1
|
Chong SH, Oshima H, Sugita Y. Allosteric Changes in the Conformational Landscape of Src Kinase upon Substrate Binding. J Mol Biol 2024:168871. [PMID: 39566715 DOI: 10.1016/j.jmb.2024.168871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 11/12/2024] [Accepted: 11/13/2024] [Indexed: 11/22/2024]
Abstract
Precise regulation of protein kinase activity is crucial in cell functions, and its loss is implicated in various diseases. The kinase activity is regulated by interconverting active and inactive states in the conformational landscape. However, how protein kinases switch conformations in response to different signals such as the binding at distinct sites remains incompletely understood. Here, we predict the binding mode for the peptide substrate to Src tyrosine kinase using enhanced conformational sampling simulations (totaling 24 μs) and then investigate changes in the conformational landscape upon substrate binding by conducting unbiased molecular dynamics simulations (totaling 50 μs) initiated from the apo and substrate-bound forms. Unexpectedly, the peptide substrate binding significantly facilitates the transitions from active to inactive conformations in which the αC helix is directed outward, the regulatory spine is broken, and the ATP-binding domain is perturbed. We also explore an underlying residue-contact network responsible for the allosteric conformational changes. Our results are in accord with the recent experiments reporting the negative cooperativity between the peptide substrate and ATP binding to tyrosine kinases and will contribute to advancing our understanding of the regulation mechanisms for kinase activity.
Collapse
Affiliation(s)
- Song-Ho Chong
- Laboratory for Biomolecular Function Simulation, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan; Global Center for Natural Resources Sciences, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Hiraku Oshima
- Laboratory for Biomolecular Function Simulation, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan; Graduate School of Science, University of Hyogo, Hyogo, Japan
| | - Yuji Sugita
- Laboratory for Biomolecular Function Simulation, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan; Computational Biophysics Research Team, RIKEN Center for Computational Science, Kobe, Japan; Theoretical Molecular Science Laboratory, RIKEN Center for Pioneering Research, Saitama, Japan.
| |
Collapse
|
2
|
Kobayashi N, Katayama R, Minamoto K, Kawaguchi T, Tani S. C-terminus of serine-arginine protein kinase-like protein, SrpkF, is involved in conidiophore formation and hyphal growth under salt stress in Aspergillus aculeatus. Int Microbiol 2024; 27:91-100. [PMID: 37195349 DOI: 10.1007/s10123-023-00373-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 04/28/2023] [Accepted: 05/09/2023] [Indexed: 05/18/2023]
Abstract
The serine-arginine protein kinase-like protein, SrpkF, was identified as a regulator for the cellulose-responsive induction of cellulase genes in Aspergillus aculeatus. To analyze various aspects of SrpkF function, we examined the growth of the control strain (MR12); C-terminus deletion mutant, which produced SrpkF1-327 (ΔCsrpkF); whole gene-deletion mutant of srpkF (ΔsrpkF), srpkF overexpressing strain (OEsprkF); and the complemented strain (srpkF+) under various stress conditions. All test strains grew normally on minimal medium under control, high salt (1.5 M KCl), and high osmolality (2.0 M sorbitol and 1.0 M sucrose). However, only ΔCsrpkF showed reduced conidiation on 1.0 M NaCl media. Conidiation of ΔCsrpkF on 1.0 M NaCl media was reduced to 12% compared with that of srpkF+. Further, when OEsprkF and ΔCsrpkF were pre-cultured under salt stress conditions, germination under salt stress conditions was enhanced in both strains. By contrast, deletion of srpkF did not affect hyphal growth and conidiation under the same conditions. We then quantified the transcripts of the regulators involved in the central asexual conidiation pathway in A. aculeatus. The findings revealed that the expression of brlA, abaA, wetA, and vosA was reduced in ΔCsrpkF under salt stress. These data suggest that in A. aculeatus, SrpkF regulates conidiophore development. The C-terminus of SrpkF seems to be important for regulating SrpkF function in response to culture conditions such as salt stress.
Collapse
Affiliation(s)
- Natsumi Kobayashi
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Sakai, 599-8531, Japan
| | - Ryohei Katayama
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Sakai, 599-8531, Japan
| | - Kentaro Minamoto
- Graduate School of Agriculture, Osaka Metropolitan University, 1-1 Gakuen-cho, Sakai, 599-8531, Japan
| | - Takashi Kawaguchi
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Sakai, 599-8531, Japan
- Graduate School of Agriculture, Osaka Metropolitan University, 1-1 Gakuen-cho, Sakai, 599-8531, Japan
| | - Shuji Tani
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Sakai, 599-8531, Japan.
- Graduate School of Agriculture, Osaka Metropolitan University, 1-1 Gakuen-cho, Sakai, 599-8531, Japan.
| |
Collapse
|
3
|
Levillayer L, Cassonnet P, Declercq M, Santos MD, Lebreton L, Danezi K, Demeret C, Sakuntabhai A, Jacob Y, Bureau JF. SKAP2 Modular Organization Differently Recognizes SRC Kinases Depending on Their Activation Status and Localization. Mol Cell Proteomics 2022; 22:100451. [PMID: 36423812 PMCID: PMC9792355 DOI: 10.1016/j.mcpro.2022.100451] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 10/12/2022] [Accepted: 11/18/2022] [Indexed: 11/23/2022] Open
Abstract
Dimerization of SRC kinase adaptor phosphoprotein 2 (SKAP2) induces an increase of binding for most SRC kinases suggesting a fine-tuning with transphosphorylation for kinase activation. This work addresses the molecular basis of SKAP2-mediated SRC kinase regulation through the lens of their interaction capacities. By combining a luciferase complementation assay and extensive site-directed mutagenesis, we demonstrated that SKAP2 interacts with SRC kinases through a modular organization depending both on their phosphorylation-dependent activation and subcellular localization. SKAP2 contains three interacting modules consisting in the dimerization domain, the SRC homology 3 (SH3) domain, and the second interdomain located between the Pleckstrin homology and the SH3 domains. Functionally, the dimerization domain is necessary and sufficient to bind to most activated and myristyl SRC kinases. In contrast, the three modules are necessary to bind SRC kinases at their steady state. The Pleckstrin homology and SH3 domains of SKAP2 as well as tyrosines located in the interdomains modulate these interactions. Analysis of mutants of the SRC kinase family member hematopoietic cell kinase supports this model and shows the role of two residues, Y390 and K7, on its degradation following activation. In this article, we show that a modular architecture of SKAP2 drives its interaction with SRC kinases, with the binding capacity of each module depending on both their localization and phosphorylation state activation. This work opens new perspectives on the molecular mechanisms of SRC kinases activation, which could have significant therapeutic impact.
Collapse
Affiliation(s)
- Laurine Levillayer
- Unité de Génétique Fonctionnelle des Maladies Infectieuses (GFMI), CNRS UMR 2000, Institut Pasteur, Université de Paris, Paris, France
| | - Patricia Cassonnet
- Unité de Génétique Moléculaire des Virus à ARN (GMVR), CNRS UMR3569, Institut Pasteur, Université de Paris, Paris, France
| | - Marion Declercq
- Unité de Génétique Moléculaire des Virus à ARN (GMVR), CNRS UMR3569, Institut Pasteur, Université de Paris, Paris, France
| | - Mélanie Dos Santos
- Unité de Génétique Moléculaire des Virus à ARN (GMVR), CNRS UMR3569, Institut Pasteur, Université de Paris, Paris, France
| | - Louis Lebreton
- Unité de Génétique Fonctionnelle des Maladies Infectieuses (GFMI), CNRS UMR 2000, Institut Pasteur, Université de Paris, Paris, France
| | - Katerina Danezi
- Unité de Génétique Fonctionnelle des Maladies Infectieuses (GFMI), CNRS UMR 2000, Institut Pasteur, Université de Paris, Paris, France
| | - Caroline Demeret
- Unité de Génétique Moléculaire des Virus à ARN (GMVR), CNRS UMR3569, Institut Pasteur, Université de Paris, Paris, France
| | - Anavaj Sakuntabhai
- Unité de Génétique Fonctionnelle des Maladies Infectieuses (GFMI), CNRS UMR 2000, Institut Pasteur, Université de Paris, Paris, France
| | - Yves Jacob
- Unité de Génétique Moléculaire des Virus à ARN (GMVR), CNRS UMR3569, Institut Pasteur, Université de Paris, Paris, France
| | - Jean-François Bureau
- Unité de Génétique Fonctionnelle des Maladies Infectieuses (GFMI), CNRS UMR 2000, Institut Pasteur, Université de Paris, Paris, France,For correspondence: Jean-François Bureau
| |
Collapse
|
4
|
Thomas T, Roux B. TYROSINE KINASES: COMPLEX MOLECULAR SYSTEMS CHALLENGING COMPUTATIONAL METHODOLOGIES. THE EUROPEAN PHYSICAL JOURNAL. B 2021; 94:203. [PMID: 36524055 PMCID: PMC9749240 DOI: 10.1140/epjb/s10051-021-00207-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 09/14/2021] [Indexed: 05/28/2023]
Abstract
Classical molecular dynamics (MD) simulations based on atomic models play an increasingly important role in a wide range of applications in physics, biology, and chemistry. Nonetheless, generating genuine knowledge about biological systems using MD simulations remains challenging. Protein tyrosine kinases are important cellular signaling enzymes that regulate cell growth, proliferation, metabolism, differentiation, and migration. Due to the large conformational changes and long timescales involved in their function, these kinases present particularly challenging problems to modern computational and theoretical frameworks aimed at elucidating the dynamics of complex biomolecular systems. Markov state models have achieved limited success in tackling the broader conformational ensemble and biased methods are often employed to examine specific long timescale events. Recent advances in machine learning continue to push the limitations of current methodologies and provide notable improvements when integrated with the existing frameworks. A broad perspective is drawn from a critical review of recent studies.
Collapse
|
5
|
Wu H, Huang H, Post CB. All-atom adaptively biased path optimization of Src kinase conformational inactivation: Switched electrostatic network in the concerted motion of αC helix and the activation loop. J Chem Phys 2020; 153:175101. [PMID: 33167630 DOI: 10.1063/5.0021603] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
A method to optimize a conformational pathway through a space of well-chosen reduced variables is employed to advance our understanding of protein conformational equilibrium. The adaptively biased path optimization strategy utilizes unrestricted, enhanced sampling in the region of a path in the reduced-variable space to identify a broad path between two stable end-states. Application to the inactivation transition of the Src tyrosine kinase catalytic domain reveals new insight into this well studied conformational equilibrium. The mechanistic description gained from identifying the motions and structural features along the path includes details of the switched electrostatic network found to underpin the transition. The free energy barrier along the path results from rotation of a helix, αC, that is tightly correlated with motions in the activation loop (A-loop) as well as distal regions in the C-lobe. Path profiles of the reduced variables clearly demonstrate the strongly correlated motions. The exchange of electrostatic interactions among residues in the network is key to these interdependent motions. In addition, the increased resolution from an all-atom model in defining the path shows multiple components for the A-loop motion and that different parts of the A-loop contribute throughout the length of the path.
