1
|
Zhang T, Bi C, Li Y, Zhao L, Cui Y, Ouyang K, Xiao B. Phosphorylation of Piezo1 at a single residue, serine-1612, regulates its mechanosensitivity and in vivo mechanotransduction function. Neuron 2024; 112:3618-3633.e6. [PMID: 39270653 DOI: 10.1016/j.neuron.2024.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 07/31/2024] [Accepted: 08/13/2024] [Indexed: 09/15/2024]
Abstract
Piezo1 is a mechanically activated cation channel that converts mechanical force into diverse physiological processes. Owing to its large protein size of more than 2,500 amino acids and complex 38-transmembrane helix topology, how Piezo1 is post-translationally modified for regulating its in vivo mechanotransduction functions remains largely unexplored. Here, we show that PKA activation potentiates the mechanosensitivity and slows the inactivation kinetics of mouse Piezo1 and identify the major phosphorylation site, serine-1612 (S1612), that also responds to PKC activation and shear stress. Mutating S1612 abolishes PKA and PKC regulation of Piezo1 activities. Primary endothelial cells derived from the Piezo1-S1612A knockin mice lost PKA- and PKC-dependent phosphorylation and functional potentiation of Piezo1. The mutant mice show activity-dependent elevation of blood pressure and compromised exercise endurance, resembling endothelial-specific Piezo1 knockout mice. Taken together, we identify the major PKA and PKC phosphorylation site in Piezo1 and demonstrate its contribution to Piezo1-mediated physiological functions.
Collapse
Affiliation(s)
- Tingxin Zhang
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, IDG/McGovern Institute for Brain Research, Beijing Frontier Research Center of Biological, School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
| | - Cheng Bi
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, IDG/McGovern Institute for Brain Research, Beijing Frontier Research Center of Biological, School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
| | - Yiran Li
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, IDG/McGovern Institute for Brain Research, Beijing Frontier Research Center of Biological, School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
| | - Lingyun Zhao
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Yaxiong Cui
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, IDG/McGovern Institute for Brain Research, Beijing Frontier Research Center of Biological, School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
| | - Kunfu Ouyang
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China.
| | - Bailong Xiao
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, IDG/McGovern Institute for Brain Research, Beijing Frontier Research Center of Biological, School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
2
|
Chen X, Obukhov AG, Weisman GA, Seye CI. Basal ATP release signals through the P2Y 2 receptor to maintain the differentiated phenotype of vascular smooth muscle cells. Atherosclerosis 2024; 395:117613. [PMID: 38889566 PMCID: PMC11254552 DOI: 10.1016/j.atherosclerosis.2024.117613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 05/30/2024] [Accepted: 05/30/2024] [Indexed: 06/20/2024]
Abstract
BACKGROUND AND AIMS Vascular smooth muscle cell (VSMC) dedifferentiation contributes substantively to vascular disease. VSMCs spontaneously release low levels of ATP that modulate vessel contractility, but it is unclear if autocrine ATP signaling in VSMCs is critical to the maintenance of the VSMC contractile phenotype. METHODS We used pharmacological inhibitors to block ATP release in human aortic smooth muscle cells (HASMCs) for studying changes in VSMC differentiation marker gene expression. We employed RNA interference and generated mice with SMC-specific inducible deletion of the P2Y2 receptor (P2Y2R) gene to evaluate resulting phenotypic alterations. RESULTS HASMCs constitutively release low levels of ATP that when blocked results in a significant decrease in VSMC differentiation marker gene expression, including smooth muscle actin (SMA), smooth muscle myosin heavy chain (SMMHC), SM-22α and calponin. Basal release of ATP represses transcriptional activation of the Krüppel-Like Factor 4 (KFL4) thereby preventing platelet-derived growth factor-BB (PDGF-BB) from inhibiting expression of SMC contractile phenotype markers. SMC-restricted conditional deletion of P2Y2R evoked dedifferentiation characterized by decreases in aortic contractility and contractile phenotype markers expression. This loss was accompanied by a transition to the synthetic phenotype with the acquisition of extracellular matrix (ECM) proteins characteristic of dedifferentiation, such as osteopontin and vimentin. CONCLUSIONS Our data establish the first direct evidence that an autocrine ATP release mechanism maintains SMC cytoskeletal protein expression by inhibiting VSMCs from transitioning to a synthetic phenotype, and further demonstrate that activation of the P2Y2R by basally released ATP is required for maintenance of the differentiated VSMC phenotype.
Collapse
Affiliation(s)
- Xingjuan Chen
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an, 710072, China; Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, 635 Barnhill Drive MS 360A, Indianapolis, IN, 46202, USA
| | - Alexander G Obukhov
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, 635 Barnhill Drive MS 360A, Indianapolis, IN, 46202, USA
| | - Gary A Weisman
- Department of Biochemistry, Christopher S. Bond Life Sciences Center, University of Missouri, 1201 Rollins Road, Columbia, MO, 65211, USA
| | - Cheikh I Seye
- Department of Biochemistry, Christopher S. Bond Life Sciences Center, University of Missouri, 1201 Rollins Road, Columbia, MO, 65211, USA.
| |
Collapse
|
3
|
Hodapp SJ, Gravel N, Kannan N, Newton AC. Cancer-associated mutations in protein kinase C theta are loss-of-function. Biochem J 2024; 481:759-775. [PMID: 38752473 PMCID: PMC11346454 DOI: 10.1042/bcj20240148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/14/2024] [Accepted: 05/16/2024] [Indexed: 06/11/2024]
Abstract
The Ca2+-independent, but diacylglycerol-regulated, novel protein kinase C (PKC) theta (θ) is highly expressed in hematopoietic cells where it participates in immune signaling and platelet function. Mounting evidence suggests that PKCθ may be involved in cancer, particularly blood cancers, breast cancer, and gastrointestinal stromal tumors, yet how to target this kinase (as an oncogene or as a tumor suppressor) has not been established. Here, we examine the effect of four cancer-associated mutations, R145H/C in the autoinhibitory pseudosubstrate, E161K in the regulatory C1A domain, and R635W in the regulatory C-terminal tail, on the cellular activity and stability of PKCθ. Live-cell imaging studies using the genetically-encoded fluorescence resonance energy transfer-based reporter for PKC activity, C kinase activity reporter 2 (CKAR2), revealed that the pseudosubstrate and C1A domain mutations impaired autoinhibition to increase basal signaling. This impaired autoinhibition resulted in decreased stability of the protein, consistent with the well-characterized behavior of Ca2+-regulated PKC isozymes wherein mutations that impair autoinhibition are paradoxically loss-of-function because the mutant protein is degraded. In marked contrast, the C-terminal tail mutation resulted in enhanced autoinhibition and enhanced stability. Thus, the examined mutations were loss-of-function by different mechanisms: mutations that impaired autoinhibition promoted the degradation of PKC, and those that enhanced autoinhibition stabilized an inactive PKC. Supporting a general loss-of-function of PKCθ in cancer, bioinformatics analysis revealed that protein levels of PKCθ are reduced in diverse cancers, including lung, renal, head and neck, and pancreatic. Our results reveal that PKCθ function is lost in cancer.
Collapse
Affiliation(s)
- Stefanie J. Hodapp
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093, U.S.A
- Biomedical Sciences Graduate Program, University of California, San Diego, La Jolla, CA 92093, U.S.A
| | - Nathan Gravel
- Department of Biochemistry and Molecular Biology and Institute of Bioinformatics, University of Georgia, Athens, GA 30602, U.S.A
| | - Natarajan Kannan
- Department of Biochemistry and Molecular Biology and Institute of Bioinformatics, University of Georgia, Athens, GA 30602, U.S.A
| | - Alexandra C. Newton
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093, U.S.A
| |
Collapse
|
4
|
Purinergic P2Y2 and P2X4 Receptors Are Involved in the Epithelial-Mesenchymal Transition and Metastatic Potential of Gastric Cancer Derived Cell Lines. Pharmaceutics 2021; 13:pharmaceutics13081234. [PMID: 34452195 PMCID: PMC8398939 DOI: 10.3390/pharmaceutics13081234] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/07/2021] [Accepted: 08/09/2021] [Indexed: 12/14/2022] Open
Abstract
Gastric cancer (GC) is a major health concern worldwide, presenting a complex pathophysiology that has hindered many therapeutic efforts so far. In this context, purinergic signaling emerges as a promising pathway for intervention due to its known role in cancer cell proliferation and migration. In this work, we explored in more detail the role of purinergic signaling in GC with several experimental approaches. First, we measured extracellular ATP concentrations on GC-derived cell lines (AGS, MKN-45, and MKN-74), finding higher levels of extracellular ATP than those obtained for the non-tumoral gastric cell line GES-1. Next, we established the P2Y2 and P2X4 receptors (P2Y2R and P2X4R) expression profile on these cells and evaluated their role on cell proliferation and migration after applying overexpression and knockdown strategies. In general, a P2Y2R overexpression and P2X4R downregulation pattern were observed on GC cell lines, and when these patterns were modified, concomitant changes in cell viability were observed. These modifications on gene expression also modified transepithelial electrical resistance (TEER), showing that higher P2Y2R levels decreased TEER, and high P2X4R expression had the opposite effect, suggesting that P2Y2R and P2X4R activation could promote and suppress epithelial-mesenchymal transition (EMT), respectively. These effects were confirmed after treating AGS cells with UTP, a P2Y2R-agonist that modified the expression patterns towards mesenchymal markers. To further characterize the effects of P2Y2R activation on EMT, we used cDNA microarrays and observed that UTP induced important transcriptional changes on several cell processes like cell proliferation induction, apoptosis inhibition, cell differentiation induction, and cell adhesion reduction. These results suggest that purinergic signaling plays a complex role in GC pathophysiology, and changes in purinergic balance can trigger tumorigenesis in non-tumoral gastric cells.
Collapse
|
5
|
Reynolds KE, Wong CR, Scott AL. Astrocyte-mediated purinergic signaling is upregulated in a mouse model of Fragile X syndrome. Glia 2021; 69:1816-1832. [PMID: 33754385 DOI: 10.1002/glia.23997] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 03/10/2021] [Accepted: 03/11/2021] [Indexed: 12/12/2022]
Abstract
Fragile X syndrome (FXS) is the leading monogenic cause of intellectual disability and autism spectrum disorders. With increasing investigation into the molecular mechanisms underlying FXS, there is growing evidence that perturbations in glial signaling are widely associated with neurological pathology. Purinergic signaling, which utilizes nucleoside triphosphates as signaling molecules, provides one of the most ubiquitous signaling systems for glial-neuronal and glial-glial crosstalk. Here, we sought to identify whether purinergic signaling is dysregulated within the FXS mouse cortex, and whether this dysregulation contributes to aberrant intercellular communication. In primary astrocyte cultures derived from the Fmr1 knockout (KO) mouse model of FXS, we found that application of exogenous ATP and UTP evoked elevated intracellular calcium responses compared to wildtype levels. Accordingly, purinergic P2Y2 and P2Y6 receptor expression was increased in Fmr1 KO astrocytes both in vitro and in acutely dissociated tissue, while P2Y antagonism via suramin prevented intracellular calcium elevations, suggesting a role for these receptors in aberrant FXS astrocyte activation. To investigate the impact of elevated purinergic signaling on astrocyte-mediated synaptogenesis, we quantified synaptogenic protein TSP-1, known to be regulated by P2Y activation. TSP-1 secretion and expression were both heightened in Fmr1 KO vs wildtype astrocytes following UTP application, while naïve TSP-1 cortical expression was also transiently elevated in vivo, indicating increased potential for excitatory TSP-1-mediated synaptogenesis in the FXS cortex. Together, our results demonstrate novel and significant purinergic signaling elevations in Fmr1 KO astrocytes, which may serve as a potential therapeutic target to mitigate the signaling aberrations observed in FXS.
Collapse
Affiliation(s)
- Kathryn E Reynolds
- Neuroscience Graduate Program, McMaster University, Hamilton, Ontario, Canada
| | - Chloe R Wong
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Angela L Scott
- Neuroscience Graduate Program, McMaster University, Hamilton, Ontario, Canada.,Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
6
|
Gil-Redondo JC, Iturri J, Ortega F, Pérez-Sen R, Weber A, Miras-Portugal MT, Toca-Herrera JL, Delicado EG. Nucleotides-Induced Changes in the Mechanical Properties of Living Endothelial Cells and Astrocytes, Analyzed by Atomic Force Microscopy. Int J Mol Sci 2021; 22:ijms22020624. [PMID: 33435130 PMCID: PMC7827192 DOI: 10.3390/ijms22020624] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/06/2021] [Accepted: 01/07/2021] [Indexed: 12/18/2022] Open
Abstract
Endothelial cells and astrocytes preferentially express metabotropic P2Y nucleotide receptors, which are involved in the maintenance of vascular and neural function. Among these, P2Y1 and P2Y2 receptors appear as main actors, since their stimulation induces intracellular calcium mobilization and activates signaling cascades linked to cytoskeletal reorganization. In the present work, we have analyzed, by means of atomic force microscopy (AFM) in force spectroscopy mode, the mechanical response of human umbilical vein endothelial cells (HUVEC) and astrocytes upon 2MeSADP and UTP stimulation. This approach allows for simultaneous measurement of variations in factors such as Young’s modulus, maximum adhesion force and rupture event formation, which reflect the potential changes in both the stiffness and adhesiveness of the plasma membrane. The largest effect was observed in both endothelial cells and astrocytes after P2Y2 receptor stimulation with UTP. Such exposure to UTP doubled the Young’s modulus and reduced both the adhesion force and the number of rupture events. In astrocytes, 2MeSADP stimulation also had a remarkable effect on AFM parameters. Additional studies performed with the selective P2Y1 and P2Y13 receptor antagonists revealed that the 2MeSADP-induced mechanical changes were mediated by the P2Y13 receptor, although they were negatively modulated by P2Y1 receptor stimulation. Hence, our results demonstrate that AFM can be a very useful tool to evaluate functional native nucleotide receptors in living cells.
Collapse
Affiliation(s)
- Juan Carlos Gil-Redondo
- Departamento de Bioquímica y Biología Molecular, Facultad de Veterinaria, Instituto Universitario de Investigación en Neuroquímica (IUIN), Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdiSSC), Universidad Complutense Madrid, 28040 Madrid, Spain; (J.C.G.-R.); (R.P.-S.); (M.T.M.-P.)
- Department of Nanobiotechnology (DNBT), Institute for Biophysics, BOKU University for Natural Resources and Life Sciences, Muthgasse 11 (Simon Zeisel Haus), A-1190 Vienna, Austria; (A.W.); (J.L.T.-H.)
| | - Jagoba Iturri
- Department of Nanobiotechnology (DNBT), Institute for Biophysics, BOKU University for Natural Resources and Life Sciences, Muthgasse 11 (Simon Zeisel Haus), A-1190 Vienna, Austria; (A.W.); (J.L.T.-H.)
