1
|
Agudo-Ibáñez L, Morante M, García-Gutiérrez L, Quintanilla A, Rodríguez J, Muñoz A, León J, Crespo P. ERK2 stimulates MYC transcription by anchoring CDK9 to the MYC promoter in a kinase activity-independent manner. Sci Signal 2023; 16:eadg4193. [PMID: 37463244 DOI: 10.1126/scisignal.adg4193] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 06/28/2023] [Indexed: 07/20/2023]
Abstract
The transcription factor MYC regulates cell proliferation, transformation, and survival in response to growth factor signaling that is mediated in part by the kinase activity of ERK2. Because ERK2 can also bind to DNA to modify gene expression, we investigated whether it more directly regulates MYC transcription. We identified ERK2 binding sites in the MYC promoter and detected ERK2 at the promoter in various serum-stimulated cell types. Expression of nuclear-localized ERK2 constructs in serum-starved cells revealed that ERK2 in the nucleus-regardless of its kinase activity-increased MYC mRNA expression and MYC protein abundance. ERK2 bound to the promoter through its amino-terminal insert domain and to the cyclin-dependent kinase CDK9 (which activates RNA polymerase II) through its carboxyl-terminal conserved docking domain. Both interactions were essential for ERK2-induced MYC expression, and depleting ERK impaired CDK9 occupancy and RNA polymerase II progression at the MYC promoter. Artificially tethering CDK9 to the MYC promoter by fusing it to the ERK2 insert domain was sufficient to stimulate MYC expression in serum-starved cells. Our findings demonstrate a role for ERK2 at the MYC promoter acting as a kinase-independent anchor for the recruitment of CDK9 to promote MYC expression.
Collapse
Affiliation(s)
- Lorena Agudo-Ibáñez
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Consejo Superior de Investigaciones Científicas (CSIC)-Universidad de Cantabria, Santander 39011, Spain
| | - Marta Morante
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Consejo Superior de Investigaciones Científicas (CSIC)-Universidad de Cantabria, Santander 39011, Spain
| | - Lucía García-Gutiérrez
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Consejo Superior de Investigaciones Científicas (CSIC)-Universidad de Cantabria, Santander 39011, Spain
| | - Andrea Quintanilla
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Consejo Superior de Investigaciones Científicas (CSIC)-Universidad de Cantabria, Santander 39011, Spain
| | - Javier Rodríguez
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Consejo Superior de Investigaciones Científicas (CSIC)-Universidad de Cantabria, Santander 39011, Spain
| | - Alberto Muñoz
- Instituto de Investigaciones Biomédicas "Alberto Sols," Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid 28029, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid 2809, Spain
| | - Javier León
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Consejo Superior de Investigaciones Científicas (CSIC)-Universidad de Cantabria, Santander 39011, Spain
| | - Piero Crespo
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Consejo Superior de Investigaciones Científicas (CSIC)-Universidad de Cantabria, Santander 39011, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid 2809, Spain
| |
Collapse
|
2
|
Cho W, Choe J. Prostaglandin E2 stimulates COX-2 expression via mitogen-activated protein kinase p38 but not ERK in human follicular dendritic cell-like cells. BMC Immunol 2020; 21:20. [PMID: 32303181 PMCID: PMC7165408 DOI: 10.1186/s12865-020-00347-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 03/24/2020] [Indexed: 11/20/2022] Open
Abstract
Background Prostaglandin E2 (PGE2) is an endogenous lipid mediator of inflammation. Its production is regulated by the rate-limiting upstream enzyme cyclooxygenase-2 (COX-2). We have recently demonstrated that the major cell type expressing COX-2 in the germinal center is follicular dendritic cell (FDC). In this study, to elucidate the molecular mechanism of PGE2 in COX-2 production, we asked whether mitogen-activated protein kinases ERK and p38 might regulate COX-2 expression. Results FDC-like cells were used to analyze the phosphorylation kinetics of ERK and p38 and the impact of genetic knockdown. PGE2 stimulation gave rise to a rapid increase of p38 but not ERK phosphorylation. In contrast, IL-1β induced phosphorylation of both MAPKs. Knockdown of p38 resulted in a marked suppression of COX-2 expression induced by either PGE2 or IL-1β. ERK knockdown did not significantly affect the effect of PGE2 and IL-1β on COX-2 induction. The differential results of p38 and ERK siRNA transfection were reproduced in the production of prostaglandins and in experiments performed with pharmacologic inhibitors. Conclusions Our data indicate that p38 is essentially required for PGE2 to induce COX-2 expression in FDC-like cells. The current study helps to expand our understanding of the biological function of FDC at the molecular level and provides a potential rationale for the pharmacologic or genetic approaches to regulate p38 MAPK in the treatment of various inflammatory disorders.