Collapse
Affiliation(s)
- Heng Wu
- Department of Medicinal Chemistry and Molecular Pharmacology, Markey Center for Structural Biology, Purdue Center for Cancer Research, Purdue University, West Lafayette, Indiana 47907, USA
| | - He Huang
- Department of Medicinal Chemistry and Molecular Pharmacology, Markey Center for Structural Biology, Purdue Center for Cancer Research, Purdue University, West Lafayette, Indiana 47907, USA
| | - Carol Beth Post
- Department of Medicinal Chemistry and Molecular Pharmacology, Markey Center for Structural Biology, Purdue Center for Cancer Research, Purdue University, West Lafayette, Indiana 47907, USA
| |
Collapse
|
6
|
Paul F, Thomas T, Roux B. Diversity of Long-Lived Intermediates along the Binding Pathway of Imatinib to Abl Kinase Revealed by MD Simulations. J Chem Theory Comput 2020; 16:7852-7865. [PMID: 33147951 DOI: 10.1021/acs.jctc.0c00739] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Imatinib, a drug used for the treatment of chronic myeloid leukemia and other cancers, works by blocking the catalytic site of pathological constitutively active Abl kinase. While the binding pose is known from X-ray crystallography, the different steps leading to the formation of the complex are not well understood. The results from extensive molecular dynamics simulations show that imatinib can primarily exit the known crystallographic binding pose through the cleft of the binding site or by sliding under the αC helix. Once displaced from the crystallographic binding pose, imatinib becomes trapped in intermediate states. These intermediates are characterized by a high diversity of ligand orientations and conformations, and relaxation timescales within this region may exceed 3-4 ms. Analysis indicates that the metastable intermediate states should be spectroscopically indistinguishable from the crystallographic binding pose, in agreement with tryptophan stopped-flow fluorescence experiments.
Collapse
Affiliation(s)
- Fabian Paul
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, Illinois 60637, United States
| | - Trayder Thomas
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, Illinois 60637, United States
| | - Benoît Roux
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
7
|
McClendon CJ, Miller WT. Structure, Function, and Regulation of the SRMS Tyrosine Kinase. Int J Mol Sci 2020; 21:E4233. [PMID: 32545875 PMCID: PMC7352994 DOI: 10.3390/ijms21124233] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 06/08/2020] [Accepted: 06/12/2020] [Indexed: 01/05/2023] Open
Abstract
Src-related kinase lacking C-terminal regulatory tyrosine and N-terminal myristoylation sites (SRMS) is a tyrosine kinase that was discovered in 1994. It is a member of a family of nonreceptor tyrosine kinases that also includes Brk (PTK6) and Frk. Compared with other tyrosine kinases, there is relatively little information about the structure, function, and regulation of SRMS. In this review, we summarize the current state of knowledge regarding SRMS, including recent results aimed at identifying downstream signaling partners. We also present a structural model for the enzyme and discuss the potential involvement of SRMS in cancer cell signaling.
Collapse
Affiliation(s)
- Chakia J. McClendon
- Department of Physiology and Biophysics, Stony Brook University, Stony Brook, NY 11794-8661, USA;
| | - W. Todd Miller
- Department of Physiology and Biophysics, Stony Brook University, Stony Brook, NY 11794-8661, USA;
- Department of Veterans Affairs Medical Center, Northport, NY 11768, USA
| |
Collapse
|
8
|
Dynamic regulatory features of the protein tyrosine kinases. Biochem Soc Trans 2019; 47:1101-1116. [PMID: 31395755 DOI: 10.1042/bst20180590] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 07/15/2019] [Accepted: 07/17/2019] [Indexed: 12/20/2022]
Abstract
The SRC, Abelson murine leukemia viral oncogene homolog 1, TEC and C-terminal SRC Kinase families of non-receptor tyrosine kinases (collectively the Src module kinases) mediate an array of cellular signaling processes and are therapeutic targets in many disease states. Crystal structures of Src modules kinases provide valuable insights into the regulatory mechanisms that control activation and generate a framework from which drug discovery can advance. The conformational ensembles visited by these multidomain kinases in solution are also key features of the regulatory machinery controlling catalytic activity. Measurement of dynamic motions within kinases substantially augments information derived from crystal structures. In this review, we focus on a body of work that has transformed our understanding of non-receptor tyrosine kinase regulation from a static view to one that incorporates how fluctuations in conformational ensembles and dynamic motions influence activation status. Regulatory dynamic networks are often shared across and between kinase families while specific dynamic behavior distinguishes unique regulatory mechanisms for select kinases. Moreover, intrinsically dynamic regions of kinases likely play important regulatory roles that have only been partially explored. Since there is clear precedence that kinase inhibitors can exploit specific dynamic features, continued efforts to define conformational ensembles and dynamic allostery will be key to combating drug resistance and devising alternate treatments for kinase-associated diseases.
Collapse
|
9
|
A Combined Approach Reveals a Regulatory Mechanism Coupling Src's Kinase Activity, Localization, and Phosphotransferase-Independent Functions. Mol Cell 2019; 74:393-408.e20. [PMID: 30956043 DOI: 10.1016/j.molcel.2019.02.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 11/20/2018] [Accepted: 01/31/2019] [Indexed: 02/06/2023]
Abstract
Multiple layers of regulation modulate the activity and localization of protein kinases. However, many details of kinase regulation remain incompletely understood. Here, we apply saturation mutagenesis and a chemical genetic method for allosterically modulating kinase global conformation to Src kinase, providing insight into known regulatory mechanisms and revealing a previously undiscovered interaction between Src's SH4 and catalytic domains. Abrogation of this interaction increased phosphotransferase activity, promoted membrane association, and provoked phosphotransferase-independent alterations in cell morphology. Thus, Src's SH4 domain serves as an intramolecular regulator coupling catalytic activity, global conformation, and localization, as well as mediating a phosphotransferase-independent function. Sequence conservation suggests that the SH4 domain regulatory interaction exists in other Src-family kinases. Our combined approach's ability to reveal a regulatory mechanism in one of the best-studied kinases suggests that it could be applied broadly to provide insight into kinase structure, regulation, and function.
Collapse
|
10
|
Dülk M, Szeder B, Glatz G, Merő BL, Koprivanacz K, Kudlik G, Vas V, Sipeki S, Cserkaszky A, Radnai L, Buday L. EGF Regulates the Interaction of Tks4 with Src through Its SH2 and SH3 Domains. Biochemistry 2018; 57:4186-4196. [PMID: 29928795 DOI: 10.1021/acs.biochem.8b00084] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The nonreceptor tyrosine kinase Src is a central component of the epidermal growth factor (EGF) signaling pathway. Our group recently showed that the Frank-ter Haar syndrome protein Tks4 (tyrosine kinase substrate with four Src homology 3 domains) is also involved in EGF signaling. Here we demonstrate that Tks4 and Src bind directly to each other and elucidate the details of the molecular mechanism of this complex formation. Results of GST pull-down and fluorescence polarization assays show that both a proline-rich SH3 binding motif (PSRPLPDAP, residues 466-474) and an adjacent phosphotyrosine-containing SH2 binding motif (pYEEI, residues 508-511) in Tks4 are responsible for Src binding. These motifs interact with the SH3 and SH2 domains of Src, respectively, leading to a synergistic enhancement of binding strength and a highly stable, "bidentate"-type of interaction. In agreement with these results, we found that the association of Src with Tks4 is permanent and the complex lasts at least 3 h in living cells. We conclude that the interaction of Tks4 with Src may result in the long term stabilization of the kinase in its active conformation, leading to prolonged Src activity following EGF stimulation.
Collapse
Affiliation(s)
- Metta Dülk
- Institute of Enzymology, Research Centre for Natural Sciences , Hungarian Academy of Sciences , 1117 Budapest , Hungary
| | - Bálint Szeder
- Institute of Enzymology, Research Centre for Natural Sciences , Hungarian Academy of Sciences , 1117 Budapest , Hungary
| | - Gábor Glatz
- Department of Anatomy, Cell and Developmental Biology , Eötvös Loránd University , 1117 Budapest , Hungary
| | - Balázs L Merő
- Institute of Enzymology, Research Centre for Natural Sciences , Hungarian Academy of Sciences , 1117 Budapest , Hungary
| | - Kitti Koprivanacz
- Institute of Enzymology, Research Centre for Natural Sciences , Hungarian Academy of Sciences , 1117 Budapest , Hungary
| | - Gyöngyi Kudlik
- Institute of Enzymology, Research Centre for Natural Sciences , Hungarian Academy of Sciences , 1117 Budapest , Hungary
| | - Virág Vas
- Institute of Enzymology, Research Centre for Natural Sciences , Hungarian Academy of Sciences , 1117 Budapest , Hungary
| | - Szabolcs Sipeki
- Department of Medical Chemistry , Semmelweis University Medical School , 1094 Budapest , Hungary
| | - Anna Cserkaszky
- Institute of Enzymology, Research Centre for Natural Sciences , Hungarian Academy of Sciences , 1117 Budapest , Hungary
| | - László Radnai
- Institute of Enzymology, Research Centre for Natural Sciences , Hungarian Academy of Sciences , 1117 Budapest , Hungary
| | - László Buday
- Institute of Enzymology, Research Centre for Natural Sciences , Hungarian Academy of Sciences , 1117 Budapest , Hungary.,Department of Medical Chemistry , Semmelweis University Medical School , 1094 Budapest , Hungary
| |
Collapse
|
11
|
von Raußendorf F, de Ruiter A, Leonard TA. A switch in nucleotide affinity governs activation of the Src and Tec family kinases. Sci Rep 2017; 7:17405. [PMID: 29234112 PMCID: PMC5727165 DOI: 10.1038/s41598-017-17703-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 11/29/2017] [Indexed: 11/10/2022] Open
Abstract
The Tec kinases, closely related to Src family kinases, are essential for lymphocyte function in the adaptive immune system. Whilst the Src and Abl kinases are regulated by tail phosphorylation and N-terminal myristoylation respectively, the Tec kinases are notable for the absence of either regulatory element. We have found that the inactive conformations of the Tec kinase Itk and Src preferentially bind ADP over ATP, stabilising both proteins. We demonstrate that Itk adopts the same conformation as Src and that the autoinhibited conformation of Src is independent of its C-terminal tail. Allosteric activation of both Itk and Src depends critically on the disruption of a conserved hydrophobic stack that accompanies regulatory domain displacement. We show that a conformational switch permits the exchange of ADP for ATP, leading to efficient autophosphorylation and full activation. In summary, we propose a universal mechanism for the activation and autoinhibition of the Src and Tec kinases.
Collapse
Affiliation(s)
- Freia von Raußendorf
- Department of Structural and Computational Biology, Max F. Perutz Laboratories (MFPL), Campus Vienna Biocenter 5, 1030, Vienna, Austria
| | - Anita de Ruiter
- Institute of Molecular Modeling and Simulation, University of Natural Resources and Life Sciences (BOKU), 1190, Vienna, Austria
| | - Thomas A Leonard
- Department of Structural and Computational Biology, Max F. Perutz Laboratories (MFPL), Campus Vienna Biocenter 5, 1030, Vienna, Austria.
