterdam, Rotterdam, Netherlands.
| |
Collapse
|
5
|
Liu Q, Bischof S, Harris CJ, Zhong Z, Zhan L, Nguyen C, Rashoff A, Barshop WD, Sun F, Feng S, Potok M, Gallego-Bartolome J, Zhai J, Wohlschlegel JA, Carey MF, Long JA, Jacobsen SE. The characterization of Mediator 12 and 13 as conditional positive gene regulators in Arabidopsis. Nat Commun 2020; 11:2798. [PMID: 32493925 PMCID: PMC7271234 DOI: 10.1038/s41467-020-16651-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 05/14/2020] [Indexed: 12/18/2022] Open
Abstract
Mediator 12 (MED12) and MED13 are components of the Mediator multi-protein complex, that facilitates the initial steps of gene transcription. Here, in an Arabidopsis mutant screen, we identify MED12 and MED13 as positive gene regulators, both of which contribute broadly to morc1 de-repressed gene expression. Both MED12 and MED13 are preferentially required for the expression of genes depleted in active chromatin marks, a chromatin signature shared with morc1 re-activated loci. We further discover that MED12 tends to interact with genes that are responsive to environmental stimuli, including light and radiation. We demonstrate that light-induced transient gene expression depends on MED12, and is accompanied by a concomitant increase in MED12 enrichment during induction. In contrast, the steady-state expression level of these genes show little dependence on MED12, suggesting that MED12 is primarily required to aid the expression of genes in transition from less-active to more active states. Mediator is a multiprotein complex required to activate gene transcription by RNAPII. Here, the authors report that MED12 and MED13 are conditional positive regulators that facilitate the expression of genes depleted in active chromatin marks and the induction of gene expression in response to environmental stimuli in Arabidopsis.
Collapse
Affiliation(s)
- Qikun Liu
- School of Advanced Agricultural Sciences, Peking University, 100871, Beijing, China. .,Department of Molecular, Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, CA, 90095, USA.
| | - Sylvain Bischof
- Department of Molecular, Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, CA, 90095, USA.,Department of Plant and Microbial Biology and Zurich-Basel Plant Science Center, University of Zurich, Zollikerstrasse 107, 8008, Zurich, Switzerland
| | - C Jake Harris
- Department of Molecular, Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, CA, 90095, USA
| | - Zhenhui Zhong
- Department of Molecular, Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, CA, 90095, USA.,Basic Forestry and Proteomics Center, Fujian Agriculture and Forestry University, 350002, Fuzhou, China
| | - Lingyu Zhan
- Department of Molecular, Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, CA, 90095, USA
| | - Calvin Nguyen
- Department of Molecular, Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, CA, 90095, USA
| | - Andrew Rashoff
- Department of Molecular, Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, CA, 90095, USA
| | - William D Barshop
- Department of Biological Chemistry, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, 90095, USA
| | - Fei Sun
- Department of Biological Chemistry, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, 90095, USA
| | - Suhua Feng
- Department of Molecular, Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, CA, 90095, USA
| | - Magdalena Potok
- Department of Molecular, Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, CA, 90095, USA
| | - Javier Gallego-Bartolome
- Department of Molecular, Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, CA, 90095, USA
| | - Jixian Zhai
- Institute of Plant and Food Science, Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - James A Wohlschlegel
- Department of Biological Chemistry, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, 90095, USA
| | - Michael F Carey
- Department of Biological Chemistry, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, 90095, USA
| | - Jeffrey A Long
- Department of Molecular, Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, CA, 90095, USA
| | - Steven E Jacobsen
- Department of Molecular, Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, CA, 90095, USA. .,Howard Hughes Medical Institute, University of California at Los Angeles, Los Angeles, CA, 90095, USA.
| |
Collapse
|
6
|
Perturbations of Transcription and Gene Expression-Associated Processes Alter Distribution of Cell Size Values in Saccharomyces cerevisiae. G3-GENES GENOMES GENETICS 2019; 9:239-250. [PMID: 30463882 PMCID: PMC6325893 DOI: 10.1534/g3.118.200854] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The question of what determines whether cells are big or small has been the focus of many studies because it is thought that such determinants underpin the coupling of cell growth with cell division. In contrast, what determines the overall pattern of how cell size is distributed within a population of wild type or mutant cells has received little attention. Knowing how cell size varies around a characteristic pattern could shed light on the processes that generate such a pattern and provide a criterion to identify its genetic basis. Here, we show that cell size values of wild type Saccharomyces cerevisiae cells fit a gamma distribution, in haploid and diploid cells, and under different growth conditions. To identify genes that influence this pattern, we analyzed the cell size distributions of all single-gene deletion strains in Saccharomyces cerevisiae. We found that yeast strains which deviate the most from the gamma distribution are enriched for those lacking gene products functioning in gene expression, especially those in transcription or transcription-linked processes. We also show that cell size is increased in mutants carrying altered activity substitutions in Rpo21p/Rpb1, the largest subunit of RNA polymerase II (Pol II). Lastly, the size distribution of cells carrying extreme altered activity Pol II substitutions deviated from the expected gamma distribution. Our results are consistent with the idea that genetic defects in widely acting transcription factors or Pol II itself compromise both cell size homeostasis and how the size of individual cells is distributed in a population.
Collapse
|
7
|
Yang H, Basquin D, Pauli D, Oliver B. Drosophila melanogaster positive transcriptional elongation factors regulate metabolic and sex-biased expression in adults. BMC Genomics 2017; 18:384. [PMID: 28521739 PMCID: PMC5436443 DOI: 10.1186/s12864-017-3755-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 05/03/2017] [Indexed: 11/22/2022] Open
Abstract
Background Transcriptional elongation is a generic function, but is also regulated to allow rapid transcription responses. Following relatively long initiation and promoter clearance, RNA polymerase II can pause and then rapidly elongate following recruitment of positive elongation factors. Multiple elongation complexes exist, but the role of specific components in adult Drosophila is underexplored. Results We conducted RNA-seq experiments to analyze the effect of RNAi knockdown of Suppressor of Triplolethal and lilliputian. We similarly analyzed the effect of expressing a dominant negative Cyclin-dependent kinase 9 allele. We observed that almost half of the genes expressed in adults showed reduced expression, supporting a broad role for the three tested genes in steady-state transcript abundance. Expression profiles following lilliputian and Suppressor of Triplolethal RNAi were nearly identical raising the possibility that they are obligatory co-factors. Genes showing reduced expression due to these RNAi treatments were short and enriched for genes encoding metabolic or enzymatic functions. The dominant-negative Cyclin-dependent kinase 9 profiles showed both overlapping and specific differential expression, suggesting involvement in multiple complexes. We also observed hundreds of genes with sex-biased differential expression following treatment. Conclusion Transcriptional profiles suggest that Lilliputian and Suppressor of Triplolethal are obligatory cofactors in the adult and that they can also function with Cyclin-dependent kinase 9 at a subset of loci. Our results suggest that transcriptional elongation control is especially important for rapidly expressed genes to support digestion and metabolism, many of which have sex-biased function. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-3755-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Haiwang Yang
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 50 South Drive, Bethesda, MD, 20892, USA.
| | - Denis Basquin
- Department of Genetics & Evolution, Sciences III, University of Geneva, Boulevard d'Yvoy 4, CH 1205, Geneva, Switzerland
| | - Daniel Pauli
- Department of Genetics & Evolution, Sciences III, University of Geneva, Boulevard d'Yvoy 4, CH 1205, Geneva, Switzerland
| | - Brian Oliver
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 50 South Drive, Bethesda, MD, 20892, USA
| |
Collapse
|
8
|
Hornstein BD, Roman D, Arévalo-Soliz LM, Engevik MA, Zechiedrich L. Effects of Circular DNA Length on Transfection Efficiency by Electroporation into HeLa Cells. PLoS One 2016; 11:e0167537. [PMID: 27918590 PMCID: PMC5137892 DOI: 10.1371/journal.pone.0167537] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 11/15/2016] [Indexed: 12/16/2022] Open
Abstract
The ability to produce extremely small and circular supercoiled vectors has opened new territory for improving non-viral gene therapy vectors. In this work, we compared transfection of supercoiled DNA vectors ranging from 383 to 4,548 bp, each encoding shRNA against GFP under control of the H1 promoter. We assessed knockdown of GFP by electroporation into HeLa cells. All of our vectors entered cells in comparable numbers when electroporated with equal moles of DNA. Despite similar cell entry, we found length-dependent differences in how efficiently the vectors knocked down GFP. As vector length increased up to 1,869 bp, GFP knockdown efficiency per mole of transfected DNA increased. From 1,869 to 4,257 bp, GFP knockdown efficiency per mole was steady, then decreased with increasing vector length. In comparing GFP knockdown with equal masses of vectors, we found that the shorter vectors transfect more efficiently per nanogram of DNA transfected. Our results rule out cell entry and DNA mass as determining factors for gene knockdown efficiency via electroporation. The length-dependent effects we have uncovered are likely explained by differences in nuclear translocation or transcription. These data add an important step towards clinical applications of non-viral vector delivery.
Collapse
Affiliation(s)
- Benjamin D. Hornstein
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, United States of America
| | - Dany Roman
- Post-Baccaleureate Research Education Program, Baylor College of Medicine, Houston, TX, United States of America
| | - Lirio M. Arévalo-Soliz
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, United States of America
- Verna and Marrs Mclean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, United States of America
- Department of Pharmacology, Baylor College of Medicine, Houston, TX, United States of America
| | - Melinda A. Engevik
- Department of Pathology, Texas Children’s Hospital, Houston, TX, United States of America
| | - Lynn Zechiedrich
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, United States of America
- Verna and Marrs Mclean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, United States of America
- Department of Pharmacology, Baylor College of Medicine, Houston, TX, United States of America
- * E-mail:
| |
Collapse
|
9
|
Cho WK, Jayanth N, Mullen S, Tan TH, Jung YJ, Cissé II. Super-resolution imaging of fluorescently labeled, endogenous RNA Polymerase II in living cells with CRISPR/Cas9-mediated gene editing. Sci Rep 2016; 6:35949. [PMID: 27782203 PMCID: PMC5080603 DOI: 10.1038/srep35949] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 10/07/2016] [Indexed: 12/19/2022] Open
Abstract
Live cell imaging of mammalian RNA polymerase II (Pol II) has previously relied on random insertions of exogenous, mutant Pol II coupled with the degradation of endogenous Pol II using a toxin, α-amanitin. Therefore, it has been unclear whether over-expression of labeled Pol II under an exogenous promoter may have played a role in reported Pol II dynamics in vivo. Here we label the endogenous Pol II in mouse embryonic fibroblast (MEF) cells using the CRISPR/Cas9 gene editing system. Using single-molecule based super-resolution imaging in the living cells, we captured endogenous Pol II clusters. Consistent with previous studies, we observed that Pol II clusters were short-lived (cluster lifetime ~8 s) in living cells. Moreover, dynamic responses to serum-stimulation, and drug-mediated transcription inhibition were all in agreement with previous observations in the exogenous Pol II MEF cell line. Our findings suggest that previous exogenously tagged Pol II faithfully recapitulated the endogenous polymerase clustering dynamics in living cells, and our approach may in principle be used to directly label transcription factors for live cell imaging.
