1
|
Mei Q, Zhang Y, Li H, Ma W, Huang W, Wu Z, Huang Y, Liang Y, Wei C, Wang J, Ruan Y, Yang L, Huang Y, Shen Y, Liu J, Feng L, Shen Y. Hepatic factor MANF drives hepatocytes reprogramming by detaining cytosolic CK19 in intrahepatic cholangiocarcinoma. Cell Death Differ 2025:10.1038/s41418-025-01460-4. [PMID: 39972058 DOI: 10.1038/s41418-025-01460-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 01/07/2025] [Accepted: 02/10/2025] [Indexed: 02/21/2025] Open
Abstract
Intrahepatic cholangiocarcinoma (ICC) is characterized by poor prognosis and limited treatment. Hepatocytes have been considered as one of the origins of ICC, however, the underlying mechanisms remain unclear. Here, we found mesencephalic astrocyte-derived neurotrophic factor (MANF), a hepatoprotective factor, was exceptionally upregulated in human ICC tissues and experimental mouse ICC models induced by sleeping beauty transposon (SBT) or thioacetamide (TAA) challenge. We identified MANF as a biomarker for distinguishing the primary liver cancer and verified the oncogenic role of MANF in ICC using cell lines overexpressing/knocked down MANF and mice specifically knocked in/out MANF in hepatocytes. Lineage tracing revealed that MANF promoted mature hepatocyte transformation into ICC cells. Mechanistically, MANF interacted with CK19 at Ser35 to suppress CK19 membrane recruitment. Cytosolic CK19 bound to AR domain of Notch2 intracellular domain (NICD2) to stabilize NICD2 protein level and trigger Notch signaling, which contributed to hepatocyte transformation to ICC cells. We uncover a novel profile of MANF and the original mechanism, which shed light on ICC diagnosis and intervention.
Collapse
Affiliation(s)
- Qiong Mei
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Yu Zhang
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Hong Li
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Wei Ma
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Wenkai Huang
- College & Hospital of Stomatology, Anhui Medical University, Hefei, Anhui, China
| | - Zhengsheng Wu
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Yongli Huang
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Yanyan Liang
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Chuansheng Wei
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Jinfeng Wang
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Yuefeng Ruan
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Lin Yang
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Yan Huang
- School of Pharmacy, Anhui Medical University, Hefei, Anhui, China
| | - Yujun Shen
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Jun Liu
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Lijie Feng
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Yuxian Shen
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China.
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China.
| |
Collapse
|
2
|
Sharma P, Tiufekchiev S, Lising V, Chung SW, Suk JS, Chung BM. Keratin 19 interacts with GSK3β to regulate its nuclear accumulation and degradation of cyclin D3. Mol Biol Cell 2021; 32:ar21. [PMID: 34406791 PMCID: PMC8693971 DOI: 10.1091/mbc.e21-05-0255] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Cyclin D3 regulates the G1/S transition and is frequently overexpressed in several cancer types including breast cancer, where it promotes tumor progression. Here we show that a cytoskeletal protein keratin 19 (K19) physically interacts with a serine/threonine kinase GSK3β and prevents GSK3β-dependent degradation of cyclin D3. The absence of K19 allowed active GSK3β to accumulate in the nucleus and degrade cyclin D3. Specifically, the head (H) domain of K19 was required to sustain inhibitory phosphorylation of GSK3β Ser9, prevent nuclear accumulation of GSK3β, and maintain cyclin D3 levels and cell proliferation. K19 was found to interact with GSK3β and K19–GSK3β interaction was mapped out to require Ser10 and Ser35 residues on the H domain of K19. Unlike wildtype K19, S10A and S35A mutants failed to maintain total and nuclear cyclin D3 levels and induce cell proliferation. Finally, we show that the K19–GSK3β-cyclin D3 pathway affected sensitivity of cells toward inhibitors to cyclin-dependent kinase 4 and 6 (CDK4/6). Overall, these findings establish a role for K19 in the regulation of GSK3β-cyclin D3 pathway and demonstrate a potential strategy for overcoming resistance to CDK4/6 inhibitors.
Collapse
Affiliation(s)
- Pooja Sharma
- Department of Biology, The Catholic University of America, Washington, DC 20064
| | - Sarah Tiufekchiev
- Department of Biology, The Catholic University of America, Washington, DC 20064
| | - Victoria Lising
- Department of Biology, The Catholic University of America, Washington, DC 20064
| | - Seung Woo Chung
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21231
| | - Jung Soo Suk
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21231
| | - Byung Min Chung
- Department of Biology, The Catholic University of America, Washington, DC 20064
| |
Collapse
|
3
|
Zhang X, Xu X, Zhang Z, Xue C, Kong Z, Wu S, Yun X, Fu Y, Zhu C, Qin X. Linc-KILH potentiates Notch1 signaling through inhibiting KRT19 phosphorylation and promotes the malignancy of hepatocellular carcinoma. Int J Biol Sci 2021; 17:768-780. [PMID: 33767587 PMCID: PMC7975697 DOI: 10.7150/ijbs.52279] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Accepted: 01/16/2021] [Indexed: 02/06/2023] Open
Abstract
Long noncoding RNAs (LncRNAs) are emerging as crucial regulators in the pathophysiological process of various tumors, including HCC. Here, we identify a novel lncRNA Linc-KILH (KRT19 interacting long noncoding RNA in hepatocellular carcinoma), which is significantly up-regulated in HCC tissues and positively correlated with larger tumor size, severer microvascular invasion, more intrahepatic metastasis and decreased survival of HCC patients. Silence of Linc-KILH remarkably inhibited the proliferation and metastasis abilities of KRT19-positive HCC cells in vitro and in vivo. Mechanistically, Linc-KILH interacts with KRT19 and then inhibits the phosphorylation of KRT19 on Ser35, thereby, enhancing the translocation of KRT19 from cytoplasm to membrane in KRT19 positive HCC cells. Additionally, we validated that KRT19 interacts with β-catenin but not RAC1 in HCC cells. Linc-KILH enhanced the interaction between β-catenin and KRT19 in cytoplasm and promoted the nuclear translocation of β-catenin in HCC cells. Furthermore, Linc-KILH could enhance the promoting function of KRT19 on Notch1 signaling with the existence of KRT19 in HCC cells. Collectively, we revealed that Linc-KILH exerts a vital function in KRT19 positive HCC progression and may likely be developed into an effective therapeutic target for HCC.