- Department of Medical Biochemistry, Medical University of Vienna, 1090, Vienna, Austria.
| |
Collapse
|
12
|
Cleavage Alters the Molecular Determinants of Protein Kinase C-δ Catalytic Activity. Mol Cell Biol 2017; 37:MCB.00324-17. [PMID: 28784722 DOI: 10.1128/mcb.00324-17] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 07/18/2017] [Indexed: 01/19/2023] Open
Abstract
Protein kinase C-δ (PKCδ) is an allosterically activated enzyme that acts much like other PKC isoforms to transduce growth factor-dependent signaling responses. However, PKCδ is unique in that activation loop (Thr507) phosphorylation is not required for catalytic activity. Since PKCδ can be proteolytically cleaved by caspase-3 during apoptosis, the prevailing assumption has been that the kinase domain fragment (δKD) freed from autoinhibitory constraints imposed by the regulatory domain is catalytically competent and that Thr507 phosphorylation is not required for δKD activity. This study provides a counternarrative showing that δKD activity is regulated through Thr507 phosphorylation. We show that Thr507-phosphorylated δKD is catalytically active and not phosphorylated at Ser359 in its ATP-positioning G-loop. In contrast, a δKD fragment that is not phosphorylated at Thr507 (which accumulates in doxorubicin-treated cardiomyocytes) displays decreased C-terminal tail priming-site phosphorylation, increased G-loop Ser359 phosphorylation, and defective kinase activity. δKD is not a substrate for Src, but Src phosphorylates δKD-T507A at Tyr334 (in the newly exposed δKD N terminus), and this (or an S359A substitution) rescues δKD-T507A catalytic activity. These results expose a unique role for δKD-Thr507 phosphorylation (that does not apply to full-length PKCδ) in structurally organizing diverse elements within the enzyme that critically regulate catalytic activity.
Collapse
|
13
|
Meng Y, Pond MP, Roux B. Tyrosine Kinase Activation and Conformational Flexibility: Lessons from Src-Family Tyrosine Kinases. Acc Chem Res 2017; 50:1193-1201. [PMID: 28426203 DOI: 10.1021/acs.accounts.7b00012] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Protein kinases are enzymes that catalyze the covalent transfer of the γ-phosphate of an adenosine triphosphate (ATP) molecule onto a tyrosine, serine, threonine, or histidine residue in the substrate and thus send a chemical signal to networks of downstream proteins. They are important cellular signaling enzymes that regulate cell growth, proliferation, metabolism, differentiation, and migration. Unregulated protein kinase activity is often associated with a wide range of diseases, therefore making protein kinases major therapeutic targets. A prototypical system of central interest to understand the regulation of kinase activity is provided by tyrosine kinase c-Src, which belongs to the family of Src-related non-receptor tyrosine kinases (SFKs). Although the broad picture of autoinhibition via the regulatory domains and via the phosphorylation of the C-terminal tail is well characterized from a structural point of view, a detailed mechanistic understanding at the atomic-level is lacking. Advanced computational methods based on all-atom molecular dynamics (MD) simulations are employed to advance our understanding of tyrosine kinase activation. The computational studies suggest that the isolated kinase domain (KD) is energetically most favorable in the inactive conformation when the activation loop (A-loop) of the KD is not phosphorylated. The KD makes transient visits to a catalytically competent active-like conformation. The process of bimolecular trans-autophosphorylation of the A-loop eventually locks the KD in the active state. Activating point mutations may act by slightly increasing the population of the active-like conformation, enhancing the availability of the A-loop to be phosphorylated. The Src-homology 2 (SH2) and Src-homology 3 (SH3) regulatory domains, depending upon their configuration, either promote the inactive or the active state of the kinase domain. In addition to the roles played by the SH3, SH2, and KD, the Src-homology 4-Unique domain (SH4-U) region also serves as a key moderator of substrate specificity and kinase function. Thus, a fundamental understanding of the conformational propensity of the SH4-U region and how this affects the association to the membrane surface are likely to lead to the discovery of new intermediate states and alternate strategies for inhibition of kinase activity for drug discovery. The existence of a multitude of KD conformations poses a great challenge aimed at the design of specific inhibitors. One promising computational strategy to explore the conformational flexibility of the KD is to construct Markov state models from aggregated MD data.
Collapse
Affiliation(s)
- Yilin Meng
- Department of Biochemistry
and Molecular Biology, Gordon Center for Integrative Science, University of Chicago 929 E 57th Street, Chicago, Illinois 60637, United States
| | - Matthew P. Pond
- Department of Biochemistry
and Molecular Biology, Gordon Center for Integrative Science, University of Chicago 929 E 57th Street, Chicago, Illinois 60637, United States
| | - Benoît Roux
- Department of Biochemistry
and Molecular Biology, Gordon Center for Integrative Science, University of Chicago 929 E 57th Street, Chicago, Illinois 60637, United States
| |
Collapse
|
14
|
Fajer M, Meng Y, Roux B. The Activation of c-Src Tyrosine Kinase: Conformational Transition Pathway and Free Energy Landscape. J Phys Chem B 2017; 121:3352-3363. [PMID: 27715044 PMCID: PMC5398919 DOI: 10.1021/acs.jpcb.6b08409] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Tyrosine kinases are important cellular signaling allosteric enzymes that regulate cell growth, proliferation, metabolism, differentiation, and migration. Their activity must be tightly controlled, and malfunction can lead to a variety of diseases, particularly cancer. The nonreceptor tyrosine kinase c-Src, a prototypical model system and a representative member of the Src-family, functions as complex multidomain allosteric molecular switches comprising SH2 and SH3 domains modulating the activity of the catalytic domain. The broad picture of self-inhibition of c-Src via the SH2 and SH3 regulatory domains is well characterized from a structural point of view, but a detailed molecular mechanism understanding is nonetheless still lacking. Here, we use advanced computational methods based on all-atom molecular dynamics simulations with explicit solvent to advance our understanding of kinase activation. To elucidate the mechanism of regulation and self-inhibition, we have computed the pathway and the free energy landscapes for the "inactive-to-active" conformational transition of c-Src for different configurations of the SH2 and SH3 domains. Using the isolated c-Src catalytic domain as a baseline for comparison, it is observed that the SH2 and SH3 domains, depending upon their bound orientation, promote either the inactive or active state of the catalytic domain. The regulatory structural information from the SH2-SH3 tandem is allosterically transmitted via the N-terminal linker of the catalytic domain. Analysis of the conformational transition pathways also illustrates the importance of the conserved tryptophan 260 in activating c-Src, and reveals a series of concerted events during the activation process.
Collapse
Affiliation(s)
| | | | - Benoît Roux
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois, 60637, USA
| |
Collapse
|
15
|
Wales TE, Hochrein JM, Morgan CR, Emert-Sedlak LA, Smithgall TE, Engen JR. Subtle Dynamic Changes Accompany Hck Activation by HIV-1 Nef and are Reversed by an Antiretroviral Kinase Inhibitor. Biochemistry 2015; 54:6382-91. [PMID: 26440750 PMCID: PMC4615603 DOI: 10.1021/acs.biochem.5b00875] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The HIV-1 virulence factor Nef interacts with the macrophage Src-family kinase Hck, resulting in constitutive kinase activation that contributes to viral replication and immune escape. Previous chemical library screens identified the diphenylfuranopyrimdine kinase inhibitor DFP-4AB, which selectively inhibits Nef-dependent Hck activity in biochemical assays and potently blocks HIV replication in vitro. In the present study, hydrogen exchange mass spectrometry (HX MS) was used to study conformational changes in downregulated Hck that result from Nef binding, as well as the impact of DFP-4AB on these changes. Remarkably, interaction with Nef induced only subtle changes in deuterium uptake by Hck, with the most significant changes in the N-lobe of the kinase domain adjacent to the docking site for Nef on the SH3 domain. No changes in hydrogen exchange were observed in the Hck SH2 domain or C-terminal tail, indicating that this regulatory interaction is unaffected by Nef binding. When HX MS was performed in the presence of DFP-4AB, the effect of Nef on Hck N-lobe dynamics was completely reversed. These results show that constitutive activation of Hck by HIV-1 Nef requires only modest changes to the conformational dynamics of the overall kinase structure. DFP-4AB reverses these effects, consistent with its activity against this Nef-induced signaling event in HIV-infected cells.
Collapse
Affiliation(s)
- Thomas E. Wales
- Department of Chemistry & Chemical Biology, Northeastern University, Boston, MA 02115
| | - James M. Hochrein
- Department of Chemistry & Chemical Biology, Northeastern University, Boston, MA 02115
| | - Christopher R. Morgan
- Department of Chemistry & Chemical Biology, Northeastern University, Boston, MA 02115
| | - Lori A. Emert-Sedlak
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219
| | - Thomas E. Smithgall
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219
| | - John R. Engen
- Department of Chemistry & Chemical Biology, Northeastern University, Boston, MA 02115
| |
Collapse
|
16
|
Sunita S, Schwartz SL, Conn GL. The Regulatory and Kinase Domains but Not the Interdomain Linker Determine Human Double-stranded RNA-activated Kinase (PKR) Sensitivity to Inhibition by Viral Non-coding RNAs. J Biol Chem 2015; 290:28156-28165. [PMID: 26432638 DOI: 10.1074/jbc.m115.679738] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Indexed: 12/18/2022] Open
Abstract
Double-stranded RNA (dsRNA)-activated protein kinase (PKR) is an important component of the innate immune system that presents a crucial first line of defense against viral infection. PKR has a modular architecture comprising a regulatory N-terminal dsRNA binding domain and a C-terminal kinase domain interposed by an unstructured ∼80-residue interdomain linker (IDL). Guided by sequence alignment, we created IDL deletions in human PKR (hPKR) and regulatory/kinase domain swap human-rat chimeric PKRs to assess the contributions of each domain and the IDL to regulation of the kinase activity by RNA. Using circular dichroism spectroscopy, limited proteolysis, kinase assays, and isothermal titration calorimetry, we show that each PKR protein is properly folded with similar domain boundaries and that each exhibits comparable polyinosinic-cytidylic (poly(rI:rC)) dsRNA activation profiles and binding affinities for adenoviral virus-associated RNA I (VA RNAI) and HIV-1 trans-activation response (TAR) RNA. From these results we conclude that the IDL of PKR is not required for RNA binding or mediating changes in protein conformation or domain interactions necessary for PKR regulation by RNA. In contrast, inhibition of rat PKR by VA RNAI and TAR RNA was found to be weaker than for hPKR by 7- and >300-fold, respectively, and each human-rat chimeric domain-swapped protein showed intermediate levels of inhibition. These findings indicate that PKR sequence or structural elements in the kinase domain, present in hPKR but absent in rat PKR, are exploited by viral non-coding RNAs to accomplish efficient inhibition of PKR.
Collapse
Affiliation(s)
- S Sunita
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Samantha L Schwartz
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Graeme L Conn
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia 30322.
| |
Collapse
|
17
|
Tse A, Verkhivker GM. Molecular Dynamics Simulations and Structural Network Analysis of c-Abl and c-Src Kinase Core Proteins: Capturing Allosteric Mechanisms and Communication Pathways from Residue Centrality. J Chem Inf Model 2015; 55:1645-62. [DOI: 10.1021/acs.jcim.5b00240] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Amanda Tse
- Graduate Program in Computational and Data Sciences,
Department of Computational Sciences, Schmid College of Science and
Technology, Chapman University, One University Drive, Orange, California 92866, United States
| | - Gennady M. Verkhivker
- Graduate Program in Computational and Data Sciences,
Department of Computational Sciences, Schmid College of Science and
Technology, Chapman University, One University Drive, Orange, California 92866, United States
- Chapman University School of Pharmacy, Irvine, California 92618, United States
| |
Collapse
|
18
|
Meng Y, Roux B. Computational study of the W260A activating mutant of Src tyrosine kinase. Protein Sci 2015; 25:219-30. [PMID: 26106037 DOI: 10.1002/pro.2731] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Revised: 06/19/2015] [Accepted: 06/19/2015] [Indexed: 01/22/2023]
Abstract
Tyrosine kinases are enzymes playing a critical role in cellular signaling. Mutations causing increased in kinase activity are often associated with cancer and various pathologies. One example in Src tyrosine kinases is offered by the substitution of the highly conserved tryptophan 260 by an alanine (W260A), which has been shown to cause an increase in activity. Here, molecular dynamics simulations based on atomic models are carried out to characterize the conformational changes in the linker region and the catalytic (kinase) domain of Src kinase to elucidate the impact of the W260A mutation. Umbrella sampling calculations show that the conformation of the linker observed in the assembled down-regulated state of the kinase is most favored when the kinase domain is in the inactive state, whereas the conformation of the linker observed in the re-assembled up-regulated state of the kinase is favored when the kinase domain is in the unphosphorylated active-like state. The calculations further indicate that there are only small differences between the WT and W260A mutant. In both cases, the intermediates states are very similar and the down-regulated inactive conformation is the most stable state. However, the calculations also show that the free energy cost to reach the unphosphorylated active-like conformation is slightly smaller for the W260A mutant compared with WT. A simple kinetic model is developed and submitted to a Bayesian Monte Carlo analysis to illustrate how such small differences can contribute to accelerate the trans-autophosphorylation reaction and yield a large increase in the activity of the mutant as observed experimentally.
