1
|
Zamarreño J, Rodríguez S, Muñoz S, Bueno A, Sacristán M. Ubiquitin protease Ubp1 cooperates with Ubp10 and Ubp12 to revert lysine-164 PCNA ubiquitylation at replication forks. Nucleic Acids Res 2025; 53:gkaf076. [PMID: 39964481 PMCID: PMC11833686 DOI: 10.1093/nar/gkaf076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/23/2025] [Accepted: 01/30/2025] [Indexed: 02/21/2025] Open
Abstract
Proliferating cell nuclear antigen (PCNA) is essential for the faithful duplication of eukaryotic genomes. PCNA also orchestrates events necessary to address threats to genomic integrity, such as the DNA damage tolerance (DDT) response, a mechanism by which eukaryotic cells bypass replication-blocking lesions to maintain replisome stability. DDT is regulated by the ubiquitylation of PCNA and the consequent recruitment of specialized polymerases that ensure replication continuity. We have recently described that the deubiquitylases Ubp10 and Ubp12 modulate DDT events by reverting the ubiquitylation of PCNA in Saccharomyces cerevisiae. This study identifies Ubp1 as a novel PCNA deubiquitylase that cooperates with Ubp10 and Ubp12 in the regulation of DDT during DNA replication. Ubp1, previously known as a cytoplasmic protein, also localizes to the nucleus, where it associates with DNA replication forks. Additionally, Ubp1 interacts with and deubiquitylates PCNA. Here, we provide evidence that Ubp1 collaborates with Ubp10 and Ubp12 to facilitate DNA replication by efficiently reverting PCNAK164 ubiquitylation at replication forks under conditions free from exogenous perturbations. Consequently, the deletion of UBP1, UBP10, and UBP12 leads to persistent ubiquitylation of PCNAK164 and a marked delay in S phase progression.
Collapse
Affiliation(s)
- Javier Zamarreño
- Departamento de Microbiología y Genética, Instituto de Biología Molecular y Celular del Cáncer (IBMCC), Universidad de Salamanca-CSIC, Campus Miguel de Unamuno, 37007 Salamanca, Spain
| | - Sergio Rodríguez
- Departamento de Microbiología y Genética, Instituto de Biología Molecular y Celular del Cáncer (IBMCC), Universidad de Salamanca-CSIC, Campus Miguel de Unamuno, 37007 Salamanca, Spain
| | - Sofía Muñoz
- Departamento de Microbiología y Genética, Instituto de Biología Molecular y Celular del Cáncer (IBMCC), Universidad de Salamanca-CSIC, Campus Miguel de Unamuno, 37007 Salamanca, Spain
| | - Avelino Bueno
- Departamento de Microbiología y Genética, Instituto de Biología Molecular y Celular del Cáncer (IBMCC), Universidad de Salamanca-CSIC, Campus Miguel de Unamuno, 37007 Salamanca, Spain
| | - María P Sacristán
- Departamento de Microbiología y Genética, Instituto de Biología Molecular y Celular del Cáncer (IBMCC), Universidad de Salamanca-CSIC, Campus Miguel de Unamuno, 37007 Salamanca, Spain
| |
Collapse
|
2
|
Park J, Jeon H, Hwangbo A, Min K, Ko J, Kim JE, Kim S, Shin JY, Lee YH, Lee YW, Son H. A winged-helix DNA-binding protein is essential for self-fertility during sexual development of the homothallic fungus Fusarium graminearum. mSphere 2024; 9:e0051124. [PMID: 39189781 PMCID: PMC11423578 DOI: 10.1128/msphere.00511-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 07/19/2024] [Indexed: 08/28/2024] Open
Abstract
Sexual reproduction is crucial for increasing the genetic diversity of populations and providing overwintering structures, such as perithecia and associated tissue, in the destructive plant pathogenic fungus Fusarium graminearum. While mating-type genes serve as master regulators in fungal sexual reproduction, the molecular mechanisms underlying this process remain elusive. Winged-helix DNA-binding proteins are key regulators of embryogenesis and cell differentiation in higher eukaryotes. These proteins are implicated in the morphogenesis and development of several fungal species. However, their involvement in sexual reproduction remains largely unexplored in F. graminearum. Here, we investigated the function of winged-helix DNA-binding proteins in vegetative growth, conidiation, and sexual reproduction, with a specific focus on the FgWING27, which is highly conserved among Fusarium species. Deletion of FgWING27 resulted in an abnormal pattern characterized by a gradual increase in the expression of mating-type genes during sexual development, indicating its crucial role in the stage-specific genetic regulation of MAT genes in the late stages of sexual development. Furthermore, using chromatin immunoprecipitation followed by sequencing analysis, we identified Fg17056 as a downstream gene of Fgwing27, which is essential for sexual reproduction. These findings underscore the significance of winged-helix DNA-binding proteins in fungal development and reproduction in F. graminearum, and highlight the pivotal role of Fgwing27 as a core genetic factor in the intricate genetic regulatory network governing sexual reproduction.IMPORTANCEFusarium graminearum is a devastating plant pathogenic fungus causing significant economic losses due to reduced crop yields. In Fusarium Head Blight epidemics, spores produced through sexual and asexual reproduction serve as inoculum, making it essential to understand the fungal reproduction process. Here, we focus on winged-helix DNA-binding proteins, which have been reported to play crucial roles in cell cycle regulation and differentiation, and address their requirement in the sexual reproduction of F. graminearum. Furthermore, we identified a highly conserved protein in Fusarium as a key factor in self-fertility, along with the discovery of its direct downstream genes. This provides crucial information for constructing the complex genetic regulatory network of sexual reproduction and significantly contribute to further research on sexual reproduction in Fusarium species.
Collapse
Affiliation(s)
- Jiyeun Park
- Institute for Plant Sciences, University of Cologne, Cologne, Germany
| | - Hosung Jeon
- Department of Agricultural Biotechnology, Seoul National University, Seoul, South Korea
| | - Aram Hwangbo
- Department of Agricultural Biotechnology, Seoul National University, Seoul, South Korea
| | - Kyunghun Min
- Department of Plant Science, Gangneung-Wonju National University, Gangneung, South Korea
| | - Jaeho Ko
- Department of Agricultural Biotechnology, Seoul National University, Seoul, South Korea
| | - Jung-Eun Kim
- Research Institute of Climate Change and Agriculture, National Institute of Horticultural and Herbal Science, Jeju, South Korea
| | - Sieun Kim
- Horticultural and Herbal Crop Environment Division, National Institute of Horticultural and Herbal Science, Wanju, South Korea
| | - Ji Young Shin
- Honam National Institute of Biological Resources, Mokpo, South Korea
| | - Yong-Hwan Lee
- Department of Agricultural Biotechnology, Seoul National University, Seoul, South Korea
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
- Interdisciplinary Programs in Agricultural Genomics, Seoul National University, Seoul, South Korea
- Center for Plant Microbiome Research, Seoul National University, Seoul, South Korea
- Plant Immunity Research Center, Seoul National University, Seoul, South Korea
- Plant Genomics and Breeding Institute, Seoul National University, Seoul, South Korea
| | - Yin-Won Lee
- Department of Agricultural Biotechnology, Seoul National University, Seoul, South Korea
| | - Hokyoung Son
- Department of Agricultural Biotechnology, Seoul National University, Seoul, South Korea
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| |
Collapse
|
3
|
Zamarreño J, Muñoz S, Alonso-Rodríguez E, Alcalá M, Rodríguez S, Bermejo R, Sacristán MP, Bueno A. Timely lagging strand maturation relies on Ubp10 deubiquitylase-mediated PCNA dissociation from replicating chromatin. Nat Commun 2024; 15:8183. [PMID: 39294185 PMCID: PMC11411133 DOI: 10.1038/s41467-024-52542-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 09/11/2024] [Indexed: 09/20/2024] Open
Abstract
Synthesis and maturation of Okazaki Fragments is an incessant and highly efficient metabolic process completing the synthesis of the lagging strands at replication forks during S phase. Accurate Okazaki fragment maturation (OFM) is crucial to maintain genome integrity and, therefore, cell survival in all living organisms. In eukaryotes, OFM involves the consecutive action of DNA polymerase Pol ∂, 5' Flap endonuclease Fen1 and DNA ligase I, and constitutes the best example of a sequential process coordinated by the sliding clamp PCNA. For OFM to occur efficiently, cooperation of these enzymes with PCNA must be highly regulated. Here, we present evidence of a role for the K164-PCNA-deubiquitylase Ubp10 in the maturation of Okazaki fragments in the budding yeast Saccharomyces cerevisiae. We show that Ubp10 associates with lagging-strand DNA synthesis machineries on replicating chromatin to ensure timely ligation of Okazaki fragments by promoting PCNA dissociation from chromatin requiring lysine 164 deubiquitylation.
