1
|
Yoon JH, Bae E, Nagafuchi Y, Sudo K, Han JS, Park SH, Nakae S, Yamashita T, Ju JH, Matsumoto I, Sumida T, Miyazawa K, Kato M, Kuroda M, Lee IK, Fujio K, Mamura M. Repression of SMAD3 by STAT3 and c-Ski induces conventional dendritic cell differentiation. Life Sci Alliance 2024; 7:e201900581. [PMID: 38960622 PMCID: PMC11222659 DOI: 10.26508/lsa.201900581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 06/17/2024] [Accepted: 06/18/2024] [Indexed: 07/05/2024] Open
Abstract
A pleiotropic immunoregulatory cytokine, TGF-β, signals via the receptor-regulated SMADs: SMAD2 and SMAD3, which are constitutively expressed in normal cells. Here, we show that selective repression of SMAD3 induces cDC differentiation from the CD115+ common DC progenitor (CDP). SMAD3 was expressed in haematopoietic cells including the macrophage DC progenitor. However, SMAD3 was specifically down-regulated in CD115+ CDPs, SiglecH- pre-DCs, and cDCs, whereas SMAD2 remained constitutive. SMAD3-deficient mice showed a significant increase in cDCs, SiglecH- pre-DCs, and CD115+ CDPs compared with the littermate control. SMAD3 repressed the mRNA expression of FLT3 and the cDC-related genes: IRF4 and ID2. We found that one of the SMAD transcriptional corepressors, c-SKI, cooperated with phosphorylated STAT3 at Y705 and S727 to repress the transcription of SMAD3 to induce cDC differentiation. These data indicate that STAT3 and c-Ski induce cDC differentiation by repressing SMAD3: the repressor of the cDC-related genes during the developmental stage between the macrophage DC progenitor and CD115+ CDP.
Collapse
Affiliation(s)
- Jeong-Hwan Yoon
- Biomedical Research Institute, Kyungpook National University Hospital, Daegu, Republic of Korea
- Department of Molecular Pathology, Tokyo Medical University, Tokyo, Japan
- Shin-Young Medical Institute, Chiba, Japan
- Institute for the 3Rs, Department of Laboratory Animal Medicine, College of Veterinary Medicine, Konkuk University, Seoul, Republic of Korea
| | - Eunjin Bae
- Department of Molecular Pathology, Tokyo Medical University, Tokyo, Japan
- Department of Companion Health, Yeonsung University, Anyang, Republic of Korea
- Department of Experimental Pathology, Graduate School of Comprehensive Human Sciences and Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Yasuo Nagafuchi
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Katsuko Sudo
- Animal Research Center, Tokyo Medical University, Tokyo, Japan
| | - Jin Soo Han
- Institute for the 3Rs, Department of Laboratory Animal Medicine, College of Veterinary Medicine, Konkuk University, Seoul, Republic of Korea
| | - Seok Hee Park
- Department of Biological Sciences, Sungkyunkwan University, Suwon, Republic of Korea
| | - Susumu Nakae
- Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| | - Tadashi Yamashita
- Laboratory of Veterinary Biochemistry, Azabu University School of Veterinary Medicine, Sagamihara, Japan
| | - Ji Hyeon Ju
- Department of Rheumatology, Catholic University of Korea, Seoul St. Mary Hospital, Seoul, Republic of Korea
| | - Isao Matsumoto
- Department of Internal Medicine, University of Tsukuba, Tsukuba, Japan
| | - Takayuki Sumida
- Department of Internal Medicine, University of Tsukuba, Tsukuba, Japan
| | - Keiji Miyazawa
- Departments of Biochemistry, University of Yamanashi, Yamanashi, Japan
| | - Mitsuyasu Kato
- Department of Experimental Pathology, Graduate School of Comprehensive Human Sciences and Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Masahiko Kuroda
- Department of Molecular Pathology, Tokyo Medical University, Tokyo, Japan
| | - In-Kyu Lee
- Biomedical Research Institute, Kyungpook National University Hospital, Daegu, Republic of Korea
| | - Keishi Fujio
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Mizuko Mamura
- Biomedical Research Institute, Kyungpook National University Hospital, Daegu, Republic of Korea
- Shin-Young Medical Institute, Chiba, Japan
- Department of Advanced Nucleic Acid Medicine, Tokyo Medical University, Tokyo, Japan
| |
Collapse
|
2
|
Sluimer LM, Bullock E, Rätze MAK, Enserink L, Overbeeke C, Hornsveld M, Brunton VG, Derksen PWB, Tavares S. SKOR1 mediates FER kinase-dependent invasive growth of breast cancer cells. J Cell Sci 2023; 136:286925. [PMID: 36620935 DOI: 10.1242/jcs.260243] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 12/22/2022] [Indexed: 01/10/2023] Open
Abstract
High expression of the non-receptor tyrosine kinase FER is an independent prognostic factor that correlates with poor survival in breast cancer patients. To investigate whether the kinase activity of FER is essential for its oncogenic properties, we developed an ATP analogue-sensitive knock-in allele (FERASKI). Specific FER kinase inhibition in MDA-MB-231 cells reduces migration and invasion, as well as metastasis when xenografted into a mouse model of breast cancer. Using the FERASKI system, we identified Ski family transcriptional corepressor 1 (SKOR1) as a direct FER kinase substrate. SKOR1 loss phenocopies FER inhibition, leading to impaired proliferation, migration and invasion, and inhibition of breast cancer growth and metastasis formation in mice. We show that SKOR1 Y234, a candidate FER phosphorylation site, is essential for FER-dependent tumor progression. Finally, our work suggests that the SKOR1 Y234 residue promotes Smad2/3 signaling through SKOR1 binding to Smad3. Our study thus identifies SKOR1 as a mediator of FER-dependent progression of high-risk breast cancers.
Collapse
Affiliation(s)
- Lilian M Sluimer
- Department of Pathology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Esme Bullock
- Edinburgh Cancer Research UK Centre, University of Edinburgh, Crewe Road South, EH4 2XR Edinburgh, UK
| | - Max A K Rätze
- Department of Pathology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Lotte Enserink
- Department of Pathology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Celine Overbeeke
- Department of Pathology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Marten Hornsveld
- Department of Molecular Cell Biology, Cancer Genomics Centre Netherlands and Centre for Biomedical Genetics, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, The Netherlands
| | - Valerie G Brunton
- Edinburgh Cancer Research UK Centre, University of Edinburgh, Crewe Road South, EH4 2XR Edinburgh, UK
| | - Patrick W B Derksen
- Department of Pathology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Sandra Tavares
- Department of Pathology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands.,i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal.,IPATIMUP - Instituto de Patologia e Imunologia Molecular da Universidade do Porto, Rua Júlio Amaral de Carvalho 45, 4200-135 Porto, Portugal
| |
Collapse
|
3
|
Cappelli C, Sepulveda H, Rivas S, Pola V, Urzúa U, Donoso G, Sagredo E, Carrero D, Casanova-Ortiz E, Sagredo A, González M, Manterola M, Nardocci G, Armisén R, Montecino M, Marcelain K. Ski Is Required for Tri-Methylation of H3K9 in Major Satellite and for Repression of Pericentromeric Genes: Mmp3, Mmp10 and Mmp13, in Mouse Fibroblasts. J Mol Biol 2020; 432:3222-3238. [PMID: 32198114 DOI: 10.1016/j.jmb.2020.03.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 02/23/2020] [Accepted: 03/11/2020] [Indexed: 11/27/2022]
Abstract
Several mechanisms directing a rapid transcriptional reactivation of genes immediately after mitosis have been described. However, little is known about the maintenance of repressive signals during mitosis. In this work, we address the role of Ski in the repression of gene expression during M/G1 transition in mouse embryonic fibroblasts (MEFs). We found that Ski localises as a distinct pair of dots at the pericentromeric region of mitotic chromosomes, and the absence of the protein is related to high acetylation and low tri-methylation of H3K9 in pericentromeric major satellite. Moreover, differential expression assays in early G1 cells showed that the presence of Ski is significantly associated with repression of genes localised nearby to pericentromeric DNA. In mitotic cells, chromatin immunoprecipitation assays confirmed the association of Ski to major satellite and the promoters of the most repressed genes: Mmp3, Mmp10 and Mmp13. These genes are at pericentromeric region of chromosome 9. In these promoters, the presence of Ski resulted in increased H3K9 tri-methylation levels. This Ski-dependent regulation is also observed during interphase. Consequently, Mmp activity is augmented in Ski-/- MEFs. Altogether, these data indicate that association of Ski with the pericentromeric region of chromosomes during mitosis is required to maintain the silencing bookmarks of underlying chromatin.