Collapse
Affiliation(s)
- Yilin Meng
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois, 60637
| | - Benoît Roux
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois, 60637
| |
Collapse
|
19
|
Tsui T, Miller WT. Cancer-Associated Mutations in Breast Tumor Kinase/PTK6 Differentially Affect Enzyme Activity and Substrate Recognition. Biochemistry 2015; 54:3173-82. [PMID: 25940761 DOI: 10.1021/acs.biochem.5b00303] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Brk (breast tumor kinase, also known as PTK6) is a nonreceptor tyrosine kinase that is aberrantly expressed in several cancers and promotes cell proliferation and transformation. Genome sequencing studies have revealed a number of cancer-associated somatic mutations in the Brk gene; however, their effect on Brk activity has not been examined. We analyzed a panel of cancer-associated mutations and determined that several of the mutations activate Brk, while two eliminated enzymatic activity. Three of the mutations (L16F, R131L, and P450L) are located in important regulatory domains of Brk (the SH3, SH2 domains, and C-terminal tail, respectively). Biochemical data suggest that they activate Brk by disrupting intramolecular interactions that normally maintain Brk in an autoinhibited conformation. We also observed differential effects on recognition and phosphorylation of substrates, suggesting that the mutations can influence downstream Brk signaling by multiple mechanisms.
Collapse
Affiliation(s)
- Tiffany Tsui
- Department of Physiology and Biophysics, School of Medicine, Stony Brook University, Stony Brook, New York 11794, United States
| | - W Todd Miller
- Department of Physiology and Biophysics, School of Medicine, Stony Brook University, Stony Brook, New York 11794, United States
| |
Collapse
|
20
|
Cabail MZ, Li S, Lemmon E, Bowen ME, Hubbard SR, Miller WT. The insulin and IGF1 receptor kinase domains are functional dimers in the activated state. Nat Commun 2015; 6:6406. [PMID: 25758790 DOI: 10.1038/ncomms7406] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Accepted: 01/26/2015] [Indexed: 12/31/2022] Open
Abstract
The insulin receptor (IR) and insulin-like growth factor-1 receptor (IGF1R) are highly related receptor tyrosine kinases with a disulfide-linked homodimeric architecture. Ligand binding to the receptor ectodomain triggers tyrosine autophosphorylation of the cytoplasmic domains, which stimulates catalytic activity and creates recruitment sites for downstream signalling proteins. Whether the two phosphorylated tyrosine kinase domains within the receptor dimer function independently or cooperatively to phosphorylate protein substrates is not known. Here we provide crystallographic, biophysical and biochemical evidence demonstrating that the phosphorylated kinase domains of IR and IGF1R form a specific dimeric arrangement involving an exchange of the juxtamembrane region proximal to the kinase domain. In this dimer, the active position of α-helix C in the kinase N lobe is stabilized, which promotes downstream substrate phosphorylation. These studies afford a novel strategy for the design of small-molecule IR agonists as potential therapeutic agents for type 2 diabetes.
Collapse
Affiliation(s)
- M Zulema Cabail
- Department of Physiology and Biophysics, Stony Brook University, Stony Brook, New York 11794, USA
| | - Shiqing Li
- Department of Biochemistry and Molecular Pharmacology, Kimmel Center for Biology and Medicine of the Skirball Institute, New York University School of Medicine, New York, New York 10016, USA
| | - Eric Lemmon
- Department of Physiology and Biophysics, Stony Brook University, Stony Brook, New York 11794, USA
| | - Mark E Bowen
- Department of Physiology and Biophysics, Stony Brook University, Stony Brook, New York 11794, USA
| | - Stevan R Hubbard
- Department of Biochemistry and Molecular Pharmacology, Kimmel Center for Biology and Medicine of the Skirball Institute, New York University School of Medicine, New York, New York 10016, USA
| | - W Todd Miller
- Department of Physiology and Biophysics, Stony Brook University, Stony Brook, New York 11794, USA
| |
Collapse
|
21
|
Foda ZH, Shan Y, Kim ET, Shaw DE, Seeliger MA. A dynamically coupled allosteric network underlies binding cooperativity in Src kinase. Nat Commun 2015; 6:5939. [PMID: 25600932 PMCID: PMC4300553 DOI: 10.1038/ncomms6939] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Accepted: 11/22/2014] [Indexed: 01/16/2023] Open
Abstract
Protein tyrosine kinases are attractive drug targets because many human diseases are associated with the deregulation of kinase activity. However, how the catalytic kinase domain integrates different signals and switches from an active to an inactive conformation remains incompletely understood. Here we identify an allosteric network of dynamically coupled amino acids in Src kinase that connects regulatory sites to the ATP- and substrate-binding sites. Surprisingly, reactants (ATP and peptide substrates) bind with negative cooperativity to Src kinase while products (ADP and phosphopeptide) bind with positive cooperativity. We confirm the molecular details of the signal relay through the allosteric network by biochemical studies. Experiments on two additional protein tyrosine kinases indicate that the allosteric network may be largely conserved among these enzymes. Our work provides new insights into the regulation of protein tyrosine kinases and establishes a potential conduit by which resistance mutations to ATP-competitive kinase inhibitors can affect their activity. Protein tyrosine kinases are subject to multiple regulatory mechanisms. Foda et al. show that reactants and products of the tyrosine kinase Src bind its catalytic domain with opposite cooperativity, and identify an allosteric network of dynamically coupled amino acids that underlie this behaviour.
Collapse
Affiliation(s)
- Zachariah H Foda
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, New York 11794, USA
| | - Yibing Shan
- D. E. Shaw Research, New York, New York 10036, USA
| | - Eric T Kim
- D. E. Shaw Research, New York, New York 10036, USA
| | - David E Shaw
- 1] D. E. Shaw Research, New York, New York 10036, USA [2] Department of Biochemistry and Molecular Biophysics, Center for Computational Biology and Bioinformatics, Columbia University, New York, New York 10032, USA
| | - Markus A Seeliger
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, New York 11794, USA
| |
Collapse
|
22
|
Register AC, Leonard SE, Maly DJ. SH2-catalytic domain linker heterogeneity influences allosteric coupling across the SFK family. Biochemistry 2014; 53:6910-23. [PMID: 25302671 PMCID: PMC4230323 DOI: 10.1021/bi5008194] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
Src-family
kinases (SFKs) make up a family of nine homologous multidomain
tyrosine kinases whose misregulation is responsible for human disease
(cancer, diabetes, inflammation, etc.). Despite overall sequence homology
and identical domain architecture, differences in SH3 and SH2 regulatory
domain accessibility and ability to allosterically autoinhibit the
ATP-binding site have been observed for the prototypical SFKs Src
and Hck. Biochemical and structural studies indicate that the SH2-catalytic
domain (SH2-CD) linker, the intramolecular binding epitope for SFK
SH3 domains, is responsible for allosterically coupling SH3 domain
engagement to autoinhibition of the ATP-binding site through the conformation
of the αC helix. As a relatively unconserved region between
SFK family members, SH2-CD linker sequence variability across the
SFK family is likely a source of nonredundant cellular functions between
individual SFKs via its effect on the availability of SH3 and SH2
domains for intermolecular interactions and post-translational modification.
Using a combination of SFKs engineered with enhanced or weakened regulatory
domain intramolecular interactions and conformation-selective inhibitors
that report αC helix conformation, this study explores how SH2-CD
sequence heterogeneity affects allosteric coupling across the SFK
family by examining Lyn, Fyn1, and Fyn2. Analyses of Fyn1 and Fyn2,
isoforms that are identical but for a 50-residue sequence spanning
the SH2-CD linker, demonstrate that SH2-CD linker sequence differences
can have profound effects on allosteric coupling between otherwise
identical kinases. Most notably, a dampened allosteric connection
between the SH3 domain and αC helix leads to greater autoinhibitory
phosphorylation by Csk, illustrating the complex effects of SH2-CD
linker sequence on cellular function.
Collapse
Affiliation(s)
- A C Register
- Department of Chemistry, University of Washington , Seattle, Washington 98195, United States
| | | | | |
Collapse
|
23
|
Structural basis of the regulatory mechanism of the plant CIPK family of protein kinases controlling ion homeostasis and abiotic stress. Proc Natl Acad Sci U S A 2014; 111:E4532-41. [PMID: 25288725 DOI: 10.1073/pnas.1407610111] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Plant cells have developed specific protective molecular machinery against environmental stresses. The family of CBL-interacting protein kinases (CIPK) and their interacting activators, the calcium sensors calcineurin B-like (CBLs), work together to decode calcium signals elicited by stress situations. The molecular basis of biological activation of CIPKs relies on the calcium-dependent interaction of a self-inhibitory NAF motif with a particular CBL, the phosphorylation of the activation loop by upstream kinases, and the subsequent phosphorylation of the CBL by the CIPK. We present the crystal structures of the NAF-truncated and pseudophosphorylated kinase domains of CIPK23 and CIPK24/SOS2. In addition, we provide biochemical data showing that although CIPK23 is intrinsically inactive and requires an external stimulation, CIPK24/SOS2 displays basal activity. This data correlates well with the observed conformation of the respective activation loops: Although the loop of CIPK23 is folded into a well-ordered structure that blocks the active site access to substrates, the loop of CIPK24/SOS2 protrudes out of the active site and allows catalysis. These structures together with biochemical and biophysical data show that CIPK kinase activity necessarily requires the coordinated releases of the activation loop from the active site and of the NAF motif from the nucleotide-binding site. Taken all together, we postulate the basis for a conserved calcium-dependent NAF-mediated regulation of CIPKs and a variable regulation by upstream kinases.
Collapse
|
24
|
Boyken SE, Chopra N, Xie Q, Joseph RE, Wales TE, Fulton DB, Engen JR, Jernigan RL, Andreotti AH. A conserved isoleucine maintains the inactive state of Bruton's tyrosine kinase. J Mol Biol 2014; 426:3656-69. [PMID: 25193673 DOI: 10.1016/j.jmb.2014.08.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 08/22/2014] [Accepted: 08/23/2014] [Indexed: 12/22/2022]
Abstract
Despite high level of homology among non-receptor tyrosine kinases, different kinase families employ a diverse array of regulatory mechanisms. For example, the catalytic kinase domains of the Tec family kinases are inactive without assembly of the adjacent regulatory domains, whereas the Src kinase domains are autoinhibited by the assembly of similar adjacent regulatory domains. Using molecular dynamics simulations, biochemical assays, and biophysical approaches, we have uncovered an isoleucine residue in the kinase domain of the Tec family member Btk that, when mutated to the closely related leucine, leads to a shift in the conformational equilibrium of the kinase domain toward the active state. The single amino acid mutation results in measureable catalytic activity for the Btk kinase domain in the absence of the regulatory domains. We suggest that this isoleucine side chain in the Tec family kinases acts as a "wedge" that restricts the conformational space available to key regions in the kinase domain, preventing activation until the kinase domain associates with its regulatory subunits and overcomes the energetic barrier to activation imposed by the isoleucine side chain.