Collapse
Affiliation(s)
- Won-Ki Cho
- Department of Physics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Namrata Jayanth
- Department of Physics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Susan Mullen
- Department of Physics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Tzer Han Tan
- Department of Physics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Yoon J Jung
- Department of Physics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Ibrahim I Cissé
- Department of Physics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| |
Collapse
|
10
|
Clark AD, Oldenbroek M, Boyer TG. Mediator kinase module and human tumorigenesis. Crit Rev Biochem Mol Biol 2015; 50:393-426. [PMID: 26182352 DOI: 10.3109/10409238.2015.1064854] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Mediator is a conserved multi-subunit signal processor through which regulatory informatiosn conveyed by gene-specific transcription factors is transduced to RNA Polymerase II (Pol II). In humans, MED13, MED12, CDK8 and Cyclin C (CycC) comprise a four-subunit "kinase" module that exists in variable association with a 26-subunit Mediator core. Genetic and biochemical studies have established the Mediator kinase module as a major ingress of developmental and oncogenic signaling through Mediator, and much of its function in signal-dependent gene regulation derives from its resident CDK8 kinase activity. For example, CDK8-targeted substrate phosphorylation impacts transcription factor half-life, Pol II activity and chromatin chemistry and functional status. Recent structural and biochemical studies have revealed a precise network of physical and functional subunit interactions required for proper kinase module activity. Accordingly, pathologic change in this activity through altered expression or mutation of constituent kinase module subunits can have profound consequences for altered signaling and tumor formation. Herein, we review the structural organization, biological function and oncogenic potential of the Mediator kinase module. We focus principally on tumor-associated alterations in kinase module subunits for which mechanistic relationships as opposed to strictly correlative associations are established. These considerations point to an emerging picture of the Mediator kinase module as an oncogenic unit, one in which pathogenic activation/deactivation through component change drives tumor formation through perturbation of signal-dependent gene regulation. It follows that therapeutic strategies to combat CDK8-driven tumors will involve targeted modulation of CDK8 activity or pharmacologic manipulation of dysregulated CDK8-dependent signaling pathways.
Collapse
Affiliation(s)
- Alison D Clark
- a Department of Molecular Medicine , Institute of Biotechnology, University of Texas Health Science Center at San Antonio , San Antonio , TX , USA
| | - Marieke Oldenbroek
- a Department of Molecular Medicine , Institute of Biotechnology, University of Texas Health Science Center at San Antonio , San Antonio , TX , USA
| | - Thomas G Boyer
- a Department of Molecular Medicine , Institute of Biotechnology, University of Texas Health Science Center at San Antonio , San Antonio , TX , USA
| |
Collapse
|
11
|
Frege T, Uversky VN. Intrinsically disordered proteins in the nucleus of human cells. Biochem Biophys Rep 2015; 1:33-51. [PMID: 29124132 PMCID: PMC5668563 DOI: 10.1016/j.bbrep.2015.03.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Accepted: 03/11/2015] [Indexed: 12/16/2022] Open
Abstract
Intrinsically disordered proteins are known to perform a variety of important functions such as macromolecular recognition, promiscuous binding, and signaling. They are crucial players in various cellular pathway and processes, where they often have key regulatory roles. Among vital cellular processes intimately linked to the intrinsically disordered proteins is transcription, an intricate biological performance predominantly developing inside the cell nucleus. With this work, we gathered information about proteins that exist in various compartments and sub-nuclear bodies of the nucleus of the human cells, with the goal of identifying which ones are highly disordered and which functions are ascribed to the disordered nuclear proteins.
Collapse
Affiliation(s)
- Telma Frege
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
- GenomeNext LLC, 175 South 3rd Street, Suite 200, Columbus OH 43215, USA
| | - Vladimir N. Uversky
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
- USF Health Byrd Alzheimer׳s Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
- Department of Biology, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
- Institute for Biological Instrumentation, Russian Academy of Sciences, 142290 Pushchino, Moscow Region, Russia
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Russia
- Correspondence to: Department of Molecular, Medicine, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Boulevard, MDC07, Tampa, FL 33612, USA. Tel.: +1 813 974 5816; fax: +1 813 974 7357.
| |
Collapse
|
12
|
Ding T, Wen H, Wei H, Wu H, Zhao J, Chen F, Zhao J. Increased Expression of TBP/TFIID after spinal cord injury in adult rats. Cell Mol Neurobiol 2014; 34:669-77. [PMID: 24710803 PMCID: PMC11488861 DOI: 10.1007/s10571-014-0048-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Accepted: 03/11/2014] [Indexed: 12/17/2022]
Abstract
Transcription factor IID (TFIID), as a general transcription factor, plays a pivotal role in the preinitiation complex (PIC) assembly and transcription initiation by recruiting RNA polymerase II to the promoter. The TFIID complex contains the TATA-box binding protein (TBP) and a group of conserved TAF proteins. However, its distribution and function in the central nervous system (CNS) are more diverse than previously understood. Here, we mainly investigated the spatiotemporal expression and cellular localization of TBP/TFIID during spinal cord injury (SCI) in adult rats. Western blot analysis revealed that TBP/TFIID was present in normal rat's spinal cord. It gradually increased, reached a peak at the third day after SCI, and then decreased. We observed that TBP/TFIID was widely distributed in spinal cord, mainly in neurons and glial cells. In addition, Western blot detection also showed that the third day post-injury was the proliferation peak indicated by the elevated expression of proliferating cell nuclear antigen (PCNA), a marker of proliferating cells. Importantly, injury-induced expression of TBP/TFIID was colabelled by PCNA showed the increase of TBP/TFIID expression in proliferating astrocytes and microglia. Collectively, we hypothesize that TBP/TFIID may be implicated in the proliferation of astrocytes and microglia and the recovery of neurological outcomes.
Collapse
Affiliation(s)
- Tao Ding
- Department of Orthopaedics, Affiliated Hospital of Nantong University, Nantong, 226001 Jiangsu People’s Republic of China
| | - Hai Wen
- Department of Orthopaedics, Affiliated Hospital of Nantong University, Nantong, 226001 Jiangsu People’s Republic of China
| | - Haixiang Wei
- Department of Orthopaedics, Affiliated Hospital of Nantong University, Nantong, 226001 Jiangsu People’s Republic of China
| | - Hao Wu
- Department of Orthopaedics, Affiliated Hospital of Nantong University, Nantong, 226001 Jiangsu People’s Republic of China
| | - Jinlong Zhao
- Department of Orthopaedics, Affiliated Hospital of Nantong University, Nantong, 226001 Jiangsu People’s Republic of China
| | - Fangyi Chen
- Department of Orthopaedics, Affiliated Hospital of Nantong University, Nantong, 226001 Jiangsu People’s Republic of China
| | - Jian Zhao
- Department of Orthopaedics, Affiliated Hospital of Nantong University, Nantong, 226001 Jiangsu People’s Republic of China
| |
Collapse
|
13
|
Nuclear distribution of RNA polymerase II and mRNA processing machinery in early mammalian embryos. BIOMED RESEARCH INTERNATIONAL 2014; 2014:681596. [PMID: 24868542 PMCID: PMC4020508 DOI: 10.1155/2014/681596] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Accepted: 04/11/2014] [Indexed: 11/17/2022]
Abstract
Spatial distribution of components of nuclear metabolism provides a significant impact on regulation of the processes of gene expression. While distribution of the key nuclear antigens and their association with the defined nuclear domains were thoroughly traced in mammalian somatic cells, similar data for the preimplantation embryos are scanty and fragmental. However, the period of cleavage is characterized by the most drastic and dynamic nuclear reorganizations accompanying zygotic gene activation. In this minireview, we try to summarize the results of studies concerning distribution of major factors involved in RNA polymerase II-dependent transcription, pre-mRNA splicing mRNA export that have been carried out on early embryos of mammals.
Collapse
|
14
|
Lukšan O, Dvořáková L, Jirsa M. HNF-4α regulates expression of human ornithin carbamoyltransferase through interaction with two positive cis-acting regulatory elements located in the proximal promoter. Folia Biol (Praha) 2014; 60:133-43. [PMID: 25056436 DOI: 10.14712/fb2014060030133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
OTC encodes ornithine carbamoyltransferase, mitochondrial matrix enzyme involved in the synthesis of urea. The tissue-specific expression of OTC in the liver and intestine is dependent on the interaction of OTC promoter with an upstream enhancer. HNF-4 and C/EBPβ are crucial for this interaction in the rat and mouse. In the present study we focused on characterization of elements involved in the regulation of OTC transcription in human. Using a set of 5'-deleted promoter mutants in a reporter assay we identified two positive cis-acting regulatory elements located at c.-105 and c.-136 within the human OTC promoter. Both are essential for the transcriptional activity of the promoter itself and for the interaction with the enhancer. Protein binding at the corresponding sites was confirmed by DNase I footprinting. Electromobility shift assay with a specific competitor and anti-HNF-4α antibody identified the DNA-protein binding sites as HNF-4α recognition motifs. A third HNF-4α binding site has been found at the position c.-187. All three HNF-4α binding sites are located within 35 bp upstream of the transcription start sites at positions c.-95, c.-119 (major) and c.-169 (minor). A series of C/EBPβ recognition motifs was identified within the enhancer. Involvement of C/EBPβ and HNF-4α in the promoter-enhancer interaction is further supported by a massive DNAprotein interaction observed in the footprinting and EMSA assays. Since the OTC promoter lacks general core promoter elements such as TATA-box or initiators in standard positions, HNF-4α most likely plays an essential role in the initiation of OTC transcription in human.
