1
|
Naveenkumar N, Sowdhamini R, Srinivasan N. Specialized structural and functional roles of residues selectively conserved in subfamilies of the pleckstrin homology domain family. FEBS Open Bio 2019; 9:1848-1859. [PMID: 31436855 PMCID: PMC6823287 DOI: 10.1002/2211-5463.12725] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 08/09/2019] [Accepted: 08/20/2019] [Indexed: 11/16/2022] Open
Abstract
Homologous domains embedded in multidomain proteins of different domain architectures (DA) may exhibit subtle, but important, differences in their structure and function. Here, we consider two multidomain proteins, Arf nucleotide binding site opener (ARNO) and G protein‐coupled receptor kinase 2 (GRK2), which have very different DAs, but both contain pleckstrin homology (PH) domains. We analyzed the roles of residues selectively conserved in these subfamilies of PH domains from ARNO and GRK2 proteins. DA‐specific residues in PH domain are found to contribute to structural and functional specialization of ARNO and GRK2 in terms of (a) specific intra‐ and interprotein interactions; (b) specificity for phospholipids; and (c) participation in conformational excursions, leading to various functional forms. Our approach can also be applied to subfamilies of other protein families to identify subfamily‐specific residues and their specialized roles.
Collapse
Affiliation(s)
- Nagarajan Naveenkumar
- National Centre for Biological Sciences, TIFR, Bangalore, India.,Bharathidasan University, Tiruchirappalli, India.,Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India
| | | | | |
Collapse
|
2
|
Hough LE, Dutta K, Sparks S, Temel DB, Kamal A, Tetenbaum-Novatt J, Rout MP, Cowburn D. The molecular mechanism of nuclear transport revealed by atomic-scale measurements. eLife 2015; 4. [PMID: 26371551 PMCID: PMC4621360 DOI: 10.7554/elife.10027] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2015] [Accepted: 09/07/2015] [Indexed: 12/29/2022] Open
Abstract
Nuclear pore complexes (NPCs) form a selective filter that allows the rapid passage of transport factors (TFs) and their cargoes across the nuclear envelope, while blocking the passage of other macromolecules. Intrinsically disordered proteins (IDPs) containing phenylalanyl-glycyl (FG)-rich repeats line the pore and interact with TFs. However, the reason that transport can be both fast and specific remains undetermined, through lack of atomic-scale information on the behavior of FGs and their interaction with TFs. We used nuclear magnetic resonance spectroscopy to address these issues. We show that FG repeats are highly dynamic IDPs, stabilized by the cellular environment. Fast transport of TFs is supported because the rapid motion of FG motifs allows them to exchange on and off TFs extremely quickly through transient interactions. Because TFs uniquely carry multiple pockets for FG repeats, only they can form the many frequent interactions needed for specific passage between FG repeats to cross the NPC. DOI:http://dx.doi.org/10.7554/eLife.10027.001 Eukaryotic cells have a nucleus that contains most of the organism's genetic material. Two layers of membrane form an envelope around the nucleus and protect its contents from the rest of the cell's interior. However, this protective barrier must also allow certain proteins and nucleic acids(collectively called ‘cargo’) to move in and out of the nucleus. Cargo molecules can pass through channel-like structures called nuclear pore complexes, which are embedded in the nuclear envelope. However, transport across this barrier is highly selective. While small molecules can pass freely through nuclear pore complexes, larger cargo can only be transported when they are bound to so-called transport factors. The nuclear pore complex is a large structure made up of more than 30 different proteins called nucleoporins. Like all proteins, nucleoporins are built from amino acids. Many nucleoporins contain repeating units of two amino acids, namely phenylalanine (which is often referred to as ‘F’) and glycine (or ‘G’). These ‘FG nucleoporins’ are found on the inside of the nuclear pore complex and interact with transport factors to allow them to transit across the nuclear envelope. Several models have been put forward to explain how FG nucleoporins block the passage of most molecules. But it was unclear from these models how these nucleoporins could do this while simultaneously allowing the selective and fast transport of nuclear transport receptors. There was also a major lack of experimental data that probed the behavior of FG nucleoporins in detail. Hough, Dutta et al. have now used a technique called nuclear magnetic resonance spectroscopy (or NMR for short) to address this issue. NMR can be used to analyze the structure of proteins and how they interact with other molecules. This analysis revealed that FG nucleoporins never adopt an ordered three-dimensional shape, even briefly; instead they remain unfolded or disordered, moving constantly. Nevertheless, and unlike many other unfolded proteins, FG nucleoporins do not aggregate into clumps. This is because they are constantly changing and continuously interacting with other molecules present inside the cell, which prevents them from aggregating. Hough, Dutta et al. also observed that the repeating units in the FG nucleoporins engaged briefly with a large number of sites or pockets present on the transport factors. These FG repeats can bind and then release the transport factors at unusually high speeds, which enables the transport factors to move quickly through the nuclear pore complex. This transit is specific because only transport factors have a high capacity for interacting with the FG repeats. These findings provide an explanation for how the nuclear pore complex achieves fast and selective transport. Further work is needed to see whether certain FG nucleoporins specifically interact with a particular type of transport factor, to provide preferred transport routes through the nuclear pore complex. DOI:http://dx.doi.org/10.7554/eLife.10027.002
Collapse
Affiliation(s)
| | - Kaushik Dutta
- New York Structural Biology Center, New York, United States
| | - Samuel Sparks
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, United States
| | - Deniz B Temel
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, United States
| | - Alia Kamal
- The Rockefeller University, New York, United States
| | | | | | - David Cowburn
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, United States
| |
Collapse
|
3
|
Angiotensin II causes endothelial dysfunction via the GRK2/Akt/eNOS pathway in aortas from a murine type 2 diabetic model. Pharmacol Res 2011; 64:535-46. [DOI: 10.1016/j.phrs.2011.05.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2011] [Revised: 04/30/2011] [Accepted: 05/02/2011] [Indexed: 12/21/2022]
|
4
|
Maurya MR, Subramaniam S. A kinetic model for calcium dynamics in RAW 264.7 cells: 1. Mechanisms, parameters, and subpopulational variability. Biophys J 2007; 93:709-28. [PMID: 17483174 PMCID: PMC1913151 DOI: 10.1529/biophysj.106.097469] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Calcium (Ca(2+)) is an important second messenger and has been the subject of numerous experimental measurements and mechanistic studies in intracellular signaling. Calcium profile can also serve as a useful cellular phenotype. Kinetic models of calcium dynamics provide quantitative insights into the calcium signaling networks. We report here the development of a complex kinetic model for calcium dynamics in RAW 264.7 cells stimulated by the C5a ligand. The model is developed using the vast number of measurements of in vivo calcium dynamics carried out in the Alliance for Cellular Signaling (AfCS) Laboratories. Ligand binding, phospholipase C-beta (PLC-beta) activation, inositol 1,4,5-trisphosphate (IP(3)) receptor (IP(3)R) dynamics, and calcium exchange with mitochondria and extracellular matrix have all been incorporated into the model. The experimental data include data from both native and knockdown cell lines. Subpopulational variability in measurements is addressed by allowing nonkinetic parameters to vary across datasets. The model predicts temporal response of Ca(2+) concentration for various doses of C5a under different initial conditions. The optimized parameters for IP(3)R dynamics are in agreement with the legacy data. Further, the half-maximal effect concentration of C5a and the predicted dose response are comparable to those seen in AfCS measurements. Sensitivity analysis shows that the model is robust to parametric perturbations.
Collapse
Affiliation(s)
- Mano Ram Maurya
- Department of Bioengineering, University of California, San Diego, California 92093-0412, USA
| | | |
Collapse
|
5
|
Wakamatsu I, Ihara S, Fukui Y. Mutational analysis on the function of the SWAP-70 PH domain. Mol Cell Biochem 2006; 293:137-45. [PMID: 16786189 DOI: 10.1007/s11010-006-9236-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2006] [Accepted: 05/16/2006] [Indexed: 10/25/2022]
Abstract
SWAP-70 is a phosphatidylinositol trisphosphate (PtdIns(3,4,5)P(3))-binding protein, which is suggested to be involved in membrane ruffling, cooperating with activated Rac. Various point mutations were introduced in the PH domain. Substitutions of alanines for the positively charged amino acids within the first loop abolished the binding activity of the PH domains to PtdIns(3,4,5)P(3). The PtdIns(3,4,5)P(3) binding activity was required for translocation of SWAP-70 to the membrane, enhancement of membrane ruffling by the overexpressed protein, or the dominant-negative effect of a mutant lacking the carboxyl terminal region in membrane ruffling. When Rac was overexpressed, the above mutants were translocated to the membrane and exhibited a dominant-negative effect on membrane ruffling without PtdIns(3,4,5)P(3)-binding activity. These results suggest that the PtdIns(3,4,5)P(3)-binding activity is dispensable for these events when SWAP-70 and Rac interacts efficiently. These results implicate that binding of SWAP-70 to PtdIns(3,4,5)P(3) may facilitate the recruitment of SWAP-70 to activated Rac.
Collapse
Affiliation(s)
- Isamu Wakamatsu
- Division of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | | | | |
Collapse
|
6
|
Lodowski DT, Barnhill JF, Pyskadlo RM, Ghirlando R, Sterne-Marr R, Tesmer JJG. The Role of Gβγ and Domain Interfaces in the Activation of G Protein-Coupled Receptor Kinase 2†. Biochemistry 2005; 44:6958-70. [PMID: 15865441 DOI: 10.1021/bi050119q] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In response to extracellular signals, G protein-coupled receptors (GPCRs) catalyze guanine nucleotide exchange on Galpha subunits, enabling both activated Galpha and Gbetagamma subunits to target downstream effector enzymes. One target of Gbetagamma is G protein-coupled receptor kinase 2 (GRK2), an enzyme that initiates homologous desensitization by phosphorylating activated GPCRs. GRK2 consists of three distinct domains: an RGS homology (RH) domain, a protein kinase domain, and a pleckstrin homology (PH) domain, through which it binds Gbetagamma. The crystal structure of the GRK2-Gbetagamma complex revealed that the domains of GRK2 are intimately associated and left open the possibility for allosteric regulation by Gbetagamma. In this paper, we report the 4.5 A structure of GRK2, which shows that the binding of Gbetagamma does not induce large domain rearrangements in GRK2, although small rotations of the RH and PH domains relative to the kinase domain are evident. Mutation of residues within the larger domain interfaces of GRK2 generally leads to diminished expression and activity, suggesting that these interfaces are important for stability and remain intact upon activation of GRK2. Geranylgeranylated Gbetagamma, but not a soluble mutant of Gbetagamma, protects GRK2 from clostripain digestion at a site within its kinase domain that is 80 A away from the Gbetagamma binding site. Equilibrium ultracentrifugation experiments indicate that neither abnormally large detergent micelles nor protein oligomerization can account for the observed protection. The Gbetagamma-mediated binding of GRK2 to CHAPS micelles or lipid bilayers therefore appears to rigidify the kinase domain, perhaps by encouraging stable contacts between the RH and kinase domains.