Collapse
Affiliation(s)
- Javier Zamarreño
- Instituto de Biología Molecular y Celular del Cáncer (IBMCC), Universidad de Salamanca-CSIC, Campus Miguel de Unamuno, Salamanca, Spain
- Departamento de Microbiología y Genética, Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain
| | - Sofía Muñoz
- Instituto de Biología Molecular y Celular del Cáncer (IBMCC), Universidad de Salamanca-CSIC, Campus Miguel de Unamuno, Salamanca, Spain
- Departamento de Microbiología y Genética, Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain
- Instituto de Biología Funcional y Genómica (IBFG), CSIC-Universidad de Salamanca, Salamanca, Spain
| | - Esmeralda Alonso-Rodríguez
- Instituto de Biología Molecular y Celular del Cáncer (IBMCC), Universidad de Salamanca-CSIC, Campus Miguel de Unamuno, Salamanca, Spain
- Departamento de Microbiología y Genética, Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain
| | - Macarena Alcalá
- Instituto de Biología Molecular y Celular del Cáncer (IBMCC), Universidad de Salamanca-CSIC, Campus Miguel de Unamuno, Salamanca, Spain
- Departamento de Microbiología y Genética, Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain
| | - Sergio Rodríguez
- Instituto de Biología Molecular y Celular del Cáncer (IBMCC), Universidad de Salamanca-CSIC, Campus Miguel de Unamuno, Salamanca, Spain
- Departamento de Microbiología y Genética, Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain
| | - Rodrigo Bermejo
- Centro de Investigaciones Biológicas "Margarita Salas", CSIC, Madrid, Spain
| | - María P Sacristán
- Instituto de Biología Molecular y Celular del Cáncer (IBMCC), Universidad de Salamanca-CSIC, Campus Miguel de Unamuno, Salamanca, Spain.
- Departamento de Microbiología y Genética, Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain.
| | - Avelino Bueno
- Instituto de Biología Molecular y Celular del Cáncer (IBMCC), Universidad de Salamanca-CSIC, Campus Miguel de Unamuno, Salamanca, Spain.
- Departamento de Microbiología y Genética, Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain.
| |
Collapse
|
4
|
Rathi S, Polat I, Pereira G. The budding yeast GSK-3 homologue Mck1 is an essential component of the spindle position checkpoint. Open Biol 2022; 12:220203. [PMID: 36321416 PMCID: PMC9627454 DOI: 10.1098/rsob.220203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The spindle position checkpoint (SPOC) is a mitotic surveillance mechanism in Saccharomyces cerevisiae that prevents cells from completing mitosis in response to spindle misalignment, thereby contributing to genomic integrity. The kinase Kin4, one of the most downstream SPOC components, is essential to stop the mitotic exit network (MEN), a signalling pathway that promotes the exit from mitosis and cell division. Previous work, however, suggested that a Kin4-independent pathway contributes to SPOC, yet the underlying mechanisms remain elusive. Here, we established the glycogen-synthase-kinase-3 (GSK-3) homologue Mck1, as a novel component that works independently of Kin4 to engage SPOC. Our data indicate that both Kin4 and Mck1 work in parallel to counteract MEN activation by the Cdc14 early anaphase release (FEAR) network. We show that Mck1's function in SPOC is mediated by the pre-replication complex protein and mitotic cyclin-dependent kinase (M-Cdk) inhibitor, Cdc6, which is degraded in a Mck1-dependent manner prior to mitosis. Moderate overproduction of Cdc6 phenocopies MCK1 deletion and causes SPOC deficiency via its N-terminal, M-Cdk inhibitory domain. Our data uncover an unprecedented role of GSK-3 kinases in coordinating spindle orientation with cell cycle progression.
Collapse
Affiliation(s)
- Siddhi Rathi
- Centre for Organismal Studies (COS), University of Heidelberg, Heidelberg, Germany,Heidelberg Biosciences International Graduate School (HBIGS) and Faculty of Biosciences, University of Heidelberg, Heidelberg, Germany,German Academic Exchange Service (DAAD), Bonn, Germany
| | - Irem Polat
- Centre for Organismal Studies (COS), University of Heidelberg, Heidelberg, Germany
| | - Gislene Pereira
- Centre for Organismal Studies (COS), University of Heidelberg, Heidelberg, Germany,Centre for Molecular Biology (ZMBH), University of Heidelberg, Heidelberg, Germany,German Cancer Research Centre (DKFZ), DKFZ-ZMBH Alliance, Heidelberg, Germany
| |
Collapse
|
5
|
Rathi S, Polat I, Pereira G. The budding yeast GSK-3 homologue Mck1 is an essential component of the spindle position checkpoint. Open Biol 2022. [PMID: 36321416 DOI: 10.6084/m9.figshare.c.6261880] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The spindle position checkpoint (SPOC) is a mitotic surveillance mechanism in Saccharomyces cerevisiae that prevents cells from completing mitosis in response to spindle misalignment, thereby contributing to genomic integrity. The kinase Kin4, one of the most downstream SPOC components, is essential to stop the mitotic exit network (MEN), a signalling pathway that promotes the exit from mitosis and cell division. Previous work, however, suggested that a Kin4-independent pathway contributes to SPOC, yet the underlying mechanisms remain elusive. Here, we established the glycogen-synthase-kinase-3 (GSK-3) homologue Mck1, as a novel component that works independently of Kin4 to engage SPOC. Our data indicate that both Kin4 and Mck1 work in parallel to counteract MEN activation by the Cdc14 early anaphase release (FEAR) network. We show that Mck1's function in SPOC is mediated by the pre-replication complex protein and mitotic cyclin-dependent kinase (M-Cdk) inhibitor, Cdc6, which is degraded in a Mck1-dependent manner prior to mitosis. Moderate overproduction of Cdc6 phenocopies MCK1 deletion and causes SPOC deficiency via its N-terminal, M-Cdk inhibitory domain. Our data uncover an unprecedented role of GSK-3 kinases in coordinating spindle orientation with cell cycle progression.
Collapse
Affiliation(s)
- Siddhi Rathi
- Centre for Organismal Studies (COS), University of Heidelberg, Heidelberg, Germany.,Heidelberg Biosciences International Graduate School (HBIGS) and Faculty of Biosciences, University of Heidelberg, Heidelberg, Germany.,German Academic Exchange Service (DAAD), Bonn, Germany
| | - Irem Polat
- Centre for Organismal Studies (COS), University of Heidelberg, Heidelberg, Germany
| | - Gislene Pereira
- Centre for Organismal Studies (COS), University of Heidelberg, Heidelberg, Germany.,Centre for Molecular Biology (ZMBH), University of Heidelberg, Heidelberg, Germany.,German Cancer Research Centre (DKFZ), DKFZ-ZMBH Alliance, Heidelberg, Germany
| |
Collapse
|
6
|
Coordinating DNA Replication and Mitosis through Ubiquitin/SUMO and CDK1. Int J Mol Sci 2021; 22:ijms22168796. [PMID: 34445496 PMCID: PMC8395760 DOI: 10.3390/ijms22168796] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/11/2021] [Accepted: 08/12/2021] [Indexed: 12/30/2022] Open
Abstract
Post-translational modification of the DNA replication machinery by ubiquitin and SUMO plays key roles in the faithful duplication of the genetic information. Among other functions, ubiquitination and SUMOylation serve as signals for the extraction of factors from chromatin by the AAA ATPase VCP. In addition to the regulation of DNA replication initiation and elongation, we now know that ubiquitination mediates the disassembly of the replisome after DNA replication termination, a process that is essential to preserve genomic stability. Here, we review the recent evidence showing how active DNA replication restricts replisome ubiquitination to prevent the premature disassembly of the DNA replication machinery. Ubiquitination also mediates the removal of the replisome to allow DNA repair. Further, we discuss the interplay between ubiquitin-mediated replisome disassembly and the activation of CDK1 that is required to set up the transition from the S phase to mitosis. We propose the existence of a ubiquitin–CDK1 relay, where the disassembly of terminated replisomes increases CDK1 activity that, in turn, favors the ubiquitination and disassembly of more replisomes. This model has important implications for the mechanism of action of cancer therapies that induce the untimely activation of CDK1, thereby triggering premature replisome disassembly and DNA damage.
Collapse
|
7
|
Ikui AE, Ueki N, Pecani K, Cross FR. Control of pre-replicative complex during the division cycle in Chlamydomonas reinhardtii. PLoS Genet 2021; 17:e1009471. [PMID: 33909603 PMCID: PMC8081180 DOI: 10.1371/journal.pgen.1009471] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 03/07/2021] [Indexed: 12/31/2022] Open
Abstract
DNA replication is fundamental to all living organisms. In yeast and animals, it is triggered by an assembly of pre-replicative complex including ORC, CDC6 and MCMs. Cyclin Dependent Kinase (CDK) regulates both assembly and firing of the pre-replicative complex. We tested temperature-sensitive mutants blocking Chlamydomonas DNA replication. The mutants were partially or completely defective in DNA replication and did not produce mitotic spindles. After a long G1, wild type Chlamydomonas cells enter a division phase when it undergoes multiple rapid synchronous divisions ('multiple fission'). Using tagged transgenic strains, we found that MCM4 and MCM6 were localized to the nucleus throughout the entire multiple fission division cycle, except for transient cytoplasmic localization during each mitosis. Chlamydomonas CDC6 was transiently localized in nucleus in early division cycles. CDC6 protein levels were very low, probably due to proteasomal degradation. CDC6 levels were severely reduced by inactivation of CDKA1 (CDK1 ortholog) but not the plant-specific CDKB1. Proteasome inhibition did not detectably increase CDC6 levels in the cdka1 mutant, suggesting that CDKA1 might upregulate CDC6 at the transcriptional level. All of the DNA replication proteins tested were essentially undetectable until late G1. They accumulated specifically during multiple fission and then were degraded as cells completed their terminal divisions. We speculate that loading of origins with the MCM helicase may not occur until the end of the long G1, unlike in the budding yeast system. We also developed a simple assay for salt-resistant chromatin binding of MCM4, and found that tight MCM4 loading was dependent on ORC1, CDC6 and MCM6, but not on RNR1 or CDKB1. These results provide a microbial framework for approaching replication control in the plant kingdom.