Collapse
Affiliation(s)
- Whajung Cho
- Research Center, Scripps Korea Antibody Institute, Chuncheon, Gangwon, 24341, Republic of Korea
| | - Jongseon Choe
- BIT Medical Convergence Graduate Program and Department of Microbiology and Immunology, School of Medicine, Kangwon National University, Chuncheon, Gangwon, 24341, Republic of Korea.
| |
Collapse
|
3
|
McReynolds AC, Karra AS, Li Y, Lopez ED, Turjanski AG, Dioum E, Lorenz K, Zaganjor E, Stippec S, McGlynn K, Earnest S, Cobb MH. Phosphorylation or Mutation of the ERK2 Activation Loop Alters Oligonucleotide Binding. Biochemistry 2016; 55:1909-17. [PMID: 26950759 DOI: 10.1021/acs.biochem.6b00096] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The mitogen-activated protein kinase ERK2 is able to elicit a wide range of context-specific responses to distinct stimuli, but the mechanisms underlying this versatility remain in question. Some cellular functions of ERK2 are mediated through regulation of gene expression. In addition to phosphorylating numerous transcriptional regulators, ERK2 is known to associate with chromatin and has been shown to bind oligonucleotides directly. ERK2 is activated by the upstream kinases MEK1/2, which phosphorylate both tyrosine 185 and threonine 183. ERK2 requires phosphorylation on both sites to be fully active. Some additional ERK2 phosphorylation sites have also been reported, including threonine 188. It has been suggested that this phospho form has distinct properties. We detected some ERK2 phosphorylated on T188 in bacterial preparations of ERK2 by mass spectrometry and further demonstrate that phosphomimetic substitution of this ERK2 residue impairs its kinase activity toward well-defined substrates and also affects its DNA binding. We used electrophoretic mobility shift assays with oligonucleotides derived from the insulin gene promoter and other regions to examine effects of phosphorylation and mutations on the binding of ERK2 to DNA. We show that ERK2 can bind oligonucleotides directly. Phosphorylation and mutations alter DNA binding and support the idea that signaling functions may be influenced through an alternate phosphorylation site.