- Correspondence: (J.I.); (F.O.); (E.G.D.); Tel.: +43-1-47654-80354 (J.I.); +34-91-394-3892 (E.G.D.)
| | - Felipe Ortega
- Departamento de Bioquímica y Biología Molecular, Facultad de Veterinaria, Instituto Universitario de Investigación en Neuroquímica (IUIN), Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdiSSC), Universidad Complutense Madrid, 28040 Madrid, Spain; (J.C.G.-R.); (R.P.-S.); (M.T.M.-P.)
- Correspondence: (J.I.); (F.O.); (E.G.D.); Tel.: +43-1-47654-80354 (J.I.); +34-91-394-3892 (E.G.D.)
| | - Raquel Pérez-Sen
- Departamento de Bioquímica y Biología Molecular, Facultad de Veterinaria, Instituto Universitario de Investigación en Neuroquímica (IUIN), Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdiSSC), Universidad Complutense Madrid, 28040 Madrid, Spain; (J.C.G.-R.); (R.P.-S.); (M.T.M.-P.)
| | - Andreas Weber
- Department of Nanobiotechnology (DNBT), Institute for Biophysics, BOKU University for Natural Resources and Life Sciences, Muthgasse 11 (Simon Zeisel Haus), A-1190 Vienna, Austria; (A.W.); (J.L.T.-H.)
| | - María Teresa Miras-Portugal
- Departamento de Bioquímica y Biología Molecular, Facultad de Veterinaria, Instituto Universitario de Investigación en Neuroquímica (IUIN), Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdiSSC), Universidad Complutense Madrid, 28040 Madrid, Spain; (J.C.G.-R.); (R.P.-S.); (M.T.M.-P.)
| | - José Luis Toca-Herrera
- Department of Nanobiotechnology (DNBT), Institute for Biophysics, BOKU University for Natural Resources and Life Sciences, Muthgasse 11 (Simon Zeisel Haus), A-1190 Vienna, Austria; (A.W.); (J.L.T.-H.)
| | - Esmerilda G. Delicado
- Departamento de Bioquímica y Biología Molecular, Facultad de Veterinaria, Instituto Universitario de Investigación en Neuroquímica (IUIN), Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdiSSC), Universidad Complutense Madrid, 28040 Madrid, Spain; (J.C.G.-R.); (R.P.-S.); (M.T.M.-P.)
- Correspondence: (J.I.); (F.O.); (E.G.D.); Tel.: +43-1-47654-80354 (J.I.); +34-91-394-3892 (E.G.D.)
| |
Collapse
|
7
|
Himmel NJ, Rogers RT, Redd SK, Wang Y, Blount MA. Purinergic signaling is enhanced in the absence of UT-A1 and UT-A3. Physiol Rep 2021; 9:e14636. [PMID: 33369887 PMCID: PMC7769175 DOI: 10.14814/phy2.14636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 06/30/2020] [Accepted: 07/01/2020] [Indexed: 11/24/2022] Open
Abstract
ATP is an important paracrine regulator of renal tubular water and urea transport. The activity of P2Y2 , the predominant P2Y receptor of the medullary collecting duct, is mediated by ATP, and modulates urinary concentration. To investigate the role of purinergic signaling in the absence of urea transport in the collecting duct, we studied wild-type (WT) and UT-A1/A3 null (UT-A1/A3 KO) mice in metabolic cages to monitor urine output, and collected tissue samples for analysis. We confirmed that UT-A1/A3 KO mice are polyuric, and concurrently observed lower levels of urinary cAMP as compared to WT, despite elevated serum vasopressin (AVP) levels. Because P2Y2 inhibits AVP-stimulated transport by dampening cAMP synthesis, we suspected that, similar to other models of AVP-resistant polyuria, purinergic signaling is increased in UT-A1/A3 KO mice. In fact, we observed that both urinary ATP and purinergic-mediated prostanoid (PGE2 ) levels were elevated. Collectively, our data suggest that the reduction of medullary osmolality due to the lack of UT-A1 and UT-A3 induces an AVP-resistant polyuria that is possibly exacerbated by, or at least correlated with, enhanced purinergic signaling.
Collapse
Affiliation(s)
- Nathaniel J. Himmel
- Renal DivisionDepartment of MedicineEmory University School of MedicineAtlantaGAUSA
| | - Richard T. Rogers
- Renal DivisionDepartment of MedicineEmory University School of MedicineAtlantaGAUSA
| | - Sara K. Redd
- Renal DivisionDepartment of MedicineEmory University School of MedicineAtlantaGAUSA
| | - Yirong Wang
- Renal DivisionDepartment of MedicineEmory University School of MedicineAtlantaGAUSA
| | - Mitsi A. Blount
- Renal DivisionDepartment of MedicineEmory University School of MedicineAtlantaGAUSA
- Department of PhysiologyEmory University School of MedicineAtlantaGAUSA
| |
Collapse
|
8
|
Woods LT, Jasmer KJ, Muñoz Forti K, Shanbhag VC, Camden JM, Erb L, Petris MJ, Weisman GA. P2Y 2 receptors mediate nucleotide-induced EGFR phosphorylation and stimulate proliferation and tumorigenesis of head and neck squamous cell carcinoma cell lines. Oral Oncol 2020; 109:104808. [PMID: 32540611 PMCID: PMC7736485 DOI: 10.1016/j.oraloncology.2020.104808] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 04/16/2020] [Accepted: 05/15/2020] [Indexed: 02/07/2023]
Abstract
OBJECTIVES To assess functional expression of the P2Y2 nucleotide receptor (P2Y2R) in head and neck squamous cell carcinoma (HNSCC) cell lines and define its role in nucleotide-induced epidermal growth factor receptor (EGFR) transactivation. The use of anti-EGFR therapeutics to treat HNSCC is hindered by intrinsic and acquired drug resistance. Defining novel pathways that modulate EGFR signaling could identify additional targets to treat HNSCC. MATERIALS AND METHODS In human HNSCC cell lines CAL27 and FaDu and the mouse oral cancer cell line MOC2, P2Y2R contributions to extracellular nucleotide-induced changes in intracellular free Ca2+ concentration and EGFR and extracellular signal-regulated kinase (ERK1/2) phosphorylation were determined using the ratiometric Ca2+ indicator fura-2 and immunoblot analysis, respectively. Genetic knockout of P2Y2Rs using CRISPR technology or pharmacological inhibition with P2Y2R-selective antagonist AR-C118925 defined P2Y2R contributions to in vivo tumor growth. RESULTS P2Y2R agonists UTP and ATP increased intracellular Ca2+ levels and ERK1/2 and EGFR phosphorylation in CAL27 and FaDu cells, responses that were inhibited by AR-C118925 or P2Y2R knockout. P2Y2R-mediated EGFR phosphorylation was also attenuated by inhibition of the adamalysin family of metalloproteases or Src family kinases. P2Y2R knockout reduced UTP-induced CAL27 cell proliferation in vitro and significantly reduced CAL27 and FaDu tumor xenograft volume in vivo. In a syngeneic mouse model of oral cancer, AR-C118925 administration reduced MOC2 tumor volume. CONCLUSION P2Y2Rs mediate HNSCC cell responses to extracellular nucleotides and genetic or pharmacological blockade of P2Y2R signaling attenuates tumor cell proliferation and tumorigenesis, suggesting that the P2Y2R represents a novel therapeutic target in HNSCC.
Collapse
Affiliation(s)
- Lucas T Woods
- Division of Biochemistry, University of Missouri, Columbia, MO 65211-7310 USA; Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211-7310 USA
| | - Kimberly J Jasmer
- Division of Biochemistry, University of Missouri, Columbia, MO 65211-7310 USA; Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211-7310 USA
| | - Kevin Muñoz Forti
- Division of Biochemistry, University of Missouri, Columbia, MO 65211-7310 USA; Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211-7310 USA
| | - Vinit C Shanbhag
- Division of Biochemistry, University of Missouri, Columbia, MO 65211-7310 USA; Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211-7310 USA
| | - Jean M Camden
- Division of Biochemistry, University of Missouri, Columbia, MO 65211-7310 USA; Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211-7310 USA
| | - Laurie Erb
- Division of Biochemistry, University of Missouri, Columbia, MO 65211-7310 USA; Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211-7310 USA
| | - Michael J Petris
- Division of Biochemistry, University of Missouri, Columbia, MO 65211-7310 USA; Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211-7310 USA; Department of Ophthalmology, University of Missouri School of Medicine, Columbia, MO 65211-7310 USA
| | - Gary A Weisman
- Division of Biochemistry, University of Missouri, Columbia, MO 65211-7310 USA; Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211-7310 USA.
| |
Collapse
|
9
|
Zhang Y, Ecelbarger CM, Lesniewski LA, Müller CE, Kishore BK. P2Y 2 Receptor Promotes High-Fat Diet-Induced Obesity. Front Endocrinol (Lausanne) 2020; 11:341. [PMID: 32582029 PMCID: PMC7283874 DOI: 10.3389/fendo.2020.00341] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 04/30/2020] [Indexed: 12/11/2022] Open
Abstract
P2Y2, a G protein-coupled receptor (R), is expressed in all organs involved in the development of obesity and insulin resistance. To explore the role of it in diet-induced obesity, we fed male P2Y2-R whole body knockout (KO) and wild type (WT) mice (B6D2 genetic background) with regular diet (CNT; 10% calories as fat) or high-fat diet (HFD; 60% calories as fat) with free access to food and water for 16 weeks, and euthanized them. Adjusted for body weights (BW), KO mice consumed modestly, but significantly more HFD vs. WT mice, and excreted well-formed feces with no taint of fat or oil. Starting from the 2nd week, HFD-WT mice displayed significantly higher BW with terminal mean difference of 22% vs. HFD-KO mice. Terminal weights of white adipose tissue (WAT) were significantly lower in the HFD-KO vs. HFD-WT mice. The expression of P2Y2-R mRNA in WAT was increased by 2-fold in HFD-fed WT mice. Serum insulin, leptin and adiponectin levels were significantly elevated in the HFD-WT mice, but not in the HFD-KO mice. When induced in vitro, preadipocytes derived from KO mice fed regular diet did not differentiate and mature as robustly as those from the WT mice, as assessed by cellular expansion and accumulation of lipid droplets. Blockade of P2Y2-R by AR-C118925 in preadipocytes derived from WT mice prevented differentiation and maturation. Under basal conditions, KO mice had significantly higher serum triglycerides and showed slightly impaired lipid tolerance as compared to the WT mice. HFD-fed KO mice had significantly better glucose tolerance (GTT) as compared to HFD-fed WT mice. Whole body insulin sensitivity and mRNA expression of insulin receptor, IRS-1 and GLUT4 in WAT was significantly higher in HFD-fed KO mice vs. HFD-fed WT mice. On the contrary, the expression of pro-inflammatory molecules MCP-1, CCR2, CD68, and F4/80 were significantly higher in the WAT of HFD-fed WT vs. HFD-fed KO mice. These data suggest that P2Y2-R plays a significant role in the development of diet-induced obesity by promoting adipogenesis and inflammation, and altering the production of adipokines and lipids and their metabolism in adipose tissue, and thereby facilitates HFD-induced insulin resistance.
Collapse
Affiliation(s)
- Yue Zhang
- Department of Veterans Affairs Salt Lake City Health Care System, Nephrology Research, Salt Lake City, UT, United States
- Departments of Internal Medicine, University of Utah Health, Salt Lake City, UT, United States
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Carolyn M. Ecelbarger
- Division of Endocrinology and Metabolism, Department of Medicine, Center for the Study of Sex Differences in Health, Aging, and Disease, Georgetown University, Washington, DC, United States
| | - Lisa A. Lesniewski
- Departments of Internal Medicine, University of Utah Health, Salt Lake City, UT, United States
- Department of Veterans Affairs Salt Lake City Health Care System, Geriatric Research, Education and Clinical Center, Salt Lake City, UT, United States
- Department of Nutrition and Integrative Physiology, University of Utah Health, Salt Lake City, UT, United States
- Center on Aging, University of Utah Health, Salt Lake City, UT, United States
| | - Christa E. Müller
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical and Medicinal Chemistry, University of Bonn, Bonn, Germany
| | - Bellamkonda K. Kishore
- Department of Veterans Affairs Salt Lake City Health Care System, Nephrology Research, Salt Lake City, UT, United States
- Departments of Internal Medicine, University of Utah Health, Salt Lake City, UT, United States
- Department of Nutrition and Integrative Physiology, University of Utah Health, Salt Lake City, UT, United States
- Center on Aging, University of Utah Health, Salt Lake City, UT, United States
- *Correspondence: Bellamkonda K. Kishore
| |
Collapse
|
10
|
Purinergic receptor Y 2 (P2Y 2)- dependent VCAM-1 expression promotes immune cell infiltration in metabolic syndrome. Basic Res Cardiol 2018; 113:45. [PMID: 30338362 DOI: 10.1007/s00395-018-0702-1] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 09/28/2018] [Indexed: 01/23/2023]
Abstract
Sterile inflammation of visceral fat, provoked by dying adipocytes, links the metabolic syndrome to cardiovascular disease. Danger-associated molecular patterns, such as adenosine triphosphate (ATP), are released by activated or dying cells and orchestrate leukocyte infiltration and inflammation via the purinergic receptor P2Y2. The gene expression of ATP receptor P2Y2 did not change in several tissues in the course of obesity, but was increased within epididymal fat. Adipose tissue from P2Y 2 -/- mice consuming high-fat diet (HFD) contained less crown-like structures with a reduced frequency of adipose tissue macrophages (ATMs). This was likely due to decreased leukocyte migration because of missing VCAM-1 exposition on P2Y2 deficient hypertrophic adipose tissue endothelial cells. Accordingly, P2Y 2 -/- mice showed blunted traits of the metabolic syndrome: they gained less weight compared to P2Y 2 +/+ controls, while intake of food and movement behaviour remained unchanged. Liver and adipose tissue were smaller in P2Y 2 -/- animals. Insulin tolerance testing (ITT) performed in obese P2Y 2 -/- mice revealed a better insulin sensitivity as well as lower plasma C-peptide and cholesterol levels. We demonstrate that interfering with somatic P2Y2 signalling prevents excessive immune cell deposition in diet-induced obesity (DIO), both attenuating adipose tissue inflammation and ameliorating the metabolic phenotype. Thus, blocking the P2Y2 cascade may be a promising strategy to limit metabolic disease and its sequelae.
