1
|
Murai T, Masaki Y, Yasuhara K. Curcumin induces IL-6 receptor shedding via the ADAM10 proteinase. Biochem Biophys Res Commun 2025; 768:151939. [PMID: 40339440 DOI: 10.1016/j.bbrc.2025.151939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2025] [Accepted: 05/02/2025] [Indexed: 05/10/2025]
Abstract
Proteolytic cleavage and release of single-spanning transmembrane receptors, a process called shedding, is vital for normal physiological functions and pathological responses, including inflammation and cancer. Interleukin-6 receptor (IL-6R) is one of the principal single-spanning transmembrane receptors expressed in hepatocytes and subpopulations of leukocytes, including monocytes and macrophages. Soluble IL-6R (sIL-6R) is also present in human plasma. Herein, we report that membrane-modulating agents including curcumin, enhance IL-6R shedding in human monocytes via a mechanism involving a disintegrin and metalloprotease 10 (ADAM10). Furthermore, amphiphilic derivatives of turmeric curcuminoids increased sIL-6R levels in culture supernatants and altered the membrane domains formed on giant vesicles. These findings offer insights into the mechanism underlying the induction of ectodomain cleavage of IL-6R and ascertain the function of liberated sIL-6R. They can provide a novel strategy to develop therapeutic intervention using membrane-active compounds, such as curcuminoids, for diseases such as inflammation and cancer.
Collapse
Affiliation(s)
- Toshiyuki Murai
- Graduate School of Medicine, Osaka University, 2-2 Yamada-oka, Suita, 565-0871, Osaka, Japan.
| | - Yoshikazu Masaki
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology (NAIST), 8916-5 Takayama-cho, 630-0192, Ikoma, Japan
| | - Kazuma Yasuhara
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology (NAIST), 8916-5 Takayama-cho, 630-0192, Ikoma, Japan; Center for Digital Green-innovation, Nara Institute of Science and Technology (NAIST), 8916-5 Takayama-cho, 630-0192, Ikoma, Japan
| |
Collapse
|
2
|
Zhang YY, Li RF, Tian J, Peng J, Luo XJ. Cerdulatinib Improves Sensorimotor Function and Memory Ability in Mice Suffering from Ischemic Stroke through Targeting Caspase-3-Dependent Apoptosis. ACS Chem Neurosci 2025. [PMID: 40448621 DOI: 10.1021/acschemneuro.5c00082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2025] Open
Abstract
Caspase-3-dependent apoptosis is believed to contribute to the brain injury of ischemic stroke, and a caspase-3 inhibitor has been repeatedly reported to reduce the brain injury of ischemic stroke. However, currently recognized caspase-3 inhibitors are still only used as a research tool, and none of them is available in the clinic to treat brain injury of ischemic stroke. Based on the concept of drug repositioning and bioinformatics techniques, we have identified Cerdulatinib, a multitargeted tyrosine kinase inhibitor to treat tumors and immune-related diseases in the clinic, as a potential caspase-3 inhibitor. This study aims to explore the effect of Cerdulatinib on brain injury from ischemic stroke and the underlying mechanisms. In mice with ischemic stroke, Cerdulatinib significantly decreased infarct volume and improved sensorimotor function, memory ability, and cognitive function. In nerve cells exposed to hypoxia, Cerdulatinib increased cell viability and decreased LDH release. Mechanistically, Cerdulatinib inhibited the protein level of cleaved caspase-3 and the activity of caspase-3, resulting in a decrease in brain cell apoptosis. Based on these results, we conclude that Cerdulatinib can protect the brain against ischemic injury by reducing apoptosis, which is related to the suppression of caspase-3 cleavage and caspase-3 activity. This study may extend the clinical indications of Cerdulatinib in the treatment of patients with an ischemic stroke.
Collapse
Affiliation(s)
- Yi-Yue Zhang
- Department of Laboratory Medicine, The Third Xiangya Hospital of Central South University, Changsha 410013, China
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
| | - Rui-Feng Li
- Department of Laboratory Medicine, The Third Xiangya Hospital of Central South University, Changsha 410013, China
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
| | - Jing Tian
- Department of Clinical Pharmacy, Hunan University of Medicine General Hospital, Huaihua 418000, China
| | - Jun Peng
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
| | - Xiu-Ju Luo
- Department of Laboratory Medicine, The Third Xiangya Hospital of Central South University, Changsha 410013, China
| |
Collapse
|
3
|
Feng X, Dhandore S, Liu Y, Singh K, Ortu F, Suntharalingam K. Osteosarcoma Cell and Osteosarcoma Stem Cell Potent Immunogenic Bi-Nuclear Gallium(III) Complexes. Chemistry 2025; 31:e202500747. [PMID: 40202773 PMCID: PMC12099189 DOI: 10.1002/chem.202500747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 04/05/2025] [Accepted: 04/08/2025] [Indexed: 04/10/2025]
Abstract
We report the synthesis, characterization, anti-osteosarcoma and anti-osteosarcoma stem cells (OSC) properties (cytotoxic and immunogenic) of a series of bi-nuclear gallium(III) complexes with tridentate Schiff base ligands and 8-hydroxyquinoline (1-4). According to monolayer cytotoxicity studies, 1-4 display micromolar potency toward bulk osteosarcoma cells and OSCs. The most effective complex in series 2 is up to 13-fold more potent toward OSCs than cisplatin and carboplatin (the only metallodrugs used in the clinic to treat osteosarcoma). Remarkably, the bi-nuclear gallium(III) complexes 1-4 are significantly more potent toward 3D-cultured sarcospheres than OSCs cultured in monolayers indicating effective penetration of the sarcosphere multicellular architecture. The bi-nuclear gallium(III) complexes 1-4 are up to 53-fold more potent toward sarcospheres than cisplatin and carboplatin. Mechanistic studies show that gallium(III) complex 2 kills osteosarcoma cells by caspase-dependent apoptosis and paraptosis, leading to the release of danger-associated molecular patterns associated with immunogenic cell death. Osteosarcoma cells and OSCs treated with gallium(III) complex 2 are effectively phagocytosed by immune cells, highlighting its immunogenic potential. As far as it is known, gallium(III) complex 2 is the first metal complex to evoke an immunogenic response toward both bulk osteosarcoma cells and OSCs.
Collapse
Affiliation(s)
- Xiao Feng
- School of ChemistryUniversity of LeicesterLeicesterLE1 7RHUK
| | - Shruti Dhandore
- School of ChemistryUniversity of LeicesterLeicesterLE1 7RHUK
| | - Yu Liu
- School of ChemistryUniversity of LeicesterLeicesterLE1 7RHUK
| | - Kuldip Singh
- School of ChemistryUniversity of LeicesterLeicesterLE1 7RHUK
| | - Fabrizio Ortu
- School of ChemistryUniversity of LeicesterLeicesterLE1 7RHUK
| | | |
Collapse
|
4
|
Li Z, Cheng W, Gao K, Liang S, Ke L, Wang M, Fan J, Li D, Zhang P, Xu Z, Li N. Pyroptosis: A spoiler of peaceful coexistence between cells in degenerative bone and joint diseases. J Adv Res 2025; 71:227-262. [PMID: 38876191 DOI: 10.1016/j.jare.2024.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 05/23/2024] [Accepted: 06/07/2024] [Indexed: 06/16/2024] Open
Abstract
BACKGROUND As people age, degenerative bone and joint diseases (DBJDs) become more prevalent. When middle-aged and elderly people are diagnosed with one or more disorders such as osteoporosis (OP), osteoarthritis (OA), and intervertebral disc degeneration (IVDD), it often signals the onset of prolonged pain and reduced functionality. Chronic inflammation has been identified as the underlying cause of various degenerative diseases, including DBJDs. Recently, excessive activation of pyroptosis, a form of programed cell death (PCD) mediated by inflammasomes, has emerged as a primary driver of harmful chronic inflammation. Consequently, pyroptosis has become a potential target for preventing and treating DBJDs. AIM OF REVIEW This review explored the physiological and pathological roles of the pyroptosis pathway in bone and joint development and its relation to DBJDs. Meanwhile, it elaborated the molecular mechanisms of pyroptosis within individual cell types in the bone marrow and joints, as well as the interplay among different cell types in the context of DBJDs. Furthermore, this review presented the latest compelling evidence supporting the idea of regulating the pyroptosis pathway for DBJDs treatment, and discussed the potential, limitations, and challenges of various therapeutic strategies involving pyroptosis regulation. KEY SCIENTIFIC CONCEPTS OF REVIEW In summary, an interesting identity for the unregulated pyroptosis pathway in the context of DBJDs was proposed in this review, which was undertaken as a spoiler of peaceful coexistence between cells in a degenerative environment. Over the extended course of DBJDs, pyroptosis pathway perpetuated its activity through crosstalk among pyroptosis cascades in different cell types, thus exacerbating the inflammatory environment throughout the entire bone marrow and joint degeneration environment. Correspondingly, pyroptosis regulation therapy emerged as a promising option for clinical treatment of DBJDs.
Collapse
Affiliation(s)
- Zhichao Li
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250014, China; Department of Orthopedics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250014, China; Center for Translational Medicine Research and Development, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Wenxiang Cheng
- Center for Translational Medicine Research and Development, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Kuanhui Gao
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Songlin Liang
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250014, China; Center for Translational Medicine Research and Development, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Liqing Ke
- Center for Translational Medicine Research and Development, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Mengjie Wang
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Jilin Fan
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Dandan Li
- College of Integrated Traditional Chinese and Western Medicine, Hebei University of Chinese Medicine, Shijiazhuang 050011, China
| | - Peng Zhang
- Center for Translational Medicine Research and Development, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Faculty of Biomedical Engineering, Shenzhen University of Advanced Technology, Shenzhen 518000, China; Key Laboratory of Biomedical Imaging Science and System, Chinese Academy of Sciences, Shenzhen, 518000 China; Shandong Zhongke Advanced Technology Co., Ltd., Jinan, 250300 China.
| | - Zhanwang Xu
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250014, China; Department of Orthopedics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250014, China.
| | - Nianhu Li
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250014, China; Department of Orthopedics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250014, China.
| |
Collapse
|
5
|
Rajakrishna N, Lim ST, Wang X, Wong TT. Caspase-mediated pathways in retinal ganglion cell injury: a novel therapeutic target for glaucoma. Front Cell Dev Biol 2025; 13:1586240. [PMID: 40371387 PMCID: PMC12075209 DOI: 10.3389/fcell.2025.1586240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2025] [Accepted: 04/14/2025] [Indexed: 05/16/2025] Open
Abstract
Glaucoma is a complex disease of the optic nerve leading to vision loss and blindness, with high worldwide incidence and disproportionate prevalence in older populations. Primary open-angle glaucoma, caused by a reduction in outflow of aqueous humor through the trabecular meshwork, is the most common subset of the disease, though its underlying molecular mechanisms are not well understood. While increased intraocular pressure is the most common risk factor in glaucoma progression, the disease is ultimately characterized by the loss of retinal ganglion cells (RGCs) and destruction of the optic nerve. Given the irreversibility of RGC death, neuroprotection of RGCs is a promising avenue of glaucoma prevention and treatment. The caspase family of proteins are integral members of the apoptotic death cascade. They have been shown to play a significant role in RGC death in numerous models of retinal injury. Direct inhibition of several caspase family members, through targeted siRNAs and peptidomimetics, demonstrate promising capacity to reduce caspase expression and preserve RGCs following intraocular pressure increase or optic injury. A wide variety of alternative therapeutics targeted for RGC survival, including neurotrophins, immunomodulators, cytoprotectants, and endogenous hormones, also display indirect caspase-inhibiting capabilities. Following intraocular pressure increase or external retinal injury, both direct and indirect caspase inhibitors elicit higher RGC counts, increased RGC layer thickness, and attenuation of RGC damage, clearly demonstrating the neuroprotective abilities of caspase inhibitors. Caspase inhibition, particularly by direct approaches of siRNA or peptidomimetic-based therapeutics, has the potential to achieve substantial neuroprotection in the glaucomatous eye.
Collapse
Affiliation(s)
- Nisha Rajakrishna
- Drug Delivery and Ocular Therapeutics, Singapore Eye Research Institute, Singapore, Singapore
- Centre for Vision Research, Duke-NUS Medical School, Singapore, Singapore
| | - Seok Ting Lim
- Drug Delivery and Ocular Therapeutics, Singapore Eye Research Institute, Singapore, Singapore
- Centre for Vision Research, Duke-NUS Medical School, Singapore, Singapore
| | - Xiaomeng Wang
- Drug Delivery and Ocular Therapeutics, Singapore Eye Research Institute, Singapore, Singapore
- Centre for Vision Research, Duke-NUS Medical School, Singapore, Singapore
- Institute of Molecular and Cell Biology, A*STAR, Singapore, Singapore
| | - Tina T. Wong
- Drug Delivery and Ocular Therapeutics, Singapore Eye Research Institute, Singapore, Singapore
- Centre for Vision Research, Duke-NUS Medical School, Singapore, Singapore
- Glaucoma Department, Singapore National Eye Centre, Singapore, Singapore
| |
Collapse
|
6
|
Wang Y, Singh K, Lu C, Suntharalingam K. Anti-Cancer Stem Cell Properties of Square Planar Copper(II) Complexes with Vanillin Schiff Base Ligands. Molecules 2025; 30:1636. [PMID: 40286223 PMCID: PMC11990672 DOI: 10.3390/molecules30071636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Revised: 03/30/2025] [Accepted: 04/02/2025] [Indexed: 04/29/2025] Open
Abstract
Current breast cancer therapies are unable to positively impact the lives of a significant proportion of diagnosed patients (24% based on 10-year survival rate). Breast cancer relapse and metastasis, the leading cause of breast cancer-associated deaths, is linked to the existence of breast cancer stem cells (CSCs). Redox-modulating metal complexes have been used to perturb the redox balance in breast CSCs and effect cell death. Here, we sought to expand this promising class of anti-breast CSC agents. Specifically, we report the synthesis, and anti-breast CSC properties of a series of copper(II) complexes bearing regioisomeric vanillin Schiff base ligands (1-4). X-ray crystallography studies show that the copper(II) complexes 1-4 adopt square planar geometries with the copper(II) centre coordinated to two vanillin Schiff base ligands. The most effective copper(II) complex within the series 4 displays low micromolar potency towards breast CSCs, up to 4.6-fold higher than salinomycin and cisplatin. Mechanistic studies indicate that copper(II) complex 4 elevates reactive oxygen species levels in breast CSCs, leading to activation of the JNK/p38 pathway and caspase-dependent apoptosis. Overall, this work expands the library of anti-breast CSC copper(II) complexes and provides insight into their mode of action.
Collapse
Affiliation(s)
- Yihan Wang
- School of Chemistry, University of Leicester, Leicester LE1 7RH, UK; (Y.W.); (K.S.)
| | - Kuldip Singh
- School of Chemistry, University of Leicester, Leicester LE1 7RH, UK; (Y.W.); (K.S.)
| | - Chunxin Lu
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, China
| | | |
Collapse
|
7
|
Xiao J, Wang L, Zhang B, Hou A. Cell death in acute lung injury: caspase-regulated apoptosis, pyroptosis, necroptosis, and PANoptosis. Front Pharmacol 2025; 16:1559659. [PMID: 40191423 PMCID: PMC11968751 DOI: 10.3389/fphar.2025.1559659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Accepted: 03/03/2025] [Indexed: 04/09/2025] Open
Abstract
There has been abundant research on the variety of programmed cell death pathways. Apoptosis, pyroptosis, and necroptosis under the action of the caspase family are essential for the innate immune response. Caspases are classified into inflammatory caspase-1/4/5/11, apoptotic caspase-3/6/7, and caspase-2/8/9/10. Although necroptosis is not caspase-dependent to transmit cell death signals, it can cross-link with pyroptosis and apoptosis signals under the regulation of caspase-8. An increasing number of studies have reiterated the involvement of the caspase family in acute lung injuries caused by bacterial and viral infections, blood transfusion, and ventilation, which is influenced by noxious stimuli that activate or inhibit caspase engagement pathways, leading to subsequent lung injury. This article reviews the role of caspases implicated in diverse programmed cell death mechanisms in acute lung injury and the status of research on relevant inhibitors against essential target proteins of the described cell death mechanisms. The findings of this review may help in delineating novel therapeutic targets for acute lung injury.