Collapse
Affiliation(s)
- Andrea C McReynolds
- Department of Pharmacology, The University of Texas Southwestern Medical Center , Dallas, Texas 75390, United States
| | - Aroon S Karra
- Department of Pharmacology, The University of Texas Southwestern Medical Center , Dallas, Texas 75390, United States
| | - Yan Li
- Department of Pharmacology, The University of Texas Southwestern Medical Center , Dallas, Texas 75390, United States.,Protein/Peptide Sequencing Facility, National Institute of Neurological Disorders and Stroke , Bethesda, Maryland 20824, United States
| | - Elias Daniel Lopez
- Laboratory of Structural Bioinformatics, Department of Chemical Biology, University of Buenos Aires , Buenos Aires, Argentina
| | - Adrian G Turjanski
- Laboratory of Structural Bioinformatics, Department of Chemical Biology, University of Buenos Aires , Buenos Aires, Argentina
| | - Elhadji Dioum
- Department of Pharmacology, The University of Texas Southwestern Medical Center , Dallas, Texas 75390, United States
| | - Kristina Lorenz
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V. , Dortmund, Germany
| | - Elma Zaganjor
- Department of Pharmacology, The University of Texas Southwestern Medical Center , Dallas, Texas 75390, United States
| | - Steve Stippec
- Department of Pharmacology, The University of Texas Southwestern Medical Center , Dallas, Texas 75390, United States
| | - Kathleen McGlynn
- Department of Pharmacology, The University of Texas Southwestern Medical Center , Dallas, Texas 75390, United States
| | - Svetlana Earnest
- Department of Pharmacology, The University of Texas Southwestern Medical Center , Dallas, Texas 75390, United States
| | - Melanie H Cobb
- Department of Pharmacology, The University of Texas Southwestern Medical Center , Dallas, Texas 75390, United States
| |
Collapse
|
4
|
Jha S, Morris EJ, Hruza A, Mansueto MS, Schroeder GK, Arbanas J, McMasters D, Restaino CR, Dayananth P, Black S, Elsen NL, Mannarino A, Cooper A, Fawell S, Zawel L, Jayaraman L, Samatar AA. Dissecting Therapeutic Resistance to ERK Inhibition. Mol Cancer Ther 2016; 15:548-59. [PMID: 26832798 DOI: 10.1158/1535-7163.mct-15-0172] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 12/23/2015] [Indexed: 11/16/2022]
Abstract
The MAPK pathway is frequently activated in many human cancers, particularly melanomas. A single-nucleotide mutation in BRAF resulting in the substitution of glutamic acid for valine (V(600E)) causes constitutive activation of the downstream MAPK pathway. Selective BRAF and MEK inhibitor therapies have demonstrated remarkable antitumor responses in BRAF(V600) (E)-mutant melanoma patients. However, initial tumor shrinkage is transient and the vast majority of patients develop resistance. We previously reported that SCH772984, an ERK 1/2 inhibitor, effectively suppressed MAPK pathway signaling and cell proliferation in BRAF, MEK, and concurrent BRAF/MEK inhibitor-resistant tumor models. ERK inhibitors are currently being evaluated in clinical trials and, in anticipation of the likelihood of clinical resistance, we sought to prospectively model acquired resistance to SCH772984. Our data show that long-term exposure of cells to SCH772984 leads to acquired resistance, attributable to a mutation of glycine to aspartic acid (G(186D)) in the DFG motif of ERK1. Structural and biophysical studies demonstrated specific defects in SCH772984 binding to mutant ERK. Taken together, these studies describe the interaction of SCH772984 with ERK and identify a novel mechanism of ERK inhibitor resistance through mutation of a single residue within the DFG motif. Mol Cancer Ther; 15(4); 548-59. ©2016 AACR.
Collapse
Affiliation(s)
- Sharda Jha
- Early Development and Discovery Sciences, Merck Research Laboratories, Boston, Massachusetts
| | - Erick J Morris
- Early Development and Discovery Sciences, Merck Research Laboratories, Boston, Massachusetts
| | - Alan Hruza
- Early Development and Discovery Sciences, Merck Research Laboratories, Kenilworth, New Jersey
| | - My Sam Mansueto
- Early Development and Discovery Sciences, Merck Research Laboratories, Boston, Massachusetts
| | - Gottfried K Schroeder
- Early Development and Discovery Sciences, Merck Research Laboratories, Boston, Massachusetts
| | - Jaren Arbanas
- Early Development and Discovery Sciences, Merck Research Laboratories, Boston, Massachusetts
| | - Daniel McMasters
- Early Development and Discovery Sciences, Merck Research Laboratories, Boston, Massachusetts
| | - Clifford R Restaino
- Early Development and Discovery Sciences, Merck Research Laboratories, Boston, Massachusetts
| | - Priya Dayananth
- Early Development and Discovery Sciences, Merck Research Laboratories, Kenilworth, New Jersey
| | - Stuart Black
- Early Development and Discovery Sciences, Merck Research Laboratories, Kenilworth, New Jersey
| | - Nathaniel L Elsen
- Early Development and Discovery Sciences, Merck Research Laboratories, Kenilworth, New Jersey
| | - Anthony Mannarino
- Early Development and Discovery Sciences, Merck Research Laboratories, Boston, Massachusetts
| | - Alan Cooper
- Early Development and Discovery Sciences, Merck Research Laboratories, Kenilworth, New Jersey
| | - Stephen Fawell
- Early Development and Discovery Sciences, Merck Research Laboratories, Boston, Massachusetts
| | - Leigh Zawel
- Early Development and Discovery Sciences, Merck Research Laboratories, Boston, Massachusetts
| | - Lata Jayaraman
- Early Development and Discovery Sciences, Merck Research Laboratories, Boston, Massachusetts.