Collapse
Affiliation(s)
- O Lukšan
- Laboratory of Experimental Hepatology, Institute for Clinical and Experimental Medicine and Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University in Prague, Czech Republic
| | - L Dvořáková
- Institute of Inherited Metabolic Disorders, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Czech Republic
| | - M Jirsa
- Laboratory of Experimental Hepatology, Institute for Clinical and Experimental Medicine and Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University in Prague, Czech Republic
| |
Collapse
|
15
|
Ni P, Xu H, Chen C, Wang J, Liu X, Hu Y, Fan Q, Hou Z, Lu Y. Serum starvation induces DRAM expression in liver cancer cells via histone modifications within its promoter locus. PLoS One 2012; 7:e50502. [PMID: 23251372 PMCID: PMC3520922 DOI: 10.1371/journal.pone.0050502] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Accepted: 10/24/2012] [Indexed: 12/13/2022] Open
Abstract
DRAM is a lysosomal membrane protein and is critical for p53-mediated autophagy and apoptosis. DRAM has a potential tumor-suppressive function and is downregulated in many human cancers. However, the regulation of DRAM expression is poorly described so far. Here, we demonstrated that serum deprivation strongly induces DRAM expression in liver cancer cells and a core DNA sequence in the DRAM promoter is essential for its responsiveness to serum deprivation. We further observed that euchromatin markers for active transcriptions represented by diacetyl-H3, tetra-acetyl-H4 and the trimethyl-H3K4 at the core promoter region of DRAM gene are apparently increased in a time-dependent manner upon serum deprivation, and concomitantly the dimethyl-H3K9, a herterochromatin marker associated with silenced genes, was time-dependently decreased. Moreover, the chromatin remodeling factor Brg-1 is enriched at the core promoter region of the DRAM gene and is required for serum deprivation induced DRAM expression. These observations lay the ground for further investigation of the DRAM gene expression.
Collapse
Affiliation(s)
- Peihua Ni
- Department of Pharmacy, Ruijin Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, China
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, China
| | - Hong Xu
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiaotong University, School of Medicine, Shanghai, China
| | - Changqiang Chen
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, China
| | - Jiayi Wang
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, China
| | - Xiangfan Liu
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, China
| | - Yiqun Hu
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, China
| | - Qishi Fan
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, China
| | - Zhaoyuan Hou
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiaotong University, School of Medicine, Shanghai, China
- * E-mail: (YL); (ZH)
| | - Yang Lu
- Department of Pharmacy, Ruijin Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, China
- * E-mail: (YL); (ZH)
| |
Collapse
|
16
|
Abstract
In biological networks of molecular interactions in a cell, network motifs that are biologically relevant are also functionally coherent, or form functional modules. These functionally coherent modules combine in a hierarchical manner into larger, less cohesive subsystems, thus revealing one of the essential design principles of system-level cellular organization and function–hierarchical modularity. Arguably, hierarchical modularity has not been explicitly taken into consideration by most, if not all, functional annotation systems. As a result, the existing methods would often fail to assign a statistically significant functional coherence score to biologically relevant molecular machines. We developed a methodology for hierarchical functional annotation. Given the hierarchical taxonomy of functional concepts (e.g., Gene Ontology) and the association of individual genes or proteins with these concepts (e.g., GO terms), our method will assign a Hierarchical Modularity Score (HMS) to each node in the hierarchy of functional modules; the HMS score and its value measure functional coherence of each module in the hierarchy. While existing methods annotate each module with a set of “enriched” functional terms in a bag of genes, our complementary method provides the hierarchical functional annotation of the modules and their hierarchically organized components. A hierarchical organization of functional modules often comes as a bi-product of cluster analysis of gene expression data or protein interaction data. Otherwise, our method will automatically build such a hierarchy by directly incorporating the functional taxonomy information into the hierarchy search process and by allowing multi-functional genes to be part of more than one component in the hierarchy. In addition, its underlying HMS scoring metric ensures that functional specificity of the terms across different levels of the hierarchical taxonomy is properly treated. We have evaluated our method using Saccharomyces cerevisiae data from KEGG and MIPS databases and several other computationally derived and curated datasets. The code and additional supplemental files can be obtained from http://code.google.com/p/functional-annotation-of-hierarchical-modularity/ (Accessed 2012 March 13).
Collapse
|
17
|
Zhang DW, Rodríguez-Molina JB, Tietjen JR, Nemec CM, Ansari AZ. Emerging Views on the CTD Code. GENETICS RESEARCH INTERNATIONAL 2012; 2012:347214. [PMID: 22567385 PMCID: PMC3335543 DOI: 10.1155/2012/347214] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2011] [Accepted: 11/03/2011] [Indexed: 12/21/2022]
Abstract
The C-terminal domain (CTD) of RNA polymerase II (Pol II) consists of conserved heptapeptide repeats that function as a binding platform for different protein complexes involved in transcription, RNA processing, export, and chromatin remodeling. The CTD repeats are subject to sequential waves of posttranslational modifications during specific stages of the transcription cycle. These patterned modifications have led to the postulation of the "CTD code" hypothesis, where stage-specific patterns define a spatiotemporal code that is recognized by the appropriate interacting partners. Here, we highlight the role of CTD modifications in directing transcription initiation, elongation, and termination. We examine the major readers, writers, and erasers of the CTD code and examine the relevance of describing patterns of posttranslational modifications as a "code." Finally, we discuss major questions regarding the function of the newly discovered CTD modifications and the fundamental insights into transcription regulation that will necessarily emerge upon addressing those challenges.
Collapse
Affiliation(s)
- David W. Zhang
- Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI 53706, USA
| | - Juan B. Rodríguez-Molina
- Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI 53706, USA
| | - Joshua R. Tietjen
- Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI 53706, USA
| | - Corey M. Nemec
- Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI 53706, USA
| | - Aseem Z. Ansari
- Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI 53706, USA
- Genome Center of Wisconsin, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI 53706, USA
| |
Collapse
|
18
|
Zhang R, Zhang L, Yu W. Genome-wide expression of non-coding RNA and global chromatin modification. Acta Biochim Biophys Sin (Shanghai) 2012; 44:40-7. [PMID: 22194012 DOI: 10.1093/abbs/gmr112] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Traditionally, we know that genomic DNA will produce transcripts named messenger RNA and then translate into protein following the instruction of genetic central dogma, and RNA works here as a pass-by messenger. Now increasing evidence shows that RNA is a key regulator as well as a message transmitter. It is discovered by next-generation sequencing techniques that most genomic DNA are generally transcribed to non-coding RNA, highly beyond the percentage of coding mRNA. These non-coding RNAs (ncRNAs), belonging to several groups, have critical roles in many cellular processes, expanding our understanding of the RNA world. We review here the different categories of ncRNA according to genome location and how ncRNAs guide and recruit chromatin modification complex to specific loci of genome to modulate gene expression by affecting chromatin state.
Collapse
Affiliation(s)
- Rukui Zhang
- Key Laboratory of Ministry of Education, Department of Molecular Biology, Fudan University, Shanghai, China
| | | | | |
Collapse
|
19
|
Increased expression of transcription initiation factor IIB after rat traumatic brain injury. J Mol Histol 2011; 42:265-71. [PMID: 21544596 DOI: 10.1007/s10735-011-9330-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2011] [Accepted: 04/21/2011] [Indexed: 12/13/2022]
Abstract
The protein TFIIB is a general transcription initiation factor that plays a pivotal role in the preinitiation complex (PIC) and selects the transcription initiation site. However, its distribution and function in the central nervous system (CNS) remains unclear. In the present study, we mainly investigated the expression and cellular localization of TFIIB during traumatic brain injury (TBI). Western blot analysis revealed that TFIIB was present in normal rat brain cortex. It gradually increased, reached a peak at the 5th day after TBI, and then decreased. Importantly, more TFIIB was colocalized with astrocytes and microglia, which are largely proliferated. In addition, Western blot detection showed that the 5th day post injury was also the proliferation peak indicated by the elevated expression of PCNA. Importantly, injury-induced expression of TFIIB was colabelled by proliferating cell nuclear antigen (proliferating cells marker). These data suggested that TFIIB may be implicated in the proliferation of astrocytes and microglia and the recovery of neurological outcomes. But the inherent mechanisms remained unknown. Further studies are needed to confirm the exact role of TFIIB after brain injury.
Collapse
|
20
|
Fonslow BR, Kang SA, Gestaut DR, Graczyk B, Davis TN, Sabatini DM, Yates JR. Native capillary isoelectric focusing for the separation of protein complex isoforms and subcomplexes. Anal Chem 2010; 82:6643-51. [PMID: 20614870 DOI: 10.1021/ac101235k] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Here we report the use of capillary isoelectric focusing under native conditions for the separation of protein complex isoforms and subcomplexes. Using biologically relevant HIS-tag and FLAG-tag purified protein complexes, we demonstrate the separations of protein complex isoforms of the mammalian target of rapamycin complex (mTORC1 and 2) and the subcomplexes and different phosphorylation states of the Dam1 complex. The high efficiency capillary isoelectric focusing separation allowed for resolution of protein complexes and subcomplexes similar in size and biochemical composition. By performing separations with native buffers and reduced temperature (15 degrees C) we were able to maintain the complex integrity of the more thermolabile mTORC2 during isoelectric focusing and detection (<45 min). Increasing the separation temperature allowed us to monitor dissociation of the Dam1 complex into its subcomplexes (25 degrees C) and eventually its individual protein components (30 degrees C). The separation of two different phosphorylation states of the Dam1 complex, generated from an in vitro kinase assay with Mps1 kinase, was straightforward due to the large pI shift upon multiple phosphorylation events. The separation of the protein complex isoforms of mTORC, on the other hand, required the addition of a small pI range (4-6.5) of ampholytes to improve resolution and stability of the complexes. We show that native capillary isoelectric focusing is a powerful method for the difficult separations of large, similar, unstable protein complexes. This method shows potential for differentiation of protein complex isoform and subcomplex compositions, post-translational modifications, architectures, stabilities, equilibria, and relative abundances under biologically relevant conditions.
Collapse
Affiliation(s)
- Bryan R Fonslow
- Department of Chemical Physiology, The Scripps Research Institute, 10550 N. Torrey Pines Rd. La Jolla, California 92037, USA
| | | | | | | | | | | | | |
Collapse
|
21
|
Benschop JJ, Brabers N, van Leenen D, Bakker LV, van Deutekom HWM, van Berkum NL, Apweiler E, Lijnzaad P, Holstege FCP, Kemmeren P. A consensus of core protein complex compositions for Saccharomyces cerevisiae. Mol Cell 2010; 38:916-28. [PMID: 20620961 DOI: 10.1016/j.molcel.2010.06.002] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2010] [Revised: 04/02/2010] [Accepted: 05/16/2010] [Indexed: 11/28/2022]
Abstract
Analyses of biological processes would benefit from accurate definitions of protein complexes. High-throughput mass spectrometry data offer the possibility of systematically defining protein complexes; however, the predicted compositions vary substantially depending on the algorithm applied. We determine consensus compositions for 409 core protein complexes from Saccharomyces cerevisiae by merging previous predictions with a new approach. Various analyses indicate that the consensus is comprehensive and of high quality. For 85 out of 259 complexes not recorded in GO, literature search revealed strong support in the form of coprecipitation. New complexes were verified by an independent interaction assay and by gene expression profiling of strains with deleted subunits, often revealing which cellular processes are affected. The consensus complexes are available in various formats, including a merge with GO, resulting in 518 protein complex compositions. The utility is further demonstrated by comparison with binary interaction data to reveal interactions between core complexes.