Collapse
Affiliation(s)
- Xudong Zhang
- The Affiliated Changzhou NO.2 People's Hospital of Nanjing Medical University, 29 XingLongXiang Road, Changzhou, Jiangsu 213000, P.R. China
| | - Xiaoliang Xu
- School of medicine, Southeast University, Nanjing, China
- Department of Hepatobiliary Surgery of Nanjing Drum Tower Hospital, Nanjing Medical University, Nanjing, China
| | - Zechuan Zhang
- Department of Hepatobiliary Surgery of Nanjing Drum Tower Hospital, Nanjing Medical University, Nanjing, China
| | - Cailin Xue
- The Affiliated Changzhou NO.2 People's Hospital of Nanjing Medical University, 29 XingLongXiang Road, Changzhou, Jiangsu 213000, P.R. China
| | - Zhijun Kong
- The Affiliated Changzhou NO.2 People's Hospital of Nanjing Medical University, 29 XingLongXiang Road, Changzhou, Jiangsu 213000, P.R. China
| | - Siyuan Wu
- The Affiliated Changzhou NO.2 People's Hospital of Nanjing Medical University, 29 XingLongXiang Road, Changzhou, Jiangsu 213000, P.R. China
| | - Xiao Yun
- The Affiliated Changzhou NO.2 People's Hospital of Nanjing Medical University, 29 XingLongXiang Road, Changzhou, Jiangsu 213000, P.R. China
| | - Yue Fu
- The Affiliated Changzhou NO.2 People's Hospital of Nanjing Medical University, 29 XingLongXiang Road, Changzhou, Jiangsu 213000, P.R. China
| | - Chunfu Zhu
- The Affiliated Changzhou NO.2 People's Hospital of Nanjing Medical University, 29 XingLongXiang Road, Changzhou, Jiangsu 213000, P.R. China
| | - Xihu Qin
- The Affiliated Changzhou NO.2 People's Hospital of Nanjing Medical University, 29 XingLongXiang Road, Changzhou, Jiangsu 213000, P.R. China
| |
Collapse
|
4
|
Lam VK, Sharma P, Nguyen T, Nehmetallah G, Raub CB, Chung BM. Morphology, Motility, and Cytoskeletal Architecture of Breast Cancer Cells Depend on Keratin 19 and Substrate. Cytometry A 2020; 97:1145-1155. [PMID: 32286727 DOI: 10.1002/cyto.a.24011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 03/03/2020] [Accepted: 03/09/2020] [Indexed: 12/24/2022]
Abstract
Cancer cells gain motility through events that accompany modulation of cell shape and include altered expression of keratins. However, the role of keratins in change of cancer cell architecture is not well understood. Therefore, we ablated the expression of keratin 19 (K19) in breast cancer cells of the MDA-MB-231 cell line and found that cells lacking K19 become more elongated in culture, with morphological reversion toward the parental phenotype upon transduction of KRT19. Also, the number of actin stress fibers and focal adhesions were significantly reduced in KRT19 knockout (KO) cells. The altered morphology of KRT19 KO cells was then characterized quantitatively using digital holographic microscopy (DHM), which not only confirmed the phenotypic change of KRT19 KO cells but also identified that the K19-dependent morphological change is dependent on the substrate type. A new quantitative method of single cell analysis from DHM, via average phase difference maps, facilitated evaluation of K19-substrate interactive effects on cell morphology. When plated on collagen substrate, KRT19 KO cells were less elongated and resembled parental cells. Assessing single cell motility further showed that while KRT19 KO cells moved faster than parental cells on a rigid surface, this increase in motility became abrogated when cells were plated on collagen. Overall, our study suggests that K19 inhibits cell motility by regulating cell shape in a substrate-dependent manner. Thus, this study provides a potential basis for the altered expression of keratins associated with change in cell shape and motility of cancer cells. © 2020 International Society for Advancement of Cytometry.
Collapse
Affiliation(s)
- Van K Lam
- Department of Biomedical Engineering, The Catholic University of America, Washington, DC, USA
| | - Pooja Sharma
- Department of Biology, The Catholic University of America, Washington, DC, USA
| | - Thanh Nguyen
- Department of Electrical Engineering and Computer Science, The Catholic University of America, Washington, DC, USA
| | - Georges Nehmetallah
- Department of Electrical Engineering and Computer Science, The Catholic University of America, Washington, DC, USA
| | - Christopher B Raub
- Department of Biomedical Engineering, The Catholic University of America, Washington, DC, USA
| | - Byung Min Chung
- Department of Biology, The Catholic University of America, Washington, DC, USA
| |
Collapse
|
5
|
Protein Phosphorylation in Serine Residues Correlates with Progression from Precancerous Lesions to Cervical Cancer in Mexican Patients. BIOMED RESEARCH INTERNATIONAL 2020; 2020:5058928. [PMID: 32337254 PMCID: PMC7157794 DOI: 10.1155/2020/5058928] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 03/12/2020] [Indexed: 12/24/2022]
Abstract
Protein phosphorylation is a posttranslational modification that is essential for normal cellular processes; however, abnormal phosphorylation is one of the prime causes for alteration of many structural, functional, and regulatory proteins in disease conditions. In cancer, changes in the states of protein phosphorylation in tyrosine residues have been more studied than phosphorylation in threonine or serine residues, which also undergo alterations with greater predominance. In general, serine phosphorylation leads to the formation of multimolecular signaling complexes that regulate diverse biological processes, but in pathological conditions such as tumorigenesis, anomalous phosphorylation may result in the deregulation of some signaling pathways. Cervical cancer (CC), the main neoplasm associated with human papillomavirus (HPV) infection, is the fourth most frequent cancer worldwide. Persistent infection of the cervix with high-risk human papillomaviruses produces precancerous lesions starting with low-grade squamous intraepithelial lesions (LSIL), progressing to high-grade squamous intraepithelial lesions (HSIL) until CC is generated. Here, we compared the proteomic profile of phosphorylated proteins in serine residues from healthy, LSIL, HSIL, and CC samples. Our data show an increase in the number of phosphorylated proteins in serine residues as the grade of injury rises. These results provide a support for future studies focused on phosphorylated proteins and their possible correlation with the progression of cervical lesions.
Collapse
|
6
|
Mariani RA, Paranjpe S, Dobrowolski R, Weber GF. 14-3-3 targets keratin intermediate filaments to mechanically sensitive cell-cell contacts. Mol Biol Cell 2020; 31:930-943. [PMID: 32074004 PMCID: PMC7185971 DOI: 10.1091/mbc.e18-06-0373] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Intermediate filament (IF) cytoskeletal networks simultaneously support mechanical integrity and influence signal transduction pathways. Marked remodeling of the keratin IF network accompanies collective cellular morphogenetic movements that occur during early embryonic development in the frog Xenopus laevis. While this reorganization of keratin is initiated by force transduction on cell–cell contacts mediated by C-cadherin, the mechanism by which keratin filament reorganization occurs remains poorly understood. In this work, we demonstrate that 14-3-3 proteins regulate keratin reorganization dynamics in embryonic mesendoderm cells from Xenopus gastrula. 14-3-3 colocalizes with keratin filaments near cell–cell junctions in migrating mesendoderm. Coimmunoprecipitation, mass spectrometry, and bioinformatic analyses indicate 14-3-3 is associated with Keratin 19 (K19) in the whole embryo and, more specifically, mesendoderm tissue. Inhibition of 14-3-3 results in both the decreased exchange of keratin subunits into filaments and blocks keratin filament recruitment toward cell–cell contacts. Synthetically coupling 14-3-3 to K19 through a unique fusion construct conversely induces the localization of this keratin population to the region of cell–cell contacts. Taken together, these findings indicate that 14-3-3 acts on keratin IFs and is involved in their reorganization to sites of cell adhesion.