| | - Ahmed A Samatar
- Early Development and Discovery Sciences, Merck Research Laboratories, Boston, Massachusetts.
| |
Collapse
|
5
|
Acuner Ozbabacan SE, Gursoy A, Nussinov R, Keskin O. The structural pathway of interleukin 1 (IL-1) initiated signaling reveals mechanisms of oncogenic mutations and SNPs in inflammation and cancer. PLoS Comput Biol 2014; 10:e1003470. [PMID: 24550720 PMCID: PMC3923659 DOI: 10.1371/journal.pcbi.1003470] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Accepted: 12/25/2013] [Indexed: 01/21/2023] Open
Abstract
Interleukin-1 (IL-1) is a large cytokine family closely related to innate immunity and inflammation. IL-1 proteins are key players in signaling pathways such as apoptosis, TLR, MAPK, NLR and NF-κB. The IL-1 pathway is also associated with cancer, and chronic inflammation increases the risk of tumor development via oncogenic mutations. Here we illustrate that the structures of interfaces between proteins in this pathway bearing the mutations may reveal how. Proteins are frequently regulated via their interactions, which can turn them ON or OFF. We show that oncogenic mutations are significantly at or adjoining interface regions, and can abolish (or enhance) the protein-protein interaction, making the protein constitutively active (or inactive, if it is a repressor). We combine known structures of protein-protein complexes and those that we have predicted for the IL-1 pathway, and integrate them with literature information. In the reconstructed pathway there are 104 interactions between proteins whose three dimensional structures are experimentally identified; only 15 have experimentally-determined structures of the interacting complexes. By predicting the protein-protein complexes throughout the pathway via the PRISM algorithm, the structural coverage increases from 15% to 71%. In silico mutagenesis and comparison of the predicted binding energies reveal the mechanisms of how oncogenic and single nucleotide polymorphism (SNP) mutations can abrogate the interactions or increase the binding affinity of the mutant to the native partner. Computational mapping of mutations on the interface of the predicted complexes may constitute a powerful strategy to explain the mechanisms of activation/inhibition. It can also help explain how an oncogenic mutation or SNP works.