Collapse
Affiliation(s)
- Amy E. Ikui
- Department of Biology, Brooklyn College, The City University of New York, New York City, New York, United States of America
- * E-mail: (AEI); (FRC)
| | - Noriko Ueki
- Department of Biology, Brooklyn College, The City University of New York, New York City, New York, United States of America
| | - Kresti Pecani
- Laboratory of Cell Cycle Genetics, The Rockefeller University, New York City, New York, United States of America
| | - Frederick R. Cross
- Laboratory of Cell Cycle Genetics, The Rockefeller University, New York City, New York, United States of America
- * E-mail: (AEI); (FRC)
| |
Collapse
|
8
|
Álvarez V, Frattini C, Sacristán MP, Gallego-Sánchez A, Bermejo R, Bueno A. PCNA Deubiquitylases Control DNA Damage Bypass at Replication Forks. Cell Rep 2020; 29:1323-1335.e5. [PMID: 31665643 DOI: 10.1016/j.celrep.2019.09.054] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 08/01/2019] [Accepted: 09/17/2019] [Indexed: 01/06/2023] Open
Abstract
DNA damage tolerance plays a key role in protecting cell viability through translesion synthesis and template switching-mediated bypass of genotoxic polymerase-blocking base lesions. Both tolerance pathways critically rely on ubiquitylation of the proliferating-cell nuclear antigen (PCNA) on lysine 164 and have been proposed to operate uncoupled from replication. We report that Ubp10 and Ubp12 ubiquitin proteases differentially cooperate in PCNA deubiquitylation, owing to distinct activities on PCNA-linked ubiquitin chains. Ubp10 and Ubp12 associate with replication forks in a fashion determined by Ubp10 dependency on lagging-strand PCNA residence, and they downregulate translesion polymerase recruitment and template switch events engaging nascent strands. These findings reveal PCNAK164 deubiquitylation as a key mechanism for the modulation of lesion bypass during replication, which might set a framework for establishing strand-differential pathway choices. We propose that damage tolerance is tempered at replication forks to limit the extension of bypass events and sustain chromosome replication rates.
Collapse
Affiliation(s)
- Vanesa Álvarez
- Instituto de Biología Molecular y Celular del Cáncer (USAL/CSIC), Salamanca, Spain
| | | | - María P Sacristán
- Instituto de Biología Molecular y Celular del Cáncer (USAL/CSIC), Salamanca, Spain; Departamento de Microbiología y Genética, Universidad de Salamanca, Salamanca, Spain
| | | | | | - Avelino Bueno
- Instituto de Biología Molecular y Celular del Cáncer (USAL/CSIC), Salamanca, Spain; Departamento de Microbiología y Genética, Universidad de Salamanca, Salamanca, Spain.
| |
Collapse
|
9
|
Yi ZY, Meng TG, Ma XS, Li J, Zhang CH, Ouyang YC, Schatten H, Qiao J, Sun QY, Qian WP. CDC6 regulates both G2/M transition and metaphase-to-anaphase transition during the first meiosis of mouse oocytes. J Cell Physiol 2020; 235:5541-5554. [PMID: 31984513 DOI: 10.1002/jcp.29469] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 01/06/2020] [Indexed: 12/30/2022]
Abstract
Cell division cycle protein, CDC6, is essential for the initiation of DNA replication. CDC6 was recently shown to inhibit the microtubule-organizing activity of the centrosome. Here, we show that CDC6 is localized to the spindle from pro-metaphase I (MI) to MII stages of oocytes, and it plays important roles at two critical steps of oocyte meiotic maturation. CDC6 depletion facilitated the G2/M transition (germinal vesicle breakdown [GVBD]) through regulation of Cdh1 and cyclin B1 expression and CDK1 (CDC2) phosphorylation in a GVBD-inhibiting culture system containing milrinone. Furthermore, GVBD was significantly decreased after knockdown of cyclin B1 in CDC6-depleted oocytes, indicating that the effect of CDC6 loss on GVBD stimulation was mediated, at least in part, by raising cyclin B1. Knockdown of CDC6 also caused abnormal localization of γ-tubulin, resulting in defective spindles, misaligned chromosomes, cyclin B1 accumulation, and spindle assembly checkpoint (SAC) activation, leading to significant pro-MI/MI arrest and PB1 extrusion failure. These phenotypes were also confirmed by time-lapse live cell imaging analysis. The results indicate that CDC6 is indispensable for maintaining G2 arrest of meiosis and functions in G2/M checkpoint regulation in mouse oocytes. Moreover, CDC6 is also a key player regulating meiotic spindle assembly and metaphase-to-anaphase transition in meiotic oocytes.
Collapse
Affiliation(s)
- Zi-Yun Yi
- The Reproductive Medicine Center, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, China
| | - Tie-Gang Meng
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Xue-Shan Ma
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Jian Li
- The Reproductive Medicine Center, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, China
| | - Chun-Hui Zhang
- The Reproductive Medicine Center, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, China
| | - Ying-Chun Ouyang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Heide Schatten
- Department of Veterinary Pathobiology, University of Missouri, Columbia, Missouri
| | - Jie Qiao
- Reproductive Medical Center, Peking University Third Hospital, Beijing, China
| | - Qing-Yuan Sun
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Wei-Ping Qian
- The Reproductive Medicine Center, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, China
| |
Collapse
|
10
|
Villa-Hernández S, Bueno A, Bermejo R. The Multiple Roles of Ubiquitylation in Regulating Challenged DNA Replication. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1042:395-419. [PMID: 29357068 DOI: 10.1007/978-981-10-6955-0_18] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
DNA replication is essential for the propagation of life and the development of complex organisms. However, replication is a risky process as it can lead to mutations and chromosomal alterations. Conditions challenging DNA synthesis by replicative polymerases or DNA helix unwinding, generally termed as replication stress, can halt replication fork progression. Stalled replication forks are unstable, and mechanisms exist to protect their integrity, which promote an efficient restart of DNA synthesis and counteract fork collapse characterized by the accumulation of DNA lesions and mutagenic events. DNA replication is a highly regulated process, and several mechanisms control replication timing and integrity both during unperturbed cell cycles and in response to replication stress. Work over the last two decades has revealed that key steps of DNA replication are controlled by conjugation of the small peptide ubiquitin. While ubiquitylation was traditionally linked to protein degradation, the complexity and flexibility of the ubiquitin system in regulating protein function have recently emerged. Here we review the multiple roles exerted by ubiquitin-conjugating enzymes and ubiquitin-specific proteases, as well as readers of ubiquitin chains, in the control of eukaryotic DNA replication and replication-coupled DNA damage tolerance and repair.
Collapse
Affiliation(s)
| | - Avelino Bueno
- Instituto de Biología Molecular y Celular del Cáncer (USAL/CSIC), Salamanca, Spain.,Departamento de Microbiología y Genética, Universidad de Salamanca, Salamanca, Spain
| | | |
Collapse
|
11
|
Hamilton MJ, Lee M, Le Roch KG. The ubiquitin system: an essential component to unlocking the secrets of malaria parasite biology. MOLECULAR BIOSYSTEMS 2014; 10:715-23. [PMID: 24481176 PMCID: PMC3990246 DOI: 10.1039/c3mb70506d] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Exploration of the ubiquitin system in eukaryotes has shown that the chemical modification of proteins by ubiquitin, known as ubiquitylation, is an incredibly important post-translational event that is crucial to numerous cellular processes. Ubiquitylation is carried out by a series of enzymes that specifically target proteins to either change their activity or their location or earmark them for degradation. Using a wide range of genome-wide approaches, the ubiquitin system has been shown to be of particular importance in the survival and propagation of the human malaria parasites. In this review, we highlight our current understanding of the ubiquitin system in Plasmodium, and discuss its possible role in the development of drug resistant malaria strains.
Collapse
Affiliation(s)
- Michael J Hamilton
- Department of Cell Biology and Neuroscience, Institute for Integrative Genome Biology, Center for Disease Vector Research, University of California, 900 University Avenue, Riverside, CA 92521, USA.
| | | | | |
Collapse
|
12
|
Gallego-Sánchez A, Ufano S, Andrés S, Bueno A. Analysis of the tolerance to DNA alkylating damage in MEC1 and RAD53 checkpoint mutants of Saccharomyces cerevisiae. PLoS One 2013; 8:e81108. [PMID: 24260543 PMCID: PMC3834268 DOI: 10.1371/journal.pone.0081108] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Accepted: 10/18/2013] [Indexed: 01/04/2023] Open
Abstract
Checkpoint response, tolerance and repair are three major pathways that eukaryotic cells evolved independently to maintain genome stability and integrity. Here, we studied the sensitivity to DNA damage in checkpoint-deficient budding yeast cells and found that checkpoint kinases Mec1 and Rad53 may modulate the balance between error-free and error-prone branches of the tolerance pathway. We have consistently observed that mutation of the RAD53 counterbalances error-free and error-prone branches upon exposure of cells to DNA damage induced either by MMS alkylation or by UV-radiation. We have also found that the potential Mec1/Rad53 balance modulation is independent from Rad6/Rad18-mediated PCNA ubiquitylation, as mec1Δ or rad53Δ mutants show no defects in the modification of the sliding clamp, therefore, we infer that it is likely exerted by acting on TLS polymerases and/or template switching targets.
