1
|
Li X, Liu D, Wu Z, Xu Y. Diffuse tumors: Molecular determinants shared by different cancer types. Comput Biol Med 2024; 178:108703. [PMID: 38850961 DOI: 10.1016/j.compbiomed.2024.108703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 05/02/2024] [Accepted: 06/01/2024] [Indexed: 06/10/2024]
Abstract
Most cancer types have both diffuse and non-diffuse subtypes, which have rather distinct morphologies, namely scattered tiny tumors vs. one solid tumor, and different levels of aggressiveness. However, the causes for forming such distinct subtypes remain largely unknown. Using the diffuse and non-diffuse gastric cancers (GCs) as the illustrative example, we present a computational study based on the transcriptomic data from the TCGA and GEO databases, to address the following questions: (i) What are the key molecular determinants that give rise to the distinct morphologies between diffuse and non-diffuse cancers? (ii) What are the main reasons for diffuse cancers to be generally more aggressive than non-diffuse ones of the same cancer type? (iii) What are the reasons for their distinct immunoactivities? And (iv) why do diffuse cancers on average tend to take place in younger patients? The study is conducted using the framework we have previously developed for elucidation of general drivers cancer formation and development. Our main discoveries are: (a) the level of (poly-) sialic acids deployed on the surface of cancer cells is a significant factor contributing to questions (i) and (ii); (b) poly-sialic acids synthesized by ST8SIA4 are the key to question (iii); and (c) the circulating growth factors specifically needed by the diffuse subtype dictate the answer to question (iv). All these predictions are substantiated by published experimental studies. Our further analyses on breast, prostate, lung, liver, and thyroid cancers reveal that these discoveries generally apply to the diffuse subtypes of these cancer types, hence indicating the generality of our discoveries.
Collapse
Affiliation(s)
- Xuan Li
- Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, College of Computer Science and Technology, Jilin University, Changchun, 130012, China; School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Dingyun Liu
- Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, College of Computer Science and Technology, Jilin University, Changchun, 130012, China
| | - Zhipeng Wu
- Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, College of Computer Science and Technology, Jilin University, Changchun, 130012, China
| | - Ying Xu
- School of Medicine, Southern University of Science and Technology, Shenzhen, China.
| |
Collapse
|
2
|
Villanueva-Cabello TM, Gutiérrez-Valenzuela LD, Salinas-Marín R, López-Guerrero DV, Martínez-Duncker I. Polysialic Acid in the Immune System. Front Immunol 2022; 12:823637. [PMID: 35222358 PMCID: PMC8873093 DOI: 10.3389/fimmu.2021.823637] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 12/28/2021] [Indexed: 01/01/2023] Open
Abstract
Polysialic acid (polySia) is a highly regulated polymer of sialic acid (Sia) with such potent biophysical characteristics that when expressed drastically influences the interaction properties of cells. Although much of what is known of polySia in mammals has been elucidated from the study of its role in the central nervous system (CNS), polySia is also expressed in other tissues, including the immune system where it presents dynamic changes during differentiation, maturation, and activation of different types of immune cells of the innate and adaptive response, being involved in key regulatory mechanisms. At least six polySia protein carriers (CCR7, ESL-1, NCAM, NRP2, ST8Sia 2, and ST8Sia 4) are expressed in different types of immune cells, but there is still much to be explored in regard not only to the regulatory mechanisms that determine their expression and the structure of polySia chains but also to the identification of the cis- and trans- ligands of polySia that establish signaling networks. This review summarizes the current knowledge on polySia in the immune system, addressing its biosynthesis, its tools for identification and structural characterization, and its functional roles and therapeutic implications.
Collapse
Affiliation(s)
- Tania M. Villanueva-Cabello
- Laboratorio de Glicobiología Humana y Diagnóstico Molecular, Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Mexico
| | - Lya D. Gutiérrez-Valenzuela
- Laboratorio de Glicobiología Humana y Diagnóstico Molecular, Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Mexico
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Roberta Salinas-Marín
- Laboratorio de Glicobiología Humana y Diagnóstico Molecular, Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Mexico
| | | | - Iván Martínez-Duncker
- Laboratorio de Glicobiología Humana y Diagnóstico Molecular, Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Mexico
- *Correspondence: Iván Martínez-Duncker,
| |
Collapse
|
3
|
Hoshino H, Akama TO, Uchimura K, Fukushima M, Muramoto A, Uehara T, Nakanuma Y, Kobayashi M. Apical Membrane Expression of Distinct Sulfated Glycans Is a Characteristic Feature of Ductules and Their Reactive and Neoplastic Counterparts. J Histochem Cytochem 2021; 69:555-573. [PMID: 34328046 DOI: 10.1369/00221554211035730] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Intrahepatic bile ducts transport bile between bile canaliculi and the extrahepatic bile duct. The luminal surface of this tract is lined by a layer of biliary epithelial cells, or cholangiocytes, which secrete mucins consisting of scaffold proteins and O-glycosidically linked carbohydrate side chains. Although mucin core proteins have been extensively investigated, the structure and function of carbohydrate side chains have not. Here, we demonstrate that distinct sulfated glycans positive for MECA-79, R-10G, and 297-11A, but not 5D4, monoclonal antibodies are expressed in the cytoplasm of cells of large-sized ducts and in the apical membrane of cells in ductules, and that R-10G immunolabeling is partially eliminated by endo-β-galactosidase digestion, supporting the presence of N-acetylglucosamine-6-O-sulfated N-acetyllactosamine structures. We observed comparable apical membrane-predominant staining in ductular reactions seen during regeneration that occurs in various liver diseases and in cholangiolocarcinoma, a subtype of small duct-type intrahepatic cholangiocarcinoma (iCCA). Apical membrane expression of distinct sulfated glycans in large duct-type iCCA was negligible. Intriguingly, under pathological conditions, endo-β-galactosidase digestion almost completely eliminated R-10G immunoreactivity. These findings suggest that apical membrane expression of distinct sulfated glycans is a characteristic feature of ductules and their reactive and neoplastic counterparts.
Collapse
Affiliation(s)
- Hitomi Hoshino
- Department of Tumor Pathology, Faculty of Medical Sciences, University of Fukui, Eiheiji, Japan
| | - Tomoya O Akama
- Department of Pharmacology, Kansai Medical University, Hirakata, Japan
| | - Kenji Uchimura
- Unité de Glycobiologie Structurale et Fonctionnelle, UMR 8576 CNRS, Université de Lille, Villeneuve-d'Ascq, France
| | - Mana Fukushima
- Department of Tumor Pathology, Faculty of Medical Sciences, University of Fukui, Eiheiji, Japan
| | - Akifumi Muramoto
- Department of Tumor Pathology, Faculty of Medical Sciences, University of Fukui, Eiheiji, Japan
| | - Takeshi Uehara
- Department of Laboratory Medicine, Shinshu University School of Medicine, Matsumoto, Japan
| | - Yasuni Nakanuma
- Department of Diagnostic Pathology, Fukui Saiseikai Hospital, Fukui, Japan
| | - Motohiro Kobayashi
- Department of Tumor Pathology, Faculty of Medical Sciences, University of Fukui, Eiheiji, Japan
| |
Collapse
|
4
|
Yang Y, Murai R, Takahashi Y, Mori A, Hane M, Kitajima K, Sato C. Comparative Studies of Polysialic Acids Derived from Five Different Vertebrate Brains. Int J Mol Sci 2020; 21:ijms21228593. [PMID: 33202622 PMCID: PMC7696247 DOI: 10.3390/ijms21228593] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 10/30/2020] [Accepted: 11/09/2020] [Indexed: 02/06/2023] Open
Abstract
Polysialic acid (polySia/PSA) is a linear homopolymer of sialic acid (Sia) that primarily modifies the neural cell adhesion molecule (NCAM) in mammalian brains. PolySia-NCAM not only displays an anti-adhesive function due to the hydration effect, but also possesses a molecule-retaining function via a direct binding to neurologically active molecules. The quality and quantity of polySia determine the function of polySia-NCAM and are considered to be profoundly related to the maintenance of normal brain functions. In this study, to compare the structures of polySia-NCAM in brains of five different vertebrates (mammals, birds, reptiles, amphibians, and fish), we adopted newly developed combinational methods for the analyses. The results revealed that the structural features of polySia considerably varied among different species. Interestingly, mice, as a mammal, possess eminently distinct types of polySia, in both quality and quantity, compared with those possessed by other animals. Thus, the mouse polySia is of larger quantities, of longer and more diverse chain lengths, and of a larger molecular size with higher negative charge, compared with polySia of other species. These properties might enable more advanced brain function. Additionally, it is suggested that the polySia/Sia ratio, which likely reflects the complexity of brain function, can be used as a new promising index to evaluate the intelligence of different vertebrate brains.
Collapse
Affiliation(s)
- Yi Yang
- Bioscience and Biotechnology Center, Nagoya University, Chikusa, Nagoya 464-8601, Japan; (Y.Y.); (R.M.); (Y.T.); (A.M.); (M.H.); (K.K.)
- Graduate School of Bioagricultural Science, Nagoya University, Chikusa, Nagoya 464-8601, Japan
| | - Ryo Murai
- Bioscience and Biotechnology Center, Nagoya University, Chikusa, Nagoya 464-8601, Japan; (Y.Y.); (R.M.); (Y.T.); (A.M.); (M.H.); (K.K.)
- Graduate School of Bioagricultural Science, Nagoya University, Chikusa, Nagoya 464-8601, Japan
| | - Yuka Takahashi
- Bioscience and Biotechnology Center, Nagoya University, Chikusa, Nagoya 464-8601, Japan; (Y.Y.); (R.M.); (Y.T.); (A.M.); (M.H.); (K.K.)
- Graduate School of Bioagricultural Science, Nagoya University, Chikusa, Nagoya 464-8601, Japan
| | - Airi Mori
- Bioscience and Biotechnology Center, Nagoya University, Chikusa, Nagoya 464-8601, Japan; (Y.Y.); (R.M.); (Y.T.); (A.M.); (M.H.); (K.K.)
- Graduate School of Bioagricultural Science, Nagoya University, Chikusa, Nagoya 464-8601, Japan
| | - Masaya Hane
- Bioscience and Biotechnology Center, Nagoya University, Chikusa, Nagoya 464-8601, Japan; (Y.Y.); (R.M.); (Y.T.); (A.M.); (M.H.); (K.K.)
- Graduate School of Bioagricultural Science, Nagoya University, Chikusa, Nagoya 464-8601, Japan
- Institute for Glyco-core Research (iGCORE), Nagoya University, Chikusa, Nagoya 464-8601, Japan
| | - Ken Kitajima
- Bioscience and Biotechnology Center, Nagoya University, Chikusa, Nagoya 464-8601, Japan; (Y.Y.); (R.M.); (Y.T.); (A.M.); (M.H.); (K.K.)