Collapse
Affiliation(s)
- Joris J Benschop
- Department of Physiological Chemistry, University Medical Centre Utrecht, 3584 CG Utrecht, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Malik S, Chaurasia P, Lahudkar S, Durairaj G, Shukla A, Bhaumik SR. Rad26p, a transcription-coupled repair factor, is recruited to the site of DNA lesion in an elongating RNA polymerase II-dependent manner in vivo. Nucleic Acids Res 2009; 38:1461-77. [PMID: 20007604 PMCID: PMC2836574 DOI: 10.1093/nar/gkp1147] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Rad26p, a yeast homologue of human Cockayne syndrome B with an ATPase activity, plays a pivotal role in stimulating DNA repair at the coding sequences of active genes. On the other hand, DNA repair at inactive genes or silent areas of the genome is not regulated by Rad26p. However, how Rad26p recognizes DNA lesions at the actively transcribing genes to facilitate DNA repair is not clearly understood in vivo. Here, we show that Rad26p associates with the coding sequences of genes in a transcription-dependent manner, but independently of DNA lesions induced by 4-nitroquinoline-1-oxide in Saccharomyces cerevisiae. Further, histone H3 lysine 36 methylation that occurs at the active coding sequence stimulates the recruitment of Rad26p. Intriguingly, we find that Rad26p is recruited to the site of DNA lesion in an elongating RNA polymerase II-dependent manner. However, Rad26p does not recognize DNA lesions in the absence of active transcription. Together, these results provide an important insight as to how Rad26p is delivered to the damage sites at the active, but not inactive, genes to stimulate repair in vivo, shedding much light on the early steps of transcription-coupled repair in living eukaryotic cells.
Collapse
Affiliation(s)
- Shivani Malik
- Department of Biochemistry and Molecular Biology, Southern Illinois University School of Medicine, 1245 Lincoln Drive, Carbondale, IL-62901, USA
| | | | | | | | | | | |
Collapse
|
23
|
Sen1p performs two genetically separable functions in transcription and processing of U5 small nuclear RNA in Saccharomyces cerevisiae. Genetics 2009; 184:107-18. [PMID: 19884310 DOI: 10.1534/genetics.109.110031] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The Saccharomyces cerevisiae SEN1 gene codes for a nuclear-localized superfamily I helicase. SEN1 is an ortholog of human SETX (senataxin), which has been implicated in the neurological disorders ataxia-ocular apraxia type 2 and juvenile amyotrophic lateral sclerosis. Pleiotropic phenotypes conferred by sen1 mutations suggest that Sen1p affects multiple steps in gene expression. Sen1p is embedded in a protein-protein interaction network involving direct binding to multiple partners. To test whether the interactions occur independently or in a dependent sequence, we examined interactions with the RNA polymerase II subunit Rpb1p, which is required for transcription, and Rnt1p, which is required for 3'-end maturation of many noncoding RNAs. Mutations were identified that impair one of the two interactions without impairing the other interaction. The effects of the mutants on the synthesis of U5 small nuclear RNA were analyzed. Two defects were observed, one in transcription termination and one in 3'-end maturation. Impairment of the Sen1p-Rpb1p interaction resulted in a termination defect. Impairment of the Sen1p-Rnt1p interaction resulted in a processing defect. The results suggest that the Sen1p-Rpb1p and Sen1p-Rnt1p interactions occur independently of each other and serve genetically separable purposes in targeting Sen1p to function in two temporally overlapping steps in gene expression.
Collapse
|
24
|
RNA helicase A acts as a bridging factor linking nuclear β-actin with RNA polymerase II. Biochem J 2009; 420:421-8. [DOI: 10.1042/bj20090402] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Actin, the major component of the cytoplasmic skeleton, has been shown to exist in the nucleus. Nuclear actin functions in several steps of the transcription process, including chromatin remodelling and transcription initiation and elongation. However, as a part of PICs (pre-initiation complexes), the role of actin remains to be elucidated. In the present study, we identified RHA (RNA helicase A) as an actin-interacting protein in PICs. Using immunoprecipitation and immunofluorescence techniques, we have shown that RHA associates with β-actin in the nucleus. A GST (glutathione transferase) pulldown assay using different deletion mutants revealed that the RGG (Arg-Gly-Gly) region of RHA was responsible for the interaction with β-actin, and this dominant-negative mutant reduced the recruitment of Pol II (RNA polymerase II) into PICs. Moreover, overexpression or depletion of RHA could influence the interaction of Pol II with β-actin and β-actin-involved gene transcription regulation. These results suggest that RHA acts as a bridging factor linking nuclear β-actin with Pol II.
Collapse
|
25
|
The human CDK8 subcomplex is a histone kinase that requires Med12 for activity and can function independently of mediator. Mol Cell Biol 2008; 29:650-61. [PMID: 19047373 DOI: 10.1128/mcb.00993-08] [Citation(s) in RCA: 181] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The four proteins CDK8, cyclin C, Med12, and Med13 can associate with Mediator and are presumed to form a stable "CDK8 subcomplex" in cells. We describe here the isolation and enzymatic activity of the 600-kDa CDK8 subcomplex purified directly from human cells and also via recombinant expression in insect cells. Biochemical analysis of the recombinant CDK8 subcomplex identifies predicted (TFIIH and RNA polymerase II C-terminal domain [Pol II CTD]) and novel (histone H3, Med13, and CDK8 itself) substrates for the CDK8 kinase. Notably, these novel substrates appear to be metazoan-specific. Such diverse targets imply strict regulation of CDK8 kinase activity. Along these lines, we observe that Mediator itself enables CDK8 kinase activity on chromatin, and we identify Med12--but not Med13--to be essential for activating the CDK8 kinase. Moreover, mass spectrometry analysis of the endogenous CDK8 subcomplex reveals several associated factors, including GCN1L1 and the TRiC chaperonin, that may help control its biological function. In support of this, electron microscopy analysis suggests TRiC sequesters the CDK8 subcomplex and kinase assays reveal the endogenous CDK8 subcomplex--unlike the recombinant submodule--is unable to phosphorylate the Pol II CTD.
Collapse
|
26
|
A refined two-hybrid system reveals that SCF(Cdc4)-dependent degradation of Swi5 contributes to the regulatory mechanism of S-phase entry. Proc Natl Acad Sci U S A 2008; 105:14497-502. [PMID: 18787112 DOI: 10.1073/pnas.0806253105] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Ubiquitin-dependent degradation is implicated in various cellular regulatory mechanisms. The SCF(Cdc4) (Skp1, Cullin/Cdc53, and the F-box protein Cdc4) complex is an ubiquitin ligase complex that acts as a regulator of cell cycle, signal transduction, and transcription. These regulatory mechanisms are not well defined because of the difficulty in identifying the interaction between ubiquitin ligases and their substrates. To identify substrates of the yeast SCF(Cdc4) ubiquitin ligase complex, we refined the yeast two-hybrid system to allow screening Cdc4-substrate interactions under conditions of substrate stabilization, and identified Swi5 as a substrate of the SCF(Cdc4) complex. Swi5 is the transcriptional activator of Sic1, the inhibitor of S phase cyclin-dependent kinases (CDKs). We showed that Swi5 is indeed ubiquitinated and degraded through the SCF(Cdc4) complex. Furthermore, the SCF(Cdc4)-dependent degradation of Swi5 was required to terminate SIC1 transcription at early G(1) phase, which ensured efficient entry into S phase: Hyperaccumulation of Sic1 was noted in cells expressing stabilized Swi5, and expression of stabilized Swi5 delayed S phase entry, which was dominantly suppressed by SIC1 deletion. These findings indicate that the SCF(Cdc4) complex regulates S phase entry not only through degradation of Sic1, but also through degradation of Swi5.
Collapse
|
27
|
Ding N, Zhou H, Esteve PO, Chin HG, Kim S, Xu X, Joseph SM, Friez MJ, Schwartz CE, Pradhan S, Boyer TG. Mediator links epigenetic silencing of neuronal gene expression with x-linked mental retardation. Mol Cell 2008; 31:347-59. [PMID: 18691967 DOI: 10.1016/j.molcel.2008.05.023] [Citation(s) in RCA: 188] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2007] [Revised: 04/20/2008] [Accepted: 05/29/2008] [Indexed: 11/18/2022]
Abstract
Mediator occupies a central role in RNA polymerase II transcription as a sensor, integrator, and processor of regulatory signals that converge on protein-coding gene promoters. Compared to its role in gene activation, little is known regarding the molecular mechanisms and biological implications of Mediator as a transducer of repressive signals. Here we describe a protein interaction network required for extraneuronal gene silencing comprising Mediator, G9a histone methyltransferase, and the RE1 silencing transcription factor (REST; also known as neuron restrictive silencer factor, NRSF). We show that the MED12 interface in Mediator links REST with G9a-dependent histone H3K9 dimethylation to suppress neuronal genes in nonneuronal cells. Notably, missense mutations in MED12 causing the X-linked mental retardation (XLMR) disorders FG syndrome and Lujan syndrome disrupt its REST corepressor function. These findings implicate Mediator in epigenetic restriction of neuronal gene expression to the nervous system and suggest a pathologic basis for MED12-associated XLMR involving impaired REST-dependent neuronal gene regulation.
Collapse
Affiliation(s)
- Ning Ding
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78245, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Abstract
Interaction networks, consisting of agents linked by their interactions, are ubiquitous across many disciplines of modern science. Many methods of analysis of interaction networks have been proposed, mainly concentrating on node degree distribution or aiming to discover clusters of agents that are very strongly connected between themselves. These methods are principally based on graph-theory or machine learning. We present a mathematically simple formalism for modelling context-specific information propagation in interaction networks based on random walks. The context is provided by selection of sources and destinations of information and by use of potential functions that direct the flow towards the destinations. We also use the concept of dissipation to model the aging of information as it diffuses from its source. Using examples from yeast protein-protein interaction networks and some of the histone acetyltransferases involved in control of transcription, we demonstrate the utility of the concepts and the mathematical constructs introduced in this paper.