Collapse
Affiliation(s)
- Claudio Cappelli
- Departamento de Oncología Básico Clínica. Facultad de Medicina, Universidad de Chile, Santiago, Chile; Instituto de Bioquimica y Microbiologia, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| | - Hugo Sepulveda
- Instituto de Ciencias Biomédicas, Facultad de Medicina y Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Solange Rivas
- Departamento de Oncología Básico Clínica. Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Víctor Pola
- Departamento de Oncología Básico Clínica. Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Ulises Urzúa
- Departamento de Oncología Básico Clínica. Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Gerardo Donoso
- Departamento de Oncología Básico Clínica. Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Eduardo Sagredo
- Departamento de Oncología Básico Clínica. Facultad de Medicina, Universidad de Chile, Santiago, Chile; Centro de Genética y Genómica, Instituto de Ciencias e Innovación en Medicina, Facultad de Medicina Clínica Alemana Universidad del Desarrollo, Santiago, Chile
| | - David Carrero
- Departamento de Oncología Básico Clínica. Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Emmanuel Casanova-Ortiz
- Departamento de Oncología Básico Clínica. Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Alfredo Sagredo
- Departamento de Oncología Básico Clínica. Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Marisel González
- Departamento de Oncología Básico Clínica. Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Marcia Manterola
- Instituto de Ciencias Biomédicas. Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Gino Nardocci
- Instituto de Ciencias Biomédicas, Facultad de Medicina y Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile; FONDAP Center for Genome Regulation, Santiago, Chile
| | - Ricardo Armisén
- Departamento de Oncología Básico Clínica. Facultad de Medicina, Universidad de Chile, Santiago, Chile; Centro de Genética y Genómica, Instituto de Ciencias e Innovación en Medicina, Facultad de Medicina Clínica Alemana Universidad del Desarrollo, Santiago, Chile
| | - Martin Montecino
- Instituto de Ciencias Biomédicas, Facultad de Medicina y Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile; FONDAP Center for Genome Regulation, Santiago, Chile
| | - Katherine Marcelain
- Departamento de Oncología Básico Clínica. Facultad de Medicina, Universidad de Chile, Santiago, Chile.
| |
Collapse
|
4
|
Landry N, Kavosh MS, Filomeno KL, Rattan SG, Czubryt MP, Dixon IMC. Ski drives an acute increase in MMP-9 gene expression and release in primary cardiac myofibroblasts. Physiol Rep 2019; 6:e13897. [PMID: 30488595 PMCID: PMC6429976 DOI: 10.14814/phy2.13897] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 09/24/2018] [Accepted: 09/26/2018] [Indexed: 12/12/2022] Open
Abstract
Many etiologies of heart disease are characterized by expansion and remodeling of the cardiac extracellular matrix (ECM or matrix) which results in cardiac fibrosis. Cardiac fibrosis is mediated in cardiac fibroblasts by TGF‐β1/R‐Smad2/3 signaling. Matrix component proteins are synthesized by activated resident cardiac fibroblasts known as myofibroblasts (MFB). These events are causal to heart failure with diastolic dysfunction and reduced cardiac filling. We have shown that exogenous Ski, a TGF‐β1/Smad repressor, localizes in the cellular nucleus and deactivates cardiac myofibroblasts. This deactivation is associated with reduction of myofibroblast marker protein expression in vitro, including alpha smooth muscle actin (α‐SMA) and extracellular domain‐A (ED‐A) fibronectin. We hypothesize that Ski also acutely regulates MMP expression in cardiac MFB. While acute Ski overexpression in cardiac MFB in vitro was not associated with any change in intracellular MMP‐9 protein expression versus LacZ‐treated controls,exogenous Ski caused elevated MMP‐9 mRNA expression and increased MMP‐9 protein secretion versus controls. Zymographic analysis revealed increased MMP‐9‐specific gelatinase activity in myofibroblasts overexpressing Ski versus controls. Moreover, Ski expression was attended by reduced paxillin and focal adhesion kinase phosphorylation (FAK ‐ Tyr 397) versus controls. As myofibroblasts are hypersecretory and less motile relative to fibroblasts, Ski's reduction of paxillin and FAK expression may reflect the relative deactivation of myofibroblasts. Thus, in addition to its known antifibrotic effects, Ski overexpression elevates expression and extracellular secretion/release of MMP‐9 and thus may facilitate internal cytoskeletal remodeling as well as extracellular ECM components. Further, as acute TGF‐β1 treatment of primary cardiac MFB is known to cause rapid translocation of Ski to the nucleus, our data support an autoregulatory role for Ski in mediating cardiac ECM accumulation.
Collapse
Affiliation(s)
- Natalie Landry
- Department of Physiology and Pathophysiology, Institute of Cardiovascular Sciences, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Morvarid S Kavosh
- Department of Physiology and Pathophysiology, Institute of Cardiovascular Sciences, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Krista L Filomeno
- Department of Physiology and Pathophysiology, Institute of Cardiovascular Sciences, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Sunil G Rattan
- Department of Physiology and Pathophysiology, Institute of Cardiovascular Sciences, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Michael P Czubryt
- Department of Physiology and Pathophysiology, Institute of Cardiovascular Sciences, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Ian M C Dixon
- Department of Physiology and Pathophysiology, Institute of Cardiovascular Sciences, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
5
|
Zeglinski MR, Moghadam AR, Ande SR, Sheikholeslami K, Mokarram P, Sepehri Z, Rokni H, Mohtaram NK, Poorebrahim M, Masoom A, Toback M, Sareen N, Saravanan S, Jassal DS, Hashemi M, Marzban H, Schaafsma D, Singal P, Wigle JT, Czubryt MP, Akbari M, Dixon IM, Ghavami S, Gordon JW, Dhingra S. Myocardial Cell Signaling During the Transition to Heart Failure. Compr Physiol 2018; 9:75-125. [DOI: 10.1002/cphy.c170053] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
6
|
Muench DE, Ferchen K, Velu CS, Pradhan K, Chetal K, Chen X, Weirauch MT, Colmenares C, Verma A, Salomonis N, Grimes HL. SKI controls MDS-associated chronic TGF-β signaling, aberrant splicing, and stem cell fitness. Blood 2018; 132:e24-e34. [PMID: 30249787 PMCID: PMC6251005 DOI: 10.1182/blood-2018-06-860890] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 09/18/2018] [Indexed: 01/19/2023] Open
Abstract
The transforming growth factor beta (TGF-β) signaling pathway controls hematopoietic stem cell (HSC) behavior in the marrow niche; however, TGF-β signaling becomes chronic in early-stage myelodysplastic syndrome (MDS). Although TGF-β signaling normally induces negative feedback, in early-stage MDS, high levels of microRNA-21 (miR-21) contribute to chronic TGF-β signaling. We found that a TGF-β signal-correlated gene signature is sufficient to identify an MDS patient population with abnormal RNA splicing (eg, CSF3R) independent of splicing factor mutations and coincident with low HNRNPK activity. Levels of SKI messenger RNA (mRNA) encoding a TGF-β antagonist are sufficient to identify these patients. However, MDS patients with high SKI mRNA and chronic TGF-β signaling lack SKI protein because of miR-21 activity. To determine the impact of SKI loss, we examined murine Ski -/- HSC function. First, competitive HSC transplants revealed a profound defect in stem cell fitness (competitive disadvantage) but not specification, homing, or multilineage production. Aged recipients of Ski -/- HSCs exhibited mild phenotypes similar to phenotypes in those with macrocytic anemia. Second, blastocyst complementation revealed a dramatic block in Ski -/- hematopoiesis in the absence of transplantation. Similar to SKI-high MDS patient samples, Ski -/- HSCs strikingly upregulated TGF-β signaling and deregulated expression of spliceosome genes (including Hnrnpk). Moreover, novel single-cell splicing analyses demonstrated that Ski -/- HSCs and high levels of SKI expression in MDS patient samples share abnormal alternative splicing of common genes (including those that encode splicing factors). We conclude that miR-21-mediated loss of SKI activates TGF-β signaling and alternative splicing to impair the competitive advantage of normal HSCs (fitness), which could contribute to selection of early-stage MDS-genic clones.
Collapse
Affiliation(s)
- David E Muench
- Division of Immunobiology and Center for Systems Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - Kyle Ferchen
- Division of Immunobiology and Center for Systems Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - Chinavenmeni S Velu
- Division of Immunobiology and Center for Systems Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - Kith Pradhan
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY
| | | | | | - Matthew T Weirauch
- Division of Biomedical Informatics
- Center for Autoimmune Genomics and Etiology, and
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH
| | - Clemencia Colmenares
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
| | - Amit Verma
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY; and
| | | | - H Leighton Grimes
- Division of Immunobiology and Center for Systems Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| |
Collapse
|
7
|
Tecalco-Cruz AC, Ríos-López DG, Vázquez-Victorio G, Rosales-Alvarez RE, Macías-Silva M. Transcriptional cofactors Ski and SnoN are major regulators of the TGF-β/Smad signaling pathway in health and disease. Signal Transduct Target Ther 2018; 3:15. [PMID: 29892481 PMCID: PMC5992185 DOI: 10.1038/s41392-018-0015-8] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 02/16/2018] [Accepted: 03/15/2018] [Indexed: 12/19/2022] Open
Abstract
The transforming growth factor-β (TGF-β) family plays major pleiotropic roles by regulating many physiological processes in development and tissue homeostasis. The TGF-β signaling pathway outcome relies on the control of the spatial and temporal expression of >500 genes, which depend on the functions of the Smad protein along with those of diverse modulators of this signaling pathway, such as transcriptional factors and cofactors. Ski (Sloan-Kettering Institute) and SnoN (Ski novel) are Smad-interacting proteins that negatively regulate the TGF-β signaling pathway by disrupting the formation of R-Smad/Smad4 complexes, as well as by inhibiting Smad association with the p300/CBP coactivators. The Ski and SnoN transcriptional cofactors recruit diverse corepressors and histone deacetylases to repress gene transcription. The TGF-β/Smad pathway and coregulators Ski and SnoN clearly regulate each other through several positive and negative feedback mechanisms. Thus, these cross-regulatory processes finely modify the TGF-β signaling outcome as they control the magnitude and duration of the TGF-β signals. As a result, any alteration in these regulatory mechanisms may lead to disease development. Therefore, the design of targeted therapies to exert tight control of the levels of negative modulators of the TGF-β pathway, such as Ski and SnoN, is critical to restore cell homeostasis under the specific pathological conditions in which these cofactors are deregulated, such as fibrosis and cancer. Proteins that repress molecular signaling through the transforming growth factor-beta (TGF-β) pathway offer promising targets for treating cancer and fibrosis. Marina Macías-Silva and colleagues from the National Autonomous University of Mexico in Mexico City review the ways in which a pair of proteins, called Ski and SnoN, interact with downstream mediators of TGF-β to inhibit the effects of this master growth factor. Aberrant levels of Ski and SnoN have been linked to diverse range of diseases involving cell proliferation run amok, and therapies that regulate the expression of these proteins could help normalize TGF-β signaling to healthier physiological levels. For decades, drug companies have tried to target the TGF-β pathway, with limited success. Altering the activity of these repressors instead could provide a roundabout way of remedying pathogenic TGF-β activity in fibrosis and oncology.