Collapse
Affiliation(s)
- Richard A Mariani
- Department of Biological Sciences, Rutgers University-Newark, Newark, NJ 07102
| | - Shalaka Paranjpe
- Department of Biological Sciences, Rutgers University-Newark, Newark, NJ 07102
| | - Radek Dobrowolski
- Department of Biological Sciences, Rutgers University-Newark, Newark, NJ 07102.,Department of Biology, University of Indianapolis, Indianapolis, IN 46227
| | - Gregory F Weber
- Department of Biological Sciences, Rutgers University-Newark, Newark, NJ 07102.,Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229
| |
Collapse
|
7
|
Prognostic significance of cytokeratin 19 expression in pancreatic neuroendocrine tumor: A meta-analysis. PLoS One 2017; 12:e0187588. [PMID: 29136022 PMCID: PMC5685577 DOI: 10.1371/journal.pone.0187588] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 10/23/2017] [Indexed: 01/11/2023] Open
Abstract
Background Pancreatic neuroendocrine tumor (PNET) comprises 1–2% of all pancreatic tumors, but its incidence is increasing. Although many studies have investigated the correlation between cytokeratin 19 (CK-19) and PNET, the prognostic significance of CK-19 expression in PNET is inconclusive. Methods Eligible studies were retrieved from Pubmed, Elsevier, Embase, Cochrane Library and Web of Science databases. All relevant data were extracted to analyze the relationship between CK-19 and PNET. We utilized a fixed or random effects model to calculate the pooled odds ratio (OR) with 95% confidence intervals (CI). Results Pooled data indicated CK-19 expression was significantly associated with poor 3- and 5-year overall survival (OS) for PNET, but not for 1-year overall survival. Additionally, positive CK-19 expression was correlated with large tumor size, advanced differentiation grade in World Health Organization-2010 (WHO-2010) and WHO-2004, vascular invasion, lymph node metastasis and liver metastasis. Conclusions Positive CK-19 expression can be used as a predictor of poor prognosis of PNET.
Collapse
|
8
|
Consequences of Keratin Phosphorylation for Cytoskeletal Organization and Epithelial Functions. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2017; 330:171-225. [DOI: 10.1016/bs.ircmb.2016.09.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
9
|
Yu KH, Levine DA, Zhang H, Chan DW, Zhang Z, Snyder M. Predicting Ovarian Cancer Patients' Clinical Response to Platinum-Based Chemotherapy by Their Tumor Proteomic Signatures. J Proteome Res 2016; 15:2455-65. [PMID: 27312948 PMCID: PMC8718213 DOI: 10.1021/acs.jproteome.5b01129] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Ovarian cancer is the deadliest gynecologic malignancy in the United States with most patients diagnosed in the advanced stage of the disease. Platinum-based antineoplastic therapeutics is indispensable to treating advanced ovarian serous carcinoma. However, patients have heterogeneous responses to platinum drugs, and it is difficult to predict these interindividual differences before administering medication. In this study, we investigated the tumor proteomic profiles and clinical characteristics of 130 ovarian serous carcinoma patients analyzed by the Clinical Proteomic Tumor Analysis Consortium (CPTAC), predicted the platinum drug response using supervised machine learning methods, and evaluated our prediction models through leave-one-out cross-validation. Our data-driven feature selection approach indicated that tumor proteomics profiles contain information for predicting binarized platinum response (P < 0.0001). We further built a least absolute shrinkage and selection operator (LASSO)-Cox proportional hazards model that stratified patients into early relapse and late relapse groups (P = 0.00013). The top proteomic features indicative of platinum response were involved in ATP synthesis pathways and Ran GTPase binding. Overall, we demonstrated that proteomic profiles of ovarian serous carcinoma patients predicted platinum drug responses as well as provided insights into the biological processes influencing the efficacy of platinum-based therapeutics. Our analytical approach is also extensible to predicting response to other antineoplastic agents or treatment modalities for both ovarian and other cancers.
Collapse
Affiliation(s)
| | - Douglas A Levine
- Department of Surgery, Memorial Sloan Kettering Cancer Center , New York, New York 10065, United States
| | - Hui Zhang
- Department of Pathology, Johns Hopkins Medical Institutions , Baltimore, Maryland 21287, United States
| | - Daniel W Chan
- Department of Pathology, Johns Hopkins Medical Institutions , Baltimore, Maryland 21287, United States
| | - Zhen Zhang
- Department of Pathology, Johns Hopkins Medical Institutions , Baltimore, Maryland 21287, United States
| | | |
Collapse
|
10
|
Domanski D, Perzanowska A, Kistowski M, Wojtas G, Michalak A, Krasowski G, Dadlez M. A Multiplexed Cytokeratin Analysis Using Targeted Mass Spectrometry Reveals Specific Profiles in Cancer-Related Pleural Effusions. Neoplasia 2016; 18:399-412. [PMID: 27435923 PMCID: PMC4954941 DOI: 10.1016/j.neo.2016.06.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2016] [Accepted: 06/03/2016] [Indexed: 12/11/2022] Open
Abstract
Pleural effusion (PE), excess fluid in the pleural space, is often observed in lung cancer patients and also forms due to many benign ailments. Classifying it quickly is critical, but this remains an analytical challenge often lengthening the diagnosis process or exposing patients to unnecessary risky invasive procedures. We tested the analysis of PE using a multiplexed cytokeratin (CK) panel with targeted mass spectrometry–based quantitation for its rapid classification. CK markers are often assessed in pathological examinations for cancer diagnosis and guiding treatment course. We developed methods to simultaneously quantify 33 CKs in PE using peptide standards for increased analytical specificity and a simple CK enrichment method to detect their low amounts. Analyzing 121 PEs associated with a variety of lung cancers and noncancerous causes, we show that abundance levels of 10 CKs can be related to PE etiology. CK-6, CK-7, CK-8, CK-18, and CK-19 were found at significantly higher levels in cancer-related PEs. Additionally, elevated levels of vimentin and actin differentiated PEs associated with bacterial infections. A classifier algorithm effectively grouped PEs into cancer-related or benign PEs with 81% sensitivity and 79% specificity. A set of undiagnosed PEs showed that our method has potential to shorten PE diagnosis time. For the first time, we show that a cancer-relevant panel of simple-epithelial CK markers currently used in clinical assessment can also be quantitated in PEs. Additionally, while requiring less invasive sampling, our methodology demonstrated a significant ability to identify cancer-related PEs in clinical samples and thus could improve patient care in the future.