Collapse
Affiliation(s)
- Scott E Boyken
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011, USA
| | - Nikita Chopra
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011, USA
| | - Qian Xie
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011, USA
| | - Raji E Joseph
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011, USA
| | - Thomas E Wales
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115, USA
| | - D Bruce Fulton
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011, USA
| | - John R Engen
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115, USA
| | - Robert L Jernigan
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011, USA
| | - Amy H Andreotti
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011, USA.
| |
Collapse
|
25
|
Moroco JA, Craigo JK, Iacob RE, Wales TE, Engen JR, Smithgall TE. Differential sensitivity of Src-family kinases to activation by SH3 domain displacement. PLoS One 2014; 9:e105629. [PMID: 25144189 PMCID: PMC4140816 DOI: 10.1371/journal.pone.0105629] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 07/22/2014] [Indexed: 02/07/2023] Open
Abstract
Src-family kinases (SFKs) are non-receptor protein-tyrosine kinases involved in a variety of signaling pathways in virtually every cell type. The SFKs share a common negative regulatory mechanism that involves intramolecular interactions of the SH3 domain with the PPII helix formed by the SH2-kinase linker as well as the SH2 domain with a conserved phosphotyrosine residue in the C-terminal tail. Growing evidence suggests that individual SFKs may exhibit distinct activation mechanisms dictated by the relative strengths of these intramolecular interactions. To elucidate the role of the SH3:linker interaction in the regulation of individual SFKs, we used a synthetic SH3 domain-binding peptide (VSL12) to probe the sensitivity of downregulated c-Src, Hck, Lyn and Fyn to SH3-based activation in a kinetic kinase assay. All four SFKs responded to VSL12 binding with enhanced kinase activity, demonstrating a conserved role for SH3:linker interaction in the control of catalytic function. However, the sensitivity and extent of SH3-based activation varied over a wide range. In addition, autophosphorylation of the activation loops of c-Src and Hck did not override regulatory control by SH3:linker displacement, demonstrating that these modes of activation are independent. Our results show that despite the similarity of their downregulated conformations, individual Src-family members show diverse responses to activation by domain displacement which may reflect their adaptation to specific signaling environments in vivo.
Collapse
Affiliation(s)
- Jamie A. Moroco
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Jodi K. Craigo
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
- Center for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Roxana E. Iacob
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts, United States of America
| | - Thomas E. Wales
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts, United States of America
| | - John R. Engen
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts, United States of America
| | - Thomas E. Smithgall
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
26
|
Leonard SE, Register AC, Krishnamurty R, Brighty GJ, Maly DJ. Divergent modulation of Src-family kinase regulatory interactions with ATP-competitive inhibitors. ACS Chem Biol 2014; 9:1894-905. [PMID: 24946274 PMCID: PMC4136698 DOI: 10.1021/cb500371g] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
![]()
Multidomain protein kinases, central
controllers of signal transduction,
use regulatory domains to modulate catalytic activity in a complex
cellular environment. Additionally, these domains regulate noncatalytic
functions, including cellular localization and protein–protein
interactions. Src-family kinases (SFKs) are promising therapeutic
targets for a number of diseases and are an excellent model for studying
the regulation of multidomain kinases. Here, we demonstrate that the
regulatory domains of the SFKs Src and Hck are divergently affected
by ligands that stabilize two distinct inactive ATP-binding site conformations.
Conformation-selective, ATP-competitive inhibitors differentially
modulate the ability of the SH3 and SH2 domains of Src and Hck to
engage in intermolecular interactions and the ability of the kinase–inhibitor
complex to undergo post-translational modification by effector enzymes.
This surprising divergence in regulatory domain behavior by two classes
of inhibitors that each stabilize inactive ATP-binding site conformations
is found to occur through perturbation or stabilization of the αC
helix. These studies provide insight into how conformation-selective,
ATP-competitive inhibitors can be designed to modulate domain interactions
and post-translational modifications distal to the ATP-binding site
of kinases.
Collapse
Affiliation(s)
- Stephen E. Leonard
- Department
of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - A. C. Register
- Department
of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Ratika Krishnamurty
- Department
of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Gabriel J. Brighty
- Department
of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Dustin J. Maly
- Department
of Chemistry, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
27
|
Abstract
Protein kinases are thought to mediate their biological effects through their catalytic activity. The large number of pseudokinases in the kinome and an increasing appreciation that they have critical roles in signaling pathways, however, suggest that catalyzing protein phosphorylation may not be the only function of protein kinases. Using the principle of hydrophobic spine assembly, we interpret how kinases are capable of performing a dual function in signaling. Its first role is that of a signaling enzyme (classical kinases; canonical), while its second role is that of an allosteric activator of other kinases or as a scaffold protein for signaling in a manner that is independent of phosphoryl transfer (classical pseudokinases; noncanonical). As the hydrophobic spines are a conserved feature of the kinase domain itself, all kinases carry an inherent potential to play both roles in signaling. This review focuses on the recent lessons from the RAF kinases that effectively toggle between these roles and can be "frozen" by introducing mutations at their hydrophobic spines.
Collapse
|
28
|
Allosteric activation of functionally asymmetric RAF kinase dimers. Cell 2013; 154:1036-1046. [PMID: 23993095 DOI: 10.1016/j.cell.2013.07.046] [Citation(s) in RCA: 225] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Revised: 03/18/2013] [Accepted: 07/31/2013] [Indexed: 01/07/2023]
Abstract
Although RAF kinases are critical for controlling cell growth, their mechanism of activation is incompletely understood. Recently, dimerization was shown to be important for activation. Here we show that the dimer is functionally asymmetric with one kinase functioning as an activator to stimulate activity of the partner, receiver kinase. The activator kinase did not require kinase activity but did require N-terminal phosphorylation that functioned allosterically to induce cis-autophosphorylation of the receiver kinase. Based on modeling of the hydrophobic spine assembly, we also engineered a constitutively active mutant that was independent of Ras, dimerization, and activation-loop phosphorylation. As N-terminal phosphorylation of BRAF is constitutive, BRAF initially functions to activate CRAF. N-terminal phosphorylation of CRAF was dependent on MEK, suggesting a feedback mechanism and explaining a key difference between BRAF and CRAF. Our work illuminates distinct steps in RAF activation that function to assemble the active conformation of the RAF kinase.
Collapse
|
29
|
Goel RK, Miah S, Black K, Kalra N, Dai C, Lukong KE. The unique N-terminal region of SRMS regulates enzymatic activity and phosphorylation of its novel substrate docking protein 1. FEBS J 2013; 280:4539-59. [PMID: 23822091 DOI: 10.1111/febs.12420] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Revised: 06/20/2013] [Accepted: 06/25/2013] [Indexed: 01/07/2023]
Abstract
SRMS (Src-related tyrosine kinase lacking C-terminal regulatory tyrosine and N-terminal myristoylation sites) belongs to a family of nonreceptor tyrosine kinases, which also includes breast tumour kinase and Fyn-related kinase. SRMS, similar to breast tumour kinase and Fyn-related kinase, harbours a Src homology 3 and Src homology 2, as well as a protein kinase domain. However, unlike breast tumour kinase and Fyn-related kinase, SRMS lacks a C-terminal regulatory tail but distinctively possesses an extended N-terminal region. Both breast tumour kinase and Fyn-related kinase play opposing roles in cell proliferation and signalling. SRMS, however, is an understudied member of this family. Although cloned in 1994, information on the biochemical, cellular and physiological roles of SRMS remains unreported. The present study is the first to explore the expression pattern of SRMS in breast cancers, its enzymatic activity and autoregulatory elements, and the characterization of docking protein 1 as its first bonafide substrate. We found that, similar to breast tumour kinase, SRMS is highly expressed in most breast cancers compared to normal mammary cell lines and tissues. We generated a series of SRMS point and deletion mutants and assessed enzymatic activity, subcellular localization and substrate recognition. We report for the first time that ectopically-expressed SRMS is constitutively active and that its N-terminal region regulates the enzymatic activity of the protein. Finally, we present evidence indicating that docking protein 1 is a direct substrate of SRMS. Our data demonstrate that, unlike members of the Src family, the enzymatic activity of SRMS is regulated by the intramolecular interactions involving the N-terminus of the enzyme and that docking protein 1 is a bona fide substrate of SRMS.
Collapse
Affiliation(s)
- Raghuveera K Goel
- Department of Biochemistry, College of Medicine, University of Saskatchewan, Saskatoon, Canada
| | | | | | | | | | | |
Collapse
|
30
|
Tiyanont K, Wales TE, Siebel CW, Engen JR, Blacklow SC. Insights into Notch3 activation and inhibition mediated by antibodies directed against its negative regulatory region. J Mol Biol 2013; 425:3192-204. [PMID: 23747483 DOI: 10.1016/j.jmb.2013.05.025] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Revised: 05/28/2013] [Accepted: 05/29/2013] [Indexed: 02/07/2023]
Abstract
Notch receptors are single-pass transmembrane proteins that regulate development and tissue homeostasis in all metazoan organisms. Prior to ligand-induced signaling, Notch receptors adopt a proteolytic resistant conformation maintained by a critical interdomain interface within a negative regulatory region (NRR), which sits immediately external to the plasma membrane. Signaling is initiated when ligand binding induces exposure of the proteolytic cleavage site, termed S2, within the NRR. Here, we use hydrogen exchange in conjunction with mass spectrometry to study the dynamics of the human Notch3 NRR in four distinct biochemical states: in its unmodified quiescent form, in a proteolytically "on" state induced by ethylenediaminetetraacetic acid, and in complex with either agonist or inhibitory antibodies. Induction of the on state by either ethylenediaminetetraacetic acid or the agonist monoclonal antibody leads to accelerated deuteration in the region of the S2 cleavage site, reflecting an increase in S2 dynamics. In contrast, complexation of the Notch3 NRR with an inhibitory antibody retards deuteration not only across its discontinuous binding epitope but also around the S2 site, stabilizing the NRR in its "off" state. Together with previous work investigating the dynamics of the Notch1 NRR, these studies show that key features of autoinhibition and activation are shared among different Notch receptors and provide additional insights into mechanisms of Notch activation and inhibition by modulatory antibodies.
Collapse
Affiliation(s)
- Kittichoat Tiyanont
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | |
Collapse
|
31
|
Abstract
The integrin β3-mediated c-Src priming and activation, via the SH3 domain, is consistently associated with diseases, such as the formation of thrombosis and the migration of tumor cells. Conventionally, activation of c-Src is often induced by the binding of proline-rich sequences to its SH3 domain. Instead, integrin β3 uses R(760)GT(762) for priming and activation. Because of the lack of structural information, it is not clear where RGT will bind to SH3, and under what mechanism this interaction can prime/activate c-Src. In this study, we present a 2.0-Å x-ray crystal structure in which SH3 is complexed with the RGT peptide. The binding site lies in the "N"-Src loop of the SH3 domain. Structure-based site-directed mutagenesis showed that perturbation on the "N"-Src loop disrupts the interaction between the SH3 domain and the RGT peptide. Furthermore, the simulated c-Src:β3 complex based on the crystal structure of SH3:RGT suggests that the binding of the RGT peptide might disrupt the intramolecular interaction between the SH3 and linker domains, leading to the disengagement of Trp260:"C"-helix and further activation of c-Src.