Collapse
Affiliation(s)
- Saliha Ece Acuner Ozbabacan
- Center for Computational Biology and Bioinformatics and College of Engineering, Koc University, Sariyer Istanbul, Turkey
| | - Attila Gursoy
- Center for Computational Biology and Bioinformatics and College of Engineering, Koc University, Sariyer Istanbul, Turkey
| | - Ruth Nussinov
- Cancer and Inflammation Program, Leidos Biomedical Research, Inc., National Cancer Institute, Frederick National Laboratory, Frederick, Maryland, United States of America
- Sackler Inst. of Molecular Medicine, Department of Human Genetics and Molecular Medicine, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ozlem Keskin
- Center for Computational Biology and Bioinformatics and College of Engineering, Koc University, Sariyer Istanbul, Turkey
| |
Collapse
|
6
|
Rodriguez J, Crespo P. Working Without Kinase Activity: Phosphotransfer-Independent Functions of Extracellular Signal-Regulated Kinases. Sci Signal 2011; 4:re3. [DOI: 10.1126/scisignal.2002324] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
7
|
Aurora-A overexpression enhances cell-aggregation of Ha-ras transformants through the MEK/ERK signaling pathway. BMC Cancer 2009; 9:435. [PMID: 20003375 PMCID: PMC2803196 DOI: 10.1186/1471-2407-9-435] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2008] [Accepted: 12/12/2009] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Overexpression of Aurora-A and mutant Ras (RasV12) together has been detected in human bladder cancer tissue. However, it is not clear whether this phenomenon is a general event or not. Although crosstalk between Aurora-A and Ras signaling pathways has been reported, the role of these two genes acting together in tumorigenesis remains unclear. METHODS Real-time PCR and sequence analysis were utilized to identify Ha- and Ki-ras mutation (Gly -> Val). Immunohistochemistry staining was used to measure the level of Aurora-A expression in bladder and colon cancer specimens. To reveal the effect of overexpression of the above two genes on cellular responses, mouse NIH3T3 fibroblast derived cell lines over-expressing either RasV12 and wild-type Aurora-A (designated WT) or RasV12 and kinase-inactivated Aurora-A (KD) were established. MTT and focus formation assays were conducted to measure proliferation rate and focus formation capability of the cells. Small interfering RNA, pharmacological inhibitors and dominant negative genes were used to dissect the signaling pathways involved. RESULTS Overexpression of wild-type Aurora-A and mutation of RasV12 were detected in human bladder and colon cancer tissues. Wild-type Aurora-A induces focus formation and aggregation of the RasV12 transformants. Aurora-A activates Ral A and the phosphorylation of AKT as well as enhances the phosphorylation of MEK, ERK of WT cells. Finally, the Ras/MEK/ERK signaling pathway is responsible for Aurora-A induced aggregation of the RasV12 transformants. CONCLUSION Wild-type-Aurora-A enhances focus formation and aggregation of the RasV12 transformants and the latter occurs through modulating the Ras/MEK/ERK signaling pathway.
Collapse
|
8
|
Bardwell AJ, Frankson E, Bardwell L. Selectivity of docking sites in MAPK kinases. J Biol Chem 2009; 284:13165-73. [PMID: 19196711 DOI: 10.1074/jbc.m900080200] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Protein kinases often recognize their substrates and regulators through docking interactions that occur outside of the active site; these interactions can help us to understand kinase networks, and to target kinases with drugs. During mitogen-activated protein kinase (MAPK) signaling, the ability of MAPK kinases (MKKs, or MEKs) to recognize their cognate MAPKs is facilitated by a short docking motif (the D-site) in the MKK N terminus, which binds to a complementary region on the MAPK. MAPKs then recognize many of their targets using the same strategy, because many MAPK substrates also contain D-sites. The extent to which docking contributes to the specificity of MAPK transactions is incompletely understood. Here we characterize the selectivity of the interaction between MKK-derived D-sites and MAPKs by measuring the ability of D-site peptides to inhibit MAPK-mediated phosphorylation of D-site-containing substrates. We find that all MKK D-sites bind better to their cognate MAPKs than they do to non-cognate MAPKs. For instance, the MKK3 D-site peptide, which is a remarkably potent inhibitor of p38alpha (IC(50) < 10 nm), does not inhibit JNK1 or JNK2. Likewise, MAPKs generally bind as well or better to cognate D-sites than to non-cognate D-sites. For instance, JNK1 and JNK2 do not appreciably bind to any D-sites other than their cognate D-sites from MKK4 and MKK7. In general, cognate, within-pathway interactions are preferred about an order of magnitude over non-cognate interactions. However, the selectivity of MAPKs and their cognate MKK-derived D-sites for each other is limited in some cases; in particular, ERK2 is not very selective. We conclude that MAPK-docking sites in MAPK kinases bind selectively to their cognate MAPKs.