Collapse
Affiliation(s)
- Alfonso Gallego-Sánchez
- Instituto de Biología Molecular y Celular del Cáncer, Departamento de Microbiología y Genética, Universidad de Salamanca/CSIC, Salamanca, Spain
| | - Sandra Ufano
- Instituto de Biología Molecular y Celular del Cáncer, Departamento de Microbiología y Genética, Universidad de Salamanca/CSIC, Salamanca, Spain
| | - Sonia Andrés
- Instituto de Biología Molecular y Celular del Cáncer, Departamento de Microbiología y Genética, Universidad de Salamanca/CSIC, Salamanca, Spain
| | - Avelino Bueno
- Instituto de Biología Molecular y Celular del Cáncer, Departamento de Microbiología y Genética, Universidad de Salamanca/CSIC, Salamanca, Spain
- * E-mail:
| |
Collapse
|
13
|
Ikui AE, Rossio V, Schroeder L, Yoshida S. A yeast GSK-3 kinase Mck1 promotes Cdc6 degradation to inhibit DNA re-replication. PLoS Genet 2012; 8:e1003099. [PMID: 23236290 PMCID: PMC3516531 DOI: 10.1371/journal.pgen.1003099] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Accepted: 10/01/2012] [Indexed: 11/18/2022] Open
Abstract
Cdc6p is an essential component of the pre-replicative complex (pre-RC), which binds to DNA replication origins to promote initiation of DNA replication. Only once per cell cycle does DNA replication take place. After initiation, the pre-RC components are disassembled in order to prevent re-replication. It has been shown that the N-terminal region of Cdc6p is targeted for degradation after phosphorylation by Cyclin Dependent Kinase (CDK). Here we show that Mck1p, a yeast homologue of GSK-3 kinase, is also required for Cdc6 degradation through a distinct mechanism. Cdc6 is an unstable protein and is accumulated in the nucleus only during G1 and early S-phase in wild-type cells. In mck1 deletion cells, CDC6p is stabilized and accumulates in the nucleus even in late S phase and mitosis. Overexpression of Mck1p induces rapid Cdc6p degradation in a manner dependent on Threonine-368, a GSK-3 phosphorylation consensus site, and SCF(CDC4). We show evidence that Mck1p-dependent degradation of Cdc6 is required for prevention of DNA re-replication. Loss of Mck1 activity results in synthetic lethality with other pre-RC mutants previously implicated in re-replication control, and these double mutant strains over-replicate DNA within a single cell cycle. These results suggest that a GSK3 family protein plays an unexpected role in preventing DNA over-replication through Cdc6 degradation in Saccharomyces cerevisiae. We propose that both CDK and Mck1 kinases are required for Cdc6 degradation to ensure a tight control of DNA replication.
Collapse
Affiliation(s)
- Amy E Ikui
- Department of Biology, Brooklyn College, The City University of New York, Brooklyn, New York, United States of America.
| | | | | | | |
Collapse
|
14
|
Kim DH, Zhang W, Koepp DM. The Hect domain E3 ligase Tom1 and the F-box protein Dia2 control Cdc6 degradation in G1 phase. J Biol Chem 2012; 287:44212-20. [PMID: 23129771 DOI: 10.1074/jbc.m112.401778] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The accurate replication of genetic information is critical to maintaining chromosomal integrity. Cdc6 functions in the assembly of pre-replicative complexes and is specifically required to load the Mcm2-7 replicative helicase complex at replication origins. Cdc6 is targeted for protein degradation by multiple mechanisms in Saccharomyces cerevisiae, although only a single pathway and E3 ubiquitin ligase for Cdc6 has been identified, the SCF(Cdc4) (Skp1/Cdc53/F-box protein) complex. Notably, Cdc6 is unstable during the G(1) phase of the cell cycle, but the ubiquitination pathway has not been previously identified. Using a genetic approach, we identified two additional E3 ubiquitin ligase components required for Cdc6 degradation, the F-box protein Dia2 and the Hect domain E3 Tom1. Both Dia2 and Tom1 control Cdc6 turnover during G(1) phase of the cell cycle and act separately from SCF(Cdc4). Ubiquitination of Cdc6 is significantly reduced in dia2Δ and tom1Δ cells. Tom1 and Dia2 each independently immunoprecipitate Cdc6, binding to a C-terminal region of the protein. Tom1 and Dia2 cannot compensate for each other in Cdc6 degradation. Cdc6 and Mcm4 chromatin association is aberrant in tom1Δ and dia2Δ cells in G(1) phase. Together, these results present evidence for a novel degradation pathway that controls Cdc6 turnover in G(1) that may regulate pre-replicative complex assembly.
Collapse
Affiliation(s)
- Dong-Hwan Kim
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | | | |
Collapse
|
15
|
Reversal of PCNA ubiquitylation by Ubp10 in Saccharomyces cerevisiae. PLoS Genet 2012; 8:e1002826. [PMID: 22829782 PMCID: PMC3400564 DOI: 10.1371/journal.pgen.1002826] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2011] [Accepted: 05/25/2012] [Indexed: 11/19/2022] Open
Abstract
Regulation of PCNA ubiquitylation plays a key role in the tolerance to DNA damage in eukaryotes. Although the evolutionary conserved mechanism of PCNA ubiquitylation is well understood, the deubiquitylation of ubPCNA remains poorly characterized. Here, we show that the histone H2BK123 ubiquitin protease Ubp10 also deubiquitylates ubPCNA in Saccharomyces cerevisiae. Our results sustain that Ubp10-dependent deubiquitylation of the sliding clamp PCNA normally takes place during S phase, likely in response to the simple presence of ubPCNA. In agreement with this, we show that Ubp10 forms a complex with PCNA in vivo. Interestingly, we also show that deletion of UBP10 alters in different ways the interaction of PCNA with DNA polymerase ζ–associated protein Rev1 and with accessory subunit Rev7. While deletion of UBP10 enhances PCNA–Rev1 interaction, it decreases significantly Rev7 binding to the sliding clamp. Finally, we report that Ubp10 counteracts Rad18 E3-ubiquitin ligase activity on PCNA at lysine 164 in such a manner that deregulation of Ubp10 expression causes tolerance impairment and MMS hypersensitivity. DNA damage is a major source of genome instability and cancer. A universal mechanism of DNA damage tolerance is based on translesion synthesis (TLS) by specialized low-fidelity DNA polymerases capable of replicating over DNA lesions during replication. Translesion synthesis requires the switch between replicative and TLS DNA polymerases, and this switching is controlled through the ubiquitylation of the proliferating-cell nuclear antigen (PCNA), a processivity factor for DNA synthesis. It is thought that DNA polymerase switching is a reversible process that has a favorable outcome for cells in the prevention of irreversible DNA replication forks collapse. However, the low-fidelity nature of TLS polymerases has unfavorable consequences like the increased risk of mutations opposite to DNA lesions. Here we identify Ubp10 as an enzyme controlling PCNA deubiquitylation in the model yeast S. cerevisiae. The identification of Ubp10 is a first step that will allow us to understand its biological significance and its potential role as part of a safeguard mechanism limiting the residence time of TLS DNA polymerases on replicating chromatin in eukaryotes.
Collapse
|
16
|
Yakisich JS, Sidén Å, Cruz M. Ongoing DNA synthesis in the rat cerebral cortex is regulated by a proteolytic pathway independent of the proteasome and calpains. Invest New Drugs 2009; 28:242-50. [DOI: 10.1007/s10637-009-9238-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2009] [Accepted: 02/23/2009] [Indexed: 11/30/2022]
|
17
|
Cakmak A, Ozsoyoglu G. Discovering gene annotations in biomedical text databases. BMC Bioinformatics 2008; 9:143. [PMID: 18325104 PMCID: PMC2335285 DOI: 10.1186/1471-2105-9-143] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2007] [Accepted: 03/06/2008] [Indexed: 11/30/2022] Open
Abstract
Background Genes and gene products are frequently annotated with Gene Ontology concepts based on the evidence provided in genomics articles. Manually locating and curating information about a genomic entity from the biomedical literature requires vast amounts of human effort. Hence, there is clearly a need forautomated computational tools to annotate the genes and gene products with Gene Ontology concepts by computationally capturing the related knowledge embedded in textual data. Results In this article, we present an automated genomic entity annotation system, GEANN, which extracts information about the characteristics of genes and gene products in article abstracts from PubMed, and translates the discoveredknowledge into Gene Ontology (GO) concepts, a widely-used standardized vocabulary of genomic traits. GEANN utilizes textual "extraction patterns", and a semantic matching framework to locate phrases matching to a pattern and produce Gene Ontology annotations for genes and gene products. In our experiments, GEANN has reached to the precision level of 78% at therecall level of 61%. On a select set of Gene Ontology concepts, GEANN either outperforms or is comparable to two other automated annotation studies. Use of WordNet for semantic pattern matching improves the precision and recall by 24% and 15%, respectively, and the improvement due to semantic pattern matching becomes more apparent as the Gene Ontology terms become more general. Conclusion GEANN is useful for two distinct purposes: (i) automating the annotation of genomic entities with Gene Ontology concepts, and (ii) providing existing annotations with additional "evidence articles" from the literature. The use of textual extraction patterns that are constructed based on the existing annotations achieve high precision. The semantic pattern matching framework provides a more flexible pattern matching scheme with respect to "exactmatching" with the advantage of locating approximate pattern occurrences with similar semantics. Relatively low recall performance of our pattern-based approach may be enhanced either by employing a probabilistic annotation framework based on the annotation neighbourhoods in textual data, or, alternatively, the statistical enrichment threshold may be adjusted to lower values for applications that put more value on achieving higher recall values.
Collapse
Affiliation(s)
- Ali Cakmak
- Department of Electrical Engineering and Computer Science, Case Western Reserve University, 10900 Euclid Ave, Cleveland, OH, USA.
| | | |
Collapse
|
18
|
Skibbens RV. Mechanisms of sister chromatid pairing. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2008; 269:283-339. [PMID: 18779060 DOI: 10.1016/s1937-6448(08)01005-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Abstract
The continuance of life through cell division requires high fidelity DNA replication and chromosome segregation. During DNA replication, each parental chromosome is duplicated exactly and one time only. At the same time, the resulting chromosomes (called sister chromatids) become tightly paired along their length. This S-phase pairing, or cohesion, identifies chromatids as sisters over time. During mitosis in most eukaryotes, sister chromatids bi-orient to the mitotic spindle. After each chromosome pair is properly oriented, the cohesion established during S phase is inactivated in a tightly regulated fashion, allowing sister chromatids to segregate away from each other. Recent findings of cohesin structure and enzymology provide new insights into cohesion, while many critical facets of cohesion (how cohesins tether together sister chromatids and how those tethers are established) remain actively debated.