Collapse
Affiliation(s)
- Dominik Domanski
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5A, 02-106 Warsaw, Poland.
| | - Anna Perzanowska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5A, 02-106 Warsaw, Poland
| | - Michal Kistowski
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5A, 02-106 Warsaw, Poland
| | - Grzegorz Wojtas
- Mazovian Center of Pulmonary Disease and Tuberculosis Treatment, Gabriela Narutowicza 80, Otwock, Poland
| | - Agata Michalak
- Mazovian Center of Pulmonary Disease and Tuberculosis Treatment, Gabriela Narutowicza 80, Otwock, Poland
| | - Grzegorz Krasowski
- Mazovian Center of Pulmonary Disease and Tuberculosis Treatment, Gabriela Narutowicza 80, Otwock, Poland
| | - Michal Dadlez
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5A, 02-106 Warsaw, Poland.
| |
Collapse
|
11
|
|
12
|
Kim HJ, Choi WJ, Lee CH. Phosphorylation and Reorganization of Keratin Networks: Implications for Carcinogenesis and Epithelial Mesenchymal Transition. Biomol Ther (Seoul) 2015; 23:301-12. [PMID: 26157545 PMCID: PMC4489823 DOI: 10.4062/biomolther.2015.032] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Revised: 04/30/2015] [Accepted: 05/04/2015] [Indexed: 12/15/2022] Open
Abstract
Metastasis is one of hallmarks of cancer and a major cause of cancer death. Combatting metastasis is highly challenging. To overcome these difficulties, researchers have focused on physical properties of metastatic cancer cells. Metastatic cancer cells from patients are softer than benign cancer or normal cells. Changes of viscoelasticity of cancer cells are related to the keratin network. Unexpectedly, keratin network is dynamic and regulation of keratin network is important to the metastasis of cancer. Keratin is composed of heteropolymer of type I and II. Keratin connects from the plasma membrane to nucleus. Several proteins including kinases, and protein phosphatases bind to keratin intermediate filaments. Several endogenous compounds or toxic compounds induce phosphorylation and reorganization of keratin network in cancer cells, leading to increased migration. Continuous phosphorylation of keratin results in loss of keratin, which is one of the features of epithelial mesenchymal transition (EMT). Therefore, several proteins involved in phosphorylation and reorganization of keratin also have a role in EMT. It is likely that compounds controlling phosphorylation and reorganization of keratin are potential candidates for combating EMT and metastasis.
Collapse
Affiliation(s)
- Hyun Ji Kim
- BK21PLUS R-FIND team, College of Pharmacy, Dongguk University, Seoul 100-715, Republic of Korea
| | - Won Jun Choi
- BK21PLUS R-FIND team, College of Pharmacy, Dongguk University, Seoul 100-715, Republic of Korea
| | - Chang Hoon Lee
- BK21PLUS R-FIND team, College of Pharmacy, Dongguk University, Seoul 100-715, Republic of Korea
| |
Collapse
|
13
|
Cytokeratin19 induced by HER2/ERK binds and stabilizes HER2 on cell membranes. Cell Death Differ 2014; 22:665-76. [PMID: 25342465 DOI: 10.1038/cdd.2014.155] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Revised: 08/12/2014] [Accepted: 08/29/2014] [Indexed: 01/22/2023] Open
Abstract
Cytokeratin19 (KRT19) is widely used as a biomarker for the detection of disseminated tumors. Using an LC-MS/MS proteomics approach, we found that KRT19 was upregulated in HER2-overexpressing cells and tissues. KRT19 expression was induced by HER2-downstream ERK at the transcriptional level. Another HER2-downstream kinase, Akt, was found to phosphorylate KRT19 on Ser35 and induce membrane translocation of KRT19 and remodeling of KRT19 from filamentous to granulous form. KRT19 phosphorylated by Akt could bind HER2 on the plasma membrane and stabilized HER2 via inhibition of proteasome-mediated degradation of HER2. Silencing of KRT19 by shRNA resulted in increased ubiquitination and destabilization of HER2. Moreover, treatment of KRT19 antibody resulted in downregulation of HER2 and reduced cell viability. These data provide a new rationale for targeting HER2-positive breast cancers.
Collapse
|
14
|
Planells-Ferrer L, Urresti J, Soriano A, Reix S, Murphy DM, Ferreres JC, Borràs F, Gallego S, Stallings RL, Moubarak RS, Segura MF, Comella JX. MYCN repression of Lifeguard/FAIM2 enhances neuroblastoma aggressiveness. Cell Death Dis 2014; 5:e1401. [PMID: 25188511 PMCID: PMC4540192 DOI: 10.1038/cddis.2014.356] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Revised: 07/15/2014] [Accepted: 07/22/2014] [Indexed: 01/20/2023]
Abstract
Neuroblastoma (NBL) is the most common solid tumor in infants and accounts for 15% of all pediatric cancer deaths. Several risk factors predict NBL outcome: age at the time of diagnosis, stage, chromosome alterations and MYCN (V-Myc Avian Myelocytomatosis Viral Oncogene Neuroblastoma-Derived Homolog) amplification, which characterizes the subset of the most aggressive NBLs with an overall survival below 30%. MYCN-amplified tumors develop exceptional chemoresistance and metastatic capacity. These properties have been linked to defects in the apoptotic machinery, either by silencing components of the extrinsic apoptotic pathway (e.g. caspase-8) or by overexpression of antiapoptotic regulators (e.g. Bcl-2, Mcl-1 or FLIP). Very little is known on the implication of death receptors and their antagonists in NBL. In this work, the expression levels of several death receptor antagonists were analyzed in multiple human NBL data sets. We report that Lifeguard (LFG/FAIM2 (Fas apoptosis inhibitory molecule 2)/NMP35) is downregulated in the most aggressive and undifferentiated tumors. Intringuingly, although LFG has been initially characterized as an antiapoptotic protein, we have found a new association with NBL differentiation. Moreover, LFG repression resulted in reduced cell adhesion, increased sphere growth and enhanced migration, thus conferring a higher metastatic capacity to NBL cells. Furthermore, LFG expression was found to be directly repressed by MYCN at the transcriptional level. Our data, which support a new functional role for a hitherto undiscovered MYCN target, provide a new link between MYCN overexpression and increased NBL metastatic properties.