- Graduate School of Bioagricultural Science, Nagoya University, Chikusa, Nagoya 464-8601, Japan
- Institute for Glyco-core Research (iGCORE), Nagoya University, Chikusa, Nagoya 464-8601, Japan
| | - Chihiro Sato
- Bioscience and Biotechnology Center, Nagoya University, Chikusa, Nagoya 464-8601, Japan; (Y.Y.); (R.M.); (Y.T.); (A.M.); (M.H.); (K.K.)
- Graduate School of Bioagricultural Science, Nagoya University, Chikusa, Nagoya 464-8601, Japan
- Institute for Glyco-core Research (iGCORE), Nagoya University, Chikusa, Nagoya 464-8601, Japan
- Correspondence: ; Tel.: +81-52-789-4129
| |
Collapse
|
5
|
Villanueva-Cabello TM, Gutiérrez-Valenzuela LD, López-Guerrero DV, Cruz-Muñoz ME, Mora-Montes HM, Martínez-Duncker I. Polysialic acid is expressed in human naïve CD4+ T cells and is involved in modulating activation. Glycobiology 2019; 29:557-564. [DOI: 10.1093/glycob/cwz032] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Revised: 03/28/2019] [Accepted: 04/13/2019] [Indexed: 02/01/2023] Open
Affiliation(s)
- Tania M Villanueva-Cabello
- Laboratorio de Glicobiología Humana y Diagnóstico Molecular, Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Mor, México
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mor, México
| | - Lya D Gutiérrez-Valenzuela
- Laboratorio de Glicobiología Humana y Diagnóstico Molecular, Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Mor, México
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mor, México
| | - Delia V López-Guerrero
- Facultad de Nutrición, Universidad Autónoma del Estado de Morelos, Cuernavaca, Mor, México
| | - Mario E Cruz-Muñoz
- Laboratorio de Inmunología Molecular, Facultad de Medicina, Universidad Autónoma del Estado de Morelos, Cuernavaca, Mor, México
| | | | - Iván Martínez-Duncker
- Laboratorio de Glicobiología Humana y Diagnóstico Molecular, Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Mor, México
| |
Collapse
|
6
|
Abstract
Sialic acid (Sia) is involved in many biological activities and commonly occurs as a monosialyl residue at the nonreducing terminal end of glycoconjugates. The loss of activity of UDP-GlcNAc2-epimerase/ManNAc kinase, which is a key enzyme in Sia biosynthesis, is lethal to the embryo, which clearly indicates the importance of Sia in embryogenesis. Occasionally, oligo/polymeric Sia structures such as disialic acid (diSia), oligosialic acid (oligoSia), and polysialic acid (polySia) occur in glycoconjugates. In particular, polySia, a well-known epitope that commonly occurs in neuroinvasive bacteria and vertebrate brains, is one of the most well-known and biologically/neurologically important glycotopes in vertebrates. The biological effects of polySia, especially on neural cell-adhesion molecules, have been well studied, and in-depth knowledge regarding polySia has been accumulated. In addition, the importance of diSia and oligoSia epitopes has been reported. In this chapter, the recent advances in the study of diSia, oligoSia, and polySia residues in glycoproteins in neurology, and their history, definition, occurrence, analytical methods, biosynthesis, and biological functions evaluated by phenotypes of gene-targeted mice, biochemical features, and related diseases are described.
Collapse
|
7
|
Mental disorders and an acidic glycan-from the perspective of polysialic acid (PSA/polySia) and the synthesizing enzyme, ST8SIA2. Glycoconj J 2018; 35:353-373. [PMID: 30058042 DOI: 10.1007/s10719-018-9832-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Revised: 07/02/2018] [Accepted: 07/03/2018] [Indexed: 02/08/2023]
Abstract
Mental disorders, such as schizophrenia, bipolar disorder, and autism spectrum disorder, are challenging to manage, worldwide. Understanding the molecular mechanisms underlying these disorders is essential and required. Studies investigating such molecular mechanisms are well performed and important findings are accumulating apace. Based on the fact that these disorders are due in part to the accumulation of genetic and environmental risk factors, consideration of multi-molecular and/or multi-system dependent phenomena might be important. Acidic glycans are an attractive family of molecules for understanding these disorders, because impairment of the fine-tuned glycan system affects a large number of molecules that are deeply involved in normal brain function. One of the candidates of this important family of glycan epitopes in the brain is polysialic acid (PSA/polySia). PSA is a well-known molecule because of its role as an oncodevelopmental antigen and is also widely used as a marker of adult neurogenesis. Recently, several reports have suggested that PSA and PSA-related genes are associated with multiple mental disorders. The relationships among PSA, PSA-related genes, and mental disorders are reviewed here.
Collapse
|
8
|
Subedi GP, Falconer DJ, Barb AW. Carbohydrate-Polypeptide Contacts in the Antibody Receptor CD16A Identified through Solution NMR Spectroscopy. Biochemistry 2017; 56:3174-3177. [PMID: 28613884 DOI: 10.1021/acs.biochem.7b00392] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Asparagine-linked carbohydrates (N-glycans) are common modifications of eukaryotic proteins that confer multiple properties, including the essential stabilization of therapeutic monoclonal antibodies. Here we present a rapid and efficient strategy for identifying N-glycans that contact polypeptide residues and apply the method to profile the five N-glycans attached to the human antibody receptor CD16A (Fc γ receptor IIIA). Human embryonic kidney 293S cells expressed CD16A with 13CU-labeled N-glycans using standard protein expression techniques and medium supplemented with 3 g/L [13CU]glucose. Anomeric resonances on the protein-linked N-acetylglucosamine residue at the reducing end of the glycan are particularly well suited to studies of multiply glycosylated N-glycoproteins because only one reducing end and nitrogen-linked residue is present in each N-glycan. Correlations between anomeric 1H1 and 13C1 nuclei on the reducing end residue generate crosspeaks in a conventional two-dimensional heteronuclear single-quantum coherence nuclear magnetic resonance (NMR) experiment that appear in a region of the spectrum devoid of other carbohydrate peaks or background protein signals. Two N-glycan peaks corresponding to the N45 and N162 N-glycans were dispersed from the rapidly averaged peaks corresponding to the N38, N74, and N169 N-glycans. We used a combination of NMR and 1 μs all-atom computational simulations to identify unexpected contacts between the N45 N-glycan and CD16A polypeptide residues.
Collapse
Affiliation(s)
- Ganesh P Subedi
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University , 2437 Pammel Drive, Molecular Biology Building, Room 4210, Ames, Iowa 50011, United States
| | - Daniel J Falconer
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University , 2437 Pammel Drive, Molecular Biology Building, Room 4210, Ames, Iowa 50011, United States
| | - Adam W Barb
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University , 2437 Pammel Drive, Molecular Biology Building, Room 4210, Ames, Iowa 50011, United States
| |
Collapse
|
9
|
Ehrit J, Keys TG, Sutherland M, Wolf S, Meier C, Falconer RA, Gerardy-Schahn R. Exploring and Exploiting Acceptor Preferences of the Human Polysialyltransferases as a Basis for an Inhibitor Screen. Chembiochem 2017; 18:1332-1337. [PMID: 28472541 DOI: 10.1002/cbic.201700157] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Indexed: 12/18/2022]
Abstract
α2,8-Linked polysialic acid (polySia) is an oncofoetal antigen with high abundance during embryonic development. It reappears in malignant tumours of neuroendocrine origin. Two polysialyltransferases (polySTs) ST8SiaII and IV are responsible for polySia biosynthesis. During development, both enzymes are essential to control polySia expression. However, in tumours ST8SiaII is the prevalent enzyme. Consequently, ST8SiaII is an attractive target for novel cancer therapeutics. A major challenge is the high structural and functional conservation of ST8SiaII and -IV. An assay system that enables differential testing of ST8SiaII and -IV would be of high value to search for specific inhibitors. Here we exploited the different modes of acceptor recognition and elongation for this purpose. With DMB-DP3 and DMB-DP12 (fluorescently labelled sialic acid oligomers with a degree of polymerisation of 3 and 12, respectively) we identified stark differences between the two enzymes. The new acceptors enabled the simple comparative testing of the polyST initial transfer rate for a series of CMP-activated and N-substituted sialic acid derivatives. Of these derivatives, the non-transferable CMP-Neu5Cyclo was found to be a new, competitive ST8SiaII inhibitor.
Collapse
Affiliation(s)
- Jörg Ehrit
- Institute of Clinical Biochemistry, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625, Hannover, Germany
| | - Timothy G Keys
- Institute of Clinical Biochemistry, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625, Hannover, Germany
| | - Mark Sutherland
- Institute of Cancer Therapeutics, Faculty of Life Sciences, University of Bradford, West Yorkshire, BD7 1DP, UK
| | - Saskia Wolf
- Department of Chemistry, Organic Chemistry, University Hamburg, Martin-Luther-King-Platz 6, 20146, Hamburg, Germany
| | - Chris Meier
- Department of Chemistry, Organic Chemistry, University Hamburg, Martin-Luther-King-Platz 6, 20146, Hamburg, Germany
| | - Robert A Falconer
- Institute of Cancer Therapeutics, Faculty of Life Sciences, University of Bradford, West Yorkshire, BD7 1DP, UK
| | - Rita Gerardy-Schahn
- Institute of Clinical Biochemistry, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625, Hannover, Germany
| |
Collapse
|
10
|
Galuska CE, Lütteke T, Galuska SP. Is Polysialylated NCAM Not Only a Regulator during Brain Development But also during the Formation of Other Organs? BIOLOGY 2017; 6:biology6020027. [PMID: 28448440 PMCID: PMC5485474 DOI: 10.3390/biology6020027] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 04/24/2017] [Accepted: 04/24/2017] [Indexed: 11/16/2022]
Abstract
In mammals several cell adhesion molecules are involved during the pre- and postnatal development of all organ systems. A very prominent member of this family is the neural cell adhesion molecule (NCAM). Interestingly, NCAM can be a target for a special form of posttranslational modification: polysialylation. Whereas nearly all extracellular proteins bear mono-sialic acid residues, only a very small group can be polysialylated. Polysialic acid is a highly negatively-charged sugar polymer and can comprise more than 90 sialic acid residues in postnatal mouse brains increasing dramatically the hydrodynamic radius of their carriers. Thus, adhesion and communication processes on cell surfaces are strongly influenced allowing, e.g., the migration of neuronal progenitor cells. In the developing brain the essential role of polysialylated NCAM has been demonstrated in many studies. In comparison to the neuronal system, however, during the formation of other organs the impact of the polysialylated form of NCAM is not well characterized and the number of studies is limited so far. This review summarizes these observations and discusses possible roles of polysialylated NCAM during the development of organs other than the brain.
