1
|
Palmgren M. Evolution of the sodium pump. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2023; 1870:119511. [PMID: 37301269 DOI: 10.1016/j.bbamcr.2023.119511] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/16/2023] [Accepted: 06/02/2023] [Indexed: 06/12/2023]
Abstract
Eukaryotic plasma membranes (PMs) are energized by electrogenic P-type ATPases that generate either Na+ or H+ motive forces to drive Na+ and H+ dependent transport processes, respectively. For this purpose, animal rely on Na+/K+-ATPases whereas fungi and plants employ PM H+-ATPases. Prokaryotes, on the other hand, depend on H+ or Na+-motive electron transport complexes to energize their cell membranes. This raises the question as to why and when electrogenic Na+ and H+ pumps evolved? Here it is shown that prokaryotic Na+/K+-ATPases have near perfect conservation of binding sites involved in coordination of three Na+ and two K+ ions. Such pumps are rare in Eubacteria but are common in methanogenic Archaea where they often are found together with P-type putative PM H+-ATPases. With some exceptions, Na+/K+-ATPases and PM H+-ATPases are found everywhere in the eukaryotic tree of life, but never together in animals, fungi and land plants. It is hypothesized that Na+/K+-ATPases and PM H+-ATPases evolved in methanogenic Archaea to support the bioenergetics of these ancestral organisms, which can utilize both H+ and Na+ as energy currencies. Both pumps must have been simultaneously present in the first eukaryotic cell, but during diversification of the major eukaryotic kingdoms, and at the time animals diverged from fungi, animals kept Na+/K+-ATPases but lost PM H+-ATPases. At the same evolutionary branch point, fungi did loose Na+/K+-ATPases, and their role was taken over by PM H+-ATPases. An independent but similar scenery emerged during terrestrialization of plants: they lost Na+/K+-ATPases but kept PM H+-ATPases.
Collapse
Affiliation(s)
- Michael Palmgren
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark.
| |
Collapse
|
2
|
Dębczyński M, Gorrieri G, Mojsak D, Guida F, Zara F, Scudieri P. ATP12A Proton Pump as an Emerging Therapeutic Target in Cystic Fibrosis and Other Respiratory Diseases. Biomolecules 2023; 13:1455. [PMID: 37892136 PMCID: PMC10605105 DOI: 10.3390/biom13101455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/15/2023] [Accepted: 09/25/2023] [Indexed: 10/29/2023] Open
Abstract
ATP12A encodes the catalytic subunit of the non-gastric proton pump, which is expressed in many epithelial tissues and mediates the secretion of protons in exchange for potassium ions. In the airways, ATP12A-dependent proton secretion contributes to complex mechanisms regulating the composition and properties of the fluid and mucus lining the respiratory epithelia, which are essential to maintain the airway host defense and the respiratory health. Increased expression and activity of ATP12A in combination with the loss of other balancing activities, such as the bicarbonate secretion mediated by CFTR, leads to excessive acidification of the airway surface liquid and mucus dysfunction, processes that play relevant roles in the pathogenesis of cystic fibrosis and other chronic inflammatory respiratory disorders. In this review, we summarize the findings dealing with ATP12A expression, function, and modulation in the airways, which led to the consideration of ATP12A as a potential therapeutic target for the treatment of cystic fibrosis and other airway diseases; we also highlight the current advances and gaps regarding the development of therapeutic strategies aimed at ATP12A inhibition.
Collapse
Affiliation(s)
- Michał Dębczyński
- 2nd Department of Lung Diseases and Tuberculosis, Medical University of Bialystok, 15-540 Bialystok, Poland; (M.D.); (D.M.)
| | - Giulia Gorrieri
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DiNOGMI), University of Genoa, 16132 Genoa, Italy; (G.G.); (F.G.); (F.Z.)
| | - Damian Mojsak
- 2nd Department of Lung Diseases and Tuberculosis, Medical University of Bialystok, 15-540 Bialystok, Poland; (M.D.); (D.M.)
| | - Floriana Guida
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DiNOGMI), University of Genoa, 16132 Genoa, Italy; (G.G.); (F.G.); (F.Z.)
| | - Federico Zara
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DiNOGMI), University of Genoa, 16132 Genoa, Italy; (G.G.); (F.G.); (F.Z.)
- Unit of Medical Genetics, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy
| | - Paolo Scudieri
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DiNOGMI), University of Genoa, 16132 Genoa, Italy; (G.G.); (F.G.); (F.Z.)
- Unit of Medical Genetics, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy
| |
Collapse
|
3
|
Structure and function of H +/K + pump mutants reveal Na +/K + pump mechanisms. Nat Commun 2022; 13:5270. [PMID: 36085139 PMCID: PMC9463140 DOI: 10.1038/s41467-022-32793-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 08/17/2022] [Indexed: 11/09/2022] Open
Abstract
Ion-transport mechanisms evolve by changing ion-selectivity, such as switching from Na+ to H+ selectivity in secondary-active transporters or P-type-ATPases. Here we study primary-active transport via P-type ATPases using functional and structural analyses to demonstrate that four simultaneous residue substitutions transform the non-gastric H+/K+ pump, a strict H+-dependent electroneutral P-type ATPase, into a bona fide Na+-dependent electrogenic Na+/K+ pump. Conversion of a H+-dependent primary-active transporter into a Na+-dependent one provides a prototype for similar studies of ion-transport proteins. Moreover, we solve the structures of the wild-type non-gastric H+/K+ pump, a suitable drug target to treat cystic fibrosis, and of its Na+/K+ pump-mimicking mutant in two major conformations, providing insight on how Na+ binding drives a concerted mechanism leading to Na+/K+ pump phosphorylation.
Collapse
|
4
|
Zajac M, Dreano E, Edwards A, Planelles G, Sermet-Gaudelus I. Airway Surface Liquid pH Regulation in Airway Epithelium Current Understandings and Gaps in Knowledge. Int J Mol Sci 2021; 22:3384. [PMID: 33806154 PMCID: PMC8037888 DOI: 10.3390/ijms22073384] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/08/2021] [Accepted: 03/08/2021] [Indexed: 12/22/2022] Open
Abstract
Knowledge on the mechanisms of acid and base secretion in airways has progressed recently. The aim of this review is to summarize the known mechanisms of airway surface liquid (ASL) pH regulation and their implication in lung diseases. Normal ASL is slightly acidic relative to the interstitium, and defects in ASL pH regulation are associated with various respiratory diseases, such as cystic fibrosis. Basolateral bicarbonate (HCO3-) entry occurs via the electrogenic, coupled transport of sodium (Na+) and HCO3-, and, together with carbonic anhydrase enzymatic activity, provides HCO3- for apical secretion. The latter mainly involves CFTR, the apical chloride/bicarbonate exchanger pendrin and paracellular transport. Proton (H+) secretion into ASL is crucial to maintain its relative acidity compared to the blood. This is enabled by H+ apical secretion, mainly involving H+/K+ ATPase and vacuolar H+-ATPase that carry H+ against the electrochemical potential gradient. Paracellular HCO3- transport, the direction of which depends on the ASL pH value, acts as an ASL protective buffering mechanism. How the transepithelial transport of H+ and HCO3- is coordinated to tightly regulate ASL pH remains poorly understood, and should be the focus of new studies.
Collapse
Affiliation(s)
- Miroslaw Zajac
- Department of Physics and Biophysics, Institute of Biology, Warsaw University of Life Sciences, 02-776 Warsaw, Poland;
| | - Elise Dreano
- Institut Necker Enfants Malades, INSERM U1151, 75015 Paris, France;
- Centre de Recherche des Cordeliers, Sorbonne Université, INSERM, Université de Paris, 75006 Paris, France;
| | - Aurelie Edwards
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA;
| | - Gabrielle Planelles
- Centre de Recherche des Cordeliers, Sorbonne Université, INSERM, Université de Paris, 75006 Paris, France;
- Laboratoire de Physiologie rénale et Tubulopathies, CNRS ERL 8228, 75006 Paris, France
| | - Isabelle Sermet-Gaudelus
- Institut Necker Enfants Malades, INSERM U1151, 75015 Paris, France;
- Centre de Recherche des Cordeliers, Sorbonne Université, INSERM, Université de Paris, 75006 Paris, France;
- Centre de Référence Maladies Rares, Mucoviscidose et Maladies de CFTR, Hôpital Necker Enfants Malades, 75015 Paris, France
- Clinical Trial Network, European Cystic Fibrosis Society, BT2 Belfast, Ireland
- European Respiratory Network Lung, 75006 Paris, France
| |
Collapse
|
5
|
Cheval L, Bakouh N, Walter C, Tembely D, Morla L, Escher G, Vogt B, Crambert G, Planelles G, Doucet A. ANP-stimulated Na + secretion in the collecting duct prevents Na + retention in the renal adaptation to acid load. Am J Physiol Renal Physiol 2019; 317:F435-F443. [PMID: 31188029 DOI: 10.1152/ajprenal.00059.2019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We have recently reported that type A intercalated cells of the collecting duct secrete Na+ by a mechanism coupling the basolateral type 1 Na+-K+-2Cl- cotransporter with apical type 2 H+-K+-ATPase (HKA2) functioning under its Na+/K+ exchange mode. The first aim of the present study was to evaluate whether this secretory pathway is a target of atrial natriuretic peptide (ANP). Despite hyperaldosteronemia, metabolic acidosis is not associated with Na+ retention. The second aim of the present study was to evaluate whether ANP-induced stimulation of Na+ secretion by type A intercalated cells might account for mineralocorticoid escape during metabolic acidosis. In Xenopus oocytes expressing HKA2, cGMP, the second messenger of ANP, increased the membrane expression, activity, and Na+-transporting rate of HKA2. Feeding mice with a NH4Cl-enriched diet increased urinary excretion of aldosterone and induced a transient Na+ retention that reversed within 3 days. At that time, expression of ANP mRNA in the collecting duct and urinary excretion of cGMP were increased. Reversion of Na+ retention was prevented by treatment with an inhibitor of ANP receptors and was absent in HKA2-null mice. In conclusion, paracrine stimulation of HKA2 by ANP is responsible for the escape of the Na+-retaining effect of aldosterone during metabolic acidosis.