Collapse
Affiliation(s)
- Robert V Skibbens
- Department of Biological Sciences, Lehigh University, Bethlehem, Pennsylvania 18015, USA
| |
Collapse
|
19
|
Coller HA. What's taking so long? S-phase entry from quiescence versus proliferation. Nat Rev Mol Cell Biol 2007; 8:667-70. [PMID: 17637736 DOI: 10.1038/nrm2223] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
There is a short window in the mammalian cell cycle during which cells can respond to extracellular cues by withdrawing temporarily from the cell cycle. When these cells re-enter the cell cycle, they require several extra hours in the G1 phase before they replicate their DNA compared with their cycling counterparts. More than 20 years after this initial observation, we still do not understand what is taking so long.
Collapse
Affiliation(s)
- Hilary A Coller
- Department of Molecular Biology, Lewis Thomas Laboratory, Room 140, Princeton University, Princeton, New Jersey 08544-1014, USA.
| |
Collapse
|
20
|
Wiggins BL, Malik HS. Molecular evolution of Drosophila Cdc6, an essential DNA replication-licensing gene, suggests an adaptive choice of replication origins. Fly (Austin) 2007; 1:155-63. [PMID: 18618020 PMCID: PMC2447932 DOI: 10.4161/fly.4599] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Increased size of eukaryotic genomes necessitated the use of multiple origins of DNA replication, and presumably selected for their efficient spacing to ensure rapid DNA replication. The sequence of these origins remains undetermined in metazoan genomes, leaving important questions about the selective constraints acting on replication origins unanswered. We have chosen to study the evolution of proteins that recognize and define these origins every cell cycle, as a surrogate to the direct analysis of replication origins. Among these DNA replication proteins is the essential Cdc6 protein, which acts to license origins for replication. We find that two different species pairs of Drosophila show evidence of positive selection in Cdc6 in their highly conserved C-terminal AAA-ATPase domain. We also identified amino acid segments that are highly conserved in the N-terminal tail of Cdc6 proteins from various Drosophila species, but are not conserved even in closely related insect species. Instead, we find that the N-terminal tails of Cdc6 proteins vary extensively in size and sequence across different eukaryotic lineages. Our results suggest that choice of origin firing may be significantly altered in closely related species, as each set of replication proteins optimizes to its own genomic landscape.
Collapse
Affiliation(s)
- Benjamin L. Wiggins
- Molecular and Cellular Biology program, University of Washington, Seattle WA 98195
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle WA 98109
| | - Harmit S. Malik
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle WA 98109
| |
Collapse
|
21
|
Boronat S, Campbell JL. Mitotic Cdc6 stabilizes anaphase-promoting complex substrates by a partially Cdc28-independent mechanism, and this stabilization is suppressed by deletion of Cdc55. Mol Cell Biol 2007; 27:1158-71. [PMID: 17130241 PMCID: PMC1800676 DOI: 10.1128/mcb.01745-05] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2006] [Revised: 10/07/2006] [Accepted: 11/15/2006] [Indexed: 11/20/2022] Open
Abstract
Ectopic expression of Cdc6p results in mitotic delay, and this has been attributed to Cdc6p-mediated inhibition of Cdc28 protein kinase and failure to activate the anaphase-promoting complex (APC). Here we show that endogenous Cdc6p delays a specific subset of mitotic events and that Cdc28 inhibition is not sufficient to account for it. The depletion of Cdc6p in G(2)/M cells reveals that Cdc6p is rate limiting for the degradation of the APC/Cdc20 substrates Pds1p and Clb2p. Conversely, the premature expression of Cdc6p delays the degradation of APC/Cdc20 substrates. Abolishing Cdc6p/Cdc28p interaction does not eliminate the Cdc6-dependent delay of these anaphase events. To identify additional Cdc6-mediated, APC-inhibitory mechanisms, we looked for mutants that reversed the mitotic delay. The deletion of SWE1, RAD24, MAD2, or BUB2 had no effect. However, disrupting CDC55, a PP2A regulatory subunit, suppressed the Cdc6p-dependent delay of Pds1 and Clb2 destruction. A specific role for CDC55 was supported by demonstrating that the lethality of Cdc6 ectopic expression in a cdc16-264 mutant is suppressed by the deletion of CDC55, that endogenous Cdc6p coimmunoprecipitates with the Cdc55 and Tpd3 subunits of PP2A, that Cdc6p/Cdc55p/Tpd3 interaction occurs only during mitosis, and that Cdc6 affects PP2A-Cdc55 activity during anaphase. This demonstrates that the levels and timing of accumulation of Cdc6p in mitosis are appropriate for mediating the modulation of APC/Cdc20.
Collapse
Affiliation(s)
- Susanna Boronat
- Braun Laboratories 147-75, California Institute of Technology, Pasadena, CA 91125, USA
| | | |
Collapse
|
22
|
Honey S, Futcher B. Roles of the CDK phosphorylation sites of yeast Cdc6 in chromatin binding and rereplication. Mol Biol Cell 2007; 18:1324-36. [PMID: 17267692 PMCID: PMC1838967 DOI: 10.1091/mbc.e06-06-0544] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The Saccharomyces cerevisiae Cdc6 protein is crucial for DNA replication. In the absence of cyclin-dependent kinase (CDK) activity, Cdc6 binds to replication origins, and loads Mcm proteins. In the presence of CDK activity, Cdc6 does not bind to origins, and this helps prevent rereplication. CDK activity affects Cdc6 function by multiple mechanisms: CDK activity affects transcription of CDC6, degradation of Cdc6, nuclear import of Cdc6, and binding of Cdc6 to Clb2. Here we examine some of these mechanisms individually. We find that when Cdc6 is forced into the nucleus during late G1 or S, it will not substantially reload onto chromatin no matter whether its CDK sites are present or not. In contrast, at a G2/M nocodazole arrest, Cdc6 will reload onto chromatin if and only if its CDK sites have been removed. Trace amounts of nonphosphorylatable Cdc6 are dominant lethal in strains bearing nonphosphorylatable Orc2 and Orc6, apparently because of rereplication. This synthetic dominant lethality occurs even in strains with wild-type MCM genes. Nonphosphorylatable Cdc6, or Orc2 and Orc6, sensitize cells to rereplication caused by overexpression of various replication initiation proteins such as Dpb11 and Sld2.
Collapse
Affiliation(s)
- Sangeet Honey
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY 11794-5222
| | - Bruce Futcher
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY 11794-5222
| |
Collapse
|
23
|
Li WJ, Wang YM, Zheng XD, Shi QM, Zhang TT, Bai C, Li D, Sang JL, Wang Y. The F-box protein Grr1 regulates the stability of Ccn1, Cln3 and Hof1 and cell morphogenesis in Candida albicans. Mol Microbiol 2007; 62:212-26. [PMID: 16987179 DOI: 10.1111/j.1365-2958.2006.05361.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Both G1 and mitotic cyclins have been implicated in regulating Candida albicans filamentous growth. We have investigated the functions of Grr1 whose orthologue in Saccharomyces cerevisiae is known to mediate ubiquitin-dependent degradation of the G1 cyclins Cln1 and Cln2. Here, we report that deleting C. albicans GRR1 causes significant stabilization of two G1 cyclins Ccn1 and Cln3 and pseudohyphal growth. grr1Delta cells are highly heterogeneous in length and many of them fail to separate after cytokinesis. Interestingly, some isolated rod-like G1 cells of similar sizes are present in the grr1Delta culture. Time-lapse microscopy revealed that the rod-shaped G1 cells first grew exclusively in width before budding and then the bud grew exclusively by apical extension until after cytokinesis, yielding rod-like daughter cells. Consistently, actin patches persistently localize to the bud tip until around the time of cytokinesis. Despite the pseudohyphal phenotype, grr1Delta cells respond normally to hyphal induction. Hyperphosphorylated Cln3 isoforms accumulate in grr1Delta cells, indicating that Grr1 selectively mediates their degradation in wild-type cells. grr1Delta pseudohyphal growth requires neither Hgc1 nor Swel, two important regulators of cell morphogenesis. Furthermore, the cellular level of Hof1, a protein having a role in cytokinesis, is also significantly increased in grr1Delta cells.
Collapse
Affiliation(s)
- Wan Jie Li
- Institute of Life Sciences, Beijing Normal University, Beijing 100875, China
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Cordón-Preciado V, Ufano S, Bueno A. Limiting amounts of budding yeast Rad53 S-phase checkpoint activity results in increased resistance to DNA alkylation damage. Nucleic Acids Res 2006; 34:5852-62. [PMID: 17062626 PMCID: PMC1635317 DOI: 10.1093/nar/gkl741] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The Saccharomyces cerevisiae protein kinase Rad53 plays a key role in maintaining genomic integrity after DNA damage and is an essential component of the 'intra-S-phase checkpoint'. In budding yeast, alkylating chemicals, such as methyl methanesulfonate (MMS), or depletion of nucleotides by hydroxyurea (HU) stall DNA replication forks and thus activate Rad53 during S-phase. This stabilizes stalled DNA replication forks and prevents the activation of later origins of DNA replication. Here, we report that a reduction in the level of Rad53 kinase causes cells to behave very differently in response to DNA alkylation or to nucleotide depletion. While cells lacking Rad53 are unable to activate the checkpoint response to HU or MMS, so that they rapidly lose viability, a reduction in Rad53 enhances cell survival only after DNA alkylation. This reduction in the level of Rad53 allows S-phase cells to maintain the stability of DNA replication forks upon MMS treatment, but does not prevent the collapse of forks in HU. Our results may have important implications for cancer therapies, as they suggest that partial impairment of the S-phase checkpoint Rad53/Chk2 kinase provides cells with a growth advantage in the presence of drugs that damage DNA.