Collapse
Affiliation(s)
| | | | | | - Ana Hou
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
8
|
Jiang P, Chipurupalli S, Yoo BH, Liu X, Rosen KV. Inactivation of necroptosis-promoting protein MLKL creates a therapeutic vulnerability in colorectal cancer cells. Cell Death Dis 2025; 16:118. [PMID: 39979285 PMCID: PMC11842741 DOI: 10.1038/s41419-025-07436-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 01/27/2025] [Accepted: 02/06/2025] [Indexed: 02/22/2025]
Abstract
Mortality from colorectal cancer (CRC) is significant, and novel CRC therapies are needed. A pseudokinase MLKL typically executes necroptotic cell death, and MLKL inactivation protects cells from such death. However, we found unexpectedly that MLKL gene knockout enhanced CRC cell death caused by a protein synthesis inhibitor homoharringtonine used for chronic myeloid leukemia treatment. In an effort to explain this finding, we observed that MLKL gene knockout reduces the basal CRC cell autophagy and renders such autophagy critically dependent on the presence of VPS37A, a component of the ESCRT-I complex. We further found that the reason why homoharringtonine enhances CRC cell death caused by MLKL gene knockout is that homoharringtonine activates p38 MAP kinase and thereby prevents VPS37A from supporting autophagy in MLKL-deficient cells. We observed that the resulting inhibition of the basal autophagy in CRC cells triggers their parthanatos, a cell death type driven by poly(ADP-ribose) polymerase hyperactivation. Finally, we discovered that a pharmacological MLKL inhibitor necrosulfonamide strongly cooperates with homoharringtonine in suppressing CRC cell tumorigenicity in mice. Thus, while MLKL promotes cell death during necroptosis, MLKL supports the basal autophagy in CRC cells and thereby protects them from death. MLKL inactivation reduces such autophagy and renders the cells sensitive to autophagy inhibitors, such as homoharringtonine. Hence, MLKL inhibition creates a therapeutic vulnerability that could be utilized for CRC treatment.
Collapse
Affiliation(s)
- Peijia Jiang
- Departments of Pediatrics & Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS, Canada
| | - Sandhya Chipurupalli
- Departments of Pediatrics & Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS, Canada
| | - Byong Hoon Yoo
- Departments of Pediatrics & Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS, Canada
| | - Xiaoyang Liu
- Departments of Pediatrics & Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS, Canada
| | - Kirill V Rosen
- Departments of Pediatrics & Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS, Canada.
| |
Collapse
|
9
|
Vaziri N, Shutt TE, Karim W, Raedler TJ, Pantelis C, Thomas N, Jayaram M, Greenway SC, Bousman CA. Examination of mitochondria- and inflammasome-mediated mechanisms of clozapine-induced myocarditis using patient-derived iPSC cardiomyocytes. Mol Psychiatry 2025. [DOI: 10.1038/s41380-025-02935-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 01/22/2025] [Accepted: 02/12/2025] [Indexed: 03/20/2025]
|
10
|
Kirby CS, Islam N, Wier E, Alphonse MP, Sweren E, Wang G, Liu H, Kim D, Li A, Lee SS, Overmiller AM, Xue Y, Reddy S, Archer NK, Miller LS, Yu J, Huang W, Jones JW, Kim S, Kane MA, Silverman RH, Garza LA. RNase L represses hair follicle regeneration through altered innate immune signaling. J Clin Invest 2025; 135:e172595. [PMID: 39903537 PMCID: PMC11910212 DOI: 10.1172/jci172595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 01/24/2025] [Indexed: 02/06/2025] Open
Abstract
Mammalian injury responses are predominantly characterized by fibrosis and scarring rather than functional regeneration. This limited regenerative capacity in mammals could reflect a loss of proregeneration programs or active suppression by genes functioning akin to tumor suppressors. To uncover programs governing regeneration in mammals, we screened transcripts in human participants following laser rejuvenation treatment and compared them with mice with enhanced wound-induced hair neogenesis (WIHN), a rare example of mammalian organogenesis. We found that Rnasel-/- mice exhibit an increased regenerative capacity, with elevated WIHN through enhanced IL-36α. Consistent with RNase L's known role to stimulate caspase-1, we found that pharmacologic inhibition of caspases promoted regeneration in an IL-36-dependent manner in multiple epithelial tissues. We identified a negative feedback loop, where RNase L-activated caspase-1 restrains the proregenerative dsRNA-TLR3 signaling cascade through the cleavage of toll-like adaptor protein TRIF. Through integrated single-cell RNA-seq and spatial transcriptomic profiling, we confirmed OAS & IL-36 genes to be highly expressed at the site of wounding and elevated in Rnasel-/- mouse wounds. This work suggests that RNase L functions as a regeneration repressor gene, in a functional trade off that tempers immune hyperactivation during viral infection at the cost of inhibiting regeneration.
Collapse
Affiliation(s)
- Charles S. Kirby
- Department of Dermatology and
- Cell Biology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Nasif Islam
- Department of Dermatology and
- Cell Biology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | | | | | | | | | | | - Dongwon Kim
- Department of Dermatology and
- Department of Biochemical Engineering, College of Science and Technology, Dongseo University, Busan, South Korea
| | - Ang Li
- Department of Dermatology and
| | | | - Andrew M. Overmiller
- Laboratory of Skin Biology, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | | | - Sashank Reddy
- Department of Plastic Surgery, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | | | | | - Jianshi Yu
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland, USA
| | - Weiliang Huang
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland, USA
| | - Jace W. Jones
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland, USA
| | - Sooah Kim
- Department of Dermatology and
- Department of Environment Science and Biotechnology, College of Medical Science, Jeonju University, Jeonju, South Korea
| | - Maureen A. Kane
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland, USA
| | - Robert H. Silverman
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Luis A. Garza
- Department of Dermatology and
- Cell Biology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
- Department of Oncology, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
11
|
Singh K, Northcote-Smith J, Feng X, Singh K, Suntharalingam K. The Anti-Cancer Stem Cell Properties of Copper(II)-Terpyridine Complexes with Attached Salicylaldehyde Moieties. Chembiochem 2025; 26:e202400703. [PMID: 39401178 DOI: 10.1002/cbic.202400703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/11/2024] [Accepted: 10/14/2024] [Indexed: 11/13/2024]
Abstract
We report the synthesis, characterisation, and anti-breast cancer stem cell (CSC) properties of two copper(II)-terpyridine complexes with bidentate salicylaldehyde moieties (2-hydroxybenzaldehyde for 1 and 2-hydroxy-1-naphthaldehyde for 2). The copper(II)-terpyridine complexes 1 and 2 are stable in biologically relevant aqueous solutions and display micromolar potency towards breast CSCs. The most effective complex 1 is 5-fold and 6.6-fold more potent towards breast CSCs than salinomycin and cisplatin, respectively. The copper(II)-terpyridine complexes 1 and 2 also decrease the formation and viability of three-dimensionally cultured mammospheres within the micromolar range. Notably complex 1 is up to 7-fold more potent towards mammospheres than salinomycin or cisplatin. Mechanistic studies suggest that the copper(II)-terpyridine complexes 1 and 2 are able to readily enter breast CSCs, elevate intracellular reactive oxygen species levels, induce DNA damage (presumably by oxidative DNA cleavage), and evoke apoptosis that is independent of caspases. This study shows that the copper(II)-terpyridine motif is a useful building block for the design of anti-breast CSC agents and reinforces the therapeutic potential of copper coordination complexes.
Collapse
Affiliation(s)
- Karampal Singh
- School of Chemistry, University, of Leicester, Leicester, UK
| | | | - Xiao Feng
- School of Chemistry, University, of Leicester, Leicester, UK
| | - Kuldip Singh
- School of Chemistry, University, of Leicester, Leicester, UK
| | | |
Collapse
|
12
|
Engelhardt J, Klawonn A, Dobbelstein AK, Abdelrahman A, Oldenburg J, Brandenburg K, Müller CE, Weindl G. Lipopolysaccharide-Neutralizing Peptide Modulates P2X7 Receptor-Mediated Interleukin-1β Release. ACS Pharmacol Transl Sci 2025; 8:136-145. [PMID: 39816791 PMCID: PMC11729421 DOI: 10.1021/acsptsci.4c00496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 11/25/2024] [Accepted: 12/17/2024] [Indexed: 01/18/2025]
Abstract
Lipopolysaccharide (LPS)-neutralizing peptides are emerging as new potential therapeutic modalities to treat sepsis and skin infections. Purinergic ligand-gated ion channels (P2X receptors) play a critical role in various biological processes, including inflammation. Recent drug development efforts have significantly focused on the modulation of P2X receptors. Here, we investigated the effects of the synthetic LPS-neutralizing peptide Pep19-2.5 on human P2X receptors in cells of the innate immune system. Pep19-2.5 concentration-dependently triggered Ca2+ influx, interleukin (IL)-1β, and lactate dehydrogenase (LDH) release in Toll-like receptor-stimulated human macrophages and monocytes. Ca2+ influx was mediated at least partially by P2X7 receptors, and IL-1β and LDH release by P2X7 receptors, respectively. Confocal microscopy confirmed the colocalization of Pep19-2.5 with P2X7 receptors. Pep19-2.5-induced IL-1β release in primed cells was dependent on K+ efflux, caspase-1, and the nucleotide-binding oligomerization domain-like receptor family pyrin domain-containing protein 3 inflammasome. In the presence of the P2X7 receptor agonist 2'(3')-O-(4-benzoylbenzoyl)adenosine-5'-triphosphate, Pep19-2.5 reduced IL-1β and LDH release. In 1321N1, astrocytoma cells stably transfected with human P2X receptors, Pep19-2.5 potently modulated P2X7 and P2X4 receptors (IC50 values of 0.346 and 0.146 μM, respectively) but showed less (P2X1, P2X3) or no activity (P2X2) at other P2X receptor subtypes. Our findings underline the potential of LPS-neutralizing peptides as modulators of P2X receptors, thus expanding their applicability beyond the treatment of sepsis to the treatment of inflammatory diseases.
Collapse
Affiliation(s)
- Jonas Engelhardt
- Pharmaceutical
Institute, Pharmacology and Toxicology, University of Bonn, Gerhard-Domagk-Str. 3, 53121 Bonn, Germany
| | - Anna Klawonn
- Pharmaceutical
Institute, Pharmacology and Toxicology, University of Bonn, Gerhard-Domagk-Str. 3, 53121 Bonn, Germany
| | - Ann-Kathrin Dobbelstein
- Pharmaceutical
Institute, Pharmacology and Toxicology, University of Bonn, Gerhard-Domagk-Str. 3, 53121 Bonn, Germany
| | - Aliaa Abdelrahman
- Pharmaceutical
Institute, Pharmaceutical and Medicinal Chemistry, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| | - Johannes Oldenburg
- Institute
of Experimental Haematology and Transfusion Medicine, University Clinic
Bonn, Sigmund-Freud-Straße 25, 53127 Bonn, Germany
| | - Klaus Brandenburg
- Brandenburg
Antiinfektiva GmbH, c/o
Forschungszentrum Borstel, 23845 Borstel, Germany
| | - Christa E. Müller
- Pharmaceutical
Institute, Pharmaceutical and Medicinal Chemistry, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| | - Günther Weindl
- Pharmaceutical
Institute, Pharmacology and Toxicology, University of Bonn, Gerhard-Domagk-Str. 3, 53121 Bonn, Germany
| |
Collapse
|
13
|
Siddiqui S, Liu F, Kanthasamy AG, McGrail M. Stat3 mediates Fyn kinase-driven dopaminergic neurodegeneration and microglia activation. Dis Model Mech 2024; 17:dmm052011. [PMID: 39641161 PMCID: PMC11646115 DOI: 10.1242/dmm.052011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 10/17/2024] [Indexed: 12/07/2024] Open
Abstract
The Alzheimer's disease and Parkinson's disease risk locus FYN kinase is implicated in neurodegeneration and inflammatory signaling. To investigate in vivo mechanisms of Fyn-driven neurodegeneration, we built a zebrafish neural-specific Gal4:UAS model of constitutively active FynY531F signaling. Using in vivo live imaging, we demonstrated that neural FynY531F expression leads to dopaminergic neuron loss and mitochondrial aggregation in 5 day larval brain. Dopaminergic loss coincided with microglia activation and induction of tnfa, il1b and il12a inflammatory cytokine expression. Transcriptome analysis revealed Stat3 signaling as a potential Fyn target. Chemical inhibition experiments confirmed Fyn-driven dopaminergic neuron loss, and the inflammatory response was dependent upon activation of Stat3 and NF-κB pathways. Dual chemical inhibition demonstrated that Stat3 acts synergistically with NF-κB in dopaminergic neuron degeneration. These results identify Stat3 as a novel downstream effector of Fyn signaling in neurodegeneration and inflammation.
Collapse
Affiliation(s)
- Sahiba Siddiqui
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, IA 50011, USA
- Interdepartmental Genetics and Genomics Graduate Program (IGG), Iowa State University, Ames, IA 50011, USA
| | - Fang Liu
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, IA 50011, USA
| | - Anumantha G. Kanthasamy
- Center for Brain Science and Neurodegenerative Diseases, Department of Physiology and Pharmacology, University of Georgia, Athens, GA 30602, USA
| | - Maura McGrail
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, IA 50011, USA
- Interdepartmental Genetics and Genomics Graduate Program (IGG), Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
14
|
Asar R, Dhindwal P, Ruzzini A. Structural and functional analysis of a bile salt hydrolase from the bison microbiome. J Biol Chem 2024; 300:107769. [PMID: 39276930 PMCID: PMC11736000 DOI: 10.1016/j.jbc.2024.107769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/15/2024] [Accepted: 08/26/2024] [Indexed: 09/17/2024] Open
Abstract
The bile salt hydrolases (BSHs) are significant constituents of animal microbiomes. An evolving appreciation of their roles in health and disease has established them as targets of pharmacological inhibition. These bacterial enzymes belong to the N-terminal nucleophile superfamily and are best known to catalyze the deconjugation of glycine or taurine from bile salts to release bile acid substrates for transformation and or metabolism in the gastrointestinal tract. Here, we identify and describe the BSH from a common member of the Plains bison microbiome, Arthrobacter citreus (BSHAc). Steady-state kinetic analyses demonstrated that BSHAc is a broad-spectrum hydrolase with a preference for glycine-conjugates and deoxycholic acid (DCA). Second-order rate constants (kcat/KM) for BSHAc-catalyzed reactions of relevant bile salts-glyco- and tauro-conjugates of cholic acid and DCA- varied by ∼30-fold and measured between 1.4 × 105 and 4.3 × 106 M-1s-1. Interestingly, a pan-BSH inhibitor named AAA-10 acted as a slow irreversible inhibitor of BSHAc with a rate of inactivation (kinact) of ∼2 h-1 and a second order rate constant (kinact/KI) of ∼24 M-1s-1 for the process. Structural characterization of BSHAc reacted with AAA-10 showed covalent modification of the N-terminal cysteine nucleophile, providing molecular details for an enzyme-stabilized product formed from this mechanism-based inhibitor's α-fluoromethyl ketone warhead. Structural comparison of the BSHs and BSH:inhibitor complexes highlighted the plasticity of the steroid-binding site, including a flexible loop that is variable across well-studied BSHs.
Collapse
Affiliation(s)
- Radwa Asar
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Poonam Dhindwal
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Antonio Ruzzini
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada; Department of Biochemistry, Microbiology and Immunology, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada.
| |
Collapse
|
15
|
Stoyanov M, Martinikova AS, Matejkova K, Horackova K, Zemankova P, Burdova K, Zemanova Z, Kleiblova P, Kleibl Z, Macurek L. PPM1D activity promotes cellular transformation by preventing senescence and cell death. Oncogene 2024; 43:3081-3093. [PMID: 39237765 PMCID: PMC11473410 DOI: 10.1038/s41388-024-03149-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 08/23/2024] [Accepted: 08/29/2024] [Indexed: 09/07/2024]
Abstract
Cell cycle checkpoints, oncogene-induced senescence and programmed cell death represent intrinsic barriers to tumorigenesis. Protein phosphatase magnesium-dependent 1 (PPM1D) is a negative regulator of the tumour suppressor p53 and has been implicated in termination of the DNA damage response. Here, we addressed the consequences of increased PPM1D activity resulting from the gain-of-function truncating mutations in exon 6 of the PPM1D. We show that while control cells permanently exit the cell cycle and reside in senescence in the presence of DNA damage caused by ionising radiation or replication stress induced by the active RAS oncogene, RPE1-hTERT and BJ-hTERT cells carrying the truncated PPM1D continue proliferation in the presence of DNA damage, form micronuclei and accumulate genomic rearrangements revealed by karyotyping. Further, we show that increased PPM1D activity promotes cell growth in the soft agar and formation of tumours in xenograft models. Finally, expression profiling of the transformed clones revealed dysregulation of several oncogenic and tumour suppressor pathways. Our data support the oncogenic potential of PPM1D in the context of exposure to ionising radiation and oncogene-induced replication stress.