Collapse
|
11
|
Gergs U, Rothkirch D, Hofmann B, Treede H, Robaye B, Simm A, Müller CE, Neumann J. Mechanism underlying the contractile activity of UTP in the mammalian heart. Eur J Pharmacol 2018; 830:47-58. [PMID: 29673908 DOI: 10.1016/j.ejphar.2018.04.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 04/10/2018] [Accepted: 04/13/2018] [Indexed: 12/19/2022]
Abstract
We previously reported that uridine 5'-triphosphate (UTP), a pyrimidine nucleoside triphosphate produced a concentration- and time-dependent increase in the contraction force in isolated right atrial preparations from patients undergoing cardiac bypass surgery due to angina pectoris. The stimulation of the force of contraction was sustained rather than transient. In the present study, we tried to elucidate the underlying receptor and signal transduction for this effect of UTP. Therefore, we measured the effect of UTP on force of contraction, phosphorylation of p38 and ERK1/2, in human atrial preparations, atrial preparations from genetically modified mice, cardiomyocytes from adult mice and cardiomyocytes from neonatal rats. UTP exerted a positive inotropic effect in isolated electrically driven left atrial preparations from wild-type (WT) mice and P2Y2-, P2Y4- and P2Y6-receptor knockout mice. Therefore, we concluded that these P2Y receptors did not mediate the inotropic effects of UTP in atrial preparations from mice. However, UTP (like ATP) increased the phosphorylation states of p38 and ERK1/2 in neonatal rat cardiomyocytes, adult mouse cardiomyocytes and human atrial tissue in vitro. U0126, a MEK 1/2- signal cascade inhibitor, attenuated this phosphorylation and the positive inotropic effects of UTP in murine and human atrial preparations. We suggest that presently unknown receptors mediate the positive inotropic effect of UTP in murine and human atria. We hypothesize that UTP stimulates inotropy via p38 or ERK1/2 phosphorylation. We speculate that UTP may be a valuable target in the development of new drugs aimed at treating human systolic heart failure.
Collapse
Affiliation(s)
- Ulrich Gergs
- Institute for Pharmacology and Toxicology, Medical Faculty, Martin Luther University Halle-Wittenberg, 06097 Halle (Saale), Germany
| | - Daniel Rothkirch
- Institute for Pharmacology and Toxicology, Medical Faculty, Martin Luther University Halle-Wittenberg, 06097 Halle (Saale), Germany
| | - Britt Hofmann
- Cardiac Surgery, Medical Faculty, Martin Luther University Halle-Wittenberg, 06097 Halle (Saale), Germany
| | - Hendrik Treede
- Cardiac Surgery, Medical Faculty, Martin Luther University Halle-Wittenberg, 06097 Halle (Saale), Germany
| | - Bernard Robaye
- Institute of Interdisciplinary Research, IRIBHM, Université Libre de Bruxelles, Gosselies, Belgium
| | - Andreas Simm
- Cardiac Surgery, Medical Faculty, Martin Luther University Halle-Wittenberg, 06097 Halle (Saale), Germany
| | - Christa E Müller
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry I, Pharmaceutical Sciences Bonn (PSB), University of Bonn, Germany
| | - Joachim Neumann
- Institute for Pharmacology and Toxicology, Medical Faculty, Martin Luther University Halle-Wittenberg, 06097 Halle (Saale), Germany.
| |
Collapse
|
12
|
Singh B, Modica-Napolitano JS, Singh KK. Defining the momiome: Promiscuous information transfer by mobile mitochondria and the mitochondrial genome. Semin Cancer Biol 2017; 47:1-17. [PMID: 28502611 PMCID: PMC5681893 DOI: 10.1016/j.semcancer.2017.05.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 04/20/2017] [Accepted: 05/07/2017] [Indexed: 12/30/2022]
Abstract
Mitochondria are complex intracellular organelles that have long been identified as the powerhouses of eukaryotic cells because of the central role they play in oxidative metabolism. A resurgence of interest in the study of mitochondria during the past decade has revealed that mitochondria also play key roles in cell signaling, proliferation, cell metabolism and cell death, and that genetic and/or metabolic alterations in mitochondria contribute to a number of diseases, including cancer. Mitochondria have been identified as signaling organelles, capable of mediating bidirectional intracellular information transfer: anterograde (from nucleus to mitochondria) and retrograde (from mitochondria to nucleus). More recently, evidence is now building that the role of mitochondria extends to intercellular communication as well, and that the mitochondrial genome (mtDNA) and even whole mitochondria are indeed mobile and can mediate information transfer between cells. We define this promiscuous information transfer function of mitochondria and mtDNA as "momiome" to include all mobile functions of mitochondria and the mitochondrial genome. Herein, we review the "momiome" and explore its role in cancer development, progression, and treatment.
Collapse
Affiliation(s)
- Bhupendra Singh
- Department of Genetics, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | | | - Keshav K Singh
- Department of Genetics, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA; Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA; Department of Environmental Health, Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL, USA; Center for Aging, University of Alabama at Birmingham, Birmingham, AL, USA; UAB Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA; Birmingham Veterans Affairs Medical Center, Birmingham, AL, USA.
| |
Collapse
|
13
|
Gao J, Bai T, Ren L, Ding Y, Zhong X, Wang H, Guo Y, Li J, Liu Y, Zhang Y. The PLC/PKC/Ras/MEK/Kv channel pathway is involved in uncarboxylated osteocalcin-regulated insulin secretion in rats. Peptides 2016; 86:72-79. [PMID: 27746193 DOI: 10.1016/j.peptides.2016.10.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 09/22/2016] [Accepted: 10/10/2016] [Indexed: 12/11/2022]
Abstract
Uncarboxylated osteocalcin, a bone matrix protein, has been proposed to regulate glucose metabolism by increasing insulin secretion, improving insulin sensitivity and stimulating β cell proliferation. Our previous study also indicated that uncarboxylated osteocalcin stimulates insulin secretion by inhibiting voltage-gated potassium (KV) channels. The goal of this study is to further investigate the underlying mechanisms for the regulation of Kv channels and insulin secretion by uncarboxylated osteocalcin. Insulin secretion and Kv channel currents were examined by radioimmunoassay and patch-clamp technique, respectively. Calcium imaging system was applied to measure intracellular Ca2+ concentration ([Ca2+]i). The protein levels were detected by western blot. The results showed that uncarboxylated osteocalcin potentiated insulin secretion, inhibited Kv channels and increased [Ca2+]i compared to control. These effects were suppressed by phospholipase-C (PLC)/protein kinase C (PKC)/Ras/MAPK-ERK kinase (MEK) signaling pathway, indicating that this signaling pathway plays an important role in uncarboxylated osteocalcin-regulated insulinotropic effect. In addition, the results also showed that adenylyl cyclase (AC) did not influence the effect of uncarboxylated osteocalcin on insulin secretion and Kv channels, suggesting that AC is not involved in uncarboxylated osteocalcin-stimulated insulin secretion. These findings provide new insight into the mechanism of uncarboxylated osteocalcin-regulated insulin secretion.
Collapse
Affiliation(s)
- Jingying Gao
- Department of Pharmacology, Shanxi Medical University, Taiyuan, China; Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, China; Department of Pediatrics, Shanxi Medical University, Taiyuan, China
| | - Tao Bai
- Department of Pharmacology, Shanxi Medical University, Taiyuan, China; Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, China; Department of Endocrinology, the First Hospital of Shanxi Medical University, Shanxi Medical University, Taiyuan, China
| | - Lele Ren
- Department of Pharmacology, Shanxi Medical University, Taiyuan, China
| | - Yaqin Ding
- Department of Pharmacology, Shanxi Medical University, Taiyuan, China
| | - Xiangqin Zhong
- Department of Pharmacology, Shanxi Medical University, Taiyuan, China
| | - Hui Wang
- Department of Pharmacology, Shanxi Medical University, Taiyuan, China
| | - Yangyan Guo
- Department of Pharmacology, Shanxi Medical University, Taiyuan, China
| | - Jie Li
- Department of Pharmacology, Shanxi Medical University, Taiyuan, China
| | - Yunfeng Liu
- Department of Endocrinology, the First Hospital of Shanxi Medical University, Shanxi Medical University, Taiyuan, China.
| | - Yi Zhang
- Department of Pharmacology, Shanxi Medical University, Taiyuan, China; Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, China.
| |
Collapse
|
14
|
Stachon P, Geis S, Peikert A, Heidenreich A, Michel NA, Ünal F, Hoppe N, Dufner B, Schulte L, Marchini T, Cicko S, Ayata K, Zech A, Wolf D, Hilgendorf I, Willecke F, Reinöhl J, von Zur Mühlen C, Bode C, Idzko M, Zirlik A. Extracellular ATP Induces Vascular Inflammation and Atherosclerosis via Purinergic Receptor Y2 in Mice. Arterioscler Thromb Vasc Biol 2016; 36:1577-86. [PMID: 27339459 DOI: 10.1161/atvbaha.115.307397] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2016] [Accepted: 06/02/2016] [Indexed: 12/14/2022]
Abstract
OBJECTIVE A solid body of evidence supports a role of extracellular ATP and its P2 receptors in innate and adaptive immunity. It promotes inflammation as a danger signal in various chronic inflammatory diseases. Thus, we hypothesize contribution of extracellular ATP and its receptor P2Y2 in vascular inflammation and atherosclerosis. APPROACH AND RESULTS Extracellular ATP induced leukocyte rolling, adhesion, and migration in vivo as assessed by intravital microscopy and in sterile peritonitis. To test the role of extracellular ATP in atherosclerosis, ATP or saline as control was injected intraperitoneally 3× a week in low-density lipoprotein receptor(-/-) mice consuming high cholesterol diet. Atherosclerosis significantly increased after 16 weeks in ATP-treated mice (n=13; control group, 0.26 mm2; ATP group, 0.33 mm2; P=0.01). To gain into the role of ATP-receptor P2Y2 in ATP-induced leukocyte recruitment, ATP was administered systemically in P2Y2-deficient or P2Y2-competent mice. In P2Y2-deficient mice, the ATP-induced leukocyte adhesion was significantly reduced as assessed by intravital microscopy. P2Y2 expression in atherosclerosis was measured by real-time polymerase chain reaction and immunohistochemistry and demonstrates an increased expression mainly caused by influx of P2Y2-expressing macrophages. To investigate the functional role of P2Y2 in atherogenesis, P2Y2-deficient low-density lipoprotein receptor(-/-) mice consumed high cholesterol diet. After 16 weeks, P2Y2-deficient mice showed significantly reduced atherosclerotic lesions with decreased macrophages compared with P2Y2-competent mice (n=11; aortic arch: control group, 0.25 mm(2); P2Y2-deficient, 0.14 mm2; P=0.04). Mechanistically, atherosclerotic lesions from P2Y2-deficient mice expressed less vascular cell adhesion molecule-1 and intercellular adhesion molecule-1 RNA. CONCLUSIONS We show that extracellular ATP induces vascular inflammation and atherosclerosis via activation of P2Y2.
Collapse
Affiliation(s)
- Peter Stachon
- From the Atherogenesis Research Group, University Heart Center Freiburg, Department of Cardiology and Angiology I (P.S., S.G., A.P., A.H., N.A.M., F.Ü., N.H., B.D., L.S., T.M., D.W., I.H., F.W., J.R., C.v.z.M., C.B., A.Z.) and Department of Pneumology (S.C., K.A., A.Z., M.I.), University of Freiburg, Freiburg, Germany
| | - Serjosha Geis
- From the Atherogenesis Research Group, University Heart Center Freiburg, Department of Cardiology and Angiology I (P.S., S.G., A.P., A.H., N.A.M., F.Ü., N.H., B.D., L.S., T.M., D.W., I.H., F.W., J.R., C.v.z.M., C.B., A.Z.) and Department of Pneumology (S.C., K.A., A.Z., M.I.), University of Freiburg, Freiburg, Germany
| | - Alexander Peikert
- From the Atherogenesis Research Group, University Heart Center Freiburg, Department of Cardiology and Angiology I (P.S., S.G., A.P., A.H., N.A.M., F.Ü., N.H., B.D., L.S., T.M., D.W., I.H., F.W., J.R., C.v.z.M., C.B., A.Z.) and Department of Pneumology (S.C., K.A., A.Z., M.I.), University of Freiburg, Freiburg, Germany
| | - Adrian Heidenreich
- From the Atherogenesis Research Group, University Heart Center Freiburg, Department of Cardiology and Angiology I (P.S., S.G., A.P., A.H., N.A.M., F.Ü., N.H., B.D., L.S., T.M., D.W., I.H., F.W., J.R., C.v.z.M., C.B., A.Z.) and Department of Pneumology (S.C., K.A., A.Z., M.I.), University of Freiburg, Freiburg, Germany
| | - Nathaly Anto Michel
- From the Atherogenesis Research Group, University Heart Center Freiburg, Department of Cardiology and Angiology I (P.S., S.G., A.P., A.H., N.A.M., F.Ü., N.H., B.D., L.S., T.M., D.W., I.H., F.W., J.R., C.v.z.M., C.B., A.Z.) and Department of Pneumology (S.C., K.A., A.Z., M.I.), University of Freiburg, Freiburg, Germany
| | - Fatih Ünal
- From the Atherogenesis Research Group, University Heart Center Freiburg, Department of Cardiology and Angiology I (P.S., S.G., A.P., A.H., N.A.M., F.Ü., N.H., B.D., L.S., T.M., D.W., I.H., F.W., J.R., C.v.z.M., C.B., A.Z.) and Department of Pneumology (S.C., K.A., A.Z., M.I.), University of Freiburg, Freiburg, Germany
| | - Natalie Hoppe
- From the Atherogenesis Research Group, University Heart Center Freiburg, Department of Cardiology and Angiology I (P.S., S.G., A.P., A.H., N.A.M., F.Ü., N.H., B.D., L.S., T.M., D.W., I.H., F.W., J.R., C.v.z.M., C.B., A.Z.) and Department of Pneumology (S.C., K.A., A.Z., M.I.), University of Freiburg, Freiburg, Germany
| | - Bianca Dufner
- From the Atherogenesis Research Group, University Heart Center Freiburg, Department of Cardiology and Angiology I (P.S., S.G., A.P., A.H., N.A.M., F.Ü., N.H., B.D., L.S., T.M., D.W., I.H., F.W., J.R., C.v.z.M., C.B., A.Z.) and Department of Pneumology (S.C., K.A., A.Z., M.I.), University of Freiburg, Freiburg, Germany
| | - Lisa Schulte
- From the Atherogenesis Research Group, University Heart Center Freiburg, Department of Cardiology and Angiology I (P.S., S.G., A.P., A.H., N.A.M., F.Ü., N.H., B.D., L.S., T.M., D.W., I.H., F.W., J.R., C.v.z.M., C.B., A.Z.) and Department of Pneumology (S.C., K.A., A.Z., M.I.), University of Freiburg, Freiburg, Germany
| | - Timoteo Marchini
- From the Atherogenesis Research Group, University Heart Center Freiburg, Department of Cardiology and Angiology I (P.S., S.G., A.P., A.H., N.A.M., F.Ü., N.H., B.D., L.S., T.M., D.W., I.H., F.W., J.R., C.v.z.M., C.B., A.Z.) and Department of Pneumology (S.C., K.A., A.Z., M.I.), University of Freiburg, Freiburg, Germany
| | - Sanja Cicko
- From the Atherogenesis Research Group, University Heart Center Freiburg, Department of Cardiology and Angiology I (P.S., S.G., A.P., A.H., N.A.M., F.Ü., N.H., B.D., L.S., T.M., D.W., I.H., F.W., J.R., C.v.z.M., C.B., A.Z.) and Department of Pneumology (S.C., K.A., A.Z., M.I.), University of Freiburg, Freiburg, Germany
| | - Korcan Ayata
- From the Atherogenesis Research Group, University Heart Center Freiburg, Department of Cardiology and Angiology I (P.S., S.G., A.P., A.H., N.A.M., F.Ü., N.H., B.D., L.S., T.M., D.W., I.H., F.W., J.R., C.v.z.M., C.B., A.Z.) and Department of Pneumology (S.C., K.A., A.Z., M.I.), University of Freiburg, Freiburg, Germany
| | - Andreas Zech
- From the Atherogenesis Research Group, University Heart Center Freiburg, Department of Cardiology and Angiology I (P.S., S.G., A.P., A.H., N.A.M., F.Ü., N.H., B.D., L.S., T.M., D.W., I.H., F.W., J.R., C.v.z.M., C.B., A.Z.) and Department of Pneumology (S.C., K.A., A.Z., M.I.), University of Freiburg, Freiburg, Germany
| | - Dennis Wolf
- From the Atherogenesis Research Group, University Heart Center Freiburg, Department of Cardiology and Angiology I (P.S., S.G., A.P., A.H., N.A.M., F.Ü., N.H., B.D., L.S., T.M., D.W., I.H., F.W., J.R., C.v.z.M., C.B., A.Z.) and Department of Pneumology (S.C., K.A., A.Z., M.I.), University of Freiburg, Freiburg, Germany
| | - Ingo Hilgendorf
- From the Atherogenesis Research Group, University Heart Center Freiburg, Department of Cardiology and Angiology I (P.S., S.G., A.P., A.H., N.A.M., F.Ü., N.H., B.D., L.S., T.M., D.W., I.H., F.W., J.R., C.v.z.M., C.B., A.Z.) and Department of Pneumology (S.C., K.A., A.Z., M.I.), University of Freiburg, Freiburg, Germany
| | - Florian Willecke
- From the Atherogenesis Research Group, University Heart Center Freiburg, Department of Cardiology and Angiology I (P.S., S.G., A.P., A.H., N.A.M., F.Ü., N.H., B.D., L.S., T.M., D.W., I.H., F.W., J.R., C.v.z.M., C.B., A.Z.) and Department of Pneumology (S.C., K.A., A.Z., M.I.), University of Freiburg, Freiburg, Germany
| | - Jochen Reinöhl
- From the Atherogenesis Research Group, University Heart Center Freiburg, Department of Cardiology and Angiology I (P.S., S.G., A.P., A.H., N.A.M., F.Ü., N.H., B.D., L.S., T.M., D.W., I.H., F.W., J.R., C.v.z.M., C.B., A.Z.) and Department of Pneumology (S.C., K.A., A.Z., M.I.), University of Freiburg, Freiburg, Germany
| | - Constantin von Zur Mühlen
- From the Atherogenesis Research Group, University Heart Center Freiburg, Department of Cardiology and Angiology I (P.S., S.G., A.P., A.H., N.A.M., F.Ü., N.H., B.D., L.S., T.M., D.W., I.H., F.W., J.R., C.v.z.M., C.B., A.Z.) and Department of Pneumology (S.C., K.A., A.Z., M.I.), University of Freiburg, Freiburg, Germany
| | - Christoph Bode
- From the Atherogenesis Research Group, University Heart Center Freiburg, Department of Cardiology and Angiology I (P.S., S.G., A.P., A.H., N.A.M., F.Ü., N.H., B.D., L.S., T.M., D.W., I.H., F.W., J.R., C.v.z.M., C.B., A.Z.) and Department of Pneumology (S.C., K.A., A.Z., M.I.), University of Freiburg, Freiburg, Germany
| | - Marco Idzko
- From the Atherogenesis Research Group, University Heart Center Freiburg, Department of Cardiology and Angiology I (P.S., S.G., A.P., A.H., N.A.M., F.Ü., N.H., B.D., L.S., T.M., D.W., I.H., F.W., J.R., C.v.z.M., C.B., A.Z.) and Department of Pneumology (S.C., K.A., A.Z., M.I.), University of Freiburg, Freiburg, Germany
| | - Andreas Zirlik
- From the Atherogenesis Research Group, University Heart Center Freiburg, Department of Cardiology and Angiology I (P.S., S.G., A.P., A.H., N.A.M., F.Ü., N.H., B.D., L.S., T.M., D.W., I.H., F.W., J.R., C.v.z.M., C.B., A.Z.) and Department of Pneumology (S.C., K.A., A.Z., M.I.), University of Freiburg, Freiburg, Germany.