Collapse
Affiliation(s)
| | | | - Avelino Bueno
- To whom correspondence should be addressed: Tel: +34 923 29 4805; Fax: +34 923 29 4743;
| |
Collapse
|
25
|
Zhu W, Abbas T, Dutta A. DNA replication and genomic instability. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2006; 570:249-79. [PMID: 18727504 DOI: 10.1007/1-4020-3764-3_9] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Wenge Zhu
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | | | | |
Collapse
|
26
|
Abstract
Eukaryotic genomes are replicated from large numbers of replication origins distributed on multiple chromosomes. The activity of these origins must be coordinated so that the entire genome is efficiently and accurately replicated yet no region of the genome is ever replicated more than once. The past decade has seen significant advances in understanding how the initiation of DNA replication is regulated by key cell-cycle regulators, including the cyclin dependent kinases (CDKs) and the anaphase promoting complex/cyclosome (APC/C). The assembly of essential prereplicative complexes (pre-RCs) at origins only occurs when CDK activity is low and APC/C activity is high. Origin firing, however, can only occur when the APC/C is inactivated and CDKs become active. This two step mechanism ensures that no origin can fire more than once in a cell cycle. In all eukaryotes tested, CDKs can contribute to the inhibition of pre-RC assembly. This inhibition is characterised both by high degrees of redundancy and evolutionary plasticity. Geminin plays a crucial role in inhibiting licensing in metazoans and, like cyclins, is inactivated by the APC/C. Strategies involved in preventing re-replication in different organisms will be discussed.
Collapse
Affiliation(s)
- John F X Diffley
- Cancer Research UK London Research Institute, Clare Hall Laboratories, South Mimms, Hertfordshire EN6 3LD, UK.
| |
Collapse
|
27
|
Machida YJ, Dutta A. Cellular Checkpoint Mechanisms Monitoring Proper Initiation of DNA Replication. J Biol Chem 2005; 280:6253-6. [PMID: 15591064 DOI: 10.1074/jbc.r400037200] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Yuichi J Machida
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, Virginia 22908, USA
| | | |
Collapse
|
28
|
Ofir Y, Sagee S, Guttmann-Raviv N, Pnueli L, Kassir Y. The role and regulation of the preRC component Cdc6 in the initiation of premeiotic DNA replication. Mol Biol Cell 2004; 15:2230-42. [PMID: 15004237 PMCID: PMC404018 DOI: 10.1091/mbc.e03-08-0617] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
In all eukaryotes, the initiation of DNA replication is regulated by the ordered assembly of DNA/protein complexes on origins of DNA replication. In this report, we examine the role of Cdc6, a component of the prereplication complex, in the initiation of premeiotic DNA replication in budding yeast. We show that in the meiotic cycle, Cdc6 is required for DNA synthesis and sporulation. Moreover, similarly to the regulation in the mitotic cell cycle, Cdc6 is specifically degraded upon entry into the meiotic S phase. By contrast, chromatin-immunoprecipitation analysis reveals that the origin-bound Cdc6 is stable throughout the meiotic cycle. Preliminary evidence suggests that this protection reflects a change in chromatin structure that occurs in meiosis. Using the cdc28-degron allele, we show that depletion of Cdc28 leads to stabilization of Cdc6 in the mitotic cycle, but not in the meiotic cycle. We show physical association between Cdc6 and the meiosis-specific hCDK2 homolog Ime2. These results suggest that under meiotic conditions, Ime2, rather than Cdc28, regulates the stability of Cdc6. Chromatin-immunoprecipitation analysis reveals that similarly to the mitotic cell cycle, Mcm2 binds origins in G1 and meiotic S phases, and at the end of the second meiotic division, it is gradually removed from chromatin.
Collapse
Affiliation(s)
- Yaara Ofir
- Department of Biology, Technion-Israel Institute of Technology, Haifa 32000 Israel
| | | | | | | | | |
Collapse
|
29
|
Abstract
The minichromosome maintenance (or MCM) protein family is composed of six related proteins that are conserved in all eukaryotes. They were first identified by genetic screens in yeast and subsequently analyzed in other experimental systems using molecular and biochemical methods. Early data led to the identification of MCMs as central players in the initiation of DNA replication. More recent studies have shown that MCM proteins also function in replication elongation, probably as a DNA helicase. This is consistent with structural analysis showing that the proteins interact together in a heterohexameric ring. However, MCMs are strikingly abundant and far exceed the stoichiometry of replication origins; they are widely distributed on unreplicated chromatin. Analysis of mcm mutant phenotypes and interactions with other factors have now implicated the MCM proteins in other chromosome transactions including damage response, transcription, and chromatin structure. These experiments indicate that the MCMs are central players in many aspects of genome stability.
Collapse
Affiliation(s)
- Susan L Forsburg
- Molecular & Cell Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA.
| |
Collapse
|
30
|
Luo KQ, Elsasser S, Chang DC, Campbell JL. Regulation of the localization and stability of Cdc6 in living yeast cells. Biochem Biophys Res Commun 2003; 306:851-9. [PMID: 12821120 DOI: 10.1016/s0006-291x(03)01082-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The Cdc6 protein is an essential regulator for initiation of DNA replication. Following the G1/S transition, Cdc6 is degraded through a ubiquitin-mediated proteolysis pathway. In this study, we tagged Cdc6 with green fluorescent protein (GFP) and used site-specific mutations to study the regulation of Cdc6 localization and degradation in living yeast cells. Our major findings are: (1). Cdc6-GFP distributes predominantly in the nucleus in all cell cycle stages, with a small increase in cytoplasmic localization in G2/M cells. (2). This nuclear localization is critical for Cdc6 degradation. When the N-terminal nuclear localization signal (NLS) was mutated, Cdc6-GFP no longer accumulated in the nucleus, and the mutant cdc6 was stabilized compared to wild type. (3). The putative CDK phosphorylation sites are not required for Cdc6 nuclear localization, but are important for protein stability. These observations suggest that the stability of Cdc6 protein is regulated by two factors: nuclear localization and phosphorylation by CDK1.
Collapse
Affiliation(s)
- Kathy Q Luo
- Division of Biology, California Institute of Technology, Pasadena, CA 91125, USA.
| | | | | | | |
Collapse
|
31
|
Kulartz M, Kreitz S, Hiller E, Damoc EC, Przybylski M, Knippers R. Expression and phosphorylation of the replication regulator protein geminin. Biochem Biophys Res Commun 2003; 305:412-20. [PMID: 12745091 DOI: 10.1016/s0006-291x(03)00773-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
It has been described that the replication regulator protein geminin is rapidly degraded at the end of mitosis and newly expressed at the beginning of the next S phase in the metazoan cell cycle. We have performed experiments to investigate the synthesis of geminin in cycling human HeLa cells. The levels of geminin-mRNA vary only modestly during the cell cycle with a 2-3-fold higher mRNA level at the G1/S phase transition, whereas newly synthesized geminin can only be detected in post-G1 phases. Surprisingly, geminin, once synthesized, does not remain stable, but is turned over during S phase with a half-life of 3-4h. We also show that geminin becomes phosphorylated as S phase proceeds and identify by MALDI mass spectrometry two specific major phosphorylation sites.
Collapse
Affiliation(s)
- Monika Kulartz
- Department of Biology, Universität Konstanz, D-78457, Konstanz, Germany.
| | | | | | | | | | | |
Collapse
|
32
|
Calzada A, Bueno A. Genes involved in the initiation of DNA replication in yeast. INTERNATIONAL REVIEW OF CYTOLOGY 2002; 212:133-207. [PMID: 11804036 DOI: 10.1016/s0074-7696(01)12005-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
Replication and segregation of the information contained in genomic DNA are strictly regulated processes that eukaryotic cells alternate to divide successfully. Experimental work on yeast has suggested that this alternation is achieved through oscillations in the activity of a serine/threonine kinase complex, CDK, which ensures the timely activation of DNA synthesis. At the same time, this CDK-mediated activation sets up the basis of the mechanism that ensures ploidy maintenance in eukaryotes. DNA synthesis is initiated at discrete sites of the genome called origins of replication on which a prereplicative complex (pre-RC) of different protein subunits is formed during the G1 phase of the cell division cycle. Only after pre-RCs are formed is the genome competent to be replicated. Several lines of evidence suggest that CDK activity prevents the assembly of pre-RCs ensuring single rounds of genome replication during each cell division cycle. This review offers a descriptive discussion of the main molecular events that a unicellular eukaryote such as the budding yeast Saccharomyces cerevisiae undergoes to initiate DNA replication.