Collapse
Affiliation(s)
- Miroslav Stoyanov
- Cancer Cell Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
- Department of Cell Biology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Andra S Martinikova
- Cancer Cell Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Katerina Matejkova
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
- Department of Genetics and Microbiology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Klara Horackova
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Petra Zemankova
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Kamila Burdova
- Cancer Cell Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Zuzana Zemanova
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Petra Kleiblova
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Zdenek Kleibl
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Libor Macurek
- Cancer Cell Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic.
| |
Collapse
|
16
|
Liang J, Tian X, Zhou M, Yan F, Fan J, Qin Y, Chen B, Huo X, Yu Z, Tian Y, Deng S, Peng Y, Wang Y, Liu B, Ma X. Shikonin and chitosan-silver nanoparticles synergize against triple-negative breast cancer through RIPK3-triggered necroptotic immunogenic cell death. Biomaterials 2024; 309:122608. [PMID: 38744189 DOI: 10.1016/j.biomaterials.2024.122608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/21/2024] [Accepted: 05/07/2024] [Indexed: 05/16/2024]
Abstract
Necroptotic immunogenic cell death (ICD) can activate the human immune system to treat the metastasis and recurrence of triple-negative breast cancer (TNBC). However, developing the necroptotic inducer and precisely delivering it to the tumor site is the key issue. Herein, we reported that the combination of shikonin (SHK) and chitosan silver nanoparticles (Chi-Ag NPs) effectively induced ICD by triggering necroptosis in 4T1 cells. Moreover, to address the lack of selectivity of drugs for in vivo application, we developed an MUC1 aptamer-targeted nanocomplex (MUC1@Chi-Ag@CPB@SHK, abbreviated as MUC1@ACS) for co-delivering SHK and Chi-Ag NPs. The accumulation of MUC1@ACS NPs at the tumor site showed a 6.02-fold increase compared to the free drug. Subsequently, upon reaching the tumor site, the acid-responsive release of SHK and Chi-Ag NPs from MUC1@ACS NPs cooperatively induced necroptosis in tumor cells by upregulating the expression of RIPK3, p-RIPK3, and tetrameric MLKL, thereby effectively triggering ICD. The sequential maturation of dendritic cells (DCs) subsequently enhanced the infiltration of CD8+ and CD4+ T cells in tumors, while inhibiting regulatory T cells (Treg cells), resulting in the effective treatment of primary and distal tumor growth and the inhibition of TNBC metastasis. This work highlights the importance of nanoparticles in mediating drug interactions during necroptotic ICD.
Collapse
Affiliation(s)
- Jiahao Liang
- Pharmaceutical Research Center, Second Affiliated Hospital, Dalian Medical University, Dalian, China; Dalian Key Laboratory of Metabolic Target Characterization and Traditional Chinese Medicine Intervention, College of Integrative Medicine, College of Pharmacy, Dalian Medical University, Dalian, China
| | - Xiangge Tian
- Pharmaceutical Research Center, Second Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Meirong Zhou
- Pharmaceutical Research Center, Second Affiliated Hospital, Dalian Medical University, Dalian, China; Dalian Key Laboratory of Metabolic Target Characterization and Traditional Chinese Medicine Intervention, College of Integrative Medicine, College of Pharmacy, Dalian Medical University, Dalian, China
| | - Fei Yan
- Pharmaceutical Research Center, Second Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Jialong Fan
- College of Biology, Hunan University, Changsha, China
| | - Yan Qin
- College of Biology, Hunan University, Changsha, China
| | - Binlong Chen
- College of Biology, Hunan University, Changsha, China
| | - Xiaokui Huo
- Pharmaceutical Research Center, Second Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Zhenlong Yu
- Pharmaceutical Research Center, Second Affiliated Hospital, Dalian Medical University, Dalian, China; Dalian Key Laboratory of Metabolic Target Characterization and Traditional Chinese Medicine Intervention, College of Integrative Medicine, College of Pharmacy, Dalian Medical University, Dalian, China.
| | - Yan Tian
- Dalian Key Laboratory of Metabolic Target Characterization and Traditional Chinese Medicine Intervention, College of Integrative Medicine, College of Pharmacy, Dalian Medical University, Dalian, China
| | - Sa Deng
- Dalian Key Laboratory of Metabolic Target Characterization and Traditional Chinese Medicine Intervention, College of Integrative Medicine, College of Pharmacy, Dalian Medical University, Dalian, China
| | - Yulin Peng
- Dalian Key Laboratory of Metabolic Target Characterization and Traditional Chinese Medicine Intervention, College of Integrative Medicine, College of Pharmacy, Dalian Medical University, Dalian, China
| | - Yan Wang
- Dalian Key Laboratory of Metabolic Target Characterization and Traditional Chinese Medicine Intervention, College of Integrative Medicine, College of Pharmacy, Dalian Medical University, Dalian, China
| | - Bin Liu
- College of Biology, Hunan University, Changsha, China.
| | - Xiaochi Ma
- Pharmaceutical Research Center, Second Affiliated Hospital, Dalian Medical University, Dalian, China.
| |
Collapse
|
17
|
Ozaki K, Nagahara H, Kawamura A, Ohgita T, Higashi S, Ogura K, Tsutsuki H, Iyoda S, Yokotani A, Yamaji T, Moss J, Yahiro K. Extracellular Vesicle Inhibitors Enhance Cholix-Induced Cell Death via Regulation of the JNK-Dependent Pathway. Toxins (Basel) 2024; 16:380. [PMID: 39330838 PMCID: PMC11435833 DOI: 10.3390/toxins16090380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 08/25/2024] [Accepted: 08/27/2024] [Indexed: 09/28/2024] Open
Abstract
Vibrio cholerae is an important foodborne pathogen. Cholix cytotoxin (Cholix), produced by V. cholerae, is a novel eukaryotic elongation factor 2 (eEF2) adenosine diphosphate ribosyltransferase that causes host cell death by inhibiting protein synthesis. However, the role of Cholix in the infectious diseases caused by V. cholerae remains unclear. Some bacterial cytotoxins are carried by host extracellular vesicles (EVs) and transferred to other cells. In this study, we investigated the effects of EV inhibitors and EV-regulating proteins on Cholix-induced hepatocyte death. We observed that Cholix-induced cell death was significantly enhanced in the presence of EV inhibitors (e.g., dimethyl amiloride, and desipramine) and Rab27a-knockdown cells, but it did not involve a sphingomyelin-dependent pathway. RNA sequencing analysis revealed that desipramine, imipramine, and EV inhibitors promoted the Cholix-activated c-Jun NH2-terminal kinase (JNK) pathway. Furthermore, JNK inhibition decreased desipramine-enhanced Cholix-induced poly (ADP-ribose) polymerase (PARP) cleavage. In addition, suppression of Apaf-1 by small interfering RNA further enhanced Cholix-induced PARP cleavage by desipramine. We identified a novel function of desipramine in which the stimulated JNK pathway promoted a mitochondria-independent cell death pathway by Cholix.
Collapse
Affiliation(s)
- Kazuya Ozaki
- Laboratory of Microbiology and Infection Control, Division of Biological Sciences, Kyoto Pharmaceutical University, Kyoto 607-8414, Japan; (K.O.); (H.N.); (A.K.); (S.H.); (A.Y.)
| | - Hiyo Nagahara
- Laboratory of Microbiology and Infection Control, Division of Biological Sciences, Kyoto Pharmaceutical University, Kyoto 607-8414, Japan; (K.O.); (H.N.); (A.K.); (S.H.); (A.Y.)
| | - Asaka Kawamura
- Laboratory of Microbiology and Infection Control, Division of Biological Sciences, Kyoto Pharmaceutical University, Kyoto 607-8414, Japan; (K.O.); (H.N.); (A.K.); (S.H.); (A.Y.)
| | - Takashi Ohgita
- Center for Instrumental Analysis, Kyoto Pharmaceutical University, Kyoto 607-8414, Japan;
| | - Sachika Higashi
- Laboratory of Microbiology and Infection Control, Division of Biological Sciences, Kyoto Pharmaceutical University, Kyoto 607-8414, Japan; (K.O.); (H.N.); (A.K.); (S.H.); (A.Y.)
| | - Kohei Ogura
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto 606-8501, Japan;
| | - Hiroyasu Tsutsuki
- Department of Microbiology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8556, Japan;
| | - Sunao Iyoda
- Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo 162-8640, Japan;
| | - Atsushi Yokotani
- Laboratory of Microbiology and Infection Control, Division of Biological Sciences, Kyoto Pharmaceutical University, Kyoto 607-8414, Japan; (K.O.); (H.N.); (A.K.); (S.H.); (A.Y.)
- Kyoto Biken Laboratories, Inc., Kyoto 611-0041, Japan
| | - Toshiyuki Yamaji
- Department of Biochemistry and Cell Biology, National Institute of Infectious Diseases, Tokyo 162-8640, Japan;
- Department of Microbiology and Immunology, Faculty of Pharmacy, Juntendo University, Chiba 279-0013, Japan
| | - Joel Moss
- Clinical Care Medicine and Pulmonary Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20824-0105, USA;
| | - Kinnosuke Yahiro
- Laboratory of Microbiology and Infection Control, Division of Biological Sciences, Kyoto Pharmaceutical University, Kyoto 607-8414, Japan; (K.O.); (H.N.); (A.K.); (S.H.); (A.Y.)
| |
Collapse
|
18
|
Zhao C, Zhang J, Zhou H, Setroikromo R, Poelarends GJ, Dekker FJ. Exploration of Hydrazide-Based HDAC8 PROTACs for the Treatment of Hematological Malignancies and Solid Tumors. J Med Chem 2024; 67:14016-14039. [PMID: 39089850 PMCID: PMC11345830 DOI: 10.1021/acs.jmedchem.4c00836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/25/2024] [Accepted: 07/19/2024] [Indexed: 08/04/2024]
Abstract
HDAC8 can mediate signals by using its enzymatic or nonenzymatic functions, which are expected to be critical for various types of cancer. Herein, we employed proteolysis targeting chimera (PROTAC) technology to target the enzymatic as well as the nonenzymatic functions of HDAC8. A potent and selective HDAC8 PROTAC Z16 (CZH-726) with low nanomolar DC50 values in various cell lines was identified. Interestingly, Z16 induced structural maintenance of chromosomes protein 3 (SMC3) hyperacetylation at low concentrations and histone hyperacetylation at high concentrations, which can be explained by HDAC8 degradation and off-target HDAC inhibition, respectively. Notably, Z16 potently inhibited proliferation of various cancer cell lines and the antiproliferative mechanisms proved to be cell-type-dependent, which, to a large extent, is due to off-target HDAC inhibition. In conclusion, we report a hydrazide-based HDAC8 PROTAC Z16, which can be used as a probe to investigate the biological functions of HDAC8.
Collapse
Affiliation(s)
| | | | - Hangyu Zhou
- Department of Chemical and Pharmaceutical
Biology, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Rita Setroikromo
- Department of Chemical and Pharmaceutical
Biology, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Gerrit J. Poelarends
- Department of Chemical and Pharmaceutical
Biology, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Frank J. Dekker
- Department of Chemical and Pharmaceutical
Biology, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| |
Collapse
|
19
|
Wang J, Jiang W, Liu W, Xu T, Xu W, Sheng H, Badaila R, Ma M, Zhang N. Cytosolic delivery of cytochrome c conjugates induces apoptosis at nanomolar levels through a caspase-3-dependent pathway. Chem Commun (Camb) 2024; 60:8764-8767. [PMID: 39073564 DOI: 10.1039/d4cc02371d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Cytochrome c (CytC) is conjugated with a small molecule TG6 to give TG6-CytC, which is directly delivered into cytosol, triggering the release of endogenous CytC from mitochondria, and inducing a caspase-3-dependent apoptosis with an IC50 down to 2.4 nM. This work shows an efficient strategy for intracellular protein delivery.
Collapse
Affiliation(s)
- Jian Wang
- School of Biology, Food, and Environment, Hefei University, Hefei, Anhui 230601, China.
| | - Wei Jiang
- School of Biology, Food, and Environment, Hefei University, Hefei, Anhui 230601, China.
| | - Wenjuan Liu
- School of Biology, Food, and Environment, Hefei University, Hefei, Anhui 230601, China.
| | - Tingting Xu
- School of Biology, Food, and Environment, Hefei University, Hefei, Anhui 230601, China.
| | - Wenqian Xu
- School of Biology, Food, and Environment, Hefei University, Hefei, Anhui 230601, China.
| | - Hongyang Sheng
- School of Biology, Food, and Environment, Hefei University, Hefei, Anhui 230601, China.
| | - Raman Badaila
- School of Biology, Food, and Environment, Hefei University, Hefei, Anhui 230601, China.
| | - Mingming Ma
- Key Laboratory of Precision and Intelligent Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China.
| | - Ning Zhang
- School of Biology, Food, and Environment, Hefei University, Hefei, Anhui 230601, China.
| |
Collapse
|
20
|
Castellón JO, Ofori S, Burton NR, Julio AR, Turmon AC, Armenta E, Sandoval C, Boatner LM, Takayoshi EE, Faragalla M, Taylor C, Zhou AL, Tran K, Shek J, Yan T, Desai HS, Fregoso OI, Damoiseaux R, Backus KM. Chemoproteomics Identifies State-Dependent and Proteoform-Selective Caspase-2 Inhibitors. J Am Chem Soc 2024; 146:14972-14988. [PMID: 38787738 PMCID: PMC11832190 DOI: 10.1021/jacs.3c12240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2024]
Abstract
Caspases are a highly conserved family of cysteine-aspartyl proteases known for their essential roles in regulating apoptosis, inflammation, cell differentiation, and proliferation. Complementary to genetic approaches, small-molecule probes have emerged as useful tools for modulating caspase activity. However, due to the high sequence and structure homology of all 12 human caspases, achieving selectivity remains a central challenge for caspase-directed small-molecule inhibitor development efforts. Here, using mass spectrometry-based chemoproteomics, we first identify a highly reactive noncatalytic cysteine that is unique to caspase-2. By combining both gel-based activity-based protein profiling (ABPP) and a tobacco etch virus (TEV) protease activation assay, we then identify covalent lead compounds that react preferentially with this cysteine and afford a complete blockade of caspase-2 activity. Inhibitory activity is restricted to the zymogen or precursor form of monomeric caspase-2. Focused analogue synthesis combined with chemoproteomic target engagement analysis in cellular lysates and in cells yielded both pan-caspase-reactive molecules and caspase-2 selective lead compounds together with a structurally matched inactive control. Application of this focused set of tool compounds to stratify the functions of the zymogen and partially processed (p32) forms of caspase-2 provide evidence to support that caspase-2-mediated response to DNA damage is largely driven by the partially processed p32 form of the enzyme. More broadly, our study highlights future opportunities for the development of proteoform-selective caspase inhibitors that target nonconserved and noncatalytic cysteine residues.