Collapse
|
32
|
Sammond DW, Payne CM, Brunecky R, Himmel ME, Crowley MF, Beckham GT. Cellulase linkers are optimized based on domain type and function: insights from sequence analysis, biophysical measurements, and molecular simulation. PLoS One 2012; 7:e48615. [PMID: 23139804 PMCID: PMC3490864 DOI: 10.1371/journal.pone.0048615] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Accepted: 09/27/2012] [Indexed: 01/02/2023] Open
Abstract
Cellulase enzymes deconstruct cellulose to glucose, and are often comprised of glycosylated linkers connecting glycoside hydrolases (GHs) to carbohydrate-binding modules (CBMs). Although linker modifications can alter cellulase activity, the functional role of linkers beyond domain connectivity remains unknown. Here we investigate cellulase linkers connecting GH Family 6 or 7 catalytic domains to Family 1 or 2 CBMs, from both bacterial and eukaryotic cellulases to identify conserved characteristics potentially related to function. Sequence analysis suggests that the linker lengths between structured domains are optimized based on the GH domain and CBM type, such that linker length may be important for activity. Longer linkers are observed in eukaryotic GH Family 6 cellulases compared to GH Family 7 cellulases. Bacterial GH Family 6 cellulases are found with structured domains in either N to C terminal order, and similar linker lengths suggest there is no effect of domain order on length. O-glycosylation is uniformly distributed across linkers, suggesting that glycans are required along entire linker lengths for proteolysis protection and, as suggested by simulation, for extension. Sequence comparisons show that proline content for bacterial linkers is more than double that observed in eukaryotic linkers, but with fewer putative O-glycan sites, suggesting alternative methods for extension. Conversely, near linker termini where linkers connect to structured domains, O-glycosylation sites are observed less frequently, whereas glycines are more prevalent, suggesting the need for flexibility to achieve proper domain orientations. Putative N-glycosylation sites are quite rare in cellulase linkers, while an N-P motif, which strongly disfavors the attachment of N-glycans, is commonly observed. These results suggest that linkers exhibit features that are likely tailored for optimal function, despite possessing low sequence identity. This study suggests that cellulase linkers may exhibit function in enzyme action, and highlights the need for additional studies to elucidate cellulase linker functions.
Collapse
Affiliation(s)
- Deanne W. Sammond
- Biosciences Center, National Renewable Energy Laboratory, Golden, Colorado, United States of America
| | - Christina M. Payne
- Biosciences Center, National Renewable Energy Laboratory, Golden, Colorado, United States of America
| | - Roman Brunecky
- Biosciences Center, National Renewable Energy Laboratory, Golden, Colorado, United States of America
| | - Michael E. Himmel
- Biosciences Center, National Renewable Energy Laboratory, Golden, Colorado, United States of America
| | - Michael F. Crowley
- Biosciences Center, National Renewable Energy Laboratory, Golden, Colorado, United States of America
| | - Gregg T. Beckham
- National Bioenergy Center, National Renewable Energy Laboratory, Golden, Colorado, United States of America
- Department of Chemical Engineering, Colorado School of Mines, Golden, Colorado, United States of America
- * E-mail:
| |
Collapse
|
33
|
Huang H, Zhao R, Dickson BM, Skeel RD, Post CB. αC helix as a switch in the conformational transition of Src/CDK-like kinase domains. J Phys Chem B 2012; 116:4465-75. [PMID: 22448785 DOI: 10.1021/jp301628r] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
One mechanism of regulating the catalytic activity of protein kinases is through conformational transitions. Despite great diversity in the structural changes involved in the transitions, a certain set of changes within the kinase domain (KD) has been observed for many kinases including Src and CDK2. We investigated this conformational transition computationally to identify the topological features that are energetically critical to the transition. Results from both molecular dynamics sampling and transition path optimization highlight the displacement of the αC helix as the major energy barrier, mediating the switch of the KD between the active and down-regulated states. The critical role of the αC helix is noteworthy by providing a rationale for a number of activation and deactivation mechanisms known to occur in cells. We find that kinases with the αC helix displacement exist throughout the kinome, suggesting that this feature may have emerged early in evolution.
Collapse
Affiliation(s)
- He Huang
- Department of Medicinal Chemistry and Molecular Pharmacology, Markey Center for Structural Biology and Purdue Cancer Center, Purdue University, West Lafayette, Indiana 47907, United States
| | | | | | | | | |
Collapse
|
34
|
The Cdc42-associated kinase ACK1 is not autoinhibited but requires Src for activation. Biochem J 2011; 435:355-64. [PMID: 21309750 DOI: 10.1042/bj20102156] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The non-RTK (receptor tyrosine kinase) ACK1 [activated Cdc42 (cell division cycle 42)-associated kinase 1] binds a number of RTKs and is associated with their endocytosis and turnover. Its mode of activation is not well established, but models have suggested that this is an autoinhibited kinase. Point mutations in its SH3 (Src homology 3)- or EGF (epidermal growth factor)-binding domains have been reported to activate ACK1, but we find neither of the corresponding W424K or F820A mutations do so. Indeed, deletion of the various ACK1 domains C-terminal to the catalytic domain are not associated with increased activity. A previous report identified only one major tyrosine phosphorylated protein of 60 kDa co-purified with ACK1. In a screen for new SH3 partners for ACK1 we found multiple Src family kinases; of these c-Src itself binds best. The SH2 and SH3 domains of Src interact with ACK1 Tyr518 and residues 623-652 respectively. Src targets the ACK1 activation loop Tyr284, a poor autophosphorylation site. We propose that ACK1 fails to undergo significant autophosphorylation on Tyr284 in vivo because it is basophilic (whereas Src is acidophilic). Subsequent ACK1 activation downstream of receptors such as EGFR (EGF receptor) (and Src) promotes turnover of ACK1 in vivo, which is blocked by Src inhibitors, and is compromised in the Src-deficient SYF cell line. The results of the present study can explain why ACK1 is responsive to so many external stimuli including RTKs and integrin ligation, since Src kinases are commonly recruited by multiple receptor systems.
Collapse
|
35
|
Prieto-Echagüe V, Gucwa A, Brown DA, Miller WT. Regulation of Ack1 localization and activity by the amino-terminal SAM domain. BMC BIOCHEMISTRY 2010; 11:42. [PMID: 20979614 PMCID: PMC2987765 DOI: 10.1186/1471-2091-11-42] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2010] [Accepted: 10/27/2010] [Indexed: 12/31/2022]
Abstract
Background The mechanisms that regulate the activity of the nonreceptor tyrosine kinase Ack1 (activated Cdc42-associated kinase) are poorly understood. The amino-terminal region of Ack1 is predicted to contain a sterile alpha motif (SAM) domain. SAM domains share a common fold and mediate protein-protein interactions in a wide variety of proteins. Here, we addressed the importance of the Ack1 SAM domain in kinase activity. Results We used immunofluorescence and Western blotting to show that Ack1 deletion mutants lacking the N-terminus displayed significantly reduced autophosphorylation in cells. A minimal construct comprising the N-terminus and kinase domain (NKD) was autophosphorylated, while the kinase domain alone (KD) was not. When expressed in mammalian cells, NKD localized to the plasma membrane, while KD showed a more diffuse cytosolic localization. Co-immunoprecipitation experiments showed a stronger interaction between full length Ack1 and NKD than between full length Ack1 and KD, indicating that the N-terminus was important for Ack1 dimerization. Increasing the local concentration of purified Ack1 kinase domain at the surface of lipid vesicles stimulated autophosphorylation and catalytic activity, consistent with a requirement for dimerization and trans-phosphorylation for activity. Conclusions Collectively, the data suggest that the N-terminus of Ack1 promotes membrane localization and dimerization to allow for autophosphorylation.
Collapse
Affiliation(s)
- Victoria Prieto-Echagüe
- Department of Physiology and Biophysics, School of Medicine, Stony Brook University, Stony Brook, NY 11794-8661, USA
| | | | | | | |
Collapse
|
36
|
Andreotti AH, Schwartzberg PL, Joseph RE, Berg LJ. T-cell signaling regulated by the Tec family kinase, Itk. Cold Spring Harb Perspect Biol 2010; 2:a002287. [PMID: 20519342 DOI: 10.1101/cshperspect.a002287] [Citation(s) in RCA: 191] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The Tec family tyrosine kinases regulate lymphocyte development, activation, and differentiation. In T cells, the predominant Tec kinase is Itk, which functions downstream of the T-cell receptor to regulate phospholipase C-gamma. This review highlights recent advances in our understanding of Itk kinase structure and enzymatic regulation, focusing on Itk protein domain interactions and mechanisms of substrate recognition. We also discuss the role of Itk in the development of conventional versus innate T-cell lineages, including both alphabeta and gammadelta T-cell subsets. Finally, we describe the complex role of Itk signaling in effector T-cell differentiation and the regulation of cytokine gene expression. Together, these data implicate Itk as an important modulator of T-cell signaling and function.
Collapse
Affiliation(s)
- Amy H Andreotti
- Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa 50011, USA.
| | | | | | | |
Collapse
|
37
|
Mikkola ET, Gahmberg CG. Hydrophobic interaction between the SH2 domain and the kinase domain is required for the activation of Csk. J Mol Biol 2010; 399:618-27. [PMID: 20434462 DOI: 10.1016/j.jmb.2010.04.045] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2010] [Revised: 04/21/2010] [Accepted: 04/23/2010] [Indexed: 10/19/2022]
Abstract
The protein tyrosine kinase C-terminal Src kinase (Csk) is activated by the engagement of its Src homology (SH) 2 domain. However, the molecular mechanism required for this is not completely understood. The crystal structure of the active Csk indicates that Csk could be activated by contact between the SH2 domain and the beta3-alphaC loop in the N-terminal lobe of the kinase domain. To study the importance of this interaction for the SH2-domain-mediated activation of Csk, we mutated the amino acid residues forming the contacts between the SH2 domain and the beta3-alphaC loop. The mutation of the beta3-alphaC loop Ala228 to glycine and of the SH2 domain Tyr116, Tyr133, Leu138, and Leu149 to alanine resulted in the inability of the SH2 domain ligand to activate Csk. Furthermore, the overexpressed Csk mutants A228G, Y133A/Y116A, L138A, and L149A were unable to efficiently inactivate endogenous Src in human embryonic kidney 293 cells. The results suggest that the SH2-domain-mediated activation of Csk is dependent on the binding of the beta3-alphaC loop Ala228 to the hydrophobic pocket formed by the side chains of Tyr116, Tyr133, Leu138, and Leu149 on the surface of the SH2 domain.