| |
Collapse
|
15
|
Byun YS, Yoo YS, Kwon JY, Joo JS, Lim SA, Whang WJ, Mok JW, Choi JS, Joo CK. Diquafosol promotes corneal epithelial healing via intracellular calcium-mediated ERK activation. Exp Eye Res 2015; 143:89-97. [PMID: 26505315 DOI: 10.1016/j.exer.2015.10.013] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 10/15/2015] [Accepted: 10/16/2015] [Indexed: 12/27/2022]
Abstract
Diquafosol is known as a purinergic P2Y2 receptor (P2Y2R) agonist that stimulates water and mucin secretion from conjunctival epithelial cells and goblet cells, leading to tear film stability in dry eye. However, its effect on corneal epithelial healing has not yet been elucidated. The aim of the present study was to evaluate the effect of diquafosol on corneal epithelial healing in vivo and on P2Y2R-related downstream signaling pathways in vitro. We administered 3% diquafosol ophthalmic solution on 3 mm-diameter epithelial defects made in rat corneas and assessed the wound closure over time. Corneal epithelial healing was significantly accelerated in diquafosol-treated eyes compared to control eyes at 12 and 24 h. During wound healing, P2Y2R staining appeared stronger in the re-epithelized margin near the wound defect. To evaluate whether diquafosol stimulates epidermal growth factor receptor/extracellular-signal-regulated kinase (EGFR/ERK)-related cell proliferation and migration, simian virus 40-transfected human corneal epithelial (THCE) cells were used for in vitro experiments. Cell proliferation was accelerated by diquafosol at concentrations from 20 to 200 μM during 48 h, but inhibited at concentrations over 2000 μM. The intracellular calcium ([Ca(2+)]i) elevation was measured in diquafosol (100 μM)-stimulated cells using Fluo-4/AM ([Ca(2+)]i indicator). [Ca(2+)]i elevation was observed in diquafosol-stimulated cells regardless of the presence of calcium in media, and suramin pretreatment inhibited the calcium response. The effect of diquafosol on phosphorylation of EGFR, ERK and Akt, and cell migration was determined by western blotting and in vitro cell migration assay. Diquafosol induced phosphorylation of EGFR at 2 min post-stimulation, and phosphorylation of ERK at 5 min post-stimulation. Phosphorylation of ERK was attenuated in cells pretreated with suramin or BAPTA/AM ([Ca(2+)]i chelator), and partially with AG1478 (EGFR inhibitor). Likewise, diquafosol-treated cells showed acceleration of gap closure in cell migration assay, which was inhibited by suramin, BAPTA/AM, AG1478, and U0126 (MEK inhibitor). These studies demonstrate that diquafosol is effective in promoting corneal epithelial wound healing and that this effect may result from ERK-stimulated cell proliferation and migration via P2Y2R-mediated [Ca(2+)]i elevation.
Collapse
Affiliation(s)
- Yong-Soo Byun
- Department of Ophthalmology and Visual Science, College of Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, Republic of Korea; Catholic Institute of Visual Science, Catholic University of Korea, Seoul, Republic of Korea
| | - Young-Sik Yoo
- Catholic Institute of Visual Science, Catholic University of Korea, Seoul, Republic of Korea
| | - Ji-Young Kwon
- Catholic Institute of Visual Science, Catholic University of Korea, Seoul, Republic of Korea
| | - Jong-Soo Joo
- Department of Ophthalmology and Visual Science, College of Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, Republic of Korea
| | - Sung-A Lim
- Department of Ophthalmology and Visual Science, College of Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, Republic of Korea
| | - Woong-Joo Whang
- Department of Ophthalmology and Visual Science, College of Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, Republic of Korea
| | - Jee-Won Mok
- Catholic Institute of Visual Science, Catholic University of Korea, Seoul, Republic of Korea
| | - Jun-Sub Choi
- Catholic Institute of Visual Science, Catholic University of Korea, Seoul, Republic of Korea
| | - Choun-Ki Joo
- Department of Ophthalmology and Visual Science, College of Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, Republic of Korea; Catholic Institute of Visual Science, Catholic University of Korea, Seoul, Republic of Korea.
| |
Collapse
|
16
|
Martínez-Ramírez AS, Vázquez-Cuevas FG. Purinergic signaling in the ovary. Mol Reprod Dev 2015; 82:839-48. [PMID: 26275037 DOI: 10.1002/mrd.22537] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 08/05/2015] [Indexed: 01/27/2023]
Abstract
Adenosine triphosphate (ATP) is released from the cell by multiple mechanisms. The extracellular form of this purine is processed by ectonucleotidases, resulting in a variety of dephosphorylated metabolites that can bind to specific receptors found in the membrane of target cells; such purinergic signaling is important as an autocrine-paracrine intercellular communication system that influences tissue physiology. In this review, we summarize the studies analyzing purinergic activity in the ovary, which can modulate cellular physiology-including sensitivity to gonadotropins-in several ovarian cell types, including the cumulus-cell complex, granulosa cells, theca cells, and the ovarian surface epithelium. These functions support a role for ATP as an important intra-ovarian messenger, and open new lines of research that can improve our understanding of mechanisms regulating ovarian function and the fine-tuning of folliculogenesis.
Collapse
Affiliation(s)
- Angélica S Martínez-Ramírez
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Juriquilla Querétaro, Querétaro, México
| | - Francisco G Vázquez-Cuevas
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Juriquilla Querétaro, Querétaro, México
| |
Collapse
|
17
|
P2Y2R activation by nucleotides released from the highly metastatic breast cancer cell MDA-MB-231 contributes to pre-metastatic niche formation by mediating lysyl oxidase secretion, collagen crosslinking, and monocyte recruitment. Oncotarget 2015; 5:9322-34. [PMID: 25238333 PMCID: PMC4253437 DOI: 10.18632/oncotarget.2427] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Tumor microenvironmental hypoxia induces hypoxia inducible factor-1α (HIF-1α) overexpression, leading to the release of lysyl oxidase (LOX), which crosslinks collagen at distant sites to facilitate environmental changes that allow cancer cells to easily metastasize. Our previous study showed that activation of the P2Y2 receptor (P2Y2R) by ATP released from MDA-MB-231 cells increased MDA-MB-231 cell invasion through endothelial cells. Therefore, in this study, we investigated the role of P2Y2R in breast cancer cell metastasis to distant sites. ATP or UTP released from hypoxia-treated MDA-MB-231 cells induced HIF-1α expression and LOX secretion by the activation of P2Y2R, and this phenomenon was significantly reduced in P2Y2R-depleted MDA-MB-231 cells. Furthermore, P2Y2R-mediated LOX release induced collagen crosslinking in an in vitro model. Finally, nude mice injected with MDA-MB-231 cells showed high levels of LOX secretion, crosslinked collagen and CD11b+ BMDC recruitment in the lung; however, mice that were injected with P2Y2R-depleted MDA-MB-231 cells did not exhibit these changes. These results demonstrate that P2Y2R plays an important role in activation of the HIF-1α-LOX axis, the induction of collagen crosslinking and the recruitment of CD11b+ BMDCs. Furthermore, P2Y2R activation by nucleotides recruits THP-1 monocytes, resulting in primary tumor progression and pre-metastatic niche formation.
Collapse
|
18
|
Thompson A, Kanamarlapudi V. Agonist-induced internalisation of the glucagon-like peptide-1 receptor is mediated by the Gαq pathway. Biochem Pharmacol 2015; 93:72-84. [DOI: 10.1016/j.bcp.2014.10.015] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 10/27/2014] [Accepted: 10/30/2014] [Indexed: 12/12/2022]
|
19
|
Li N, Lu ZY, Yu LH, Burnstock G, Deng XM, Ma B. Inhibition of G protein-coupled P2Y2 receptor induced analgesia in a rat model of trigeminal neuropathic pain. Mol Pain 2014; 10:21. [PMID: 24642246 PMCID: PMC3995183 DOI: 10.1186/1744-8069-10-21] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Accepted: 03/04/2014] [Indexed: 01/29/2023] Open
Abstract
BACKGROUNDS ATP and P2X receptors play important roles in the modulation of trigeminal neuropathic pain, while the role of G protein-coupled P2Y₂ receptors and the underlying mechanisms are less clear. The threshold and frequency of action potentials, fast inactivating transient K+ channels (IA) are important regulators of membrane excitability in sensory neurons because of its vital role in the control of the spike onset. In this study, pain behavior tests, QT-RT-PCR, immunohistochemical staining, and patch-clamp recording, were used to investigate the role of P2Y₂ receptors in pain behaviour. RESULTS In control rats: 1) UTP, an agonist of P2Y₂/P2Y₄ receptors, caused a significant decrease in the mean threshold intensities for evoking action potentials and a striking increase in the mean number of spikes evoked by TG neurons. 2) UTP significantly inhibited IA and the expression of Kv1.4, Kv3.4 and Kv4.2 subunits in TG neurons, which could be reversed by the P2 receptor antagonist suramin and the ERK antagonist U0126. In ION-CCI (chronic constriction injury of infraorbital nerve) rats: 1) mRNA levels of Kv1.4, Kv3.4 and Kv4.2 subunits were significantly decreased, while the protein level of phosphorylated ERK was significantly increased. 2) When blocking P2Y₂ receptors by suramin or injection of P2Y2R antisense oligodeoxynucleotides both led to a time- and dose-dependent reverse of allodynia in ION-CCI rats. 3) Injection of P2Y₂ receptor antisense oligodeoxynucleotides induced a pronounced decrease in phosphorylated ERK expression and a significant increase in Kv1.4, Kv3.4 and Kv4.2 subunit expression in trigeminal ganglia. CONCLUSIONS Our data suggest that inhibition of P2Y₂ receptors leads to down-regulation of ERK-mediated phosphorylation and increase of the expression of I(A)-related Kv channels in trigeminal ganglion neurons, which might contribute to the clinical treatment of trigeminal neuropathic pain.
Collapse
Affiliation(s)
| | | | | | | | - Xiao-ming Deng
- Department of Physiology, The Key Laboratory of Molecular Neurobiology, Ministry of Education, Second Military Medical University, Shanghai 200433, P,R, China.
| | | |
Collapse
|
20
|
Danino O, Grossman S, Fischer B. Nucleoside 5'-phosphorothioate derivatives as oxidative stress protectants in PC12 cells. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2013; 32:333-53. [PMID: 23742060 DOI: 10.1080/15257770.2013.789107] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Iron-induced oxidative damage of mitochondria contributes to cellular death seen in neurodegenerative diseases, therefore, there is a demand for nontoxic, biocompatible, and effective Fe-ion chelators. We evaluated the chelation of Fe(II) by phosphate derivatives using ferrozine as an indicator. We studied the effect of phosphate derivatives on inhibiting Fe(II)-induced oxidative stress in PC12 cells, and metabolic stability in PC12 cells was evaluated. Nucleotides containing phosphorothioate moieties inhibited ROS formation better than natural nucleotides and were more metabolically stable in PC12 cells. Finally, we elucidated that these nucleotides activate the MAP-kinase pathway that contributes to protection of PC12 cells under oxidative stress.