Collapse
Affiliation(s)
- José O Castellón
- Biological Chemistry Department, David Geffen School of Medicine, UCLA, Los Angeles, California 90095, United States
| | - Samuel Ofori
- Biological Chemistry Department, David Geffen School of Medicine, UCLA, Los Angeles, California 90095, United States
| | - Nikolas R Burton
- Biological Chemistry Department, David Geffen School of Medicine, UCLA, Los Angeles, California 90095, United States
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, California 90095, United States
| | - Ashley R Julio
- Biological Chemistry Department, David Geffen School of Medicine, UCLA, Los Angeles, California 90095, United States
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, California 90095, United States
| | - Alexandra C Turmon
- Biological Chemistry Department, David Geffen School of Medicine, UCLA, Los Angeles, California 90095, United States
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, California 90095, United States
| | - Ernest Armenta
- Biological Chemistry Department, David Geffen School of Medicine, UCLA, Los Angeles, California 90095, United States
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, California 90095, United States
| | - Carina Sandoval
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, California 90095, United States
| | - Lisa M Boatner
- Biological Chemistry Department, David Geffen School of Medicine, UCLA, Los Angeles, California 90095, United States
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, California 90095, United States
| | - Evan E Takayoshi
- Biological Chemistry Department, David Geffen School of Medicine, UCLA, Los Angeles, California 90095, United States
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, California 90095, United States
| | - Marina Faragalla
- Biological Chemistry Department, David Geffen School of Medicine, UCLA, Los Angeles, California 90095, United States
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, California 90095, United States
| | - Cameron Taylor
- California NanoSystems Institute (CNSI), UCLA, Los Angeles, California 90095, United States
| | - Ann L Zhou
- Biological Chemistry Department, David Geffen School of Medicine, UCLA, Los Angeles, California 90095, United States
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, California 90095, United States
| | - Ky Tran
- Biological Chemistry Department, David Geffen School of Medicine, UCLA, Los Angeles, California 90095, United States
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, California 90095, United States
| | - Jeremy Shek
- Biological Chemistry Department, David Geffen School of Medicine, UCLA, Los Angeles, California 90095, United States
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, California 90095, United States
| | - Tianyang Yan
- Biological Chemistry Department, David Geffen School of Medicine, UCLA, Los Angeles, California 90095, United States
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, California 90095, United States
| | - Heta S Desai
- Biological Chemistry Department, David Geffen School of Medicine, UCLA, Los Angeles, California 90095, United States
| | - Oliver I Fregoso
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, California 90095, United States
| | - Robert Damoiseaux
- Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, California 90095, United States
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, UCLA, Los Angeles, California 90095, United States
- California NanoSystems Institute (CNSI), UCLA, Los Angeles, California 90095, United States
- Department of Molecular and Medical Pharmacology, UCLA, Los Angeles, California 90095, United States
- Department of Bioengineering, Samueli School of Engineering, UCLA, Los Angeles, California 90095, United States
| | - Keriann M Backus
- Biological Chemistry Department, David Geffen School of Medicine, UCLA, Los Angeles, California 90095, United States
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, California 90095, United States
- DOE Institute for Genomics and Proteomics, UCLA, Los Angeles, California 90095, United States
- Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, California 90095, United States
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, UCLA, Los Angeles, California 90095, United States
| |
Collapse
|
21
|
Elovitz M, Anton L, Cristancho A, Ferguson B, Joseph A, Ravel J. Vaginal microbes alter epithelial transcriptome and induce epigenomic modifications providing insight into mechanisms for susceptibility to adverse reproductive outcomes. RESEARCH SQUARE 2024:rs.3.rs-4385224. [PMID: 38854063 PMCID: PMC11160883 DOI: 10.21203/rs.3.rs-4385224/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
The cervicovaginal microbiome is highly associated with women's health, with microbial communities dominated by Lactobacillus species considered optimal. Conversely, a lack of lactobacilli and a high abundance of strict and facultative anaerobes, including Gardnerella vaginalis, have been associated with adverse reproductive outcomes. However, how host-microbial interactions alter specific molecular pathways and impact cervical and vaginal epithelial function remains unclear. Using RNA-sequencing, we characterized the in vitro cervicovaginal epithelial transcriptional response to different vaginal bacteria and their culture supernatants. We showed that G. vaginalis upregulates genes associated with an activated innate immune response. Unexpectedly, G. vaginalis specifically induced inflammasome pathways through activation of NLRP3-mediated increases in caspase-1, IL-1β and cell death, while live L. crispatus had minimal transcriptomic changes on epithelial cells. L. crispatus culture supernatants resulted in a shift in the epigenomic landscape of cervical epithelial cells that was confirmed by ATAC-sequencing showing reduced chromatin accessibility. This study reveals new insights into host-microbe interactions in the lower reproductive tract and suggests potential therapeutic strategies leveraging the vaginal microbiome to improve reproductive health.
Collapse
|
22
|
Lim YA, Tan LS, Lee WT, Sim WL, Lv Y, Takakuni M, Saito S, Ihara M, Arumugam TV, Chen C, Wong FWS, Dawe GS. Hope for vascular cognitive impairment: Ac-YVAD-cmk as a novel treatment against white matter rarefaction. PLoS One 2024; 19:e0299703. [PMID: 38630707 PMCID: PMC11023579 DOI: 10.1371/journal.pone.0299703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 02/14/2024] [Indexed: 04/19/2024] Open
Abstract
Vascular cognitive impairment (VCI) is the second leading cause of dementia with limited treatment options, characterised by cerebral hypoperfusion-induced white matter rarefaction (WMR). Subcortical VCI is the most common form of VCI, but the underlying reasons for region susceptibility remain elusive. Recent studies employing the bilateral cortical artery stenosis (BCAS) method demonstrate that various inflammasomes regulate white matter injury and blood-brain barrier dysfunction but whether caspase-1 inhibition will be beneficial remains unclear. To address this, we performed BCAS on C57/BL6 mice to study the effects of Ac-YVAD-cmk, a caspase-1 inhibitor, on the subcortical and cortical regions. Cerebral blood flow (CBF), WMR, neuroinflammation and the expression of tight junction-related proteins associated with blood-brain barrier integrity were assessed 15 days post BCAS. We observed that Ac-YVAD-cmk restored CBF, attenuated BCAS-induced WMR and restored subcortical myelin expression. Within the subcortical region, BCAS activated the NLRP3/caspase-1/interleukin-1beta axis only within the subcortical region, which was attenuated by Ac-YVAD-cmk. Although we observed that BCAS induced significant increases in VCAM-1 expression in both brain regions that were attenuated with Ac-YVAD-cmk, only ZO-1 and occludin were observed to be significantly altered in the subcortical region. Here we show that caspase-1 may contribute to subcortical regional susceptibility in a mouse model of VCI. In addition, our results support further investigations into the potential of Ac-YVAD-cmk as a novel treatment strategy against subcortical VCI and other conditions exhibiting cerebral hypoperfusion-induced WMR.
Collapse
Affiliation(s)
- Yun-An Lim
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Li Si Tan
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Wei Thye Lee
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Wei Liang Sim
- Department of Physiology, National University of Singapore, Singapore, Singapore
| | - Yang Lv
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Maki Takakuni
- Department of Neurology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Satoshi Saito
- Department of Neurology, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan
- Japan Society for the Promotion of Science, Chiyoda-ku, Tokyo, Japan
| | - Masafumi Ihara
- Department of Neurology, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan
| | | | - Christopher Chen
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Fred Wai-Shiu Wong
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Gavin Stewart Dawe
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
23
|
Wong MP, Juan EYW, Pahmeier F, Chelluri SS, Wang P, Castillo-Rojas B, Blanc SF, Biering SB, Vance RE, Harris E. The inflammasome pathway is activated by dengue virus non-structural protein 1 and is protective during dengue virus infection. PLoS Pathog 2024; 20:e1012167. [PMID: 38662771 DOI: 10.1371/journal.ppat.1012167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 05/07/2024] [Accepted: 04/01/2024] [Indexed: 05/07/2024] Open
Abstract
Dengue virus (DENV) is a medically important flavivirus causing an estimated 50-100 million dengue cases annually, some of whom progress to severe disease. DENV non-structural protein 1 (NS1) is secreted from infected cells and has been implicated as a major driver of dengue pathogenesis by inducing endothelial barrier dysfunction. However, less is known about how DENV NS1 interacts with immune cells and what role these interactions play. Here we report that DENV NS1 can trigger activation of inflammasomes, a family of cytosolic innate immune sensors that respond to infectious and noxious stimuli, in mouse and human macrophages. DENV NS1 induces the release of IL-1β in a caspase-1 dependent manner. Additionally, we find that DENV NS1-induced inflammasome activation is independent of the NLRP3, Pyrin, and AIM2 inflammasome pathways, but requires CD14. Intriguingly, DENV NS1-induced inflammasome activation does not induce pyroptosis and rapid cell death; instead, macrophages maintain cellular viability while releasing IL-1β. Lastly, we show that caspase-1/11-deficient, but not NLRP3-deficient, mice are more susceptible to lethal DENV infection. Together, these results indicate that the inflammasome pathway acts as a sensor of DENV NS1 and plays a protective role during infection.
Collapse
Affiliation(s)
- Marcus P Wong
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, California, United States of America
- Infectious Diseases and Immunity Graduate Group, School of Public Health, University of California, Berkeley, Berkeley, California, United States of America
| | - Evan Y W Juan
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, California, United States of America
| | - Felix Pahmeier
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, California, United States of America
- Infectious Diseases and Immunity Graduate Group, School of Public Health, University of California, Berkeley, Berkeley, California, United States of America
| | - Sai S Chelluri
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, California, United States of America
| | - Phoebe Wang
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, California, United States of America
| | - Bryan Castillo-Rojas
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, California, United States of America
| | - Sophie F Blanc
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, California, United States of America
| | - Scott B Biering
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, California, United States of America
| | - Russell E Vance
- Division of Immunology and Molecular Medicine, Department of Molecular and Cell Biology University of California, Berkeley, Berkeley, California, United States of America
- Howard Hughes Medical Institute, University of California, Berkeley, California, United States of America
| | - Eva Harris
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, California, United States of America
- Infectious Diseases and Immunity Graduate Group, School of Public Health, University of California, Berkeley, Berkeley, California, United States of America
- Division of Immunology and Molecular Medicine, Department of Molecular and Cell Biology University of California, Berkeley, Berkeley, California, United States of America
| |
Collapse
|
24
|
Billman ZP, Kovacs SB, Wei B, Kang K, Cissé OH, Miao EA. Caspase-1 activates gasdermin A in non-mammals. eLife 2024; 12:RP92362. [PMID: 38497531 PMCID: PMC10948149 DOI: 10.7554/elife.92362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2024] Open
Abstract
Gasdermins oligomerize to form pores in the cell membrane, causing regulated lytic cell death called pyroptosis. Mammals encode five gasdermins that can trigger pyroptosis: GSDMA, B, C, D, and E. Caspase and granzyme proteases cleave the linker regions of and activate GSDMB, C, D, and E, but no endogenous activation pathways are yet known for GSDMA. Here, we perform a comprehensive evolutionary analysis of the gasdermin family. A gene duplication of GSDMA in the common ancestor of caecilian amphibians, reptiles, and birds gave rise to GSDMA-D in mammals. Uniquely in our tree, amphibian, reptile, and bird GSDMA group in a separate clade than mammal GSDMA. Remarkably, GSDMA in numerous bird species contain caspase-1 cleavage sites like YVAD or FASD in the linker. We show that GSDMA from birds, amphibians, and reptiles are all cleaved by caspase-1. Thus, GSDMA was originally cleaved by the host-encoded protease caspase-1. In mammals the caspase-1 cleavage site in GSDMA is disrupted; instead, a new protein, GSDMD, is the target of caspase-1. Mammal caspase-1 uses exosite interactions with the GSDMD C-terminal domain to confer the specificity of this interaction, whereas we show that bird caspase-1 uses a stereotypical tetrapeptide sequence to confer specificity for bird GSDMA. Our results reveal an evolutionarily stable association between caspase-1 and the gasdermin family, albeit a shifting one. Caspase-1 repeatedly changes its target gasdermin over evolutionary time at speciation junctures, initially cleaving GSDME in fish, then GSDMA in amphibians/reptiles/birds, and finally GSDMD in mammals.
Collapse
Affiliation(s)
- Zachary Paul Billman
- Department of Integrative Immunobiology; Molecular Genetics and Microbiology; Pathology; and Cell Biology, Duke University School of MedicineDurhamUnited States
- Department of Microbiology and Immunology, University of North Carolina at Chapel HillChapel HillUnited States
| | - Stephen Bela Kovacs
- Department of Integrative Immunobiology; Molecular Genetics and Microbiology; Pathology; and Cell Biology, Duke University School of MedicineDurhamUnited States
- Department of Microbiology and Immunology, University of North Carolina at Chapel HillChapel HillUnited States
| | - Bo Wei
- Department of Integrative Immunobiology; Molecular Genetics and Microbiology; Pathology; and Cell Biology, Duke University School of MedicineDurhamUnited States
| | - Kidong Kang
- Department of Integrative Immunobiology; Molecular Genetics and Microbiology; Pathology; and Cell Biology, Duke University School of MedicineDurhamUnited States
| | - Ousmane H Cissé
- Critical Care Medicine Department, National Institutes of Health Clinical CenterBethesdaUnited States
| | - Edward A Miao
- Department of Integrative Immunobiology; Molecular Genetics and Microbiology; Pathology; and Cell Biology, Duke University School of MedicineDurhamUnited States
| |
Collapse
|
25
|
Billman ZP, Kovacs SB, Wei B, Kang K, Cissé OH, Miao EA. Caspase-1 activates gasdermin A in non-mammals. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.28.559989. [PMID: 37987010 PMCID: PMC10659411 DOI: 10.1101/2023.09.28.559989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Gasdermins oligomerize to form pores in the cell membrane, causing regulated lytic cell death called pyroptosis. Mammals encode five gasdermins that can trigger pyroptosis: GSDMA, B, C, D, and E. Caspase and granzyme proteases cleave the linker regions of and activate GSDMB, C, D, and E, but no endogenous activation pathways are yet known for GSDMA. Here, we perform a comprehensive evolutionary analysis of the gasdermin family. A gene duplication of GSDMA in the common ancestor of caecilian amphibians, reptiles and birds gave rise to GSDMA-D in mammals. Uniquely in our tree, amphibian, reptile and bird GSDMA group in a separate clade than mammal GSDMA. Remarkably, GSDMA in numerous bird species contain caspase-1 cleavage sites like YVAD or FASD in the linker. We show that GSDMA from birds, amphibians, and reptiles are all cleaved by caspase-1. Thus, GSDMA was originally cleaved by the host-encoded protease caspase-1. In mammals the caspase-1 cleavage site in GSDMA is disrupted; instead, a new protein, GSDMD, is the target of caspase-1. Mammal caspase-1 uses exosite interactions with the GSDMD C-terminal domain to confer the specificity of this interaction, whereas we show that bird caspase-1 uses a stereotypical tetrapeptide sequence to confer specificity for bird GSDMA. Our results reveal an evolutionarily stable association between caspase-1 and the gasdermin family, albeit a shifting one. Caspase-1 repeatedly changes its target gasdermin over evolutionary time at speciation junctures, initially cleaving GSDME in fish, then GSDMA in amphibians/reptiles/birds, and finally GSDMD in mammals.
Collapse
Affiliation(s)
- Zachary P Billman
- Duke University School of Medicine
- National Institutes of Health University of North Carolina at Chapel Hill
- Departments of: Integrative Immunobiology; Molecular Genetics and Microbiology; Cell Biology; Pathology; Durham, NC, USA
- Department of Microbiology and Immunology; Chapel Hill, NC, USA
| | - Stephen B Kovacs
- Duke University School of Medicine
- National Institutes of Health University of North Carolina at Chapel Hill
- Departments of: Integrative Immunobiology; Molecular Genetics and Microbiology; Cell Biology; Pathology; Durham, NC, USA
- Department of Microbiology and Immunology; Chapel Hill, NC, USA
| | - Bo Wei
- Duke University School of Medicine
- Departments of: Integrative Immunobiology; Molecular Genetics and Microbiology; Cell Biology; Pathology; Durham, NC, USA
| | - Kidong Kang
- Duke University School of Medicine
- Departments of: Integrative Immunobiology; Molecular Genetics and Microbiology; Cell Biology; Pathology; Durham, NC, USA
| | - Ousmane H Cissé
- National Institutes of Health
- Critical Care Medicine Department; Bethesda, MD, USA
| | - Edward A Miao
- Duke University School of Medicine
- National Institutes of Health University of North Carolina at Chapel Hill
- Departments of: Integrative Immunobiology; Molecular Genetics and Microbiology; Cell Biology; Pathology; Durham, NC, USA
| |
Collapse
|
26
|
Modi P, Shah BM, Patel S. Interleukin-1β converting enzyme (ICE): A comprehensive review on discovery and development of caspase-1 inhibitors. Eur J Med Chem 2023; 261:115861. [PMID: 37857145 DOI: 10.1016/j.ejmech.2023.115861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 10/05/2023] [Accepted: 10/05/2023] [Indexed: 10/21/2023]
Abstract
Caspase-1 is a critical mediator of the inflammatory process by activating various pro-inflammatory cytokines such as pro-IL-1β, IL-18 and IL-33. Uncontrolled activation of caspase-1 leads to various cytokines-mediated diseases. Thus, inhibition of Caspase-1 is considered therapeutically beneficial to halt the progression of such diseases. Currently, rilonacept, canakinumab and anakinra are in use for caspase-1-mediated autoinflammatory diseases. However, the poor pharmacokinetic profile of these peptides limits their use as therapeutic agents. Therefore, several peptidomimetic inhibitors have been developed, but only a few compounds (VX-740, VX-765) have advanced to clinical trials; because of their toxic profile. Several small molecule inhibitors have also been progressing based on the three-dimensional structure of caspase-1. However there is no successful candidate available clinically. In this perspective, we highlight the mechanism of caspase-1 activation, its therapeutic potential as a disease target and potential therapeutic strategies targeting caspase-1 with their limitations.