Collapse
Affiliation(s)
- Esa T Mikkola
- Division of Biochemistry, Department of Biosciences, Faculty of Biological and Environmental Sciences, University of Helsinki, FIN-00014 Helsinki, Finland.
| | | |
Collapse
|
38
|
Bobenchik AM, Choi JY, Mishra A, Rujan IN, Hao B, Voelker DR, Hoch JC, Mamoun CB. Identification of inhibitors of Plasmodium falciparum phosphoethanolamine methyltransferase using an enzyme-coupled transmethylation assay. BMC BIOCHEMISTRY 2010; 11:4. [PMID: 20085640 PMCID: PMC2824672 DOI: 10.1186/1471-2091-11-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2009] [Accepted: 01/19/2010] [Indexed: 01/20/2023]
Abstract
BACKGROUND The phosphoethanolamine methyltransferase, PfPMT, of the human malaria parasite Plasmodium falciparum, a member of a newly identified family of phosphoethanolamine methyltransferases (PMT) found solely in some protozoa, nematodes, frogs, and plants, is involved in the synthesis of the major membrane phospholipid, phosphatidylcholine. PMT enzymes catalyze a three-step S-adenosylmethionine-dependent methylation of the nitrogen atom of phosphoethanolamine to form phosphocholine. In P. falciparum, this activity is a limiting step in the pathway of synthesis of phosphatidylcholine from serine and plays an important role in the development, replication and survival of the parasite within human red blood cells. RESULTS We have employed an enzyme-coupled methylation assay to screen for potential inhibitors of PfPMT. In addition to hexadecyltrimethylammonium, previously known to inhibit PfPMT, two compounds dodecyltrimethylammonium and amodiaquine were also found to inhibit PfPMT activity in vitro. Interestingly, PfPMT activity was not inhibited by the amodiaquine analog, chloroquine, or other aminoquinolines, amino alcohols, or histamine methyltransferase inhibitors. Using yeast as a surrogate system we found that unlike wild-type cells, yeast mutants that rely on PfPMT for survival were sensitive to amodiaquine, and their phosphatidylcholine biosynthesis was inhibited by this compound. Furthermore NMR titration studies to characterize the interaction between amoidaquine and PfPMT demonstrated a specific and concentration dependent binding of the compound to the enzyme. CONCLUSION The identification of amodiaquine as an inhibitor of PfPMT in vitro and in yeast, and the biophysical evidence for the specific interaction of the compound with the enzyme will set the stage for the development of analogs of this drug that specifically inhibit this enzyme and possibly other PMTs.
Collapse
Affiliation(s)
- April M Bobenchik
- Department of Internal Medicine, Section of Infectious Diseases, Yale School of Medicine, 333 Cedar St., New Haven, 06052, USA
- Department of Genetics and Developmental Biology, University of Connecticut Health Center, 263 Farmington Ave., Farmington, 06030, USA
| | - Jae-Yeon Choi
- The Program in Cell Biology, Department of Medicine, National Jewish Medical and Research Center, 1400 Jackson St, Denver, 80206, USA
| | - Arunima Mishra
- Department of Genetics and Developmental Biology, University of Connecticut Health Center, 263 Farmington Ave., Farmington, 06030, USA
| | - Iulian N Rujan
- Department of Molecular, Microbial, and Structural Biology University of Connecticut Health Center, 263 Farmington Ave., Farmington, 06030, USA
| | - Bing Hao
- Department of Molecular, Microbial, and Structural Biology University of Connecticut Health Center, 263 Farmington Ave., Farmington, 06030, USA
| | - Dennis R Voelker
- The Program in Cell Biology, Department of Medicine, National Jewish Medical and Research Center, 1400 Jackson St, Denver, 80206, USA
| | - Jeffrey C Hoch
- Department of Molecular, Microbial, and Structural Biology University of Connecticut Health Center, 263 Farmington Ave., Farmington, 06030, USA
| | - Choukri Ben Mamoun
- Department of Internal Medicine, Section of Infectious Diseases, Yale School of Medicine, 333 Cedar St., New Haven, 06052, USA
| |
Collapse
|
39
|
Thompson EE, Kornev AP, Kannan N, Kim C, Ten Eyck LF, Taylor SS. Comparative surface geometry of the protein kinase family. Protein Sci 2009; 18:2016-26. [PMID: 19610074 PMCID: PMC2786965 DOI: 10.1002/pro.209] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Identifying conserved pockets on the surfaces of a family of proteins can provide insight into conserved geometric features and sites of protein-protein interaction. Here we describe mapping and comparison of the surfaces of aligned crystallographic structures, using the protein kinase family as a model. Pockets are rapidly computed using two computer programs, FADE and Crevasse. FADE uses gradients of atomic density to locate grooves and pockets on the molecular surface. Crevasse, a new piece of software, splits the FADE output into distinct pockets. The computation was run on 10 kinase catalytic cores aligned on the alphaF-helix, and the resulting pockets spatially clustered. The active site cleft appears as a large, contiguous site that can be subdivided into nucleotide and substrate docking sites. Substrate specificity determinants in the active site cleft between serine/threonine and tyrosine kinases are visible and distinct. The active site clefts cluster tightly, showing a conserved spatial relationship between the active site and alphaF-helix in the C-lobe. When the alphaC-helix is examined, there are multiple mechanisms for anchoring the helix using spatially conserved docking sites. A novel site at the top of the N-lobe is present in all the kinases, and there is a large conserved pocket over the hinge and the alphaC-beta4 loop. Other pockets on the kinase core are strongly conserved but have not yet been mapped to a protein-protein interaction. Sites identified by this algorithm have revealed structural and spatially conserved features of the kinase family and potential conserved intermolecular and intramolecular binding sites.
Collapse
Affiliation(s)
- Elaine E Thompson
- Department of Chemistry and Biochemistry, University of California at San DiegoLa Jolla, CA 92093
| | - Alexandr P Kornev
- Department of Pharmacology, Baylor College of MedicineHouston, TX 77030
| | - Natarajan Kannan
- Department of Biochemistry and Molecular Biology, University of GeorgiaAthens, GA 30602-7229,Institute of Bioinformatics, University of GeorgiaAthens, GA 30602-7229
| | - Choel Kim
- Department of Pharmacology, Baylor College of MedicineHouston, TX 77030
| | - Lynn F Ten Eyck
- Department of Chemistry and Biochemistry, University of California at San DiegoLa Jolla, CA 92093,San Diego Supercomputer Center, University of California at San DiegoLa Jolla, CA 92093,*Correspondence to: Lynn F. Ten Eyck, San Diego Supercomputer Center, University of California at San Diego, La Jolla, CA 92093. E-mail:
| | - Susan S Taylor
- Department of Chemistry and Biochemistry, University of California at San DiegoLa Jolla, CA 92093,Department of Pharmacology, Baylor College of MedicineHouston, TX 77030,Department of Pharmacology, University of California at San DiegoLa Jolla, CA 92093
| |
Collapse
|
40
|
Li W, Scarlata S, Miller WT. Evidence for convergent evolution in the signaling properties of a choanoflagellate tyrosine kinase. Biochemistry 2009; 48:5180-6. [PMID: 19413338 DOI: 10.1021/bi9000672] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Until recently, phosphotyrosine signaling was thought to be restricted to multicellular animals. Surprisingly, the unicellular choanoflagellate Monosiga brevicollis contains a number and diversity of tyrosine kinases that exceeds that of any metazoan, including humans. Many of these M. brevicollis tyrosine kinases possess combinations of signaling domains that do not occur in metazoans. One such kinase, the Src-like protein MbSrc4, contains a lipid-binding C2 domain N-terminal to the conserved SH3-SH2-kinase domains. Here, we report that the enzyme is highly active as a tyrosine kinase and that the targeting functions of the C2, SH3, and SH2 domains are similar to the mammalian counterparts. The membrane-binding activity of the C2 domain is functionally equivalent to the myristoylation signal of c-Src, suggesting that it is an example of convergent evolution. When expressed in mammalian cells, full-length MbSrc4 displays low activity toward endogenous proteins, and it cannot functionally substitute for mammalian c-Src in a reporter gene assay. Removal of the MbSrc4 C2 domain leads to increased phosphorylation of cellular proteins. Thus, in contrast to the related M. brevicollis Src-like kinase MbSrc1, MbSrc4 is not targeted properly to mammalian Src substrates, suggesting that the C2 domain plays a specific role in M. brevicollis signaling.
Collapse
Affiliation(s)
- Wanqing Li
- Department of Physiology and Biophysics, School of Medicine, Stony Brook University, Stony Brook, New York 11794, USA
| | | | | |
Collapse
|
41
|
Piserchio A, Ghose R, Cowburn D. Optimized bacterial expression and purification of the c-Src catalytic domain for solution NMR studies. JOURNAL OF BIOMOLECULAR NMR 2009; 44:87-93. [PMID: 19399371 PMCID: PMC2735562 DOI: 10.1007/s10858-009-9318-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2008] [Accepted: 04/06/2009] [Indexed: 05/27/2023]
Abstract
Progression of a host of human cancers is associated with elevated levels of expression and catalytic activity of the Src family of tyrosine kinases (SFKs), making them key therapeutic targets. Even with the availability of multiple crystal structures of active and inactive forms of the SFK catalytic domain (CD), a complete understanding of its catalytic regulation is unavailable. Also unavailable are atomic or near-atomic resolution information about their interactions, often weak or transient, with regulating phosphatases and downstream targets. Solution NMR, the biophysical method best suited to tackle this problem, was previously hindered by difficulties in bacterial expression and purification of sufficient quantities of soluble, properly folded protein for economically viable labeling with NMR-active isotopes. Through a choice of optimal constructs, co-expression with chaperones and optimization of the purification protocol, we have achieved the ability to bacterially produce large quantities of the isotopically-labeled CD of c-Src, the prototypical SFK, and of its activating Tyr-phosphorylated form. All constructs produce excellent spectra allowing solution NMR studies of this family in an efficient manner.
Collapse
Affiliation(s)
- Andrea Piserchio
- New York Structural Biology Center, New York, New York, 10027
- The Department of Chemistry, The City College of New York, New York 10031
| | - Ranajeet Ghose
- The Department of Chemistry, The City College of New York, New York 10031
- Graduate Center of the City University of New York, New York, New York 10016
| | - David Cowburn
- New York Structural Biology Center, New York, New York, 10027
| |
Collapse
|
42
|
Yadav SS, Miller WT. The evolutionarily conserved arrangement of domains in SRC family kinases is important for substrate recognition. Biochemistry 2008; 47:10871-80. [PMID: 18803405 DOI: 10.1021/bi800930e] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The SH3-SH2-kinase domain arrangement in nonreceptor tyrosine kinases has been conserved throughout evolution. For Src family kinases, the relative positions of the domains are important for enzyme regulation; they permit the assembly of Src kinases into autoinhibited conformations. The SH3 and SH2 domains of Src family kinases have an additional role in determining the substrate specificity of the kinase. We addressed the question of whether the domain arrangement of Src family kinases has a role in substrate specificity by producing mutants with alternative arrangements. Our results suggest that changes in the positions of domains can lead to specific changes in the phosphorylation of Sam68 and Cas by Src. Phosphorylation of Cas by several mutants triggers downstream signaling leading to cell migration. The placement of the SH2 domain with respect to the catalytic domain of Src appears to be especially important for proper substrate recognition, while the placement of the SH3 domain is more flexible. The results suggest that the involvement of the SH3 and SH2 domains in substrate recognition is one reason for the strict conservation of the SH3-SH2-kinase architecture.
Collapse
Affiliation(s)
- Shalini S Yadav
- Department of Physiology and Biophysics, School of Medicine, Stony Brook University, Stony Brook, New York 11794-8661, USA
| | | |
Collapse
|
43
|
Ozkirimli E, Yadav SS, Miller WT, Post CB. An electrostatic network and long-range regulation of Src kinases. Protein Sci 2008; 17:1871-80. [PMID: 18687871 DOI: 10.1110/ps.037457.108] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The regulatory mechanism of Src tyrosine kinases includes conformational activation by a change in the catalytic domain tertiary structure and in domain-domain contacts between the catalytic domain and the SH2/SH3 regulatory domains. The kinase is activated when tyrosine phosphorylation occurs on the activation loop, but without phosphorylation of the C-terminal tail. Activation also occurs by allostery when contacts between the catalytic domain (CD) and the regulatory SH3 and SH2 domains are released as a result of exogenous protein binding. The aim of this work is to examine the proposed role of an electrostatic network in the conformational transition and to elucidate the molecular mechanism for long-range, allosteric conformational activation by using a combination of experimental enzyme kinetics and nonequilibrium molecular dynamics simulations. Salt dependence of the induction phase is observed in kinetic assays and supports the role of an electrostatic network in the transition. In addition, simulations provide evidence that allosteric activation involves a concerted motion coupling highly conserved residues, and spanning several nanometers from the catalytic site to the regulatory domain interface to communicate between the CD and the regulatory domains.