Collapse
Affiliation(s)
- L Planells-Ferrer
- Cell Signaling and Apoptosis Group, Vall d'Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - J Urresti
- Cell Signaling and Apoptosis Group, Vall d'Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - A Soriano
- Laboratory of Translational Research in Pediatric Cancer, Vall d'Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - S Reix
- Cell Signaling and Apoptosis Group, Vall d'Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - D M Murphy
- Molecular and Cellular Therapeutics, Royal College of Surgeons and National Children's Research Centre Our Lady's Children's Hospital, Dublin, Ireland
| | - J C Ferreres
- Hospital Vall d'Hebron, Vall d'Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - F Borràs
- Hospital Vall d'Hebron, Vall d'Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - S Gallego
- 1] Laboratory of Translational Research in Pediatric Cancer, Vall d'Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain [2] Hospital Vall d'Hebron, Vall d'Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - R L Stallings
- Molecular and Cellular Therapeutics, Royal College of Surgeons and National Children's Research Centre Our Lady's Children's Hospital, Dublin, Ireland
| | - R S Moubarak
- Cell Signaling and Apoptosis Group, Vall d'Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - M F Segura
- Laboratory of Translational Research in Pediatric Cancer, Vall d'Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - J X Comella
- Cell Signaling and Apoptosis Group, Vall d'Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
15
|
Uppala PT, Dissmore T, Lau BHS, Andacht T, Rajaram S. Selective inhibition of cell proliferation by lycopene in MCF-7 breast cancer cells in vitro: a proteomic analysis. Phytother Res 2012; 27:595-601. [PMID: 22718574 DOI: 10.1002/ptr.4764] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2011] [Accepted: 05/23/2012] [Indexed: 01/05/2023]
Abstract
Lycopene, a red pigmented carotenoid present in many fruits and vegetables such as tomatoes, has been associated with the reduced risk of breast cancer. This study sought to identify proteins modulated by lycopene during cell proliferation of the breast cancer cell line MCF-7 to gain an understanding into its mechanism of action. MCF-7 breast cancer cells and MCF-10 normal breast cells were treated with 0, 2, 4, 6, 8, and 10 μM of lycopene for 72 h. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) tetrazolium reduction assay was used to measure cell proliferation and two-dimensional fluorescence difference gel electrophoresis to assess the changes in protein expression, which were identified using MALDI-ToF/ToF (matrix-assisted laser desorption ionization tandem time-of-flight) and Mascot database search. MTT and cell proliferation assays showed that lycopene selectively inhibited the growth of MCF-7 but not MCF-10 cells. Difference gel electrophoresis analysis revealed that proteins in the MCF-7 cells respond differently to lycopene compared with the MCF-10 cells. Lycopene altered the expression levels of proteins such as Cytokeratin 8/18 (CK8/18), CK19 and their post translational status. We have shown that lycopene inhibits cell proliferation in MCF-7 human breast cancer cells but not in the MCF-10 mammary epithelial cells. Lycopene was shown to modulate cell cycle proteins such as beta tubulin, CK8/18, CK19 and heat shock proteins.
Collapse
Affiliation(s)
- Padma T Uppala
- Department of Environmental and Geoinformatic Sciences, Loma Linda University, Loma Linda, CA, USA.
| | | | | | | | | |
Collapse
|
16
|
Alix-Panabières C. EPISPOT assay: detection of viable DTCs/CTCs in solid tumor patients. Recent Results Cancer Res 2012; 195:69-76. [PMID: 22527495 DOI: 10.1007/978-3-642-28160-0_6] [Citation(s) in RCA: 122] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The enumeration and characterization of circulating tumor cells (CTCs) in the peripheral blood and disseminated tumor cells (DTCs) in bone marrow may provide important prognostic information and might help to monitor efficacy of therapy. Since current assays cannot distinguish between apoptotic and viable DTCs/CTCs, it is now possible to apply a novel ELISPOT assay (designated 'EPISPOT') that detects proteins secreted/released/shed from single epithelial cancer cells. Cells are cultured for a short time on a membrane coated with antibodies that capture the secreted/released/shed proteins which are subsequently detected by secondary antibodies labeled with fluorochromes. In breast cancer, we measured the release of cytokeratin-19 (CK19) and mucin-1 (MUC1) and demonstrated that many patients harbored viable DTCs, even in patients with apparently localized tumors (stage M(0): 54%). Preliminary clinical data showed that patients with DTC-releasing CK19 have an unfavorable outcome. We also studied CTCs or CK19-secreting cells in the peripheral blood of M1 breast cancer patients and showed that patients with CK19-SC had a worse clinical outcome. In prostate cancer, we used prostate-specific antigen (PSA) secretion as marker and found that a significant fraction of CTCs secreted fibroblast growth factor-2 (FGF2), a known stem cell growth factor. In conclusion, the EPISPOT assay offers a new opportunity to detect and characterize viable DTCs/CTCs in cancer patients and it can be extended to a multi-parameter analysis revealing a CTC/DTC protein fingerprint.
Collapse
Affiliation(s)
- Catherine Alix-Panabières
- Laboratory of Rare Human Circulating Cells, Saint-Eloi Hospital, University Medical Centre, Institute of Research in Biotherapy, University Montpellier 1, Montpellier, France.
| |
Collapse
|
17
|
Zhou Q, Snider NT, Liao J, Li DH, Hong A, Ku NO, Cartwright CA, Omary MB. Characterization of in vivo keratin 19 phosphorylation on tyrosine-391. PLoS One 2010; 5:e13538. [PMID: 21049038 PMCID: PMC2963603 DOI: 10.1371/journal.pone.0013538] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2010] [Accepted: 09/29/2010] [Indexed: 02/07/2023] Open
Abstract
Background Keratin polypeptide 19 (K19) is a type I intermediate filament protein that is expressed in stratified and simple-type epithelia. Although K19 is known to be phosphorylated on tyrosine residue(s), conclusive site-specific characterization of these residue(s) and identification potential kinases that may be involved has not been reported. Methodology/Principal Findings In this study, biochemical, molecular and immunological approaches were undertaken in order to identify and characterize K19 tyrosine phosphorylation. Upon treatment with pervanadate, a tyrosine phosphatase inhibitor, human K19 (hK19) was phosphorylated on tyrosine 391, located in the ‘tail’ domain of the protein. K19 Y391 phosphorylation was confirmed using site-directed mutagenesis and cell transfection coupled with the generation of a K19 phospho (p)-Y391-specific rabbit antibody. The antibody also recognized mouse phospho-K19 (K19 pY394). This tyrosine residue is not phosphorylated under basal conditions, but becomes phosphorylated in the presence of Src kinase in vitro and in cells expressing constitutively-active Src. Pervanadate treatment in vivo resulted in phosphorylation of K19 Y394 and Y391 in colonic epithelial cells of non-transgenic mice and hK19-overexpressing mice, respectively. Conclusions/Significance Human K19 tyrosine 391 is phosphorylated, potentially by Src kinase, and is the first well-defined tyrosine phosphorylation site of any keratin protein. The lack of detection of K19 pY391 in the absence of tyrosine phosphatase inhibition suggests that its phosphorylation is highly dynamic.