Collapse
Affiliation(s)
- Ortal Danino
- Department of Chemistry, Bar-Ilan University, Ramat-Gan, Israel
| | | | | |
Collapse
|
21
|
Ajit D, Woods LT, Camden JM, Thebeau CN, El-Sayed FG, Greeson GW, Erb L, Petris MJ, Miller DC, Sun GY, Weisman GA. Loss of P2Y₂ nucleotide receptors enhances early pathology in the TgCRND8 mouse model of Alzheimer's disease. Mol Neurobiol 2013; 49:1031-42. [PMID: 24193664 DOI: 10.1007/s12035-013-8577-5] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Accepted: 10/21/2013] [Indexed: 11/26/2022]
Abstract
Neuroinflammation is a prominent feature in Alzheimer's disease (AD) and activation of the brain's innate immune system, particularly microglia, has been postulated to both retard and accelerate AD progression. Recent studies indicate that the G protein-coupled P2Y2 nucleotide receptor (P2Y2R) is an important regulator of innate immunity by assisting in the recruitment of monocytes to injured tissue, neutrophils to bacterial infections and eosinophils to allergen-infected lungs. In this study, we investigated the role of the P2Y2R in progression of an AD-like phenotype in the TgCRND8 mouse model that expresses Swedish and Indiana mutations in amyloid precursor protein (APP). Our results indicate that P2Y 2 R expression is upregulated in TgCRND8 mouse brain within 10 weeks of age and then decreases after 25 weeks of age, as compared to littermate controls expressing low levels of the P2Y 2 R. TgCRND8 mice with homozygous P2Y 2 R deletion survive less than 5 weeks, whereas mice with heterozygous P2Y 2 R deletion survive for 12 weeks, a time point when TgCRND8 mice are fully viable. Heterozygous P2Y 2 R deletion in TgCRND8 mice increased β-amyloid (Aβ) plaque load and soluble Aβ1-42 levels in the cerebral cortex and hippocampus, decreased the expression of the microglial marker CD11b in these brain regions and caused neurological deficits within 10 weeks of age, as compared to age-matched TgCRND8 mice. These findings suggest that the P2Y2R is important for the recruitment and activation of microglial cells in the TgCRND8 mouse brain and that the P2Y2R may regulate neuroprotective mechanisms through microglia-mediated clearance of Aβ that when lost can accelerate the onset of an AD-like phenotype in the TgCRND8 mouse.
Collapse
Affiliation(s)
- Deepa Ajit
- Department of Biochemistry, University of Missouri, 540E Life Sciences Center, 1201 Rollins Road, Columbia, MO, 65211-7310, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Weisman GA, Woods LT, Erb L, Seye CI. P2Y receptors in the mammalian nervous system: pharmacology, ligands and therapeutic potential. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2013; 11:722-38. [PMID: 22963441 DOI: 10.2174/187152712803581047] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Revised: 06/14/2012] [Accepted: 06/14/2012] [Indexed: 11/22/2022]
Abstract
P2Y receptors for extracellular nucleotides are coupled to activation of a variety of G proteins and stimulate diverse intracellular signaling pathways that regulate functions of cell types that comprise the central nervous system (CNS). There are 8 different subtypes of P2Y receptor expressed in cells of the CNS that are activated by a select group of nucleotide agonists. Here, the agonist selectivity of these 8 P2Y receptor subtypes is reviewed with an emphasis on synthetic agonists with high potency and resistance to degradation by extracellular nucleotidases that have potential applications as therapeutic agents. In addition, the recent identification of a wide variety of subtype-selective antagonists is discussed, since these compounds are critical for discerning cellular responses mediated by activation of individual P2Y receptor subtypes. The functional expression of P2Y receptor subtypes in cells that comprise the CNS is also reviewed and the role of each subtype in the regulation of physiological and pathophysiological responses is considered. Other topics include the role of P2Y receptors in the regulation of blood-brain barrier integrity and potential interactions between different P2Y receptor subtypes that likely impact tissue responses to extracellular nucleotides in the CNS. Overall, current research suggests that P2Y receptors in the CNS regulate repair mechanisms that are triggered by tissue damage, inflammation and disease and thus P2Y receptors represent promising targets for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Gary A Weisman
- Department of Biochemistry, 540E Life Sciences Center, 1201 Rollins Road, University of Missouri, Columbia, MO 65211-7310, USA.
| | | | | | | |
Collapse
|
23
|
Kim S, Cipolla L, Guidetti G, Okigaki M, Jin J, Torti M, Kunapuli SP. Distinct role of Pyk2 in mediating thromboxane generation downstream of both G12/13 and integrin αIIbβ3 in platelets. J Biol Chem 2013; 288:18194-203. [PMID: 23640884 DOI: 10.1074/jbc.m113.461087] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Proline-rich tyrosine kinase 2 (Pyk2) is activated by various agonists in platelets. We evaluated the signaling mechanism and the functional role of Pyk2 in platelets by using pharmacological inhibitors and Pyk2-deficient platelets. We found that platelet aggregation and secretion in response to 2-methylthio-ADP (2-MeSADP) and AYPGKF were diminished in the presence of Pyk2 inhibitors or in Pyk2-deficient platelets, suggesting that Pyk2 plays a positive regulatory role in platelet functional responses. It has been shown that ADP-, but not thrombin-induced thromboxane (TxA2) generation depends on integrin signaling. Unlike ADP, thrombin activates G12/13 pathways, and G12/13 pathways can substitute for integrin signaling for TxA2 generation. We found that Pyk2 was activated downstream of both G12/13 and integrin-mediated pathways, and both 2-MeSADP- and AYPGKF-induced TxA2 generation was significantly diminished in Pyk2-deficient platelets. In addition, TxA2 generation induced by co-stimulation of Gi and Gz pathways, which is dependent on integrin signaling, was inhibited by blocking Pyk2. Furthermore, inhibition of 2-MeSADP-induced TxA2 generation by fibrinogen receptor antagonist was not rescued by co-stimulation of G12/13 pathways in the presence of Pyk2 inhibitor. We conclude that Pyk2 is a common signaling effector downstream of both G12/13 and integrin αIIbβ3 signaling, which contributes to thromboxane generation.
Collapse
Affiliation(s)
- Soochong Kim
- Department of Physiology, Temple University School of Medicine, Philadelphia, Pennsylvania 19140, USA
| | | | | | | | | | | | | |
Collapse
|
24
|
Limami Y, Pinon A, Leger DY, Pinault E, Delage C, Beneytout JL, Simon A, Liagre B. The P2Y2/Src/p38/COX-2 pathway is involved in the resistance to ursolic acid-induced apoptosis in colorectal and prostate cancer cells. Biochimie 2012; 94:1754-63. [PMID: 22521508 DOI: 10.1016/j.biochi.2012.04.006] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Accepted: 04/03/2012] [Indexed: 12/26/2022]
Abstract
One of the hallmarks of cancer is resistance to apoptosis. Elucidating the mechanisms of how cancer cells evade or delay apoptosis should lead to novel therapeutic strategies. Previously, we showed that HT-29 colorectal cancer cells undergoing apoptosis overexpressed cyclooxygenase-2 (COX-2), in a p38 dependent pathway, to delay ursolic acid-induced apoptosis. Here, we focused on elucidating the upstream signaling pathways regulating this resistance mechanism. The role of ATP as an extracellular signaling molecule took a long time to be accepted. In recent years, ATP and its analogs, via the activation of specific purinergic receptors, have been implicated in many biological processes including cell proliferation, differentiation and apoptosis. In the present report, we have demonstrated a novel role involving purinergic receptors and particularly the P2Y(2) receptor in resistance to ursolic acid-induced apoptosis in both colorectal HT-29 and prostate DU145 cancer cells. We found that ursolic acid induced an increase in intracellular ATP and P2Y(2) transcript levels. Upon activation, P2Y(2) activated Src which in turn phosphorylated p38 leading to COX-2 overexpression which induced resistance to apoptosis in both HT-29 and DU145 cells. Furthermore, Ca(2+)-independent PLA(2) (iPLA(2)) and Ca(2+)-dependent secretory PLA(2) (sPLA(2)) were responsible for arachidonic acid release, the substrate of COX-2. Our findings document that apoptosis triggering was dependent on protein kinase C (PKC) activation in both cell lines after ursolic acid treatment.
Collapse
Affiliation(s)
- Youness Limami
- Université de Limoges, Laboratoire de Chimie des Substances Naturelles, EA 1069, Faculté de Pharmacie, 2 rue du Docteur Marcland, FR 3503 GEIST, 87025 Limoges Cedex, France
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Kajiya M, Ichimonji I, Min C, Zhu T, Jin JO, Yu Q, Almazrooa SA, Cha S, Kawai T. Muscarinic type 3 receptor induces cytoprotective signaling in salivary gland cells through epidermal growth factor receptor transactivation. Mol Pharmacol 2012; 82:115-24. [PMID: 22511543 PMCID: PMC3382834 DOI: 10.1124/mol.111.077354] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Accepted: 04/17/2012] [Indexed: 01/28/2023] Open
Abstract
Muscarinic type 3 receptor (M3R) plays a pivotal role in the induction of glandular fluid secretions. Although M3R is often the target of autoantibodies in Sjögren's syndrome (SjS), chemical agonists for M3R are clinically used to stimulate saliva secretion in patients with SjS. Aside from its activity in promoting glandular fluid secretion, however, it is unclear whether activation of M3R is related to other biological events in SjS. This study aimed to investigate the cytoprotective effect of chemical agonist-mediated M3R activation on apoptosis induced in human salivary gland (HSG) cells. Carbachol (CCh), a muscarinic receptor-specific agonist, abrogated tumor necrosis factor α/interferon γ-induced apoptosis through pathways involving caspase 3/7, but its cytoprotective effect was decreased by a M3R antagonist, a mitogen-activated protein kinase kinase/extracellular signal-regulated kinase (ERK) inhibitor, a phosphatidylinositol 3-kinase/Akt inhibitor, or an epidermal growth factor receptor (EGFR) inhibitor. Ligation of M3R with CCh transactivated EGFR and phosphorylated ERK and Akt, the downstream targets of EGFR. Inhibition of intracellular calcium release or protein kinase C δ, both of which are involved in the cell signaling of M3R-mediated fluid secretion, did not affect CCh-induced ERK or Akt phosphorylation. CCh stimulated Src phosphorylation and binding to EGFR. A Src inhibitor attenuated the CCh/M3R-induced cytoprotective effect and EGFR transactivation cascades. Overall, these results indicated that CCh/M3R induced transactivation of EGFR through Src activation leading to ERK and Akt phosphorylation, which in turn suppressed caspase 3/7-mediated apoptotic signals in HSG cells. This study, for the first time, proposes that CCh-mediated M3R activation can promote not only fluid secretion but also survival of salivary gland cells in the inflammatory context of SjS.
Collapse
Affiliation(s)
- Mikihito Kajiya
- Department of Immunology, Forsyth Institute, Cambridge, Massachusetts 02142, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Weisman GA, Ajit D, Garrad R, Peterson TS, Woods LT, Thebeau C, Camden JM, Erb L. Neuroprotective roles of the P2Y(2) receptor. Purinergic Signal 2012; 8:559-78. [PMID: 22528682 DOI: 10.1007/s11302-012-9307-6] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Accepted: 10/04/2011] [Indexed: 02/07/2023] Open
Abstract
Purinergic signaling plays a unique role in the brain by integrating neuronal and glial cellular circuits. The metabotropic P1 adenosine receptors and P2Y nucleotide receptors and ionotropic P2X receptors control numerous physiological functions of neuronal and glial cells and have been implicated in a wide variety of neuropathologies. Emerging research suggests that purinergic receptor interactions between cells of the central nervous system (CNS) have relevance in the prevention and attenuation of neurodegenerative diseases resulting from chronic inflammation. CNS responses to chronic inflammation are largely dependent on interactions between different cell types (i.e., neurons and glia) and activation of signaling molecules including P2X and P2Y receptors. Whereas numerous P2 receptors contribute to functions of the CNS, the P2Y(2) receptor is believed to play an important role in neuroprotection under inflammatory conditions. While acute inflammation is necessary for tissue repair due to injury, chronic inflammation contributes to neurodegeneration in Alzheimer's disease and occurs when glial cells undergo prolonged activation resulting in extended release of proinflammatory cytokines and nucleotides. This review describes cell-specific and tissue-integrated functions of P2 receptors in the CNS with an emphasis on P2Y(2) receptor signaling pathways in neurons, glia, and endothelium and their role in neuroprotection.
Collapse
Affiliation(s)
- Gary A Weisman
- Department of Biochemistry, University of Missouri, 540E Life Sciences Center, 1201 Rollins Road, Columbia, MO 65211-7310, USA.
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Weisman GA, Camden JM, Peterson TS, Ajit D, Woods LT, Erb L. P2 receptors for extracellular nucleotides in the central nervous system: role of P2X7 and P2Y₂ receptor interactions in neuroinflammation. Mol Neurobiol 2012; 46:96-113. [PMID: 22467178 DOI: 10.1007/s12035-012-8263-z] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Accepted: 03/21/2012] [Indexed: 12/16/2022]
Abstract
Extracellular nucleotides induce cellular responses in the central nervous system (CNS) through the activation of ionotropic P2X and metabotropic P2Y nucleotide receptors. Activation of these receptors regulates a wide range of physiological and pathological processes. In this review, we present an overview of the current literature regarding P2X and P2Y receptors in the CNS with a focus on the contribution of P2X7 and P2Y(2) receptor-mediated responses to neuroinflammatory and neuroprotective mechanisms.
Collapse
Affiliation(s)
- Gary A Weisman
- Department of Biochemistry, University of Missouri, 540E Life Sciences Center, 1201 Rollins Road, Columbia, MO 65211-7310, USA.
| | | | | | | | | | | |
Collapse
|
28
|
Wiedon A, Tölle M, Bastine J, Schuchardt M, Huang T, Jankowski V, Jankowski J, Zidek W, van der Giet M. Uridine adenosine tetraphosphate (Up4A) is a strong inductor of smooth muscle cell migration via activation of the P2Y2 receptor and cross-communication to the PDGF receptor. Biochem Biophys Res Commun 2011; 417:1035-40. [PMID: 22214933 DOI: 10.1016/j.bbrc.2011.12.088] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2011] [Accepted: 12/19/2011] [Indexed: 11/28/2022]
Abstract
The recently discovered dinucleotide uridine adenosine tetraphosphate (Up(4)A) was found in human plasma and characterized as endothelium-derived vasoconstrictive factor (EDCF). A further study revealed a positive correlation between Up(4)A and vascular smooth muscle cell (VSMC) proliferation. Due to the dominant role of migration in the formation of atherosclerotic lesions our aim was to investigate the migration stimulating potential of Up(4)A. Indeed, we found a strong chemoattractant effect of Up(4)A on VSMC by using a modified Boyden chamber. This migration dramatically depends on osteopontin secretion (OPN) revealed by the reduction of the migration signal down to 23% during simultaneous incubation with an OPN-blocking antibody. Due to inhibitory patterns using specific and unspecific purinoreceptor inhibitors, Up(4)A mediates it's migratory signal mainly via the P2Y(2). The signaling behind the receptor was investigated with luminex technique and revealed an activation of the extracellular signal-regulated kinases 1 and 2 (ERK1/2) pathway. By use of the specific PDGF receptor (PDGFR) inhibitor AG1296 and siRNA technique against PDGFR-β we found a strongly reduced migration signal after Up(4)A stimulation in the PDGFR-β knockdown cells compared to control cells. In this study, we present substantiate data that Up(4)A exhibits migration stimulating potential probably involving the signaling cascade of MEK1 and ERK1/2 as well as the matrix protein OPN. We further suggest that the initiation of the migration process occurs predominant through direct activation of the P2Y(2) by Up(4)A and via transactivation of the PDGFR.