Collapse
Affiliation(s)
- David T Lodowski
- Department of Chemistry and Biochemistry, Institute for Cellular and Molecular Biology, The University of Texas at Austin, 78712-0165, USA
| | | | | | | | | | | |
Collapse
|
7
|
Che MM, Boja ES, Yoon HY, Gruschus J, Jaffe H, Stauffer S, Schuck P, Fales HM, Randazzo PA. Regulation of ASAP1 by phospholipids is dependent on the interface between the PH and Arf GAP domains. Cell Signal 2005; 17:1276-88. [PMID: 16038802 DOI: 10.1016/j.cellsig.2005.01.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2004] [Revised: 01/16/2005] [Accepted: 01/19/2005] [Indexed: 10/25/2022]
Abstract
ASAP1 is an Arf GAP with a PH domain immediately N-terminal to the catalytic Arf GAP domain. PH domains are thought to regulate enzymes by binding to specific phosphoinositide lipids in membranes, thereby recruiting the enzyme to a site of action. Here, we have examined the functional relationship between the PH and Arf GAP domains. We found that GAP activity requires the cognate PH domain of ASAP1, leading us to hypothesize that the Arf GAP and PH domains directly interact to form the substrate binding site. This hypothesis was supported by the combined results of protection and hydrodynamic studies. We then examined the role of the PH domain in the regulation of Arf GAP activity. The results of saturation kinetics, limited proteolysis, FRET and fluorescence spectrometry support a model in which regulation of the GAP activity of ASAP1 involves a conformational change coincident with recruitment to a membrane surface, and a second conformational change following the specific binding of phosphatidylinositol 4,5-bisphosphate.
Collapse
Affiliation(s)
- Magnus M Che
- Laboratory of Cellular Oncology, Center for Cancer Research, National Cancer Institute, United States
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Collier FM, Gregorio-King CC, Gough TJ, Talbot CD, Walder K, Kirkland MA. Identification and characterization of a lymphocytic Rho-GTPase effector: rhotekin-2. Biochem Biophys Res Commun 2005; 324:1360-9. [PMID: 15504364 DOI: 10.1016/j.bbrc.2004.09.205] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2004] [Indexed: 01/19/2023]
Abstract
Rhotekin belongs to the group of proteins containing a Rho-binding domain that are target peptides (effectors) for the Rho-GTPases. We previously identified a novel cDNA with homology to human rhotekin and in this study we cloned and characterized the coding region of this novel 12-exon gene. The ORF encodes a 609 amino-acid protein comprising a Class I Rho-binding domain and pleckstrin homology (PH) domain. Cellular cDNA expression of this new protein, designated Rhotekin-2 (RTKN2), was shown in the cytosol and nucleus of CHO cells. Using bioinformatics and RTPCR we identified three major splice variants, which vary in both the Rho-binding and PH domains. Real-time PCR studies showed exclusive RTKN2 expression in pooled lymphocytes and further purification indicated sole expression in CD4(pos) T-cells and bone marrow-derived B-cells. Gene expression was increased in quiescent T-cells but negligible in activated proliferating cells. In malignant samples expression was absent in myeloid leukaemias, low in most B-cell malignancies and CD8(pos) T-cell malignancies, but very high in CD4(pos)/CD8(pos) T-lymphoblastic lymphoma. As the Rho family is critical in lymphocyte development and function, RTKN2 may play an important role in lymphopoiesis.
Collapse
Affiliation(s)
- F M Collier
- Douglas Hocking Research Institute, Barwon Health, The Geelong Hospital, Geelong, Victoria 3220, Australia.
| | | | | | | | | | | |
Collapse
|
9
|
Roy A, Levine TP. Multiple Pools of Phosphatidylinositol 4-Phosphate Detected Using the Pleckstrin Homology Domain of Osh2p. J Biol Chem 2004; 279:44683-9. [PMID: 15271978 DOI: 10.1074/jbc.m401583200] [Citation(s) in RCA: 180] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Phosphatidylinositol (PtdIns) phosphate (PtdInsP) lipids are used as intracellular signposts for the recruitment and activation of peripheral membrane proteins. Whereas the distribution of most PtdInsPs is restricted to a single organelle, PtdIns(4)P is unique in that it exists in several discrete pools, and so proteins that bind PtdIns(4)P must use extra receptors to achieve a restricted localization. Here we compare the two highly related pleckstrin homology (PH) domains from Osh1p and Osh2p, yeast homologues of oxysterol-binding protein (OSBP), that target membranes using PtdIns(4)P, and in vitro bind both PtdIns(4)P and PtdIns(4,5)P2. We show that Golgi targeting is specified by an additional site on PH(Osh1), which lies on a face of the domain not previously known to interact with receptors. In contrast, PH(Osh2) does not have a demonstrable second site, and targets multiple pools of PtdInsPs, each dependent on a different PtdIns 4-kinase. This lack of a second site in PH(Osh2) allows it to be used as an unbiased reporter for altered distribution of 4-phosphorylated PtdIns. For example, in cells with excess PtdIns(4)P caused by inactivation of the phosphatase Sac1p, PH(Osh2) indicates that PtdIns(4)P accumulates on the plasma membrane, whereas other Golgi-targeted PH domains fail to detect this change.
Collapse
Affiliation(s)
- Anjana Roy
- Division of Cell Biology, Institute of Ophthalmology, University College London, Bath Street, London EC1V 9EL, United Kingdom
| | | |
Collapse
|
10
|
Penela P, Ribas C, Mayor F. Mechanisms of regulation of the expression and function of G protein-coupled receptor kinases. Cell Signal 2004; 15:973-81. [PMID: 14499340 DOI: 10.1016/s0898-6568(03)00099-8] [Citation(s) in RCA: 208] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
G protein-coupled receptor kinases (GRKs) are key modulators of G protein-coupled receptor signalling. Increasing evidence points to the occurrence of complex mechanisms able to modulate the subcellular localization, activity and expression levels of GRKs, revealing new functional interactions of these kinases with different cellular proteins and transduction cascades. GRK activity and subcellular targeting is tightly regulated by interaction with receptor domains, G protein subunits, lipids, anchoring proteins, caveolin and calcium-sensing proteins. In addition, GRK phosphorylation by several other kinases has recently been shown to modulate its functionality, thus putting forward new feedback mechanisms connecting different signalling pathways to G protein-coupled receptors (GPCR) regulation. On the other hand, the mechanisms governing GRK expression at both transcriptional and protein stability levels are just beginning to be unveiled. Namely, GRK2 has been shown to be rapidly degraded by the proteasome pathway in a process dependent on beta-arrestin and c-Src function, and also to be proteolyzed by m-calpain. A better knowledge of GRK regulatory mechanisms would contribute to greater understanding of GRK physiological function and also its reported alterations in different pathological situations, such as congestive heart failure, hypertension or inflammation.
Collapse
Affiliation(s)
- Petronila Penela
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | | | | |
Collapse
|
11
|
Walker O, Varadan R, Fushman D. Efficient and accurate determination of the overall rotational diffusion tensor of a molecule from (15)N relaxation data using computer program ROTDIF. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2004; 168:336-345. [PMID: 15140445 DOI: 10.1016/j.jmr.2004.03.019] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2003] [Revised: 02/19/2004] [Indexed: 05/24/2023]
Abstract
We present a computer program ROTDIF for efficient determination of a complete rotational diffusion tensor of a molecule from NMR relaxation data. The derivation of the rotational diffusion tensor in the case of a fully anisotropic model is based on a six-dimensional search, which could be very time consuming, particularly if a grid search in the Euler angle space is involved. Here, we use an efficient Levenberg-Marquardt algorithm combined with Monte Carlo generation of initial guesses. The result is a dramatic, up to 50-fold improvement in the computational efficiency over the previous approaches. This method is demonstrated on a computer-generated and real protein systems. We also address the issue of sensitivity of the diffusion tensor determination from (15)N relaxation measurements to experimental errors in the relaxation rates and discuss possible artifacts from applying higher-symmetry tensor model and how to recognize them.
Collapse
Affiliation(s)
- Olivier Walker
- Department of Chemistry and Biochemistry, Center for Biomolecular Structure and Organization, University of Maryland, College Park, MD 20742, USA
| | | | | |
Collapse
|
12
|
Kozasa T. The structure of GRK2-G beta gamma complex: intimate association of G-protein signaling modules. Trends Pharmacol Sci 2004; 25:61-3. [PMID: 15106629 DOI: 10.1016/j.tips.2003.12.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
G-protein-mediated signaling is the most widely used signaling mechanism in cells and its regulation is crucial for various physiological functions. G-protein-coupled receptor (GPCR) kinases (GRKs) are involved in the desensitization of GPCR signals. Recently, the X-ray crystal structure of GRK2 complexed with G beta gamma was demonstrated and revealed the intimate association of three important signaling modules with G beta gamma to regulate GRK2 activity.