Collapse
Affiliation(s)
- Angeles C Tecalco-Cruz
- 1Instituto de Investigaciones Biomédicas at Universidad Nacional Autónoma de México, Mexico city, 04510 Mexico
| | - Diana G Ríos-López
- 2Instituto de Fisiología Celular at Universidad Nacional Autónoma de México, Mexico city, 04510 Mexico
| | | | - Reyna E Rosales-Alvarez
- 2Instituto de Fisiología Celular at Universidad Nacional Autónoma de México, Mexico city, 04510 Mexico
| | - Marina Macías-Silva
- 2Instituto de Fisiología Celular at Universidad Nacional Autónoma de México, Mexico city, 04510 Mexico
| |
Collapse
|
8
|
Abstract
The transforming growth factor-β (TGF-β) family of ligands elicit their biological effects by initiating new programs of gene expression. The best understood signal transducers for these ligands are the SMADs, which essentially act as transcription factors that are activated in the cytoplasm and then accumulate in the nucleus in response to ligand induction where they bind to enhancer/promoter sequences in the regulatory regions of target genes to either activate or repress transcription. This review focuses on the mechanisms whereby the SMADs achieve this and the functional implications. The SMAD complexes have weak affinity for DNA and limited specificity and, thus, they cooperate with other site-specific transcription factors that act either to actively recruit the SMAD complexes or to stabilize their DNA binding. In some situations, these cooperating transcription factors function to integrate the signals from TGF-β family ligands with environmental cues or with information about cell lineage. Activated SMAD complexes regulate transcription via remodeling of the chromatin template. Consistent with this, they recruit a variety of coactivators and corepressors to the chromatin, which either directly or indirectly modify histones and/or modulate chromatin structure.
Collapse
Affiliation(s)
- Caroline S Hill
- The Francis Crick Institute, Lincoln's Inn Fields Laboratory, London WC2A 3LY, United Kingdom
| |
Collapse
|
9
|
Abstract
Human retinoblastoma gene RB1 is the first tumor suppressor gene (TSG) isolated by positional cloning in 1986. RB is extensively studied for its ability to regulate cell cycle by binding to E2F1 and inhibiting the transcriptional activity of the latter. In human embryonic stem cells (ESCs), only a minute trace of RB is found in complex with E2F1. Increased activity of RB triggers differentiation, cell cycle arrest, and cell death. On the other hand, inactivation of the entire RB family (RB1, RBL1, and RBL2) in human ESC induces G2/M arrest and cell death. These observations indicate that both loss and overactivity of RB could be lethal for the stemness of cells. A question arises why inactive RB is required for the survival and stemness of cells? To shed some light on this question, we analyzed the RB-binding proteins. In this review we have focused on 27 RB-binding partners that may have potential roles in different aspects of stem cell biology.
Collapse
Affiliation(s)
- M Mushtaq
- Karolinska Institutet, Stockholm, Sweden
| | | | - E V Kashuba
- Karolinska Institutet, Stockholm, Sweden; R.E. Kavetsky Institute of Experimental Pathology, Oncology and Radiobiology, NASU, Kyiv, Ukraine.
| |
Collapse
|
10
|
Kim H, Cho YM, Ko YG, Choe C, Seong HH. Relationship between Sloan-Kettering virus expression and mammalian follicular development. ZYGOTE 2015:1-9. [PMID: 26228242 DOI: 10.1017/s0967199415000362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Sloan-Kettering virus gene, a product of a cellular proto-oncogene c-Ski is a unique nuclear pro-oncoprotein and belongs to the Ski/Sno proto-oncogene family. The aim of the present study was to locate Ski protein in rat ovaries in order to find insights into the possible involvement of Ski in follicular development. First, expression of c-Ski mRNA in the ovaries of adult female rats was confirmed by RT-PCR. Then, ovaries obtained on the day of estrus were subjected to immunohistochemical analysis for Ski and proliferating cell nuclear antigen (PCNA) in combination with terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL). RT-PCR and in situ hybridization revealed that c-Ski mRNA was expressed in the ovaries of the adult rat on the day of estrous and localized mainly in the granulose cells. Ski was expressed in granulosa cells that were positive for TUNEL, but negative for PCNA, regardless of the shape and size of follicles. Expression of Ski in TUNEL-positive granulosa cells, but not in PCNA-positive granulosa cells, was also verified in rats having atretic follicles with double staining. These results indicate that Ski is profoundly expressed in the granulosa cells of atretic follicles, but not in growing follicles. Based on the present findings, Ski may play a role in the apoptosis of granulosa cells during follicular atresia.
Collapse
Affiliation(s)
- Hyun Kim
- Department of Veterinary Physiology,Graduate School of Agricultural and Life Science,The University of Tokyo,1-1-1 Yayoi,Bunkyo-ku,Tokyo 113-8657,Japan
| | - Young Moo Cho
- Animal Genetic Resources Research Center,National Institute of Animal Science,RDA,Namwon 590-832,Republic of Korea
| | - Yeoung-Gyu Ko
- Animal Biotechnology Division,National Institute of Animal Science,RDA,Suwon 441-706,Republic of Korea
| | - Changyong Choe
- Animal Genetic Resources Research Center,National Institute of Animal Science,RDA,Namwon 590-832,Republic of Korea
| | - Hwan-Hoo Seong
- Animal Genetic Resources Research Center,National Institute of Animal Science,RDA,Namwon 590-832,Republic of Korea
| |
Collapse
|
11
|
Tulley S, Chen WT. Transcriptional regulation of seprase in invasive melanoma cells by transforming growth factor-β signaling. J Biol Chem 2014; 289:15280-96. [PMID: 24727589 DOI: 10.1074/jbc.m114.568501] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The tumor invasive phenotype driven by seprase expression/activity has been widely examined in an array of malignant tumor cell types; however, very little is known about the transcriptional regulation of this critical protease. Seprase (also named fibroblast activation protein-α, antiplasmin-cleaving enzyme, and dipeptidyl prolyl peptidase 5) is expressed at high levels by stromal fibroblast, endothelial, and tumor cells in a variety of invasive tumors but is undetectable in the majority of normal adult tissues. To examine the transcriptional regulation of the gene, we cloned the human seprase promoter and demonstrated that endogenous seprase expression and exogenous seprase promoter activity are high in invasive melanoma cells but not in non-invasive melanoma cells/primary melanocytes. In addition, we identified a crucial TGF-β-responsive cis-regulatory element in the proximal seprase promoter region that enabled robust transcriptional activation of the gene. Treatment of metastatic but not normal/non-invasive cells with TGF-β1 caused a rapid and profound up-regulation of endogenous seprase mRNA, which coincided with an abolishment of the negative regulator c-Ski, and an increase in binding of Smad3/4 to the seprase promoter in vivo. Blocking TGF-β signaling in invasive melanoma cells through overexpression of c-Ski, chemically using SB-431542, or with a neutralizing antibody against TGF-β significantly reduced seprase mRNA levels. Strikingly, RNAi of seprase in invasive cells greatly diminished their invasive potential in vitro as did blocking TGF-β signaling using SB-431542. Altogether, we found that seprase is transcriptionally up-regulated in invasive melanoma cells via the canonical TGF-β signaling pathway, supporting the roles of both TGF-β and seprase in tumor invasion and metastasis.
Collapse
Affiliation(s)
- Shaun Tulley
- From the Metastasis Research Laboratory, Division of Gynecologic Oncology, Stony Brook Medicine, Stony Brook, New York 11794
| | - Wen-Tien Chen
- From the Metastasis Research Laboratory, Division of Gynecologic Oncology, Stony Brook Medicine, Stony Brook, New York 11794
| |
Collapse
|
12
|
Singbrant S, Wall M, Moody J, Karlsson G, Chalk AM, Liddicoat B, Russell MR, Walkley CR, Karlsson S. The SKI proto-oncogene enhances the in vivo repopulation of hematopoietic stem cells and causes myeloproliferative disease. Haematologica 2014; 99:647-55. [PMID: 24415629 DOI: 10.3324/haematol.2013.093971] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The proto-oncogene SKI is highly expressed in human myeloid leukemia and also in murine hematopoietic stem cells. However, its operative relevance in these cells remains elusive. We have over-expressed SKI to define its intrinsic role in hematopoiesis and myeloid neoplasms, which resulted in a robust competitive advantage upon transplantation, a complete dominance of the stem and progenitor compartments, and a marked enhancement of myeloid differentiation at the expense of other lineages. Accordingly, enforced expression of SKI induced a gene signature associated with hematopoietic stem cells and myeloid differentiation, as well as hepatocyte growth factor signaling. Here we demonstrate that, in contrast to what has generally been assumed, the significant impact of SKI on hematopoiesis is independent of its ability to inhibit TGF-beta signaling. Instead, myeloid progenitors expressing SKI are partially dependent on functional hepatocyte growth factor signaling. Collectively our results demonstrate that SKI is an important regulator of hematopoietic stem cell activity and its overexpression leads to myeloproliferative disease.
Collapse
|
13
|
Ross S, Hill CS. How the Smads regulate transcription. Int J Biochem Cell Biol 2007; 40:383-408. [PMID: 18061509 DOI: 10.1016/j.biocel.2007.09.006] [Citation(s) in RCA: 288] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2007] [Revised: 09/19/2007] [Accepted: 09/20/2007] [Indexed: 01/01/2023]
Abstract
The primary signalling pathway downstream of ligands of the transforming growth factor beta (TGF-beta) superfamily is the Smad pathway. Activated receptors phosphorylate receptor-regulated Smads, which form homomeric complexes and heteromeric complexes with Smad4. These activated Smad complexes accumulate in the nucleus, where they are directly involved in the regulation of transcription of target genes. This apparently very simple pathway is subject to complex regulation, much of which is at the level of post-translational modifications of pathway components, in particular, the Smads. The enzymes responsible may be constitutively active, may be cell type-specific or may be regulated by other signalling pathways or by the cell cycle. In this way, signals from TGF-beta superfamily ligands are integrated with signals from other growth factors and cytokines, are regulated by the cell cycle and are dependent on cell type. This may go some way to explaining the pleiotropic nature of TGF-beta superfamily responses. In this review we focus on the mechanisms whereby the Smads are modified and regulated. We then go on to discuss how the activated Smad complexes regulate transcription.