Collapse
Affiliation(s)
- Palmi Modi
- Department of Pharmaceutical Chemistry, L. J. Institute of Pharmacy, L J University Ahmedabad - 382 210, Gujarat, India
| | - Bhumi M Shah
- Department of Pharmaceutical Chemistry, L. J. Institute of Pharmacy, L J University Ahmedabad - 382 210, Gujarat, India
| | - Shivani Patel
- Division of Biological and Life Sciences, Ahmedabad University, Ahmedabad, 380009, Gujarat, India.
| |
Collapse
|
27
|
Elovitz M, Anton L, Cristancho A, Ferguson B, Joseph A, Ravel J. Vaginal microbes alter epithelial transcriptomic and epigenomic modifications providing insight into the molecular mechanisms for susceptibility to adverse reproductive outcomes. RESEARCH SQUARE 2023:rs.3.rs-3580132. [PMID: 38014044 PMCID: PMC10680926 DOI: 10.21203/rs.3.rs-3580132/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
The cervicovaginal microbiome is highly associated with women's health with microbial communities dominated by Lactobacillus spp. being considered optimal. Conversely, a lack of lactobacilli and a high abundance of strict and facultative anaerobes including Gardnerella vaginalis , have been associated with adverse reproductive outcomes. However, the molecular pathways modulated by microbe interactions with the cervicovaginal epithelia remain unclear. Using RNA-sequencing, we characterize the in vitro cervicovaginal epithelial transcriptional response to different vaginal bacteria and their culture supernatants. We showed that G. vaginalis upregulated genes were associated with an activated innate immune response including anti-microbial peptides and inflammasome pathways, represented by NLRP3-mediated increases in caspase-1, IL-1β and cell death. Cervicovaginal epithelial cells exposed to L. crispatus showed limited transcriptomic changes, while exposure to L. crispatus culture supernatants resulted in a shift in the epigenomic landscape of cervical epithelial cells. ATAC-sequencing confirmed epigenetic changes with reduced chromatin accessibility. This study reveals new insight into host-microbe interactions in the lower reproductive tract and suggest potential therapeutic strategies leveraging the vaginal microbiome to improve reproductive health.
Collapse
|
28
|
Castellón JO, Ofori S, Armenta E, Burton N, Boatner LM, Takayoshi EE, Faragalla M, Zhou A, Tran K, Shek J, Yan T, Desai HS, Backus KM. Chemoproteomics identifies proteoform-selective caspase-2 inhibitors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.25.563785. [PMID: 37961563 PMCID: PMC10634807 DOI: 10.1101/2023.10.25.563785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Caspases are a highly conserved family of cysteine-aspartyl proteases known for their essential roles in regulating apoptosis, inflammation, cell differentiation, and proliferation. Complementary to genetic approaches, small-molecule probes have emerged as useful tools for modulating caspase activity. However, due to the high sequence and structure homology of all twelve human caspases, achieving selectivity remains a central challenge for caspase-directed small-molecule inhibitor development efforts. Here, using mass spectrometry-based chemoproteomics, we first identify a highly reactive non-catalytic cysteine that is unique to caspase-2. By combining both gel-based activity-based protein profiling (ABPP) and a tobacco etch virus (TEV) protease activation assay, we then identify covalent lead compounds that react preferentially with this cysteine and afford a complete blockade of caspase-2 activity. Inhibitory activity is restricted to the zymogen or precursor form of monomeric caspase-2. Focused analogue synthesis combined with chemoproteomic target engagement analysis in cellular lysates and in cells yielded both pan-caspase reactive molecules and caspase-2 selective lead compounds together with a structurally matched inactive control. Application of this focused set of tool compounds to stratify caspase contributions to initiation of intrinsic apoptosis, supports compensatory caspase-9 activity in the context of caspase-2 inactivation. More broadly, our study highlights future opportunities for the development of proteoform-selective caspase inhibitors that target non-conserved and non-catalytic cysteine residues.
Collapse
|
29
|
Wong MP, Juan EYW, Chelluri SS, Wang P, Pahmeier F, Castillo-Rojas B, Blanc SF, Biering SB, Vance RE, Harris E. The Inflammasome Pathway is Activated by Dengue Virus Non-structural Protein 1 and is Protective During Dengue Virus Infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.21.558875. [PMID: 37790301 PMCID: PMC10543007 DOI: 10.1101/2023.09.21.558875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Dengue virus (DENV) is a medically important flavivirus causing an estimated 50-100 million dengue cases annually, some of whom progress to severe disease. DENV non-structural protein 1 (NS1) is secreted from infected cells and has been implicated as a major driver of dengue pathogenesis by inducing endothelial barrier dysfunction. However, less is known about how DENV NS1 interacts with immune cells and what role these interactions play. Here we report that DENV NS1 can trigger activation of inflammasomes, a family of cytosolic innate immune sensors that respond to infectious and noxious stimuli, in mouse and human macrophages. DENV NS1 induces the release of IL-1β in a caspase-1 dependent manner. Additionally, we find that DENV NS1-induced inflammasome activation is independent of the NLRP3, Pyrin, and AIM2 inflammasome pathways, but requires CD14. Intriguingly, DENV NS1-induced inflammasome activation does not induce pyroptosis and rapid cell death; instead, macrophages maintain cellular viability while releasing IL-1β. Lastly, we show that caspase-1/11-deficient, but not NLRP3-deficient, mice are more susceptible to lethal DENV infection. Together, these results indicate that the inflammasome pathway acts as a sensor of DENV NS1 and plays a protective role during infection.
Collapse
Affiliation(s)
- Marcus P Wong
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, USA
- Infectious Diseases and Immunity Graduate Group, School of Public Health, University of California, Berkeley, Berkeley, CA, USA
| | - Evan Y W Juan
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, USA
| | - Sai S Chelluri
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, USA
| | - Phoebe Wang
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, USA
| | - Felix Pahmeier
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, USA
- Infectious Diseases and Immunity Graduate Group, School of Public Health, University of California, Berkeley, Berkeley, CA, USA
| | - Bryan Castillo-Rojas
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, USA
| | - Sophie F Blanc
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, USA
| | - Scott B Biering
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, USA
| | - Russell E Vance
- Division of Immunology and Molecular Medicine, Department of Molecular and Cell Biology University of California, Berkeley, Berkeley, CA, USA
- Howard Hughes Medical Institute, University of California, Berkeley, California, USA
| | - Eva Harris
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, USA
- Infectious Diseases and Immunity Graduate Group, School of Public Health, University of California, Berkeley, Berkeley, CA, USA
- Division of Immunology and Molecular Medicine, Department of Molecular and Cell Biology University of California, Berkeley, Berkeley, CA, USA
| |
Collapse
|
30
|
Zhang BL, Yu P, Su EY, Zhang CY, Xie SY, Yang X, Zou YZ, Liu M, Jiang H. Inhibition of GSDMD activation by Z-LLSD-FMK or Z-YVAD-FMK reduces vascular inflammation and atherosclerotic lesion development in ApoE -/- mice. Front Pharmacol 2023; 14:1184588. [PMID: 37593179 PMCID: PMC10427923 DOI: 10.3389/fphar.2023.1184588] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 07/17/2023] [Indexed: 08/19/2023] Open
Abstract
Pyroptosis is a form of pro-inflammatory cell death that can be mediated by gasdermin D (GSDMD) activation induced by inflammatory caspases such as caspase-1. Emerging evidence suggests that targeting GSDMD activation or pyroptosis may facilitate the reduction of vascular inflammation and atherosclerotic lesion development. The current study investigated the therapeutic effects of inhibition of GSDMD activation by the novel GSDMD inhibitor N-Benzyloxycarbonyl-Leu-Leu-Ser-Asp(OMe)-fluoromethylketone (Z-LLSD-FMK), the specific caspase-1 inhibitor N-Benzyloxycarbonyl-Tyr-Val-Ala-Asp(OMe)-fluoromethylketone (Z-YVAD-FMK), and a combination of both on atherosclerosis in ApoE-/- mice fed a western diet at 5 weeks of age, and further determined the efficacy of these polypeptide inhibitors in bone marrow-derived macrophages (BMDMs). In vivo studies there was plaque formation, GSDMD activation, and caspase-1 activation in aortas, which increased gradually from 6 to 18 weeks of age, and increased markedly at 14 and 18 weeks of age. ApoE-/- mice were administered Z-LLSD-FMK (200 µg/day), Z-YVAD-FMK (200 µg/day), a combination of both, or vehicle control intraperitoneally from 14 to 18 weeks of age. Treatment significantly reduced lesion formation, macrophage infiltration in lesions, protein levels of vascular cell adhesion molecule-1 and monocyte chemoattractant protein-1, and pyroptosis-related proteins such as activated caspase-1, activated GSDMD, cleaved interleukin(IL)-1β, and high mobility group box 1 in aortas. No overt differences in plasma lipid contents were detected. In vitro treatment with these polypeptide inhibitors dramatically decreased the percentage of propidium iodide-positive BMDMs, the release of lactate dehydrogenase and IL-1β, and protein levels of pyroptosis-related proteins both in supernatants and cell lysates elevated by lipopolysaccharide + nigericin. Notably however, there were no significant differences in the above-mentioned results between the Z-LLSD-FMK group and the Z-YVAD-FMK group, and the combination of both did not yield enhanced effects. These findings indicate that suppression of GSDMD activation by Z-LLSD-FMK or Z-YVAD-FMK reduces vascular inflammation and lesion development in ApoE-/- mice.
Collapse
Affiliation(s)
- Bao-Li Zhang
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, National Clinical Research Center for Interventional Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Peng Yu
- Department of Endocrinology and Metabolism, Fudan Institute of Metabolic Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - En-Yong Su
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, National Clinical Research Center for Interventional Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Chun-Yu Zhang
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, National Clinical Research Center for Interventional Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Shi-Yao Xie
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, National Clinical Research Center for Interventional Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xue Yang
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, National Clinical Research Center for Interventional Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yun-Zeng Zou
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, National Clinical Research Center for Interventional Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Ming Liu
- Department of Health Management Center, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Engineering Research Center of AI Technology for Cardiopulmonary Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Hong Jiang
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, National Clinical Research Center for Interventional Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Engineering Research Center of AI Technology for Cardiopulmonary Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
31
|
Nguyen TTM, Gadet R, Lanfranchi M, Lahaye RA, Yandiev S, Lohez O, Mikaelian I, Jabbour L, Rimokh R, Courchet J, Saudou F, Popgeorgiev N, Gillet G. Mitochondrial Bcl-xL promotes brain synaptogenesis by controlling non-lethal caspase activation. iScience 2023; 26:106674. [PMID: 37182099 PMCID: PMC10173740 DOI: 10.1016/j.isci.2023.106674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 01/25/2023] [Accepted: 04/11/2023] [Indexed: 05/16/2023] Open
Abstract
Non-lethal caspase activation (NLCA) has been linked to neurodevelopmental processes. However, how neurons control NLCA remains elusive. Here, we focused on Bcl-xL, a Bcl-2 homolog regulating caspase activation through the mitochondria. We generated a mouse model, referred to as ER-xL, in which Bcl-xL is absent in the mitochondria, yet present in the endoplasmic reticulum. Unlike bclx knockout mice that died at E13.5, ER-xL mice survived embryonic development but died post-partum because of altered feeding behavior. Enhanced caspase-3 activity was observed in the brain and the spinal cord white matter, but not the gray matter. No increase in cell death was observed in ER-xL cortical neurons, suggesting that the observed caspase-3 activation was apoptosis-independent. ER-xL neurons displayed increased caspase-3 activity in the neurites, resulting in impaired axon arborescence and synaptogenesis. Together, our findings suggest that mitochondrial Bcl-xL finely tunes caspase-3 through Drp-1-dependent mitochondrial fission, which is critical to neural network design.
Collapse
Affiliation(s)
- Trang Thi Minh Nguyen
- Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS UMR 5286, Centre Léon Bérard, Centre de recherche en cancérologie de Lyon, 69008 Lyon, France
| | - Rudy Gadet
- Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS UMR 5286, Centre Léon Bérard, Centre de recherche en cancérologie de Lyon, 69008 Lyon, France
| | - Marine Lanfranchi
- Université de Lyon, Université Claude Bernard Lyon 1, Physiopathologie et Génétique du Neurone et du Muscle, UMR 5261, INSERM U 1315, Institut NeuroMyoGène, 69008 Lyon, France
| | - Romane A. Lahaye
- Grenoble Institut des Neurosciences, Université Grenoble Alpes, Inserm U1216, 38700 La Tronche, France
| | - Sozerko Yandiev
- Université de Lyon, Université Claude Bernard Lyon 1, Physiopathologie et Génétique du Neurone et du Muscle, UMR 5261, INSERM U 1315, Institut NeuroMyoGène, 69008 Lyon, France
| | - Olivier Lohez
- Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS UMR 5286, Centre Léon Bérard, Centre de recherche en cancérologie de Lyon, 69008 Lyon, France
| | - Ivan Mikaelian
- Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS UMR 5286, Centre Léon Bérard, Centre de recherche en cancérologie de Lyon, 69008 Lyon, France
| | - Lea Jabbour
- Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS UMR 5286, Centre Léon Bérard, Centre de recherche en cancérologie de Lyon, 69008 Lyon, France
| | - Ruth Rimokh
- Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS UMR 5286, Centre Léon Bérard, Centre de recherche en cancérologie de Lyon, 69008 Lyon, France
| | - Julien Courchet
- Université de Lyon, Université Claude Bernard Lyon 1, Physiopathologie et Génétique du Neurone et du Muscle, UMR 5261, INSERM U 1315, Institut NeuroMyoGène, 69008 Lyon, France
| | - Frédéric Saudou
- Grenoble Institut des Neurosciences, Université Grenoble Alpes, Inserm U1216, 38700 La Tronche, France
| | - Nikolay Popgeorgiev
- Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS UMR 5286, Centre Léon Bérard, Centre de recherche en cancérologie de Lyon, 69008 Lyon, France
- Institut Universitaire de France (IUF), 75231 Paris Cedex 5, France
| | - Germain Gillet
- Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS UMR 5286, Centre Léon Bérard, Centre de recherche en cancérologie de Lyon, 69008 Lyon, France
- Hospices civils de Lyon, Laboratoire d’anatomie et cytologie pathologiques, Centre Hospitalier Lyon Sud, chemin du Grand Revoyet, 69495 Pierre Bénite, France
| |
Collapse
|
32
|
Dai Z, Liu WC, Chen XY, Wang X, Li JL, Zhang X. Gasdermin D-mediated pyroptosis: mechanisms, diseases, and inhibitors. Front Immunol 2023; 14:1178662. [PMID: 37275856 PMCID: PMC10232970 DOI: 10.3389/fimmu.2023.1178662] [Citation(s) in RCA: 68] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 05/05/2023] [Indexed: 06/07/2023] Open
Abstract
Gasdermin D (GSDMD)-mediated pyroptosis and downstream inflammation are important self-protection mechanisms against stimuli and infections. Hosts can defend against intracellular bacterial infections by inducing cell pyroptosis, which triggers the clearance of pathogens. However, pyroptosis is a double-edged sword. Numerous studies have revealed the relationship between abnormal GSDMD activation and various inflammatory diseases, including sepsis, coronavirus disease 2019 (COVID-19), neurodegenerative diseases, nonalcoholic steatohepatitis (NASH), inflammatory bowel disease (IBD), and malignant tumors. GSDMD, a key pyroptosis-executing protein, is linked to inflammatory signal transduction, activation of various inflammasomes, and the release of downstream inflammatory cytokines. Thus, inhibiting GSDMD activation is considered an effective strategy for treating related inflammatory diseases. The study of the mechanism of GSDMD activation, the formation of GSDMD membrane pores, and the regulatory strategy of GSDMD-mediated pyroptosis is currently a hot topic. Moreover, studies of the structure of caspase-GSDMD complexes and more in-depth molecular mechanisms provide multiple strategies for the development of GSDMD inhibitors. This review will mainly discuss the structures of GSDMD and GSDMD pores, activation pathways, GSDMD-mediated diseases, and the development of GSDMD inhibitors.