Collapse
Affiliation(s)
- Christina E Galuska
- Department of Reproductive Biology, Leibniz Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany.
| | - Thomas Lütteke
- ITech Progress GmbH, Donnersbergweg 4, 67059 Ludwigshafen, Germany.
| | - Sebastian P Galuska
- Department of Reproductive Biology, Leibniz Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany.
| |
Collapse
|
11
|
Sato C, Hane M, Kitajima K. Relationship between ST8SIA2, polysialic acid and its binding molecules, and psychiatric disorders. Biochim Biophys Acta Gen Subj 2016; 1860:1739-52. [PMID: 27105834 DOI: 10.1016/j.bbagen.2016.04.015] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2015] [Revised: 04/15/2016] [Accepted: 04/16/2016] [Indexed: 12/21/2022]
Abstract
Polysialic acid (polySia, PSA) is a unique and functionally important glycan, particularly in vertebrate brains. It is involved in higher brain functions such as learning, memory, and social behaviors. Recently, an association between several genetic variations and single nucleotide polymorphisms (SNPs) of ST8SIA2/STX, one of two polysialyltransferase genes in vertebrates, and psychiatric disorders, such as schizophrenia (SZ), bipolar disorder (BD), and autism spectrum disorder (ASD), was reported based on candidate gene approaches and genome-wide studies among normal and mental disorder patients. It is of critical importance to determine if the reported mutations and SNPs in ST8SIA2 lead to impairments of the structure and function of polySia, which is the final product of ST8SIA2. To date, however, only a few such forward-directed studies have been conducted. In addition, the molecular mechanisms underlying polySia-involved brain functions remain unknown, although polySia was shown to have an anti-adhesive effect. In this report, we review the relationships between psychiatric disorders and polySia and/or ST8SIA2, and describe a new function of polySia as a regulator of neurologically active molecules, such as brain-derived neurotrophic factor (BDNF) and dopamine, which are deeply involved in psychiatric disorders. This article is part of a Special Issue entitled "Glycans in personalised medicine" Guest Editor: Professor Gordan Lauc.
Collapse
Affiliation(s)
- Chihiro Sato
- Bioscience and Biotechnology Center, Nagoya University, Chikusa, Nagoya 464-8601, Japan.
| | - Masaya Hane
- Bioscience and Biotechnology Center, Nagoya University, Chikusa, Nagoya 464-8601, Japan
| | - Ken Kitajima
- Bioscience and Biotechnology Center, Nagoya University, Chikusa, Nagoya 464-8601, Japan
| |
Collapse
|
12
|
Cell Adhesion Molecules and Ubiquitination-Functions and Significance. BIOLOGY 2015; 5:biology5010001. [PMID: 26703751 PMCID: PMC4810158 DOI: 10.3390/biology5010001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 12/02/2015] [Accepted: 12/15/2015] [Indexed: 12/11/2022]
Abstract
Cell adhesion molecules of the immunoglobulin (Ig) superfamily represent the biggest group of cell adhesion molecules. They have been analyzed since approximately 40 years ago and most of them have been shown to play a role in tumor progression and in the nervous system. All members of the Ig superfamily are intensively posttranslationally modified. However, many aspects of their cellular functions are not yet known. Since a few years ago it is known that some of the Ig superfamily members are modified by ubiquitin. Ubiquitination has classically been described as a proteasomal degradation signal but during the last years it became obvious that it can regulate many other processes including internalization of cell surface molecules and lysosomal sorting. The purpose of this review is to summarize the current knowledge about the ubiquitination of cell adhesion molecules of the Ig superfamily and to discuss its potential physiological roles in tumorigenesis and in the nervous system.
Collapse
|
13
|
Gnanapragassam VS, Bork K, Galuska CE, Galuska SP, Glanz D, Nagasundaram M, Bache M, Vordermark D, Kohla G, Kannicht C, Schauer R, Horstkorte R. Sialic acid metabolic engineering: a potential strategy for the neuroblastoma therapy. PLoS One 2014; 9:e105403. [PMID: 25148252 PMCID: PMC4141789 DOI: 10.1371/journal.pone.0105403] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Accepted: 07/17/2014] [Indexed: 12/28/2022] Open
Abstract
Background Sialic acids (Sia) represent negative-charged terminal sugars on most glycoproteins and glycolipids on the cell surface of vertebrates. Aberrant expression of tumor associated sialylated carbohydrate epitopes significantly increases during onset of cancer. Since Sia contribute towards cell migration ( = metastasis) and to chemo- and radiation resistance. Modulation of cellular Sia concentration and composition poses a challenge especially for neuroblastoma therapy, due to the high heterogeneity and therapeutic resistance of these cells. Here we propose that Metabolic Sia Engineering (MSE) is an effective strategy to reduce neuroblastoma progression and metastasis. Methods Human neuroblastoma SH-SY5Y cells were treated with synthetic Sia precursors N-propanoyl mannosamine (ManNProp) or N-pentanoyl mannosamine (ManNPent). Total and Polysialic acids (PolySia) were investigated by high performance liquid chromatography. Cell surface polySia were examined by flow-cytometry. Sia precursors treated cells were examined for the migration, invasion and sensitivity towards anticancer drugs and radiation treatment. Results Treatment of SH-SY5Y cells with ManNProp or ManNPent (referred as MSE) reduced their cell surface sialylation significantly. We found complete absence of polysialylation after treatment of SH-SY5Y cells with ManNPent. Loss of polysialylation results in a reduction of migration and invasion ability of these cells. Furthermore, radiation of Sia-engineered cells completely abolished their migration. In addition, MSE increases the cytotoxicity of anti-cancer drugs, such as 5-fluorouracil or cisplatin. Conclusions Metabolic Sia Engineering (MSE) of neuroblastoma cells using modified Sia precursors reduces their sialylation, metastatic potential and increases their sensitivity towards radiation or chemotherapeutics. Therefore, MSE may serve as an effective method to treat neuroblastoma.
Collapse
Affiliation(s)
- Vinayaga S. Gnanapragassam
- Institute for Physiological Chemistry, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
- * E-mail:
| | - Kaya Bork
- Institute for Physiological Chemistry, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Christina E. Galuska
- Institute of Biochemistry, Faculty of Medicine, University of Giessen, Giessen, Germany
| | - Sebastian P. Galuska
- Institute of Biochemistry, Faculty of Medicine, University of Giessen, Giessen, Germany
| | - Dagobert Glanz
- Institute for Physiological Chemistry, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Manimozhi Nagasundaram
- Institute for Physiological Chemistry, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Matthias Bache
- Clinic of Radiotherapy, University Hospital Halle, Halle (Saale), Germany
| | - Dirk Vordermark
- Clinic of Radiotherapy, University Hospital Halle, Halle (Saale), Germany
| | - Guido Kohla
- Octapharma R&D, Molecular Biochemistry, Berlin, Germany
| | | | - Roland Schauer
- Institute of Biochemistry, University of Kiel, Kiel, Germany
| | - Rüdiger Horstkorte
- Institute for Physiological Chemistry, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| |
Collapse
|
14
|
Schnaar RL, Gerardy-Schahn R, Hildebrandt H. Sialic acids in the brain: gangliosides and polysialic acid in nervous system development, stability, disease, and regeneration. Physiol Rev 2014; 94:461-518. [PMID: 24692354 DOI: 10.1152/physrev.00033.2013] [Citation(s) in RCA: 541] [Impact Index Per Article: 49.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Every cell in nature carries a rich surface coat of glycans, its glycocalyx, which constitutes the cell's interface with its environment. In eukaryotes, the glycocalyx is composed of glycolipids, glycoproteins, and proteoglycans, the compositions of which vary among different tissues and cell types. Many of the linear and branched glycans on cell surface glycoproteins and glycolipids of vertebrates are terminated with sialic acids, nine-carbon sugars with a carboxylic acid, a glycerol side-chain, and an N-acyl group that, along with their display at the outmost end of cell surface glycans, provide for varied molecular interactions. Among their functions, sialic acids regulate cell-cell interactions, modulate the activities of their glycoprotein and glycolipid scaffolds as well as other cell surface molecules, and are receptors for pathogens and toxins. In the brain, two families of sialoglycans are of particular interest: gangliosides and polysialic acid. Gangliosides, sialylated glycosphingolipids, are the most abundant sialoglycans of nerve cells. Mouse genetic studies and human disorders of ganglioside metabolism implicate gangliosides in axon-myelin interactions, axon stability, axon regeneration, and the modulation of nerve cell excitability. Polysialic acid is a unique homopolymer that reaches >90 sialic acid residues attached to select glycoproteins, especially the neural cell adhesion molecule in the brain. Molecular, cellular, and genetic studies implicate polysialic acid in the control of cell-cell and cell-matrix interactions, intermolecular interactions at cell surfaces, and interactions with other molecules in the cellular environment. Polysialic acid is essential for appropriate brain development, and polymorphisms in the human genes responsible for polysialic acid biosynthesis are associated with psychiatric disorders including schizophrenia, autism, and bipolar disorder. Polysialic acid also appears to play a role in adult brain plasticity, including regeneration. Together, vertebrate brain sialoglycans are key regulatory components that contribute to proper development, maintenance, and health of the nervous system.
Collapse
|
15
|
Li X, Persad ARL, Monckton EA, Godbout R. Transcription factor AP-2delta regulates the expression of polysialyltransferase ST8SIA2 in chick retina. FEBS Lett 2014; 588:770-5. [PMID: 24462686 DOI: 10.1016/j.febslet.2014.01.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Revised: 01/07/2014] [Accepted: 01/10/2014] [Indexed: 11/17/2022]
Abstract
The AP-2δ transcription factor is restricted to a subset of retinal ganglion cells. Overexpression of AP-2δ in chick retina results in induction of polysialylated neural cell adhesion molecule (PSA-NCAM) accompanied by misrouting and bundling of ganglion cell axons. Two polysialyltransferases, ST8SIA2 and ST8SIA4, are responsible for polysialylation of NCAM. Here, we investigate the mechanism driving the increase in PSA-NCAM observed upon AP-2δ overexpression. We show that ST8SIA2 is induced by AP-2δ overexpression in chick retina. We use chromatin immunoprecipitation and gel shift assays to demonstrate direct interaction between AP-2δ and the ST8SIA2 promoter. We propose that up-regulation of ST8SIA2 upon AP-2δ overexpression in retina increases ectopic polysialylation of NCAM which in turn causes premature bundling of axons and alters axonal response to guidance cues.