Collapse
Affiliation(s)
- Aleksandar Stojmirović
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894, USA
| | | |
Collapse
|
29
|
Proteomics of RNA polymerase II holoenzymes during P19 cardiomyogenesis. Open Life Sci 2007. [DOI: 10.2478/s11535-007-0040-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
AbstractThe embryonal carcinoma P19 model has allowed the elucidation of a role for several transcription factors in cell differentiation. Here, the regulation of the RNA polymerase II machinery has been explored through its association with multifunctional complexes involved in transcription. An interaction proteomics analysis of TFIIS-purified RNA polymerase II (RNAPII) holoenzymes during cardiomyogenesis is described. Modifications of protein complexes that may be associated with transcriptionally active and activator responsive RNAPII holoenzymes were detected in a serum and DMSO dependent manner. Subunits of the PAF1 and Mediator complexes were correlated with holoenzymes from non-differentiated and terminally differentiated P19 cultures respectively. Moreover, high levels of nucleolin were identified in all forms of holoenzymes by two-dimensional gel electrophoresis, and suggest that nucleolin could bind to RNAPII and TFIIS. Several proteins that were identified in the RNAPII holoenzymes are known to have functions in mRNA processing and may bind to nucleolin. A novel function for nucleolin is proposed as a possible pivotal platform between transcription, mRNA processing and export.
Collapse
|
30
|
Maraziotis IA, Dimitrakopoulou K, Bezerianos A. Growing functional modules from a seed protein via integration of protein interaction and gene expression data. BMC Bioinformatics 2007; 8:408. [PMID: 17956603 PMCID: PMC2233647 DOI: 10.1186/1471-2105-8-408] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2007] [Accepted: 10/23/2007] [Indexed: 11/18/2022] Open
Abstract
Background Nowadays modern biology aims at unravelling the strands of complex biological structures such as the protein-protein interaction (PPI) networks. A key concept in the organization of PPI networks is the existence of dense subnetworks (functional modules) in them. In recent approaches clustering algorithms were applied at these networks and the resulting subnetworks were evaluated by estimating the coverage of well-established protein complexes they contained. However, most of these algorithms elaborate on an unweighted graph structure which in turn fails to elevate those interactions that would contribute to the construction of biologically more valid and coherent functional modules. Results In the current study, we present a method that corroborates the integration of protein interaction and microarray data via the discovery of biologically valid functional modules. Initially the gene expression information is overlaid as weights onto the PPI network and the enriched PPI graph allows us to exploit its topological aspects, while simultaneously highlights enhanced functional association in specific pairs of proteins. Then we present an algorithm that unveils the functional modules of the weighted graph by expanding a kernel protein set, which originates from a given 'seed' protein used as starting-point. Conclusion The integrated data and the concept of our approach provide reliable functional modules. We give proofs based on yeast data that our method manages to give accurate results in terms both of structural coherency, as well as functional consistency.
Collapse
Affiliation(s)
- Ioannis A Maraziotis
- Department of Medical Physics, School of Medicine, University of Patras, GR26500 Patras, Greece.
| | | | | |
Collapse
|
31
|
Di Pietro C, Ragusa M, Duro L, Guglielmino MR, Barbagallo D, Carnemolla A, Laganà A, Buffa P, Angelica R, Rinaldi A, Calafato MS, Milicia I, Caserta C, Giugno R, Pulvirenti A, Giunta V, Rapisarda A, Di Pietro V, Grillo A, Messina A, Ferro A, Grzeschik KH, Purrello M. Genomics, evolution, and expression of TBPL2, a member of the TBP family. DNA Cell Biol 2007; 26:369-85. [PMID: 17570761 DOI: 10.1089/dna.2006.0527] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
TBPL2 is the most recently discovered and less characterized member of the TATA box binding protein (TBP) family that also comprises TBP, TATA box binding protein-like 1 (TBPL1), and Drosophila melanogaster TBP related factor (TRF). In this paper we report our in silico and in vitro data on (i) the genomics of the TBPL2 gene in Homo sapiens, Pan troglodytes, Mus musculus, Rattus norvegicus, Gallus gallus, Xenopus tropicalis, and Takifugu rubripes; (ii) its evolution and phylogenetic relationship with TBP, TBPL1, and TRF; (iii) the structure of the TBPL2 proteins that belong to the recently identified group of the intrinsically unstructured proteins (IUPs); and (iv) TBPL2 expression in different organs and cell types of Homo sapiens and Rattus norvegicus. Similar to TBP, both the TBPL2 gene and protein are bimodular. The 3' region of the gene encoding the DNA binding domain (DBD) was well conserved during evolution. Its high homology to vertebrate TBP suggests that TBPL2 also should bind to the TATA box and interact with the proteins binding to TBP carboxy-terminal domain, such as the TBP associated factors (TAFs). As already demonstrated for TBP, TBPL2 amino-terminal segment is intrinsically unstructured and, even though variable among vertebrates, comprises a highly conserved motif not found in any other known protein. Absence of TBPL2 from the genome of invertebrates and plants demonstrates its specific origin within the subphylum of vertebrates. Our RT-PCR analysis of human and rat RNA shows that, similar to TBP, TBPL2 is ubiquitously synthesized even though at variable levels that are at least two orders of magnitude lower. Higher expression of TBPL2 in the gonads than in other organs suggests that it could perform important functions in gametogenesis. Our genomic and expression data should contribute to clarify why TBP has a general master role within the transcription apparatus (TA), whereas both TBPL1 and TBPL2 perform tissue-specific functions.
Collapse
Affiliation(s)
- Cinzia Di Pietro
- Dipartimento di Scienze Biomediche-Unità di Biologia Genetica e BioInformatica, Università di Catania, Catania, Italy, EU
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Barbara KE, Willis KA, Haley TM, Deminoff SJ, Santangelo GM. Coiled coil structures and transcription: an analysis of the S. cerevisiae coilome. Mol Genet Genomics 2007; 278:135-47. [PMID: 17476531 DOI: 10.1007/s00438-007-0237-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2007] [Accepted: 03/22/2007] [Indexed: 12/25/2022]
Abstract
The alpha-helical coiled coil is a simple but widespread motif that is an integral feature of many cellular structures. Coiled coils allow monomeric building blocks to form complex assemblages that can serve as molecular motors and springs. Previous parametrically delimited analyses of the distribution of coiled coils in the genomes of diverse organisms, including Escherichia coli, Saccharomyces cerevisiae, Arabidopsis thaliana, Caenorhabditis elegans and Homo sapiens, have identified conserved biological processes that make use of this versatile motif. Here we present a comprehensive inventory of the set of coiled coil proteins in S. cerevisiae by combining multiple coiled coil prediction algorithms with extensive literature curation. Our analysis of this set of proteins, which we call the coilome, reveals a wider role for this motif in transcription than was anticipated, particularly with respect to the category that includes nucleocytoplasmic shuttling factors involved in transcriptional regulation. We also show that the constitutively nuclear yeast transcription factor Gcr1 is homologous to the mammalian transcription factor MLL3, and that two coiled coil domains conserved between these homologs are important for Gcr1 dimerization and function. These data support the hypothesis that coiled coils are required to assemble structures essential for proper functioning of the transcriptional machinery.
Collapse
Affiliation(s)
- Kellie E Barbara
- Mississippi Functional Genomics Network, The University of Southern Mississippi, Hattiesburg, MS, USA
| | | | | | | | | |
Collapse
|
33
|
Kanin EI, Kipp RT, Kung C, Slattery M, Viale A, Hahn S, Shokat KM, Ansari AZ. Chemical inhibition of the TFIIH-associated kinase Cdk7/Kin28 does not impair global mRNA synthesis. Proc Natl Acad Sci U S A 2007; 104:5812-7. [PMID: 17392431 PMCID: PMC1851574 DOI: 10.1073/pnas.0611505104] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The process of gene transcription requires the recruitment of a hypophosphorylated form of RNA polymerase II (Pol II) to a gene promoter. The TFIIH-associated kinase Cdk7/Kin28 hyperphosphorylates the promoter-bound polymerase; this event is thought to play a crucial role in transcription initiation and promoter clearance. Studies using temperature-sensitive mutants of Kin28 have provided the most compelling evidence for an essential role of its kinase activity in global mRNA synthesis. In contrast, using a small molecule inhibitor that specifically inhibits Kin28 in vivo, we find that the kinase activity is not essential for global transcription. Unlike the temperature-sensitive alleles, the small-molecule inhibitor does not perturb protein-protein interactions nor does it provoke the disassociation of TFIIH from gene promoters. These results lead us to conclude that other functions of TFIIH, rather than the kinase activity, are critical for global gene transcription.
Collapse
Affiliation(s)
| | | | - Charles Kung
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA 94143
| | | | - Agnes Viale
- Memorial Sloan–Kettering Cancer Center, New York, NY 10021; and
| | - Steven Hahn
- Fred Hutchinson Cancer Research Center, Seattle, WA 98109
| | - Kevan M. Shokat
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA 94143
| | - Aseem Z. Ansari
- *Department of Biochemistry and
- Genome Center of Wisconsin, University of Wisconsin, Madison, WI 53706
- **To whom correspondence should be addressed at:
Department of Biochemistry and The Genome Center of Wisconsin, University of Wisconsin, 433 Babcock Drive, Madison, WI 53706. E-mail:
| |
Collapse
|
34
|
Loncle N, Boube M, Joulia L, Boschiero C, Werner M, Cribbs DL, Bourbon HM. Distinct roles for Mediator Cdk8 module subunits in Drosophila development. EMBO J 2007; 26:1045-54. [PMID: 17290221 PMCID: PMC1852830 DOI: 10.1038/sj.emboj.7601566] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2006] [Accepted: 12/22/2006] [Indexed: 02/01/2023] Open
Abstract
Mediator (MED) is a conserved multisubunit complex bridging transcriptional activators and repressors to the general RNA polymerase II initiation machinery. In yeast, MED is organized in three core modules and a separable 'Cdk8 module' consisting of the cyclin-dependent kinase Cdk8, its partner CycC, Med12 and Med13. This regulatory module, specifically required for cellular adaptation to environmental cues, is thought to act through the Cdk8 kinase activity. Here we have investigated the functions of the four Cdk8 module subunits in the metazoan model Drosophila. Physical interactions detected among the four fly subunits provide support for a structurally conserved Cdk8 module. We analyzed the in vivo functions of this module using null mutants for Cdk8, CycC, Med12 and Med13. Each gene is required for the viability of the organism but not of the cell. Cdk8-CycC and Med12-Med13 act as pairs, which share some functions but also have distinct roles in developmental gene regulation. These data reveal functional attributes of the Cdk8 module, apart from its regulated kinase activity, that may contribute to the diversification of genetic programs.