Collapse
Affiliation(s)
- Annette Wiedon
- Charité - Universitätsmedizin Berlin, CharitéCentrum, Department of Nephrology, Campus Benjamin Franklin, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Schuchardt M, Tölle M, Prüfer J, Prüfer N, Huang T, Jankowski V, Jankowski J, Zidek W, van der Giet M. Uridine adenosine tetraphosphate activation of the purinergic receptor P2Y enhances in vitro vascular calcification. Kidney Int 2011; 81:256-65. [PMID: 21956191 DOI: 10.1038/ki.2011.326] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Purinergic signaling has a crucial role in different vascular processes. The endothelial-derived vasoconstrictor uridine adenosine tetraphosphate (Up(4)A) is a potent activator of the purinoceptor P2Y and is released under pathological conditions. Here we sought to measure purinergic effects on vascular calcification and initially found that Up(4)A plasma concentrations are increased in patients with chronic kidney disease. Exploring this further we found that exogenous Up(4)A enhanced mineral deposition under calcifying conditions ex vivo in rat and mouse aortic rings and in vitro in rat vascular smooth muscle cells. The addition of Up(4)A increased the expression of different genes specific for osteochondrogenic vascular smooth muscle cells such as Cbfa1, while decreasing the expression of SM22α, a marker specific for vascular smooth muscle cells. The influence of different P2Y antagonists on Up(4)A-mediated process indicated that P2Y(2/6) receptors may be involved. Mechanisms downstream of P2Y signaling involved phosphorylation of the mitogen-activated kinases MEK and ERK1/2. Thus, Up(4)A activation of P2Y influences phenotypic transdifferentiation of vascular smooth muscle cells to osteochondrogenic cells, suggesting that purinergic signaling may be involved in vascular calcification.
Collapse
Affiliation(s)
- Mirjam Schuchardt
- Department of Nephrology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Novak I. Purinergic signalling in epithelial ion transport: regulation of secretion and absorption. Acta Physiol (Oxf) 2011; 202:501-22. [PMID: 21073662 DOI: 10.1111/j.1748-1716.2010.02225.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Intracellular ATP, the energy source for many reactions, is crucial for the activity of plasma membrane pumps and, thus, for the maintenance of transmembrane ion gradients. Nevertheless, ATP and other nucleotides/nucleosides are also extracellular molecules that regulate diverse cellular functions, including ion transport. In this review, I will first introduce the main components of the extracellular ATP signalling, which have become known as the purinergic signalling system. With more than 50 components or processes, just at cell membranes, it ranks as one of the most versatile signalling systems. This multitude of system components may enable differentiated regulation of diverse epithelial functions. As epithelia probably face the widest variety of potential ATP-releasing stimuli, a special attention will be given to stimuli and mechanisms of ATP release with a focus on exocytosis. Subsequently, I will consider membrane transport of major ions (Cl(-) , HCO(3)(-) , K(+) and Na(+) ) and integrate possible regulatory functions of P2Y2, P2Y4, P2Y6, P2Y11, P2X4, P2X7 and adenosine receptors in some selected epithelia at the cellular level. Some purinergic receptors have noteworthy roles. For example, many studies to date indicate that the P2Y2 receptor is one common denominator in regulating ion channels on both the luminal and basolateral membranes of both secretory and absorptive epithelia. In exocrine glands though, P2X4 and P2X7 receptors act as cation channels and, possibly, as co-regulators of secretion. On an organ level, both receptor types can exert physiological functions and together with other partners in the purinergic signalling, integrated models for epithelial secretion and absorption are emerging.
Collapse
Affiliation(s)
- I Novak
- Department of Biology, August Krogh Building, University of Copenhagen, Denmark.
| |
Collapse
|
31
|
Ding L, Ma W, Littmann T, Camp R, Shen J. The P2Y(2) nucleotide receptor mediates tissue factor expression in human coronary artery endothelial cells. J Biol Chem 2011; 286:27027-38. [PMID: 21652710 DOI: 10.1074/jbc.m111.235176] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The discovery of the role of P2Y(12) receptor in platelet aggregation leads to a new anti-thrombotic drug Plavix; however, little is known about non-platelet P2Y receptors in thrombosis. This study tested the hypothesis that endothelial P2Y receptor(s) mediates up-regulation of tissue factor (TF), the initiator of coagulation cascade. Stimulation of human coronary artery endothelial cells (HCAEC) by UTP/ATP increased the mRNA level of TF but not of its counterpart-tissue factor pathway inhibitor, which was accompanied by up-regulation of TF protein and cell surface activity. RT-PCR revealed a selective expression of P2Y(2) and P2Y(11) receptors in HCAEC. Consistent with this, TF up-regulation was inhibited by suramin or by siRNA silencing of P2Y(2) receptor, but not by NF-157, a P2Y(11)-selective antagonist, suggesting a role for the P2Y(2) receptor. In addition, P2Y(2) receptor activated ERK1/2, JNK, and p38 MAPK pathways without affecting the positive NF-κB and negative AKT regulatory pathways of TF expression. Furthermore, TF up-regulation was abolished or partially suppressed by inhibition of p38 or JNK but not ERK1/2. Interestingly, blockade of the PLC/Ca(2+) pathway did not affect P2Y(2) receptor activation of p38, JNK, and TF induction. However, blockade of Src kinase reduced phosphorylation of p38 but not JNK, eliminating TF induction. In contrast, inhibition of Rho kinase reduced phosphorylation of JNK but not p38, decreasing TF expression. These findings demonstrate that P2Y(2) receptor mediates TF expression in HCAEC through new mechanisms involving Src/p38 and Rho/JNK pathways, possibly contributing to a pro-thrombotic status after vascular injury.
Collapse
Affiliation(s)
- Ling Ding
- Division of Pharmacology, Department of Pharmacal Sciences, Harrison School of Pharmacy, Auburn University, Auburn, Alabama 36849, USA
| | | | | | | | | |
Collapse
|
32
|
Wagner MCE. The therapeutic potential of adenosine triphosphate as an immune modulator in the treatment of HIV/AIDS: a combination approach with HAART. Curr HIV Res 2011; 9:209-22. [PMID: 21675943 PMCID: PMC3343418 DOI: 10.2174/157016211796320289] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2011] [Revised: 04/27/2011] [Accepted: 06/08/2011] [Indexed: 12/11/2022]
Abstract
Extracellular adenosine triphosphate (eATP) is a potent molecule that has the capacity to modulate various aspects of cell functions including gene expression. This element of modulation is essential to the role of ATP as a therapeutic agent. The hypothesis presented is that ATP can have an important impact on the treatment of HIV infection. This is supported in part by published research, although a much greater role for ATP is suggested than prior authors ever thought possible. ATP has the ability to enhance the immune system and could thus improve the host's own defense mechanisms to eradicate the virus-infected cells and restore normal immune function. This could provide effective therapy when used in conjunction with highly active antiretroviral therapies (HAART) to eliminate the latently infected cells. The key lies in applying ATP through the methodology described. This article presents a strategy for using ATP therapeutically along with background evidence to substantiate the importance of using ATP in the treatment of HIV infection.
Collapse
|
33
|
Kronlage M, Song J, Sorokin L, Isfort K, Schwerdtle T, Leipziger J, Robaye B, Conley PB, Kim HC, Sargin S, Schön P, Schwab A, Hanley PJ. Autocrine purinergic receptor signaling is essential for macrophage chemotaxis. Sci Signal 2010; 3:ra55. [PMID: 20664064 DOI: 10.1126/scisignal.2000588] [Citation(s) in RCA: 191] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Chemotaxis, the movement of cells along chemical gradients, is critical for the recruitment of immune cells to sites of inflammation; however, how cells navigate in chemotactic gradients is poorly understood. Here, we show that macrophages navigate in a gradient of the chemoattractant C5a through the release of adenosine triphosphate (ATP) and autocrine "purinergic feedback loops" that involve receptors for ATP (P2Y(2)), adenosine diphosphate (ADP) (P2Y(12)), and adenosine (A2a, A2b, and A3). Whereas macrophages from mice deficient in pannexin-1 (which is part of a putative ATP release pathway), P2Y(2), or P2Y(12) exhibited efficient chemotactic navigation, chemotaxis was blocked by apyrase, which degrades ATP and ADP, and by the inhibition of multiple purinergic receptors. Furthermore, apyrase impaired the recruitment of monocytes in a mouse model of C5a-induced peritonitis. In addition, we found that stimulation of P2Y(2), P2Y(12), or adenosine receptors induced the formation of lamellipodial membrane protrusions, causing cell spreading. We propose a model in which autocrine purinergic receptor signaling amplifies and translates chemotactic cues into directional motility.
Collapse
Affiliation(s)
- Moritz Kronlage
- Institut für Physiologie II, Wilhems-Universität Münster, 48149 Münster, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Peterson TS, Camden JM, Wang Y, Seye CI, Wood WG, Sun GY, Erb L, Petris MJ, Weisman GA. P2Y2 nucleotide receptor-mediated responses in brain cells. Mol Neurobiol 2010; 41:356-66. [PMID: 20387013 PMCID: PMC3086510 DOI: 10.1007/s12035-010-8115-7] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2010] [Accepted: 03/01/2010] [Indexed: 01/14/2023]
Abstract
Acute inflammation is important for tissue repair; however, chronic inflammation contributes to neurodegeneration in Alzheimer's disease (AD) and occurs when glial cells undergo prolonged activation. In the brain, stress or damage causes the release of nucleotides and activation of the G(q) protein-coupled P2Y(2) nucleotide receptor subtype (P2Y(2)R) leading to pro-inflammatory responses that can protect neurons from injury, including the stimulation and recruitment of glial cells. P2Y(2)R activation induces the phosphorylation of the epidermal growth factor receptor (EGFR), a response dependent upon the presence of a SH3 binding domain in the intracellular C terminus of the P2Y(2)R that promotes Src binding and transactivation of EGFR, a pathway that regulates the proliferation of cortical astrocytes. Other studies indicate that P2Y(2)R activation increases astrocyte migration. P2Y(2)R activation by UTP increases the expression in astrocytes of alpha(V)beta(3/5) integrins that bind directly to the P2Y(2)R via an Arg-Gly-Asp (RGD) motif in the first extracellular loop of the P2Y(2)R, an interaction required for G(o) and G(12) protein-dependent astrocyte migration. In rat primary cortical neurons (rPCNs) P2Y(2)R expression is increased by stimulation with interleukin-1beta (IL-1beta), a pro-inflammatory cytokine whose levels are elevated in AD, in part due to nucleotide-stimulated release from glial cells. Other results indicate that oligomeric beta-amyloid peptide (Abeta(1-42)), a contributor to AD, increases nucleotide release from astrocytes, which would serve to activate upregulated P2Y(2)Rs in neurons. Data with rPCNs suggest that P2Y(2)R upregulation by IL-1beta and subsequent activation by UTP are neuroprotective, since this increases the non-amyloidogenic cleavage of amyloid precursor protein. Furthermore, activation of IL-1beta-upregulated P2Y(2)Rs in rPCNs increases the phosphorylation of cofilin, a cytoskeletal protein that stabilizes neurite outgrowths. Thus, activation of pro-inflammatory P2Y(2)Rs in glial cells can promote neuroprotective responses, suggesting that P2Y(2)Rs represent a novel pharmacological target in neurodegenerative and other pro-inflammatory diseases.
Collapse
Affiliation(s)
- Troy S Peterson
- Department of Biochemistry, Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Boucher I, Rich C, Lee A, Marcincin M, Trinkaus-Randall V. The P2Y2 receptor mediates the epithelial injury response and cell migration. Am J Physiol Cell Physiol 2010; 299:C411-21. [PMID: 20427708 DOI: 10.1152/ajpcell.00100.2009] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Injury to epithelial cells results in the release of ATP and stimulation of purinergic receptors and is thought to alter cell migration and wound repair. Medium from the injured cells triggers Ca(2+) mobilization and phosphorylation of ERK, both of which are inhibited if the medium is pretreated with apyrase. To understand the wound repair mechanism that occurs with injury, our goal was to determine which purinergic receptor(s) was the critical player in the wound response. We hypothesize that the P2Y(2) receptor is the key player in the response of corneal epithelial cells to cell damage and subsequent repair events. Cells transfected with short interfering RNA to either P2Y(2) or P2Y(4) were stimulated either by injury or addition of UTP and imaged using fluo 3-AM to monitor changes in fluorescence. When cells with downregulated P2Y(2) receptors were injured or stimulated with UTP, the intensity of the Ca(2+) release was reduced significantly. However, when cells with downregulated P2Y(4) receptors were stimulated, only the UTP-induced Ca(2+) response was reduced significantly. In addition, downregulation of the P2Y(2) receptor inhibited wound closure compared with unstimulated cells or cells transfected with nontargeting sequence. This downregulation resulted also in an attenuation in phosphorylation of Src and ERK. Together, these data indicate that the P2Y(2) receptor plays a major biological role in the corneal injury response and repair mechanisms.
Collapse
Affiliation(s)
- Ilene Boucher
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | | | | | | | | |
Collapse
|
36
|
Myers TJ, Brennaman LH, Stevenson M, Higashiyama S, Russell WE, Lee DC, Sunnarborg SW. Mitochondrial reactive oxygen species mediate GPCR-induced TACE/ADAM17-dependent transforming growth factor-alpha shedding. Mol Biol Cell 2010; 20:5236-49. [PMID: 19846666 DOI: 10.1091/mbc.e08-12-1256] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Epidermal growth factor receptor (EGFR) activation by GPCRs regulates many important biological processes. ADAM metalloprotease activity has been implicated as a key step in transactivation, yet the regulatory mechanisms are not fully understood. Here, we investigate the regulation of transforming growth factor-alpha (TGF-alpha) shedding by reactive oxygen species (ROS) through the ATP-dependent activation of the P2Y family of GPCRs. We report that ATP stimulates TGF-alpha proteolysis with concomitant EGFR activation and that this process requires TACE/ADAM17 activity in both murine fibroblasts and CHO cells. ATP-induced TGF-alpha shedding required calcium and was independent of Src family kinases and PKC and MAPK signaling. Moreover, ATP-induced TGF-alpha shedding was completely inhibited by scavengers of ROS, whereas calcium-stimulated shedding was partially inhibited by ROS scavenging. Hydrogen peroxide restored TGF-alpha shedding after calcium chelation. Importantly, we also found that ATP-induced shedding was independent of the cytoplasmic NADPH oxidase complex. Instead, mitochondrial ROS production increased in response to ATP and mitochondrial oxidative complex activity was required to activate TACE-dependent shedding. These results reveal an essential role for mitochondrial ROS in regulating GPCR-induced growth factor shedding.