Collapse
Affiliation(s)
- Xiaodong Li
- Department of Oncology, University of Alberta, Cross Cancer Institute, 11560 University Avenue, Edmonton, Alberta T6G 1Z2, Canada
| | - Amit R L Persad
- Department of Oncology, University of Alberta, Cross Cancer Institute, 11560 University Avenue, Edmonton, Alberta T6G 1Z2, Canada
| | - Elizabeth A Monckton
- Department of Oncology, University of Alberta, Cross Cancer Institute, 11560 University Avenue, Edmonton, Alberta T6G 1Z2, Canada
| | - Roseline Godbout
- Department of Oncology, University of Alberta, Cross Cancer Institute, 11560 University Avenue, Edmonton, Alberta T6G 1Z2, Canada.
| |
Collapse
|
16
|
Rollenhagen M, Buettner FFR, Reismann M, Jirmo AC, Grove M, Behrens GMN, Gerardy-Schahn R, Hanisch FG, Mühlenhoff M. Polysialic acid on neuropilin-2 is exclusively synthesized by the polysialyltransferase ST8SiaIV and attached to mucin-type o-glycans located between the b2 and c domain. J Biol Chem 2013; 288:22880-92. [PMID: 23801331 DOI: 10.1074/jbc.m113.463927] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Neuropilin-2 (NRP2) is well known as a co-receptor for class 3 semaphorins and vascular endothelial growth factors, involved in axon guidance and angiogenesis. Moreover, NRP2 was shown to promote chemotactic migration of human monocyte-derived dendritic cells (DCs) toward the chemokine CCL21, a function that relies on the presence of polysialic acid (polySia). In vertebrates, this posttranslational modification is predominantly found on the neural cell adhesion molecule (NCAM), where it is synthesized on N-glycans by either of the two polysialyltransferases, ST8SiaII or ST8SiaIV. In contrast to NCAM, little is known on the biosynthesis of polySia on NRP2. Here we identified the polySia attachment sites and demonstrate that NRP2 is recognized only by ST8SiaIV. Although polySia-NRP2 was found on bone marrow-derived DCs from wild-type and St8sia2(-/-) mice, polySia was completely lost in DCs from St8sia4(-/-) mice despite normal NRP2 expression. In COS-7 cells, co-expression of NRP2 with ST8SiaIV but not ST8SiaII resulted in the formation of polySia-NRP2, highlighting distinct acceptor specificities of the two polysialyltransferases. Notably, ST8SiaIV synthesized polySia selectively on a NRP2 glycoform that was characterized by the presence of sialylated core 1 and core 2 O-glycans. Based on a comprehensive site-directed mutagenesis study, we localized the polySia attachment sites to an O-glycan cluster located in the linker region between b2 and c domain. Combined alanine exchange of Thr-607, -613, -614, -615, -619, and -624 efficiently blocked polysialylation. Restoration of single sites only partially rescued polysialylation, suggesting that within this cluster, polySia is attached to more than one site.
Collapse
Affiliation(s)
- Manuela Rollenhagen
- Institute of Cellular Chemistry, Medical School Hannover, Hannover 30623, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Simon P, Bäumner S, Busch O, Röhrich R, Kaese M, Richterich P, Wehrend A, Müller K, Gerardy-Schahn R, Mühlenhoff M, Geyer H, Geyer R, Middendorff R, Galuska SP. Polysialic acid is present in mammalian semen as a post-translational modification of the neural cell adhesion molecule NCAM and the polysialyltransferase ST8SiaII. J Biol Chem 2013; 288:18825-33. [PMID: 23671285 DOI: 10.1074/jbc.m113.451112] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Fertilization in animals is a complex sequence of several biochemical events beginning with the insemination into the female reproductive tract and, finally, leading to embryogenesis. Studies by Kitajima and co-workers (Miyata, S., Sato, C., and Kitajima, K. (2007) Trends Glycosci. Glyc, 19, 85-98) demonstrated the presence of polysialic acid (polySia) on sea urchin sperm. Based on these results, we became interested in the potential involvement of sialic acid polymers in mammalian fertilization. Therefore, we isolated human sperm and performed analyses, including Western blotting and mild 1,2-diamino-4,5-methylenedioxybenzene-HPLC, that revealed the presence α2,8-linked polySia chains. Further analysis by a glyco-proteomics approach led to the identification of two polySia carriers. Interestingly, besides the neural cell adhesion molecule, the polysialyltransferase ST8SiaII has also been found to be a target for polysialylation. Further analysis of testis and epididymis tissue sections demonstrated that only epithelial cells of the caput were polySia-positive. During the epididymal transit, polySia carriers were partially integrated into the sperm membrane of the postacrosomal region. Because polySia is known to counteract histone as well as neutrophil extracellular trap-mediated cytotoxicity against host cells, which plays a role after insemination, we propose that polySia in semen represents a cytoprotective element to increase the number of vital sperm.
Collapse
Affiliation(s)
- Peter Simon
- Institute of Biochemistry, Faculty of Medicine, Justus-Liebig-University, 35392 Giessen, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Wang SH, Tsai CM, Lin KI, Khoo KH. Advanced mass spectrometry and chemical analyses reveal the presence of terminal disialyl motif on mouse B-cell glycoproteins. Glycobiology 2013; 23:677-89. [PMID: 23363740 DOI: 10.1093/glycob/cwt008] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The occurrence of a terminal disialyl motif on mammalian O-glycans is increasingly being identified through recent mass spectrometry (MS)-based glycomic profiling. In most cases, it is carried on simple core 1 structures in which both the galactose and N-acetyl galactosamine can be disialylated. In contrast, a disialyl motif on N-glycans is less readily revealed by MS mapping, since additional MS/MS analysis is required to determine the distribution of the various sialic acids on typically multisialylated complex type N-glycans. In our MS-based glycomic screening, we found that a mouse B lymphoma cell line, BCL1, ranks among those that have the highest amount of disialyl motif on its O-glycans, including those carried on CD45. More intriguingly, detailed chemical and MS/MS analyses unambiguously showed that the Neu5Gcα2-8Neu5Gc disialyl motif is also present on the N-glycans and that it can be carried on the termini of polylactosaminoglycan chains, which can be further sulfated on the proximal GlcNAc, occurring alongside other monosialylated sulfated LacNAc termini. Upon silencing the expression of mouse α2,8-sialyltransferase VI (ST8Sia VI), the overall disialyl content decreases significantly, but more so for that on the N-glycans than the O-glycans. ST8Sia VI was further shown to be the most significantly upregulated ST8Sia during plasma cell differentiation, which coincides with increasing content of the disialyl motif. Increasing terminal disialylation without leading to polysialylation may thus have important biological consequences awaiting further investigation. Likewise, the expression of mono- and disialylated sulfated LacNAc may constitute novel recognition codes modulating B-cell activation and differentiation.
Collapse
Affiliation(s)
- Shui-Hua Wang
- Institute of Biochemical Sciences, National Taiwan University
| | | | | | | |
Collapse
|
19
|
|
20
|
Rollenhagen M, Kuckuck S, Ulm C, Hartmann M, Galuska SP, Geyer R, Geyer H, Mühlenhoff M. Polysialylation of the synaptic cell adhesion molecule 1 (SynCAM 1) depends exclusively on the polysialyltransferase ST8SiaII in vivo. J Biol Chem 2012; 287:35170-35180. [PMID: 22908220 DOI: 10.1074/jbc.m112.375642] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Polysialic acid is a unique carbohydrate polymer specifically attached to a limited number of glycoproteins. Among them is synaptic cell adhesion molecule 1 (SynCAM 1), a member of the immunoglobulin (Ig) superfamily composed of three extracellular Ig-like domains. Polysialylation of SynCAM 1 is cell type-specific and was exclusively found in NG2 cells, a class of multifunctional progenitor cells that form specialized synapses with neurons. Here, we studied the molecular requirements for SynCAM 1 polysialylation. Analysis of mice lacking one of the two polysialyltransferases, ST8SiaII or ST8SiaIV, revealed that polysialylation of SynCAM 1 is exclusively mediated by ST8SiaII throughout postnatal brain development. Alternative splicing of the three variable exons 8a, 8b, and 8c can theoretically give rise to eight transmembrane isoforms of SynCAM 1. We detected seven transcript variants in the developing mouse brain, including three variants containing exon 8c, which was so far regarded as a cryptic exon in mice. Polysialylation of SynCAM 1 was restricted to four isoforms in perinatal brain. However, cell culture experiments demonstrated that all transmembrane isoforms of SynCAM 1 can be polysialylated by ST8SiaII. Moreover, analysis of domain deletion constructs revealed that Ig1, which harbors the polysialylation site, is not sufficient as an acceptor for ST8SiaII. The minimal polypeptide required for polysialylation contained Ig1 and Ig2, suggesting an important role for Ig2 as a docking site for ST8SiaII.
Collapse
Affiliation(s)
- Manuela Rollenhagen
- Institute of Cellular Chemistry, Hannover Medical School, 30625 Hannover, Germany
| | - Sarah Kuckuck
- Institute of Cellular Chemistry, Hannover Medical School, 30625 Hannover, Germany
| | - Christina Ulm
- Institute of Biochemistry, Faculty of Medicine, University of Giessen, 35392 Giessen, Germany
| | - Maike Hartmann
- Institute of Cellular Chemistry, Hannover Medical School, 30625 Hannover, Germany
| | - Sebastian P Galuska
- Institute of Biochemistry, Faculty of Medicine, University of Giessen, 35392 Giessen, Germany
| | - Rudolf Geyer
- Institute of Biochemistry, Faculty of Medicine, University of Giessen, 35392 Giessen, Germany
| | - Hildegard Geyer
- Institute of Biochemistry, Faculty of Medicine, University of Giessen, 35392 Giessen, Germany
| | - Martina Mühlenhoff
- Institute of Cellular Chemistry, Hannover Medical School, 30625 Hannover, Germany.
| |
Collapse
|
21
|
Mao X, Schwend T, Conrad GW. Expression and localization of neural cell adhesion molecule and polysialic acid during chick corneal development. Invest Ophthalmol Vis Sci 2012; 53:1234-43. [PMID: 22281821 DOI: 10.1167/iovs.11-8834] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
PURPOSE To assay for expression and localization of neural cell adhesion molecule (NCAM) and polysialic acid (polySia) in the chick cornea during embryonic and postnatal development. METHODS Real time quantitative PCR and Western blot analyses were used to determine NCAM expression and polysiaylation in embryonic, hatchling, and adult chick corneas. Immunofluorescence staining for NCAM and polySia was conducted on cryosections of embryonic and adult corneas, whole embryonic corneas, and trigeminal neurons. RESULTS NCAM and ST8SiaII mRNA transcripts peaked by embryonic day (E)9, remained steady between E10 and E14 and slowly decreased thereafter during embryonic development. Both gene transcripts showed > 190-fold decline in the adult chick cornea compared with E9. In contrast, ST8SiaIV expression gradually decreased 26.5-fold from E6 to E19, increased thereafter, and rose to the early embryonic level in the adult cornea. Western blot analysis revealed NCAM was polysialylated and its expression developmentally changed. Other polysiaylated proteins aside from NCAM were also detected by Western blot analysis. Five NCAM isoforms including NCAM-120, NCAM-180 and three soluble NCAM isoforms with low molecular weights (87-96 kDa) were present in chick corneas, with NCAM-120 being the predominate isoform. NCAM was localized to the epithelium, stroma, and stromal extracellular matrix (ECM) of the embryonic cornea. In stroma, NCAM expression shifted from anterior to posterior stroma during embryonic development and eventually became undetectable in 20-week-old adult cornea. Additionally, both NCAM and polySia were detected on embryonic corneal and pericorneal nerves. CONCLUSIONS NCAM and polySia are expressed and developmentally regulated in chick corneas. Both membrane-associated and soluble NCAM isoforms are expressed in chick corneas. The distributions of NCAM and polySia in cornea and on corneal nerves suggest their potential functions in corneal innervation.