Collapse
Affiliation(s)
- Lydie Cheval
- Centre de Recherche des Cordeliers, Institut National de la Santé et de la Recherche Médicale, Université Sorbonne Paris Cité, Université Paris Descartes, Université Paris Diderot, Paris, France.,Centre National de la Recherche Scientifique, ERL 8228, Paris, France
| | - Naziha Bakouh
- Centre de Recherche des Cordeliers, Institut National de la Santé et de la Recherche Médicale, Université Sorbonne Paris Cité, Université Paris Descartes, Université Paris Diderot, Paris, France.,Centre National de la Recherche Scientifique, ERL 8228, Paris, France
| | - Christine Walter
- Centre de Recherche des Cordeliers, Institut National de la Santé et de la Recherche Médicale, Université Sorbonne Paris Cité, Université Paris Descartes, Université Paris Diderot, Paris, France.,Centre National de la Recherche Scientifique, ERL 8228, Paris, France
| | - Dignê Tembely
- Centre de Recherche des Cordeliers, Institut National de la Santé et de la Recherche Médicale, Université Sorbonne Paris Cité, Université Paris Descartes, Université Paris Diderot, Paris, France.,Centre National de la Recherche Scientifique, ERL 8228, Paris, France
| | - Luciana Morla
- Centre de Recherche des Cordeliers, Institut National de la Santé et de la Recherche Médicale, Université Sorbonne Paris Cité, Université Paris Descartes, Université Paris Diderot, Paris, France.,Centre National de la Recherche Scientifique, ERL 8228, Paris, France
| | - Geneviève Escher
- Department of Nephrology and Hypertension, Inselspital, Bern University Hospital, Bern, Switzerland
| | - Bruno Vogt
- Department of Nephrology and Hypertension, Inselspital, Bern University Hospital, Bern, Switzerland
| | - Gilles Crambert
- Centre de Recherche des Cordeliers, Institut National de la Santé et de la Recherche Médicale, Université Sorbonne Paris Cité, Université Paris Descartes, Université Paris Diderot, Paris, France.,Centre National de la Recherche Scientifique, ERL 8228, Paris, France
| | - Gabrielle Planelles
- Centre de Recherche des Cordeliers, Institut National de la Santé et de la Recherche Médicale, Université Sorbonne Paris Cité, Université Paris Descartes, Université Paris Diderot, Paris, France.,Centre National de la Recherche Scientifique, ERL 8228, Paris, France
| | - Alain Doucet
- Centre de Recherche des Cordeliers, Institut National de la Santé et de la Recherche Médicale, Université Sorbonne Paris Cité, Université Paris Descartes, Université Paris Diderot, Paris, France.,Centre National de la Recherche Scientifique, ERL 8228, Paris, France
| |
Collapse
|
6
|
Scudieri P, Musante I, Caci E, Venturini A, Morelli P, Walter C, Tosi D, Palleschi A, Martin-Vasallo P, Sermet-Gaudelus I, Planelles G, Crambert G, Galietta LJ. Increased expression of ATP12A proton pump in cystic fibrosis airways. JCI Insight 2018; 3:123616. [PMID: 30333310 DOI: 10.1172/jci.insight.123616] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 08/29/2018] [Indexed: 11/17/2022] Open
Abstract
Proton secretion mediated by ATP12A protein on the surface of the airway epithelium may contribute to cystic fibrosis (CF) lung disease by favoring bacterial infection and airway obstruction. We studied ATP12A in fresh bronchial samples and in cultured epithelial cells. In vivo, ATP12A expression was found almost exclusively at the apical side of nonciliated cells of airway epithelium and in submucosal glands, with much higher expression in CF samples. This could be due to bacterial infection and inflammation, since treating cultured cells with bacterial supernatants or with IL-4 (a cytokine that induces goblet cell hyperplasia) increased the expression of ATP12A in nonciliated cells. This observation was associated with upregulation and translocation of ATP1B1 protein from the basal to apical epithelial side, where it colocalizes with ATP12A. ATP12A function was evaluated by measuring the pH of the apical fluid in cultured epithelia. Under resting conditions, CF epithelia showed more acidic values. This abnormality was minimized by inhibiting ATP12A with ouabain. Following treatment with IL-4, ATP12A function was markedly increased, as indicated by strong acidification occurring under bicarbonate-free conditions. Our study reveals potentially novel aspects of ATP12A and remarks its importance as a possible therapeutic target in CF and other respiratory diseases.
Collapse
Affiliation(s)
- Paolo Scudieri
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli NA, Italy
| | - Ilaria Musante
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli NA, Italy
| | - Emanuela Caci
- U.O.C. Genetica Medica, Istituto Giannina Gaslini, Genova, Italy
| | - Arianna Venturini
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli NA, Italy
| | - Patrizia Morelli
- U.O.C. Laboratorio Analisi, Istituto Giannina Gaslini, Genova, Italy
| | - Christine Walter
- CNRS ERL 8228 - Centre de Recherche des Cordeliers - Laboratoire de Métabolisme et Physiologie Rénale, Paris, France.,Sorbonne Université, UPMC Univ Paris 06, INSERM, Université Paris Descartes, Sorbonne Paris Cité, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France
| | - Davide Tosi
- Thoracic Surgery and Lung Transplantation Unit, Fondazione IRCCS Ca' Granda - Ospedale Maggiore Policlinico, Milano, Italy
| | - Alessandro Palleschi
- Thoracic Surgery and Lung Transplantation Unit, Fondazione IRCCS Ca' Granda - Ospedale Maggiore Policlinico, Milano, Italy
| | - Pablo Martin-Vasallo
- UD de Bioquímica y Biología Molecular and Centro de Investigaciones Biomédicas de Canarias (CIBICAN), Universidad de La Laguna, La Laguna, Tenerife, Spain
| | | | - Gabrielle Planelles
- CNRS ERL 8228 - Centre de Recherche des Cordeliers - Laboratoire de Métabolisme et Physiologie Rénale, Paris, France.,Sorbonne Université, UPMC Univ Paris 06, INSERM, Université Paris Descartes, Sorbonne Paris Cité, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France
| | - Gilles Crambert
- CNRS ERL 8228 - Centre de Recherche des Cordeliers - Laboratoire de Métabolisme et Physiologie Rénale, Paris, France.,Sorbonne Université, UPMC Univ Paris 06, INSERM, Université Paris Descartes, Sorbonne Paris Cité, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France
| | - Luis Jv Galietta
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli NA, Italy
| |
Collapse
|
7
|
Rajendran VM, Sandle GI. Colonic Potassium Absorption and Secretion in Health and Disease. Compr Physiol 2018; 8:1513-1536. [PMID: 30215859 PMCID: PMC9769410 DOI: 10.1002/cphy.c170030] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The colon has large capacities for K+ absorption and K+ secretion, but its role in maintaining K+ homeostasis is often overlooked. For many years, passive diffusion and/or solvent drag were thought to be the primary mechanisms for K+ absorption in human and animal colon. However, it is now clear that apical H+ ,K+ -ATPase, in coordination with basolateral K+ -Cl- cotransport and/or K+ and Cl- channels operating in parallel, mediate electroneutral K+ absorption in animal colon. We now know that K+ absorption in rat colon reflects ouabain-sensitive and ouabain-insensitive apical H+ ,K+ -ATPase activities. Ouabain-insensitive and ouabain-sensitive H+ ,K+ -ATPases are localized in surface and crypt cells, respectively. Colonic H+ ,K+ -ATPase consists of α- (HKCα ) and β- (HKCβ ) subunits which, when coexpressed, exhibit ouabain-insensitive H+ ,K+ -ATPase activity in HEK293 cells, while HKCα coexpressed with the gastric β-subunit exhibits ouabain-sensitive H+ ,K+ -ATPase activity in Xenopus oocytes. Aldosterone enhances apical H+ ,K+ -ATPase activity, HKCα specific mRNA and protein expression, and K+ absorption. Active K+ secretion, on the other hand, is mediated by apical K+ channels operating in a coordinated way with the basolateral Na+ -K+ -2Cl- cotransporter. Both Ca2+ -activated intermediate conductance K+ (IK) and large conductance K+ (BK) channels are located in the apical membrane of colonic epithelia. IK channel-mediated K+ efflux provides the driving force for Cl- secretion, while BK channels mediate active (e.g., cAMP-activated) K+ secretion. BK channel expression and activity are increased in patients with end-stage renal disease and ulcerative colitis. This review summarizes the role of apical H+ ,K+ -ATPase in K+ absorption, and apical BK channel function in K+ secretion in health and disease. © 2018 American Physiological Society. Compr Physiol 8:1513-1536, 2018.
Collapse
Affiliation(s)
| | - Geoffrey I. Sandle
- Leeds Institute of Biomedical and Clinical Sciences, St James’s University Hospital, Leeds LS9 7TF, UK
| |
Collapse
|
8
|
Edwards A, Crambert G. Versatility of NaCl transport mechanisms in the cortical collecting duct. Am J Physiol Renal Physiol 2017; 313:F1254-F1263. [PMID: 28877883 DOI: 10.1152/ajprenal.00369.2017] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 08/16/2017] [Accepted: 08/31/2017] [Indexed: 12/16/2022] Open
Abstract
The cortical collecting duct (CCD) forms part of the aldosterone-sensitive distal nephron and plays an essential role in maintaining the NaCl balance and acid-base status. The CCD epithelium comprises principal cells as well as different types of intercalated cells. Until recently, transcellular Na+ transport was thought to be restricted to principal cells, whereas (acid-secreting) type A and (bicarbonate-secreting) type B intercalated cells were associated with the regulation of acid-base homeostasis. This review describes how this traditional view has been upended by several discoveries in the past decade. A series of studies has shown that type B intercalated cells can mediate electroneutral NaCl reabsorption by a mechanism involving Na+-dependent and Na+-independent Cl-/[Formula: see text] exchange, and that is energetically driven by basolateral vacuolar H+-ATPase pumps. Other research indicates that type A intercalated cells can mediate NaCl secretion, through a bumetanide-sensitive pathway that is energized by apical H+,K+-ATPase type 2 pumps operating as Na+/K+ exchangers. We also review recent findings on the contribution of the paracellular route to NaCl transport in the CCD. Last, we describe cross-talk processes, by which one CCD cell type impacts Na+/Cl- transport in another cell type. The mechanisms that have been identified to date demonstrate clearly the interdependence of NaCl and acid-base transport systems in the CCD. They also highlight the remarkable versatility of this nephron segment.
Collapse
Affiliation(s)
- Aurélie Edwards
- Sorbonne Universités, UPMC Univ Paris 06, Université Paris Descartes, Sorbonne Paris Cité, INSERM UMRS 1138, CNRS ERL 8228, Centre de Recherche des Cordeliers, Paris, France; and .,Department of Biomedical Engineering, Boston University, Boston, Massachusetts
| | - Gilles Crambert
- Sorbonne Universités, UPMC Univ Paris 06, Université Paris Descartes, Sorbonne Paris Cité, INSERM UMRS 1138, CNRS ERL 8228, Centre de Recherche des Cordeliers, Paris, France; and
| |
Collapse
|
9
|
Shah VS, Meyerholz DK, Tang XX, Reznikov L, Abou Alaiwa M, Ernst SE, Karp PH, Wohlford-Lenane CL, Heilmann KP, Leidinger MR, Allen PD, Zabner J, McCray PB, Ostedgaard LS, Stoltz DA, Randak CO, Welsh MJ. Airway acidification initiates host defense abnormalities in cystic fibrosis mice. Science 2016; 351:503-7. [PMID: 26823428 DOI: 10.1126/science.aad5589] [Citation(s) in RCA: 241] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cystic fibrosis (CF) is caused by mutations in the gene that encodes the cystic fibrosis transmembrane conductance regulator (CFTR) anion channel. In humans and pigs, the loss of CFTR impairs respiratory host defenses, causing airway infection. But CF mice are spared. We found that in all three species, CFTR secreted bicarbonate into airway surface liquid. In humans and pigs lacking CFTR, unchecked H(+) secretion by the nongastric H(+)/K(+) adenosine triphosphatase (ATP12A) acidified airway surface liquid, which impaired airway host defenses. In contrast, mouse airways expressed little ATP12A and secreted minimal H(+); consequently, airway surface liquid in CF and non-CF mice had similar pH. Inhibiting ATP12A reversed host defense abnormalities in human and pig airways. Conversely, expressing ATP12A in CF mouse airways acidified airway surface liquid, impaired defenses, and increased airway bacteria. These findings help explain why CF mice are protected from infection and nominate ATP12A as a potential therapeutic target for CF.