Collapse
Affiliation(s)
- Nicolas Loncle
- Centre de Biologie du Développement, UMR5544 du CNRS, Université Paul Sabatier, Toulouse Cedex 09, France
| | - Muriel Boube
- Centre de Biologie du Développement, UMR5544 du CNRS, Université Paul Sabatier, Toulouse Cedex 09, France
- Centre de Biologie du Développement, UMR5544 du CNRS, Université Paul Sabatier, Bâtiment IVR3, 118 Route de Narbonne, 31062 Toulouse, France. Tel.: +33 0561558288; Fax: +33 0561556507; E-mails: or
| | - Laurent Joulia
- Centre de Biologie du Développement, UMR5544 du CNRS, Université Paul Sabatier, Toulouse Cedex 09, France
| | - Claire Boschiero
- Service de Biochimie et Génétique Moléculaire, CEA/Saclay, Gif-sur-Yvette Cedex, France
| | - Michel Werner
- Service de Biochimie et Génétique Moléculaire, CEA/Saclay, Gif-sur-Yvette Cedex, France
| | - David L Cribbs
- Centre de Biologie du Développement, UMR5544 du CNRS, Université Paul Sabatier, Toulouse Cedex 09, France
| | - Henri-Marc Bourbon
- Centre de Biologie du Développement, UMR5544 du CNRS, Université Paul Sabatier, Toulouse Cedex 09, France
- Centre de Biologie du Développement, UMR5544 du CNRS, Université Paul Sabatier, Bâtiment IVR3, 118 Route de Narbonne, 31062 Toulouse, France. Tel.: +33 0561558288; Fax: +33 0561556507; E-mails: or
| |
Collapse
|
35
|
Affiliation(s)
- Jesper Q Svejstrup
- Cancer Research UK London Research Institute, Clare Hall Laboratories, South Mimms, EN6 3LD, United Kingdom
| | - Ronald C Conaway
- Stowers Institute for Medical Research, Kansas City, Missouri 64112
| | - Joan W Conaway
- Stowers Institute for Medical Research, Kansas City, Missouri 64112.
| |
Collapse
|
36
|
Pal B, Chan NC, Helfenbaum L, Tan K, Tansey WP, Gething MJ. SCFCdc4-mediated degradation of the Hac1p transcription factor regulates the unfolded protein response in Saccharomyces cerevisiae. Mol Biol Cell 2006; 18:426-40. [PMID: 17108329 PMCID: PMC1783797 DOI: 10.1091/mbc.e06-04-0304] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The Saccharomyces cerevisiae basic leucine zipper transcription factor Hac1p is synthesized in response to the accumulation of unfolded polypeptides in the lumen of the endoplasmic reticulum (ER), and it is responsible for up-regulation of approximately 5% of all yeast genes, including ER-resident chaperones and protein-folding catalysts. Hac1p is one of the most short-lived yeast proteins, having a half-life of approximately 1.5 min. Here, we have shown that Hac1p harbors a functional PEST degron and that degradation of Hac1p by the proteasome involves the E2 ubiquitin-conjugating enzyme Ubc3/Cdc34p and the SCF(Cdc4) E3 complex. Consistent with the known nuclear localization of Cdc4p, rapid degradation of Hac1p requires the presence of a functional nuclear localization sequence, which we demonstrated to involve basic residues in the sequence (29)RKRAKTK(35). Two-hybrid analysis demonstrated that the PEST-dependent interaction of Hac1p with Cdc4p requires Ser146 and Ser149. Turnover of Hac1p may be dependent on transcription because it is inhibited in cell mutants lacking Srb10 kinase, a component of the SRB/mediator module of the RNA polymerase II holoenzyme. Stabilization of Hac1p by point mutation or deletion, or as the consequence of defects in components of the degradation pathway, results in increased unfolded protein response element-dependent transcription and improved cell viability under ER stress conditions.
Collapse
Affiliation(s)
- Bhupinder Pal
- *Department of Biochemistry and Molecular Biology, University of Melbourne, Victoria 3010, Australia
| | - Nickie C. Chan
- *Department of Biochemistry and Molecular Biology, University of Melbourne, Victoria 3010, Australia
- Bio21 Molecular Science and Biotechnology Institute, Parkville, Victoria 3010, Australia; and
| | - Leon Helfenbaum
- *Department of Biochemistry and Molecular Biology, University of Melbourne, Victoria 3010, Australia
| | - Kaeling Tan
- *Department of Biochemistry and Molecular Biology, University of Melbourne, Victoria 3010, Australia
| | | | - Mary-Jane Gething
- *Department of Biochemistry and Molecular Biology, University of Melbourne, Victoria 3010, Australia
| |
Collapse
|
37
|
Crowley DJ, Boubriak I, Berquist BR, Clark M, Richard E, Sullivan L, DasSarma S, McCready S. The uvrA, uvrB and uvrC genes are required for repair of ultraviolet light induced DNA photoproducts in Halobacterium sp. NRC-1. SALINE SYSTEMS 2006; 2:11. [PMID: 16970815 PMCID: PMC1590041 DOI: 10.1186/1746-1448-2-11] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2006] [Accepted: 09/13/2006] [Indexed: 11/09/2022]
Abstract
Background Sequenced archaeal genomes contain a variety of bacterial and eukaryotic DNA repair gene homologs, but relatively little is known about how these microorganisms actually perform DNA repair. At least some archaea, including the extreme halophile Halobacterium sp. NRC-1, are able to repair ultraviolet light (UV) induced DNA damage in the absence of light-dependent photoreactivation but this 'dark' repair capacity remains largely uncharacterized. Halobacterium sp. NRC-1 possesses homologs of the bacterial uvrA, uvrB, and uvrC nucleotide excision repair genes as well as several eukaryotic repair genes and it has been thought that multiple DNA repair pathways may account for the high UV resistance and dark repair capacity of this model halophilic archaeon. We have carried out a functional analysis, measuring repair capability in uvrA, uvrB and uvrC deletion mutants. Results Deletion mutants lacking functional uvrA, uvrB or uvrC genes, including a uvrA uvrC double mutant, are hypersensitive to UV and are unable to remove cyclobutane pyrimidine dimers or 6–4 photoproducts from their DNA after irradiation with 150 J/m2 of 254 nm UV-C. The UV sensitivity of the uvr mutants is greatly attenuated following incubation under visible light, emphasizing that photoreactivation is highly efficient in this organism. Phylogenetic analysis of the Halobacterium uvr genes indicates a complex ancestry. Conclusion Our results demonstrate that homologs of the bacterial nucleotide excision repair genes uvrA, uvrB, and uvrC are required for the removal of UV damage in the absence of photoreactivating light in Halobacterium sp. NRC-1. Deletion of these genes renders cells hypersensitive to UV and abolishes their ability to remove cyclobutane pyrimidine dimers and 6–4 photoproducts in the absence of photoreactivating light. In spite of this inability to repair UV damaged DNA, uvrA, uvrB and uvrC deletion mutants are substantially less UV sensitive than excision repair mutants of E. coli or yeast. This may be due to efficient damage tolerance mechanisms such as recombinational lesion bypass, bypass DNA polymerase(s) and the existence of multiple genomes in Halobacterium. Phylogenetic analysis provides no clear evidence for lateral transfer of these genes from bacteria to archaea.
Collapse
Affiliation(s)
- David J Crowley
- Natural Sciences Department, Assumption College, 500 Salisbury Street, Worcester, Massachusetts 01609 USA
| | - Ivan Boubriak
- School of Life Sciences, Oxford Brookes University, Oxford, OX3 0BP, UK
| | - Brian R Berquist
- University of Maryland Biotechnology Institute Center of Marine Biotechnology Baltimore, Maryland 21042 USA
| | - Monika Clark
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee 37235 USA
| | - Emily Richard
- Natural Sciences Department, Assumption College, 500 Salisbury Street, Worcester, Massachusetts 01609 USA
| | - Lynn Sullivan
- Natural Sciences Department, Assumption College, 500 Salisbury Street, Worcester, Massachusetts 01609 USA
| | - Shiladitya DasSarma
- University of Maryland Biotechnology Institute Center of Marine Biotechnology Baltimore, Maryland 21042 USA
- Greenebaum Cancer Center, University of Maryland, Baltimore, Maryland 21201 USA
| | - Shirley McCready
- School of Life Sciences, Oxford Brookes University, Oxford, OX3 0BP, UK
| |
Collapse
|
38
|
Hughes AL, Friedman R. Sharing of transcription factors after gene duplication in the yeast Saccharomyces cerevisiae. Genetica 2006; 129:301-8. [PMID: 16897462 DOI: 10.1007/s10709-006-0011-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2006] [Accepted: 04/20/2006] [Indexed: 10/24/2022]
Abstract
In a set of 190 duplicate gene pairs in yeast Saccharomyces cerevisiae, the sharing of transcription factors tended to decrease with increased divergence in coding sequence, at both synonymous and nonsynonymous sites. Our results showed a significantly higher sharing of transcription factors by duplicated gene pairs falling within duplicated genomic blocks than in other duplicated gene pairs; and genes in duplicated blocks also showed significantly greater conservation at the coding sequence level. In spite of the overall trends, there were certain gene pairs, both in duplicated blocks and in other genomic regions, which were highly divergent in coding sequence and yet had identical patterns of transcription factor binding. These results suggest that functional differentiation of genes after duplication is a multi-dimensional process, with different duplicate pairs differentiating in different ways.