Collapse
Affiliation(s)
- Xiuli Mao
- Division of Biology, Kansas State University, Manhattan, Kansas 66506-4901, USA.
| | | | | |
Collapse
|
22
|
Maćkowiak M, Mordalska P, Dudys D, Korostyński M, Bator E, Wedzony K. Cocaine enhances ST8SiaII mRNA expression and neural cell adhesion molecule polysialylation in the rat medial prefrontal cortex. Neuroscience 2011; 186:21-31. [DOI: 10.1016/j.neuroscience.2011.04.030] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2010] [Revised: 03/31/2011] [Accepted: 04/12/2011] [Indexed: 11/28/2022]
|
23
|
Isomura R, Kitajima K, Sato C. Structural and functional impairments of polysialic acid by a mutated polysialyltransferase found in schizophrenia. J Biol Chem 2011; 286:21535-45. [PMID: 21464126 DOI: 10.1074/jbc.m111.221143] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Polysialic acid (polySia), a unique acidic glycan modifying neural cell adhesion molecule (NCAM), is known to regulate embryonic neural development and adult brain functions. Polysialyltransferase STX is responsible for the synthesis of polySia, and two single nucleotide polymorphisms (SNPs) of the coding region of STX are reported from schizophrenic patients: SNP7 and SNP9, respectively, giving STX(G421A) with E141K and STX(C621G) with silent mutations. In this study, we focused on these mutations and a binding activity of polySia to neural materials, such as brain-derived neurotrophic factor (BDNF). Here we describe three new findings. First, STX(G421A) shows a dramatic decrease in polySia synthetic activity on NCAM, whereas STX(C621G) does not. The STX(G421A)-derived polySia-NCAM contains a lower amount of polySia with a shorter chain length. Second, polySia shows a dopamine (DA) binding activity, which is a new function of polySia as revealed by frontal affinity chromatography for measuring the polySia-neurotransmitter interactions. Interestingly, the STX(G421A)-derived polySia-NCAM completely loses the DA binding activity, whereas it greatly diminishes but does not lose the BDNF binding activity. Third, an impairment of the polySia structure with an endosialidase modulates the DA-mediated Akt signaling. Taken together, impairment of the amount and quality of polySia may be involved in psychiatric disorders through impaired binding to BDNF and DA, which are deeply involved in schizophrenia and other psychiatric disorders, such as depression and bipolar disorder.
Collapse
Affiliation(s)
- Ryo Isomura
- Bioscience and Biotechnology Center, Nagoya University, Nagoya 464-8601, Japan
| | | | | |
Collapse
|
24
|
Affiliation(s)
- Shou Takashima
- The Noguchi institute, 1-8-1 Kaga, Itabashi, Tokyo 173-0003, Japan
| | - Shuichi Tsuji
- Institute of Glycoscience, Tokai University, 4-1-1 Kitakaname, Hiratsuka, Kanagawa 259-1292, Japan
| |
Collapse
|
25
|
Foley DA, Swartzentruber KG, Lavie A, Colley KJ. Structure and mutagenesis of neural cell adhesion molecule domains: evidence for flexibility in the placement of polysialic acid attachment sites. J Biol Chem 2010; 285:27360-27371. [PMID: 20573953 DOI: 10.1074/jbc.m110.140038] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The addition of alpha2,8-polysialic acid to the N-glycans of the neural cell adhesion molecule, NCAM, is critical for brain development and plays roles in synaptic plasticity, learning and memory, neuronal regeneration, and the growth and invasiveness of cancer cells. Our previous work indicates that the polysialylation of two N-glycans located on the fifth immunoglobulin domain (Ig5) of NCAM requires the presence of specific sequences in the adjacent fibronectin type III repeat (FN1). To understand the relationship of these two domains, we have solved the crystal structure of the NCAM Ig5-FN1 tandem. Unexpectedly, the structure reveals that the sites of Ig5 polysialylation are on the opposite face from the FN1 residues previously found to be critical for N-glycan polysialylation, suggesting that the Ig5-FN1 domain relationship may be flexible and/or that there is flexibility in the placement of Ig5 glycosylation sites for polysialylation. To test the latter possibility, new Ig5 glycosylation sites were engineered and their polysialylation tested. We observed some flexibility in glycosylation site location for polysialylation and demonstrate that the lack of polysialylation of a glycan attached to Asn-423 may be in part related to a lack of terminal processing. The data also suggest that, although the polysialyltransferases do not require the Ig5 domain for NCAM recognition, their ability to engage with this domain is necessary for polysialylation to occur on Ig5 N-glycans.
Collapse
Affiliation(s)
- Deirdre A Foley
- Department of Biochemistry and Molecular Genetics, University of Illinois College of Medicine, Chicago, Illinois 60607
| | - Kristin G Swartzentruber
- Department of Biochemistry and Molecular Genetics, University of Illinois College of Medicine, Chicago, Illinois 60607
| | - Arnon Lavie
- Department of Biochemistry and Molecular Genetics, University of Illinois College of Medicine, Chicago, Illinois 60607
| | - Karen J Colley
- Department of Biochemistry and Molecular Genetics, University of Illinois College of Medicine, Chicago, Illinois 60607.
| |
Collapse
|
26
|
Hildebrandt H, Mühlenhoff M, Gerardy-Schahn R. Polysialylation of NCAM. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 663:95-109. [DOI: 10.1007/978-1-4419-1170-4_6] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
27
|
Mühlenhoff M, Oltmann-Norden I, Weinhold B, Hildebrandt H, Gerardy-Schahn R. Brain development needs sugar: the role of polysialic acid in controlling NCAM functions. Biol Chem 2009; 390:567-74. [PMID: 19426138 DOI: 10.1515/bc.2009.078] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Polysialic acid (polySia) is a major regulator of cell-cell interactions in the developing nervous system and a key factor in maintaining neural plasticity. As a polyanionic molecule with high water binding capacity, polySia increases the intercellular space and creates conditions that are permissive for cellular plasticity. While the prevailing model highlights polySia as a non-specific regulator of cell-cell contacts, this review concentrates on recent studies in knockout mice indicating that a crucial function of polySia resides in controlling interactions mediated by its predominant protein carrier, the neural cell adhesion molecule NCAM.
Collapse
Affiliation(s)
- Martina Mühlenhoff
- Institute of Cellular Chemistry, OE 4330, Hannover Medical School, D-30625 Hannover, Germany.
| | | | | | | | | |
Collapse
|
28
|
Rieger S, Volkmann K, Köster RW. Polysialyltransferase expression is linked to neuronal migration in the developing and adult zebrafish. Dev Dyn 2008; 237:276-85. [PMID: 18095350 DOI: 10.1002/dvdy.21410] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Modulation of cell-cell adhesion is crucial for regulating neuronal migration and maintenance of structural plasticity in the embryonic and mature brain. Such modulation can be obtained by the enzymatic attachment of polysialic acid (PSA) to the neural cell adhesion molecule (NCAM) by means of the polysialyltransferases STX and PST. Thus, differential expression of STX and PST is likely to be responsible for varying functions of PSA-NCAM during neuronal differentiation, maintenance, plasticity, and regeneration. We have isolated the zebrafish homologues of STX (St8sia2) and PST (St8sia4) and demonstrate that their expression in the embryonic and adult nervous system is often confined to regions of neuronal migration. Moreover, in the adult cerebellum, the complementary expression pattern of both polysialyltransferases suggests a function in regulating cerebellar neuronal plasticity. Enzymatic removal of PSA in the embryonic cerebellum results in impaired neuronal migration, suggesting that PSA-NCAM is a key regulator of motility for cerebellar neuronal progenitors.
Collapse
Affiliation(s)
- Sandra Rieger
- GSF- National Research Center for Environment and Health, Institute of Developmental Genetics, Neuherberg-Munich, Germany
| | | | | |
Collapse
|
29
|
Hildebrandt H, Mühlenhoff M, Gerardy-Schahn R. WITHDRAWN: Polysialylation of NCAM. Neurochem Res 2008. [PMID: 18461443 DOI: 10.1007/s11064-008-9724-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/21/2008] [Indexed: 12/15/2022]
Affiliation(s)
- Herbert Hildebrandt
- Institute of Cellular Chemistry, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625, Hannover, Germany
| | | | | |
Collapse
|
30
|
Nairn AV, York WS, Harris K, Hall EM, Pierce JM, Moremen KW. Regulation of glycan structures in animal tissues: transcript profiling of glycan-related genes. J Biol Chem 2008; 283:17298-313. [PMID: 18411279 DOI: 10.1074/jbc.m801964200] [Citation(s) in RCA: 163] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Glycan structures covalently attached to proteins and lipids play numerous roles in mammalian cells, including protein folding, targeting, recognition, and adhesion at the molecular or cellular level. Regulating the abundance of glycan structures on cellular glycoproteins and glycolipids is a complex process that depends on numerous factors. Most models for glycan regulation hypothesize that transcriptional control of the enzymes involved in glycan synthesis, modification, and catabolism determines glycan abundance and diversity. However, few broad-based studies have examined correlations between glycan structures and transcripts encoding the relevant biosynthetic and catabolic enzymes. Low transcript abundance for many glycan-related genes has hampered broad-based transcript profiling for comparison with glycan structural data. In an effort to facilitate comparison with glycan structural data and to identify the molecular basis of alterations in glycan structures, we have developed a medium-throughput quantitative real time reverse transcriptase-PCR platform for the analysis of transcripts encoding glycan-related enzymes and proteins in mouse tissues and cells. The method employs a comprehensive list of >700 genes, including enzymes involved in sugar-nucleotide biosynthesis, transporters, glycan extension, modification, recognition, catabolism, and numerous glycosylated core proteins. Comparison with parallel microarray analyses indicates a significantly greater sensitivity and dynamic range for our quantitative real time reverse transcriptase-PCR approach, particularly for the numerous low abundance glycan-related enzymes. Mapping of the genes and transcript levels to their respective biosynthetic pathway steps allowed a comparison with glycan structural data and provides support for a model where many, but not all, changes in glycan abundance result from alterations in transcript expression of corresponding biosynthetic enzymes.