Collapse
Affiliation(s)
- Tohru Kozasa
- Department of Pharmacology, University of Illinois at Chicago, 60612, USA.
| |
Collapse
|
13
|
Cozier GE, Carlton J, Bouyoucef D, Cullen PJ. Membrane targeting by pleckstrin homology domains. Curr Top Microbiol Immunol 2004; 282:49-88. [PMID: 14594214 DOI: 10.1007/978-3-642-18805-3_3] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Pleckstrin homology (PH) domains are small modular domains that occur once, or occasionally several times, in a large variety of signalling proteins. In a number of instances, PH domains act to target their host protein to the cytosolic face of cellular membranes through an ability to associate with phosphoinositides. In this review, we discuss recent advances in our understanding of PH domain function. In particular we describe the structural aspects of how PH domains have evolved to bind various phosphoinositides, how PH domains regulate phosphoinositide-mediated association to plasma and internals membranes, and finally raise the issue of PH domains in protein:protein interactions and the allosteric regulation of their host protein.
Collapse
Affiliation(s)
- G E Cozier
- Inositide Group, Henry Wellcome Integrated Signaling Laboratories, Department of Biochemistry, School of Medical Sciences, University of Bristol, Bristol BS8 1TD, UK
| | | | | | | |
Collapse
|
14
|
Botelho RJ, Scott CC, Grinstein S. Phosphoinositide involvement in phagocytosis and phagosome maturation. Curr Top Microbiol Immunol 2004; 282:1-30. [PMID: 14594212 DOI: 10.1007/978-3-642-18805-3_1] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Cells of the innate immune system engulf invading microorganisms into plasma membrane-derived vacuoles called phagosomes. Newly formed phagosomes gradually acquire microbicidal properties by a maturation process which involves sequential and coordinated rounds of fusion with endomembranes and concomitant fission. Some pathogens interfere with this maturation sequence and thereby evade killing by the immune cells, managing to survive intracellularly as parasites. Phosphoinositides seem to be intimately involved in the processes of phagosome formation and maturation, and initial observations suggest that the ability of some microorganisms to survive intracellularly is associated with alterations in phosphoinositide metabolism. This chapter presents a brief overview of phosphoinositides in cells of the immune system, their metabolism in the context of phagocytosis and phagosome maturation and their possible derangements during infectious pathogenosis.
Collapse
Affiliation(s)
- R J Botelho
- Programme in Cell Biology, Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada
| | | | | |
Collapse
|
15
|
Cozier GE, Bouyoucef D, Cullen PJ. Engineering the phosphoinositide-binding profile of a class I pleckstrin homology domain. J Biol Chem 2003; 278:39489-96. [PMID: 12885767 DOI: 10.1074/jbc.m307785200] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Pleckstrin homology (PH) domains are protein modules that bind with varying degrees of affinity and specificity membrane phosphoinositides. Previously we have shown that although the PH domains of the Ras GTPase-activating proteins GAP1m and GAP1IP4BP are 63% identical at the amino acid level they possess distinct phosphoinositide-binding profiles. The GAP1m PH domain binds phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P3), whereas the domain from GAP1IP4BP binds PtdIns(3,4,5)P3 and phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2) equally well. These phosphoinositide specificities are translated into distinct subcellular localizations. GAP1m is cytosolic and undergoes a rapid PtdIns(3,4,5)P3-dependent association with the plasma membrane following growth factor stimulation. In contrast, GAP1IP4BP is constitutively associated, in a PtdIns(4,5)P2-dependent manner, with the plasma membrane (Cozier, G. E., Lockyer, P. J., Reynolds, J. S., Kupzig, S., Bottomley, J. R., Millard, T., Banting, G., and Cullen, P. J. (2000) J. Biol. Chem. 275, 28261-28268). In the present study, we have used molecular modeling to identify residues in the GAP1IP4BP PH domain predicted to be required for high affinity binding to PtdIns(4,5)P2. This has allowed the isolation of a mutant, GAP1IP4BP-(K591T), which while retaining high affinity for PtdIns(3,4,5)P3 has a 6-fold reduction in its affinity for PtdIns(4,5)P2. Importantly, GAP1IP4BP-(K591T) is predominantly localized to the cytosol and undergoes a PtdIns(3,4,5)P3-dependent association with the plasma membrane following growth factor stimulation. We have therefore engineered the phosphoinositide-binding profile of the GAP1IP4BP PH domain, thereby emphasizing that subtle changes in PH domain structure can have a pronounced effect on phosphoinositide binding and the subcellular localization of GAP1IP4BP.
Collapse
Affiliation(s)
- Gyles E Cozier
- Inositide Group, Henry Wellcome Integrated Signalling Laboratories, Department of Biochemistry, School of Medical Sciences, University of Bristol, Bristol BS8 1TD, United Kingdom
| | | | | |
Collapse
|
16
|
Sarnago S, Roca R, de Blasi A, Valencia A, Mayor F, Murga C. Involvement of intramolecular interactions in the regulation of G protein-coupled receptor kinase 2. Mol Pharmacol 2003; 64:629-39. [PMID: 12920199 DOI: 10.1124/mol.64.3.629] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The G protein-coupled receptor (GPCR) kinase GRK2 phosphorylates G protein-coupled receptors in an agonist-dependent manner. GRK2 activity is modulated through interactions of diverse domains of the kinase with G protein betagamma subunits, several lipids, anchoring proteins, and activated receptors. We report that kinase activity toward either GPCR (rhodopsin) or a synthetic peptide substrate is enhanced in the presence of GST-GRK2 fusion proteins or peptides corresponding to either N- or C-terminal sequences of GRK2. This direct stimulatory action of intrinsic domains on GRK2 activity does not add to the effect of other regulators, such as Gbetagamma subunits, and strongly suggests the existence of some mode of autoregulation. The existence of regulatory intramolecular interactions in GRK2 is supported by the facts that a C-terminal peptide protects the N-terminal region from proteolytic cleavage and that two domains of GRK2 independently coexpressed in cells associate as assessed by immunoprecipitation. Molecular modeling suggests that intramolecular interactions among the N-terminal, C-terminal and kinase domains would keep GRK2 in a constrained conformation characteristic of an inactive, basal state. Our model proposes that disruption of such intramolecular contacts by intermolecular interactions with regulatory proteins (mimicked by exogenously added kinase fragments in vitro) would promote the conformational changes required to bring about GRK2 translocation and activation.
Collapse
Affiliation(s)
- Susana Sarnago
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | | | | | | | | | | |
Collapse
|
17
|
Singh SM, Murray D. Molecular modeling of the membrane targeting of phospholipase C pleckstrin homology domains. Protein Sci 2003; 12:1934-53. [PMID: 12930993 PMCID: PMC2323991 DOI: 10.1110/ps.0358803] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Phospholipases C (PLCs) reversibly associate with membranes to hydrolyze phosphatidylinositol-4, 5-bisphosphate (PI[4,5]P(2)) and comprise four main classes: beta, gamma, delta, and epsilon. Most eukaryotic PLCs contain a single, N-terminal pleckstrin homology (PH) domain, which is thought to play an important role in membrane targeting. The structure of a single PLC PH domain, that from PLCdelta1, has been determined; this PH domain binds PI(4,5)P(2) with high affinity and stereospecificity and has served as a paradigm for PH domain functionality. However, experimental studies demonstrate that PH domains from different PLC classes exhibit diverse modes of membrane interaction, reflecting the dissimilarity in their amino acid sequences. To elucidate the structural basis for their differential membrane-binding specificities, we modeled the three-dimensional structures of all mammalian PLC PH domains by using bioinformatic tools and calculated their biophysical properties by using continuum electrostatic approaches. Our computational analysis accounts for a large body of experimental data, provides predictions for those PH domains with unknown functions, and indicates functional roles for regions other than the canonical lipid-binding site identified in the PLCdelta1-PH structure. In particular, our calculations predict that (1). members from each of the four PLC classes exhibit strikingly different electrostatic profiles than those ordinarily observed for PH domains in general, (2). nonspecific electrostatic interactions contribute to the membrane localization of PLCdelta-, PLCgamma-, and PLCbeta-PH domains, and (3). phosphorylation regulates the interaction of PLCbeta-PH with its effectors through electrostatic repulsion. Our molecular models for PH domains from all of the PLC classes clearly demonstrate how a common structural fold can serve as a scaffold for a wide range of surface features and biophysical properties that support distinctive functional roles.
Collapse
Affiliation(s)
- Shaneen M Singh
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, New York 10021, USA
| | | |
Collapse
|
18
|
Lodowski DT, Pitcher JA, Capel WD, Lefkowitz RJ, Tesmer JJG. Keeping G proteins at bay: a complex between G protein-coupled receptor kinase 2 and Gbetagamma. Science 2003; 300:1256-62. [PMID: 12764189 DOI: 10.1126/science.1082348] [Citation(s) in RCA: 313] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The phosphorylation of heptahelical receptors by heterotrimeric guanine nucleotide-binding protein (G protein)-coupled receptor kinases (GRKs) is a universal regulatory mechanism that leads to desensitization of G protein signaling and to the activation of alternative signaling pathways. We determined the crystallographic structure of bovine GRK2 in complex with G protein beta1gamma2 subunits. Our results show how the three domains of GRK2-the RGS (regulator of G protein signaling) homology, protein kinase, and pleckstrin homology domains-integrate their respective activities and recruit the enzyme to the cell membrane in an orientation that not only facilitates receptor phosphorylation, but also allows for the simultaneous inhibition of signaling by Galpha and Gbetagamma subunits.