Collapse
Affiliation(s)
- Sarah Ross
- Laboratory of Developmental Signalling, Cancer Research UK London Research Institute, Lincoln's Inn Fields Laboratories, 44 Lincoln's Inn Fields, London WC2A 3PX, United Kingdom
| | | |
Collapse
|
14
|
Levy L, Howell M, Das D, Harkin S, Episkopou V, Hill CS. Arkadia activates Smad3/Smad4-dependent transcription by triggering signal-induced SnoN degradation. Mol Cell Biol 2007; 27:6068-83. [PMID: 17591695 PMCID: PMC1952153 DOI: 10.1128/mcb.00664-07] [Citation(s) in RCA: 147] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
E3 ubiquitin ligases play important roles in regulating transforming growth factor beta (TGF-beta)/Smad signaling. Screening of an E3 ubiquitin ligase small interfering RNA library, using TGF-beta induction of a Smad3/Smad4-dependent luciferase reporter as a readout, revealed that Arkadia is an E3 ubiquitin ligase that is absolutely required for this TGF-beta response. Knockdown of Arkadia or overexpression of a dominant-negative mutant completely abolishes transcription from Smad3/Smad4-dependent reporters, but not from Smad1/Smad4-dependent reporters or from reporters driven by Smad2/Smad4/FoxH1 complexes. We show that Arkadia specifically activates transcription via Smad3/Smad4 binding sites by inducing degradation of the transcriptional repressor SnoN. Arkadia is essential for TGF-beta-induced SnoN degradation, but it has little effect on SnoN levels in the absence of signal. Arkadia interacts with SnoN and induces its ubiquitination irrespective of TGF-beta/Activin signaling, but SnoN is efficiently degraded only when it forms a complex with both Arkadia and phosphorylated Smad2 or Smad3. Finally, we describe an esophageal cancer cell line (SEG-1) that we show has lost Arkadia expression and is deficient for SnoN degradation. Reintroduction of wild-type Arkadia restores TGF-beta-induced Smad3/Smad4-dependent transcription and SnoN degradation in these cells, raising the possibility that loss of Arkadia function may be relevant in cancer.
Collapse
Affiliation(s)
- Laurence Levy
- Laboratory of Developmental Signalling, Cancer Research UK London Research Institute, Lincoln's Inn Fields Laboratories, 44 Lincoln's Inn Fields, London WC2A 3PX, United Kingdom
| | | | | | | | | | | |
Collapse
|
15
|
Arndt S, Poser I, Schubert T, Moser M, Bosserhoff AK. Cloning and functional characterization of a new Ski homolog, Fussel-18, specifically expressed in neuronal tissues. J Transl Med 2005; 85:1330-41. [PMID: 16200078 DOI: 10.1038/labinvest.3700344] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The Sloan Kettering Virus (Ski) family of nuclear oncoproteins represses transforming growth factor-beta (TGF-beta) signaling through inhibition of transcriptional activity of Smad proteins. Here, we report the discovery of a new functional Smad suppressing element on chromosome 18 (Fussel-18). Fussel-18 encodes for a protein of 297 amino acids sharing characteristic structural features, significant homology and similar genomic organization with the homolog Ski family members, Ski and Ski-related novel sequence (Sno). In contrast to Ski and Sno, which are ubiquitously expressed in human tissues, in situ hybridization, RT-PCR, Western blot and immunohistochemistry revealed a highly specific expression pattern for Fussel-18 in neuronal tissues, especially in the cerebellum, the spinal cord and dorsal root ganglia, during both embryogenesis and adult stage. Functionally, we determined interaction of Fussel-18 with Smad 2 and Smad 3 together with an inhibitory activity on TGF-beta signaling. Fussel-18 is the first example of a Smad-binding protein with a highly restricted expression pattern within the nervous system.
Collapse
Affiliation(s)
- Stephanie Arndt
- University of Regensburg Medical School, Regensburg, Germany
| | | | | | | | | |
Collapse
|
16
|
Seufert DW, Hegde RS, Nekkalapudi S, Kelly LE, El-Hodiri HM. Expression of a novel Ski-like gene in Xenopus development. Gene Expr Patterns 2005; 6:22-8. [PMID: 16169285 DOI: 10.1016/j.modgep.2005.05.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2005] [Revised: 05/18/2005] [Accepted: 05/27/2005] [Indexed: 11/20/2022]
Abstract
Members of the Ski/Sno family of gene products contain a characteristic peptide domain involved in protein-protein or protein-DNA interaction. Here, we characterize the developmental expression of xDawg, in Xenopus laevis, of a new gene, related to the Ski/Sno family of transcription regulators. The Ski/Sno domain of xDawg is predicted to present an electropositive surface, consistent with a role in DNA binding. This gene is expressed in the marginal zone of early gastrulae, and in the brain, sensory vesicles, and cranial neural crest of neurula and tailbud embryos.
Collapse
Affiliation(s)
- Daniel W Seufert
- Center for Molecular and Human Genetics, Columbus Children's Research Institute, 700 Children's Dr., Columbus, OH 43026, USA
| | | | | | | | | |
Collapse
|
17
|
Nikolajewa S, Beyer A, Friedel M, Hollunder J, Wilhelm T. Common patterns in type II restriction enzyme binding sites. Nucleic Acids Res 2005; 33:2726-33. [PMID: 15888729 PMCID: PMC1097771 DOI: 10.1093/nar/gki575] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Restriction enzymes are among the best studied examples of DNA binding proteins. In order to find general patterns in DNA recognition sites, which may reflect important properties of protein–DNA interaction, we analyse the binding sites of all known type II restriction endonucleases. We find a significantly enhanced GC content and discuss three explanations for this phenomenon. Moreover, we study patterns of nucleotide order in recognition sites. Our analysis reveals a striking accumulation of adjacent purines (R) or pyrimidines (Y). We discuss three possible reasons: RR/YY dinucleotides are characterized by (i) stronger H-bond donor and acceptor clusters, (ii) specific geometrical properties and (iii) a low stacking energy. These features make RR/YY steps particularly accessible for specific protein–DNA interactions. Finally, we show that the recognition sites of type II restriction enzymes are underrepresented in host genomes and in phage genomes.
Collapse
Affiliation(s)
| | | | | | | | - Thomas Wilhelm
- To whom correspondence should be addressed. Tel: +49 3641 65 6208; Fax: +49 3641 65 6191;
| |
Collapse
|
18
|
Abstract
Melanoma incidence is rising worldwide. Early diagnosis is very important, as the most effective treatment for melanoma still consists of excision of the tumour before onset of the metastatic growth phase. Immunohistochemistry is a valuable tool for (dermato)pathologists to aid establishing diagnosis. Melanoma markers can be classified into two main categories: melanocytic differentiation markers and melanoma progression markers. Melanocytic differentiation markers are mostly used to distinguish poorly differentiated melanomas from non-melanocytic tumours and for staging of melanocytic proliferative lesions. Melanoma progression markers are most suitable to determine the level of malignancy and/or aggressiveness of tumour cells. This review describes the classification of melanoma markers, including commonly used and recently identified antigens with potential marker function. We characterize their expression profile in melanocytic proliferative lesions and their potential usefulness for diagnosis, prognosis, microstaging, immunotherapeutic purposes and evaluation of therapies.
Collapse
Affiliation(s)
- N J W de Wit
- Department of Pathology, University Medical Centre St Radboud, Nijmegen, The Netherlands.
| | | | | |
Collapse
|
19
|
Baldwin A, Pirisi L, Creek KE. NFI-Ski interactions mediate transforming growth factor beta modulation of human papillomavirus type 16 early gene expression. J Virol 2004; 78:3953-64. [PMID: 15047811 PMCID: PMC374275 DOI: 10.1128/jvi.78.8.3953-3964.2004] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Human papillomaviruses (HPVs) are present in virtually all cervical cancers. An important step in the development of malignant disease, including cervical cancer, involves a loss of sensitivity to transforming growth factor beta (TGF-beta). HPV type 16 (HPV16) early gene expression, including that of the E6 and E7 oncoprotein genes, is under the control of the upstream regulatory region (URR), and E6 and E7 expression in HPV16-immortalized human epithelial cells is inhibited at the transcriptional level by TGF-beta. While the URR contains a myriad of transcription factor binding sites, including seven binding sites for nuclear factor I (NFI), the specific sequences within the URR or the transcription factors responsible for TGF-beta modulation of the URR remain unknown. To identify potential transcription factors and binding sites involved in TGF-beta modulation of the URR, we performed DNase I footprint analysis on the HPV16 URR using nuclear extracts from TGF-beta-sensitive HPV16-immortalized human keratinocytes (HKc/HPV16) treated with and without TGF-beta. Differentially protected regions were found to be located around NFI binding sites. Electrophoretic mobility shift assays, using the NFI binding sites as probes, showed decreased binding upon TGF-beta treatment. This decrease in binding was not due to reduced NFI protein or NFI mRNA levels. Mutational analysis of individual and multiple NFI binding sites in the URR defined their role in TGF-beta sensitivity of the promoter. Overexpression of the NFI family members in HKc/HPV16 decreased the ability of TGF-beta to inhibit the URR. Since the oncoprotein Ski has been shown to interact with and increase the transcriptional activity of NFI and since cellular Ski levels are decreased by TGF-beta treatment, we explored the possibility that Ski may provide a link between TGF-beta signaling and NFI activity. Anti-NFI antibodies coimmunoprecipitated endogenous Ski in nuclear extracts from HKc/HPV16, confirming that NFI and Ski interact in these cells. Ski levels dramatically decreased upon TGF-beta treatment of HKc/HPV16, and overexpression of Ski eliminated the ability of TGF-beta to inhibit the URR. Based on these studies, we propose that TGF-beta inhibition of HPV16 early gene expression is mediated by a decrease in Ski levels, which in turn dramatically reduces NFI activity.