Collapse
Affiliation(s)
- Alison V Nairn
- Complex Carbohydrate Research Center and the Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602, USA
| | | | | | | | | | | |
Collapse
|
31
|
Gao J, Chen T, Hu G, Gong Y, Qiang B, Yuan J, Peng X. Nectin-like molecule 1 is a glycoprotein with a single N-glycosylation site at N290KS which influences its adhesion activity. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2008; 1778:1429-35. [PMID: 18420026 DOI: 10.1016/j.bbamem.2008.03.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2007] [Revised: 02/24/2008] [Accepted: 03/11/2008] [Indexed: 01/03/2023]
Abstract
Nectin-like molecule 1 (NECL1)/CADM3/IGSF4B/TSLL1/SynCAM3, from now on referred to as NECL1, is a neural tissue-specific immunoglobulin-like cell-cell adhesion molecule which has Ca(2+)-independent homo- or heterophilic cell-cell adhesion activity and plays an important role in the formation of synapses, axon bundles and myelinated axons. Here we first detected the expression of NECL1 in human fetal and adult brains, and mouse brains at different developmental stages. The results indicated that two bands with molecular weights of about 62 kDa and 48 kDa were found in human fetal brain, while only one band with a molecular weight of about 48 kDa was found in human adult brain; two bands with molecular weights of about 62 kDa and 48 kDa whose expression level gradually increased were also found from mouse E16 to P14, while only one band with a molecular weight of about 48 kDa was found from P14. Bioinformatics analysis showed there were two putative N-glycosylation sites within human NECL1 at positions N25LS and N290KS and within mouse Necl1 at positions N23LS and N288KS, respectively. There was no O-glycosylation site in either human NECL1 or mouse Necl1. Based on the results of N-Glycosidase F treatment with human fetal brain tissue and lysates from transient transfection with human wild-type or glycosylation site mutant NECL1 in 293ET cells, we demonstrated that human NECL1 is an N-linked glycoprotein with a single glycosylation site at position N290KS. Cell aggregation assay further showed there was an increased adhesion activity after the glycosylation site mutation of NECL1 molecule.
Collapse
Affiliation(s)
- Jing Gao
- National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, National Human Genome Center, Beijing, China.
| | | | | | | | | | | | | |
Collapse
|
32
|
Galuska SP, Geyer R, Gerardy-Schahn R, Mühlenhoff M, Geyer H. Enzyme-dependent Variations in the Polysialylation of the Neural Cell Adhesion Molecule (NCAM) in Vivo. J Biol Chem 2008; 283:17-28. [DOI: 10.1074/jbc.m707024200] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
33
|
Polysialic acid in the plasticity of the developing and adult vertebrate nervous system. Nat Rev Neurosci 2008; 9:26-35. [DOI: 10.1038/nrn2285] [Citation(s) in RCA: 479] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
34
|
Miyazaki T, Angata K, Seeberger PH, Hindsgaul O, Fukuda M. CMP substitutions preferentially inhibit polysialic acid synthesis. Glycobiology 2007; 18:187-94. [PMID: 18077550 DOI: 10.1093/glycob/cwm132] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
It is widely reported that derivatives of sugar moieties can be used to metabolically label cell surface carbohydrates or inhibit a particular glycosylation. However, few studies address the effect of substitution of the cytidylmonophosphate (CMP) portion on sialyltransferase activities. Here we first synthesized 2'-O-methyl CMP and 5-methyl CMP and then asked if these CMP derivatives are recognized by alpha2,3-sialyltransferases (ST3Gal-III and ST3Gal-IV), alpha2,6-sialyltransferase (ST6Gal-I), and alpha2,8-sialyltransferase (ST8Sia-II, ST8Sia-III, and ST8Sia-IV). We found that ST3Gal-III and ST3Gal-IV but not ST6Gal-I was inhibited by 2'-O-methyl CMP as potently as by CMP, while ST3Gal-III, ST3Gal-IV, and ST6Gal-I were moderately inhibited by 5-methyl CMP. Previously, it was reported that polysialyltransferase ST8Sia-II but not ST8Sia-IV was inhibited by CMP N-butylneuraminic acid. We found that ST8Sia-IV as well as ST8Sia-II and ST8Sia-III are inhibited by 2'-O-methyl CMP as robustly as by CMP and moderately by 5-methyl CMP. Moreover, the addition of CMP, 2'-O-methyl CMP, and 5-methyl CMP to the culture medium resulted in the decrease of polysialic acid expression on the cell surface and NCAM of Chinese hamster ovary cells. These results suggest that 2'-O-methyl CMP and 5-methyl CMP can be used to preferentially inhibit sialyltransferases, in particular, polysialyltransferases in vitro and in vivo. Such inhibition may be useful to determine the function of a carbohydrate synthesized by a specific sialyltransferase such as polysialyltransferase.
Collapse
Affiliation(s)
- Tatsuo Miyazaki
- Tumor Microenvironment Program, Glycobiology Unit, Cancer Research Center, Burnham Institute for Medical Research, La Jolla, CA 92037, USA
| | | | | | | | | |
Collapse
|
35
|
Zhang Y, Ghadiri-Sani M, Zhang X, Richardson PM, Yeh J, Bo X. Induced expression of polysialic acid in the spinal cord promotes regeneration of sensory axons. Mol Cell Neurosci 2007; 35:109-19. [PMID: 17363265 DOI: 10.1016/j.mcn.2007.02.011] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2006] [Revised: 02/01/2007] [Accepted: 02/08/2007] [Indexed: 10/23/2022] Open
Abstract
After spinal cord injury axonal regeneration is prevented by glial scar formation. In this study we examined whether induced expression of polysialic acid (PSA) in the lesion site would render the glial scar permissive to axonal regeneration after dorsal column transection. PSA was induced by lentiviral vector-mediated expression of polysialyltransferase (LV/PST). PSA expression increased astrocyte infiltration and permitted the penetration of regenerating axons across the caudal border of the lesion and into the lesion cavity. In LV/PST-injected animals with a peripheral nerve-conditioning lesion, 20 times more axons grew into the lesion cavity than those LV/GFP-injected plus conditioning lesion, and some axons grew across the cavity and extended to the rostral cord, while in LV/GFP group most ascending axons terminated at the caudal border of the lesion. Our result suggests that induced expression of PSA can provide a favorable environment for axonal regeneration.
Collapse
Affiliation(s)
- Yi Zhang
- Neuroscience Centre, Institute of Cell and Molecular Science, Barts and The London School of Medicine and Dentistry, Queen Mary, University of London, Whitechapel, London E1 2AT, UK.
| | | | | | | | | | | |
Collapse
|
36
|
Wang B, Hu H, Yu B. Molecular characterization of pig ST8Sia IV--a critical gene for the formation of neural cell adhesion molecule and its response to sialic acid supplement in piglets. Nutr Neurosci 2007; 9:147-54. [PMID: 17176637 DOI: 10.1080/10284150600903594] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
ST8Sia IV (polysialyltransferase IV gene) encodes a key enzyme that is required for polysialic acid synthesis. Polysialic acid is a component of the neural cell adhesion molecule and is necessary for synaptic plasticity of neural cells. We characterized 5.3 kb of pig ST8Sia IV cDNA and determined its expression profile in different organs. In hippocampus, ST8Sia IV mRNA levels were increased approximately 4.5-fold in piglets with sialic acid as a milk supplement, which suggested that exogenous sialic acid is a conditionally essential nutrient for early brain development. Extensive analyses were also performed among its orthologs from human, mouse, rat, chicken, frog and zebrafish. Our results supported that the piglet is a better animal model than other nonprimate species in the studies of ST8Sia IV related metabolism and nutrition in human infants. This pig cDNA provides a basis for uncovering the roles of ST8Sia IV during piglet development and maturation.
Collapse
Affiliation(s)
- Bing Wang
- Human Nutrition Unit, School of Molecular and Microbial Biosciences, University of Sydney, Sydney, NSW, Australia
| | | | | |
Collapse
|
37
|
Asahina S, Sato C, Matsuno M, Matsuda T, Colley K, Kitajima K. Involvement of the alpha2,8-polysialyltransferases II/STX and IV/PST in the biosynthesis of polysialic acid chains on the O-linked glycoproteins in rainbow trout ovary. J Biochem 2006; 140:687-701. [PMID: 17023684 DOI: 10.1093/jb/mvj200] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Polysialoglycoprotein (PSGP) in salmonid fish egg is a unique glycoprotein bearing alpha2,8-linked polysialic acid (polySia) on its O-linked glycans. Biosynthesis of the polySia chains is developmentally regulated and only occurs at later stage of oogenesis. Two alpha2,8-polysialyltransferases (alpha2,8-polySTs), PST (ST8Sia IV) and STX (ST8Sia II), responsible for the biosynthesis of polySia on N-glycans of glycoproteins, are known in mammals. However, nothing has been known about which alpha2,8-polySTs are involved in the biosynthesis of polySia on O-linked glycans in any glycoproteins. We thus sought to identify cDNA encoding the alpha2,8-polyST involved in polysialylation of PSGP. A clone for PST orthologue, rtPST, and two clones for the STX orthologue, rtSTX-ov and rtSTX-em, were identified in rainbow trout. The deduced amino acid sequence of rtPST shows a high identity (72-77%) to other vertebrate PSTs, while that of rtSTX-ov shows 92% identity with rtSTX-em and a significant identity (63-76%) to other vertebrate STXs. The rtPST exhibited the in vivo alpha2,8-polyST activity, although its in vitro activity was low. However, the rtSTXs showed no in vivo and very low in vitro activities. Interestingly, co-existence of rtPST and rSTX-ov in the reaction mixture synergistically enhanced the alpha2,8-polyST activity. During oogenesis, rtPST was constantly expressed, while the expression of rtSTX-ov was not increased until polySia chain is abundantly biosynthesized in the later stage. rtSTX-em was not expressed in ovary. These results suggest that the enhanced expression of rtSTX-ov under the co-expression with rtPST may be important for the biosynthesis of polySia on O-linked glycans of PSGP.