Collapse
Affiliation(s)
- Qin Zhou
- Department of Medicine, Stanford University School of Medicine, Palo Alto, California, United States of America
| | - Natasha T. Snider
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Jian Liao
- Applied Biomics, Inc., Hayward, California, United States of America
| | - Daniel H. Li
- Anaspec, Inc., Fremont, California, United States of America
| | - Anita Hong
- Anaspec, Inc., Fremont, California, United States of America
| | - Nam-On Ku
- Department of Biomedical Sciences, Yonsei University, Seoul, South Korea
| | - Christine A. Cartwright
- Department of Medicine, Stanford University School of Medicine, Palo Alto, California, United States of America
| | - M. Bishr Omary
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
- * E-mail:
| |
Collapse
|
18
|
Menon MB, Schwermann J, Singh AK, Franz-Wachtel M, Pabst O, Seidler U, Omary MB, Kotlyarov A, Gaestel M. p38 MAP kinase and MAPKAP kinases MK2/3 cooperatively phosphorylate epithelial keratins. J Biol Chem 2010; 285:33242-33251. [PMID: 20724476 DOI: 10.1074/jbc.m110.132357] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The MAPK-activated protein kinases (MAPKAP kinases) MK2 and MK3 are directly activated via p38 MAPK phosphorylation, stabilize p38 by complex formation, and contribute to the stress response. The list of substrates of MK2/3 is increasing steadily. We applied a phosphoproteomics approach to compare protein phosphorylation in MK2/3-deficient cells rescued or not by ectopic expression of MK2. In addition to differences in phosphorylation of the known substrates of MK2, HSPB1 and Bag-2, we identified strong differences in phosphorylation of keratin 8 (K8). The phosphorylation of K8-Ser(73) is catalyzed directly by p38, which in turn shows MK2-dependent expression. Notably, analysis of small molecule p38 inhibitors on K8-Ser(73) phosphorylation also demonstrated reduced phosphorylations of keratins K18-Ser(52) and K20-Ser(13) but not of K8-Ser(431) or K18-Ser(33). Interestingly, K18-Ser(52) and K20-Ser(13) are not directly phosphorylated by p38 in vitro, but by MK2. Furthermore, anisomycin-stimulated phosphorylations of K20-Ser(13) and K18-Ser(52) are inhibited by small molecule inhibitors of both p38 and MK2. MK2 knockdown in HT29 cells leads to reduced K20-Ser(13) phosphorylation, which further supports the notion that MK2 is responsible for K20 phosphorylation in vivo. Physiologic relevance of these findings was confirmed by differences of K20-Ser(13) phosphorylation between the ileum of wild-type and MK2/3-deficient mice and by demonstrating p38- and MK2-dependent mucin secretion of HT29 cells. Therefore, MK2 and p38 MAPK function in concert to phosphorylate K8, K18, and K20 in intestinal epithelia.
Collapse
Affiliation(s)
- Manoj B Menon
- From the Institute of Biochemistry, Hannover 30625, Germany
| | | | - Anurag Kumar Singh
- Department of Gastroenterology, Hepatology, and Endocrinology, Hannover 30625, Germany
| | - Mirita Franz-Wachtel
- Proteome Center Tübingen, Interfaculty Institute for Cell Biology, University of Tübingen, Tübingen 72076, Germany
| | - Oliver Pabst
- Institute of Immunology, Medical School Hannover, Hannover 30625, Germany
| | - Ursula Seidler
- Department of Gastroenterology, Hepatology, and Endocrinology, Hannover 30625, Germany
| | - M Bishr Omary
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan 48109
| | | | | |
Collapse
|
19
|
Akgül B, Ghali L, Davies D, Pfister H, Leigh IM, Storey A. HPV8 early genes modulate differentiation and cell cycle of primary human adult keratinocytes. Exp Dermatol 2007; 16:590-9. [PMID: 17576239 PMCID: PMC2423465 DOI: 10.1111/j.1600-0625.2007.00569.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Human papillomaviruses (HPV) have been associated with the development of non-melanoma skin cancer (NMSC) but the molecular mechanisms of the role of the virus in NMSC development are not clearly understood. Abnormal epithelial differentiation seen in malignant transformation of keratinocytes is associated with changes in keratin expression. The purpose of this study was to investigate the phenotype of primary human adult keratinocytes expressing early genes of HPV8 with specific reference to their differentiation and cell cycle profile to determine whether early genes of HPV8 lead to changes that are consistent with transformation. The expression of HPV8 early genes either individually or simultaneously caused distinct changes in the keratinocyte morphology and induced an abnormal keratin expression pattern, that included simple epithelial (K8, K18, K19), hyperproliferation-specific (K6, K16), basal-specific (K14, K15) and differentiation-specific (K1, K10) keratins. Our results indicate that expression of HPV8 early genes disrupts the normal keratin expression pattern in vitro. Expression of HPV8-E7 alone caused polyploidy that was associated with decreased expression of p21 and pRb. Expression of individual genes or in combination differentially influenced cell morphology and cell cycle distribution which might be important in HPV8-induced keratinocyte transformation.
Collapse
Affiliation(s)
- Baki Akgül
- Skin Tumour Laboratory, Cancer Research UK, London, UK.
| | | | | | | | | | | |
Collapse
|
20
|
Zhou Q, Cadrin M, Herrmann H, Chen CH, Chalkley RJ, Burlingame AL, Omary MB. Keratin 20 serine 13 phosphorylation is a stress and intestinal goblet cell marker. J Biol Chem 2006; 281:16453-61. [PMID: 16608857 DOI: 10.1074/jbc.m512284200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Keratin polypeptide 20 (K20) is an intermediate filament protein with preferential expression in epithelia of the stomach, intestine, uterus, and bladder and in Merkel cells of the skin. K20 expression is used as a marker to distinguish metastatic tumor origin, but nothing is known regarding its regulation and function. We studied K20 phosphorylation as a first step toward understanding its physiologic role. K20 phosphorylation occurs preferentially on serine, with a high stoichiometry as compared with keratin polypeptides 18 and 19. Mass spectrometry analysis predicted that either K20 Ser(13) or Ser(14) was a likely phosphorylation site, and Ser(13) was confirmed as the phospho-moiety using mutation and transfection analysis and generation of an anti-K20-phospho-Ser(13) antibody. K20 Ser(13) phosphorylation increases after protein kinase C activation, and Ser(13)-to-Ala mutation interferes with keratin filament reorganization in transfected cells. In physiological contexts, K20 degradation and associated Ser(13) hyperphosphorylation occur during apoptosis, and chemically induced mouse colitis also promotes Ser(13) phosphorylation. Among mouse small intestinal enterocytes, K20 Ser(13) is preferentially phosphorylated in goblet cells and undergoes dramatic hyperphosphorylation after starvation and mucin secretion. Therefore, K20 Ser(13) is a highly dynamic protein kinase C-related phosphorylation site that is induced during apoptosis and tissue injury. K20 Ser(13) phosphorylation also serves as a unique marker of small intestinal goblet cells.