Collapse
Affiliation(s)
- Viral S Shah
- Department of Medicine, University of Iowa, Iowa City, IA 52242, USA. Department of Molecular Physiology and Biophysics, Pappajohn Biomedical Institute, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - David K Meyerholz
- Department of Pathology, University of Iowa, Iowa City, IA 52242, USA
| | - Xiao Xiao Tang
- Department of Medicine, University of Iowa, Iowa City, IA 52242, USA. Howard Hughes Medical Institute, University of Iowa, Iowa City, IA 52242, USA
| | - Leah Reznikov
- Department of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | | | - Sarah E Ernst
- Department of Medicine, University of Iowa, Iowa City, IA 52242, USA. Howard Hughes Medical Institute, University of Iowa, Iowa City, IA 52242, USA
| | - Philip H Karp
- Department of Medicine, University of Iowa, Iowa City, IA 52242, USA. Howard Hughes Medical Institute, University of Iowa, Iowa City, IA 52242, USA
| | | | | | | | - Patrick D Allen
- Department of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Joseph Zabner
- Department of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Paul B McCray
- Department of Pediatrics University of Iowa, Iowa City, IA 52242, USA. Department of Microbiology, University of Iowa, Iowa City, IA 52242, USA
| | | | - David A Stoltz
- Department of Medicine, University of Iowa, Iowa City, IA 52242, USA. Department of Molecular Physiology and Biophysics, Pappajohn Biomedical Institute, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA. Department of Biomedical Engineering, College of Engineering, University of Iowa, Iowa City, IA 52242, USA
| | | | - Michael J Welsh
- Department of Medicine, University of Iowa, Iowa City, IA 52242, USA. Department of Molecular Physiology and Biophysics, Pappajohn Biomedical Institute, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA. Howard Hughes Medical Institute, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
10
|
Nadal-Quirós M, Moore LC, Marcano M. Parameter estimation for mathematical models of a nongastric H+(Na+)-K(+)(NH4+)-ATPase. Am J Physiol Renal Physiol 2015; 309:F434-46. [PMID: 26109090 PMCID: PMC4556890 DOI: 10.1152/ajprenal.00539.2014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 06/18/2015] [Indexed: 11/22/2022] Open
Abstract
The role of nongastric H(+)-K(+)-ATPase (HKA) in ion homeostasis of macula densa (MD) cells is an open question. To begin to explore this issue, we developed two mathematical models that describe ion fluxes through a nongastric HKA. One model assumes a 1H(+):1K(+)-per-ATP stoichiometry; the other assumes a 2H(+):2K(+)-per-ATP stoichiometry. Both models include Na+ and NH4+ competitive binding with H+ and K+, respectively, a characteristic observed in vitro and in situ. Model rate constants were obtained by minimizing the distance between model and experimental outcomes. Both 1H(+)(1Na(+)):1K(+)(1NH4 (+))-per-ATP and 2H(+)(2Na(+)):2K(+)(2NH4 (+))-per-ATP models fit the experimental data well. Using both models, we simulated ion net fluxes as a function of cytosolic or luminal ion concentrations typical for the cortical thick ascending limb and MD region. We observed that (1) K+ and NH4+ flowed in the lumen-to-cytosol direction, (2) there was competitive behavior between luminal K+ and NH4+ and between cytosolic Na+ and H+, 3) ion fluxes were highly sensitive to changes in cytosolic Na+ or H+ concentrations, and 4) the transporter does mostly Na+ / K+ exchange under physiological conditions. These results support the concept that nongastric HKA may contribute to Na+ and pH homeostasis in MD cells. Furthermore, in both models, H+ flux reversed at a luminal pH that was <5.6. Such reversal led to Na+ / H+ exchange for a luminal pH of <2 and 4 in the 1:1-per-ATP and 2:2-per-ATP models, respectively. This suggests a novel role of nongastric HKA in cell Na+ homeostasis in the more acidic regions of the renal tubules.
Collapse
Affiliation(s)
| | - Leon C Moore
- Department of Physiology and Biophysics, State University of New York Health Science Center, Stony Brook, New York
| | - Mariano Marcano
- Department of Computer Science, University of Puerto Rico, Río Piedras, Puerto Rico
| |
Collapse
|
11
|
Wang J, Barbuskaite D, Tozzi M, Giannuzzo A, Sørensen CE, Novak I. Proton Pump Inhibitors Inhibit Pancreatic Secretion: Role of Gastric and Non-Gastric H+/K+-ATPases. PLoS One 2015; 10:e0126432. [PMID: 25993003 PMCID: PMC4436373 DOI: 10.1371/journal.pone.0126432] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Accepted: 04/02/2015] [Indexed: 02/07/2023] Open
Abstract
The mechanism by which pancreas secretes high HCO3- has not been fully resolved. This alkaline secretion, formed in pancreatic ducts, can be achieved by transporting HCO3- from serosa to mucosa or by moving H+ in the opposite direction. The aim of the present study was to determine whether H+/K+-ATPases are expressed and functional in human pancreatic ducts and whether proton pump inhibitors (PPIs) have effect on those. Here we show that the gastric HKα1 and HKβ subunits (ATP4A; ATP4B) and non-gastric HKα2 subunits (ATP12A) of H+/K+-ATPases are expressed in human pancreatic cells. Pumps have similar localizations in duct cell monolayers (Capan-1) and human pancreas, and notably the gastric pumps are localized on the luminal membranes. In Capan-1 cells, PPIs inhibited recovery of intracellular pH from acidosis. Furthermore, in rats treated with PPIs, pancreatic secretion was inhibited but concentrations of major ions in secretion follow similar excretory curves in control and PPI treated animals. In addition to HCO3-, pancreas also secretes K+. In conclusion, this study calls for a revision of the basic model for HCO3- secretion. We propose that proton transport is driving secretion, and that in addition it may provide a protective pH buffer zone and K+ recirculation. Furthermore, it seems relevant to re-evaluate whether PPIs should be used in treatment therapies where pancreatic functions are already compromised.
Collapse
Affiliation(s)
- Jing Wang
- Department of Biology, Section for Molecular Integrative Physiology, August Krogh Building, University of Copenhagen, Copenhagen, Denmark
| | - Dagne Barbuskaite
- Department of Biology, Section for Molecular Integrative Physiology, August Krogh Building, University of Copenhagen, Copenhagen, Denmark
| | - Marco Tozzi
- Department of Biology, Section for Molecular Integrative Physiology, August Krogh Building, University of Copenhagen, Copenhagen, Denmark
| | - Andrea Giannuzzo
- Department of Biology, Section for Molecular Integrative Physiology, August Krogh Building, University of Copenhagen, Copenhagen, Denmark
| | - Christiane E. Sørensen
- Department of Biology, Section for Molecular Integrative Physiology, August Krogh Building, University of Copenhagen, Copenhagen, Denmark
| | - Ivana Novak
- Department of Biology, Section for Molecular Integrative Physiology, August Krogh Building, University of Copenhagen, Copenhagen, Denmark
- * E-mail:
| |
Collapse
|
12
|
Knez J, Salvi E, Tikhonoff V, Stolarz-Skrzypek K, Ryabikov A, Thijs L, Braga D, Kloch-Badelek M, Malyutina S, Casiglia E, Czarnecka D, Kawecka-Jaszcz K, Cusi D, Nawrot T, Staessen JA, Kuznetsova T. Left ventricular diastolic function associated with common genetic variation in ATP12A in a general population. BMC MEDICAL GENETICS 2014; 15:121. [PMID: 25366262 PMCID: PMC4411923 DOI: 10.1186/s12881-014-0121-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 10/22/2014] [Indexed: 01/28/2023]
Abstract
Background Left ventricular (LV) function depends on the activity of transmembrane electrolyte transporters. Failing human myocardium has lower Na+/K+ ATPase expression and higher intracellular sodium concentrations. The ATP12A gene encodes a catalytic subunit of an ATPase that can function as a Na+/K+ pump. We, therefore, investigated the association between LV function and common genetic variants in ATP12A. Methods A random sample of 1166 participants (53.7% women; mean age 49.5 years, 44.8% hypertensive) was recruited in Belgium, Poland, Italy and Russia. We measured transmitral early and late diastolic velocities (E and A) by pulsed wave Doppler, and mitral annular velocities (e’ and a’) by tissue Doppler. Using principal component analysis, we summarized 7 Doppler indexes – namely, E, A, e’ and a’ velocities, and their ratios (E/A, e’/a’, and E/e’) – into a single diastolic score. We genotyped 5 tag SNPs (rs963984, rs9553395, rs10507337, rs12872010, rs2071490) in ATP12A. In our analysis we focused on rs10507337 because it is located within a transcription factor binding site. Results In the population-based analyses while adjusting for covariables and accounting for family clusters and country, rs10507337 C allele carriers had significantly higher E/A (P = 0.003), e’ (P = 5.8×10−5), e’/a’ (P = 0.003) and diastolic score (P = 0.0001) compared to TT homozygotes. Our findings were confirmed in the haplotype analysis and in the family-based analyses in 74 informative offspring. Conclusions LV diastolic function as assessed by conventional and tissue Doppler indexes including a composite diastolic score was associated with genetic variation in ATP12A. Further experimental studies are necessary to clarify the role of ATP12A in myocardial relaxation. Electronic supplementary material The online version of this article (doi:10.1186/s12881-014-0121-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Judita Knez
- KU Leuven Department of Cardiovascular Sciences, Research Unit Hypertension and Cardiovascular Epidemiology, University of Leuven, Leuven, Belgium. .,Hypertension Division, Department of Internal Medicine, University Clinical Centre Ljubljana, Ljubljana, Slovenia.
| | - Erika Salvi
- Department of Health, University of Milano and Genomics and Bioinformatics Platform, Fondazione Filarete, Milano, Italy.
| | - Valérie Tikhonoff
- Department of Medicine, University of Padova, Padova, Italy. .,MRC Unit for Lifelong Health and Ageing at University College London, London, UK.
| | - Katarzyna Stolarz-Skrzypek
- First Department of Cardiology, Interventional Electrocardiology and Hypertension, Jagiellonian University Medical College, Krakow, Poland.
| | - Andrew Ryabikov
- Institute of Internal and Preventive Medicine, Novosibirsk, Russian Federation. .,Novosibirsk State Medical University, Novosibirsk, Russian Federation.
| | - Lutgarde Thijs
- KU Leuven Department of Cardiovascular Sciences, Research Unit Hypertension and Cardiovascular Epidemiology, University of Leuven, Leuven, Belgium.
| | - Daniele Braga
- Department of Health, University of Milano and Genomics and Bioinformatics Platform, Fondazione Filarete, Milano, Italy.
| | - Malgorzata Kloch-Badelek
- First Department of Cardiology, Interventional Electrocardiology and Hypertension, Jagiellonian University Medical College, Krakow, Poland.
| | - Sofia Malyutina
- Institute of Internal and Preventive Medicine, Novosibirsk, Russian Federation. .,Novosibirsk State Medical University, Novosibirsk, Russian Federation.
| | | | - Danuta Czarnecka
- First Department of Cardiology, Interventional Electrocardiology and Hypertension, Jagiellonian University Medical College, Krakow, Poland.
| | - Kalina Kawecka-Jaszcz
- First Department of Cardiology, Interventional Electrocardiology and Hypertension, Jagiellonian University Medical College, Krakow, Poland.
| | - Daniele Cusi
- Department of Health, University of Milano and Genomics and Bioinformatics Platform, Fondazione Filarete, Milano, Italy.
| | - Tim Nawrot
- Department of Public Health, Occupational and Environmental Medicine, KU Leuven, Leuven, Belgium. .,Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium.
| | - Jan A Staessen
- KU Leuven Department of Cardiovascular Sciences, Research Unit Hypertension and Cardiovascular Epidemiology, University of Leuven, Leuven, Belgium. .,Department of Epidemiology, Maastricht University, Maastricht, Netherlands.
| | - Tatiana Kuznetsova
- KU Leuven Department of Cardiovascular Sciences, Research Unit Hypertension and Cardiovascular Epidemiology, University of Leuven, Leuven, Belgium.
| |
Collapse
|
13
|
Abstract
H-K-ATPase type 2 (HKA2), also known as the "nongastric" or "colonic" H-K-ATPase, is broadly expressed, and its presence in the kidney has puzzled experts in the field of renal ion transport systems for many years. One of the most important and robust characteristics of this transporter is that it is strongly stimulated after dietary K(+) restriction. This result prompted many investigators to propose that it should play a role in allowing the kidney to efficiently retain K(+) under K(+) depletion. However, the apparent absence of a clear renal phenotype in HKA2-null mice has led to the idea that this transporter is an epiphenomenon. This review summarizes past and recent findings regarding the functional, structural and physiological characteristics of H-K-ATPase type 2. The findings discussed in this review suggest that, as in the famous story, the ugly duckling of the X-K-ATPase family is actually a swan.