Collapse
Affiliation(s)
- Shinji Asahina
- Laboratory of Animal Cell Function, Bioscience and Biotechnology Center, Department of Bioengineering Sciences, Nagoya University, Nagoya 464-8601
| | | | | | | | | | | |
Collapse
|
38
|
Polysialic Acid Profiles of Mice Expressing Variant Allelic Combinations of the Polysialyltransferases ST8SiaII and ST8SiaIV. J Biol Chem 2006. [DOI: 10.1016/s0021-9258(19)84074-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
39
|
Teintenier-Lelièvre M, Julien S, Juliant S, Guerardel Y, Duonor-Cérutti M, Delannoy P, Harduin-Lepers A. Molecular cloning and expression of a human hST8Sia VI (alpha2,8-sialyltransferase) responsible for the synthesis of the diSia motif on O-glycosylproteins. Biochem J 2006; 392:665-74. [PMID: 16120058 PMCID: PMC1316308 DOI: 10.1042/bj20051120] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Based on BLAST analysis of the human and mouse genome databases using the human CMP sialic acid; alpha2,8-sialyltransferase cDNA (hST8Sia I; EC 2.4.99.8), a putative sialyltransferase gene, was identified on human chromosome 10. The genomic organization was found to be similar to that of hST8Sia I and hST8Sia V. Transcriptional expression analysis showed that the newly identified gene was constitutively expressed at low levels in various human tissues and cell lines. We have isolated a full-length cDNA clone from the breast cancer cell line MCF-7 that encoded a type II membrane protein of 398 amino acid residues with the conserved motifs of sialyltransferases. We have established a mammary cell line (MDA-MB-231) stably transfected with the full-length hST8Sia VI and the analysis of sialylated carbohydrate structures expressed at the cell surface clearly indicated the disappearance of Neu5Acalpha2-3-sialylated structures. The transient expression of a truncated soluble form of the enzyme in either COS-7 cells or insect Sf-9 cells led to the production of an active enzyme in which substrate specificity was determined. Detailed substrate specificity analysis of the hST8Sia VI recombinant enzyme in vitro, revealed that this enzyme required the trisaccharide Neu5Acalpha2-3Galbeta1-3GalNAc (where Neu5Ac is N-acetylneuraminic acid and GalNAc is N-acetylgalactosamine) to generate diSia (disialic acid) motifs specifically on O-glycans.
Collapse
Affiliation(s)
- Mélanie Teintenier-Lelièvre
- *Unité de Glycobiologie Structurale et Fonctionnelle, CNRS UMR 8576, IFR 118, GDR CNRS 2590, Université des Sciences et Technologies de Lille, F-59655 Villeneuve d'Ascq, France
| | - Sylvain Julien
- *Unité de Glycobiologie Structurale et Fonctionnelle, CNRS UMR 8576, IFR 118, GDR CNRS 2590, Université des Sciences et Technologies de Lille, F-59655 Villeneuve d'Ascq, France
| | - Sylvie Juliant
- †Centre de Pharmacologie et de Biotechnologie pour la Santé, CNRS UMR 5160, GDR CNRS 2590, 2352, F-30380 Saint Christol-lès-Alès, France
| | - Yann Guerardel
- *Unité de Glycobiologie Structurale et Fonctionnelle, CNRS UMR 8576, IFR 118, GDR CNRS 2590, Université des Sciences et Technologies de Lille, F-59655 Villeneuve d'Ascq, France
| | - Martine Duonor-Cérutti
- †Centre de Pharmacologie et de Biotechnologie pour la Santé, CNRS UMR 5160, GDR CNRS 2590, 2352, F-30380 Saint Christol-lès-Alès, France
| | - Philippe Delannoy
- *Unité de Glycobiologie Structurale et Fonctionnelle, CNRS UMR 8576, IFR 118, GDR CNRS 2590, Université des Sciences et Technologies de Lille, F-59655 Villeneuve d'Ascq, France
| | - Anne Harduin-Lepers
- *Unité de Glycobiologie Structurale et Fonctionnelle, CNRS UMR 8576, IFR 118, GDR CNRS 2590, Université des Sciences et Technologies de Lille, F-59655 Villeneuve d'Ascq, France
- To whom correspondence should be addressed (email )
| |
Collapse
|
40
|
Nakata D, Troy FA. Degree of polymerization (DP) of polysialic acid (polySia) on neural cell adhesion molecules (N-CAMS): development and application of a new strategy to accurately determine the DP of polySia chains on N-CAMS. J Biol Chem 2005; 280:38305-16. [PMID: 16172115 DOI: 10.1074/jbc.m508762200] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Alpha2,8-linked polysialic acid (polySia) is a structurally unique antiadhesive glycotope that covalently modifies N-linked glycans on neural cell adhesion molecules (N-CAMs). These sugar chains play a key role in modulating cell-cell interactions, principally during embryonic development, neural plasticity, and tumor metastasis. The degree of polymerization (DP) of polySia chains on N-CAM is postulated to be of critical importance in regulating N-CAM function. There are limitations, however, in the conventional methods to accurately determine the DP of polySia on N-CAM, the most serious being partial acid hydrolysis of internal alpha2,8-ketosidic linkages that occur during fluorescent derivatization, a step necessary to enhance chromatographic detection. To circumvent this problem, we have developed a facile method that combines the use of Endo-beta-galactosidase to first release linear polySia chains from N-CAM, with high resolution high pressure liquid chromatography profiling. This strategy avoids acid hydrolysis prior to chromatographic profiling and thus provides an accurate determination of the DP and distribution of polySia on N-CAM. The potential of this new method was evaluated using a nonpolysialylated construct of N-CAM that was polysialylated in vitro using a soluble construct of ST8Sia II or ST8Sia IV. Whereas most of the oligosialic acid/polySia chains consisted of DPs approximately 50-60 or less, a subpopulation of chains with DPs approximately 150 to approximately 180 and extending to DP approximately 400 were detected. The DP of this subpopulation is considerably greater than reported previously for N-CAM. Endo-beta-galactosidase can also release polySia chains from polysialylated membranes expressed in the neuroblastoma cell line, Neuro2A, and native N-CAM from embryonic chick brains.
Collapse
Affiliation(s)
- Daisuke Nakata
- Department of Biochemistry and Molecular Medicine, University of California School of Medicine, Davis, California 95616
| | | |
Collapse
|
41
|
Suzuki M, Suzuki M, Nakayama J, Suzuki A, Angata K, Chen S, Sakai K, Hagihara K, Yamaguchi Y, Fukuda M. Polysialic acid facilitates tumor invasion by glioma cells. Glycobiology 2005; 15:887-94. [PMID: 15872150 DOI: 10.1093/glycob/cwi071] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Polysialic acid (PSA) is thought to attenuate neural cell adhesion molecule (NCAM) adhesion, thereby facilitating neural cell migration and regeneration. Although the expression of PSA has been shown to correlate with the progression of certain tumors such as small cell lung carcinoma, there have been no studies to determine the roles of PSA in gliomas, the most common type of primary brain tumor in humans. In this study, we first revealed that among patients with glioma, PSA was detected more frequently in diffuse astrocytoma cells, which spread extensively. To determine directly the role of PSA in glioma cell invasion, we transfected C6 glioma cells with polysialyltransferases to express PSA. In those transfected cells, PSA is attached mainly to NCAM-140, whereas the mock-transfected C6 cells express equivalent amounts of PSA-free NCAM-140. Both PSA negative and positive C6 cell lines exhibited almost identical growth rates measured in vitro. However, PSA positive C6 cells exhibited increased invasion to the corpus callosum, where the mock-transfected C6 glioma cells rarely invaded when inoculated into the brain. By contrast, the invasion to the corpus callosum by both the mock-transfected and PSA positive C6 cells was observed in NCAM-deficient mice. These results combined indicate that PSA facilitates tumor invasion of glioma in the brain, and that NCAM-NCAM interaction is likely attenuated in the PSA-mediated tumor invasion.
Collapse
Affiliation(s)
- Masami Suzuki
- Glycobiology, Cancer Research Center, The Burnham Institute, La Jolla, CA 92037, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Beecken WD, Engl T, Ogbomo H, Relja B, Cinatl J, Bereiter-Hahn J, Oppermann E, Jonas D, Blaheta RA. Valproic acid modulates NCAM polysialylation and polysialyltransferase mRNA expression in human tumor cells. Int Immunopharmacol 2005; 5:757-69. [PMID: 15710344 DOI: 10.1016/j.intimp.2004.12.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2004] [Revised: 11/30/2004] [Accepted: 12/09/2004] [Indexed: 10/26/2022]
Abstract
Polysialic acid (PSA) is a dynamically regulated carbohydrate modification of the neural cell adhesion molecule NCAM, which has been linked to cancer development and dissemination. Two enzymes, the polysialyltransferases ST8SiaIV and ST8SiaII, are known to be involved in the polysialylation of NCAM. The antiepileptic drug valproic acid (VPA) is associated with anti-cancer activity. In this study, VPA blocked the adhesion of several neuroectodermal tumor cell lines to human umbilical vein endothelial cells. Furthermore, VPA induced intracellular PSA accumulation and enhanced expression of PSA-NCAM on the cell surface. Using a semiquantitative RT-PCR strategy, VPA was shown to up-regulate ST8SiaIV mRNA, whereas ST8SiaII mRNA was down-regulated by this compound. Our data indicate that increased expression of ST8SiaIV enables accelerated polysialylation of NCAM, which might be coupled to a loss of adhesive functions of tumor cells.
Collapse
Affiliation(s)
- Wolf-Dietrich Beecken
- Johann Wolfgang Goethe-Universitätsklinik, Zentrum der Chirurgie, Klinik für Urologie und KinderurologieWissenschaftliches LaborHaus 23 A, EG 7, Theodor-Stern-Kai 7, Frankfurt am Main D-60590, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
D'Andrea G, Lizzi AR, Oratore A. First Synthetic Probe for the Detection and Quantification of a Protein with a Potential α,(2→8)Sialyltransferase Activity. Bioconjug Chem 2004; 15:1084-7. [PMID: 15366963 DOI: 10.1021/bc049970s] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
There is considerable interest in monitoring alpha,(2-->8)sialyltransferase (ST8) levels; however, there are few specific and sensitive methods to directly detect and quantitate the protein. This paper reports the development of a synthetic probe composed of oxidized colominic acid coupled to biotinyl-L-lysine hydrazide to detect and quantify ST8 with putative "initiase" activity and its use in three solid-phase applications. The detection limit observed for ST8 purified from K562 cells was approximately 2 pg by dot-blot analysis. In Western blots the probe bound and specifically recognized a protein band corresponding to ST8. In ELISA a linear dose response was obtained for pure protein in the range of 50-200 pg. Analysis of 3'-azido-3'deoxythymidine-treated cells by all three methods showed a reduction in ST8 compared to control cells; treated cells had 73% of control levels by ELISA. This probe will be useful for studies on the expression ST8 and its role in glycoconjugate biosynthesis.