Collapse
Affiliation(s)
- David T Lodowski
- Institute for Cellular and Molecular Biology, Department of Chemistry and Biochemistry, University of Texas at Austin, Austin, TX 78712, USA
| | | | | | | | | |
Collapse
|
19
|
Eichmann T, Lorenz K, Hoffmann M, Brockmann J, Krasel C, Lohse MJ, Quitterer U. The amino-terminal domain of G-protein-coupled receptor kinase 2 is a regulatory Gbeta gamma binding site. J Biol Chem 2003; 278:8052-7. [PMID: 12486133 DOI: 10.1074/jbc.m204795200] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
G-protein-coupled receptor kinase 2 (GRK2) is activated by free Gbetagamma subunits. A Gbetagamma binding site of GRK2 is localized in the carboxyl-terminal pleckstrin homology domain. This Gbetagamma binding site of GRK2 also regulates Gbetagamma-stimulated signaling by sequestering free Gbetagamma subunits. We report here that truncation of the carboxyl-terminal Gbetagamma binding site of GRK2 did not abolish the Gbetagamma regulatory activity of GRK2 as determined by the inhibition of a Gbetagamma-stimulated increase in inositol phosphates in cells. This finding suggested the presence of a second Gbetagamma binding site in GRK2. And indeed, the amino terminus of GRK2 (GRK2(1-185)) inhibited a Gbetagamma-stimulated inositol phosphate signal in cells, purified GRK2(1-185) suppressed the Gbetagamma-stimulated phosphorylation of rhodopsin, and GRK2(1-185) bound directly to purified Gbetagamma subunits. The amino-terminal Gbetagamma regulatory site does not overlap with the RGS domain of GRK-2 because GRK2(1-53) with truncated RGS domain inhibited Gbetagamma-mediated signaling with similar potency and efficacy as did GRK2(1-185). In addition to the Gbetagamma regulatory activity, the amino-terminal Gbetagamma binding site of GRK2 affects the kinase activity of GRK2 because antibodies specifically cross-reacting with the amino terminus of GRK2 suppressed the GRK2-dependent phosphorylation of rhodopsin. The antibody-mediated inhibition was released by purified Gbetagamma subunits, strongly suggesting that Gbetagamma binding to the amino terminus of GRK2 enhances the kinase activity toward rhodopsin. Thus, the amino-terminal domain of GRK2 is a previously unrecognized Gbetagamma binding site that regulates GRK2-mediated receptor phosphorylation and inhibits Gbetagamma-stimulated signaling.
Collapse
Affiliation(s)
- Tanja Eichmann
- Institut für Pharmakologie und Toxikologie, Versbacher Strasse 9, D-97078 Würzburg, Germany
| | | | | | | | | | | | | |
Collapse
|
20
|
Tan I, Cheong A, Lim L, Leung T. Genomic organization of human myotonic dystrophy kinase-related Cdc42-binding kinase alpha reveals multiple alternative splicing and functional diversity. Gene 2003; 304:107-15. [PMID: 12568720 DOI: 10.1016/s0378-1119(02)01185-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Myotonic dystrophy kinase-related Cdc42-binding kinase alpha (MRCKalpha) is a Cdc42/Rac interactive binding-containing serine/threonine kinase with multiple functional domains. Its roles in the regulation of peripheral actin reorganization in HeLa cells and NGF-induced neurite outgrowth in PC12 cells have been documented. Here we report the characterization of the genomic structure and alternative splicing of the human counterpart. Human MRCKalpha gene is located on chromosome 1q42.1, spanning a genomic region of 250-300 kb and is composed of 41 exons. Four exons in the internal variable region and six in the 3' end were found to undergo extensive alternative splicing, giving rise to 96 possible transcripts of different combinations. The region of the internal splice site that defines a variable region in between two functional domains of opposite regulatory effects on MRCKalpha catalytic activity, and the 3' end splice site that generates variants with differential GTPase binding activity suggest a role for these alternative splicing events in MRCKalpha regulation.
Collapse
Affiliation(s)
- Ivan Tan
- Glaxo-IMCB Group, Institute of Molecular and Cell Biology, 30 Medical Drive, Singapore 117609, Singapore
| | | | | | | |
Collapse
|
21
|
Lombardi MS, Kavelaars A, Penela P, Scholtens EJ, Roccio M, Schmidt RE, Schedlowski M, Mayor F, Heijnen CJ. Oxidative stress decreases G protein-coupled receptor kinase 2 in lymphocytes via a calpain-dependent mechanism. Mol Pharmacol 2002; 62:379-88. [PMID: 12130691 DOI: 10.1124/mol.62.2.379] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
G protein-coupled receptor kinase (GRK) 2 plays a crucial role in regulating the extent of desensitization and resensitization of G protein-coupled receptors (GPCRs). We have shown that the expression level of GRK2 in lymphocytes decreases during inflammatory diseases such as arthritis. Reactive oxygen species play an important role in a variety of inflammatory conditions, including arthritis. We demonstrate herein that oxidative stress, induced by exposure of lymphocytes to H(2)O(2), results in a 50% reduction in GRK2 protein levels and GRK activity with no changes in mRNA expression. Treatment of lymphocytes with the tyrosine kinase inhibitor genistein partially reverses the effect of H(2)O(2) on GRK2 levels, although we did not detect direct tyrosine phosphorylation of GRK2. Inhibition of the nonproteasomal protease calpain by calpeptin can prevent the H(2)O(2)-induced GRK2 decrease. In vitro experiments confirm that GRK2 is partially digested by m-calpain in a calcium-dependent way. Functionally, H(2)O(2)-induced decrease in GRK2 levels is associated with an ~70% decrease in agonist-induced beta(2)-adrenergic receptor sequestration. We describe oxidative stress as a novel mechanism for regulation of the intracellular level of GRK2 during inflammatory processes. Moreover, our data demonstrate that oxidative stress may change the functioning of GPCRs via calpain-dependent regulation of GRK2 levels.
Collapse
Affiliation(s)
- Maria Stella Lombardi
- Department of Immunology, Laboratory of Psychoneuroimmunology, University Medical Center, Utrecht, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Cukras CA, Jeliazkova I, Nichols CG. Structural and functional determinants of conserved lipid interaction domains of inward rectifying Kir6.2 channels. J Gen Physiol 2002; 119:581-91. [PMID: 12034765 PMCID: PMC2233865 DOI: 10.1085/jgp.20028562] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
All members of the inward rectifiier K(+) (Kir) channel family are activated by phosphoinositides and other amphiphilic lipids. To further elucidate the mechanistic basis, we examined the membrane association of Kir6.2 fragments of K(ATP) channels, and the effects of site-directed mutations of these fragments and full-length Kir6.2 on membrane association and K(ATP) channel activity, respectively. GFP-tagged Kir6.2 COOH terminus and GFP-tagged pleckstrin homology domain from phospholipase C delta1 both associate with isolated membranes, and association of each is specifically reduced by muscarinic m1 receptor-mediated phospholipid depletion. Kir COOH termini are predicted to contain multiple beta-strands and a conserved alpha-helix (residues approximately 306-311 in Kir6.2). Systematic mutagenesis of D307-F315 reveals a critical role of E308, I309, W311 and F315, consistent with residues lying on one side of a alpha-helix. Together with systematic mutation of conserved charges, the results define critical determinants of a conserved domain that underlies phospholipid interaction in Kir channels.
Collapse
Affiliation(s)
- Catherine A Cukras
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | |
Collapse
|
23
|
Wong HC, Liu G, Zhang YM, Rock CO, Zheng J. The solution structure of acyl carrier protein from Mycobacterium tuberculosis. J Biol Chem 2002; 277:15874-80. [PMID: 11825906 DOI: 10.1074/jbc.m112300200] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Acyl carrier protein (ACP) performs the essential function of shuttling the intermediates between the enzymes that constitute the type II fatty acid synthase system. Mycobacterium tuberculosis is unique in producing extremely long mycolic acids, and tubercular ACP, AcpM, is also unique in possessing a longer carboxyl terminus than other ACPs. We determined the solution structure of AcpM using protein NMR spectroscopy to define the similarities and differences between AcpM and the typical structures. The amino-terminal region of the structure is well defined and consists of four helices arranged in a right-handed bundle held together by interhelical hydrophobic interactions similar to the structures of other bacterial ACPs. The unique carboxyl-terminal extension from helix IV has a "melted down" feature, and the end of the molecule is a random coil. A comparison of the apo- and holo-forms of AcpM revealed that the 4'-phosphopantetheine group oscillates between two states; in one it is bound to a hydrophobic groove on the surface of AcpM, and in another it is solvent-exposed. The similarity between AcpM and other ACPs reveals the conserved structural motif that is recognized by all type II enzymes. However, the function of the coil domain extending from helix IV to the carboxyl terminus remains enigmatic, but its structural characteristics suggest that it may interact with the very long chain intermediates in mycolic acid biosynthesis or control specific protein-protein interactions.
Collapse
Affiliation(s)
- Hing C Wong
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | | | | | | | | |
Collapse
|
24
|
Haga T, Haga K, Kameyama K, Tsuga H, Yoshida N. Regulation of G protein-coupled receptor kinase 2. Methods Enzymol 2002; 343:559-77. [PMID: 11665592 DOI: 10.1016/s0076-6879(02)43158-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Affiliation(s)
- Tatsuya Haga
- Institute for Biomolecular Science, Gakushuin University, Toshima-ku, Tokyo 171-8588, Japan
| | | | | | | | | |
Collapse
|
25
|
Abstract
Pleckstrin homology (PH) domains are 100-120 amino acid protein modules best known for their ability to bind phosphoinositides. All possess an identical core beta-sandwich fold and display marked electrostatic sidedness. The binding site for phosphoinositides lies in the center of the positively charged face. In some cases this binding site is well defined, allowing highly specific and strong ligand binding. In several of these cases the PH domains specifically recognize 3-phosphorylated phosphoinositides, allowing them to drive membrane recruitment in response to phosphatidylinositol 3-kinase activation. Examples of these PH domain-containing proteins include certain Dbl family guanine nucleotide exchange factors, protein kinase B, PhdA, and pleckstrin-2. PH domain-mediated membrane recruitment of these proteins contributes to regulated actin assembly and cell polarization. Many other PH domain-containing cytoskeletal proteins, such as spectrin, have PH domains that bind weakly, and to all phosphoinositides. In these cases, the individual phosphoinositide interactions may not be sufficient for membrane association, but appear to require self-assembly of their host protein and/or cooperation with other anchoring motifs within the same molecule to drive membrane attachment.