Collapse
Affiliation(s)
- Gilles Crambert
- INSERM/UPMC Paris 6/CNRS, Centre de Recherche des Cordeliers Génomique, Physiologie et Physiopathologie Rénales, Equipe 3 U1138, ERL 8228, 15 rue de l'Ecole de Médecine, 75270 Paris Cedex, France.
| |
Collapse
|
14
|
Shin JM, Munson K, Vagin O, Sachs G. The gastric HK-ATPase: structure, function, and inhibition. Pflugers Arch 2009; 457:609-22. [PMID: 18536934 PMCID: PMC3079481 DOI: 10.1007/s00424-008-0495-4] [Citation(s) in RCA: 175] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2008] [Revised: 03/07/2008] [Accepted: 03/11/2008] [Indexed: 02/06/2023]
Abstract
The gastric H,K-ATPase, a member of the P(2)-type ATPase family, is the integral membrane protein responsible for gastric acid secretion. It is an alpha,beta-heterodimeric enzyme that exchanges cytoplasmic hydronium with extracellular potassium. The catalytic alpha subunit has ten transmembrane segments with a cluster of intramembranal carboxylic amino acids located in the middle of the transmembrane segments TM4, TM5,TM6, and TM8. Comparison to the known structure of the SERCA pump, mutagenesis, and molecular modeling has identified these as constituents of the ion binding domain. The beta subunit has one transmembrane segment with N terminus in cytoplasmic region. The extracellular domain of the beta subunit contains six or seven N-linked glycosylation sites. N-glycosylation is important for the enzyme assembly, maturation, and sorting. The enzyme pumps acid by a series of conformational changes from an E(1) (ion site in) to an E(2) (ion site out) configuration following binding of MgATP and phosphorylation. Several experimental observations support the hypothesis that expulsion of the proton at 160 mM (pH 0.8) results from movement of lysine 791 into the ion binding site in the E(2)P configuration. Potassium access from the lumen depends on activation of a K and Cl conductance via a KCNQ1/KCNE2 complex and Clic6. K movement through the luminal channel in E(2)P is proposed to displace the lysine along with dephosphorylation to return the enzyme to the E(1) configuration. This enzyme is inhibited by the unique proton pump inhibitor class of drug, allowing therapy of acid-related diseases.
Collapse
Affiliation(s)
- Jai Moo Shin
- Department of Physiology, David Geffen School of Medicine, University of California at Los Angeles and VA Greater Los Angeles Healthcare System, Los Angeles, CA 90073, USA
| | - Keith Munson
- Department of Physiology, David Geffen School of Medicine, University of California at Los Angeles and VA Greater Los Angeles Healthcare System, Los Angeles, CA 90073, USA
| | - Olga Vagin
- Department of Physiology, David Geffen School of Medicine, University of California at Los Angeles and VA Greater Los Angeles Healthcare System, Los Angeles, CA 90073, USA
| | - George Sachs
- Department of Physiology, David Geffen School of Medicine, University of California at Los Angeles and VA Greater Los Angeles Healthcare System, Los Angeles, CA 90073, USA. Membrane Biology, Room 324, Building 113, 11301 Wilshire Boulevard, Los Angeles, CA 90073, USA
| |
Collapse
|
15
|
De Pont JJHHM, Swarts HGP, Karawajczyk A, Schaftenaar G, Willems PHGM, Koenderink JB. The non-gastric H,K-ATPase as a tool to study the ouabain-binding site in Na,K-ATPase. Pflugers Arch 2008; 457:623-34. [DOI: 10.1007/s00424-008-0467-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2008] [Accepted: 01/23/2008] [Indexed: 10/22/2022]
|
16
|
Caplan MJ, Kamsteeg EJ, Duffield A. Tetraspan proteins: regulators of renal structure and function. Curr Opin Nephrol Hypertens 2007; 16:353-8. [PMID: 17565278 DOI: 10.1097/mnh.0b013e328177b1fa] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PURPOSE OF REVIEW Members of the tetraspan family are widely expressed and poorly understood. An emerging literature suggests that through their interactions with other membrane proteins they play central or regulatory roles in a wide variety of physiological processes. This review will discuss selected tetraspan complexes and highlight their relevance to epithelial cells and the kidney. RECENT FINDINGS Tetraspans regulate the signaling and trafficking properties of their partner proteins. Tetraspan complexes with integrin molecules, for example, modulate cell adhesion and mobility. Perturbations of tetraspan-integrin assemblies can have dramatic impacts on renal tissue morphogenesis, resulting in a disruption of normal glomerular architecture and selectivity. Tetraspan interactions with renal ion transport proteins appear to affect transporter function by enhancing or inhibiting the endocytic internalization of their transport protein partners. SUMMARY Tetraspans constitute a novel class of proteins whose capacity to alter the cell biological and functional properties of their membrane protein partners is likely to have wide ranging and important physiological ramifications.
Collapse
Affiliation(s)
- Michael J Caplan
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut 06525-8026, USA.
| | | | | |
Collapse
|
17
|
Swarts HGP, Koenderink JB, Willems PHGM, De Pont JJHHM. The human non-gastric H,K-ATPase has a different cation specificity than the rat enzyme. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2006; 1768:580-9. [PMID: 17137554 DOI: 10.1016/j.bbamem.2006.10.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2006] [Revised: 10/02/2006] [Accepted: 10/19/2006] [Indexed: 11/24/2022]
Abstract
The primary sequence of non-gastric H,K-ATPase differs much more between species than that of Na,K-ATPase or gastric H,K-ATPase. To investigate whether this causes species-dependent differences in enzymatic properties, we co-expressed the catalytic subunit of human non-gastric H,K-ATPase in Sf9 cells with the beta(1) subunit of rat Na,K-ATPase and compared its properties with those of the rat enzyme (Swarts et al., J. Biol. Chem. 280, 33115-33122, 2005). Maximal ATPase activity was obtained with NH(4)(+) as activating cation. The enzyme was also stimulated by Na(+), but in contrast to the rat enzyme, hardly by K(+). SCH 28080 inhibited the NH(4)(+)-stimulated activity of the human enzyme much more potently than that of the rat enzyme. The steady-state phosphorylation level of the human enzyme decreased with increasing pH, [K(+)], and [Na(+)] and nearly doubled in the presence of oligomycin. Oligomycin increased the sensitivity of the phosphorylated intermediate to ADP, demonstrating that it inhibited the conversion of E(1)P to E(2)P. All three cations stimulated the dephosphorylation rate dose-dependently. Our studies support a role of the human enzyme in H(+)/Na(+) and/or H(+)/NH(4)(+) transport but not in Na(+)/K(+) transport.
Collapse
Affiliation(s)
- Herman G P Swarts
- Department of Biochemistry, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | | | | | | |
Collapse
|
18
|
Pestov NB, Korneenko TV, Shakhparonov MI, Shull GE, Modyanov NN. Loss of acidification of anterior prostate fluids in Atp12a-null mutant mice indicates that nongastric H-K-ATPase functions as proton pump in vivo. Am J Physiol Cell Physiol 2006; 291:C366-74. [PMID: 16525125 DOI: 10.1152/ajpcell.00042.2006] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The physiological functions of nongastric (colonic) H-K-ATPase (gene symbol Atp12a), unlike those of Na-K-ATPase and gastric H-K-ATPase, are poorly understood. It has been suggested that it pumps Na+ more efficiently than H+; however, so far, there is no direct evidence that it pumps H+ in vivo. Previously, we found that the nongastric H-K-ATPase alpha-subunit is expressed in apical membranes of rodent anterior prostate epithelium, in a complex with the Na-K-ATPase beta1-subunit. Here we report the effects of Atp12a gene ablation on polarization of the beta1-subunit and secretory function of the anterior prostate. In nongastric H-K-ATPase-deficient prostate, the Na-K-ATPase alpha-subunit resided exclusively in basolateral membranes; however, the beta1-subunit disappeared from apical membranes, demonstrating that beta1 is an authentic subunit of nongastric H-K-ATPase in vivo and that apical localization of beta1 in the prostate is completely dependent on its association with the nongastric H-K-ATPase alpha-subunit. A remarkable reduction in acidification of anterior prostate fluids was observed: pH 6.38 +/- 0.14 for wild-type mice and 6.96 +/- 0.10 for homozygous mutants. These results show that nongastric H-K-ATPase is required for acidification of luminal prostate fluids, thereby providing a strong in vivo correlate of previous functional expression studies demonstrating that it operates as a proton pump.
Collapse
Affiliation(s)
- Nikolay B Pestov
- Dept. of Physiology, Pharmacology, Metabolism, and Cardiovascular Sciences, Med. Univ. of Ohio, 3035 Arlington Ave., Toledo, OH 43614, USA
| | | | | | | | | |
Collapse
|
19
|
Swarts HGP, Koenderink JB, Willems PHGM, De Pont JJHHM. The non-gastric H,K-ATPase is oligomycin-sensitive and can function as an H+,NH4(+)-ATPase. J Biol Chem 2005; 280:33115-22. [PMID: 16046397 DOI: 10.1074/jbc.m504535200] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We used the baculovirus/Sf9 expression system to gain new information on the mechanistic properties of the rat non-gastric H,K-ATPase, an enzyme that is implicated in potassium homeostasis. The alpha2-subunit of this enzyme (HKalpha2) required a beta-subunit for ATPase activity thereby showing a clear preference for NaKbeta1 over NaKbeta3 and gastric HKbeta. NH4(+), K+, and Na+ maximally increased the activity of HKalpha2-NaKbeta1 to 24.0, 14.2, and 5.0 micromol P(i) x mg(-1) protein x h(-1), respectively. The enzyme was inhibited by relatively high concentrations of ouabain and SCH 28080, whereas it was potently inhibited by oligomycin. From the phosphorylation level in the presence of oligomycin and the maximal NH4(+)-stimulated ATPase activity, a turnover number of 20,000 min(-1) was determined. All three cations decreased the steady-state phosphorylation level and enhanced the dephosphorylation rate, disfavoring the hypothesis that Na+ can replace H+ as the activating cation. The potency with which vanadate inhibited the cation-activated enzyme decreased in the order K+ > NH4(+) > Na+, indicating that K+ is a stronger E2 promoter than NH4(+), whereas in the presence of Na+ the enzyme is in the E1 form. For K+ and NH4(+), the E2 to E1 conformational equilibrium correlated with their efficacy in the ATPase reaction, indicating that here the transition from E2 to E1 is rate-limiting. Conversely, the low maximal ATPase activity with Na+ is explained by a poor stimulatory effect on the dephosphorylation rate. These data show that NH4(+) can replace K+ with similar affinity but higher efficacy as an extracellular activating cation in rat nongastric H,K-ATPase.