Collapse
Affiliation(s)
- Amy Baldwin
- Department of Pathology and Microbiology, University of South Carolina School of Medicine, Columbia, South Carolina 29208, USA
| | | | | |
Collapse
|
20
|
Abstract
The Ski protein has been proposed to serve as a corepressor for Smad4 to maintain a transforming growth factor-beta (TGF-beta)-responsive promoter at a repressed, basal level. However, there have been no reports so far that it indeed acts on a natural promoter. We have previously cloned the human Smad7 promoter and shown that it contains the 8-base pair palindromic Smad-binding element (SBE) necessary for TGF-beta induction. In this report, we have characterized the negative regulation of Smad7 promoter basal activity by Ski. We show that Ski inhibits the Smad7 promoter basal activity in a SBE-dependent manner. Mutation of the SBE abrogates the inhibitory effect of Ski on the Smad7 promoter. Moreover, mutation of the SBE increases the Smad7 promoter basal activity. Using the chromatin immunoprecipitation assay, we further show that Ski together with Smad4 binds to the endogenous Smad7 promoter. Finally, we show that RNAi knockdown of Ski increases Smad7 reporter gene activity in transient transfection assays as well as elevating the endogenous level of Smad7 mRNA. Taken together, our results provide the first evidence that Ski is indeed a corepressor for Smad4, which can inhibit a natural TGF-beta responsive gene at the basal state.
Collapse
Affiliation(s)
- Natalia G Denissova
- Center for Advanced Biotechnology and Medicine, Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 679 Hoes Land, Piscataway, NJ 08854, USA
| | | |
Collapse
|
21
|
Costelli P, Carbó N, Busquets S, López-Soriano FJ, Baccino FM, Argilés JM. Reduced protein degradation rates and low expression of proteolytic systems support skeletal muscle hypertrophy in transgenic mice overexpressing the c-ski oncogene. Cancer Lett 2003; 200:153-60. [PMID: 14568169 DOI: 10.1016/s0304-3835(03)00415-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We have investigated the protein turnover modulations involved in the hypertrophic muscle phenotype of c-ski overexpressing transgenic mice. In these animals, the body weight is increased and all the muscles examined show a definite hypertrophy. The protein degradation rate is significantly reduced in the fast twitch muscles of c-ski transgenic animals with respect to controls; in contrast, there are no detectable differences in the synthesis rates. The down-regulation of protein breakdown is paralleled by decreased expression of genes belonging to the lysosomal as well as to the ATP-ubiquitin-dependent proteolytic pathways.
Collapse
Affiliation(s)
- Paola Costelli
- Dipartimento di Medicina ed Oncologia Sperimentale, Università di Torino, Torino, Italy
| | | | | | | | | | | |
Collapse
|
22
|
Pearson-White S, McDuffie M. Defective T-cell activation is associated with augmented transforming growth factor Beta sensitivity in mice with mutations in the Sno gene. Mol Cell Biol 2003; 23:5446-59. [PMID: 12861029 PMCID: PMC165712 DOI: 10.1128/mcb.23.15.5446-5459.2003] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The proto-oncogene Sno has been shown to be a negative regulator of transforming growth factor beta (TGF-beta) signaling in vitro, using overexpression and artificial reporter systems. To examine Sno function in vivo, we made two targeted deletions at the Sno locus: a 5' deletion, with reduced Sno protein (hypomorph), and an exon 1 deletion removing half the protein coding sequence, in which Sno protein is undetectable in homozygotes (null). Homozygous Sno hypomorph and null mutant mice are viable without gross developmental defects. We found that Sno mRNA is constitutively expressed in normal thymocytes and splenic T cells, with increased expression 1 h following T-cell receptor ligation. Although thymocyte and splenic T-cell populations appeared normal in mutant mice, T-cell proliferation in response to activating stimuli was defective in both mutant strains. This defect could be reversed by incubation with either anti-TGF-beta antibodies or exogenous interleukin-2 (IL-2). Together, these findings suggest that Sno-dependent suppression of TGF-beta signaling is required for upregulation of growth factor production and normal T-cell proliferation following receptor ligation. Indeed, both IL-2 and IL-4 levels are reduced in response to anti-CD3 epsilon stimulation of mutant T cells, and transfected Sno activated an IL-2 reporter system in non-T cells. Mutant mouse embryo fibroblasts also exhibited a reduced cell proliferation rate that could be reversed by administration of anti-TGF-beta. Our data provide strong evidence that Sno is a significant negative regulator of antiproliferative TGF-beta signaling in both T cells and other cell types in vivo.
Collapse
Affiliation(s)
- S Pearson-White
- Department of Microbiology, Health Sciences Center, University of Virginia Medical Center, Jordan Hall, Box 800734, Room 7034, Charlottesville, VA 22908, USA.
| | | |
Collapse
|
23
|
Prunier C, Pessah M, Ferrand N, Seo SR, Howe P, Atfi A. The oncoprotein Ski acts as an antagonist of transforming growth factor-beta signaling by suppressing Smad2 phosphorylation. J Biol Chem 2003; 278:26249-57. [PMID: 12732634 DOI: 10.1074/jbc.m304459200] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The phosphorylation of Smad2 and Smad3 by the transforming growth factor (TGF)-beta-activated receptor kinases and their subsequent heterodimerization with Smad4 and translocation to the nucleus form the basis for a model how Smad proteins work to transmit TGF-beta signals. The transcriptional activity of Smad2-Smad4 or Smad3-Smad4 complexes can be limited by the corepressor Ski, which is believed to interact with Smad complexes on TGF-beta-responsive promoters and represses their ability to activate TGF-beta target genes by assembling on DNA a repressor complex containing histone deacetylase. Here we show that Ski can block TGF-beta signaling by interfering with the phosphorylation of Smad2 and Smad3 by the activated TGF-beta type I receptor. Furthermore, we demonstrate that overexpression of Ski induces the assembly of Smad2-Smad4 and Smad3-Smad4 complexes independent of TGF-beta signaling. The ability of Ski to engage Smad proteins in nonproductive complexes provides new insights into the molecular mechanism used by Ski for disabling TGF-beta signaling.
Collapse
Affiliation(s)
- Celine Prunier
- Department of Cell Biology, Lerner Research Institute, Cleveland Clinic Foundation Cleveland, Ohio 44195, USA
| | | | | | | | | | | |
Collapse
|
24
|
Bear DG, Fomproix N, Soop T, Björkroth B, Masich S, Daneholt B. Nuclear poly(A)-binding protein PABPN1 is associated with RNA polymerase II during transcription and accompanies the released transcript to the nuclear pore. Exp Cell Res 2003; 286:332-44. [PMID: 12749861 DOI: 10.1016/s0014-4827(03)00123-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The nuclear poly(A)-binding protein, PABPN1, has been previously shown to regulate mRNA poly(A) tail length and to interact with selected proteins involved in mRNA synthesis and trafficking. To further understand the role of PABPN1 in mRNA metabolism, we used cryo-immunoelectron microscopy to determine the fate of PABPN1 at various stages in the assembly and transport of the Chironomus tentans salivary gland Balbiani ring (BR) mRNA ribonucleoprotein (mRNP) complex. PABPN1 is found on BR mRNPs within the nucleoplasm as well as on mRNPs docked at the nuclear pore. Very little PABPN1 is detected on the cytoplasmic side of the nuclear envelope, suggesting that PABPN1 is displaced from mRNPs during or shortly after passage through the nuclear pore. Surprisingly, we also find PABPN1 associated with RNA polymerase II along the chromatin axis of the BR gene. Our results suggest that PABPN1 binds to the polymerase before, at, or shortly after the start of transcription, and that the assembly of PABPN1 onto the poly(A) tail may be coupled to transcription. Furthermore, PABPN1 remains associated with the released BR mRNP until the mRNP is translocated from the nucleus to the cytoplasm.
Collapse
Affiliation(s)
- David G Bear
- Department of Cell Biology and Physiology and the UNM Cancer Research and Treatment Center, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA.
| | | | | | | | | | | |
Collapse
|
25
|
Medrano EE. Repression of TGF-beta signaling by the oncogenic protein SKI in human melanomas: consequences for proliferation, survival, and metastasis. Oncogene 2003; 22:3123-9. [PMID: 12793438 DOI: 10.1038/sj.onc.1206452] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Transforming growth factor-beta (TGF-beta ) has dual and paradoxical functions as a tumor suppressor and promoter of tumor progression and metastasis. TGF-Ji-mediated growth inhibition is gradually lost during melanoma tumor progression, but there are no measurable defects at the receptor level. Furthermore, melanoma cells release high levels of TGF-beta to the microenvironment, which upon activation induces matrix deposition, angiogenesis, survival, and transition to more aggressive phenotypes. The SKI and SnoN protein family associate with and repress the activity of Smad2, Smad3, and Smad4, three members of the TGF-fl signaling pathway. SKI also facilitates cell-cycle progression by targeting the RB pathway by at least two ways: it directly associates with RB and represses its activity when expressed at high levels, and indirectly, it represses Smad-mediated induction of p21(Waf-1) This results in increased CDK2 activity, RB phosphorylation,and inactivation. Therefore, high levels of SKI result in lesions to the RB pathway in a manner similar to p16 (INK4a) loss. SKI mRNA and protein levels dramatically increase during human melanoma tumor progression. In addition,the SKI protein shifts from nuclear localization in intraepidermal melanoma cells to nuclear and cytoplasmic in invasive and metastatic melanomas. Here, I discuss the basis for repression of intracellular TGF-beta signaling by SKI, some additional activities of this protein, and propose that by disrupting multiple tumor suppressor pathways, SKI functions as a melanoma oncogene.