Collapse
Affiliation(s)
- Mark A Lemmon
- Department of Biochemistry and Biophysics, University of Pennsylvania School of Medicine, 809C Stellar-Chance Laboratories, 422 Curie Boulevard, Philadelphia, PA 19104-6059, USA.
| | | | | |
Collapse
|
26
|
Wing MR, Houston D, Kelley GG, Der CJ, Siderovski DP, Harden TK. Activation of phospholipase C-epsilon by heterotrimeric G protein betagamma-subunits. J Biol Chem 2001; 276:48257-61. [PMID: 11641393 DOI: 10.1074/jbc.c100574200] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
PLC-epsilon was identified recently as a phosphoinositide-hydrolyzing phospholipase C (PLC) containing catalytic domains (X, Y, and C2) common to all PLC isozymes as well as unique CDC25- and Ras-associating domains. Novel regulation of this PLC isozyme by the Ras oncoprotein and alpha-subunits (Galpha(12)) of heterotrimeric G proteins was illustrated. Sequence analyses of PLC-epsilon revealed previously unrecognized PH and EF-hand domains in the amino terminus. The known interaction of Gbetagamma subunits with the PH domains of other proteins led us to examine the capacity of Gbetagamma to activate PLC-epsilon. Co-expression of Gbeta(1)gamma(2) with PLC-epsilon in COS-7 cells resulted in marked stimulation of phospholipase C activity. Gbeta(2) and Gbeta(4) in combination with Ggamma(1), Ggamma(2), Ggamma(3), or Ggamma(13) also activated PLC-epsilon to levels similar to those observed with Gbeta(1)-containing dimers of these Ggamma-subunits. Gbeta(3) in combination with the same Ggamma-subunits was less active, and Gbeta(5)-containing dimers were essentially inactive. Gbetagamma-promoted activation of PLC-epsilon was blocked by cotransfection with either of two Gbetagamma-interacting proteins, Galpha(i1) or the carboxyl terminus of G protein receptor kinase 2. Pharmacological inhibition of PI3-kinase-gamma had no effect on Gbeta(1)gamma(2)-promoted activation of PLC-epsilon. Similarly, activation of Ras in the action of Gbetagamma is unlikely, because a mutation in the second RA domain of PLC-epsilon that blocks Ras activation of PLC failed to alter the stimulatory activity of Gbeta(1)gamma(2). Taken together, these results reveal the presence of additional functional domains in PLC-epsilon and add a new level of complexity in the regulation of this novel enzyme by heterotrimeric G proteins.
Collapse
Affiliation(s)
- M R Wing
- Department of Pharmacology, Program in Neurobiology, Lineberger Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599, USA
| | | | | | | | | | | |
Collapse
|
27
|
Pfeiffer S, Fushman D, Cowburn D. Simulated and NMR-derived backbone dynamics of a protein with significant flexibility: a comparison of spectral densities for the betaARK1 PH domain. J Am Chem Soc 2001; 123:3021-36. [PMID: 11457013 DOI: 10.1021/ja0031117] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A 7.6 ns molecular dynamics trajectory of the betaARK1 PH domain in explicit water with appropriate ions was calculated at 300 K. Spectral densities at omega = 0, omega(N), and 0.87omega(H) and the model-free parameters were evaluated from the experimental as well as the simulated data, taking the anisotropic overall motion of the protein into account. Experimental and simulated spectral densities are in reasonable general agreement for NH bond vectors, where the corresponding motions have converged within the simulation time. A sufficient sampling of the motions for NH bonds within flexible parts of the protein requires a longer simulation time. The simulated spectral densities J(0) and J(omega(N)) are, on average, 4.5% and 16% lower than the experimental data; the corresponding numbers for the core residues are about 6%; the high-frequency spectral densities J(0.87omega(H)) are lower by, on average, 16% (21% for the core). The simulated order parameters, S(2), are also lower, although the overall disagreement between the simulation and experiment is less pronounced: 1% for all residues and 6% for the core. The observed systematic decrease of simulated spectral density and the order parameters compared to the experimental data can be partially attributed to the ultrafast librational motion of the NH bonds with respect to their peptide plane, which was analyzed in detail. This systematic difference is most pronounced for J(0.87omega(H)), which appears to be most sensitive to the slow, subnanosecond time scale of internal motion, whereas J(0) and J(omega(N)) are dominated by the overall rotational tumbling of the protein. Similar discrepancies are observed between the experimentally measured (15)N relaxation parameters (R(1), R(2), NOE) and their values calculated from the simulated spectral densities. The analysis of spectral densities provides additional information regarding the comparison of the simulated and experimental data, not available from the model-free analysis.
Collapse
Affiliation(s)
- S Pfeiffer
- The Rockefeller University, 1230 York Avenue, New York, NY 10021-6399, USA
| | | | | |
Collapse
|
28
|
Wong HC, Mao J, Nguyen JT, Srinivas S, Zhang W, Liu B, Li L, Wu D, Zheng J. Structural basis of the recognition of the dishevelled DEP domain in the Wnt signaling pathway. NATURE STRUCTURAL BIOLOGY 2000; 7:1178-84. [PMID: 11101902 PMCID: PMC4381838 DOI: 10.1038/82047] [Citation(s) in RCA: 120] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The DEP domain of Dishevelled (Dvl) proteins transduces signals to effector proteins downstream of Dvl in the Wnt pathway. Here we report that DEP-containing mutants inhibit Wnt-induced, but not Dvl-induced, activation of the transcription factor Lef-1. This inhibitory effect is weakened by a K434M mutation. Nuclear magnetic resonance spectroscopy revealed that the DEP domain of mouse Dvl1 comprises a three-helix bundle, a beta-hairpin 'arm' and two short beta-strands at the C-terminal region. Lys 434 is located at the tip of the beta-hairpin 'arm'. Based on our findings, we conclude that DEP interacts with regulators upstream of Dvl via a strong electric dipole on the molecule's surface created by Lys 434, Asp 445 and Asp 448; the electric dipole and the putative membrane binding site are at two different locations.
Collapse
Affiliation(s)
- H C Wong
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Klarlund JK, Tsiaras W, Holik JJ, Chawla A, Czech MP. Distinct polyphosphoinositide binding selectivities for pleckstrin homology domains of GRP1-like proteins based on diglycine versus triglycine motifs. J Biol Chem 2000; 275:32816-21. [PMID: 10913124 DOI: 10.1074/jbc.m002435200] [Citation(s) in RCA: 117] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
GRP1 and the related proteins ARNO and cytohesin-1 are ARF exchange factors that contain a pleckstrin homology (PH) domain thought to target these proteins to cell membranes through binding polyphosphoinositides. Here we show the PH domains of all three proteins exhibit relatively high affinity for dioctanoyl phosphatidylinositol 3,4,5-triphosphate (PtdIns(3,4,5)P(3)), with K(D) values of 0.05, 1.6 and 1.0 micrometer for GRP1, ARNO, and cytohesin-1, respectively. However, the GRP1 PH domain was unique among these proteins in its striking selectivity for PtdIns(3,4, 5)P(3) versus phosphatidylinositol 4,5-diphosphate (PtdIns(4,5)P(2)), for which it exhibits about 650-fold lower apparent affinity. Addition of a glycine to the Gly(274)-Gly(275) motif in GRP1 greatly increased its binding affinity for PtdIns(4,5)P(2) with little effect on its binding to PtdIns(3,4,5)P(3), while deletion of a single glycine in the corresponding triglycine motif of the ARNO PH domain markedly reduced its binding affinity for PtdIns(4,5)P(2) but not for PtdIns(3,4,5)P(3). In intact cells, the hemagglutinin epitope-tagged PH domain of GRP1 was recruited to ruffles in the cell surface in response to insulin, as were full-length GRP1 and cytohesin-1, but the PH domain of cytohesin-1 was not. These data indicate that the unique diglycine motif in the GRP1 PH domain, as opposed to the triglycine in ARNO and cytohesin-1, directs its remarkable PtdIns(3,4,5)P(3) binding selectivity.
Collapse
Affiliation(s)
- J K Klarlund
- Program in Molecular Medicine and Department of Biochemistry and Molecular Biology, University of Massachusetts Medical School, Worcester, Massachusetts 01655, USA
| | | | | | | | | |
Collapse
|
30
|
Blomberg N, Baraldi E, Sattler M, Saraste M, Nilges M. Structure of a PH domain from the C. elegans muscle protein UNC-89 suggests a novel function. Structure 2000; 8:1079-87. [PMID: 11080629 DOI: 10.1016/s0969-2126(00)00509-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND Pleckstrin homology (PH) domains constitute a structurally conserved family present in many signaling and regulatory proteins. PH domains have been shown to bind to phospholipids, and many function in membrane targeting. They generally have a strong electrostatic polarization and interact with negatively charged phospholipids via the positive pole. On the basis of electrostatic modeling, however, we have previously identified a class of PH domains with a predominantly negative charge and predicted that these domains recognize other targets. Here, we report the first experimental structure of such a PH domain. RESULTS The structure of the PH domain from Caenorhabditis elegans muscle protein UNC-89 has been determined by heteronuclear NMR. The domain adopts the classic PH fold, but has an unusual closed conformation of the "inositol binding loops. This creates a small opening to a deep hydrophobic pocket lined with negative charges on one side, and provides a molecular explanation for the lack of association with inositol-1,4,5-triphosphate. As predicted, the PH domain of UNC-89 has a strongly negative overall electrostatic potential. Modeling the Dbl homology (DH)-linked PH domains from the C. elegans genome shows that a large proportion of these modules are negatively charged. CONCLUSIONS We present the first structure of a PH domain with a strong negative overall electrostatic potential. The presence of a deep pocket lined with negative charges suggests that the domain binds to ligands other than acidic phospholipids. The abundance of this class of PH domain in the C. elegans genome suggests a prominent role in mediating protein-protein interactions.