Collapse
Affiliation(s)
- Austin L Hughes
- Department of Biological Sciences, University of South Carolina, Coker Life Sciences Bldg. 700 Sumter St., Columbia, SC 29208, USA.
| | | |
Collapse
|
39
|
Belakavadi M, Fondell JD. Role of the mediator complex in nuclear hormone receptor signaling. Rev Physiol Biochem Pharmacol 2006; 156:23-43. [PMID: 16634145 DOI: 10.1007/s10254-005-0002-0] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Mediator is an evolutionarily conserved multisubunit protein complex that plays a key role in regulating transcription by RNA polymerase II. The complex functions by serving as a molecular bridge between DNA-bound transcriptional activators and the basal transcription apparatus. In humans, Mediator was first characterized as a thyroid hormone receptor (TR)-associated protein (TRAP) complex that facilitates ligand-dependent transcriptional activation by TR. More recently, Mediator has been established as an essential coactivator for a broad range of nuclear hormone receptors (NRs) as well as several other types of gene-specific transcriptional activators. A single subunit of the complex, MED1/TRAP220, is required for direct ligand-dependent interactions with NRs. Mediator coactivates NR-regulated gene expression by facilitating the recruitment and activation of the RNA polymerase II-associated basal transcription apparatus. Importantly, Mediator acts in concert with other NR coactivators involved in chromatin remodeling to initiate transcription of NR target genes in a multistep manner. In this review, we summarize the functional role of Mediator in NR signaling pathways with an emphasis on the underlying molecular mechanisms by which the complex interacts with NRs and subsequently facilitates their action. We also focus on recent advances in our understanding of TRAP/Mediator's pathophysiological role in mammalian disease and development.
Collapse
Affiliation(s)
- M Belakavadi
- Department of Physiology and Biophysics, Robert Wood Johnson Medical School, UMDNJ, Piscataway, NJ 08854, USA
| | | |
Collapse
|
40
|
Jonker HRA, Wechselberger RW, Pinkse M, Kaptein R, Folkers GE. Gradual phosphorylation regulates PC4 coactivator function. FEBS J 2006; 273:1430-44. [PMID: 16689930 DOI: 10.1111/j.1742-4658.2006.05165.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The unstructured N-terminal domain of the transcriptional cofactor PC4 contains multiple phosphorylation sites that regulate activity. The phosphorylation status differentially influences the various biochemical functions performed by the structured core of PC4. Binding to ssDNA is slightly enhanced by phosphorylation of one serine residue, which is not augmented by further phosphorylation. The presence of at least two phosphoserines decreases DNA-unwinding activity and abrogates binding to the transcriptional activator VP16. Phosphorylation gradually decreases the binding affinity for dsDNA. These phosphorylation-dependent changes in PC4 activities correlate with the sequential functions PC4 fulfils throughout the transcription cycle. MS and NMR revealed that up to eight serines are progressively phosphorylated towards the N-terminus, resulting in gradual environmental changes in the C-terminal direction of the following lysine-rich region. Also within the structured core, primarily around the interaction surfaces, environmental changes are observed. We propose a model for co-ordinated changes in PC4 cofactor functions, mediated by phosphorylation status-dependent gradual masking of the lysine-rich region causing shielding or exposure of interaction surfaces.
Collapse
Affiliation(s)
- Hendrik R A Jonker
- Department of NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Utrecht University, the Netherlands
| | | | | | | | | |
Collapse
|
41
|
King NL, Deutsch EW, Ranish JA, Nesvizhskii AI, Eddes JS, Mallick P, Eng J, Desiere F, Flory M, Martin DB, Kim B, Lee H, Raught B, Aebersold R. Analysis of the Saccharomyces cerevisiae proteome with PeptideAtlas. Genome Biol 2006; 7:R106. [PMID: 17101051 PMCID: PMC1794584 DOI: 10.1186/gb-2006-7-11-r106] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2006] [Revised: 10/02/2006] [Accepted: 11/13/2006] [Indexed: 11/24/2022] Open
Abstract
We present the Saccharomyces cerevisiae PeptideAtlas composed from 47 diverse experiments and 4.9 million tandem mass spectra. The observed peptides align to 61% of Saccharomyces Genome Database (SGD) open reading frames (ORFs), 49% of the uncharacterized SGD ORFs, 54% of S. cerevisiae ORFs with a Gene Ontology annotation of 'molecular function unknown', and 76% of ORFs with Gene names. We highlight the use of this resource for data mining, construction of high quality lists for targeted proteomics, validation of proteins, and software development.
Collapse
Affiliation(s)
- Nichole L King
- Institute for Systems Biology, N 34th Street, Seattle, WA 98103, USA
| | - Eric W Deutsch
- Institute for Systems Biology, N 34th Street, Seattle, WA 98103, USA
| | - Jeffrey A Ranish
- Institute for Systems Biology, N 34th Street, Seattle, WA 98103, USA
| | - Alexey I Nesvizhskii
- Department of Pathology, University of Michigan, Catherine Road, Ann Arbor, MI 48109, USA
| | - James S Eddes
- Institute for Systems Biology, N 34th Street, Seattle, WA 98103, USA
| | - Parag Mallick
- Louis Warschaw Prostate Cancer Center, Cedars-Sinai Medical Center, W. Third St, Los Angeles, CA 90048, USA
| | - Jimmy Eng
- Institute for Systems Biology, N 34th Street, Seattle, WA 98103, USA
- PHSD, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Frank Desiere
- Nestlé Research Center, 1000 Lausanne 26, Switzerland
| | - Mark Flory
- Department of Molecular Biology and Biochemistry, Wesleyan University, Middletown, CT 06459, USA
| | - Daniel B Martin
- Institute for Systems Biology, N 34th Street, Seattle, WA 98103, USA
- Divisions of Human Biology and Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, WA 98109-1024, USA
| | - Bong Kim
- Institute for Systems Biology, N 34th Street, Seattle, WA 98103, USA
| | - Hookeun Lee
- IMSB, ETH Zurich and Faculty of Science, University of Zurich, Zurich, Switzerland
| | - Brian Raught
- University Health Network, Ontario Cancer Institute and McLaughlin Centre for Molecular Medicine, College Street, Toronto, ON M5G 1L7, Canada
| | - Ruedi Aebersold
- Institute for Systems Biology, N 34th Street, Seattle, WA 98103, USA
- IMSB, ETH Zurich and Faculty of Science, University of Zurich, Zurich, Switzerland
| |
Collapse
|
42
|
Cai H, Kauffman S, Naider F, Becker JM. Genomewide screen reveals a wide regulatory network for di/tripeptide utilization in Saccharomyces cerevisiae. Genetics 2005; 172:1459-76. [PMID: 16361226 PMCID: PMC1456296 DOI: 10.1534/genetics.105.053041] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Small peptides of two to six residues serve as important sources of amino acids and nitrogen required for growth by a variety of organisms. In the yeast Saccharomyces cerevisiae, the membrane transport protein Ptr2p, encoded by PTR2, mediates the uptake of di/tripeptides. To identify genes involved in regulation of dipeptide utilization, we performed a systematic, functional examination of this process in a haploid, nonessential, single-gene deletion mutant library. We have identified 103 candidate genes: 57 genes whose deletion decreased dipeptide utilization and 46 genes whose deletion enhanced dipeptide utilization. On the basis of Ptr2p-GFP expression studies, together with PTR2 expression analysis and dipeptide uptake assays, 42 genes were ascribed to the regulation of PTR2 expression, 37 genes were involved in Ptr2p localization, and 24 genes did not apparently affect Ptr2p-GFP expression or localization. The 103 genes regulating dipeptide utilization were distributed among most of the Gene Ontology functional categories, indicating a very wide regulatory network involved in transport and utilization of dipeptides in yeast. It is anticipated that further characterization of how these genes affect peptide utilization should add new insights into the global mechanisms of regulation of transport systems in general and peptide utilization in particular.
Collapse
Affiliation(s)
- Houjian Cai
- Department of Microbiology, University of Tennessee, Knoxville 37996-0845, USA
| | | | | | | |
Collapse
|
43
|
Kuai L, Das B, Sherman F. A nuclear degradation pathway controls the abundance of normal mRNAs in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 2005; 102:13962-7. [PMID: 16166263 PMCID: PMC1236574 DOI: 10.1073/pnas.0506518102] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We previously demonstrated an increased degradation of mRNAs in mutants of Saccharomyces cerevisiae having blocks in nuclear export. The degradation activity, designated DRN (degradation of mRNA in the nucleus), requires Cbc1p, a nuclear cap-binding protein, and Rrp6p, a nuclear exosome component. Microarray procedures were used to determine the half-lives of mRNAs from normal and mutant strains, leading to the tentative identification of hundreds of normal mRNAs that were notably stabilized when either CBC1 or RRP6 were deleted. Northern blot analysis of representative mRNAs confirmed the diminished degradation. One representative of this group, SKS1 mRNA, was also shown by a cytological procedure to be preferentially retained in the nucleus compared with typical mRNAs. We suggest that all normal mRNAs are subjected to degradation by DRN, but the degree of degradation is determined by the degree of nuclear retention. Furthermore, these mRNAs particularly susceptible to DRN were also diminished by overproduction of Cbc1p, demonstrating a regulatory role for CBC1. This conclusion was corroborated by finding an inverse relationship of the CBC1 and SKS1 mRNA levels in normal strains grown under different conditions.
Collapse
Affiliation(s)
- Letian Kuai
- Department of Biochemistry and Biophysics, Box 712, University of Rochester Medical Center, Rochester, NY 14642, USA
| | | | | |
Collapse
|
44
|
Tackett AJ, Dilworth DJ, Davey MJ, O'Donnell M, Aitchison JD, Rout MP, Chait BT. Proteomic and genomic characterization of chromatin complexes at a boundary. ACTA ACUST UNITED AC 2005; 169:35-47. [PMID: 15824130 PMCID: PMC2171912 DOI: 10.1083/jcb.200502104] [Citation(s) in RCA: 121] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
We have dissected specialized assemblies on the Saccharomyces cerevisiae genome that help define and preserve the boundaries that separate silent and active chromatin. These assemblies contain characteristic stretches of DNA that flank particular regions of silent chromatin, as well as five distinctively modified histones and a set of protein complexes. The complexes consist of at least 15 chromatin-associated proteins, including DNA pol ɛ, the Isw2-Itc1 and Top2 chromatin remodeling proteins, the Sas3-Spt16 chromatin modifying complex, and Yta7, a bromodomain-containing AAA ATPase. We show that these complexes are important for the faithful maintenance of an established boundary, as disruption of the complexes results in specific, anomalous alterations of the silent and active epigenetic states.