Collapse
Affiliation(s)
- Qin Zhou
- Department of Medicine, Veterans Affairs Palo Alto Health Care System, 3801 Miranda Avenue, Palo Alto, CA 94304, USA.
| | | | | | | | | | | | | |
Collapse
|
21
|
Tao GZ, Toivola DM, Zhou Q, Strnad P, Xu B, Michie SA, Omary MB. Protein phosphatase-2A associates with and dephosphorylates keratin 8 after hyposmotic stress in a site- and cell-specific manner. J Cell Sci 2006; 119:1425-32. [PMID: 16554440 DOI: 10.1242/jcs.02861] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Keratins 8 and 18 (K8 and K18) are regulated by site-specific phosphorylation in response to multiple stresses. We examined the effect and regulation of hyposmotic stress on keratin phosphorylation. K8 phospho-Ser431 (Ser431-P) becomes dephosphorylated in HT29 cells, but hyperphosphorylated on other K8 but not K18 sites in HRT18 and Caco2 cells and in normal human colonic ex vivo cultures. Hyposmosis-induced dephosphorylation involves K8 but not K18, K19 or K20, occurs preferentially in mitotically active cells, and peaks by 6-8 hours then returns to baseline by 12-16 hours. By contrast, hyperosmosis causes K8 Ser431 hyperphosphorylation in all tested cell lines. Hyposmosis-induced dephosphorylation of K8 Ser431-P is inhibited by okadaic acid but not by tautomycin or cyclosporine. The PP2A catalytic subunit co-immunoprecipitated with K8 and K18 after hyposmotic stress in HT29 cells, but not in HRT18 or Caco2 cells where K8 Ser431 becomes hyperphosphorylated. K8 Ser431-P dephosphorylation after hyposmosis was independent of PP2A levels but correlated with increased PP2A activity towards K8 Ser431-P. Therefore, hyposmotic stress alters K8 phosphorylation in a cell-dependent manner, and renders K8 Ser431-P a physiologic substrate for PP2A in HT29 cells as a result of PP2A activation and the physical association with K8 and K18. The divergent hyposmosis versus hyperosmosis K8 Ser431 phosphorylation changes in HT29 cells suggest that there are unique signaling responses to osmotic stress.
Collapse
Affiliation(s)
- Guo-Zhong Tao
- Department of Medicine, Palo Alto VA Medical Center, 3801 Miranda Avenue, Mail Code 154J, Palo Alto, CA 94304, USA.
| | | | | | | | | | | | | |
Collapse
|
22
|
Toivola DM, Zhou Q, English LS, Omary MB. Type II keratins are phosphorylated on a unique motif during stress and mitosis in tissues and cultured cells. Mol Biol Cell 2002; 13:1857-70. [PMID: 12058054 PMCID: PMC117609 DOI: 10.1091/mbc.01-12-0591] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Epithelial cell keratins make up the type I (K9-K20) and type II (K1-K8) intermediate filament proteins. In glandular epithelia, K8 becomes phosphorylated on S73 ((71)LLpSPL) in human cultured cells and tissues during stress, apoptosis, and mitosis. Of all known proteins, the context of the K8 S73 motif (LLS/TPL) is unique to type II keratins and is conserved in epidermal K5/K6, esophageal K4, and type II hair keratins, except that serine is replaced by threonine. Because knowledge regarding epidermal and esophageal keratin regulation is limited, we tested whether K4-K6 are phosphorylated on the LLTPL motif. K5 and K6 become phosphorylated in vitro on threonine by the stress-activated kinase p38. Site-specific anti-phosphokeratin antibodies to LLpTPL were generated, which demonstrated negligible basal K4-K6 phosphorylation. In contrast, treatment of primary keratinocytes and other cultured cells, and ex vivo skin and esophagus cultures, with serine/threonine phosphatase inhibitors causes a dramatic increase in K4-K6 LLpTPL phosphorylation. This phosphorylation is accompanied by keratin solubilization, filament reorganization, and collapse. K5/K6 LLTPL phosphorylation occurs in vivo during mitosis and apoptosis induced by UV light or anisomycin, and in human psoriatic skin and squamous cell carcinoma. In conclusion, type II keratins of proliferating epithelia undergo phosphorylation at a unique and conserved motif as part of physiological mitotic and stress-related signals.
Collapse
Affiliation(s)
- Diana M Toivola
- Department of Medicine, Veterans Affairs Palo Alto Health Care System, Palo Alto, California 94304, USA
| | | | | | | |
Collapse
|
23
|
Ku NO, Azhar S, Omary MB. Keratin 8 phosphorylation by p38 kinase regulates cellular keratin filament reorganization: modulation by a keratin 1-like disease causing mutation. J Biol Chem 2002; 277:10775-82. [PMID: 11788583 DOI: 10.1074/jbc.m107623200] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Keratin 8 (K8) serine 73 occurs within a relatively conserved type II keratin motif ((68)NQSLLSPL) and becomes phosphorylated in cultured cells and organs during mitosis, cell stress, and apoptosis. Here we show that Ser-73 is exclusively phosphorylated in vitro by p38 mitogen-activated protein kinase. In cells, Ser-73 phosphorylation occurs in association with p38 kinase activation and is inhibited by SB203580 but not by PD98059. Transfection of K8 Ser-73 --> Ala or K8 Ser-73 --> Asp with K18 generates normal-appearing filaments. In contrast, exposure to okadaic acid results in keratin filament destabilization in cells expressing wild-type or Ser-73 --> Asp K8, whereas Ser-73 --> Ala K8-expressing cells maintain relatively stable filaments. p38 kinase associates with K8/18 immunoprecipitates and binds selectively with K8 using an in vitro overlay assay. Given that K1 Leu-160 --> Pro ((157)NQSLLQPL --> (157)NQSPLQPL) leads to epidermolytic hyperkeratosis, we tested and showed that the analogous K8 Leu-71 --> Pro leads to K8 hyperphosphorylation by p38 kinase in vitro and in transfected cells, likely due to Ser-70 neo-phosphorylation, in association with significant keratin filament collapse upon cell exposure to okadaic acid. Hence, K8 Ser-73 is a physiologic phosphorylation site for p38 kinase, and its phosphorylation plays an important role in keratin filament reorganization. The Ser-73 --> Ala-associated filament reorganization defect is rescued by a Ser-73 --> Asp mutation. Also, disease-causing keratin mutations can modulate keratin phosphorylation and organization, which may affect disease pathogenesis.
Collapse
Affiliation(s)
- Nam-On Ku
- Department of Medicine, and Geriatric Research, Education and Clinical Center, Veterans Affairs Palo Alto Health Care System, Palo Alto, California 94304, USA
| | | | | |
Collapse
|
24
|
Coulombe PA, Omary MB. 'Hard' and 'soft' principles defining the structure, function and regulation of keratin intermediate filaments. Curr Opin Cell Biol 2002; 14:110-22. [PMID: 11792552 DOI: 10.1016/s0955-0674(01)00301-5] [Citation(s) in RCA: 507] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Keratins make up the largest subgroup of intermediate filament proteins and represent the most abundant proteins in epithelial cells. They exist as highly dynamic networks of cytoplasmic 10-12 nm filaments that are obligate heteropolymers involving type I and type II keratins. The primary function of keratins is to protect epithelial cells from mechanical and nonmechanical stresses that result in cell death. Other emerging functions include roles in cell signaling, the stress response and apoptosis, as well as unique roles that are keratin specific and tissue specific. The role of keratins in a number of human skin, hair, ocular, oral and liver diseases is now established and meshes well with the evidence gathered from transgenic mouse models. The phenotypes associated with defects in keratin proteins are subject to significant modulation by functional redundancy within the family and modifier genes as well. Keratin filaments undergo complex regulation involving post-translational modifications and interactions with self and with various classes of associated proteins.