Collapse
Affiliation(s)
- A Jane Bardwell
- Department of Developmental and Cell Biology, University of California, Irvine, CA 92697-2300, USA
| | | | | |
Collapse
|
9
|
Kaihara A, Umezawa Y. Genetically Encoded Bioluminescent Indicator for ERK2 Dimer in Living Cells. Chem Asian J 2008; 3:38-45. [DOI: 10.1002/asia.200700186] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
10
|
Abstract
Multiple dental diseases are characterized by chronic inflammation, due to the production of cytokines, chemokines, and prostanoids by immune and non-immune cells. Membrane-bound receptors provide a link between the extracellular environment and the initiation of intracellular signaling events that activate common signaling components, including p38 mitogen-activated protein kinase (MAPK), extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), and nuclear factor (NF)-kappaB. Although ERK pathways regulate cell survival and are responsive to extracellular mitogens, p38 MAPK, JNK, and NF-kappaB are involved in environmental stress responses, including inflammatory stimuli. Over the past decade, significant advances have been made relative to our understanding of the fundamental intracellular signaling mechanisms that govern inflammatory cytokine expression. The p38 MAPK pathway has been shown to play a pivotal role in inflammatory cytokine and chemokine gene regulation at both the transcriptional and the post-transcriptional levels. In this review, we present evidence for the significance of p38 MAPK signaling in diverse dental diseases, including chronic pain, desquamative disorders, and periodontal diseases. Additional information is presented on the molecular mechanisms whereby p38 signaling controls post-transcriptional gene expression in inflammatory states.
Collapse
Affiliation(s)
- C S Patil
- Department of Oral Biology, State University of New York at Buffalo, Buffalo, NY 14214-3008, USA
| | | |
Collapse
|
11
|
Polychronopoulos S, Verykokakis M, Yazicioglu MN, Sakarellos-Daitsiotis M, Cobb MH, Mavrothalassitis G. The Transcriptional ETS2 Repressor Factor Associates with Active and Inactive Erks through Distinct FXF Motifs. J Biol Chem 2006; 281:25601-11. [PMID: 16799155 DOI: 10.1074/jbc.m605185200] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The transcriptional ETS2 repressor factor (ERF) is phosphorylated by Erks both in vivo and in vitro. This phosphorylation determines the subcellular localization and biological function of ERF. Here, we show that active and inactive Erk2 proteins bind ERF with high affinity through a hydrophobic pocket formed by the alphaF and alphaG helices and the activation loop of Erk2. We have identified two FXF motifs on ERF that mediate the specific interaction with Erks. One of these motifs is utilized only by active Erks, whereas the other mediates the association with inactive Erks but also contributes to interaction with active Erks. Mutation of the phenylalanines of these motifs to alanines resulted in decreased association and phosphorylation of ERF by Erks both in cells and in vitro. ERF proteins carrying these mutations exhibited increased nuclear accumulation and increased inhibition of cellular proliferation. Expression of ERF regions harboring these motifs could inhibit Erk activity in cells. Our data suggest that, in the proper context, FXF motifs can mediate a strong and specific interaction not only with active but also inactive Erks and that these interactions determine protein function in vivo.
Collapse
Affiliation(s)
- Sarantis Polychronopoulos
- Medical School, University of Crete, Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Crete 710 03, Greece
| | | | | | | | | | | |
Collapse
|
12
|
Abstract
Sequential activation of protein kinases within the mitogen-activated protein kinase (MAPK) cascades is a common mechanism of signal transduction in many cellular processes. Four such cascades have been elucidated thus far, and named according to their MAPK tier component as the ERK1/2, JNK, p38MAPK, and ERK5 cascades. These cascades cooperate in transmitting various extracellular signals, and thus control cellular processes such as proliferation, differentiation, development, stress response, and apoptosis. Here we describe the classic ERK1/2 cascade, and concentrate mainly on the properties of MEK1/2 and ERK1/2, including their mode of regulation and their role in various cellular processes and in oncogenesis. This cascade may serve as a prototype of the other MAPK cascades, and the study of this cascade is likely to contribute to the understanding of mitogenic and other processes in many cell lines and tissues.