Collapse
Affiliation(s)
- Elif Ozkirimli
- 1Medicinal Chemistry and Molecular Pharmacology Department, Markey Center for Structural Biology and Purdue Cancer Center, Purdue University, West Lafayette, Indiana 47907-2091, USA
| | | | | | | |
Collapse
|
44
|
Banavali NK, Roux B. The N-terminal end of the catalytic domain of SRC kinase Hck is a conformational switch implicated in long-range allosteric regulation. Structure 2008; 13:1715-23. [PMID: 16271895 DOI: 10.1016/j.str.2005.09.005] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2005] [Revised: 09/07/2005] [Accepted: 09/07/2005] [Indexed: 11/24/2022]
Abstract
Signal transduction in cell growth and proliferation involves regulation of kinases through long-range allostery between remote protein regions. Molecular dynamics free energy calculations are used to clarify the coupling between the catalytic domain of Src kinase Hck and its N-terminal end connecting to the regulatory SH2 and SH3 modules. The N-terminal end is stable in the orientation required for the regulatory modules to remain properly bound only in the inactive catalytic domain. In the active catalytic domain, the N-terminal end prefers a different conformation consistent with dissociation of the regulatory modules. The free energy surface shows that the N-terminal end acts as a reversible two-state conformational switch coupling the catalytic domain to the regulatory modules. Structural analogy with insulin receptor kinase and c-Src suggests that such reversible conformational switching in a critical hinge region could be a common mechanism in long-range allosteric regulation of protein kinase activity.
Collapse
Affiliation(s)
- Nilesh K Banavali
- Department of Physiology and Biophysics, Weill Medical College of Cornell University, New York, New York 10021, USA
| | | |
Collapse
|
45
|
Li W, Young SL, King N, Miller WT. Signaling properties of a non-metazoan Src kinase and the evolutionary history of Src negative regulation. J Biol Chem 2008; 283:15491-501. [PMID: 18390552 DOI: 10.1074/jbc.m800002200] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Choanoflagellates, unicellular organisms that are closely related to metazoans, possess cell adhesion and signaling proteins previously thought to be unique to animals, suggesting that these components may have played roles in the evolution of metazoan multicellularity. We have cloned, expressed, and purified the nonreceptor tyrosine kinase MbSrc1 from the choanoflagellate Monosiga brevicollis. The kinase has the same domain arrangement as mammalian Src kinases, and we find that the individual Src homology 3 (SH3), SH2, and catalytic domains have similar functions to their mammalian counterparts. In contrast to mammalian c-Src, the SH2 and catalytic domains of MbSrc1 do not appear to be functionally coupled. We cloned and expressed the M. brevicollis homolog of c-Src C-terminal kinase (MbCsk) and showed that it phosphorylates the C terminus of MbSrc1, yet this phosphorylation does not inhibit MbSrc to the same degree seen in the mammalian Src/Csk pair. Thus, Src autoinhibition likely evolved more recently within the metazoan lineage, and it may have played a role in the establishment of intercellular signaling in metazoans.
Collapse
Affiliation(s)
- Wanqing Li
- Department of Physiology and Biophysics, School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA
| | | | | | | |
Collapse
|
46
|
Bhattacharya N, Yi M, Zhou HX, Logan TM. Backbone dynamics in an intramolecular prolylpeptide-SH3 complex from the diphtheria toxin repressor, DtxR. J Mol Biol 2007; 374:977-92. [PMID: 17976643 DOI: 10.1016/j.jmb.2007.09.063] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2007] [Revised: 09/09/2007] [Accepted: 09/21/2007] [Indexed: 10/22/2022]
Abstract
The diphtheria toxin repressor contains an SH3-like domain that forms an intramolecular complex with a proline-rich (Pr) peptide segment and stabilizes the inactive state of the repressor. Upon activation of diphtheria toxin repressor (DtxR) by transition metals, this intramolecular complex must dissociate as the SH3 domain and Pr segment form different interactions in the active repressor. Here we investigate the dynamics of this intramolecular complex using backbone amide nuclear spin relaxation rates determined using NMR spectroscopy and molecular dynamics trajectories. The SH3 domain in the unbound and bound states showed typical dynamics in that the secondary structures were fairly ordered with high generalized order parameters and low effective correlation times, while residues in the loops connecting beta-strands exhibited reduced generalized order parameters and required additional motional terms to adequately model the relaxation rates. Residues forming the Pr segment exhibited low-order parameters with internal rotational correlation times on the order of 0.6 ns-1 ns. Further analysis showed that the SH3 domain was rich in millisecond time scale motions while the Pr segment exhibited motions on the 100 mus time scale. Molecular dynamics simulations indicated structural rearrangements that may contribute to the observed relaxation rates and, together with the observed relaxation rate data, suggested that the Pr segment exhibits a binding<-->unbinding equilibrium. The results here provide new insights into the nature of the intramolecular complex and provide a better understanding of the biological role of the SH3 domain in regulating DtxR activity.
Collapse
Affiliation(s)
- Nilakshee Bhattacharya
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306, USA
| | | | | | | |
Collapse
|
47
|
Yadav SS, Miller WT. Cooperative activation of Src family kinases by SH3 and SH2 ligands. Cancer Lett 2007; 257:116-23. [PMID: 17719722 PMCID: PMC2045694 DOI: 10.1016/j.canlet.2007.07.012] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2007] [Revised: 07/06/2007] [Accepted: 07/10/2007] [Indexed: 11/21/2022]
Abstract
Src family nonreceptor tyrosine kinases are kept in a repressed state by intramolecular interactions involving the SH3 and SH2 domains of the enzymes. Ligands for these domains can displace the intramolecular associations and activate the kinases. Here, we carried out in vitro activation experiments with purified, down-regulated hematopoietic cell kinase (Hck), a Src family kinase. We show that SH3 and SH2 ligands act cooperatively to activate Src family kinases: the presence of one ligand lowers the concentration of the second ligand necessary for activation. To confirm the findings in intact cells, we studied Cas, a Src substrate that possesses SH2 and SH3 ligands. In contrast to wild-type Cas, mutant forms of Cas lacking the SH3 or SH2 ligands were unable to stimulate Src autophosphorylation when expressed in Cas-deficient fibroblasts. Cells expressing the Cas mutants also showed decreased amounts of activated Src at focal adhesions. The results suggest that proteins containing ligands for both SH3 and SH2 domains can produce a synergistic activation of Src family kinases.
Collapse
Affiliation(s)
| | - W. Todd Miller
- * To whom correspondence should be addressed: Dept. of Physiology and Biophysics, Basic Science Tower, T-6, School of Medicine, SUNY at Stony Brook, Stony Brook, NY 11794-8661, Tel.: 631-444-3533; Fax: 631-444-3432, E-mail:
| |
Collapse
|
48
|
Lietha D, Cai X, Ceccarelli DFJ, Li Y, Schaller MD, Eck MJ. Structural basis for the autoinhibition of focal adhesion kinase. Cell 2007; 129:1177-87. [PMID: 17574028 PMCID: PMC2077847 DOI: 10.1016/j.cell.2007.05.041] [Citation(s) in RCA: 363] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2007] [Revised: 05/03/2007] [Accepted: 05/12/2007] [Indexed: 12/18/2022]
Abstract
Appropriate tyrosine kinase signaling depends on coordinated sequential coupling of protein-protein interactions with catalytic activation. Focal adhesion kinase (FAK) integrates signals from integrin and growth factor receptors to regulate cellular responses including cell adhesion, migration, and survival. Here, we describe crystal structures representing both autoinhibited and active states of FAK. The inactive structure reveals a mechanism of inhibition in which the N-terminal FERM domain directly binds the kinase domain, blocking access to the catalytic cleft and protecting the FAK activation loop from Src phosphorylation. Additionally, the FERM domain sequesters the Tyr397 autophosphorylation and Src recruitment site, which lies in the linker connecting the FERM and kinase domains. The active phosphorylated FAK kinase adopts a conformation that is immune to FERM inhibition. Our biochemical and structural analysis shows how the architecture of autoinhibited FAK orchestrates an activation sequence of FERM domain displacement, linker autophosphorylation, Src recruitment, and full catalytic activation.
Collapse
Affiliation(s)
- Daniel Lietha
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | |
Collapse
|
49
|
Seeliger MA, Nagar B, Frank F, Cao X, Henderson MN, Kuriyan J. c-Src binds to the cancer drug imatinib with an inactive Abl/c-Kit conformation and a distributed thermodynamic penalty. Structure 2007; 15:299-311. [PMID: 17355866 DOI: 10.1016/j.str.2007.01.015] [Citation(s) in RCA: 179] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2006] [Revised: 01/18/2007] [Accepted: 01/23/2007] [Indexed: 10/23/2022]
Abstract
The cancer drug imatinib inhibits the tyrosine kinases c-Abl, c-Kit, and the PDGF receptor. Imatinib is less effective against c-Src, which is difficult to understand because residues interacting with imatinib in crystal structures of Abl and c-Kit are conserved in c-Src. The crystal structure of the c-Src kinase domain in complex with imatinib closely resembles that of Abl*imatinib and c-Kit*imatinib, and differs significantly from the inactive "Src/CDK" conformation of the Src family kinases. Attempts to increase the affinity of c-Src for imatinib by swapping residues with the corresponding residues in Abl have not been successful, suggesting that the thermodynamic penalty for adoption of the imatinib-binding conformation by c-Src is distributed over a broad region of the structure. Two mutations that are expected to destabilize the inactive Src/CDK conformation increase drug sensitivity 15-fold, suggesting that the free-energy balance between different inactive states is a key to imatinib binding.
Collapse
Affiliation(s)
- Markus A Seeliger
- Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | | | | | | | | | | |
Collapse
|
50
|
Joseph RE, Min L, Andreotti AH. The linker between SH2 and kinase domains positively regulates catalysis of the Tec family kinases. Biochemistry 2007; 46:5455-62. [PMID: 17425330 DOI: 10.1021/bi602512e] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Tec family nonreceptor tyrosine kinases are key immunological enzymes that control processes that range from T and B cell development to reorganization of the actin cytoskeleton. The full-length Tec kinases have been resistant to crystallization. This lack of structural data and the paucity of in vitro biochemical data for this kinase family leave a void in our understanding of Tec kinase regulation. In this report we have used interleukin-2 tyrosine kinase (Itk) as a model system to gain insight into the regulatory apparatus of the Tec kinases. Use of a quantitative in vitro kinase assay has uncovered an essential role for the short linker region flanked by the SH2 and kinase domains of Itk in positively regulating Itk catalytic activity. The precise residues that allosterically regulate Itk are conserved among Tec kinases, pointing to the conserved nature of this regulatory mechanism within the family. These findings indicate that Tec kinases are not regulated in the same manner as the Src kinases but rather share some of the regulatory features of Csk instead.
Collapse
Affiliation(s)
- Raji E Joseph
- Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa 50011, USA
| | | | | |
Collapse
|