Collapse
Affiliation(s)
- N Blomberg
- Structural and Computational Biology Programme European Molecular Biology Laboratory Meyerhofstrasse 1 D-69117, Heidelberg, Germany
| | | | | | | | | |
Collapse
|
31
|
Fushman D, Ghose R, Cowburn D. The Effect of Finite Sampling on the Determination of Orientational Properties: A Theoretical Treatment with Application to Interatomic Vectors in Proteins. J Am Chem Soc 2000. [DOI: 10.1021/ja001128j] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- David Fushman
- Contribution from the The Rockefeller University, 1230 York Avenue, New York, New York 10021
| | - Ranajeet Ghose
- Contribution from the The Rockefeller University, 1230 York Avenue, New York, New York 10021
| | - David Cowburn
- Contribution from the The Rockefeller University, 1230 York Avenue, New York, New York 10021
| |
Collapse
|
32
|
Abstract
Several lines of evidence show that neurohumoral systems, especially those involving catecholamines, play a crucial role in cardiac diseases. Changes in the beta-adrenergic receptor (beta-AR) system such as receptor down-regulation, uncoupling from G-proteins, receptor internalization and receptor degradation may account for some of the abnormalities of contractile function in this disease. Increases in the level of inhibitory G-protein subunits also appears to be involved in attenuating the beta-AR signal. Finally beta-AR signalling is strongly regulated by members of the G-protein-coupled receptor kinase family (GRKs), the best known of which is beta-adrenergic receptor kinase 1 (beta-ARK1). beta-ARK1 mRNA, protein level and enzymatic activity is increased in heart disease, further contributing to an attenuation in beta-AR signalling. The combination of these negative alterations are presumably related to the contractile dysfunction seen in human heart disease. The combination of biochemical, physiological and molecular biological studies bearing on the normal function and regulation of these various molecules should provide strategies for elucidating the pharmacological basis of the regulation of myocardial contractility in the normal and failing heart.
Collapse
MESH Headings
- Adenylyl Cyclases/metabolism
- Aging
- Animals
- Calcium/metabolism
- Cyclic AMP-Dependent Protein Kinases/chemistry
- Cytoskeleton/metabolism
- Ethanol/pharmacology
- Heart/drug effects
- Heart/physiology
- Heart Diseases/enzymology
- Heart Diseases/metabolism
- Heart Diseases/therapy
- Humans
- Mice
- Mice, Transgenic
- Models, Biological
- Myocardium/enzymology
- Myocardium/metabolism
- Oxidants/physiology
- Receptors, Adrenergic, beta/drug effects
- Receptors, Adrenergic, beta/genetics
- Receptors, Adrenergic, beta/metabolism
- Receptors, Adrenergic, beta/physiology
- Signal Transduction
- beta-Adrenergic Receptor Kinases
Collapse
Affiliation(s)
- S Chakraborti
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani 741235, West Bengal, India
| | | | | |
Collapse
|
33
|
Cozier G, Sessions R, Bottomley JR, Reynolds JS, Cullen PJ. Molecular modelling and site-directed mutagenesis of the inositol 1,3,4,5-tetrakisphosphate-binding pleckstrin homology domain from the Ras GTPase-activating protein GAP1IP4BP. Biochem J 2000; 349:333-42. [PMID: 10861245 PMCID: PMC1221154 DOI: 10.1042/0264-6021:3490333] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
GAP1(IP4BP) is a Ras GTPase-activating protein (GAP) that in vitro is regulated by the cytosolic second messenger inositol 1,3,4,5-tetrakisphosphate [Ins(1,3,4,5)P(4)]. We have studied Ins(1,3,4,5)P(4) binding to GAP1(IP4BP), and shown that the inositol phosphate specificity and binding affinity are similar to Ins(1,3,4,5)P(4) binding to Bruton's tyrosine kinase (Btk), evidence which suggests a similar mechanism for Ins(1,3,4,5)P(4) binding. The crystal structure of the Btk pleckstrin homology (PH) domain in complex with Ins(1,3,4,5)P(4) has shown that the binding site is located in a partially buried pocket between the beta 1/beta 2- and beta 3/beta 4-loops. Many of the residues involved in the binding are conserved in GAP1(IP4BP). Therefore we generated a model of the PH domain of GAP1(IP4BP) in complex with Ins(1,3,4,5)P(4) based on the Btk-Ins(1,3,4,5)P(4) complex crystal structure. This model had the typical PH domain fold, with the proposed binding site modelling well on the Btk structure. The model has been verified by site-directed mutagenesis of various residues in and around the proposed binding site. These mutations have markedly reduced affinity for Ins(1,3,4,5)P(4), indicating a specific and tight fit for the substrate. The model can also be used to explain the specificity of inositol phosphate binding.
Collapse
Affiliation(s)
- G Cozier
- Department of Biochemistry, School of Medical Sciences, University of Bristol, Bristol BS8 1TD, UK
| | | | | | | | | |
Collapse
|
34
|
Fu Q, Yu L, Liu Q, Zhang J, Zhang H, Zhao S. Molecular cloning, expression characterization, and mapping of a novel putative inhibitor of rho GTPase activity, RTKN, to D2S145-D2S286. Genomics 2000; 66:328-32. [PMID: 10873388 DOI: 10.1006/geno.2000.6212] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The Rho proteins are a class of small molecular GTPases that regulate multiple fundamental cellular processes by mediating the G-protein-coupled receptor signaling pathway. Rhotekin, which is one of the downstream target molecules of Rho with a Rho binding motif class I domain, can inhibit endogenous or RhoGAP-stimulating Rho GTPase activity to regulate the signaling pathway. Here, a novel human cDNA containing an intact open reading frame that encodes 544 amino acids has been identified. As this putative protein shares 84. 6% amino acid identity with mouse Rhotekin, and has a tandem Rho binding domain class 1 and Pleckstrin homology domain, it was regarded as a human homologue of the mouse Rhotekin and assigned a symbol of RTKN. With the human Rhotekin cDNA as a probe, Northern hybridization revealed that a 4.0-kb transcript was expressed at a high level in prostate and at a middle level in 13 of 16 tissues examined, but it cannot be detected in liver and lung tissues. Meanwhile, a 2.4-kb transcript was expressed at a middle level in prostate and another 3.0-kb transcript in kidney. In addition, the RTKN gene was localized to chromosome 2p13 between markers D2S145 at 6.94 cR (LOD > 12) and D2S286 at 8.12 cR (LOD > 9.7) by radiation hybrid panel mapping. Compared with BAC clone AC005041 sequence, there were 12 exons for the RTKN gene and it spanned a 16.5-kb genomic region.
Collapse
Affiliation(s)
- Q Fu
- State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, 200433, People's Republic of China.
| | | | | | | | | | | |
Collapse
|
35
|
Macia E, Paris S, Chabre M. Binding of the PH and polybasic C-terminal domains of ARNO to phosphoinositides and to acidic lipids. Biochemistry 2000; 39:5893-901. [PMID: 10801341 DOI: 10.1021/bi992795w] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The activity on ARF of the guanine nucleotide exchange factor ARNO depends on its membrane recruitment, induced by binding of its PH domain to phosphoinositides. A polycationic C-terminal extension to the PH domain might also contribute to its specific binding to phosphatidylinositol 4,5-bisphosphate [(4,5)PIP2] and to phosphatidylinositol 3,4,5-trisphosphate [(3,4,5)PIP3], and to ionic binding to other acidic lipids. We have analyzed in vitro the relative contributions to phospholipid binding of the PH domain and C-terminal extension by cosedimentation of "PH+C domain" and "nominal PH domain" protein constructs including or not including the polycationic C-terminus, with sucrose-loaded unilamellar vesicles made of equal proportions of the neutral lipids phosphatidylcholine and phosphatidylethanolamine, and supplemented or not with 30% acidic phosphatidylserine (PS) and 2% of various phosphoinositides. Binding was measured as a function of the vesicle concentration and of the medium ionic strength. Both proteins bound with higher affinity to (3,4,5)PIP3 than to (4,5)PIP2, the selectivity for (3,4,5)PIP3 being highest for the nominal PH domain. We observed also a clear selectivity of (3,4,5)PIP3 over (4,5)PIP2 for stimulating the activity of ARNO on ARF with vesicles containing 10% PS and 1% PIP2 or PIP3. Our data suggest that the PH domain provides the specific phosphoinositide binding site and some unspecific ionic interaction with acidic PS, whereas the polybasic C domain contributes to binding mainly by unspecific ionic interactions vith PS. Phosphorylation by protein kinase C of a serine in the C domain reduces the ionic affinity of the PH+C domain for PS, but does not affect the phosphoinositide specificity.
Collapse
Affiliation(s)
- E Macia
- CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, 660 route des Lucioles, Sophia Antipolis, F-06560 Valbonne, France
| | | | | |
Collapse
|
36
|
Carman CV, Barak LS, Chen C, Liu-Chen LY, Onorato JJ, Kennedy SP, Caron MG, Benovic JL. Mutational analysis of Gbetagamma and phospholipid interaction with G protein-coupled receptor kinase 2. J Biol Chem 2000; 275:10443-52. [PMID: 10744734 DOI: 10.1074/jbc.275.14.10443] [Citation(s) in RCA: 95] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Agonist-dependent regulation of G protein-coupled receptors is dependent on their phosphorylation by G protein-coupled receptor kinases (GRKs). GRK2 and GRK3 are selectively regulated in vitro by free Gbetagamma subunits and negatively charged membrane phospholipids through their pleckstrin homology (PH) domains. However, the molecular binding determinants and physiological role for these ligands remain unclear. To address these issues, we generated an array of site-directed mutants within the GRK2 PH domain and characterized their interaction with Gbetagamma and phospholipids in vitro. Mutation of several residues in the loop 1 region of the PH domain, including Lys-567, Trp-576, Arg-578, and Arg-579, resulted in a loss of receptor phosphorylation, likely via disruption of phospholipid binding, that was reversed by Gbetagamma. Alternatively, mutation of residues distal to the C-terminal amphipathic alpha-helix, including Lys-663, Lys-665, Lys-667, and Arg-669, resulted in decreased responsiveness to Gbetagamma. Interestingly, mutation of Arg-587 in beta-sheet 3, a region not previously thought to interact with Gbetagamma, resulted in a specific and profound loss of Gbetagamma responsiveness. To further characterize these effects, two mutants (GRK2(K567E/R578E) and GRK2(R587Q)) were expressed in Sf9 cells and purified. Analysis of these mutants revealed that GRK2(K567E/R578E) was refractory to stimulation by negatively charged phospholipids but bound Gbetagamma similar to wild-type GRK2. In contrast, GRK2(R587Q) was stimulated by acidic phospholipids but failed to bind Gbetagamma. In order to examine the role of phospholipid and Gbetagamma interaction in cells, wild-type and mutant GRK2s were expressed with a beta(2)-adrenergic receptor (beta(2)AR) mutant that is responsive to GRK2 phosphorylation (beta(2)AR(Y326A)). In these cells, GRK2(K567E/R578E) and GRK2(R587Q) were largely defective in promoting agonist-dependent phosphorylation and internalization of beta(2)AR(Y326A). Similarly, wild-type GRK2 but not GRK2(K567E/R578E) or GRK2(R587Q) promoted morphinedependent phosphorylation of the mu-opioid receptor in cells. Thus, we have (i) identified several specific GRK2 binding determinants for Gbetagamma and phospholipids, and (ii) demonstrated that Gbetagamma binding is the limiting step for GRK2-dependent receptor phosphorylation in cells.