Collapse
Affiliation(s)
- Gabriele D'Andrea
- Department of Biomedical Sciences and Technologies, University of L'Aquila, Coppito 2, Via Vetoio, I-67100 L'Aquila, Italy.
| | | | | |
Collapse
|
44
|
Angata K, Chan D, Thibault J, Fukuda M. Molecular Dissection of the ST8Sia IV Polysialyltransferase. J Biol Chem 2004; 279:25883-90. [PMID: 15067013 DOI: 10.1074/jbc.m401562200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Polysialic acid, a homopolymer of alpha2,8-linked sialic acid expressed on the neural cell adhesion molecule (NCAM), is thought to play critical roles in neural development. Two highly homologous polysialyltransferases, ST8Sia II and ST8Sia IV, which belong to the sialyltransferase gene family, synthesize polysialic acid on NCAM. By contrast, ST8Sia III, which is moderately homologous to ST8Sia II and ST8Sia IV, adds oligosialic acid to itself but very inefficiently to NCAM. Here, we report domains of polysialyltransferases required for NCAM recognition and polysialylation by generating chimeric enzymes between ST8Sia IV and ST8Sia III or ST8Sia II. We first determined the catalytic domain of ST8Sia IV by deletion mutants. To identify domains responsible for NCAM polysialylation, different segments of the ST8Sia IV catalytic domain, identified by the deletion experiments, were replaced with corresponding segments of ST8Sia II and ST8Sia III. We found that larger polysialic acid was formed on the enzymes themselves (autopolysialylation) when chimeric enzymes contained the carboxyl-terminal region of ST8Sia IV. However, chimeric enzymes that contain only the carboxyl-terminal segment of ST8Sia IV and the amino-terminal segment of ST8Sia III showed very weak activity toward NCAM, even though they had strong activity in polysialylating themselves. In fact, chimeric enzymes containing the amino-terminal portion of ST8Sia IV fused to downstream sequences of ST8Sia III inhibited NCAM polysialylation in vitro, although they did not polysialylate NCAM. These results suggest that in polysialyltransferases the NCAM recognition domain is distinct from the polysialylation domain and that some chimeric enzymes may act as a dominant negative enzyme for NCAM polysialylation.
Collapse
Affiliation(s)
- Kiyohiko Angata
- Glycobiology Program, Cancer Research Center, The Burnham Institute, La Jolla, California 92037, USA
| | | | | | | |
Collapse
|
45
|
Dawson G, Moskal JR, Dawson SA. Transfection of 2,6 and 2,3‐sialyltransferase genes and GlcNAc‐transferase genes into human glioma cell line U‐373 MG affects glycoconjugate expression and enhances cell death. J Neurochem 2004; 89:1436-44. [PMID: 15189346 DOI: 10.1111/j.1471-4159.2004.02435.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Human glioma cell line U-373 MG expresses CMP-NeuAc : Galbeta1,3GlcNAc alpha2,3-sialyltransferase [EC No. 2.4.99.6] (alpha2,3ST), UDP-GlcNAc : beta-d-mannoside beta1,6-N-acetylglucosaminyltransferase V [EC 2.4.1.155] (GnT-V) and UDP-GlcNAc3: beta-d-mannoside beta1,4-N-acetylglucosaminyltransferase III [EC 2.4.1.144] (GnT-III) but not CMP-NeuAc : Galbeta1,4GlcNAc alpha2,6-sialyltransferase [EC 2.4.99.1] (alpha2,6ST) under normal culture conditions. We have previously shown that transfection of the alpha2,6ST gene into U-373 cells replaced alpha2,3-linked sialic acids with alpha2,6 sialic acids, resulting in a marked inhibition of glioma cell invasivity and a significant reduction in adhesivity. We now show that U-373 cells, which are typically highly resistant to cell death induced by chemotherapeutic agents (< 10% death in 18 h), become more sensitive to apoptosis following overexpression of these four glycoprotein glycosyltransferases. U-373 cell viability showed a three-fold decrease (from 20 to 60% cell death) following treatment with staurosporine, C2-ceramide or etoposide, when either alpha2,6ST and GnT-V genes were stably overexpressed. Even glycosyltransferases typically raised in cancer cells, such as alpha2,3ST and GnT-III, were able to decrease viability two-fold (from 20 to 40% cell death) following stable overexpression. The increased susceptibility of glycosyltransferase-transfected U-373 cells to pro-apoptotic drugs was associated with increased ceramide levels in Rafts, increased caspase-3 activity and increased DNA fragmentation. In contrast, the same glycosyltransferase overexpression protected U-373 cells against a different class of apoptotic drugs, namely the phosphatidylinositol 3-kinase inhibitor LY294002. Thus altered surface protein glycosylation of a human glioblastoma cell line can lead to lowered resistance to chemotherapeutic agents.
Collapse
Affiliation(s)
- G Dawson
- Department of Pediatrics MC 4068, University of Chicago School of Medicine, 5841 S. Maryland Avenue, Chicago, IL 60637, USA.
| | | | | |
Collapse
|
46
|
Suzuki M, Angata K, Nakayama J, Fukuda M. Polysialic acid and mucin type o-glycans on the neural cell adhesion molecule differentially regulate myoblast fusion. J Biol Chem 2003; 278:49459-68. [PMID: 13679364 DOI: 10.1074/jbc.m308316200] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Polysialic acid attached to the neural cell adhesion molecule (NCAM) is thought to play a critical role in development. NCAM in muscle tissue contains a muscle-specific domain (MSD) to which mucin type O-glycans are attached. In the present study, using the C2C12 myoblast system, we show that NCAM containing MSD is increasingly expressed on the cell surface as myotubes form. Polysialic acid is primarily attached to N-glycans of NCAM, and polysialylated NCAM is expressed on the outer surface of myotube bundles. By transfecting cDNAs encoding wild type and mutant forms of NCAM, we found that NCAM containing MSD facilitates myoblast fusion, and this effect is diminished by mutating O-glycosylation sites at MSD. By contrast, forced expression of polysialic acid in early differentiation stages reduces myotube formation and delays the expression of NCAM containing the MSD domain. Strikingly, inhibition of polysialic acid synthesis by antisense DNA approach induced differentiation in both human rhabdomyosarcoma cells, which overexpress polysialic acid, and C2C12 cells. These results indicate that polysialic acid and mucin type O-glycans on NCAM differentially regulate myoblast fusion, playing critical roles in muscle development.
Collapse
Affiliation(s)
- Misa Suzuki
- Glycobiology Program, Cancer Research Center, The Burnham Institute, La Jolla, California 92037, USA
| | | | | | | |
Collapse
|
47
|
Close BE, Mendiratta SS, Geiger KM, Broom LJ, Ho LL, Colley KJ. The minimal structural domains required for neural cell adhesion molecule polysialylation by PST/ST8Sia IV and STX/ST8Sia II. J Biol Chem 2003; 278:30796-805. [PMID: 12791681 DOI: 10.1074/jbc.m305390200] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A limited number of mammalian proteins are modified by polysialic acid, with the neural cell adhesion molecule (NCAM) being the most abundant of these. We hypothesize that polysialylation is a protein-specific glycosylation event and that an initial protein-protein interaction between polysialyltransferases and glycoprotein substrates mediates this specificity. To evaluate the regions of NCAM required for recognition and polysialylation by PST/ST8Sia IV and STX/ST8Sia II, a series of domain deletion proteins were generated, co-expressed with each enzyme, and their polysialylation analyzed. A protein consisting of the fifth immunoglobulin-like domain (Ig5), which contains the reported sites of polysialylation, and the first fibronectin type III repeat (FN1) was polysialylated by both enzymes, whereas a protein consisting of Ig5 alone was not polysialylated by either enzyme. This demonstrates that the Ig5 domain of NCAM and FN1 are sufficient for polysialylation, and suggests that the FN1 may constitute an enzyme recognition and docking site. Two other NCAM mutants, NCAM-6 (Ig1-5) and NCAM-7 (FN1-FN2), were weakly polysialylated by PST/ST8Sia IV, suggesting that a weaker enzyme recognition site may exist within the Ig domains, and that glycans in the FN region are polysialylated. Further analysis indicated that O-linked oligosaccharides in NCAM-7, and O-linked and N-linked glycans in full-length NCAM, are polysialylated when these proteins are co-expressed with the polysialyltransferases in COS-1 cells. Our data support a model in which the polysialyltransferases bind to the FN1 of NCAM to polymerize polysialic acid chains on appropriately presented glycans in adjacent regions.
Collapse
Affiliation(s)
- Brett E Close
- Department of Biochemistry and Molecular Genetics, University of Illinois, College of Medicine, Chicago, Illinois 60612, USA
| | | | | | | | | | | |
Collapse
|
48
|
Chemoenzymatic synthesis of sialylated oligosaccharides for their evaluation in a polysialyltransferase assay. Tetrahedron Lett 2003. [DOI: 10.1016/s0040-4039(03)01509-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
49
|
Yamaguchi Y. Glycobiology of the synapse: the role of glycans in the formation, maturation, and modulation of synapses. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1573:369-76. [PMID: 12417420 DOI: 10.1016/s0304-4165(02)00405-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Synapses, which are the fundamental functional unit of the nervous system, are considered to be highly specialized cell adhesion structures. Studies since the 1960s demonstrated that various carbohydrates and glycoproteins are expressed in synapses in the central and peripheral nervous system. Although the functional roles of these synaptic carbohydrates and glycoproteins remain to be determined, rapidly accumulating data suggest that they may play critical roles in the formation, maturation, and functional modulation of synapses.
Collapse
Affiliation(s)
- Yu Yamaguchi
- Neurobiology Program, The Burnham Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
50
|
Häyrinen J, Haseley S, Talaga P, Mühlenhoff M, Finne J, Vliegenthart JFG. High affinity binding of long-chain polysialic acid to antibody, and modulation by divalent cations and polyamines. Mol Immunol 2002; 39:399-411. [PMID: 12413691 DOI: 10.1016/s0161-5890(02)00202-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Long-chain polysialic acid (PSA) is expressed on the vertebrate neural cell adhesion molecule (NCAM) during neuronal plasticity. Its structural similarity to the capsular PSAs of some pathogenic bacteria has hampered the development of polysaccharide vaccines against meningitis. The antibodies formed during immunization require a long epitope for binding, and cross-react with host tissue PSA. The nature of the epitope and possible external effectors involved are still unclear. We have evaluated the interaction of PSA with its antibody mAb735 by surface plasmon resonance. The influences of PSA chain length, pH, temperature, ionic environment, and polyamines were also determined. The antibody binding affinity was found to dramatically increase with PSA chain length. A sub-nanomolar dissociation constant (K(D)=8.5 x 10(-10)M) was obtained for the binding of very long chain native MenB polysaccharides (approximately 200 Neu5Ac-residues). Colominic acid from Escherichia coli K1 (approximately 100 residues) and shorter polymers exhibited progressively weaker affinities. The antibody also bound tightly (K(D) approximately 5 x 10(-9)M) to polysialylated glycopeptides from human embryonal brain. The effects of pH and ionic strength suggested that the interaction is largely electrostatic. Ca2+ and Mn2+ ions promoted the observed surface plasmon resonance response in a concentration dependent fashion. Spermine increased the response in a similar way. Our results suggest that divalent cations and polyamines may play significant role in the regulation of the PSA epitope presentation in vivo.
Collapse
Affiliation(s)
- Jukka Häyrinen
- Department of Biochemistry, University of Kuopio, FIN-70211 Kuopio, Finland.
| | | | | | | | | | | |
Collapse
|