Collapse
Affiliation(s)
- Estela E Medrano
- Departments of Molecural and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
26
|
Waga K, Nakamura Y, Maki K, Arai H, Yamagata T, Sasaki K, Kurokawa M, Hirai H, Mitani K. Leukemia-related transcription factor TEL accelerates differentiation of Friend erythroleukemia cells. Oncogene 2003; 22:59-68. [PMID: 12527908 DOI: 10.1038/sj.onc.1206072] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2002] [Revised: 09/20/2002] [Accepted: 09/24/2002] [Indexed: 12/16/2022]
Abstract
TEL belongs to a member of the ETS family transcription factors that represses transcription of target genes such as FLI-1. Although TEL is essential for establishing hematopoiesis in neonatal bone marrow, its role in erythroid lineage is not understood. To investigate a role for TEL in erythroid differentiation, we introduced TEL into mouse erythroleukemia (MEL) cells. Overexpressing wild-type-TEL in MEL cells enhanced differentiation induced by hexamethylene bisacetamide or dimethylsulfoxide, as judged by the increased levels of erythroid-specific delta-aminolevulinate synthase and beta-globin mRNAs. TEL bound to a corepressor mSin3A through the helix-loop-helix domain. A TEL mutant lacking this domain still bound to the ETS binding site, but lost its transrepressional effect. This mutant completely blocked erythroid differentiation in MEL cells. Moreover, it showed dominant-negative effects over TEL-mediated transcriptional repression and acceleration of erythroid differentiation. Endogenous TEL mRNA was found to increase during the first 3 days in differentiating MEL cells and drastically decrease thereafter. All these data suggest that TEL might play some role in erythroid cell differentiation.
Collapse
Affiliation(s)
- Kazuo Waga
- Department of Hematology, Dokkyo University School of Medicine, Tochigi, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Watters AD, Going JJ, Grigor KM, Bartlett JMS. Progression to detrusor-muscle invasion in bladder carcinoma is associated with polysomy of chromosomes 1 and 8 in recurrent pTa/pT1 tumours. Eur J Cancer 2002; 38:1593-9. [PMID: 12142047 DOI: 10.1016/s0959-8049(02)00082-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Transitional cell carcinoma (TCC) provides a unique model of cancer recurrence and progression. Sequential tumours (n=100) from 57 patients with an index pTa or pT1 TCC were studied using fluorescence in situ hybridisation (FISH), to determine aberrations of chromosomes 1 and 8. Thirty-seven patients experienced recurrences; eleven developed muscle invasive tumours (pT2+). Polysomy of chromosomes 1 or 8 was associated with pT1 TCC (P=0.0017 and P=0.0037, respectively), but not with recurrence. Progression was associated with polysomy of chromosomes 1 (P=0.003) and 8 (P=0.011) in pTa/pT1 recurrences, but not with stage. In conclusion, patients who subsequently developed invasive TCC (pT2+) had significantly higher rates of aneusomy (90%) in their superficial cancers than those patients who did not progress (P=0.009). Investigation of sequential tumours in patients with recurrent and progressive TCC showed that polysomy of chromosomes 1 and 8 were linked to subsequent detrusor muscle invasion, but not recurrence per se.
Collapse
Affiliation(s)
- Amanda D Watters
- University Department of Surgery, Level II Queen Elizabeth Building, Glasgow Royal Infirmary, G31 2ER, Glasgow, UK
| | | | | | | |
Collapse
|
28
|
Galasinski SC, Resing KA, Goodrich JA, Ahn NG. Phosphatase inhibition leads to histone deacetylases 1 and 2 phosphorylation and disruption of corepressor interactions. J Biol Chem 2002; 277:19618-26. [PMID: 11919195 DOI: 10.1074/jbc.m201174200] [Citation(s) in RCA: 130] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The regulation of histone deacetylases (HDACs) by phosphorylation was examined by elevating intracellular phosphorylation in cultured cells with the protein phosphatase inhibitor okadaic acid. After fractionation of extracts from treated versus untreated cells, HDAC 1 and 2 eluted in several peaks of deacetylase activity, assayed using mixed acetylated histones or acetylated histone H4 peptide. Stimulation of cells with okadaic acid led to hyperphosphorylation of HDAC 1 and 2 as well as changes in column elution of both enzymes. Hyperphosphorylated HDAC2 was also observed in cells synchronized with nocodazole or taxol, demonstrating regulation of HDAC phosphorylation during mitosis. Phosphorylated HDAC1 and 2 showed a gel mobility retardation that correlated with a small but significant increase in activity, both of which were reversed upon phosphatase treatment in vitro. However, the most pronounced effect of HDAC phosphorylation was to disrupt protein complex formation between HDAC1 and 2 as well as complex formation between HDAC1 and corepressors mSin3A and YY1. In contrast, interactions between HDAC1/2 and RbAp46/48 were unaffected by okadaic acid. These results establish a novel link between HDAC phosphorylation and the control of protein-protein interactions and suggest a mechanism for relief of deacetylase-catalyzed transcriptional repression by phosphorylation-dependent signaling.
Collapse
Affiliation(s)
- Scott C Galasinski
- Department of Molecular, Cellular, and Developmental Biology, Howard Hughes Medical Institute, University of Colorado, Boulder, Colorado 80309, USA
| | | | | | | |
Collapse
|
29
|
Shinagawa T, Nomura T, Colmenares C, Ohira M, Nakagawara A, Ishii S. Increased susceptibility to tumorigenesis of ski-deficient heterozygous mice. Oncogene 2001; 20:8100-8. [PMID: 11781823 DOI: 10.1038/sj.onc.1204987] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2001] [Revised: 09/12/2001] [Accepted: 09/18/2001] [Indexed: 01/07/2023]
Abstract
The c-ski proto-oncogene product (c-Ski) acts as a co-repressor and binds to other co-repressors N-CoR/SMRT and mSin3A which form a complex with histone deacetylase (HDAC). c-Ski mediates the transcriptional repression by a number of repressors, including nuclear hormone receptors and Mad. c-Ski also directly binds to, and recruits the HDAC complex to Smads, leading to inhibition of tumor growth factor-beta (TGF-beta) signaling. This is consistent with the function of ski as an oncogene. Here we show that loss of one copy of c-ski increases susceptibility to tumorigenesis in mice. When challenged with a chemical carcinogen, c-ski heterozygous mice showed an increased level of tumor formation relative to wild-type mice. In addition, c-ski-deficient mouse embryonic fibroblasts (MEFs) had increased proliferative capacity, whereas overexpression of c-Ski suppressed the proliferation. Furthermore, the introduction of activated Ki-ras into c-ski-deficient MEFs resulted in neoplastic transformation. These findings demonstrate that c-ski acts as a tumor suppressor in some types of cells. The level of cdc25A mRNA, which is down regulated by two tumor suppressor gene products, Rb and Mad, was upregulated in c-ski-deficient MEFs, whereas it decreased by overexpressing c-Ski in MEFs. This is consistent with the fact that c-Ski acts as a co-repressor of Mad and Rb. These results support the view that the decreased activities of Mad and Rb in ski-deficient cells at least partly contribute to enhanced proliferation and susceptibility to tumorigenesis. Human c-ski gene was mapped to a region close to the p73 tumor suppressor gene at the 1p36.3 locus, which is already known to contain multiple uncharacterized tumor suppressor genes.
Collapse
Affiliation(s)
- T Shinagawa
- Laboratory of Molecular Genetics, RIKEN Tsukuba Institute, and CREST (Core Research for Evolutionary Science and Technology) Research Project of JST (Japan Science & Technology Corporation), 3-1-1 Koyadai, Tsukuba, Ibaraki 305-0074, Japan
| | | | | | | | | | | |
Collapse
|
30
|
Ogbourne SM, Antalis TM. Characterisation of PAUSE-1, a powerful silencer in the human plasminogen activator inhibitor type 2 gene promoter. Nucleic Acids Res 2001; 29:3919-27. [PMID: 11574673 PMCID: PMC60233 DOI: 10.1093/nar/29.19.3919] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Plasminogen activator inhibitor type 2 (PAI-2) is a serine protease inhibitor traditionally regarded as a regulator of fibrinolysis and extracellular matrix degradation. More recently, PAI-2 has been implicated in diverse processes such as keratinocyte differentiation, cell death and viral pathogenesis. The PAI-2 promoter tightly regulates PAI-2 gene expression in a cell-specific manner and this control is mediated, in part, by the upstream silencer element, PAUSE-1. Here we have defined PAUSE-1 and investigated its activity as a silencer. A series of mutations were generated within the PAUSE-1 element and analysed for transcription factor binding and transcriptional silencing activity. These studies have defined the minimal functional PAUSE-1 element as TCTN(x)AGAN(3)T(4), where x = 0, 2 or 4. Examination of related elements present in other promoters, such as the human IFNbeta promoter, suggests that PAUSE-1 is a member of a family of universal silencers with the consensus sequence TCTN(x)AGA. UV crosslinking analyses determined that the PAUSE-1 binding protein was approximately 67 kDa. Insertion of PAUSE-1 into the heterologous (SV40) or the minimal PAI-2 promoters silenced transcription by 2.5-fold. These data show that PAUSE-1 acts as a powerful silencer of PAI-2 gene transcription and is likely to be important in the silencing of other genes as well.
Collapse
Affiliation(s)
- S M Ogbourne
- Cancer Metastasis Laboratory, Queensland Cancer Fund Experimental Oncology Program, University of Queensland, 4029 Queensland, Australia
| | | |
Collapse
|
31
|
Prathapam T, Kühne C, Hayman M, Banks L. Ski interacts with the evolutionarily conserved SNW domain of Skip. Nucleic Acids Res 2001; 29:3469-76. [PMID: 11522815 PMCID: PMC55893 DOI: 10.1093/nar/29.17.3469] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Ski interacting protein (Skip) has been found to bind to the highly conserved region of Ski, which is required for its transforming activity. Ski is a unique oncoprotein that is involved in inducing both transformation and differentiation. At the molecular level, Ski has been shown to exhibit either co-activator or co-repressor activity depending on the cellular and promoter context. We were interested in further elucidating the biological implications of the Ski-Skip interaction. Here we have identified the SNW domain of Skip as the interaction region for Ski. This domain of Skip is highly conserved in all the Skip homologues identified from different species. Using a series of reporter plasmids, we show that Skip is a potent transcriptional activator of many different promoters, the activity of which was also mapped to the conserved core SNW domain of the protein. Addition of excess Ski further augmented the transcriptional activities of Skip, suggesting that one of the ways in which Ski brings about transformation is by binding and cooperating with the SNW domain of Skip in transcriptional activation.