Collapse
Affiliation(s)
- Arturo Calzada
- Instituto de Microbiología--Bioquímica/Centro de Investigación del Cancer, Departamento de Microbiología y Genética, Edificio Departamental, CSIC/Universidad de Salamanca, Spain
| | | |
Collapse
|
33
|
Biermann E, Baack M, Kreitz S, Knippers R. Synthesis and turn-over of the replicative Cdc6 protein during the HeLa cell cycle. EUROPEAN JOURNAL OF BIOCHEMISTRY 2002; 269:1040-6. [PMID: 11846807 DOI: 10.1046/j.0014-2956.2001.02746.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The human replication protein Cdc6p is translocated from its chromatin sites to the cytoplasm during the replication phase (S phase) of the cell cycle. However, the amounts of Cdc6p on chromatin remain high during S phase implying either that displaced Cdc6p can rebind to chromatin, or that Cdc6p is synthesized de novo. We have performed metabolic labeling experiments and determined that [35S]methionine is incorporated into Cdc6p at similar rates during the G1 phase and the S phase of the cell cycle. Newly synthesized Cdc6p associates with chromatin. Pulse-chase experiments show that chromatin-bound newly synthesized Cdc6p has a half life of 2-4 h. The results indicate that, once bound to chromatin, pulse-labeled new Cdc6p behaves just as old Cdc6p: it dissociates and eventually disappears from the nucleus. The data suggest a surprisingly dynamic behaviour of Cdc6p in the HeLa cell cycle.
Collapse
|
34
|
Ulrich HD. Degradation or maintenance: actions of the ubiquitin system on eukaryotic chromatin. EUKARYOTIC CELL 2002; 1:1-10. [PMID: 12455966 PMCID: PMC118055 DOI: 10.1128/ec.1.1.1-10.2002] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Helle D Ulrich
- Max Planck Institute for Terrestrial Microbiology, D-35043 Marburg, Germany.
| |
Collapse
|
35
|
Abstract
Viral cyclin/cdk6 complexes interact with and phosphorylate human Orc1, a component of the origin recognition complex (ORC) that functions in DNA replication. Here we assess the effect that viral cyclin has on the intracellular location of human Orc1, which is present in both nuclear and cytoplasmic pools. Overexpression of K cyclin or cyclin A results in Crm1-dependent export of Orc1 to the cytoplasm, and this process is dependent on the phosphorylation status of several cdk target sites in Orc1. These findings support a model where S phase promoting cyclin activity drives the export of a component of replication complexes.
Collapse
Affiliation(s)
- H Laman
- Molecular Oncology Laboratory, Gene Regulation Laboratory, Imperial Cancer Research Fund, 44 Lincoln's Inn Fields, London, WC2A 3PX, United Kingdom
| | | | | |
Collapse
|
36
|
Perkins G, Drury LS, Diffley JF. Separate SCF(CDC4) recognition elements target Cdc6 for proteolysis in S phase and mitosis. EMBO J 2001; 20:4836-45. [PMID: 11532947 PMCID: PMC125267 DOI: 10.1093/emboj/20.17.4836] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The Cdc6 DNA replication initiation factor is targeted for ubiquitin-mediated proteolysis by the E3 ubiquitin ligase SCF(CDC4) from the end of G1phase until mitosis in the budding yeast Saccharomyces cerevisiae. Here we describe a dominant-negative CDC6 mutant that, when overexpressed, arrests the cell cycle by inhibiting cyclin-dependent kinases (CDKs) and, thus, prevents passage through mitosis. This mutant protein inhibits CDKs more efficiently than wild-type Cdc6, in part because it is completely refractory to SCF(CDC4)-mediated proteolysis late in the cell cycle and consequently accumulates to high levels. The mutation responsible for this phenotype destroys a putative CDK phosphorylation site near the middle of the Cdc6 primary amino acid sequence. We show that this site lies within a novel Cdc4-interacting domain distinct from a Cdc4-interacting site identified previously near the N-terminus of the protein. We show that both sites can target Cdc6 for proteolysis in late G1/early S phase whilst only the newly identified site can target Cdc6 for proteolysis during mitosis.
Collapse
Affiliation(s)
- Gordon Perkins
- ICRF Clare Hall Laboratories, South Mimms EN6 3LD, UK
Present address: Department of Immunology, UCL Medical School, Windeyer Building, 46 Cleveland Street, London W1P 6DB, UK Corresponding author e-mail: G.Perkins and L.S.Drury contributed equally to this paper
| | | | - John F.X. Diffley
- ICRF Clare Hall Laboratories, South Mimms EN6 3LD, UK
Present address: Department of Immunology, UCL Medical School, Windeyer Building, 46 Cleveland Street, London W1P 6DB, UK Corresponding author e-mail: G.Perkins and L.S.Drury contributed equally to this paper
| |
Collapse
|
37
|
Abstract
Transcriptional regulation is all about getting RNA polymerase to the right place on the gene at the right time and making sure that it is competent to conduct transcription. Traditional views of this process place most of their emphasis on the events that precede initiation of transcription. We imagine a promoter-bound transcriptional activator (or collection of activators) recruiting components of the basal transcriptional machinery to the DNA, eventually leading to the recruitment of RNA polymerase II and the onset of gene transcription. Although these events play a crucial role in regulating gene expression, they are only half the story. Correct regulation of transcription requires that polymerase not only initiates when and where it should, but that it stops initiating when no longer appropriate. But how are the signals from transcriptional activators, telling RNA polymerase to fire, terminated? Is this process governed by chance, with activators simply falling off the promoter at a certain frequency? Or is there some more direct mechanism, whereby activators are aggressively limited from uncontrolled promoter activation? A new article by suggests the latter may be true, and provides a mechanism for how a component of the basal transcription machinery can mark the activators it has encountered, sentencing them to an early death or banishing them from the nucleus. The ability of the basal transcriptional apparatus to mark activators provides an efficient way to limit activator function and ensures that continuing transcription initiation at a promoter is coupled to the continuing synthesis and activation of transcriptional activators.
Collapse
Affiliation(s)
- W P Tansey
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA.
| |
Collapse
|
38
|
Abstract
Cell-cycle progression in all eukaryotes is driven by cyclin-dependent kinases (CDKs) and their cyclin partners. In vertebrates, the proper and timely duplication of the genome during S-phase relies on the coordinated activities of positive regulators such as CDK-cyclins and E2F, and negative regulators such as CDK inhibitors of the Cip/Kip and INK4 families. Recent and ongoing work indicates that many important regulators of G1- and S-phases are targeted for ubiquitination and subsequent degradation by the 26S proteasome. The proteolysis of key proteins during G1- and S-phases appears to be central for proper custodial regulation of DNA replication and the maintenance of cellular homeostasis in general. This review highlights the current literature regarding ubiquitin-mediated proteolysis of G1- and S-phase regulators and the control of events during the initiation and completion of DNA replication in vertebrates.
Collapse
Affiliation(s)
- P R Yew
- Department of Molecular Medicine, Institute of Biotechnology, University of Texas Health Science Center at San Antonio, 15355 Lambda Drive, San Antonio, TX 78245-3207, USA.
| |
Collapse
|
39
|
Jang SW, Elsasser S, Campbell JL, Kim J. Identification of Cdc6 protein domains involved in interaction with Mcm2 protein and Cdc4 protein in budding yeast cells. Biochem J 2001; 354:655-61. [PMID: 11237870 PMCID: PMC1221697 DOI: 10.1042/0264-6021:3540655] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The Cdc6 protein (Cdc6p) has essential roles in regulating initiation of DNA replication. Cdc6p is recruited to origins of replication by the origin recognition complex (ORC) late in mitosis; Cdc6p in turn recruits minichromosome maintenance (Mcm) proteins to form the pre-replicative complex. Cdc6p is thought to interact with one or more Mcm proteins but this point has not yet been demonstrated. In the present study we observed that Cdc6p interacted significantly only with Mcm2p out of six Mcm proteins in yeast two-hybrid cells. Our results indicate that the interaction of Cdc6p with Mcm2p is specific, although we cannot exclude the possibility that the interaction might not be direct. In attempts to identify domains of Cdc6p important for interaction with Mcm2p, we tested interactions of various deleted versions of Cdc6p with Mcm2p and also with Cdc4p, which was previously known to interact with Cdc6p. The portion of Cdc6p from amino acid residues 51 to 394 was able to interact with Mcm2p. During the course of the studies we also discovered a previously undetected Cdc4p interaction domain between residues 51 and 394. Interestingly, when all six putative Cdc28 phosphorylation sites in Cdc6p were changed to alanine, a 6-7-fold increase in binding to Mcm2p was observed. This result suggests that unphosphorylated Cdc6p has higher affinity than phosphorylated Cdc6p for Mcm2p; this might partly explain the previous observation that Cdc6p failed to load Mcm proteins on replication origins during S phase when the cyclin-dependent protein kinase was active, thus helping to prevent the reinitiation of activated replicons.
Collapse
Affiliation(s)
- S W Jang
- Graduate School of Biotechnology, Department of Genetic Engineering, Kyung Hee University, Yongin, Kyonggi-Do, 449-701, Korea
| | | | | | | |
Collapse
|
40
|
Abstract
The initiation of DNA replication in eukaryotic cells is tightly controlled to ensure that the genome is faithfully duplicated once each cell cycle. Genetic and biochemical studies in several model systems indicate that initiation is mediated by a common set of proteins, present in all eukaryotic species, and that the activities of these proteins are regulated during the cell cycle by specific protein kinases. Here we review the properties of the initiation proteins, their interactions with each other, and with origins of DNA replication. We also describe recent advances in understanding how the regulatory protein kinases control the progress of the initiation reaction. Finally, we describe the checkpoint mechanisms that function to preserve the integrity of the genome when the normal course of genome duplication is perturbed by factors that damage the DNA or inhibit DNA synthesis.