Collapse
Affiliation(s)
- Herman G P Swarts
- Department of Biochemistry, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, 6500 HB Nijmegen, The Netherlands
| | | | | | | |
Collapse
|
20
|
Abstract
The gastric H,K-ATPase catalyzes electroneutral exchange of H(+) for K(+) as a function of enzyme phosphorylation and dephosphorylation during transition between E(1)/E(1)-P (ion site in) and E(2)-P/E(2) (ion site out) conformations. Here we present homology modeling of the H,K-ATPase in the E(2)-P conformation as a means of predicting the interaction of the enzyme with two known classes of specific inhibitors. All known proton pump inhibitors, PPIs, form a disulfide bond with cysteine 813 that is accessible from the luminal surface. This allows allocation of the binding site to a luminal vestibule adjacent to Cys813 enclosed by part of TM4 and the loop between TM5 and TM6. K(+) competitive imidazo-1,2alpha-pyridines also bind to the luminal surface of the E(2)-P conformation, and their binding excludes PPI reaction. This overlap of the binding sites of the two classes of inhibitors combined with the results of site-directed mutagenesis and cysteine cross-linking allowed preliminary assignment of a docking mode for these reversible compounds in a position close to Glu795 that accounts for the detailed structure/activity relationships known for these compounds. The new E(2)-P model is able to assign a possible mechanism for acid secretion by this P(2)-type ATPase. Several ion binding side chains identified in the sr Ca-ATPase by crystallography are conserved in the Na,K- and H,K-ATPases. Poised in the middle of these, the H,K-ATPase substitutes lysine in place of a serine implicated in K(+) binding in the Na,K-ATPase. Molecular models for hydronium binding to E(1) versus E(2)-P predict outward displacement of the hydronium bound between Asp824, Glu820, and Glu795 by the R-NH(3)(+) of Lys791 during the conformational transition from E(1)P and E(2)P. The site for luminal K(+) binding at low pH is proposed to be between carbonyl oxygens in the nonhelical part of the fourth membrane span and carboxyl oxygens of Glu795 and Glu820. This site of K(+) binding is predicted to destabilize hydrogen bonds between these carboxylates and the -NH(3)(+) group of Lys791, allowing the Lys791 side chain to return to its E(1) position.
Collapse
Affiliation(s)
- Keith Munson
- Geffen School of Medicine, University of California at Los Angeles, and VAGLAHS, Los Angeles, California 90073, USA. kmunson@ ucla.edu
| | | | | |
Collapse
|
21
|
Codina J, Li J, DuBose TD. CD63 interacts with the carboxy terminus of the colonic H+-K+-ATPase to decrease [corrected] plasma membrane localization and 86Rb+ uptake. Am J Physiol Cell Physiol 2005; 288:C1279-86. [PMID: 15647390 PMCID: PMC1868892 DOI: 10.1152/ajpcell.00463.2004] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The carboxy terminus (CT) of the colonic H(+)-K(+)-ATPase is required for stable assembly with the beta-subunit, translocation to the plasma membrane, and efficient function of the transporter. To identify protein-protein interactions involved in the localization and function of HKalpha(2), we selected 84 amino acids in the CT of the alpha-subunit of mouse colonic H(+)-K(+)-ATPase (CT-HKalpha(2)) as the bait in a yeast two-hybrid screen of a mouse kidney cDNA library. The longest identified clone was CD63. To characterize the interaction of CT-HKalpha(2) with CD63, recombinant CT-HKalpha(2) and CD63 were synthesized in vitro and incubated, and complexes were immunoprecipitated. CT-HKalpha(2) protein (but not CT-HKalpha(1)) coprecipitated with CD63, confirming stable assembly of HKalpha(2) with CD63. In HEK-293 transfected with HKalpha(2) plus beta(1)-Na(+)-K(+)-ATPase, suppression of CD63 by RNA interference increased cell surface expression of HKalpha(2)/NKbeta(1) and (86)Rb(+) uptake. These studies demonstrate that CD63 participates in the regulation of the abundance of the HKalpha(2)-NKbeta(1) complex in the cell membrane.
Collapse
Affiliation(s)
| | | | - Thomas D. DuBose
- Corresponding author: Thomas D. DuBose, Jr., M.D., Department of Internal Medicine, Wake Forest University School of Medicine, Medical Center Blvd., Winston-Salem, NC 27157, Tel. (336)-716-2715, Fax. (336)-716-2273, e-mail:
| |
Collapse
|
22
|
Benito B, Garciadeblás B, Schreier P, Rodríguez-Navarro A. Novel p-type ATPases mediate high-affinity potassium or sodium uptake in fungi. EUKARYOTIC CELL 2004; 3:359-68. [PMID: 15075266 PMCID: PMC387655 DOI: 10.1128/ec.3.2.359-368.2004] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Fungi have an absolute requirement for K+, but K+ may be partially replaced by Na+. Na+ uptake in Ustilago maydis and Pichia sorbitophila was found to exhibit a fast rate, low Km, and apparent independence of the membrane potential. Searches of sequences with similarity to P-type ATPases in databases allowed us to identify three genes in these species, Umacu1, Umacu2, and PsACU1, that could encode P-type ATPases of a novel type. Deletion of the acu1 and acu2 genes proved that they encoded the transporters that mediated the high-affinity Na+ uptake of U. maydis. Heterologous expressions of the Umacu2 gene in K+ transport mutants of Saccharomyces cerevisiae and transport studies in the single and double Deltaacu1 and Deltaacu2 mutants of U. maydis revealed that the acu1 and acu2 genes encode transporters that mediated high-affinity K+ uptake in addition to Na+ uptake. Other fungi also have genes or pseudogenes whose translated sequences show high similarity to the ACU proteins of U. maydis and P. sorbitophila. In the phylogenetic tree of P-type ATPases all the identified ACU ATPases define a new cluster, which shows the lowest divergence with type IIC, animal Na+,K(+)-ATPases. The fungal high-affinity Na+ uptake mediated by ACU ATPases is functionally identical to the uptake that is mediated by some plant HKT transporters.
Collapse
Affiliation(s)
- Begoña Benito
- Departamento de Biotecnología, Universidad Politécnica de Madrid, 28040 Madrid, Spain. Bayer CropScience R-TRF, 40789 Monheim, Germany
| | | | | | | |
Collapse
|
23
|
Pestov NB, Korneenko TV, Radkov R, Zhao H, Shakhparonov MI, Modyanov NN. Identification of the β-subunit for nongastric H-K-ATPase in rat anterior prostate. Am J Physiol Cell Physiol 2004; 286:C1229-37. [PMID: 14749213 DOI: 10.1152/ajpcell.00393.2003] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The structural organization of nongastric H-K-ATPase, unlike that of closely related Na-K-ATPase and gastric H-K-ATPase, is not well characterized. Recently, we demonstrated that nongastric H-K-ATPase α-subunit (αng) is expressed in apical membranes of rodent prostate. Its highest level, as well as relative abundance, with respect to α1-isoform of Na-K-ATPase, was observed in anterior lobe. Here, we aimed to determine the subunit composition of nongastric H-K-ATPase through the detailed analysis of the expression of all known X-K-ATPase β-subunits in rat anterior prostate (AP). RT-PCR detects transcripts of β-subunits of Na-K-ATPase only. Measurement of absolute protein content of these three β-subunit isoforms, with the use of quantitative Western blotting of AP membrane proteins, indicates that the abundance order is β1> β3≫ β2. Immunohistochemical experiments demonstrate that β1is present predominantly in apical membranes, coinciding with αng, whereas β3is localized in the basolateral compartment, coinciding with α1. This is the first direct demonstration of the αng-β1colocalization in situ indicating that, in rat AP, αngassociates only with β1. The existence of αng-β1complex has been confirmed by immunoprecipitation experiments. These results indicate that β1-isoform functions as the authentic subunit of Na-K-ATPase and nongastric H-K-ATPase. Putatively, the intracellular polarization of X-K-ATPase isoforms depends on interaction with other proteins.
Collapse
Affiliation(s)
- Nikolay B Pestov
- Department of Pharmacology, Medical College of Ohio, Toledo, 43614, USA
| | | | | | | | | | | |
Collapse
|
24
|
Burnay M, Crambert G, Kharoubi-Hess S, Geering K, Horisberger JD. Electrogenicity of Na,K- and H,K-ATPase activity and presence of a positively charged amino acid in the fifth transmembrane segment. J Biol Chem 2003; 278:19237-44. [PMID: 12637496 DOI: 10.1074/jbc.m300946200] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The transport activity of the Na,K-ATPase (a 3 Na+ for 2 K+ ion exchange) is electrogenic, whereas the closely related gastric and non-gastric H,K-ATPases perform electroneutral cation exchange. We have studied the role of a highly conserved serine residue in the fifth transmembrane segment of the Na,K-ATPase, which is replaced with a lysine in all known H,K-ATPases. Ouabain-sensitive 86Rb uptake and K+-activated currents were measured in Xenopus oocytes expressing the Bufo bladder H,K-ATPase or the Bufo Na,K-ATPase in which these residues, Lys800 and Ser782, respectively, were mutated. Mutants K800A and K800E of the H,K-ATPase showed K+-stimulated and ouabain-sensitive electrogenic transport. In contrast, when the positive charge was conserved (K800R), no K+-induced outward current could be measured, even though rubidium transport activity was present. Conversely, the S782R mutant of the Na,K-ATPase had non-electrogenic transport activity, whereas the S782A mutant was electrogenic. The K800S mutant of the H,K-ATPase had a more complex behavior, with electrogenic transport only in the absence of extracellular Na+. Thus, a single positively charged residue in the fifth transmembrane segment of the alpha-subunit can determine the electrogenicity and therefore the stoichiometry of cation transport by these ATPases.
Collapse
Affiliation(s)
- Muriel Burnay
- Institute of Pharmacology and Toxicology, University of Lausanne, CH-1005 Lausanne, Switzerland
| | | | | | | | | |
Collapse
|
25
|
Reinhardt J, Kosch M, Lerner M, Bertram H, Lemke D, Oberleithner H. Stimulation of protein kinase C pathway mediates endocytosis of human nongastric H+-K+-ATPase, ATP1AL1. Am J Physiol Renal Physiol 2002; 283:F335-43. [PMID: 12110518 DOI: 10.1152/ajprenal.00226.2001] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The human nongastric H+-K+-ATPase, ATP1AL1, shown to reabsorb K+ in exchange for H+ or Na+, is localized in the luminal plasma membrane of renal epithelial cells. It is presumed that renal H+-K+-ATPases can be regulated by endocytosis. However, little is known about the molecular mechanisms that control plasma membrane expression of renal H+-K+-ATPases. In our study, activation of protein kinase C (PKC) using phorbol esters (phorbol 12-myristate 13-acetate) leads to clathrin-dependent internalization and intracellular accumulation of the ion pump in stably transfected Madin-Darby canine kidney cells. Functional inactivation of the H+-K+-ATPase by PKC activation is shown by intracellular pH measurements. Proton extrusion capacity of ATP1AL1-transfected cells is drastically reduced after phorbol 12-myristate 13-acetate incubation and can be prevented with the PKC blocker bisindolylmaleimide. Ion pump internalization and inactivation are specifically mediated by the PKC pathway, whereas activation of the protein kinase A pathway has no influence. Our results show that the nongastric H+-K+-ATPase is a specific target for the PKC pathway. Therefore, PKC-mediated phosphorylation is a potential regulatory mechanism for apical nongastric H+-K+-ATPase plasma membrane expression.