Collapse
Affiliation(s)
- T Prathapam
- International Centre for Genetic Engineering and Biotechnology, Padriciano 99, I-34012, Trieste, Italy
| | | | | | | |
Collapse
|
32
|
Mertani HC, Zhu T, Goh EL, Lee KO, Morel G, Lobie PE. Autocrine human growth hormone (hGH) regulation of human mammary carcinoma cell gene expression. Identification of CHOP as a mediator of hGH-stimulated human mammary carcinoma cell survival. J Biol Chem 2001; 276:21464-75. [PMID: 11297545 DOI: 10.1074/jbc.m100437200] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
By use of cDNA array technology we have screened 588 genes to determine the effect of autocrine production of human growth hormone (hGH) on gene expression in human mammary carcinoma cells. We have used a previously described cellular model to study autocrine hGH function in which the hGH gene or a translation-deficient hGH gene was stably transfected into MCF-7 cells. Fifty two of the screened genes were regulated, either positively () or negatively (), by autocrine production of hGH. We have now characterized the role of one of the up-regulated genes, chop (gadd153), in the effect of autocrine production of hGH on mammary carcinoma cell number. The effect of autocrine production of hGH on the level of CHOP mRNA was exerted at the transcriptional level as autocrine hGH increased chloramphenicol acetyltransferase production from a reporter plasmid containing a 1-kilobase pair fragment of the chop promoter. The autocrine hGH-stimulated increase in CHOP mRNA also resulted in an increase in CHOP protein. As a consequence, autocrine hGH stimulation of CHOP-mediated transcriptional activation was increased. Stable transfection of human CHOP cDNA into mammary carcinoma cells demonstrated that CHOP functioned not as a mediator of hGH-stimulated mitogenesis but rather enhanced the protection from apoptosis afforded by hGH in a p38 MAPK-dependent manner. Thus transcriptional up-regulation of chop is one mechanism by which hGH regulates mammary carcinoma cell number.
Collapse
Affiliation(s)
- H C Mertani
- Institute of Molecular and Cell Biology, 30 Medical Drive, Singapore 117609, Republic of Singapore
| | | | | | | | | | | |
Collapse
|
33
|
Soeta C, Suzuki M, Suzuki S, Naito K, Tachi C, Tojo H. Possible role for the c-ski gene in the proliferation of myogenic cells in regenerating skeletal muscles of rats. Dev Growth Differ 2001; 43:155-64. [PMID: 11284965 DOI: 10.1046/j.1440-169x.2001.00565.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Skeletal muscle regeneration after injury involves various processes, such as infiltration by inflammatory cells, the proliferation of satellite cells and fusion to myotubes. The c-ski nuclear protein has been implicated in the control of cell proliferation and/or terminal differentiation in the growth of skeletal muscle. However, there have been no reports concerning the involution of c-ski in the regeneration of injured skeletal muscle in mammals. A possible role for c-ski in the proliferation of myogenic cells in rat skeletal muscle during regeneration has been investigated with the assistance of in vitro experiments with L6 skeletal muscle cells. The expression levels of c-ski mRNA in regenerating tissues increased to approximately threefold that of intact tissues at 2 days after injury and decreased to normal levels at 2 weeks after injury. Many mononuclear cells among the Ski-positive cells expressed desmin and proliferating cell nuclear antigen, indicating that Ski-producing cells include the proliferating myogenic cells. The proliferation of L6 cells was significantly retarded by expression of the antisense ski gene. The results of the present study reveal that the c-ski gene plays an important role in the proliferation of myogenic cells in the regeneration of injured skeletal muscle.
Collapse
Affiliation(s)
- C Soeta
- Laboratory of Applied Genetics, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | | | | | | | | | | |
Collapse
|
34
|
Abstract
Transforming growth factor-beta is a potent inhibitor of epithelial cell proliferation. Proteins involved in TGF-beta signaling are bona fide tumor suppressors and many tumor cells acquire the ability to escape TGF-beta growth inhibition through the loss of key signaling transducers in the pathway or through the activation of oncogenes. Recent studies indicate that there is a specific connection between the TGF-beta signaling pathway and the Ski/SnoN family of oncoproteins. We summarize evidence that Ski and SnoN directly associate with Smad proteins and block the ability of the Smads to activate expression of many if not all TGF-beta-responsive genes. This appears to cause abrogation of TGF-beta growth inhibition in epithelial cells.
Collapse
Affiliation(s)
- X Liu
- Department of Chemistry and Biochemistry, University of Colorado-Boulder, Boulder, CO 80309, USA
| | | | | | | |
Collapse
|
35
|
Wotton D, Massagué J. Smad Transcriptional Corepressors in TGFβ Family Signaling. Curr Top Microbiol Immunol 2001. [DOI: 10.1007/978-3-662-10595-5_8] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
36
|
Kaufman CD, Martínez-Rodriguez G, Hackett PB. Ectopic expression of c-ski disrupts gastrulation and neural patterning in zebrafish. Mech Dev 2000; 95:147-62. [PMID: 10906458 DOI: 10.1016/s0925-4773(00)00351-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The c-ski proto-oncogene encodes a transcriptional regulator that has been implicated in the development of different tissues at different times during vertebrate development. We identified two novel paralogues of the c-ski gene family, skiA and skiB in zebrafish (Danio rerio). The skiA protein is maternal and ubiquitous while skiB is zygotic. Overexpression of SkiA or SkiB disrupted gastrulation and resulted in a dorsalized phenotype. In situ analyses suggested that overexpression of Ski leads to a slight expansion of dorsal-axial mesoderm, diminishment or loss of ventral mesoderm and radialization of dorsal neuroectoderm. The dorsalized phenotype could be rescued by the ventral specifying factor, BMP4. These results provide evidence that Ski proteins participate in dorsal-ventral specification of both neuroectoderm and mesoderm.
Collapse
Affiliation(s)
- C D Kaufman
- Department of Genetics, Cell Biology and Development, University of Minnesota, 1445 Gortner Avenue, St. Paul, MN 55108-1095, USA
| | | | | |
Collapse
|
37
|
Xu W, Angelis K, Danielpour D, Haddad MM, Bischof O, Campisi J, Stavnezer E, Medrano EE. Ski acts as a co-repressor with Smad2 and Smad3 to regulate the response to type beta transforming growth factor. Proc Natl Acad Sci U S A 2000; 97:5924-9. [PMID: 10811875 PMCID: PMC18535 DOI: 10.1073/pnas.090097797] [Citation(s) in RCA: 170] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The c-ski protooncogene encodes a transcription factor that binds DNA only in association with other proteins. To identify co-binding proteins, we performed a yeast two-hybrid screen. The results of the screen and subsequent co-immunoprecipitation studies identified Smad2 and Smad3, two transcriptional activators that mediate the type beta transforming growth factor (TGF-beta) response, as Ski-interacting proteins. In Ski-transformed cells, all of the Ski protein was found in Smad3-containing complexes that accumulated in the nucleus in the absence of added TGF-beta. DNA binding assays showed that Ski, Smad2, Smad3, and Smad4 form a complex with the Smad/Ski binding element GTCTAGAC (SBE). Ski repressed TGF-beta-induced expression of 3TP-Lux, the natural plasminogen activator inhibitor 1 promoter and of reporter genes driven by the SBE and the related CAGA element. In addition, Ski repressed a TGF-beta-inducible promoter containing AP-1 (TRE) elements activated by a combination of Smads, Fos, and/or Jun proteins. Ski also repressed synergistic activation of promoters by combinations of Smad proteins but failed to repress in the absence of Smad4. Thus, Ski acts in opposition to TGF-beta-induced transcriptional activation by functioning as a Smad-dependent co-repressor. The biological relevance of this transcriptional repression was established by showing that overexpression of Ski abolished TGF-beta-mediated growth inhibition in a prostate-derived epithelial cell line.
Collapse
Affiliation(s)
- W Xu
- Huffington Center on Aging and Departments of Molecular and Cellular Biology and Dermatology, Baylor College of Medicine and Veterans Affairs Medical Center, Houston, TX 77030, USA
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Shinagawa T, Dong HD, Xu M, Maekawa T, Ishii S. The sno gene, which encodes a component of the histone deacetylase complex, acts as a tumor suppressor in mice. EMBO J 2000; 19:2280-91. [PMID: 10811619 PMCID: PMC384369 DOI: 10.1093/emboj/19.10.2280] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The Ski and Sno oncoproteins are components of a macromolecular complex containing the co-repressor N-CoR/SMRT, mSin3 and histone deacetylase. This complex has been implicated in the transcriptional repression exerted by a number of repressors including nuclear hormone receptors and Mad. Further more, Ski and Sno negatively regulate transforming growth factor-beta (TGF-beta) signaling by recruiting this complex to Smads. Here we show that loss of one copy of sno increases susceptibility to tumorigenesis in mice. Mice lacking sno died at an early stage of embryogenesis, and sno was required for blastocyst formation. Heterozygous (sno(+/-)) mice developed spontaneous lymphomas at a low frequency and showed an increased level of tumor formation relative to wild-type mice when challenged with a chemical carcinogen. sno(+/-) embryonic fibroblasts had an increased proliferative capacity and the introduction of activated Ki-ras into these cells resulted in neoplastic transformation. The B cells, T cells and embryonic fibroblasts of sno(+/-) mice had a decreased sensitivity to apoptosis or cell cycle arrest. These findings demonstrate that sno acts as a tumor suppressor at least in some types of cells.