Collapse
Affiliation(s)
- Timothy J Myers
- Department of Biochemistry and Biophysics and Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | | | | | | | | | | | | |
Collapse
|
37
|
Ratchford AM, Baker OJ, Camden JM, Rikka S, Petris MJ, Seye CI, Erb L, Weisman GA. P2Y2 nucleotide receptors mediate metalloprotease-dependent phosphorylation of epidermal growth factor receptor and ErbB3 in human salivary gland cells. J Biol Chem 2010; 285:7545-55. [PMID: 20064929 DOI: 10.1074/jbc.m109.078170] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The G protein-coupled receptor P2Y(2) nucleotide receptor (P2Y(2)R) has been shown to be up-regulated in a variety of tissues in response to stress or injury. Recent studies have suggested that P2Y(2)Rs may play a role in immune responses, wound healing, and tissue regeneration via their ability to activate multiple signaling pathways, including activation of growth factor receptors. Here, we demonstrate that in human salivary gland (HSG) cells, activation of the P2Y(2)R by its agonist induces phosphorylation of ERK1/2 via two distinct mechanisms, a rapid, protein kinase C-dependent pathway and a slower and prolonged, epidermal growth factor receptor (EGFR)-dependent pathway. The EGFR-dependent stimulation of UTP-induced ERK1/2 phosphorylation in HSG cells is inhibited by the adamalysin inhibitor tumor necrosis factor-alpha protease inhibitor or by small interfering RNA that selectively silences ADAM10 and ADAM17 expression, suggesting that ADAM metalloproteases are required for P2Y(2)R-mediated activation of the EGFR. G protein-coupled receptors have been shown to promote proteolytic release of EGFR ligands; however, neutralizing antibodies to known ligands of the EGFR did not inhibit UTP-induced EGFR phosphorylation. Immunoprecipitation experiments indicated that UTP causes association of the EGFR with another member of the EGF receptor family, ErbB3. Furthermore, stimulation of HSG cells with UTP induced phosphorylation of ErbB3, and silencing of ErbB3 expression inhibited UTP-induced phosphorylation of both ErbB3 and EGFR. UTP-induced phosphorylation of ErbB3 and EGFR was also inhibited by silencing the expression of the ErbB3 ligand neuregulin 1 (NRG1). These results suggest that P2Y(2)R activation in salivary gland cells promotes the formation of EGFR/ErbB3 heterodimers and metalloprotease-dependent neuregulin 1 release, resulting in the activation of both EGFR and ErbB3.
Collapse
Affiliation(s)
- Ann M Ratchford
- Department of Biochemistry, University of Missouri, Christopher S. Bond Life Sciences Center, Columbia, Missouri 65211, USA
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Norambuena A, Palma F, Poblete MI, Donoso MV, Pardo E, González A, Huidobro-Toro JP. UTP controls cell surface distribution and vasomotor activity of the human P2Y2 receptor through an epidermal growth factor receptor-transregulated mechanism. J Biol Chem 2009; 285:2940-50. [PMID: 19996104 DOI: 10.1074/jbc.m109.081166] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Extracellular nucleotides transmit signals into the cells through the P2 family of cell surface receptors. These receptors are amply expressed in human blood vessels and participate in vascular tone control; however, their signaling mechanisms remain unknown. Here we show that in smooth muscle cells of isolated human chorionic arteries, the activation of the P2Y(2) receptor (P2Y(2)R) induces not only its partition into membrane rafts but also its rapid internalization. Cholesterol depletion with methyl-beta-cyclodextrin reduced the association of the agonist-activated receptor into membrane rafts but did not affect either the UTP-mediated vasoconstrictions or the vasomotor responses elicited by both serotonin and KCl. Ex vivo perfusion of human chorionic artery segments with 1-10 mum UTP, a selective P2Y(2)R agonist, displaced the P2Y(2)R localization into membrane rafts within 1 min, a process preceded by the activation of both RhoA and Rac1 GTPases. AG1478, a selective and potent inhibitor of the epidermal growth factor receptor tyrosine kinase activity, not only blocked the UTP-induced vasomotor activity but also abrogated both RhoA and Rac1 activation, the P2Y(2)R association with membrane rafts, and its internalization. Altogether, these results show for the first time that the plasma membrane distribution of the P2Y(2)R is transregulated by the epidermal growth factor receptor, revealing an unsuspected functional interplay that controls both the membrane distribution and the vasomotor activity of the P2Y(2)R in intact human blood vessels.
Collapse
Affiliation(s)
- Andrés Norambuena
- Departamento de Ciencias Fisiológicas, Facultad de Ciencias Biológicas, Centro de Regulación Celular y Patología JV Luco, Instituto Milenio de Biología Fundamental y Aplicada, Santiago, Chile.
| | | | | | | | | | | | | |
Collapse
|
39
|
Buzzi N, Bilbao PS, Boland R, de Boland AR. Extracellular ATP activates MAP kinase cascades through a P2Y purinergic receptor in the human intestinal Caco-2 cell line. Biochim Biophys Acta Gen Subj 2009; 1790:1651-9. [PMID: 19836435 DOI: 10.1016/j.bbagen.2009.10.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2009] [Revised: 09/14/2009] [Accepted: 10/08/2009] [Indexed: 11/26/2022]
Abstract
BACKGROUND ATP exerts diverse effects on various cell types via specific purinergic P2Y receptors. Intracellular signaling cascades are the main routes of communication between P2Y receptors and regulatory targets in the cell. METHODS AND RESULTS We examined the role of ATP in the modulation of ERK1/2, JNK1/2, and p38 MAP kinases (MAPKs) in human colon cancer Caco-2 cells. Immunoblot analysis showed that ATP induces the phosphorylation of MAPKs in a time- and dose-dependent manner, peaking at 5 min at 10 microM ATP. Moreover, ATPgammaS, UTP, and UDP but not ADP or ADPbetaS increased phosphorylation of MAPKs, indicating the involvement of, at least, P2Y2/P2Y4 and P2Y6 receptor subtypes. RT-PCR studies and PCR product sequencing supported the expression of P2Y2 and P2Y4 receptors in this cell line. Spectrofluorimetric measurements showed that cell stimulation with ATP induced transient elevations in intracellular calcium concentration. In addition, ATP-induced phosphorylation of MAPKs in Caco-2 cells was dependent on Src family tyrosine kinases, calcium influx, and intracellular Ca2+ release and was partially dependent on the cAMP/PKA and PKC pathways and the EGFR. GENERAL SIGNIFICANCE These findings provide new molecular basis for further understanding the mechanisms involved in ATP functions, as a signal transducer and activator of MAP kinase cascades, in colon adenocarcinoma Caco-2 cells.
Collapse
Affiliation(s)
- Natalia Buzzi
- Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, San Juan 670, 8000 Bahía Blanca, Argentina
| | | | | | | |
Collapse
|
40
|
Luke TM, Hexum TD. UTP and ATP increase extracellular signal-regulated kinase 1/2 phosphorylation in bovine chromaffin cells through epidermal growth factor receptor transactivation. Purinergic Signal 2008; 4:323-30. [PMID: 18777108 PMCID: PMC2583213 DOI: 10.1007/s11302-008-9098-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2007] [Accepted: 03/14/2008] [Indexed: 01/07/2023] Open
Abstract
Adenosine triphosphate (ATP) is coreleased with catecholamines from adrenal medullary chromaffin cells in response to sympathetic nervous system stimulation and may regulate these cells in an autocrine or paracrine manner. Increases in extracellular signal-regulated kinase (ERK) 1/2 phosphorylation were observed in response to ATP stimulation of bovine chromaffin cells. The signaling pathway involved in ATP-mediated ERK1/2 phosphorylation was investigated via Western blot analysis. ATP and uridine 5′-triphosphate (UTP) increased ERK1/2 phosphorylation potently, peaking between 5 and 15 min. The mitogen-activated protein kinase (MAPK/ERK)-activating kinase (MEK) inhibitor PD98059 blocked this response. UTP, which is selective for G-protein-coupled P2Y receptors, was the most potent agonist among several nucleotides tested. Adenosine 5′-O-(3-thio) triphosphate (ATPγS) and ATP were also potent agonists, characteristic of the P2Y2 or P2Y4 receptor subtypes, whereas agonists selective for P2X receptors or other P2Y receptor subtypes were weakly effective. The receptor involved was further characterized by the nonspecific P2 antagonists suramin and reactive blue 2, which each partially inhibited ATP-mediated ERK1/2 phosphorylation. Inhibitors of protein kinase C (PKC), protein kinase A (PKA), Ca2+/calmodulin-dependent protein kinase II (CaMKII), and phosphoinositide-3 kinase (PI3K) had no effect on ATP-mediated ERK1/2 phosphorylation. The Src inhibitor PP2, epidermal growth factor receptor (EGFR) inhibitor AG1478, and metalloproteinase inhibitor GM6001 decreased ATP-mediated ERK1/2 phosphorylation. These results suggest nucleotide-mediated ERK1/2 phosphorylation is mediated by a P2Y2 or P2Y4 receptor, which stimulates metalloproteinase-dependent transactivation of the EGFR.
Collapse
Affiliation(s)
- Toni M. Luke
- University of Nebraska Medical Center, 985800 Nebraska Medical Center, Omaha, NE 68198–5800 USA
| | - Terry D. Hexum
- University of Nebraska Medical Center, 985800 Nebraska Medical Center, Omaha, NE 68198–5800 USA
| |
Collapse
|
41
|
Buvinic S, Bravo-Zehnder M, Boyer JL, Huidobro-Toro JP, González A. Nucleotide P2Y1 receptor regulates EGF receptor mitogenic signaling and expression in epithelial cells. J Cell Sci 2008; 120:4289-301. [PMID: 18057028 DOI: 10.1242/jcs.03490] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Epidermal growth factor receptor (EGFR) function is transregulated by a variety of stimuli, including agonists of certain G-protein-coupled receptors (GPCRs). One of the most ubiquitous GPCRs is the P2Y(1) receptor (P2RY1, hereafter referred to as P2Y(1)R) for extracellular nucleotides, mainly ADP. Here, we show in tumoral HeLa cells and normal FRT epithelial cells that P2Y(1)R broadcasts mitogenic signals by transactivating the EGFR. The pathway involves PKC, Src and cell surface metalloproteases. Stimulation of P2Y(1)R for as little as 15-60 minutes triggers mitogenesis, mirroring the half-life of extracellular ADP. Apyrase degradation of extracellular nucleotides and drug inhibition of P2Y(1)R, both reduced basal cell proliferation of HeLa and FRT cells, but not MDCK cells, which do not express P2Y(1)R. Thus, cell-released nucleotides constitute strong mitogenic stimuli, which act via P2Y(1)R. Strikingly, MDCK cells ectopically expressing P2Y(1)R display a highly proliferative phenotype that depends on EGFR activity associated with an increased level of EGFR, thus disclosing a novel aspect of GPCR-mediated regulation of EGFR function. These results highlight a role of P2Y(1)R in EGFR-dependent epithelial cell proliferation. P2Y(1)R could potentially mediate both trophic stimuli of basally released nucleotides and first-line mitogenic stimulation upon tissue damage. It could also contribute to carcinogenesis and serve as target for antitumor therapies.
Collapse
Affiliation(s)
- Sonja Buvinic
- Centro de Regulación Celular y Patología JV Luco, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, 8330033, Santiago, Chile
| | | | | | | | | |
Collapse
|
42
|
Kudirka JC, Panupinthu N, Tesseyman MA, Dixon SJ, Bernier SM. P2Y nucleotide receptor signaling through MAPK/ERK is regulated by extracellular matrix: involvement of beta3 integrins. J Cell Physiol 2007; 213:54-64. [PMID: 17620283 DOI: 10.1002/jcp.21087] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Extracellular matrix influences cell behavior through receptors such as integrins and through transmission of mechanical forces. Nucleotides are released in response to mechanical stimuli and bind to P2 nucleotide receptors. As chondrocytes are subjected to frequent mechanical stimulation within a rich extracellular matrix, they are an excellent model for studying integration of signals induced by matrix and nucleotides. We investigated signaling of G protein-coupled P2Y receptors to MAPK/ERK and how this is influenced by matrix. Rat articular chondrocytes expressed transcripts for P2Y1, P2Y2, P2Y4, and P2Y6 receptors and responded to extracellular nucleotides by transient elevation of cytosolic calcium and MAPK/ERK phosphorylation. ERK1/2 activation was suppressed by the protein kinase C (PKC) inhibitors bisindolylmaleimide I and rottlerin, and by the phospholipase D inhibitor 1-butanol. Thus, nucleotides stimulate P2Y receptors to activate ERK1/2 through a mechanism dependent on PKC and phospholipase D. We next examined the involvement of integrins. Both an RGD-containing pentapeptide and a beta3 integrin blocking antibody, but not a beta1 integrin blocking antibody, abolished nucleotide-induced ERK1/2 phosphorylation. Moreover, chondrocytes adhering to fibronectin (which binds to beta1 and beta3 containing integrins in an RGD-dependent manner) displayed prolonged ERK1/2 signaling compared to cells grown on type I or II collagen (which bind to beta1-containing integrins in an RGD-independent manner). In conclusion, P2Y receptor signaling through ERK1/2 is gated selectively by matrix proteins. Thus, nucleotides released in response to mechanical stimulation will have differing effects on cell function due to changes in the composition of the extracellular matrix during development and disease.
Collapse
Affiliation(s)
- Julie C Kudirka
- CIHR Group in Skeletal Development and Remodeling, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Canada
| | | | | | | | | |
Collapse
|
43
|
Schindler EM, Baumgartner M, Gribben EM, Li L, Efimova T. The role of proline-rich protein tyrosine kinase 2 in differentiation-dependent signaling in human epidermal keratinocytes. J Invest Dermatol 2007; 127:1094-106. [PMID: 17205062 DOI: 10.1038/sj.jid.5700662] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Non-receptor tyrosine kinase proline-rich protein tyrosine kinase 2 (Pyk2) functions as an integrator of multiple signaling pathways involved in the regulation of fundamental cellular processes. Pyk2 expression, regulation, and functions in skin have not been examined. Here we investigated the expression and subcellular localization of Pyk2 in human epidermis and in primary human keratinocytes, and studied the mechanisms of Pyk2 activation by differentiation-inducing stimuli, and the role of Pyk2 as a regulator of keratinocyte differentiation. We demonstrate that Pyk2 is abundantly expressed in skin keratinocytes. Notably, the endogenous Pyk2 protein is predominantly localized in keratinocyte nuclei throughout all layers of healthy human epidermis, and in cultured human keratinocytes. Pyk2 is activated by treatment with keratinocyte-differentiating agents, 12-O-tetradecanoylphorbol-13-acetate and calcium via a mechanism that requires intracellular calcium release and functional protein kinase C (PKC) and Src activities. Particularly, differentiation-promoting PKC delta and PKC eta elicit Pyk2 activation. Our data show that Pyk2 increases promoter activity and endogenous protein levels of involucrin, a marker of keratinocyte terminal differentiation. This regulation is associated with increased expression of Fra-1 and JunD, activator protein-1 transcription factors known to be required for involucrin expression. Altogether, these results provide insights into Pyk2 signaling in epidermis and reveal a novel role for Pyk2 in regulation of keratinocyte differentiation.