Collapse
Affiliation(s)
- J Reinhardt
- Institute of Physiology, University of Münster, D-48149 Münster, Germany.
| | | | | | | | | | | |
Collapse
|
26
|
Crambert G, Horisberger JD, Modyanov NN, Geering K. Human nongastric H+-K+-ATPase: transport properties of ATP1al1 assembled with different beta-subunits. Am J Physiol Cell Physiol 2002; 283:C305-14. [PMID: 12055100 DOI: 10.1152/ajpcell.00590.2001] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To investigate whether nongastric H+-K+-ATPases transport Na+ in exchange for K+ and whether different beta-isoforms influence their transport properties, we compared the functional properties of the catalytic subunit of human nongastric H+-K+-ATPase, ATP1al1 (AL1), and of the Na+-K+-ATPase alpha1-subunit (alpha1) expressed in Xenopus oocytes, with different beta-subunits. Our results show that betaHK and beta1-NK can produce functional AL1/beta complexes at the oocyte cell surface that, in contrast to alpha1/beta1 NK and alpha1/betaHK complexes, exhibit a similar apparent K+ affinity. Similar to Na+-K+-ATPase, AL1/beta complexes are able to decrease intracellular Na+ concentrations in Na+-loaded oocytes, and their K+ transport depends on intra- and extracellular Na+ concentrations. Finally, controlled trypsinolysis reveals that beta-isoforms influence the protease sensitivity of AL1 and alpha1 and that AL1/beta complexes, similar to the Na+-K+-ATPase, can undergo distinct K+-Na+- and ouabain-dependent conformational changes. These results provide new evidence that the human nongastric H+-K+-ATPase interacts with and transports Na+ in exchange for K+ and that beta-isoforms have a distinct effect on the overall structural integrity of AL1 but influence its transport properties less than those of the Na+-K+-ATPase alpha-subunit.
Collapse
Affiliation(s)
- Gilles Crambert
- Institute Of Pharmacology And Toxicology of The University, CH-1005 Lausanne, Switzerland
| | | | | | | |
Collapse
|
27
|
Pestov NB, Korneenko TV, Adams G, Tillekeratne M, Shakhparonov MI, Modyanov NN. Nongastric H-K-ATPase in rodent prostate: lobe-specific expression and apical localization. Am J Physiol Cell Physiol 2002; 282:C907-16. [PMID: 11880279 DOI: 10.1152/ajpcell.00258.2001] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The molecular basis of active ion transport in secretory glands such as the prostate is not well characterized. Rat nongastric H-K-ATPase is expressed at high levels in distal colon surface cell apical membranes and thus is referred to as "colonic." Here we show that the ATPase is expressed in rodent prostate complex in a lobe-specific manner. RT-PCR and Western blot analyses indicate that rat nongastric H-K-ATPase alpha-subunit (alpha(ng)) mRNA and protein are present in coagulating gland (anterior prostate) and lateral and dorsal prostate and absent from ventral lobe, whereas Na-K-ATPase alpha-subunit is present in all lobes. RT-PCR analysis shows that Na-K-ATPase alpha(4) and alpha(3) and gastric H-K-ATPase alpha-subunit are not present in significant amounts in all prostate lobes. Relatively low levels of Na-K-ATPase alpha(2) were found in lateral, dorsal, and anterior lobes. alpha(ng) protein expression is anteriodorsolateral: highest in coagulating gland, somewhat lower in dorsal lobe, and even lower in lateral lobe. Na-K-ATPase protein abundance has the reverse order: expression in ventral lobe is higher than in coagulating gland. alpha(ng) protein abundance is higher in coagulating gland than distal colon membranes. Immunohistochemistry shows that in rat and mouse coagulating gland epithelium alpha(ng) protein has an apical polarization and Na-K-ATPase alpha(1) is localized in basolateral membranes. The presence of nongastric H-K-ATPase in rodent prostate apical membranes may indicate its involvement in potassium concentration regulation in secretions of these glands.
Collapse
Affiliation(s)
- Nikolay B Pestov
- Department of Pharmacology, Medical College of Ohio, 3035 Arlington Ave., Toledo, OH 43614, USA
| | | | | | | | | | | |
Collapse
|
28
|
Peti-Peterdi J, Bebok Z, Lapointe JY, Bell PD. Novel regulation of cell [Na(+)] in macula densa cells: apical Na(+) recycling by H-K-ATPase. Am J Physiol Renal Physiol 2002; 282:F324-9. [PMID: 11788447 DOI: 10.1152/ajprenal.00251.2001] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Na-K-ATPase is the nearly ubiquitous enzyme that maintains low-Na(+), high-K(+) concentrations in cells by actively extruding Na(+) in exchange for K(+). The prevailing paradigm in polarized absorbing epithelial cells, including renal nephron segments and intestine, has been that Na-K-ATPase is restricted to the basolateral membrane domain, where it plays a prominent role in Na(+) absorption. We have found, however, that macula densa (MD) cells lack functionally and immunologically detectable amounts of Na-K-ATPase protein. In fact, these cells appear to regulate their cytosolic [Na(+)] via another member of the P-type ATPase family, the colonic form of H-K-ATPase, which is located at the apical membrane in these cells. We now report that this constitutively expressed apical MD colonic H-K-ATPase can function as a Na(H)-K-ATPase and regulate cytosolic [Na(+)] in a novel manner. This apical Na(+)-recycling mechanism may be important as part of the sensor function of MD cells and represents a new paradigm in cell [Na(+)] regulation.
Collapse
Affiliation(s)
- János Peti-Peterdi
- Nephrology Research and Training Center, Division of Nephrology, Department of Medicine and Physiology, and Gregory Flaming James Cystic Fibrosis Research Center, University of Alabama at Birmingham 35294, USA
| | | | | | | |
Collapse
|
29
|
Burnay M, Crambert G, Kharoubi-Hess S, Geering K, Horisberger JD. Bufo marinus bladder H-K-ATPase carries out electroneutral ion transport. Am J Physiol Renal Physiol 2001; 281:F869-74. [PMID: 11592945 DOI: 10.1152/ajprenal.2001.281.5.f869] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Bufo marinus bladder H-K-ATPase belongs to the Na-K-ATPase and H-K-ATPase subfamily of oligomeric P-type ATPases and is closely related to rat and human nongastric H-K-ATPases. It has been demonstrated that this ATPase transports K(+) into the cell in exchange for protons and sodium ions, but the stoichiometry of this cation exchange is not yet known. We studied the electrogenic properties of B. marinus bladder H-K-ATPase expressed in Xenopus laevis oocytes. In a HEPES-buffered solution, K(+) activation of the H-K-ATPase induced a slow-onset inward current that reached an amplitude of approximately 20 nA after 1-2 min. When measurements were performed in a solution containing 25 mM HCO at a PCO(2) of 40 Torr, the negative current activated by K(+) was reduced. In noninjected oocytes, intracellular alkalization activated an inward current similar to that due to B. marinus H-K-ATPase. We conclude that the transport activity of the nongastric B. marinus H-K-ATPase is not intrinsically electrogenic but that the inward current observed in oocytes expressing this ion pump is secondary to intracellular alkalization induced by proton transport.
Collapse
Affiliation(s)
- M Burnay
- Institut de Pharmacologie et de Toxicologie, CH-1005 Lausanne, Switzerland
| | | | | | | | | |
Collapse
|
30
|
Kraut JA, Helander KG, Helander HF, Iroezi ND, Marcus EA, Sachs G. Detection and localization of H+-K+-ATPase isoforms in human kidney. Am J Physiol Renal Physiol 2001; 281:F763-8. [PMID: 11553523 DOI: 10.1152/ajprenal.2001.281.4.f763] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
An H+-K+-ATPase contributes to hydrogen secretion and potassium reabsorption by the rat and rabbit collecting ducts. Transport of these ions appears to be accomplished by one or both of two isoforms of the H+-K+-ATPase, HKalpha(1) and HKalpha(2,) because both isoforms are found in the collecting ducts and transport of hydrogen and potassium is attenuated by exposure to inhibitors of these transport proteins. To evaluate whether an H+-K+-ATPase is present in the human kidney, immunohistochemical studies were performed using normal human renal tissue probed with antibodies directed against epitopes of three of the known isoforms of the H+-K+-ATPase , HKalpha(1), HKalpha(2), and HKalpha(4), and the V-type H+-ATPase. Cortical and medullary tissue probed with antibodies against HKalpha(1) showed cytoplasmic staining of intercalated cells that was less intense than that observed in the parietal cells of normal rat stomach stained with the same antibody. Also, weak immunoreactivity was detected in principal cells of the human collecting ducts. Cortical and medullary tissue probed with antibodies directed against HKalpha(4) revealed weak, diffuse staining of intercalated cells of the collecting ducts and occasional light staining of principal cells. Cortical and medullary tissue probed with antibodies directed against the H+-ATPase revealed staining of intercalated cells of the collecting ducts and some cells of the proximal convoluted tubules. By contrast, no discernible staining was noted with the use of the antibody against HKalpha(2). These data indicate that HKalpha(1) and HKalpha(4) are present in the collecting ducts of the human kidney. In this location, these isoforms might contribute to hydrogen and potassium transport by the kidney.
Collapse
Affiliation(s)
- J A Kraut
- Division of Nephrology, Research Service and Department of Medicine, Veterans Affairs Greater Los Angeles Health Care System, 11301 Wilshire Blvd., Los Angeles, CA 90073, USA.
| | | | | | | | | | | |
Collapse
|
31
|
Abstract
Na,K-ATPase and gastric and nongastric H,K-ATPases are the only P-type ATPases of higher organisms that are oligomeric and are associated with a beta subunit, which is obligatory for expression and function of enzymes. Topogenesis studies suggest that beta subunits have a fundamental and unique role in K+-transporting P-type ATPases in that they facilitate the correct membrane integration and packing of the catalytic a subunit of these P-type ATPases, which is necessary for their resistance to cellular degradation, their acquisition of functional properties, and their routing to the cell surface. In addition to this chaperone function, beta subunits also participate in the determination of intrinsic transport properties of Na,K- and H,K-ATPases. Increasing experimental evidence suggests that beta assembly is a highly ordered, beta isoform-specific process, which is mediated by multiple interaction sites that contribute in a coordinate, multistep process to the structural and functional maturation of Na,K- and H,K-ATPases.
Collapse
Affiliation(s)
- K Geering
- Institute of Pharmacology and Toxicology, University of Lausanne, Switzerland.
| |
Collapse
|
32
|
Dunbar LA, Caplan MJ. Ion pumps in polarized cells: sorting and regulation of the Na+, K+- and H+, K+-ATPases. J Biol Chem 2001; 276:29617-20. [PMID: 11404365 DOI: 10.1074/jbc.r100023200] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The physiologic function of an ion transport protein is determined, in part, by its subcellular localization and by the cellular mechanisms that modulate its activity. The Na(+),K(+)-ATPase and the H(+),K(+)-ATPases are closely related members of the P-type family of ion transporting ATPases. Despite their homology, these pumps are sorted to different domains in polarized epithelial cells, and their enzymatic activities are subject to distinct regulatory pathways. The molecular signals responsible for these properties have begun to be elucidated. It appears that a complex array of inter- and intramolecular interactions govern trafficking, distribution, and catalytic capacities of these proteins.
Collapse
Affiliation(s)
- L A Dunbar
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut 06510, USA
| | | |
Collapse
|
33
|
Abstract
The plasma membranes of renal epithelial cells are divided into distinct apical and basolateral domains, which contain different inventories of ion transport proteins. Without this polarity vectorial ion and fluid transport would not be possible. Little is known of the signals and mechanisms that renal epithelial cells use to establish and maintain polarized distributions of their ion transport proteins. Analysis of ion pump sorting reveals that multiple complex signals participate in determining and regulating these proteins' subcellular localizations.