Collapse
|
45
|
Zhang LV, King OD, Wong SL, Goldberg DS, Tong AHY, Lesage G, Andrews B, Bussey H, Boone C, Roth FP. Motifs, themes and thematic maps of an integrated Saccharomyces cerevisiae interaction network. J Biol 2005; 4:6. [PMID: 15982408 PMCID: PMC1175995 DOI: 10.1186/jbiol23] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2004] [Revised: 02/21/2005] [Accepted: 04/08/2005] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Large-scale studies have revealed networks of various biological interaction types, such as protein-protein interaction, genetic interaction, transcriptional regulation, sequence homology, and expression correlation. Recurring patterns of interconnection, or 'network motifs', have revealed biological insights for networks containing either one or two types of interaction. RESULTS To study more complex relationships involving multiple biological interaction types, we assembled an integrated Saccharomyces cerevisiae network in which nodes represent genes (or their protein products) and differently colored links represent the aforementioned five biological interaction types. We examined three- and four-node interconnection patterns containing multiple interaction types and found many enriched multi-color network motifs. Furthermore, we showed that most of the motifs form 'network themes' -- classes of higher-order recurring interconnection patterns that encompass multiple occurrences of network motifs. Network themes can be tied to specific biological phenomena and may represent more fundamental network design principles. Examples of network themes include a pair of protein complexes with many inter-complex genetic interactions -- the 'compensatory complexes' theme. Thematic maps -- networks rendered in terms of such themes -- can simplify an otherwise confusing tangle of biological relationships. We show this by mapping the S. cerevisiae network in terms of two specific network themes. CONCLUSION Significantly enriched motifs in an integrated S. cerevisiae interaction network are often signatures of network themes, higher-order network structures that correspond to biological phenomena. Representing networks in terms of network themes provides a useful simplification of complex biological relationships.
Collapse
Affiliation(s)
- Lan V Zhang
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115 USA
| | - Oliver D King
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115 USA
| | - Sharyl L Wong
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115 USA
| | - Debra S Goldberg
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115 USA
| | - Amy HY Tong
- Banting and Best Department of Medical Research and Department of Medical Genetics and Microbiology, University of Toronto, Toronto ON M5G 1L6, Canada
| | - Guillaume Lesage
- Department of Biology, McGill University, Montreal PQ H3A 1B1, Canada
| | - Brenda Andrews
- Banting and Best Department of Medical Research and Department of Medical Genetics and Microbiology, University of Toronto, Toronto ON M5G 1L6, Canada
| | - Howard Bussey
- Department of Biology, McGill University, Montreal PQ H3A 1B1, Canada
| | - Charles Boone
- Banting and Best Department of Medical Research and Department of Medical Genetics and Microbiology, University of Toronto, Toronto ON M5G 1L6, Canada
| | - Frederick P Roth
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115 USA
| |
Collapse
|
46
|
Malagon F, Tong AH, Shafer BK, Strathern JN. Genetic interactions of DST1 in Saccharomyces cerevisiae suggest a role of TFIIS in the initiation-elongation transition. Genetics 2004; 166:1215-27. [PMID: 15082542 PMCID: PMC1470799 DOI: 10.1534/genetics.166.3.1215] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
TFIIS promotes the intrinsic ability of RNA polymerase II to cleave the 3'-end of the newly synthesized RNA. This stimulatory activity of TFIIS, which is dependent upon Rpb9, facilitates the resumption of transcription elongation when the polymerase stalls or arrests. While TFIIS has a pronounced effect on transcription elongation in vitro, the deletion of DST1 has no major effect on cell viability. In this work we used a genetic approach to increase our knowledge of the role of TFIIS in vivo. We showed that: (1) dst1 and rpb9 mutants have a synthetic growth defective phenotype when combined with fyv4, gim5, htz1, yal011w, ybr231c, soh1, vps71, and vps72 mutants that is exacerbated during germination or at high salt concentrations; (2) TFIIS and Rpb9 are essential when the cells are challenged with microtubule-destabilizing drugs; (3) among the SDO (synthetic with Dst one), SOH1 shows the strongest genetic interaction with DST1; (4) the presence of multiple copies of TAF14, SUA7, GAL11, RTS1, and TYS1 alleviate the growth phenotype of dst1 soh1 mutants; and (5) SRB5 and SIN4 genetically interact with DST1. We propose that TFIIS is required under stress conditions and that TFIIS is important for the transition between initiation and elongation in vivo.
Collapse
Affiliation(s)
- Francisco Malagon
- Gene Regulation and Chromosome Biology Laboratory, National Cancer Institute, National Institutes of Health, Frederick, Maryland 21702, USA
| | | | | | | |
Collapse
|
47
|
Chang YW, Howard SC, Herman PK. The Ras/PKA signaling pathway directly targets the Srb9 protein, a component of the general RNA polymerase II transcription apparatus. Mol Cell 2004; 15:107-16. [PMID: 15225552 DOI: 10.1016/j.molcel.2004.05.021] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2004] [Revised: 05/11/2004] [Accepted: 05/11/2004] [Indexed: 10/26/2022]
Abstract
RNA polymerase II transcription is a complex process that is controlled at multiple levels. The data presented here add to this repertoire by showing that signal transduction pathways can directly regulate gene expression by targeting components of the general RNA polymerase II apparatus. In particular, this study shows that the Ras/PKA signaling pathway in Saccharomyces cerevisiae regulates the activity of the Srb complex, a regulatory group of proteins that is part of the RNA polymerase II holoenzyme. Genetic and biochemical data indicate that Srb9p is a substrate for PKA and that this phosphorylation modulates the activity of the Srb complex. The Srb complex, like many components of the RNA II polymerase machinery, is responsible for regulating the expression of a relatively large number of genes. Thus, this type of a transcriptional control mechanism would provide the cell with an efficient way of bringing about broad changes in gene expression.
Collapse
Affiliation(s)
- Ya-Wen Chang
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210, USA
| | | | | |
Collapse
|
48
|
Nevado J, Tenbaum SP, Aranda A. hSrb7, an essential human Mediator component, acts as a coactivator for the thyroid hormone receptor. Mol Cell Endocrinol 2004; 222:41-51. [PMID: 15249124 DOI: 10.1016/j.mce.2004.05.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2004] [Revised: 05/11/2004] [Accepted: 05/11/2004] [Indexed: 10/26/2022]
Abstract
Nuclear hormone receptors interact with the basal-transcriptional complex and/or coactivators to regulate transcriptional activation. These activator-target interactions recruit the transcriptional machinery to the promoter and may also stimulate transcriptional events subsequent to the binding of the machinery to the promoter or enhancer element. We describe a novel functional interaction of the nuclear thyroid receptor (TR), with a human Mediator component (hSrb7), and a human TFIIH component (hMo15). In mammalian two-hybrid experiments as well as in GST-pull down assays, hSrb7 interacts with TR but not with other nuclear receptors such as the retinoic acid receptor (RAR) or the vitamin D receptor (VDR). Whereas hMo15 also interacts with VDR and RAR in mammalian two-hybrid assays, no association of hSrb7 with VDR or RAR is found. Accordingly, cotransfection of TR and hSrb7 increases thyroid hormone (T3)-dependent transcription in an AF-2-dependent manner, while hSrb7 causes no stimulation of vitamin D- or retinoic acid-mediated transactivation. These results reveal a novel co-activator role for hSrb7 and hMo15 on TR transcriptional responses, and demonstrate that different receptors can selectively target different co-activators or general transcription factors to stimulate transcription.
Collapse
Affiliation(s)
- Julián Nevado
- Unidad de Investigación, Hospital Universitario de Getafe, 28905 Getafe, Madrid, Spain
| | | | | |
Collapse
|
49
|
Mueller CL, Porter SE, Hoffman MG, Jaehning JA. The Paf1 complex has functions independent of actively transcribing RNA polymerase II. Mol Cell 2004; 14:447-56. [PMID: 15149594 DOI: 10.1016/s1097-2765(04)00257-6] [Citation(s) in RCA: 144] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2003] [Revised: 04/06/2004] [Accepted: 04/13/2004] [Indexed: 10/26/2022]
Abstract
The yeast Paf1 complex, minimally composed of Paf1, Ctr9, Cdc73, Rtf1, and Leo1, was originally isolated in association with RNA polymerase II (Pol II). Paf1 complex components are abundant and colocalize with Pol II on chromatin at promoters and in the coding regions of actively transcribed genes. Loss of Paf1 results in severe phenotypes and reduced amounts of other Paf1 factors, with little effect on abundance or chromatin distribution of Pol II, proteins important for transcriptional elongation (Spt5, Spt16), or RNA processing (Sub2). Loss of Paf1 factors causes a reduction of Pol II Ser2 phosphorylation and shortened poly(A) tails, suggesting that the complex facilitates linkage of transcriptional and posttranscriptional events. Surprisingly, loss of Rtf1 or Cdc73, with little phenotypic consequence, results in loss of Paf1 factors from chromatin and a significant reduction in Paf1/Pol II association. Therefore, the major functions of Paf1 can be independent of actively transcribing Pol II.
Collapse
Affiliation(s)
- Cherie L Mueller
- Department of Biochemistry and Molecular Genetics, Molecular Biology Program, University of Colorado Health Science Center, B121, 4200 East Ninth Avenue, Denver, CO 80262, USA
| | | | | | | |
Collapse
|
50
|
Green SR, Johnson AD. Promoter-dependent roles for the Srb10 cyclin-dependent kinase and the Hda1 deacetylase in Tup1-mediated repression in Saccharomyces cerevisiae. Mol Biol Cell 2004; 15:4191-202. [PMID: 15240822 PMCID: PMC515351 DOI: 10.1091/mbc.e04-05-0412] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The Tup1-Ssn6 complex has been well characterized as a Saccharomyces cerevisiae general transcriptional repressor with functionally conserved homologues in metazoans. These homologues are essential for cell differentiation and many other developmental processes. The mechanism of repression of all of these proteins remains poorly understood. Srb10 (a cyclin-dependent kinase associated with the Mediator complex) and Hda1 (a class I histone deacetylase) have each been implicated in Tup1-mediated repression. We present a statistically based genome-wide analysis that reveals that Hda1 partially represses roughly 30% of Tup1-repressed genes, whereas Srb10 kinase activity contributes to the repression of approximately 15% of Tup1-repressed genes. These effects only partially overlap, suggesting that different Tup1-repression mechanisms predominate at different promoters. We also demonstrate a distinction between histone deacetylation and transcriptional repression. In an HDA1 deletion, many Tup1-repressed genes are hyperacetylated at lysine 18 of histone H3, yet are not derepressed, indicating deacetylation alone is not sufficient to repress most Tup1-controlled genes. In a strain lacking both Srb10 and Hda1 functions, more than half of the Tup1-repressed genes are still repressed, suggesting that Tup1-mediated repression occurs by multiple, partially overlapping mechanisms, at least one of which is unknown.
Collapse
Affiliation(s)
- Sarah R Green
- Department of Biochemistry and Molecular Biology, University of California-San Francisco, San Francisco, CA 94143, USA
| | | |
Collapse
|