Collapse
Affiliation(s)
- Zhen Dai
- Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, China
| | - Wan-Cong Liu
- Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, China
| | - Xiao-Yi Chen
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing, China
| | - Xiao Wang
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing, China
| | - Jun-Long Li
- Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, China
| | - Xiang Zhang
- Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, China
| |
Collapse
|
33
|
Palumbo L, Genovese S, Collevecchio C, Epifano F, Fiorito S. Novel insights into the biomolecular mechanism of action of 4'-geranyloxyferulic acid, a colon cancer chemopreventive agent. PHYTOCHEMISTRY 2023; 211:113706. [PMID: 37149122 DOI: 10.1016/j.phytochem.2023.113706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/26/2023] [Accepted: 05/02/2023] [Indexed: 05/08/2023]
Abstract
In this manuscript the biomolecular mechanism of action of the natural colon cancer chemopreventive agent 4'-geranyloxyferulic acid in cultured Caco-2 cells has been investigated. It was first demonstrated how the application of this phytochemical led to a time- and dose-dependent decrease of cell viability and in parallel to a massive generation of reactive oxygen species and induction of caspases 3 and 9, finally providing apoptosis. This event is accompanied by deep modifications in key pro-apoptotic targets like CD95, DR4 and 5, cytochrome c, Apaf-1, Bcl-2, and Bax. Such effects can explain the large apoptosis recorded in Caco-2 cells treated with 4'-geranyloxyferulic acid.
Collapse
Affiliation(s)
- Lucia Palumbo
- Dipartimento di Farmacia, Università"G. d'Annunzio" Chieti - Pescara, Via dei Vestini 31, 66100, Italy
| | - Salvatore Genovese
- Dipartimento di Farmacia, Università"G. d'Annunzio" Chieti - Pescara, Via dei Vestini 31, 66100, Italy.
| | - Chiara Collevecchio
- Dipartimento di Farmacia, Università"G. d'Annunzio" Chieti - Pescara, Via dei Vestini 31, 66100, Italy
| | - Francesco Epifano
- Dipartimento di Farmacia, Università"G. d'Annunzio" Chieti - Pescara, Via dei Vestini 31, 66100, Italy.
| | - Serena Fiorito
- Dipartimento di Farmacia, Università"G. d'Annunzio" Chieti - Pescara, Via dei Vestini 31, 66100, Italy.
| |
Collapse
|
34
|
Javaid HMA, Ko E, Joo EJ, Kwon SH, Park JH, Shin S, Cho KW, Huh JY. TNFα-induced NLRP3 inflammasome mediates adipocyte dysfunction and activates macrophages through adipocyte-derived lipocalin 2. Metabolism 2023; 142:155527. [PMID: 36870601 DOI: 10.1016/j.metabol.2023.155527] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/10/2023] [Accepted: 02/20/2023] [Indexed: 03/06/2023]
Abstract
BACKGROUND AND AIMS Obesity is a state of chronic low-grade systemic inflammation. Recent studies showed that NLRP3 inflammasome initiates metabolic dysregulation in adipose tissues, primarily through activation of adipose tissue infiltrated macrophages. However, the mechanism of NLRP3 activation and its role in adipocytes remains elusive. Therefore, we aimed to examine the activation of TNFα-induced NLRP3 inflammasome in adipocytes and its role on adipocyte metabolism and crosstalk with macrophages. METHODS The effect of TNFα on adipocyte NLRP3 inflammasome activation was measured. Caspase-1 inhibitor (Ac-YVAD-cmk) and primary adipocytes from NLRP3 and caspase-1 knockout mice were utilized to block NLRP3 inflammasome activation. Biomarkers were measured by using real-time PCR, western blotting, immunofluorescence staining, and enzyme assay kits. Conditioned media from TNFα-stimulated adipocytes was used to establish the adipocyte-macrophage crosstalk. Chromatin immunoprecipitation assay was used to identify the role of NLRP3 as a transcription factor. Mouse and human adipose tissues were collected for correlation analysis. RESULTS TNFα treatment induced NLRP3 expression and caspase-1 activity in adipocytes, partly through autophagy dysregulation. The activated adipocyte NLRP3 inflammasome participated in mitochondrial dysfunction and insulin resistance, as evidenced by the amelioration of these effects in Ac-YVAD-cmk treated 3T3-L1 cells or primary adipocytes isolated from NLRP3 and caspase-1 knockout mice. Particularly, the adipocyte NLRP3 inflammasome was involved in glucose uptake regulation. Also, TNFα induced expression and secretion of lipocalin 2 (Lcn2) in a NLRP3-dependent manner. NLRP3 could bind to the promoter and transcriptionally regulate Lcn2 in adipocytes. Treatment with adipocyte conditioned media revealed that adipocyte-derived Lcn2 was responsible for macrophage NLRP3 inflammasome activation, working as a second signal. Adipocytes isolated from high-fat diet mice and adipose tissue from obese individuals showed a positive correlation between NLRP3 and Lcn2 gene expression. CONCLUSIONS This study highlights the importance of adipocyte NLRP3 inflammasome activation and novel role of TNFα-NLRP3-Lcn2 axis in adipose tissue. It adds rational for the current development of NLRP3 inhibitors for treating obesity-induced metabolic diseases.
Collapse
Affiliation(s)
| | - Eun Ko
- Department of Bioengineering and Biotechnology, College of Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Esther Jin Joo
- Soonchunhyang Institute of Medi-Bio Science (SIMS), Soonchunhyang University, Cheonan 31151, Republic of Korea
| | - Soon Hyo Kwon
- Division of Nephrology, Department of Internal Medicine, Soonchunhyang University Seoul Hospital, Seoul 04401, Republic of Korea
| | - Jong-Hwan Park
- College of Veterinary Medicine, Chonnam National University, Gwangju, Republic of Korea
| | - Sooim Shin
- Department of Bioengineering and Biotechnology, College of Engineering, Chonnam National University, Gwangju 61186, Republic of Korea; Interdisciplinary Program of Bioenergy and Biomaterials Graduate School, College of Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Kae Won Cho
- Soonchunhyang Institute of Medi-Bio Science (SIMS), Soonchunhyang University, Cheonan 31151, Republic of Korea
| | - Joo Young Huh
- College of Pharmacy, Chonnam National University, Gwangju, Republic of Korea.
| |
Collapse
|
35
|
Gardner C, Davies KA, Zhang Y, Brzozowski M, Czabotar PE, Murphy JM, Lessene G. From (Tool)Bench to Bedside: The Potential of Necroptosis Inhibitors. J Med Chem 2023; 66:2361-2385. [PMID: 36781172 PMCID: PMC9969410 DOI: 10.1021/acs.jmedchem.2c01621] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
Necroptosis is a regulated caspase-independent form of necrotic cell death that results in an inflammatory phenotype. This process contributes profoundly to the pathophysiology of numerous neurodegenerative, cardiovascular, infectious, malignant, and inflammatory diseases. Receptor-interacting protein kinase 1 (RIPK1), RIPK3, and the mixed lineage kinase domain-like protein (MLKL) pseudokinase have been identified as the key components of necroptosis signaling and are the most promising targets for therapeutic intervention. Here, we review recent developments in the field of small-molecule inhibitors of necroptosis signaling, provide guidelines for their use as chemical probes to study necroptosis, and assess the therapeutic challenges and opportunities of such inhibitors in the treatment of a range of clinical indications.
Collapse
Affiliation(s)
- Christopher
R. Gardner
- The
Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia,Department
of Medical Biology, University of Melbourne, Parkville, VIC 3052, Australia
| | - Katherine A. Davies
- The
Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia,Department
of Medical Biology, University of Melbourne, Parkville, VIC 3052, Australia
| | - Ying Zhang
- The
Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia,Department
of Medical Biology, University of Melbourne, Parkville, VIC 3052, Australia
| | - Martin Brzozowski
- The
Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia,Department
of Medical Biology, University of Melbourne, Parkville, VIC 3052, Australia
| | - Peter E. Czabotar
- The
Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia,Department
of Medical Biology, University of Melbourne, Parkville, VIC 3052, Australia
| | - James M. Murphy
- The
Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia,Department
of Medical Biology, University of Melbourne, Parkville, VIC 3052, Australia
| | - Guillaume Lessene
- The
Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia,Department
of Medical Biology, University of Melbourne, Parkville, VIC 3052, Australia,Department
of Pharmacology and Therapeutics, University
of Melbourne, Parkville, VIC 3052, Australia,Email;
| |
Collapse
|
36
|
Mattola S, Mäntylä E, Aho V, Salminen S, Leclerc S, Oittinen M, Salokas K, Järvensivu J, Hakanen S, Ihalainen TO, Viiri K, Vihinen-Ranta M. G2/M checkpoint regulation and apoptosis facilitate the nuclear egress of parvoviral capsids. Front Cell Dev Biol 2022; 10:1070599. [PMID: 36568985 PMCID: PMC9773396 DOI: 10.3389/fcell.2022.1070599] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 11/28/2022] [Indexed: 12/13/2022] Open
Abstract
The nuclear export factor CRM1-mediated pathway is known to be important for the nuclear egress of progeny parvovirus capsids in the host cells with virus-mediated cell cycle arrest at G2/M. However, it is still unclear whether this is the only pathway by which capsids exit the nucleus. Our studies show that the nuclear egress of DNA-containing full canine parvovirus. capsids was reduced but not fully inhibited when CRM1-mediated nuclear export was prevented by leptomycin B. This suggests that canine parvovirus capsids might use additional routes for nuclear escape. This hypothesis was further supported by our findings that nuclear envelope (NE) permeability was increased at the late stages of infection. Inhibitors of cell cycle regulatory protein cyclin-dependent kinase 1 (Cdk1) and pro-apoptotic caspase 3 prevented the NE leakage. The change in NE permeability could be explained by the regulation of the G2/M checkpoint which is accompanied by early mitotic and apoptotic events. The model of G2/M checkpoint activation was supported by infection-induced nuclear accumulation of cyclin B1 and Cdk1. Both NE permeability and nuclear egress of capsids were reduced by the inhibition of Cdk1. Additional proof of checkpoint function regulation and promotion of apoptotic events was the nucleocytoplasmic redistribution of nuclear transport factors, importins, and Ran, in late infection. Consistent with our findings, post-translational histone acetylation that promotes the regulation of several genes related to cell cycle transition and arrest was detected. In conclusion, the model we propose implies that parvoviral capsid egress partially depends on infection-induced G2/M checkpoint regulation involving early mitotic and apoptotic events.
Collapse
Affiliation(s)
- Salla Mattola
- Department of Biological and Environmental Science and Nanoscience Center, University of Jyvaskyla, Jyvaskyla, Finland
| | - Elina Mäntylä
- BioMediTech, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Vesa Aho
- Department of Biological and Environmental Science and Nanoscience Center, University of Jyvaskyla, Jyvaskyla, Finland
| | - Sami Salminen
- Department of Biological and Environmental Science and Nanoscience Center, University of Jyvaskyla, Jyvaskyla, Finland
| | - Simon Leclerc
- Department of Biological and Environmental Science and Nanoscience Center, University of Jyvaskyla, Jyvaskyla, Finland
| | - Mikko Oittinen
- Celiac Disease Research Center, Faculty of Medicine and Health Technology, Tampere University Hospital, Tampere, Finland
| | - Kari Salokas
- Institute of Biotechnology and Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
| | - Jani Järvensivu
- Department of Biological and Environmental Science and Nanoscience Center, University of Jyvaskyla, Jyvaskyla, Finland
| | - Satu Hakanen
- Department of Biological and Environmental Science and Nanoscience Center, University of Jyvaskyla, Jyvaskyla, Finland
| | - Teemu O Ihalainen
- BioMediTech, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Keijo Viiri
- Celiac Disease Research Center, Faculty of Medicine and Health Technology, Tampere University Hospital, Tampere, Finland
| | - Maija Vihinen-Ranta
- Department of Biological and Environmental Science and Nanoscience Center, University of Jyvaskyla, Jyvaskyla, Finland,*Correspondence: Maija Vihinen-Ranta,
| |
Collapse
|
37
|
Porubský M, Řezníčková E, Křupková S, Kryštof V, Hlaváč J. Development of fluorescent dual-FRET probe for simultaneous detection of caspase-8 and caspase-9 activities and their relative quantification. Bioorg Chem 2022; 129:106151. [DOI: 10.1016/j.bioorg.2022.106151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 08/24/2022] [Accepted: 09/08/2022] [Indexed: 11/27/2022]
|
38
|
Hara Y, Watanabe K, Takaya A, Manome T, Yaguchi T, Ishibashi M. Two Bioactive Compounds, Uniformides A and B, Isolated from a Culture of Nocardia uniformis IFM0856 T in the Presence of Animal Cells. Org Lett 2022; 24:4998-5002. [DOI: 10.1021/acs.orglett.2c02092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yasumasa Hara
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
- Plant Molecular Science Center, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Keiichiro Watanabe
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Akiko Takaya
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
- Plant Molecular Science Center, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
- Medical Mycology Research Center, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8673, Japan
| | - Teruhisa Manome
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Takashi Yaguchi
- Medical Mycology Research Center, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8673, Japan
| | - Masami Ishibashi
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
- Plant Molecular Science Center, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| |
Collapse
|
39
|
Zheng Y, Reiner B, Liu J, Xu L, Xiong H. Methamphetamine augments HIV-1 gp120 inhibition of synaptic transmission and plasticity in rat hippocampal slices: Implications for methamphetamine exacerbation of HIV-associated neurocognitive disorders. Neurobiol Dis 2022; 168:105712. [PMID: 35337950 PMCID: PMC9150446 DOI: 10.1016/j.nbd.2022.105712] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 03/16/2022] [Accepted: 03/18/2022] [Indexed: 11/30/2022] Open
Abstract
Methamphetamine (Meth) abuse and human immunodeficiency virus type 1 (HIV-1) infection are two major public health problems worldwide. Being frequently comorbid with HIV-1 infection, Meth abuse exacerbates neurocognitive impairment in HIV-1-infected individuals even in the era of combined antiretroviral therapy. While a large body of research have studied the individual effects of Meth and HIV-1 envelope glycoprotein 120 (gp120) in the brain, far less has focused on their synergistic influence. Moreover, it is well-documented that the hippocampus is the primary site of spatial learning and long-term memory formation. Dysregulation of activity-dependent synaptic transmission and plasticity in the hippocampus is believed to impair neurocognitive function. To uncover the underlying mechanisms for increased incidence and severity of HIV-1-associated neurocognitive disorders (HAND) in HIV-1-infected patients with Meth abuse, we investigated acute individual and combined effects of Meth (20 μM) and gp120 (200 pM) on synaptic transmission and plasticity in the CA1 region of young adult male rat hippocampus, a brain region known to be vulnerable to HIV-1 infection. Our results showed that acute localized application of Meth and gp120 each alone onto the CA1 region reduced short-term dynamics of input-output responses and frequency facilitation, and attenuated long-term potentiation (LTP) induced by either high frequency stimulation or theta burst stimulation. A synergistic augmentation on activity-dependent synaptic plasticity was observed when Meth and gp120 were applied in combination. Paired-pulse facilitation results exhibited an altered facilitation ratio, suggesting a presynaptic site of action. Further studies revealed an involvement of microglia NLRP3 inflammasome activation in Meth augmentation of gp120-mediated attenuation of LTP. Taken together, our results demonstrated Meth augmented gp120 attenuation of LTP in the hippocampus. Since LTP is the accepted experimental analog of learning at the synaptic level, such augmentation may underlie Meth exacerbation of HAND observed clinically.