Collapse
Affiliation(s)
- Pierre A Coulombe
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, MD 21205, USA.
| | | |
Collapse
|
25
|
Toivola DM, Baribault H, Magin T, Michie SA, Omary MB. Simple epithelial keratins are dispensable for cytoprotection in two pancreatitis models. Am J Physiol Gastrointest Liver Physiol 2000; 279:G1343-54. [PMID: 11093958 DOI: 10.1152/ajpgi.2000.279.6.g1343] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Pancreatic acinar cells express keratins 8 and 18 (K8/18), which form cytoplasmic filament (CF) and apicolateral filament (ALF) pools. Hepatocyte K8/18 CF provide important protection from environmental stresses, but disruption of acinar cell CF has no significant impact. We asked whether acinar cell ALF are important in providing cytoprotective roles by studying keratin filaments in pancreata of K8- and K18-null mice. K8-null pancreas lacks both keratin pools, but K18-null pancreas lacks only CF. Mouse but not human acinar cells also express apicolateral keratin 19 (K19), which explains the presence of apicolateral keratins in K18-null pancreas. K8- and K18-null pancreata are histologically normal, and their acini respond similarly to stimulated secretion, although K8-null acini viability is reduced. Absence of total filaments (K8-null) or CF (K18-null) does not increase susceptibility to pancreatitis induced by caerulein or a choline-deficient diet. In normal and K18-null acini, K19 is upregulated after caerulein injury and, unexpectedly, forms CF. As in hepatocytes, acinar injury is also associated with keratin hyperphosphorylation. Hence, K19 forms ALF in mouse acinar cells and helps define two distinct ALF and CF pools. On injury, K19 forms CF that revert to ALF after healing. Acinar keratins appear to be dispensable for cytoprotection, in contrast to hepatocyte keratins, despite similar hyperphosphorylation patterns after injury.
Collapse
Affiliation(s)
- D M Toivola
- Department of Medicine, Palo Alto Veterans Affairs Medical Center and Stanford University, Palo Alto 94304, California, USA
| | | | | | | | | |
Collapse
|
26
|
Gao ZH, Metherall J, Virshup DM. Identification of casein kinase I substrates by in vitro expression cloning screening. Biochem Biophys Res Commun 2000; 268:562-6. [PMID: 10679243 DOI: 10.1006/bbrc.2000.2168] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Casein kinase I (CKI) is a widely expressed protein kinase family implicated in diverse processes including membrane trafficking, DNA repair, and circadian rhythm. Despite the large number of CKI genes, few biologically relevant substrates have been identified. As an approach to better defining the spectrum of CKI substrates, we extended a recently described in vitro expression cloning (IVEC) strategy. Polypeptides pools were screened for kinase-dependent electrophoretic mobility shifts. Ten putative CKI substrates were isolated from an initial sample of 3000 random cDNA clones. Candidate substrates include proteins involved in RNA metabolism (a putative RNA helicase, the nucleolar protein hNOP56, and hnRNP A1, and ribosomal proteins L4, L8, and L13), as well as keratin 17, a necdin-related protein, and the calcium-binding proteins desmoglein 2 and annexin II. The same pools were also screened with active ERK2, and four substrates identified: aldolase, NSD-like protein, uracil-DNA glycosylase, and HHR23A. IVEC is an effective method to identify novel protein kinase substrates.
Collapse
Affiliation(s)
- Z H Gao
- Department of Oncological Sciences, University of Utah, Salt Lake City, Utah 84132, USA
| | | | | |
Collapse
|
27
|
Herrmann H, Aebi U. Intermediate filaments and their associates: multi-talented structural elements specifying cytoarchitecture and cytodynamics. Curr Opin Cell Biol 2000; 12:79-90. [PMID: 10679360 DOI: 10.1016/s0955-0674(99)00060-5] [Citation(s) in RCA: 349] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The assembly of intermediate filament (IF) arrays involves the recruitment of a complex set of cell-type-specific IF-associated proteins. Some of them are integral membrane proteins, others act as crosslinking proteins with vectorial binding activities, and yet others comprise motor proteins. In vivo IFs appear to be predominantly heteropolymers, although in vitro several IF proteins (e.g. vimentin, desmin, neurofilament (NF)-L and the nuclear lamins) do self-assemble into IF-like polymers. In contrast, NF-M, NF-H, nestin, synemin and paranemin, all bona fide IF proteins, are unable to self-assemble into IFs either in vitro or in vivo. The individual IF proteins of this large multigene family are chemically heterogeneous, exhibiting different assembly kinetics and yielding discrete types of filaments. The unique physical properties and interaction capabilities of these distinct IF molecular building blocks, in combination with accessory proteins, mediate the generation of a highly dynamic and interconnected, cell-type-specific cytoarchitecture.
Collapse
Affiliation(s)
- H Herrmann
- Division of Cell Biology, German Cancer Research Center, Heidelberg, D-69120, Germany.
| | | |
Collapse
|
28
|
Feng L, Zhou X, Liao J, Omary MB. Pervanadate-mediated tyrosine phosphorylation of keratins 8 and 19 via a p38 mitogen-activated protein kinase-dependent pathway. J Cell Sci 1999; 112 ( Pt 13):2081-90. [PMID: 10362538 DOI: 10.1242/jcs.112.13.2081] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Glandular epithelia express the keratin intermediate filament (IF) polypeptides 8, 18 and 19 (K8/18/19). These proteins undergo significant serine phosphorylation upon stimulation with growth factors and during mitosis, with subsequent modulation of their organization and interaction with associated proteins. Here we demonstrate reversible and dynamic tyrosine phosphorylation of K8 and K19, but not K18, upon exposure of intact mouse colon or cultured human cells to pervanadate. K8/19 tyrosine phosphorylation was confirmed by metabolic 32PO4-labeling followed by phosphoamino acid analysis, and by immunoblotting with anti-phosphotyrosine antibodies. Pervanadate treatment increases keratin solubility and also indirectly increases K8/18 serine phosphorylation at several known sites, some of which were previously shown to be associated with EGF stimulation, extracellular signal-regulated kinase (ERK), or p38 kinase activation. However, K8/19 tyrosine phosphorylation is independent of EGF signaling or ERK activation while inhibition of p38 kinase activity blocks pervanadate-induced K8/19 tyrosine phosphorylation. Our results demonstrate tyrosine phosphatase inhibitor-mediated in vivo tyrosine phosphorylation of K8/19, but not K18, and suggest that tyrosine phosphorylation may be a general modification of other IF proteins. K8/19 tyrosine phosphorylation involves a pathway that utilizes the p38 mitogen-activated protein kinase, but appears independent of EGF signaling or ERK kinase activation.
Collapse
Affiliation(s)
- L Feng
- Dept of Medicine, VA Palo Alto Health Care System, Mail code 154J, Palo Alto, CA 94304, USA
| | | | | | | |
Collapse
|