Collapse
Affiliation(s)
- Hadara Rubinfeld
- Department of Biological Regulation, The Weizmann Institute of Science, Rehovot 76100, Israel
| | | |
Collapse
|
13
|
Chuderland D, Seger R. Protein-protein interactions in the regulation of the extracellular signal-regulated kinase. Mol Biotechnol 2006; 29:57-74. [PMID: 15668520 DOI: 10.1385/mb:29:1:57] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The extracellular signal-regulated kinase (ERK) cascade is a central intracellular signaling pathway that is activated by a variety of extracellular stimuli, and thereby regulates cellular processes such as proliferation, differentiation, and oncogenic transformation. To execute these functions, the signals of those stimuli are transmitted to the cytosolic and nuclear targets in a rapid and specific manner. In the last few years it has become clear that the specificity and the rapid function of the ERK cascade is largely determined by protein-protein interactions with various signaling components and substrates. This review describes interactions of ERK with its immediate regulators, scaffold proteins, substrates, and localizing proteins, and shows their involvement in the functioning of the ERK cascade. Understanding the full scope of ERK-interactions is important for the development of new drugs for the treatment of cancer and other diseases.
Collapse
Affiliation(s)
- Dana Chuderland
- Department of Biological Regulation, The Weizmann Institute of Science, Rehovot 76100, Israel
| | | |
Collapse
|
14
|
Tárrega C, Ríos P, Cejudo-Marín R, Blanco-Aparicio C, van den Berk L, Schepens J, Hendriks W, Tabernero L, Pulido R. ERK2 shows a restrictive and locally selective mechanism of recognition by its tyrosine phosphatase inactivators not shared by its activator MEK1. J Biol Chem 2005; 280:37885-94. [PMID: 16148006 DOI: 10.1074/jbc.m504366200] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The two regulatory residues that control the enzymatic activity of the mitogen-activated protein (MAP) kinase ERK2 are phosphorylated by the unique MAP kinase kinases MEK1/2 and dephosphorylated by several tyrosine-specific and dual specificity protein phosphatases. Selective docking interactions facilitate these phosphorylation and dephosphorylation events, controlling the specificity and duration of the MAP kinase activation-inactivation cycles. We have analyzed the contribution of specific residues of ERK2 in the physical and functional interaction with the ERK2 phosphatase inactivators PTP-SL and MKP-3 and with its activator MEK1. Single mutations in ERK2 that abrogated the dephosphorylation by endogenous tyrosine phosphatases from HEK293 cells still allowed efficient phosphorylation by endogenous MEK1/2. Discrete ERK2 mutations at the ERK2 docking groove differentially affected binding and inactivation by PTP-SL and MKP-3. Remarkably, the cytosolic retention of ERK2 by its activator MEK1 was not affected by any of the analyzed ERK2 single amino acid substitutions. A chimeric MEK1 protein, containing the kinase interaction motif of PTP-SL, bound tightly to ERK2 through its docking groove and behaved as a gain-of-function MAP kinase kinase that hyperactivated ERK2. Our results provide evidence that the ERK2 docking groove is more restrictive and selective for its tyrosine phosphatase inactivators than for MEK1/2 and indicate that distinct ERK2 residues modulate the docking interactions with activating and inactivating effectors.