Collapse
Affiliation(s)
- Eva M Schindler
- Division of Dermatology, Department of Internal Medicine, Washington University School of Medicine, St Louis, Missouri 63110, USA
| | | | | | | | | |
Collapse
|
44
|
Missan S, Linsdell P, McDonald TF. Role of kinases and G-proteins in the hyposmotic stimulation of cardiac IKs. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2006; 1758:1641-52. [PMID: 16836976 DOI: 10.1016/j.bbamem.2006.05.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2006] [Revised: 05/19/2006] [Accepted: 05/30/2006] [Indexed: 12/16/2022]
Abstract
Exposure of cardiac myocytes to hyposmotic solution stimulates slowly-activating delayed-rectifying K(+) current (I(Ks)) via unknown mechanisms. In the present study, I(Ks) was measured in guinea-pig ventricular myocytes that were pretreated with modulators of cell signaling processes, and then exposed to hyposmotic solution. Pretreatment with compounds that (i) inhibit serine/threonine kinase activity (10-100 microM H89; 200 microM H8; 50 microM H7; 1 microM bisindolylmaleimide I; 10 microM LY294002; 50 microM PD98059), (ii) stimulate serine/threonine kinase activity (1-5 microM forskolin; 0.1 microM phorbol-12-myristate-13-acetate; 10 microM acetylcholine; 0.1 microM angiotensin II; 20 microM ATP), (iii) suppress G-protein activation (10 mM GDPbetaS), or (iv) disrupt the cytoskeleton (10 microM cytochalasin D), had little effect on the stimulation of I(Ks) by hyposmotic solution. In marked contrast, pretreatment with tyrosine kinase inhibitor tyrphostin A25 (20 microM) strongly attenuated both the hyposmotic stimulation of I(Ks) in myocytes and the hyposmotic stimulation of current in BHK cells co-expressing Ks channel subunits KCNQ1 and KCNE1. Since attenuation of hyposmotic stimulation was not observed in myocytes and cells pretreated with inactive tyrphostin A1, we conclude that TK has an important role in the response of cardiac Ks channels to hyposmotic solution.
Collapse
Affiliation(s)
- Sergey Missan
- Department of Physiology and Biophysics, Dalhousie University, Halifax, Nova Scotia, Canada B3H 4H7
| | | | | |
Collapse
|
45
|
Abbracchio MP, Burnstock G, Boeynaems JM, Barnard EA, Boyer JL, Kennedy C, Knight GE, Fumagalli M, Gachet C, Jacobson KA, Weisman GA. International Union of Pharmacology LVIII: update on the P2Y G protein-coupled nucleotide receptors: from molecular mechanisms and pathophysiology to therapy. Pharmacol Rev 2006; 58:281-341. [PMID: 16968944 PMCID: PMC3471216 DOI: 10.1124/pr.58.3.3] [Citation(s) in RCA: 1007] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
There have been many advances in our knowledge about different aspects of P2Y receptor signaling since the last review published by our International Union of Pharmacology subcommittee. More receptor subtypes have been cloned and characterized and most orphan receptors de-orphanized, so that it is now possible to provide a basis for a future subdivision of P2Y receptor subtypes. More is known about the functional elements of the P2Y receptor molecules and the signaling pathways involved, including interactions with ion channels. There have been substantial developments in the design of selective agonists and antagonists to some of the P2Y receptor subtypes. There are new findings about the mechanisms underlying nucleotide release and ectoenzymatic nucleotide breakdown. Interactions between P2Y receptors and receptors to other signaling molecules have been explored as well as P2Y-mediated control of gene transcription. The distribution and roles of P2Y receptor subtypes in many different cell types are better understood and P2Y receptor-related compounds are being explored for therapeutic purposes. These and other advances are discussed in the present review.
Collapse
Affiliation(s)
- Maria P Abbracchio
- Department of Pharmacological Sciences, University of Milan, Milan, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Van Kolen K, Gilany K, Moens L, Esmans EL, Slegers H. P2Y12 receptor signalling towards PKB proceeds through IGF-I receptor cross-talk and requires activation of Src, Pyk2 and Rap1. Cell Signal 2006; 18:1169-81. [PMID: 16236484 DOI: 10.1016/j.cellsig.2005.09.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2005] [Accepted: 09/09/2005] [Indexed: 01/22/2023]
Abstract
Previously it was shown that stimulation of the P2Y12 receptor activates PKB signalling in C6 glioma cells [K. Van Kolen and H. Slegers, J. Neurochem. 89, 442.]. In the present study, the mechanisms involved in this response were further elucidated. In cells transfected with the Gbetagamma-scavenger beta-ARK1/GRK2 or Rap1GAPII, stimulation with 2MeSADP failed to enhance PKB phosphorylation demonstrating that the signalling proceeds through Gbetagamma-subunits and Rap1. Moreover, Rap1-GTP pull-down assays revealed that P2Y12 receptor stimulation induced a rapid activation of Rap1. Treatment of cells with the Ca2+ chelator BAPTA-AM and inhibition of Src and PLD2 with PP2 or 1-butanol, respectively, abrogated P2Y12 receptor-mediated activation of Rap1 and PKB. In addition inhibition of PKCzeta decreased basal and 2MeSADP-stimulated phosphorylation of PKB indicating a role for this PKC isoform in PKB signalling. Although the increased PKB phosphorylation was abolished in the presence of the IGF-I receptor tyrosine kinase inhibitor AG 1024, 2MeSADP did not significantly increase receptor phosphorylation. Nevertheless, phosphorylation of a 120 kDa IGF-I receptor-associated protein was observed. The latter protein was identified by MALDI-TOF/TOF-MS as the proline-rich tyrosine kinase 2 (Pyk2) that co-operates with Src in a PLD2-dependent manner. Consistent with the signalling towards Rap1 and PKB, activation of Pyk2 was abrogated by Ca2+ chelation, inhibition of PLD2 and IGF-I receptor tyrosine kinase activity. In conclusion, the data reveal a novel type of cross-talk between P2Y12 and IGF-I receptors that proceeds through Gbetagamma-, Ca2+-and PLD2-dependent activation of the Pyk2/Src pathway resulting in GTP-loading of Rap1 required for an increased PKB phosphorylation.
Collapse
Affiliation(s)
- Kristof Van Kolen
- Laboratory of Cellular Biochemistry, Department of Biomedical Sciences, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk-Antwerpen, Belgium
| | | | | | | | | |
Collapse
|
47
|
Belliveau DJ, Bani-Yaghoub M, McGirr B, Naus CCG, Rushlow WJ. Enhanced neurite outgrowth in PC12 cells mediated by connexin hemichannels and ATP. J Biol Chem 2006; 281:20920-20931. [PMID: 16731531 DOI: 10.1074/jbc.m600026200] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Gap junctions have traditionally been described as transmembrane channels that facilitate intercellular communication via the passage of small molecules. Connexins, the basic building blocks of gap junctions, are expressed in most mammalian tissues including the developing and adult central nervous system. During brain development, connexins are temporally and spatially regulated suggesting they play an important role in the proper formation of the central nervous system. In the current study, connexins 32 and 43 were overexpressed in PC12 cells to determine whether connexins are involved in neuronal differentiation. Both connexin 32 and 43 were appropriately trafficked to the cell membrane following overexpression and resulted in the formation of functional gap junctions. Connexin overexpression was found to cause enhanced neurite outgrowth in PC12 cells treated with nerve growth factor to initiate neuritogenesis. Surprisingly, however, enhanced neurite outgrowth was found to be the consequence of functional hemichannel formation as opposed to traditional intercellular communication. Additional analysis revealed that ATP was released into the media likely through hemichannels and acted on purinergic receptors to cause enhanced neurite outgrowth. Collectively, the results of the current study suggest that connexins may play an important role in neuronal differentiation by non-traditional mechanisms.
Collapse
Affiliation(s)
- Daniel J Belliveau
- Departments of Anatomy and Cell Biology, The University of Western Ontario, London, Ontario N6A 5A5
| | - Mahmud Bani-Yaghoub
- Neurogenesis & Brain Repair Group, National Research Council of Canada, Ottawa, Ontario K1A 0R6, Canada
| | - Becky McGirr
- Departments of Anatomy and Cell Biology, The University of Western Ontario, London, Ontario N6A 5A5
| | - Christian C G Naus
- Department of Cellular and Physiological Sciences, The University of British Columbia, Vancouver, British Columbia V6T 1Z3
| | - Walter J Rushlow
- Departments of Anatomy and Cell Biology, The University of Western Ontario, London, Ontario N6A 5A5; Departments of Psychiatry, The University of Western Ontario, London, Ontario N6A 5A5.
| |
Collapse
|
48
|
Meshki J, Tuluc F, Bredetean O, Garcia A, Kunapuli SP. Signaling pathways downstream of P2 receptors in human neutrophils. Purinergic Signal 2006; 2:537-44. [PMID: 18404491 PMCID: PMC2254476 DOI: 10.1007/s11302-006-9007-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2005] [Accepted: 03/10/2006] [Indexed: 11/28/2022] Open
Abstract
Extracellular nucleotides stimulate human neutrophils by activating the purinergic P2Y(2) receptor. However, it is not completely understood which types of G proteins are activated downstream of this P2 receptor subtype. We investigated the G-protein coupling to P2Y(2) receptors and several subsequent signaling events. Treatment of neutrophils with pertussis toxin (PTX), a Gi protein inhibitor, caused only approximately 75% loss of nucleotide-induced Ca(2+) mobilization indicating that nucleotides cause Ca(2+) mobilization both through Gi-dependent and Gi-independent pathways. However, the PLC inhibitor U73122 almost completely inhibited Ca(2+) mobilization in both nucleotide- and fMLP-stimulated neutrophils, strongly supporting the view that both the PTX-sensitive and the PTX-insensitive mechanism of Ca(2+) increase require activation of PLC. We investigated the dependence of ERK phosphorylation on the Gi pathway. Treatment of neutrophils with PTX caused almost complete inhibition of ERK phosphorylation in nucleotide or fMLP activated neutrophils. U73122 caused inhibition of nucleotide- or fMLP-stimulated ERK phosphorylation, suggesting that although pertussis toxin-insensitive pathways cause measurable Ca(2+) mobilization, they are not sufficient for causing ERK phosphorylation. Since PLC activation leads to intracellular Ca(2+) increase and PKC activation, we investigated if these intracellular events are necessary for ERK phosphorylation. Exposure of cells to the Ca(2+) chelator BAPTA had no effect on nucleotide- or fMLP-induced ERK phosphorylation. However, the PKC inhibitor GF109203X was able to almost completely inhibit nucleotide- or fMLP-induced ERK phosphorylation. We conclude that the P2Y(2) receptor can cause Ca(2+) mobilization through a PTX-insensitive but PLC-dependent pathway and ERK phosphorylation is highly dependent on activation of the Gi proteins.
Collapse
Affiliation(s)
- John Meshki
- Department of Physiology, Temple University Medical School, 3420 N. Broad Street, Philadelphia, PA, 19140, USA
| | | | | | | | | |
Collapse
|
49
|
Integration of P2Y receptor-activated signal transduction pathways in G protein-dependent signalling networks. Purinergic Signal 2006; 2:451-69. [PMID: 18404483 PMCID: PMC2254474 DOI: 10.1007/s11302-006-9008-0] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2005] [Accepted: 03/17/2006] [Indexed: 12/21/2022] Open
Abstract
The role of nucleotides in intracellular energy provision and nucleic acid synthesis has been known for a long time. In the past decade, evidence has been presented that, in addition to these functions, nucleotides are also autocrine and paracrine messenger molecules that initiate and regulate a large number of biological processes. The actions of extracellular nucleotides are mediated by ionotropic P2X and metabotropic P2Y receptors, while hydrolysis by ecto-enzymes modulates the initial signal. An increasing number of studies have been performed to obtain information on the signal transduction pathways activated by nucleotide receptors. The development of specific and stable purinergic receptor agonists and antagonists with therapeutical potential largely contributed to the identification of receptors responsible for nucleotide-activated pathways. This article reviews the signal transduction pathways activated by P2Y receptors, the involved second messenger systems, GTPases and protein kinases, as well as recent findings concerning P2Y receptor signalling in C6 glioma cells. Besides vertical signal transduction, lateral cross-talks with pathways activated by other G protein-coupled receptors and growth factor receptors are discussed.
Collapse
|
50
|
Delicado EG, Miras-Portugal MT, Carrasquero LMG, León D, Pérez-Sen R, Gualix J. Dinucleoside polyphosphates and their interaction with other nucleotide signaling pathways. Pflugers Arch 2006; 452:563-72. [PMID: 16688466 DOI: 10.1007/s00424-006-0066-5] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2006] [Accepted: 03/06/2006] [Indexed: 11/25/2022]
Abstract
Dinucleoside polyphosphates or Ap(n)A are a family of dinucleotides formed by two adenosines joined by a variable number of phosphates. Ap(4)A, Ap(5)A, and Ap(6)A are stored together with other neurotransmitters into secretory vesicles and are co-released to the extracellular medium upon stimulation. These compounds can interact extracellularly with some ATP receptors, both metabotropic (P2Y) and ionotropic (P2X). However, specific receptors for these substances, other than ATP receptors, have been described in presynaptic terminals form rat midbrain. These specific dinucleotide receptors are of ionotropic nature and their activation induces calcium entry into the terminals and the subsequent neurotransmitter release. Calcium signals that cannot be attributable to the interaction of Ap(n)A with ATP receptors have also been described in cerebellar synaptosomes and granule cell neurons in culture, where Ap(5)A induces CaMKII activation. In addition, cerebellar astrocytes express a specific Ap(5)A receptor coupled to ERK activation. Ap(5)A engaged to MAPK cascade by a mechanism that was insensitive to pertussis toxin and required the involvement of src and ras proteins. Diadenosine polyphosphates, acting on their specific receptors and/or ATP receptors, can also interact with other neurotransmitter systems. This broad range of actions and interactions open a promising perspective for some relevant physiological roles for the dinucleotides. However, the physiological significance of these compounds in the CNS is still to be determined.
Collapse
Affiliation(s)
- Esmerilda G Delicado
- Departamento de Bioquímica, Facultad de Veterinaria, Universidad Complutense, 28040, Madrid, Spain
| | | | | | | | | | | |
Collapse
|