Collapse
Affiliation(s)
- Ya Zheng
- The Neurophysiology Laboratory, Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA
| | - Benjamin Reiner
- The Neurophysiology Laboratory, Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA
| | - Jianuo Liu
- The Neurophysiology Laboratory, Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA
| | - Linda Xu
- The Neurophysiology Laboratory, Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA
| | - Huangui Xiong
- The Neurophysiology Laboratory, Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA.
| |
Collapse
|
40
|
Ye X, Song G, Huang S, Liang Q, Fang Y, Lian L, Zhu S. Caspase-1: A Promising Target for Preserving Blood–Brain Barrier Integrity in Acute Stroke. Front Mol Neurosci 2022; 15:856372. [PMID: 35370546 PMCID: PMC8971909 DOI: 10.3389/fnmol.2022.856372] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 02/18/2022] [Indexed: 12/24/2022] Open
Abstract
The blood–brain barrier (BBB) acts as a physical and biochemical barrier that plays a fundamental role in regulating the blood-to-brain influx of endogenous and exogenous components and maintaining the homeostatic microenvironment of the central nervous system (CNS). Acute stroke leads to BBB disruption, blood substances extravasation into the brain parenchyma, and the consequence of brain edema formation with neurological impairment afterward. Caspase-1, one of the evolutionary conserved families of cysteine proteases, which is upregulated in acute stroke, mainly mediates pyroptosis and compromises BBB integrity via lytic cellular death and inflammatory cytokines release. Nowadays, targeting caspase-1 has been proven to be effective in decreasing the occurrence of hemorrhagic transformation (HT) and in attenuating brain edema and secondary damages during acute stroke. However, the underlying interactions among caspase-1, BBB, and stroke still remain ill-defined. Hence, in this review, we are concerned about the roles of caspase-1 activation and its associated mechanisms in stroke-induced BBB damage, aiming at providing insights into the significance of caspase-1 inhibition on stroke treatment in the near future.
Collapse
|
41
|
Xu H, Wang Y, Zhang J, Duan X, Zhang T, Cai X, Ha H, Byun Y, Fan Y, Yang Z, Wang Y, Liu Z, Yang X. A self-triggered radioligand therapy agent for fluorescence imaging of the treatment response in prostate cancer. Eur J Nucl Med Mol Imaging 2022; 49:2693-2704. [PMID: 35235005 DOI: 10.1007/s00259-022-05743-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 02/20/2022] [Indexed: 12/18/2022]
Abstract
PURPOSE Radioligand therapy (RLT) targeting prostate-specific membrane antigen (PSMA) is emerging as an effective treatment option for metastatic castration-resistant prostate cancer (mCRPC). An imaging-based method to quantify early treatment responses can help to understand and optimize RLT. METHODS We developed a self-triggered probe 2 targeting the colocalization of PSMA and caspase-3 for fluorescence imaging of RLT-induced apoptosis. RESULTS The probe binds to PSMA potently with a Ki of 4.12 nM, and its fluorescence can be effectively switched on by caspase-3 with a Km of 67.62 μM. Cellular and in vivo studies demonstrated its specificity for imaging radiation-induced caspase-3 upregulation in prostate cancer. To identify the detection limit of our method, we showed that probe 2 could achieve 1.79 times fluorescence enhancement in response to 177Lu-RLT in a medium PSMA-expressing 22Rv1 xenograft model. CONCLUSION Probe 2 can potently bind to PSMA, and the fluorescence signal can be sensitively switched on by caspase-3 both in vitro and in vivo. This method may provide an effective tool to investigate and optimize PSMA-RLT.
Collapse
Affiliation(s)
- Hongchuang Xu
- Department of Nuclear Medicine, Peking University First Hospital, Beijing, 100034, China
| | - Yanpu Wang
- Medical Isotopes Research Center and Department of Radiation Medicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Jingming Zhang
- Department of Nuclear Medicine, Peking University First Hospital, Beijing, 100034, China
| | - Xiaojiang Duan
- Department of Nuclear Medicine, Peking University First Hospital, Beijing, 100034, China
| | - Ting Zhang
- Medical Isotopes Research Center and Department of Radiation Medicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Xuekang Cai
- Department of Nuclear Medicine, Peking University First Hospital, Beijing, 100034, China
| | - Hyunsoo Ha
- College of Pharmacy, Korea University, 2511 Sejong-ro, Sejong, 30019, South Korea
| | - Youngjoo Byun
- College of Pharmacy, Korea University, 2511 Sejong-ro, Sejong, 30019, South Korea
| | - Yan Fan
- Department of Nuclear Medicine, Peking University First Hospital, Beijing, 100034, China
| | - Zhi Yang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, 100142, China.,NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals, Beijing, 100142, China
| | - Yiguang Wang
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100191, China
| | - Zhaofei Liu
- Medical Isotopes Research Center and Department of Radiation Medicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China. .,NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals, Beijing, 100142, China.
| | - Xing Yang
- Department of Nuclear Medicine, Peking University First Hospital, Beijing, 100034, China. .,NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals, Beijing, 100142, China. .,Institute of Medical Technology, Peking University Health Science Center, Beijing, 100191, China.
| |
Collapse
|
42
|
Li H, Guo Z, Chen J, Du Z, Lu H, Wang Z, Xi J, Bai Y. Computational research of Belnacasan and new Caspase-1 inhibitor on cerebral ischemia reperfusion injury. Aging (Albany NY) 2022; 14:1848-1864. [PMID: 35193116 PMCID: PMC8908936 DOI: 10.18632/aging.203907] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 01/25/2022] [Indexed: 11/25/2022]
Abstract
Cerebral ischemia-reperfusion injury is one of the most severe diseases in terms of mortality and disability, which seriously threatens human life and health. In clinical treatment, drug thrombolysis or mechanical interventional thrombolysis are used to quickly restore the blood supply of ischemic brain tissue. But with the rapid recovery of blood flow, complex pathophysiological processes such as oxidative stress and inflammation will further aggravate brain tissue damage, namely cerebral ischemia-reperfusion injury, for which there is no effective treatment. Recent studies have shown that the medical community has paid the role of inflammation and pyroptosis in cerebral ischemia-reperfusion injury more and more attention. And Caspase-1 was found to play a vital role in regulating inflammation pathways and pyroptosis in many inflammation-associated diseases, especially in cerebral ischemia-reperfusion injury. Not only that, Caspase-1 inhibitors have been shown to reduce the damage of cerebral ischemia-reperfusion injury by inhibiting inflammation and pyroptosis. And the Caspase-1 inhibitor, Belnacasan, has been proved to modify the active site of Caspase-1 and lead to the blocking of Caspase-1, thus correlating with tissue protection of inflammatory diseases in animal models. Therefore, it’s essential to screen and design potential Caspase-1 inhibitors to reduce cerebral ischemia-reperfusion injury and protect brain function by reducing inflammation and pyroptosis, which provides a new idea for clinical treatment of the cerebral ischemia-reperfusion injury. This study applied a group of computer-aided technology, such as Discovery Studio 4.5, Schrodinger, and PyMol, to screen and assess potential Caspase-1 inhibitors. Moreover, the ADME (absorption, distribution, metabolism, excretion) and TOPKAT (Toxicity Prediction by Computer Assisted Technology) molecules of Discovery Studio 4.5 were conducted to evaluate molecules' pharmacological and toxicological features. Then, precise molecular docking was applied to assess the binding mechanism and affinity between Caspase-1 and selected compounds. Besides, molecular dynamics simulations were performed to determine the stability of ligand-receptor complexes in the natural environment. In summary, this study lists promising drug candidates and their pharmacological properties, promoting the development of Caspase-1 inhibitors and deepening the understanding of the interaction between inhibitors and Caspase-1.
Collapse
Affiliation(s)
- Hui Li
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Zhen Guo
- Clinical College, Jilin University, Changchun, China
| | - Jun Chen
- Clinical College, Jilin University, Changchun, China
| | - Zhishan Du
- Clinical College, Jilin University, Changchun, China
| | - Han Lu
- Clinical College, Jilin University, Changchun, China
| | - Zhenhua Wang
- Clinical College, Jilin University, Changchun, China
| | - Jianxin Xi
- Clinical College, Jilin University, Changchun, China
| | - Yang Bai
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
43
|
Needs SH, Bootman MD, Grotzke JE, Kramer HB, Allman SA. Off‐target inhibition of NGLY1 by the polycaspase inhibitor Z‐VAD‐fmk induces cellular autophagy. FEBS J 2022; 289:3115-3131. [PMID: 34995415 PMCID: PMC9304259 DOI: 10.1111/febs.16345] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 09/14/2021] [Accepted: 01/05/2022] [Indexed: 12/28/2022]
Affiliation(s)
- Sarah H. Needs
- School of Life, Health and Chemical Sciences The Open University Milton Keynes UK
- Reading School of Pharmacy University of Reading UK
| | - Martin D. Bootman
- School of Life, Health and Chemical Sciences The Open University Milton Keynes UK
| | | | - Holger B. Kramer
- Department of Physiology, Anatomy and Genetics University of Oxford UK
- MRC London Institute of Medical Sciences UK
| | - Sarah A. Allman
- School of Life, Health and Chemical Sciences The Open University Milton Keynes UK
- Reading School of Pharmacy University of Reading UK
- Leicester School of Pharmacy De Montfort University Leicester UK
| |
Collapse
|
44
|
Abdelsayed EM, Medhat D, Mandour YM, Hanafi RS, Motaal AA. Niazimicin: A thiocarbamate glycoside from Moringa oleifera Lam. seeds with a novel neuroprotective activity. J Food Biochem 2021; 45:e13992. [PMID: 34747026 DOI: 10.1111/jfbc.13992] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/18/2021] [Accepted: 10/19/2021] [Indexed: 11/29/2022]
Abstract
Moringa oleifera (MO) known as the miracle tree is a famous nutritional source in many countries. In this study, the neuroprotective activity of MO seeds was investigated. Fractions of the 70% ethanol seed extract of MO were injected at a dose of 250 mg kg-1 day-1 to albino rats for 15 days, after-which induction of dementia was done using 100 mg/kg AlCl3 over 30 days. Results revealed that all fractions ameliorated the effects of AlCl3 where methylene chloride and ethyl acetate fractions, containing the major bioactive compound niazimicin (NZ), showed the best activities. Biological investigations proved NZ to be a highly potent neuroprotective drug lead as a first report, by causing a decrease in the levels of malondialdehyde, cholinesterase, nitric oxide (NO) and amyloid β by 47%, 34%, 53% and 59%, respectively, and increasing glutathione levels by 54%. Molecular docking studies suggested NZ neuroprotective effects to be mediated by inhibition of caspase-3 and inducible nitric oxide synthase enzymes. PRACTICAL APPLICATIONS: The current findings present the neuroprotective effect of Moringa oleifera seeds consumed as a food supplement and in daily diet. In addition, niazimicin is a promising lead for the development of novel agents against Alzheimer's disease as seen by the reported results.
Collapse
Affiliation(s)
- Eman M Abdelsayed
- School of Life and Medical Sciences, University of Hertfordshire Hosted by Global Academic Foundation, Cairo, Egypt.,Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| | - Dalia Medhat
- Department of Medical Biochemistry, National Research Centre, Giza, Egypt
| | - Yasmine M Mandour
- School of Life and Medical Sciences, University of Hertfordshire Hosted by Global Academic Foundation, Cairo, Egypt.,Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| | - Rasha S Hanafi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| | - Amira Abdel Motaal
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
45
|
Dong C, Wang Q, Xu Z, Deng L, Zhang T, Lu B, Wang Q, Ren J. The Theoretical Model, Method, and Applications of Scattering Photon Burst Counting Based on an Objective Scanning Technique. Anal Chem 2021; 93:12556-12564. [PMID: 34477357 DOI: 10.1021/acs.analchem.1c01834] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Scattering photon burst counting (SPBC) is a single-particle detection method, which is based on measuring scattering photon bursting of single nanoparticles through a detection volume of <1 fL. Although SPBC has been used for bioassays and analysis of nanoparticles, it is necessary to establish its theoretical model and develop a new detection mode in order to further enhance its sensitivity and enlarge its application fields. In this paper, we proposed a theoretical model for the confocal SPBC method and developed a novel SPBC detection mode using the fast objective scanning technique. The computer simulations and experiments documented that this model well describes the relation between photon counts and experimental parameters (such as nanoparticle concentration and diameter, temperature, and viscosity). Based on this model, we developed a novel SPBC detection mode by using the fast objective scanning technique. Compared to the current confocal SPBC method, the sensitivity of this new method was significantly increased due to the significantly increased photon counts per sampling time, the linear detection range is from 0.9 to 90 pM, and the limit of detection is reduced to 40 fM for 30 nm gold nanoparticles. Furthermore, this new method was successfully applied to determine the enzyme activity of caspase-3 and evaluate the inhibition effectiveness of some inhibitors.
Collapse
Affiliation(s)
- Chaoqing Dong
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Qing Wang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Zhenli Xu
- School of Mathematical Sciences and MOE-LSC, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Liyun Deng
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Tian Zhang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Binglin Lu
- Anhui University of Science and Technology Affiliated Fengxian Hospital, 6600 Nanfeng Road, Shanghai 201499, China
| | - Qin Wang
- Anhui University of Science and Technology Affiliated Fengxian Hospital, 6600 Nanfeng Road, Shanghai 201499, China
| | - Jicun Ren
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| |
Collapse
|
46
|
Fan J, Cheney PP, Bloch S, Xu B, Liang K, Odonkor CA, Edwards WB, Basak S, Mintz R, Biswas P, Achilefu S. Multifunctional Thio-Stabilized Gold Nanoparticles for Near-Infrared Fluorescence Detection and Imaging of Activated Caspase-3. CURR ANAL CHEM 2021; 17:1182-1193. [PMID: 34393690 DOI: 10.2174/1573411017999210112175743] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background Gold nanoparticles (AuNPs) are commonly used in nanomedicine because of their unique spectral properties, chemical and biological stability, and ability to quench the fluorescence of organic dyes attached to their surfaces. However, the utility of spherical AuNPs for activatable fluorescence sensing of molecular processes have been confined to resonance-matched fluorophores in the 500 nm to 600 nm spectral range to maximize dye fluorescence quenching efficiency. Expanding the repertoire of fluorophore systems into the NIR fluorescence regimen with emission >800 nm will facilitate the analysis of multiple biological events with high detection sensitivity. Objective The primary goal of this study is to determine if spherical AuNP-induced radiative rate suppression of non-resonant near-infrared (NIR) fluorescent probes can serve as a versatile nanoconstruct for highly sensitive detection and imaging of activated caspase-3 in aqueous media and cancer cells. This required the development of activatable NIR fluorescence sensors of caspase-3 designed to overcome the nonspecific degradation and release of the surface coatings in aqueous media. Method We harnessed the fluorescence-quenching properties and multivalency of spherical AuNPs to develop AuNP-templated activatable NIR fluorescent probes to detect activated caspase-3, an intracellular reporter of early cell death. Freshly AuNPs were coated with a multifunctional NIR fluorescent dye-labeled peptide (LS422) consisting of an RGD peptide sequence that targets αvβ3-integrin protein (αvβ3) on the surface of cancer cells to mediate the uptake and internalization of the sensors in tumor cells; a DEVD peptide sequence for reporting the induction of cell death through caspase-3 mediated NIR fluorescence enhancement; and a multidentate hexacysteine sequence for enhancing self-assembly and stabilizing the multifunctional construct on AuNPs. The integrin binding affinity of LS422 and caspase-3 kinetics were determined by a radioligand competitive binding and fluorogenic peptide assays, respectively. Detection of intracellular caspase-3, cell viability, and the internalization of LS422 in cancer cells were determined by confocal NIR fluorescence spectroscopy and microscopy. Results Narrow size AuNPs (13 nm) were prepared and characterized by transmission electron microscopy and dynamic light scattering. When assembled on the AuNPs, the binding constant of LS422 for αvβ3 improved 11-fold from 13.2 nM to 1.2 nM. Whereas the catalytic turnover of caspase-3 by LS422-AuNPs was similar to the reference fluorogenic peptide, the binding affinity for the enzyme increased by a factor of 2. Unlike the αvβ3 positive, but caspase-3 negative breast cancer MCF-7 cells, treatment of the αvβ3 and caspase-3 positive lung cancer A549 cells with Paclitaxel showed significant fluorescence enhancement within 30 minutes, which correlated with caspase-3 specific activation of LS422-AuNPs fluorescence. Incorporation of a 3.5 mW NIR laser source into our spectrofluorometer increased the detection sensitivity by an order of magnitude (limit of detection ~0.1 nM of cypate) and significantly decreased the signal noise relative to a xenon lamp. This gain in sensitivity enabled the detection of substrate hydrolysis at a broad range of inhibitor concentrations without photobleaching the cypate dye. Conclusion The multifunctional AuNPs demonstrate the use of a non-resonant quenching strategy to design activatable NIR fluorescence molecular probes. The nanoconstruct offers a selective reporting method for detecting activated caspase-3, imaging of cell viability, identifying dying cells, and visualizing the functional status of intracellular enzymes. Performing these tasks with NIR fluorescent probes creates an opportunity to translate the in vitro and cellular analysis of enzymes into in vivo interrogation of their functional status using deep tissue penetrating NIR fluorescence analytical methods.