Collapse
Affiliation(s)
- C V Carman
- Department of Microbiology & Immunology, Kimmel Cancer Institute, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Kam JL, Miura K, Jackson TR, Gruschus J, Roller P, Stauffer S, Clark J, Aneja R, Randazzo PA. Phosphoinositide-dependent activation of the ADP-ribosylation factor GTPase-activating protein ASAP1. Evidence for the pleckstrin homology domain functioning as an allosteric site. J Biol Chem 2000; 275:9653-63. [PMID: 10734117 DOI: 10.1074/jbc.275.13.9653] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The ADP-ribosylation factor (Arf) family of GTP-binding proteins are regulators of membrane traffic and the actin cytoskeleton. Both negative and positive regulators of Arf, the centaurin beta family of Arf GTPase-activating proteins (GAPs) and Arf guanine nucleotide exchange factors, contain pleckstrin homology (PH) domains and are activated by phosphoinositides. To understand how the activities are coordinated, we have examined the role of phosphoinositide binding for Arf GAP function using ASAP1/centaurin beta4 as a model. In contrast to Arf exchange factors, phosphatidylinositol 4, 5-bisphosphate (PtdIns-4,5-P(2)) specifically activated Arf GAP. D3 phosphorylated phosphoinositides were less effective. Activation involved PtdIns-4,5-P(2) binding to the PH domain; however, in contrast to the Arf exchange factors and contrary to predictions based on the current paradigm for PH domains as independently functioning recruitment signals, we found the following: (i) the PH domain was dispensable for targeting to PDGF-induced ruffles; (ii) activation and recruitment could be uncoupled; (iii) the PH domain was necessary for activity even in the absence of phospholipids; and (iv) the Arf GAP domain influenced localization and lipid binding of the PH domain. Furthermore, PtdIns-4,5-P(2) binding to the PH domain caused a conformational change in the Arf GAP domain detected by limited proteolysis. Thus, these data demonstrate that PH domains can function as allosteric sites. In addition, differences from the published properties of the Arf exchange factors suggest a model in which feedforward and feedback loops involving lipid metabolites coordinate GTP binding and hydrolysis by Arf.
Collapse
Affiliation(s)
- J L Kam
- Division of Basic Sciences, NCI, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Hurley JH, Misra S. Signaling and subcellular targeting by membrane-binding domains. ANNUAL REVIEW OF BIOPHYSICS AND BIOMOLECULAR STRUCTURE 2000; 29:49-79. [PMID: 10940243 PMCID: PMC4781318 DOI: 10.1146/annurev.biophys.29.1.49] [Citation(s) in RCA: 201] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Protein kinase C homology-1 and -2, FYVE, and pleckstrin homology domains are ubiquitous in eukaryotic signal transduction and membrane-trafficking proteins. These domains regulate subcellular localization and protein function by binding to lipid ligands embedded in cell membranes. Structural and biochemical analysis of these domains has shown that their molecular mechanisms of membrane binding depend on a combination of specific and nonspecific interactions with membrane lipids. In vivo studies of green fluorescent protein fusions have highlighted the key roles of these domains in regulating protein localization to plasma and internal membranes in cells.
Collapse
Affiliation(s)
- J H Hurley
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0580, USA.
| | | |
Collapse
|
39
|
Blomberg N, Gabdoulline RR, Nilges M, Wade RC. Classification of protein sequences by homology modeling and quantitative analysis of electrostatic similarity. Proteins 1999; 37:379-87. [PMID: 10591098 DOI: 10.1002/(sici)1097-0134(19991115)37:3<379::aid-prot6>3.0.co;2-k] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Protein electrostatics plays a key role in ligand binding and protein-protein interactions. Therefore, similarities or dissimilarities in electrostatic potentials can be used as indicators of similarities or dissimilarities in protein function. We here describe a method to compare the electrostatic properties within protein families objectively and quantitatively. Three-dimensional structures are built from database sequences by comparative modeling. Molecular potentials are then computed for these with a continuum solvation model by finite difference solution of the Poisson-Boltzmann equation or analytically as a multipole expansion that permits rapid comparison of very large datasets. This approach is applied to 104 members of the Pleckstrin homology (PH) domain family. The deviation of the potentials of the homology models from those of the corresponding experimental structures is comparable to the variation of the potential in an ensemble of structures from nuclear magnetic resonance data or between snapshots from a molecular dynamics simulation. For this dataset, the results for analysis of the full electrostatic potential and the analysis using only monopole and dipole terms are very similar. The electrostatic properties of the PH domains are generally conserved despite the extreme sequence divergence in this family. Notable exceptions from this conservation are seen for PH domains linked to a Db1 homology (DH) domain and in proteins with internal PH domain repeats.
Collapse
Affiliation(s)
- N Blomberg
- European Molecular Biology Laboratory, Heidelberg, Germany
| | | | | | | |
Collapse
|
40
|
Spencer AG, Thuresson E, Otto JC, Song I, Smith T, DeWitt DL, Garavito RM, Smith WL. The membrane binding domains of prostaglandin endoperoxide H synthases 1 and 2. Peptide mapping and mutational analysis. J Biol Chem 1999; 274:32936-42. [PMID: 10551860 DOI: 10.1074/jbc.274.46.32936] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Prostaglandin endoperoxide H synthases 1 and 2 (PGHS-1 and -2) are the major targets of nonsteroidal anti-inflammatory drugs. Both isozymes are integral membrane proteins but lack transmembrane domains. X-ray crystallographic studies have led to the hypothesis that PGHS-1 and -2 associate with only one face of the membrane bilayer through a novel, monotopic membrane binding domain (MBD) that is comprised of four short, consecutive, amphipathic alpha-helices (helices A-D) that include residues 74-122 in ovine PGHS-1 (oPGHS-1) and residues 59-108 in human PGHS-2 (hPGHS-2). Previous biochemical studies from our laboratory showed that the MBD of oPGHS-1 lies somewhere between amino acids 25 and 166. In studies reported here, membrane-associated forms of oPGHS-1 and hPGHS-2 were labeled using the hydrophobic, photoactivable reagent 3-trifluoro-3-(m-[(125)I]iodophenyl)diazirine, isolated, and cleaved with AspN and/or GluC, and the photolabeled peptides were sequenced. The results establish that the MBDs of oPGHS-1 and hPGHS-2 reside within residues 74-140 and 59-111, respectively, and thus provide direct provide biochemical support for the hypothesis that PGHS-1 and -2 do associate with membranes through a monotopic MBD. We also prepared HelA, HelB, and HelC mutants of oPGHS-1, in which, for each helix, three or four hydrophobic residues expected to protrude into the membrane were replaced with small, neutral residues. When expressed in COS-1 cells, HelA and HelC mutants exhibited little or no catalytic activity and were present, at least in part, as misfolded aggregates. The HelB mutant retained about 20% of the cyclooxygenase activity of native oPGHS-1 and partitioned in subcellular fractions like native oPGHS-1; however, the HelB mutant exhibited an extra site of N-glycosylation at Asn(104). When this glycosylation site was eliminated (HelB/N104Q mutation), the mutant lacked cyclooxygenase activity. Thus, our mutational analyses indicate that the amphipathic character of each helix is important for the assembly and folding of oPGHS-1 to a cyclooxygenase active form.
Collapse
Affiliation(s)
- A G Spencer
- Department of Biochemistry, Michigan State University, East Lansing, Michigan 48824, USA
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Blomberg N, Baraldi E, Nilges M, Saraste M. The PH superfold: a structural scaffold for multiple functions. Trends Biochem Sci 1999; 24:441-5. [PMID: 10542412 DOI: 10.1016/s0968-0004(99)01472-3] [Citation(s) in RCA: 139] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
Pleckstrin homology (PH) domains form a structurally conserved family that is associated with many regulatory pathways within the cell. Domains with a nearly identical fold are found in other families that share no sequence similarity, suggesting the existence of a stable PH superfold. The PH domains generally function as regulated membrane-binding modules that bind to inositol lipids and respond to upstream signals by targeting the host proteins to the correct cellular sites. The other domains with a similar fold, such as the phosphotyrosine binding domains, recognize protein ligands.
Collapse
Affiliation(s)
- N Blomberg
- European Molecular Biology Laboratory, Meyerhofstrasse 1, Postfach 10.2209, D-690 12 Heidelberg, Germany
| | | | | | | |
Collapse
|
42
|
Abstract
Pleckstrin homology (PH) domains have been shown to be involved in different interactions, including binding to inositol compounds, protein kinase C isoforms, and heterotrimeric G proteins. In some cases, the most important function of PH domains is transient localisation of proteins to membranes, where they can interact with their partners. Tec family protein tyrosine kinases contain a PH domain. In Btk, also PH domain mutations lead into an immunodeficiency, X-linked agammaglobulinemia (XLA). A new disease-causing mutation was identified in the PH domain. The structures for the PH domains of Bmx, Itk, and Tec were modelled based on Btk structure. The domains seem to have similar scaffolding and electrostatic polarisation but to have some differences in the binding regions. The models provide new insight into the specificity, function, and regulation of Tec family kinases.