Collapse
Affiliation(s)
- M J Caplan
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut 06510, USA.
| |
Collapse
|
34
|
Adams G, Tillekeratne M, Yu C, Pestov NB, Modyanov NN. Catalytic function of nongastric H,K-ATPase expressed in Sf-21 insect cells. Biochemistry 2001; 40:5765-76. [PMID: 11341842 DOI: 10.1021/bi010191y] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
We previously demonstrated that the alpha-subunit of human nongastric H,K-ATPase (Atp1al1) can assemble with the gastric H,K-ATPase beta-subunit (betaHK) into an active ion pump upon coexpression in Xenopus oocytes. To gain insight into enzymatic functions, we have analyzed the Atp1al1-betaHK complex using a baculovirus expression system. The efficient formation of the functional Atp1al1-betaHK complex in membranes of Sf-21 insect cells was obtained upon co-infection with recombinant baculoviruses expressing Atp1al1 and betaHK. Expression of either protein alone did not produce active ATPase. The effects of K(+), Na(+), pH, and ATP and inhibitors on ATPase activity of the recombinant Atp1al1-betaHK complex were analyzed. The Atp1al1-betaHK complex was shown to exhibit significant ATPase activity in nominally K(+)-free medium. The addition of K(+) stimulated the ATP hydrolysis up to 3-fold with K(m) approximately 116 microM K(+). The ATPase activity was moderately sensitive to ouabain and to SCH 28080 with apparent K(i) values in K(+)-free medium of approximately 64 microM and approximately 93 microM, respectively. Potassium exhibited strong antagonism toward both inhibitors. Assays of the ouabain-sensitive ATPase activity revealed inhibitory effects of Na(+) with the apparent K(i) of approximately 24 mM in the absence of added K(+) and with K(i) within the range of 60-70 mM in the presence of > or = 1 mM K(+). Thus, the human nongastric H,K-ATPase represented by the recombinant Atp1al1-betaHK complex exhibits enzymatic properties of K(+)-dependent ATPase sensitive to ouabain, SCH 28080, and Na(+). It differs from Na,K-ATPase in cation dependence and differs from gastric H,K-ATPase and Na,K-ATPase in sensitivity to inhibitors.
Collapse
Affiliation(s)
- G Adams
- Department of Pharmacology, Medical College of Ohio, Toledo, Ohio 43614-5804, USA
| | | | | | | | | |
Collapse
|
35
|
Geering K, Crambert G, Yu C, Korneenko TV, Pestov NB, Modyanov NN. Intersubunit interactions in human X,K-ATPases: role of membrane domains M9 and M10 in the assembly process and association efficiency of human, nongastric H,K-ATPase alpha subunits (ATP1al1) with known beta subunits. Biochemistry 2000; 39:12688-98. [PMID: 11027149 DOI: 10.1021/bi0009791] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Na,K- and H,K-ATPase (X,K-ATPase) alpha subunits need association with a beta subunit for their maturation, but the authentic beta subunit of nongastric H,K-ATPase alpha subunits has not been identified. To better define alpha-beta interactions in these ATPases, we coexpressed human, nongastric H,K-ATPase alpha (AL1) and Na,K-ATPase alpha1 (alpha1NK) as well as AL1-alpha1 and alpha1-AL1 chimeras, which contain exchanged M9 and M10 membrane domains, together with each of the known beta subunits in Xenopus oocytes and followed their resistance to cellular and proteolytic degradation and their ER exit. We show that all beta subunits (gastric betaHK, beta1NK, beta2NK, beta3NK, or Bufo bladder beta) can associate efficiently with alpha1NK, but only gastric betaHK, beta2NK, and Bufo bladder beta can form stably expressed AL1-beta complexes that can leave the ER. The trypsin resistance and the forces of subunit interaction, probed by detergent resistance, are lower for AL1-beta complexes than for alpha1NK-beta complexes. Furthermore, chimeric alpha1-AL1 can be stabilized by beta subunits, but alpha1-AL1-gastric betaHK complexes are retained in the ER. On the other hand, chimeric AL1-alpha1 cannot be stabilized by any beta subunit. In conclusion, these results indicate that (1) none of the known beta subunits is the real partner subunit of AL1 but an as yet unidentified, authentic beta should have structural features resembling gastric betaHK, beta2NK, or Bufo bladder beta and (2) beta-mediated maturation of alpha subunits is a multistep process which depends on the membrane insertion properties of alpha subunits as well as on several discrete events of intersubunit interactions.
Collapse
Affiliation(s)
- K Geering
- Institut de Pharmacologie et de Toxicologie de l'Université, rue du Bugnon 27, CH-1005 Lausanne, Switzerland.
| | | | | | | | | | | |
Collapse
|
36
|
Reinhardt J, Grishin AV, Oberleithner H, Caplan MJ. Differential localization of human nongastric H(+)-K(+)-ATPase ATP1AL1 in polarized renal epithelial cells. Am J Physiol Renal Physiol 2000; 279:F417-25. [PMID: 10966921 DOI: 10.1152/ajprenal.2000.279.3.f417] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The human H(+)-K(+)-ATPase, ATP1AL1, belongs to the subgroup of nongastric, K(+)-transporting ATPases. In concert with the structurally related gastric H(+)-K(+)-ATPase, it plays a major role in K(+) reabsorption in various tissues, including colon and kidney. Physiological and immunocytochemical data suggest that the functional heteromeric ion pumps are usually found in the apical plasma membranes of renal epithelial cells. However, the low expression levels of characteristic nongastric ion pumps makes it difficult to verify their spatial distribution in vivo. To investigate the sorting behavior of ATP1AL1, we expressed this pump by stable transfection in MDCK and LLC-PK(1) renal epithelial cell lines. Stable interaction of ATP1AL1 with either the endogenous Na(+)-K(+)-ATPase beta-subunit or the gastric H(+)-K(+)-ATPase beta-subunit was tested by confocal immunofluorescence microscopy and surface biotinylation. In cells transfected with ATP1AL1 alone, the alpha-subunit accumulated intracellularly, consistent with its inability to assemble and travel to the plasma membrane with the endogenous Na(+)-K(+)-ATPase beta-subunit. Cotransfection of ATP1AL1 with the gastric H(+)-K(+)-ATPase beta-subunit resulted in plasma membrane localization of both pump subunits. In cotransfected MDCK cells the heteromeric ion pump was predominantly polarized to the apical plasma membrane. Functional expression of ATP1AL1 was confirmed by (86)Rb(+) uptake measurements. In contrast, cotransfected LLC-PK(1) cells accumulate ATP1AL1 at the lateral membrane. The distinct polarization of ATP1AL1 indicates that the alpha-subunit encodes sorting information that is differently interpreted by cell type-specific sorting mechanisms.
Collapse
Affiliation(s)
- J Reinhardt
- Department of Physiology, University of Münster, 48149 Münster, Germany
| | | | | | | |
Collapse
|
37
|
Abstract
The physiologic function of an ion pump is determined, in part, by its subcellular localization and by the cellular mechanisms that modulate its activity. The Na,K-ATPase and the gastric H,K-ATPase are two closely related members of the P-type family of ion transporting ATPases. Despite their homology, these pumps are sorted to different domains in polarized epithelial cells and their enzymatic activities are subject to distinct regulatory pathways. The molecular signals responsible for these properties have begun to be elucidated. It appears that a complex array of inter- and intra-molecular interactions govern these proteins' trafficking, distribution and catalytic capacity.
Collapse
Affiliation(s)
- L A Dunbar
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06525, USA
| | | |
Collapse
|
38
|
Munson KB, Lambrecht N, Sachs G. Effects of mutations in M4 of the gastric H+,K+-ATPase on inhibition kinetics of SCH28080. Biochemistry 2000; 39:2997-3004. [PMID: 10715120 DOI: 10.1021/bi991837d] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The effects of site-directed mutagenesis were used to explore the role of residues in M4 on the apparent Ki of a selective, K+-competitive inhibitor of the gastric H+,K+ ATPase, SCH28080. A double transfection expression system is described, utilizing HEK293 cells and separate plasmids encoding the alpha and beta subunits of the H+,K+-ATPase. The wild-type enzyme gave specific activity (micromoles of Pi per hour per milligram of expressed H+,K+-ATPase protein), apparent Km for ammonium (a K+ surrogate), and apparent Ki for SCH28080 equal to the H+, K+-ATPase purified from hog gastric mucosa. Amino acids in the M4 transmembrane segment of the alpha subunit were selected from, and substituted with, the nonconserved residues in M4 of the Na+, K+-ATPase, which is insensitive to SCH28080. Most of the mutations produced competent enzyme with similar Km,app values for NH4+ and Ki,app for SCH28080. SCH28080 affinity was decreased 2-fold in M330V and 9-fold in both M334I and V337I without significant effect on Km,app. Hence methionine 334 and valine 337 participate in binding but are not part of the NH4+ site. Methionine 330 may be at the periphery of the inhibitor site, which must have minimum dimensions of approximately 16 x 8 x 5 A and be accessible from the lumen in the E2-P conformation. Multiple sequence alignments place the membrane surface near arginine 328, suggesting that the side chains of methionine 334 and valine 337, on one side of the M4 helix, project into a binding cavity within the membrane domain.
Collapse
Affiliation(s)
- K B Munson
- Veterans' Administration Greater Los Angeles Healthcare System and Univeristy of California-Los Angeles Department of Medicine & Physiology, Los Angeles, California 90024, USA
| | | | | |
Collapse
|
39
|
Dunbar LA, Aronson P, Caplan MJ. A transmembrane segment determines the steady-state localization of an ion-transporting adenosine triphosphatase. J Cell Biol 2000; 148:769-78. [PMID: 10684257 PMCID: PMC2169368 DOI: 10.1083/jcb.148.4.769] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/1999] [Accepted: 01/04/2000] [Indexed: 01/08/2023] Open
Abstract
The H,K-adenosine triphosphatase (ATPase) of gastric parietal cells is targeted to a regulated membrane compartment that fuses with the apical plasma membrane in response to secretagogue stimulation. Previous work has demonstrated that the alpha subunit of the H, K-ATPase encodes localization information responsible for this pump's apical distribution, whereas the beta subunit carries the signal responsible for the cessation of acid secretion through the retrieval of the pump from the surface to the regulated intracellular compartment. By analyzing the sorting behaviors of a number of chimeric pumps composed of complementary portions of the H, K-ATPase alpha subunit and the highly homologous Na,K-ATPase alpha subunit, we have identified a portion of the gastric H,K-ATPase, which is sufficient to redirect the normally basolateral Na,K-ATPase to the apical surface in transfected epithelial cells. This motif resides within the fourth of the H,K-ATPase alpha subunit's ten predicted transmembrane domains. Although interactions with glycosphingolipid-rich membrane domains have been proposed to play an important role in the targeting of several apical membrane proteins, the apically located chimeras are not found in detergent-insoluble complexes, which are typically enriched in glycosphingolipids. Furthermore, a chimera incorporating the Na, K-ATPase alpha subunit fourth transmembrane domain is apically targeted when both of its flanking sequences derive from H,K-ATPase sequence. These results provide the identification of a defined apical localization signal in a polytopic membrane transport protein, and suggest that this signal functions through conformational interactions between the fourth transmembrane spanning segment and its surrounding sequence domains.