Collapse
Affiliation(s)
- T Shinagawa
- Laboratory of Molecular Genetics, RIKEN Tsukuba Life Sciences Center, 3-1-1 Koyadai, Tsukuba, Ibaraki 305-0074, Japa
| | | | | | | | | |
Collapse
|
39
|
Abstract
Over the past few years, the long-standing idea that covalent modification of chromatin can play a role in determining states of gene activity has been confirmed. Eukaryotic genes can be silenced by deacetylation of acetyl-lysine moieties in the N-terminal tails of histones. Recent work links histone deacetylases with an increasing number of repressors, suggesting that deacetylation might be a rather pervasive feature of transcriptional repression systems.
Collapse
Affiliation(s)
- H H Ng
- Institute of Cell and Molecular Biology, University of Edinburgh, King's Buildings, Edinburgh, UK EH9 3JR
| | | |
Collapse
|
40
|
Akiyoshi S, Inoue H, Hanai J, Kusanagi K, Nemoto N, Miyazono K, Kawabata M. c-Ski acts as a transcriptional co-repressor in transforming growth factor-beta signaling through interaction with smads. J Biol Chem 1999; 274:35269-77. [PMID: 10575014 DOI: 10.1074/jbc.274.49.35269] [Citation(s) in RCA: 306] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Smads are intracellular signaling mediators of the transforming growth factor-beta (TGF-beta) superfamily that regulates a wide variety of biological processes. Among them, Smads 2 and 3 are activated specifically by TGF-beta. We identified c-Ski as a Smad2 interacting protein. c-Ski is the cellular homologue of the v-ski oncogene product and has been shown to repress transcription by recruiting histone deacetylase (HDAC). Smad2/3 interacts with c-Ski through its C-terminal MH2 domain in a TGF-beta-dependent manner. c-Ski contains two distinct Smad-binding sites with different binding properties. c-Ski strongly inhibits transactivation of various reporter genes by TGF-beta. c-Ski is incorporated in the Smad DNA binding complex, interferes with the interaction of Smad3 with a transcriptional co-activator, p300, and in turn recruits HDAC. c-Ski is thus a transcriptional co-repressor that links Smads to HDAC in TGF-beta signaling.
Collapse
Affiliation(s)
- S Akiyoshi
- Department of Biochemistry, The Cancer Institute of Japanese Foundation for Cancer Research, Research for the Future Program, Japan Society for Promotion of Science, 1-37-1, Kami-ikebukuro, Toshima-ku, Tokyo 170-8455, Japan
| | | | | | | | | | | | | |
Collapse
|
41
|
Abstract
Two classes of tilapia c-ski cDNA (accession nos. AJ012011, AJ012012), designated as tski1 and tski2, respectively encoded a 687 and a 714 AA protein and shared a 57% AA identity. Comparison with the Ski proteins of chickens, humans and Xenopus, tilapia TSki polypeptides shared a 60, 57, and 57% (TSki1) and 67, 63, and 61% (TSki2) AA identity, respectively. The most and the least abundant c-ski mRNAs are located in the brain and the skeletal muscle, respectively. Both tski1 and tski2 were widely expressed in the adult tissues examined, but tski2 transcripts were at higher levels except in the ovary and oocytes: tski1 transcripts were predominant in the ovary, whereas tski2 transcripts were predominant in the testes. In the oocytes, the tski1 mRNA was a maternally-inherited stockpile that subsequently was degraded, so that the expression ratio of tski1 to tski2 transcripts declined gradually as the fish developed from oocyte to 4-cm fry. Mol. Reprod. Dev. 54:223- 231.
Collapse
Affiliation(s)
- C J Huang
- Institute of Fisheries Science, National Taiwan University, Taipei, Taiwan
| | | | | |
Collapse
|
42
|
Sun Y, Liu X, Eaton EN, Lane WS, Lodish HF, Weinberg RA. Interaction of the Ski oncoprotein with Smad3 regulates TGF-beta signaling. Mol Cell 1999; 4:499-509. [PMID: 10549282 DOI: 10.1016/s1097-2765(00)80201-4] [Citation(s) in RCA: 203] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
TGF-beta treatment of cells induces a variety of physiologic responses, including growth inhibition, differentiation, and induction of apoptosis. TGF-beta induces phosphorylation and nuclear translocation of Smad3. We describe here the association of Smad3 with the nuclear protooncogene protein Ski in response to the activation of TGF-beta signaling. Association with Ski represses transcriptional activation by Smad3, and overexpression of Ski renders cells resistant to the growth-inhibitory effects of TGF-beta. The transcriptional repression as well as the growth resistance to TGF-beta by overexpression of Ski can be overcome by overexpression of Smad3. These results demonstrate that Ski is a novel component of the TGF-beta signaling pathway and shed light on the mechanism of action of the Ski oncoprotein.
Collapse
Affiliation(s)
- Y Sun
- Whitehead Institute for Biomedical Research, Nine Cambridge Center, Massachusetts 02142, USA
| | | | | | | | | | | |
Collapse
|
43
|
Luo K, Stroschein SL, Wang W, Chen D, Martens E, Zhou S, Zhou Q. The Ski oncoprotein interacts with the Smad proteins to repress TGFbeta signaling. Genes Dev 1999; 13:2196-206. [PMID: 10485843 PMCID: PMC316985 DOI: 10.1101/gad.13.17.2196] [Citation(s) in RCA: 345] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Smad proteins are critical signal transducers downstream of the receptors of the transforming growth factor-beta (TGFbeta) superfamily. On phosphorylation and activation by the active TGFbeta receptor complex, Smad2 and Smad3 form hetero-oligomers with Smad4 and translocate into the nucleus, where they interact with different cellular partners, bind to DNA, regulate transcription of various downstream response genes, and cross-talk with other signaling pathways. Here we show that a nuclear oncoprotein, Ski, can interact directly with Smad2, Smad3, and Smad4 on a TGFbeta-responsive promoter element and repress their abilities to activate transcription through recruitment of the nuclear transcriptional corepressor N-CoR and possibly its associated histone deacetylase complex. Overexpression of Ski in a TGFbeta-responsive cell line renders it resistant to TGFbeta-induced growth inhibition and defective in activation of JunB expression. This ability to overcome TGFbeta-induced growth arrest may be responsible for the transforming activity of Ski in human and avian cancer cells. Our studies suggest a new paradigm for inactivation of the Smad proteins by an oncoprotein through transcriptional repression.
Collapse
Affiliation(s)
- K Luo
- Life Sciences Division, Lawrence Berkeley National Laboratory (LBNL), Berkeley, California 94720 USA.
| | | | | | | | | | | | | |
Collapse
|
44
|
Nomura T, Khan MM, Kaul SC, Dong HD, Wadhwa R, Colmenares C, Kohno I, Ishii S. Ski is a component of the histone deacetylase complex required for transcriptional repression by Mad and thyroid hormone receptor. Genes Dev 1999; 13:412-23. [PMID: 10049357 PMCID: PMC316468 DOI: 10.1101/gad.13.4.412] [Citation(s) in RCA: 238] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/1998] [Accepted: 01/07/1999] [Indexed: 12/13/2022]
Abstract
The N-CoR/SMRT complex containing mSin3 and histone deacetylase (HDAC) mediates transcriptional repression by nuclear hormone receptors and Mad. The proteins encoded by the ski proto-oncogene family directly bind to N-CoR/SMRT and mSin3A, and forms a complex with HDAC. c-Ski and its related gene product Sno are required for transcriptional repression by Mad and thyroid hormone receptor (TRbeta). The oncogenic form, v-Ski, which lacks the mSin3A-binding domain, acts in a dominant-negative fashion, and abrogates transcriptional repression by Mad and TRbeta. In ski-deficient mouse embryos, the ornithine decarboxylase gene, whose expression is normally repressed by Mad-Max, is expressed ectopically. These results show that Ski is a component of the HDAC complex and that Ski is required for the transcriptional repression mediated by this complex. The involvement of c-Ski in the HDAC complex indicates that the function of the HDAC complex is important for oncogenesis.
Collapse
Affiliation(s)
- T Nomura
- Laboratory of Molecular Genetics, Tsukuba Life Science Center, RIKEN, Tsukuba, Ibaraki 305-0074, Japan
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Dahl R, Kieslinger M, Beug H, Hayman MJ. Transformation of hematopoietic cells by the Ski oncoprotein involves repression of retinoic acid receptor signaling. Proc Natl Acad Sci U S A 1998; 95:11187-92. [PMID: 9736711 PMCID: PMC21617 DOI: 10.1073/pnas.95.19.11187] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The Ski oncogene has dramatic effects on the differentiation of several different cell types. It induces the differentiation of quail embryo cells into myoblasts and arrests the differentiation of chicken hematopoietic cells. The mechanism that Ski uses to carry out these disparate biological activities is unknown. However, we were struck by the similarity of these effects to those of certain members of the nuclear hormone receptor family. Both Ski and the thyroid hormone receptor-derived oncogene v-ErbA can arrest the differentiation of avian erythroblasts, and v-Ski-transformed avian multipotent progenitor cells resemble murine hematopoietic cells that express a dominant-negative form of the retinoic acid receptor, RARalpha. In this paper, we have tested the hypothesis that v-Ski and its cellular homologue c-Ski exert their effects by interfering with nuclear hormone receptor-induced transcription. We demonstrate that Ski associates with the RAR complex and can repress transcription from a retinoic acid response element. The physiological significance of this finding is demonstrated by the ability of high concentrations of a RARalpha-specific ligand to abolish v-Ski-induced transformation of the multipotent progenitors. These results strongly suggest that the ability of Ski to alter cell differentiation is caused in part by the modulation of RAR signaling pathways.
Collapse
Affiliation(s)
- R Dahl
- Department of Molecular Genetics and Microbiology and Institute of Cell and Developmental Biology, State University of New York, Stony Brook, NY 11794-5222, USA
| | | | | | | |
Collapse
|