Collapse
Affiliation(s)
- M P Okoh
- Institue of Medical Technology, University of Tampere, P.O. Box 607, Tampere, FIN-33101, Finland
| | | |
Collapse
|
43
|
Rodriguez MM, Ron D, Touhara K, Chen CH, Mochly-Rosen D. RACK1, a protein kinase C anchoring protein, coordinates the binding of activated protein kinase C and select pleckstrin homology domains in vitro. Biochemistry 1999; 38:13787-94. [PMID: 10529223 DOI: 10.1021/bi991055k] [Citation(s) in RCA: 109] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The pleckstrin homology (PH) domain, identified in numerous signaling proteins including the beta-adrenergic receptor kinase (betaARK), was found to bind to various phospholipids as well as the beta subunit of heterotrimeric G proteins (Gbeta) [Touhara, K., et al. (1994) J. Biol. Chem. 269, 10217-10220]. Several PH domain-containing proteins are also substrates of protein kinase C (PKC). Because RACK1, an anchoring protein for activated PKC, is homologous to Gbeta (both contain seven repeats of the WD-40 motif), we determined (i) whether a direct interaction between various PH domains and RACK1 occurs and (ii) the effect of PKC on this interaction. We found that recombinant PH domains of several proteins exhibited differential binding to RACK1. Activated PKC and the PH domain of beta-spectrin or dynamin-1 concomitantly bound to RACK1. Although PH domains bind acidic phospholipids, the interaction between various PH domains and RACK1 was not dependent on the phospholipid activators of PKC, phosphatidylserine and 1, 2-diacylglycerol. Binding of these PH domains to RACK1 was also not affected by either inositol 1,4,5-triphosphate (IP(3)) or phosphatidylinositol 4,5-bisphosphate (PIP(2)). Our in vitro data suggest that RACK1 binds selective PH domains, and that PKC regulates this interaction. We propose that, in vivo, RACK1 may colocalize the kinase with its PH domain-containing substrates.
Collapse
Affiliation(s)
- M M Rodriguez
- Department of Molecular Pharmacology, Stanford University School of Medicine, California 94305-5332, USA
| | | | | | | | | |
Collapse
|
44
|
Grant MA, Gentile LN, Shi QL, Pellegrini M, Hawrot E. Expression and spectroscopic analysis of soluble nicotinic acetylcholine receptor fragments derived from the extracellular domain of the alpha-subunit. Biochemistry 1999; 38:10730-42. [PMID: 10451368 DOI: 10.1021/bi983007q] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
To facilitate structural studies of the ligand binding region from the nicotinic acetylcholine receptor (nAChR), we have developed methods for the high-level expression and purification of an important functional portion of the N-terminal extracellular domain (ECD) of the alpha-subunit. Two soluble receptor fragments comprising residues 143-210 of the Torpedo californica alpha-subunit were expressed in E. coli: alphaT68His6, which contains a histidine tag, and alphaT68M1, which includes the first transmembrane region, M1, of the alpha-subunit. Both proteins demonstrate saturable, high-affinity alpha-bungarotoxin (Bgtx) binding with an apparent equilibrium KD (3 nM) that is comparable to the affinities reported for preparations comprising the entire alpha-subunit ECD. These results demonstrate that the ECD determinants required for Bgtx recognition of the alpha-subunit are entirely specified by residues 143-210. The binding of small ligands was demonstrated in competition assays with 125I-Bgtx yielding KI values of 58 and 105 microM for d-tubocurarine and nicotine, respectively. Circular dichroism (CD) analysis of monomeric alphaT68His6 protein revealed considerable secondary structure. Furthermore, a cooperative, two-state folding transition was observed upon urea denaturation. To circumvent concentration-dependent aggregation of the alphaT68His6 protein at the millimolar concentrations needed for NMR study, we utilized the M1 transmembrane domain to anchor the recombinant receptor fragment onto membrane-mimicking micelles. Monodispersed preparations of alphaT68M1 in dodecylphosphocholine micelles demonstrate high-affinity Bgtx binding and considerable secondary structure by CD. The structural features revealed in the CD profile appear to undergo a cooperative, two-state folding transition upon thermal denaturation. Initial NMR studies suggest that micellar preparations of the alphaT68M1 fragment are amenable to further high-resolution heteronuclear NMR analysis.
Collapse
Affiliation(s)
- M A Grant
- Department of Molecular Pharmacology, Physiology, and Biotechnology, Division of Biology and Medicine, Brown University, Providence, Rhode Island 02912, USA
| | | | | | | | | |
Collapse
|
45
|
Abstract
The pleckstrin homology and C2 domains are modular protein structures involved in mediating intermolecular interactions. Although they represent distinct domains, there are several parallels regarding their function and type of interactions in which they participate. Both domains are stable structural entities that incorporate variable regions which, in different proteins, can be adapted to perform a specific function through binding to membrane phospholipids or specific protein ligands. A number of recent examples illustrate the function of some of these domains in regulated membrane attachment, with an important role in many cellular signalling pathways.
Collapse
Affiliation(s)
- M Katan
- CRC Centre for Cell and Molecular Biology, Chester Beatty Laboratories, London, UK.
| | | |
Collapse
|
46
|
Wellner-Kienitz MC, Bender K, Brandts B, Meyer T, Pott L. Antisense oligonucleotides against receptor kinase GRK2 disrupt target selectivity of beta-adrenergic receptors in atrial myocytes. FEBS Lett 1999; 451:279-83. [PMID: 10371205 DOI: 10.1016/s0014-5793(99)00594-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
K+ channels composed of GIRK subunits are predominantly expressed in the heart and various regions of the brain. They are activated by betagamma-subunits released from pertussis toxin-sensitive G-proteins coupled to different seven-helix receptors. In rat atrial myocytes, activation of K(ACh) channels is strictly limited to receptors coupled to pertussis toxin-sensitive G-proteins. Upon treatment of myocytes with antisense oligodesoxynucleotides against GRK2, a receptor kinase with Gbetagamma binding sites, in a fraction of cells, K(ACh) channels can be activated by beta-adrenergic receptors. Sensitivity to beta-agonist is insensitive to pertussis toxin treatment. These findings demonstrate a potential role of Gbetagamma binding proteins for target selectivity of G-protein-coupled receptors.
Collapse
Affiliation(s)
- M C Wellner-Kienitz
- Institut für Physiologie, Abteilung Zelluläre Physiologie, Ruhr-Universität Bochum, Germany
| | | | | | | | | |
Collapse
|
47
|
|
48
|
Holbrook PG, Geetha V, Beaven MA, Munson PJ. Recognizing the pleckstrin homology domain fold in mammalian phospholipase D using hidden Markov models. FEBS Lett 1999; 448:269-72. [PMID: 10218490 DOI: 10.1016/s0014-5793(99)00366-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Phospholipase D was first described in plant tissue but has recently been shown to occur in mammalian cells where it is activated by cell surface receptors. Its mode of activation by receptors in unclear. Biochemical studies suggest that it may occur downstream of other effector proteins and that small GTP-dependent regulatory proteins may be involved. The sequence in a non-designated region of mammalian phospholipase D1 and 2 shows similarity to a structural domain that is present in signalling proteins that are regulated by protein kinases or heterotrimeric G-proteins. Mammalian phospholipase D has structural similarities with other lipid signalling phospholipases and thus may be regulated by receptors in an analogous fashion.
Collapse
Affiliation(s)
- P G Holbrook
- Laboratory of Molecular Immunology, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | |
Collapse
|
49
|
LeVine H. Structural features of heterotrimeric G-protein-coupled receptors and their modulatory proteins. Mol Neurobiol 1999; 19:111-49. [PMID: 10371466 DOI: 10.1007/bf02743657] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Over the past 20 years, the general mechanism for signaling through 7-transmembrane helix receptors coupled to GTP hydrolysis has been worked out. Although similar in overall organization, subtype variability and subcellular localization of components have built in considerable signaling specificity. Atomic resolution structures for many of the components have delineated the domain organization of these complex proteins and have given physical form to the idea of subtype specificity. This review describes what is known about the physical structures of the 7-transmembrane helix receptors, the heterotrimeric GTP binding coupling proteins, the adenylate cyclase and phospholipase C effector proteins, and signaling modulatory proteins, such as arrestin, phosducin, recoverin-type myristoyl switch proteins, and the pleckstrin homology domain of G-protein receptor kinase-2. These images allow experimenters to contemplate the details of the supramolecular organization of the multiprotein complexes involved in the transmission of signals across the cellular lipid bilayer.
Collapse
Affiliation(s)
- H LeVine
- Parke-Davis Pharmaceutical Research Division of Warner-Lambert Company, Ann Arbor, MI 48105, USA
| |
Collapse
|
50
|
Tanaka M, Konishi H, Touhara K, Sakane F, Hirata M, Ono Y, Kikkawa U. Identification of myosin II as a binding protein to the PH domain of protein kinase B. Biochem Biophys Res Commun 1999; 255:169-74. [PMID: 10082674 DOI: 10.1006/bbrc.1999.0162] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Myosin II was identified as a binding protein to the pleckstrin homology (PH) domain of protein kinase B (PKB) in CHO cell extract by using the glutathione S-transferase-fusion protein as a probe. When myosin II purified from rabbit skeletal muscle was employed, myosin II was shown to bind almost exclusively to the PH domain of PKB among the PH domain fusion proteins examined. The purified myosin II bound to the PH domain of PKB with a Kd value of 1.1 x 10(-7) M. Studies with a series of truncated molecules indicated that the whole structure of the PH domain is required for the binding of myosin II, and the binding to the PH domain was inhibited by phosphatidylinositol 4,5-bisphosphate. These results suggest that myosin II is a specific binding protein to the PH domain of particular proteins including PKB.
Collapse
Affiliation(s)
- M Tanaka
- Department of Biology, Faculty of Science, Kobe University, Kobe, 657-8501, Japan
| | | | | | | | | | | | | |
Collapse
|