Collapse
Affiliation(s)
- L A Dunbar
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut 06510, USA.
| | | | | |
Collapse
|
40
|
Sangan P, Thevananther S, Sangan S, Rajendran VM, Binder HJ. Colonic H-K-ATPase alpha- and beta-subunits express ouabain-insensitive H-K-ATPase. Am J Physiol Cell Physiol 2000; 278:C182-9. [PMID: 10644526 DOI: 10.1152/ajpcell.2000.278.1.c182] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Active K absorption in the rat distal colon is energized by an apical H-K-ATPase, a member of the gene family of P-type ATPases. The H-K-ATPase alpha-subunit (HKcalpha) has been cloned and characterized (together with the beta-subunit of either Na-K-ATPase or gastric H-K-ATPase) in Xenopus oocytes as ouabain-sensitive (86)Rb uptake. In contrast, HKcalpha, when expressed in Sf9 cells without a beta-subunit, yielded evidence of ouabain-insensitive H-K-ATPase. Because a beta-subunit (HKcbeta) has recently been cloned from rat colon, this present study was initiated to determine whether H-K-ATPase and its sensitivity to ouabain are expressed when these two subunits (HKcalpha and HKcbeta) are transfected into a mammalian cell expression system. Transfection of HEK-293 cells with HKcalpha and HKcbeta cDNAs resulted in the expression of HKcalpha and HKcbeta proteins and their delivery to plasma membranes. H-K-ATPase activity was identified in crude plasma membranes prepared from transfected cells and was 1) saturable as a function of increasing K concentration with a K(m) for K of 0.63 mM; 2) inhibited by orthovanadate; and 3) insensitive to both ouabain and Sch-28080. In parallel transfection studies with HKcalpha and Na-K-ATPase beta1 cDNAs and with HKcalpha cDNA alone, there was expression of ouabain-insensitive H-K-ATPase activity that was 60% and 21% of that in HKcalpha/HKcbeta cDNA transfected cells, respectively. Ouabain-insensitive (86)Rb uptake was also identified in cells transfected with HKcalpha and HKcbeta cDNAs. These studies establish that HKcalpha cDNA with HKcbeta cDNA express ouabain-insensitive H-K-ATPase similar to that identified in rat distal colon.
Collapse
Affiliation(s)
- P Sangan
- Departments of Internal Medicine and Pediatrics, Yale University, New Haven, Connecticut 06520-8019, USA
| | | | | | | | | |
Collapse
|
41
|
Blanco G, Melton RJ, Sánchez G, Mercer RW. Functional characterization of a testes-specific alpha-subunit isoform of the sodium/potassium adenosinetriphosphatase. Biochemistry 1999; 38:13661-9. [PMID: 10521273 DOI: 10.1021/bi991207b] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Different isoforms of the sodium/potassium adenosinetriphosphatase (Na,K-ATPase) alpha and beta subunits have been identified in mammals. The association of the various alpha and beta polypeptides results in distinct Na,K-ATPase isozymes with unique enzymatic properties. We studied the function of the Na,K-ATPase alpha4 isoform in Sf-9 cells using recombinant baculoviruses. When alpha4 and the Na pump beta1 subunit are coexpressed in the cells, Na, K-ATPase activity is induced. This activity is reflected by a ouabain-sensitive hydrolysis of ATP, by a Na(+)-dependent, K(+)-sensitive, and ouabain-inhibitable phosphorylation from ATP, and by the ouabain-inhibitable transport of K(+). Furthermore, the activity of alpha4 is inhibited by the P-type ATPase blocker vanadate but not by compounds that inhibit the sarcoplasmic reticulum Ca-ATPase or the gastric H,K-ATPase. The Na,K-ATPase alpha4 isoform is specifically expressed in the testis of the rat. The gonad also expresses the beta1 and beta3 subunits. In insect cells, the alpha4 polypeptide is able to form active complexes with either of these subunits. Characterization of the enzymatic properties of the alpha4beta1 and alpha4beta3 isozymes indicates that both Na,K-ATPases have similar kinetics to Na(+), K(+), ATP, and ouabain. The enzymatic properties of alpha4beta1 and alpha4beta3 are, however, distinct from the other Na pump isozymes. A Na, K-ATPase activity with similar properties as the alpha4-containing enzymes was found in rat testis. This Na,K-ATPase activity represents approximately 55% of the total enzyme of the gonad. These results show that the alpha4 polypeptide is a functional isoform of the Na,K-ATPase both in vitro and in the native tissue.
Collapse
Affiliation(s)
- G Blanco
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri 63110, USA.
| | | | | | | |
Collapse
|
42
|
Abstract
The H+,K+-ATPases comprise a group of integral membrane proteins that belong to the X+,K+-ATPase subfamily of P-type cation-transporting ATPases. Although these H+,K+-ATPase isoforms share approximately 60-70% amino acid identity, they exhibit discrete kinetic and pharmacological properties when expressed in heterologous systems. HK alpha2 has been categorized by its insensitivity to Sch-28080, an inhibitor of the gastric H+,K+-ATPase, and partial sensitivity to ouabain, an inhibitor of the Na+,K+-ATPase. This functional profile contrasts with the pharmacological sensitivities ascribed to HK alpha2 in transport studies in rat isolated medullary collecting ducts perfused in vitro and in mouse medullary collecting duct cell lines. HK alpha2 mRNA and protein abundance appears to be both tissue and site-specifically upregulated in response to chronic hypokalemia. This regulatory response has been localized to the outer and inner medulla. To reconcile these expressed sensitivities to those reported in vitro in isolated tubules and cells in culture, it would be necessary to invoke modification of the pharmacologic insensitivity of the colonic H+,K+-ATPase to Sch-28080. Although a 'unique' beta-subunit has been reported recently, this beta-subunit (beta(c)) is identical at the amino acid level to the recently cloned beta3-Na+,K+-ATPase. Moreover, while HK alpha2 can assemble indiscriminately with any X+,K+-ATPase beta-subunit, HK alpha2 has been reported to assemble stably with beta1-Na+,K+-ATPase in the renal medulla and in the distal colon. It remains conceivable that subunit assembly could be tissue specific and might respond to different physiological and pathophysiological stimuli. Furthermore, recent studies have suggested that the H+,K+-ATPase is both Na+-dependent and localized to the apical membrane in the distal colon. Therefore, future studies will need to resolve these discrepancies by determining if a unique, yet undiscovered H+,K+-ATPase isoform exists in kidney, or if post-translational modifications of the alpha- and/or beta-subunits could account for these functional diversities.
Collapse
Affiliation(s)
- T D DuBose
- Department of Internal Medicine, University of Texas-Houston Medical School 77030, USA.
| | | | | |
Collapse
|
43
|
Cougnon M, Bouyer P, Jaisser F, Edelman A, Planelles G. Ammonium transport by the colonic H(+)-K(+)-ATPase expressed in Xenopus oocytes. THE AMERICAN JOURNAL OF PHYSIOLOGY 1999; 277:C280-7. [PMID: 10444404 DOI: 10.1152/ajpcell.1999.277.2.c280] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Functional expression of the rat colonic H(+)-K(+)-ATPase was obtained by coexpressing its catalytic alpha-subunit and the beta(1)-subunit of the Na(+)-K(+)-ATPase in Xenopus laevis oocytes. We observed that, in oocytes expressing the rat colonic H(+)-K(+)-ATPase but not in control oocytes (expressing beta(1) alone), NH(4)Cl induced a decrease in (86)Rb uptake and the initial rate of intracellular acidification induced by extracellular NH(4)Cl was enhanced, consistent with NH(+)(4) influx via the colonic H(+)-K(+)-ATPase. In the absence of extracellular K(+), only oocytes expressing the colonic H(+)-K(+)-ATPase were able to acidify an extracellular medium supplemented with NH(4)Cl. In the absence of extracellular K(+) and in the presence of extracellular NH(+)(4), intracellular Na(+) activity in oocytes expressing the colonic H(+)-K(+)-ATPase was lower than that in control oocytes. A kinetic analysis of (86)Rb uptake suggests that NH(+)(4) acts as a competitive inhibitor of the pump. Taken together, these results are consistent with NH(+)(4) competition for K(+) on the external site of the colonic H(+)-K(+)-ATPase and with NH(+)(4) transport mediated by this pump.
Collapse
Affiliation(s)
- M Cougnon
- Faculté de Médecine Necker, Institut National de la Santé et de la Recherche Médicale U. 467, Université Paris V, F-75015 Paris, France
| | | | | | | | | |
Collapse
|
44
|
Codina J, Pressley TA, DuBose TD. The colonic H+,K+-ATPase functions as a Na+-dependent K+(NH4+)-ATPase in apical membranes from rat distal colon. J Biol Chem 1999; 274:19693-8. [PMID: 10391909 DOI: 10.1074/jbc.274.28.19693] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Recent studies have suggested that the colonic H+,K+-ATPase (HKalpha2) can secrete either Na+ or H+ in exchange for K+. If correct, this view would indicate that the transporter could function as either a Na+ or a H+ pump. To investigate this possibility a series of experiments was performed using apical membranes from rat colon which were enriched in colonic H+,K+-ATPase protein. An antibody specific for HKalpha2 was employed to determine whether HKalpha2 functions under physiological conditions as a Na+-dependent or Na+-independent K+-ATPase in this same membrane fraction. K+-ATPase activity was measured as [gamma-32P]ATP hydrolysis. The Na+-dependent K+-ATPase accounted for approximately 80% of overall K+-ATPase activity and was characterized by insensitivity to Sch-28080 but partial sensitivity to ouabain. The Na+-independent K+-ATPase activity was insensitive to both Sch-28080 and ouabain. Both types of K+-ATPase activity substituted NH4+ for K+ in a similar manner. Furthermore, our results demonstrate that when incubated with native distal colon membranes, the blocking antibody inhibited dramatically Na+-dependent K+-ATPase activity. Therefore, these data demonstrate that HKalpha2 can function in native distal colon apical membranes as a Na+-dependent K+-ATPase. Elucidation of the role of the pump as a transporter of Na+ versus H+ or NH4+ versus K+ in vivo will require additional studies.
Collapse
Affiliation(s)
- J Codina
- Division of Renal Diseases and Hypertension Department of Internal Medicine, University of Texas, Houston Medical School, Houston, Texas 77030, USA
| | | | | |
Collapse
|
45
|
Jaisser F, Beggah AT. The nongastric H+-K+-ATPases: molecular and functional properties. THE AMERICAN JOURNAL OF PHYSIOLOGY 1999; 276:F812-24. [PMID: 10362770 DOI: 10.1152/ajprenal.1999.276.6.f812] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The Na-K/H-K-ATPase gene family is divided in three subgroups including the Na-K-ATPases, mainly involved in whole body and cellular ion homeostasis, the gastric H-K-ATPase involved in gastric fluid acidification, and the newly described nongastric H-K-ATPases for which the identification of physiological roles is still in its infancy. The first member of this last subfamily was first identified in 1992, rapidly followed by the molecular cloning of several other members. The relationship between each member remains unclear. The functional properties of these H-K-ATPases have been studied after their ex vivo expression in various functional expression systems, including the Xenopus laevis oocyte, the insect Sf9 cell line, and the human HEK 293 cells. All these H-K-ATPase alpha-subunits appear to encode H-K-ATPases when exogenously expressed in such expression systems. Recent data suggest that these H-K-ATPases could also transport Na+ in exchange for K+, revealing a complex cation transport selectivity. Moreover, they display a unique pharmacological profile compared with the canonical Na-K-ATPases or the gastric H-K-ATPase. In addition to their molecular and functional characterizations, a major goal is to correlate the molecular expression of these cloned H-K-ATPases with the native K-ATPases activities described in vivo. This appears to be more complex than anticipated. The discrepancies between the functional data obtained by exogenous expression of the nongastric H-K-ATPases and the physiological data obtained in native organs could have several explanations as discussed in the present review. Extensive studies will be required in the future to better understand the physiological role of these H-K-ATPases, especially in disease processes including ionic or acid-base disorders.
Collapse
Affiliation(s)
- F Jaisser
- Institut National de la Santé et de la Recherche Médicale, Unité 478, Institut Fédératif de Recherche Cellules Epithéliales, Faculté de Médecine Xavier Bichat, Université Paris VII, F-75870 Paris Cedex 18, France.
| | | |
Collapse
|