Collapse
Affiliation(s)
- T J Kelly
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA.
| | | |
Collapse
|
41
|
Herbig U, Griffith JW, Fanning E. Mutation of cyclin/cdk phosphorylation sites in HsCdc6 disrupts a late step in initiation of DNA replication in human cells. Mol Biol Cell 2000; 11:4117-30. [PMID: 11102512 PMCID: PMC15061 DOI: 10.1091/mbc.11.12.4117] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Cyclin-dependent kinases (Cdk) are essential for promoting the initiation of DNA replication, presumably by phosphorylating key regulatory proteins that are involved in triggering the G1/S transition. Human Cdc6 (HsCdc6), a protein required for initiation of DNA replication, is phosphorylated by Cdk in vitro and in vivo. Here we report that HsCdc6 with mutations at potential Cdk phosphorylation sites was poorly phosphorylated in vitro by Cdk, but retained all other biochemical activities of the wild-type protein tested. Microinjection of mutant HsCdc6 proteins into human cells blocked initiation of DNA replication or slowed S phase progression. The inhibitory effect of mutant HsCdc6 was lost at the G1/S transition, indicating that phosphorylation of HsCdc6 by Cdk is critical for a late step in initiation of DNA replication in human cells.
Collapse
Affiliation(s)
- U Herbig
- Department of Molecular Biology, Vanderbilt University, Nashville, Tennessee 37235, USA
| | | | | |
Collapse
|
42
|
Méndez J, Stillman B. Chromatin association of human origin recognition complex, cdc6, and minichromosome maintenance proteins during the cell cycle: assembly of prereplication complexes in late mitosis. Mol Cell Biol 2000; 20:8602-12. [PMID: 11046155 PMCID: PMC102165 DOI: 10.1128/mcb.20.22.8602-8612.2000] [Citation(s) in RCA: 764] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Evidence obtained from studies with yeast and Xenopus indicate that the initiation of DNA replication is a multistep process. The origin recognition complex (ORC), Cdc6p, and minichromosome maintenance (MCM) proteins are required for establishing prereplication complexes, upon which initiation is triggered by the activation of cyclin-dependent kinases and the Dbf4p-dependent kinase Cdc7p. The identification of human homologues of these replication proteins allows investigation of S-phase regulation in mammalian cells. Using centrifugal elutriation of several human cell lines, we demonstrate that whereas human Orc2 (hOrc2p) and hMcm proteins are present throughout the cell cycle, hCdc6p levels vary, being very low in early G(1) and accumulating until cells enter mitosis. hCdc6p can be polyubiquitinated in vivo, and it is stabilized by proteasome inhibitors. Similar to the case for hOrc2p, a significant fraction of hCdc6p is present on chromatin throughout the cell cycle, whereas hMcm proteins alternate between soluble and chromatin-bound forms. Loading of hMcm proteins onto chromatin occurs in late mitosis concomitant with the destruction of cyclin B, indicating that the mitotic kinase activity inhibits prereplication complex formation in human cells.
Collapse
Affiliation(s)
- J Méndez
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | | |
Collapse
|
43
|
Pasero P, Schwob E. Think global, act local--how to regulate S phase from individual replication origins. Curr Opin Genet Dev 2000; 10:178-86. [PMID: 10753785 DOI: 10.1016/s0959-437x(00)00067-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
All eukaryotes use similar proteins to licence replication origins but, paradoxically, origin DNA is much less conserved. Specific binding sites for these proteins have now been identified on fission yeast and Drosophila chromosomes, suggesting that the DNA-binding activity of the origin recognition complex has diverged to recruit conserved initiation factors on polymorphic replication origins. Once formed, competent origins are activated by cyclin- and Dbf4-dependent kinases. The latter have been shown to control S phase in several organisms but, in contrast to cyclin-dependent kinases, seem regulated at the level of individual origins. Global and local regulations generate specific patterns of DNA replication that help establish epigenetic chromosome states.
Collapse
Affiliation(s)
- P Pasero
- Institut de Génétique Moléculaire, Centre National de la Recherche Scientifique (UMR 5535) & Université Montpellier II, Montpellier, F-34293, France.
| | | |
Collapse
|
44
|
Calzada A, Sánchez M, Sánchez E, Bueno A. The stability of the Cdc6 protein is regulated by cyclin-dependent kinase/cyclin B complexes in Saccharomyces cerevisiae. J Biol Chem 2000; 275:9734-41. [PMID: 10734126 DOI: 10.1074/jbc.275.13.9734] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Saccharomyces cerevisiae Cdc6 protein is necessary for the formation of prereplicative complexes that are a prerequisite for firing origins during DNA replication in the S phase. In budding yeast, the presence of Cdc6 protein is normally restricted to the G(1) phase of the cell cycle, at least partly because of its proteolytic degradation in the late G(1)/early S phase. Here we show that a Cdc28-dependent mechanism targets p57(CDC6) for degradation in mitotic-arrested budding yeast cells. Consistent with this observation, Cdc6-7 and Cdc6-8 proteins, mutants lacking Cdc28 phosphorylation sites, are stabilized relative to wild-type Cdc6. Our data also suggest a correlation between the absence of Cdc28/Clb kinase activity and Cdc6 protein stabilization, because a drop in Cdc28/Clb-associated kinase activity allows mitotic-arrested cells to accumulate Cdc6 protein. Finally, we also show that cdc28 temperature-sensitive G(1) mutants accumulate Cdc6 protein because of a post-transcriptional mechanism. Our data suggest that budding yeast cells target Cdc6 for degradation through a Cdc28-dependent mechanism in each cell cycle.
Collapse
Affiliation(s)
- A Calzada
- Instituto de Microbiología-Bioquímica/Centro de Investigación del Cáncer, Departamento de Microbiología y Genética, Edificio Departamental, Campus Miguel de Unamuno, Consejo Superior de Investigaciones Científicas/Universidad de Salamancas, Spain
| | | | | | | |
Collapse
|
45
|
Meimoun A, Holtzman T, Weissman Z, McBride HJ, Stillman DJ, Fink GR, Kornitzer D. Degradation of the transcription factor Gcn4 requires the kinase Pho85 and the SCF(CDC4) ubiquitin-ligase complex. Mol Biol Cell 2000; 11:915-27. [PMID: 10712509 PMCID: PMC14820 DOI: 10.1091/mbc.11.3.915] [Citation(s) in RCA: 113] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/1999] [Revised: 11/04/1999] [Accepted: 01/04/2000] [Indexed: 11/11/2022] Open
Abstract
Gcn4, a yeast transcriptional activator that promotes the expression of amino acid and purine biosynthesis genes, is rapidly degraded in rich medium. Here we report that SCF(CDC4), a recently characterized protein complex that acts in conjunction with the ubiquitin-conjugating enzyme Cdc34 to degrade cell cycle regulators, is also necessary for the degradation of the transcription factor Gcn4. Degradation of Gcn4 occurs throughout the cell cycle, whereas degradation of the known cell cycle substrates of Cdc34/SCF(CDC4) is cell cycle regulated. Gcn4 ubiquitination and degradation are regulated by starvation for amino acids, whereas the degradation of the cell cycle substrates of Cdc34/SCF(CDC4) is unaffected by starvation. We further show that unlike the cell cycle substrates of Cdc34/SCF(CDC4), which require phosphorylation by the kinase Cdc28, Gcn4 degradation requires the kinase Pho85. We identify the critical target site of Pho85 on Gcn4; a mutation of this site stabilizes the protein. A specific Pho85-Pcl complex that is able to phosphorylate Gcn4 on that site is inactive under conditions under which Gcn4 is stable. Thus, Cdc34/SCF(CDC4) activity is constitutive, and regulation of the stability of its various substrates occurs at the level of their phosphorylation.
Collapse
Affiliation(s)
- A Meimoun
- Department of Microbiology, Technion-B. Rappaport Faculty of Medicine, Haifa 31096, Israel
| | | | | | | | | | | | | |
Collapse
|
46
|
Elsasser S, Chi Y, Yang P, Campbell JL. Phosphorylation controls timing of Cdc6p destruction: A biochemical analysis. Mol Biol Cell 1999; 10:3263-77. [PMID: 10512865 PMCID: PMC25589 DOI: 10.1091/mbc.10.10.3263] [Citation(s) in RCA: 125] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The replication initiation protein Cdc6p forms a tight complex with Cdc28p, specifically with forms of the kinase that are competent to promote replication initiation. We now show that potential sites of Cdc28 phosphorylation in Cdc6p are required for the regulated destruction of Cdc6p that has been shown to occur during the Saccharomyces cerevisiae cell cycle. Analysis of Cdc6p phosphorylation site mutants and of the requirement for Cdc28p in an in vitro ubiquitination system suggests that targeting of Cdc6p for degradation is more complex than previously proposed. First, phosphorylation of N-terminal sites targets Cdc6p for polyubiquitination probably, as expected, through promoting interaction with Cdc4p, an F box protein involved in substrate recognition by the Skp1-Cdc53-F-box protein (SCF) ubiquitin ligase. However, in addition, mutation of a single, C-terminal site stabilizes Cdc6p in G2 phase cells without affecting substrate recognition by SCF in vitro, demonstrating a second and novel requirement for specific phosphorylation in degradation of Cdc6p. SCF-Cdc4p- and N-terminal phosphorylation site-dependent ubiquitination appears to be mediated preferentially by Clbp/Cdc28p complexes rather than by Clnp/Cdc28ps, suggesting a way in which phosphorylation of Cdc6p might control the timing of its degradation at then end of G1 phase of the cell cycle. The stable cdc6 mutants show no apparent replication defects in wild-type strains. However, stabilization through mutation of three N-terminal phosphorylation sites or of the single C-terminal phosphorylation site leads to dominant lethality when combined with certain mutations in the anaphase-promoting complex.
Collapse
Affiliation(s)
- S Elsasser
- Braun Laboratories, California Institute of Technology, Pasadena, California 91125, USA
| | | | | | | |
Collapse
|