Collapse
Affiliation(s)
- J Fan
- Departments of Radiology, Washington University School of Medicine, St Louis, United States
| | - P P Cheney
- Departments of Radiology, Washington University School of Medicine, St Louis, United States
| | - S Bloch
- Departments of Radiology, Washington University School of Medicine, St Louis, United States
| | - B Xu
- Departments of Radiology, Washington University School of Medicine, St Louis, United States
| | - K Liang
- Departments of Radiology, Washington University School of Medicine, St Louis, United States
| | - C A Odonkor
- Departments of Radiology, Washington University School of Medicine, St Louis, United States
| | - W B Edwards
- Departments of Radiology, Washington University School of Medicine, St Louis, United States
| | - S Basak
- Department of Energy, Environmental & Chemical Engineering, Washington University, St Louis, United States
| | - R Mintz
- Departments of Radiology, Washington University School of Medicine, St Louis, United States.,Department of Energy, Environmental & Chemical Engineering, Washington University, St Louis, United States.,Department of Biochemistry & Molecular Biophysics, Washington University School of Medicine, St Louis, United States.,Department of Biomedical Engineering, Washington University, St Louis, United States.,Department of Medicine, Washington University, St Louis, United States
| | - P Biswas
- Department of Energy, Environmental & Chemical Engineering, Washington University, St Louis, United States
| | - S Achilefu
- Departments of Radiology, Washington University School of Medicine, St Louis, United States.,Department of Biochemistry & Molecular Biophysics, Washington University School of Medicine, St Louis, United States.,Department of Biomedical Engineering, Washington University, St Louis, United States.,Department of Medicine, Washington University, St Louis, United States
| |
Collapse
|
47
|
Gabarin RS, Li M, Zimmel PA, Marshall JC, Li Y, Zhang H. Intracellular and Extracellular Lipopolysaccharide Signaling in Sepsis: Avenues for Novel Therapeutic Strategies. J Innate Immun 2021; 13:323-332. [PMID: 34004605 PMCID: PMC8613564 DOI: 10.1159/000515740] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 03/02/2021] [Indexed: 11/19/2022] Open
Abstract
Sepsis is defined as organ dysfunction due to a dysregulated systemic host response to infection. During gram-negative bacterial infection and other acute illness such as absorption from the gut infection, lipopolysaccharide (LPS) is a major mediator in sepsis. LPS is able to trigger inflammation through both intracellular and extracellular pathways. Classical interactions between LPS and host cells first involve LPS binding to LPS binding protein (LBP), a carrier. The LPS-LBP complex then binds to a receptor complex including the CD14, MD2, and toll-like receptor 4 (TLR4) proteins, initiating a signal cascade which triggers the secretion of pro-inflammatory cytokines. However, it has been established that LPS is also internalized by macrophages and endothelial cells through TLR4-independent pathways. Once internalized, LPS is able to bind to the cytosolic receptors caspases-4/5 in humans and the homologous caspase-11 in mice. Bound caspases-4/5 oligomerize and trigger the assembly of the nucleotide-binding domain, leucine-rich-containing family, pyrin domain-containing-3 inflammasome followed by the activation of inflammatory caspase-1 resulting in subsequent release of interleukin-1β. Caspases-4/5 also activate the perforin gasdermin D and purinergic receptor P2X7, inducing cell lysis and pyroptosis. Pyroptosis is a notable source of inflammation and damage to the lung endothelial barrier during sepsis. Thus, inhibition of caspases-4/5/1 or downstream effectors to block intracellular LPS signaling may be a promising therapeutic approach in adjunction with neutralizing extracellular LPS for treatment of sepsis.
Collapse
Affiliation(s)
- Ramy S Gabarin
- Keenan Research Center for Biomedical Science of Unity Health Toronto, Toronto, Ontario, Canada
| | - Manshu Li
- Keenan Research Center for Biomedical Science of Unity Health Toronto, Toronto, Ontario, Canada.,The State Key Laboratory of Respiratory Disease, and the 1st Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Paige A Zimmel
- Keenan Research Center for Biomedical Science of Unity Health Toronto, Toronto, Ontario, Canada
| | - John C Marshall
- Keenan Research Center for Biomedical Science of Unity Health Toronto, Toronto, Ontario, Canada.,Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Yimin Li
- Keenan Research Center for Biomedical Science of Unity Health Toronto, Toronto, Ontario, Canada.,The State Key Laboratory of Respiratory Disease, and the 1st Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Haibo Zhang
- Keenan Research Center for Biomedical Science of Unity Health Toronto, Toronto, Ontario, Canada.,The State Key Laboratory of Respiratory Disease, and the 1st Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, Ontario, Canada.,Department of Anesthesia, University of Toronto, Toronto, Ontario, Canada.,Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
48
|
Krabill AD, Chen H, Hussain S, Hewitt CS, Imhoff RD, Muli CS, Das C, Galardy PJ, Wendt MK, Flaherty DP. Optimization and Anti-Cancer Properties of Fluoromethylketones as Covalent Inhibitors for Ubiquitin C-Terminal Hydrolase L1. Molecules 2021; 26:1227. [PMID: 33668938 PMCID: PMC7956625 DOI: 10.3390/molecules26051227] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/12/2021] [Accepted: 02/19/2021] [Indexed: 11/17/2022] Open
Abstract
The deubiquitinating enzyme (DUB) UCHL1 is implicated in various disease states including neurodegenerative disease and cancer. However, there is a lack of quality probe molecules to gain a better understanding on UCHL1 biology. To this end a study was carried out to fully characterize and optimize the irreversible covalent UCHL1 inhibitor VAEFMK. Structure-activity relationship studies identified modifications to improve activity versus the target and a full cellular characterization was carried out for the first time with this scaffold. The studies produced a new inhibitor, 34, with an IC50 value of 7.7 µM against UCHL1 and no observable activity versus the closest related DUB UCHL3. The molecule was also capable of selectively inhibiting UCHL1 in cells and did not demonstrate any discernible off-target toxicity. Finally, the molecule was used for initial probe studies to assess the role of UCHL1 role in proliferation of myeloma cells and migration behavior in small cell lung cancer cells making 34 a new tool to be used in the biological evaluation of UCHL1.
Collapse
Affiliation(s)
- Aaron D. Krabill
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, 575 Stadium Mall Dr., West Lafayette, IN 47907, USA; (A.D.K.); (H.C.); (C.S.H.); (R.D.I.); (C.S.M.); (M.K.W.)
| | - Hao Chen
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, 575 Stadium Mall Dr., West Lafayette, IN 47907, USA; (A.D.K.); (H.C.); (C.S.H.); (R.D.I.); (C.S.M.); (M.K.W.)
| | - Sajjad Hussain
- Division of Pediatric Hematology-Oncology, Mayo Clinic, 200 First St. Guggenheim 15, Rochester, MN 55905, USA; (S.H.); (P.J.G.)
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, 200 First St. Guggenheim 15, Rochester, MN 55905, USA
| | - Chad S. Hewitt
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, 575 Stadium Mall Dr., West Lafayette, IN 47907, USA; (A.D.K.); (H.C.); (C.S.H.); (R.D.I.); (C.S.M.); (M.K.W.)
| | - Ryan D. Imhoff
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, 575 Stadium Mall Dr., West Lafayette, IN 47907, USA; (A.D.K.); (H.C.); (C.S.H.); (R.D.I.); (C.S.M.); (M.K.W.)
| | - Christine S. Muli
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, 575 Stadium Mall Dr., West Lafayette, IN 47907, USA; (A.D.K.); (H.C.); (C.S.H.); (R.D.I.); (C.S.M.); (M.K.W.)
| | - Chittaranjan Das
- Department of Chemistry, College of Science, 560 Oval Dr., West Lafayette, IN 47907, USA;
- Purdue Center for Cancer Research, Hanson Life Sciences Research Building, 201 University St., West Lafayette, IN 47907, USA
| | - Paul J. Galardy
- Division of Pediatric Hematology-Oncology, Mayo Clinic, 200 First St. Guggenheim 15, Rochester, MN 55905, USA; (S.H.); (P.J.G.)
| | - Michael K. Wendt
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, 575 Stadium Mall Dr., West Lafayette, IN 47907, USA; (A.D.K.); (H.C.); (C.S.H.); (R.D.I.); (C.S.M.); (M.K.W.)
- Purdue Center for Cancer Research, Hanson Life Sciences Research Building, 201 University St., West Lafayette, IN 47907, USA
- Purdue Institute for Drug Discovery, 720 Clinic Ln., West Lafayette, IN 47907, USA
| | - Daniel P. Flaherty
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, 575 Stadium Mall Dr., West Lafayette, IN 47907, USA; (A.D.K.); (H.C.); (C.S.H.); (R.D.I.); (C.S.M.); (M.K.W.)
- Purdue Center for Cancer Research, Hanson Life Sciences Research Building, 201 University St., West Lafayette, IN 47907, USA
- Purdue Institute for Drug Discovery, 720 Clinic Ln., West Lafayette, IN 47907, USA
| |
Collapse
|
49
|
Provine NM, Amini A, Garner LC, Spencer AJ, Dold C, Hutchings C, Silva Reyes L, FitzPatrick MEB, Chinnakannan S, Oguti B, Raymond M, Ulaszewska M, Troise F, Sharpe H, Morgan SB, Hinks TSC, Lambe T, Capone S, Folgori A, Barnes E, Rollier CS, Pollard AJ, Klenerman P. MAIT cell activation augments adenovirus vector vaccine immunogenicity. Science 2021; 371:521-526. [PMID: 33510029 PMCID: PMC7610941 DOI: 10.1126/science.aax8819] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 07/20/2020] [Accepted: 11/19/2020] [Indexed: 12/17/2022]
Abstract
Mucosal-associated invariant T (MAIT) cells are innate sensors of viruses and can augment early immune responses and contribute to protection. We hypothesized that MAIT cells may have inherent adjuvant activity in vaccine platforms that use replication-incompetent adenovirus vectors. In mice and humans, ChAdOx1 (chimpanzee adenovirus Ox1) immunization robustly activated MAIT cells. Activation required plasmacytoid dendritic cell (pDC)-derived interferon (IFN)-α and monocyte-derived interleukin-18. IFN-α-induced, monocyte-derived tumor necrosis factor was also identified as a key secondary signal. All three cytokines were required in vitro and in vivo. Activation of MAIT cells positively correlated with vaccine-induced T cell responses in human volunteers and MAIT cell-deficient mice displayed impaired CD8+ T cell responses to multiple vaccine-encoded antigens. Thus, MAIT cells contribute to the immunogenicity of adenovirus vectors, with implications for vaccine design.
Collapse
Affiliation(s)
- Nicholas M Provine
- Translational Gastroenterology Unit, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
| | - Ali Amini
- Translational Gastroenterology Unit, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Lucy C Garner
- Translational Gastroenterology Unit, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | | | - Christina Dold
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, and the National Institute for Health Research (NIHR) Oxford Biomedical Research Centre, Oxford, UK
| | - Claire Hutchings
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, UK
| | - Laura Silva Reyes
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, and the National Institute for Health Research (NIHR) Oxford Biomedical Research Centre, Oxford, UK
| | - Michael E B FitzPatrick
- Translational Gastroenterology Unit, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | | | - Blanche Oguti
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, and the National Institute for Health Research (NIHR) Oxford Biomedical Research Centre, Oxford, UK
| | - Meriel Raymond
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, and the National Institute for Health Research (NIHR) Oxford Biomedical Research Centre, Oxford, UK
| | | | - Fulvia Troise
- Nouscom, SRL, Rome, Italy
- Ceinge Biotechnologie Avanzate, Naples, Italy
| | | | - Sophie B Morgan
- Respiratory Medicine Unit, Nuffield Department of Medicine - Experimental Medicine, University of Oxford, Oxford, UK
| | - Timothy S C Hinks
- Respiratory Medicine Unit, Nuffield Department of Medicine - Experimental Medicine, University of Oxford, Oxford, UK
| | - Teresa Lambe
- Jenner Institute, University of Oxford, Oxford, UK
| | | | | | - Eleanor Barnes
- Translational Gastroenterology Unit, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Jenner Institute, University of Oxford, Oxford, UK
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, UK
| | - Christine S Rollier
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, and the National Institute for Health Research (NIHR) Oxford Biomedical Research Centre, Oxford, UK
| | - Andrew J Pollard
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, and the National Institute for Health Research (NIHR) Oxford Biomedical Research Centre, Oxford, UK
| | - Paul Klenerman
- Translational Gastroenterology Unit, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, UK
| |
Collapse
|
50
|
Lima TS, Mallya S, Jankeel A, Messaoudi I, Lodoen MB. Toxoplasma gondii Extends the Life Span of Infected Human Neutrophils by Inducing Cytosolic PCNA and Blocking Activation of Apoptotic Caspases. mBio 2021; 12:e02031-20. [PMID: 33500339 PMCID: PMC7858050 DOI: 10.1128/mbio.02031-20] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 12/01/2020] [Indexed: 11/20/2022] Open
Abstract
Toxoplasma gondii is an intracellular protozoan parasite that has the remarkable ability to infect and replicate in neutrophils, immune cells with an arsenal of antimicrobial effector mechanisms. We report that T. gondii infection extends the life span of primary human peripheral blood neutrophils by delaying spontaneous apoptosis, serum starvation-induced apoptosis, and tumor necrosis alpha (TNF-α)-mediated apoptosis. T. gondii blockade of apoptosis was associated with an inhibition of processing and activation of the apoptotic caspases caspase-8 and -3, decreased phosphatidylserine exposure on the plasma membrane, and reduced cell death. We performed a global transcriptome analysis of T. gondii-infected peripheral blood neutrophils using RNA sequencing (RNA-Seq) and identified gene expression changes associated with DNA replication and DNA repair pathways, which in mature neutrophils are indicative of changes in regulators of cell survival. Consistent with the RNA-Seq data, T. gondii infection upregulated transcript and protein expression of PCNA, which is found in the cytosol of human neutrophils, where it functions as a key inhibitor of apoptotic pro-caspases. Infection of neutrophils resulted in increased interaction of PCNA with pro-caspase-3. Inhibition of this interaction with an AlkB homologue 2 PCNA-interacting motif (APIM) peptide reversed the infection-induced delay in cell death. Taken together, these findings indicate a novel strategy by which T. gondii manipulates cell life span in primary human neutrophils, which may allow the parasite to maintain an intracellular replicative niche and avoid immune clearance.IMPORTANCEToxoplasma gondii is an obligate intracellular parasite that can cause life-threatening disease in immunocompromised individuals and in the developing fetus. Interestingly, T. gondii has evolved strategies to successfully manipulate the host immune system to establish a productive infection and evade host defense mechanisms. Although it is well documented that neutrophils are mobilized during acute T. gondii infection and infiltrate the site of infection, these cells can also be actively infected by T. gondii and serve as a replicative niche for the parasite. However, there is a limited understanding of the molecular processes occurring within T. gondii-infected neutrophils. This study reveals that T. gondii extends the life span of human neutrophils by inducing the expression of PCNA, which prevents activation of apoptotic caspases, thus delaying apoptosis. This strategy may allow the parasite to preserve its replicative intracellular niche.
Collapse
Affiliation(s)
- Tatiane S Lima
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, California, USA
- Institute for Immunology, University of California, Irvine, Irvine, California, USA
| | - Sharmila Mallya
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, California, USA
- Institute for Immunology, University of California, Irvine, Irvine, California, USA
| | - Allen Jankeel
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, California, USA
- Institute for Immunology, University of California, Irvine, Irvine, California, USA
| | - Ilhem Messaoudi
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, California, USA
- Institute for Immunology, University of California, Irvine, Irvine, California, USA
| | - Melissa B Lodoen
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, California, USA
- Institute for Immunology, University of California, Irvine, Irvine, California, USA
| |
Collapse
|