Collapse
Affiliation(s)
- Céline Tárrega
- Centro de Investigación Príncipe Felipe, Valencia, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Ramírez CJ, Haberbusch JM, Soprano DR, Soprano KJ. Retinoic acid induced repression of AP-1 activity is mediated by protein phosphatase 2A in ovarian carcinoma cells. J Cell Biochem 2005; 96:170-82. [PMID: 16052510 DOI: 10.1002/jcb.20520] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
In previous studies we have shown that all-trans retinoic acid (atRA)-treatment of the atRA-sensitive ovarian carcinoma cell line CA-OV3 repressed AP-1 activity by about 50%, while a similar effect was not observed in the atRA-resistant ovarian carcinoma cell line, SK-OV3. These results suggested that the repression of AP-1 activity may be one of the mechanisms by which atRA inhibits the growth of atRA-sensitive CA-OV3 cells. In the present studies, we investigated further the molecular mechanism by which AP-1 activity is repressed by atRA. We show that the repression of AP-1 activity correlates with an increase in JunB protein expression and a decrease in N-terminal phosphorylation of c-Jun. The decrease in N-terminal phosphorylation of c-Jun does not appear to be modulated by JNK or ERK, since their protein expression patterns and kinase activity do not correlate with the repression of AP-1 activity following treatment with atRA. However, the activity of the protein phosphatase PP2A was found to increase 24 h following atRA treatment in CA-OV3 cells. Moreover, the catalytic subunit of PP2A was found to associate with c-Jun in vivo following atRA treatment. Since the inhibition of AP-1 activity following atRA treatment of CA-OV3 cells was abolished in the presence of specific PP2A inhibitors, it is likely that PP2A plays an important role in the atRA-induced repression of AP-1.
Collapse
Affiliation(s)
- Carmilia Jiménez Ramírez
- Department of Microbiology and Immunology, Temple University School of Medicine, 3400 North Broad Street, Philadelphia, Pennsylvania 19140, USA
| | | | | | | |
Collapse
|
16
|
Farooq A, Zhou MM. Structure and regulation of MAPK phosphatases. Cell Signal 2004; 16:769-79. [PMID: 15115656 DOI: 10.1016/j.cellsig.2003.12.008] [Citation(s) in RCA: 346] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2003] [Accepted: 12/16/2003] [Indexed: 11/25/2022]
Abstract
MAP kinases (MAPKs), which control mitogenic signal transduction in all eukaryotic organisms, are inactivated by dual specificity MAPK phosphatases (DS-MKPs). Recent studies reveal that substrate specificity and enzymatic activity of MKPs are tightly controlled not only by the conserved C-terminal phosphatase domain but also by an N-terminal (NT) kinase-binding domain. Notably, MKPs that consist of a kinase-binding domain and a phosphatase domain exhibit little phosphatase activity in the absence of their physiological substrates. MKP binding to a specific MAPK results in enzymatic activation of the phosphatase in a substrate-induced activation mechanism. This direct coupling of inactivation of an MAPK to activation of an MKP provides a tightly controlled regulation that enables these two key enzymes to keep each other in check, thus guaranteeing the fidelity of signal transduction. This review discusses the recent understanding of structure and regulation of the large family of dual specificity MKPs, which can be divided into four subgroups according to their functional domains and mechanism of substrate recognition and enzymatic regulation. Moreover, detailed comparison of the structural basis between this unique substrate-induced activation mechanism and the common auto-inhibition mechanism is provided.
Collapse
Affiliation(s)
- Amjad Farooq
- Structural Biology Program, Department of Physiology and Biophysics, Mount Sinai School of Medicine, One Gustave L Levy Place, Box 1677, New York, NY 10029, USA.
| | | |
Collapse
|
17
|
Ohren JF, Chen H, Pavlovsky A, Whitehead C, Zhang E, Kuffa P, Yan C, McConnell P, Spessard C, Banotai C, Mueller WT, Delaney A, Omer C, Sebolt-Leopold J, Dudley DT, Leung IK, Flamme C, Warmus J, Kaufman M, Barrett S, Tecle H, Hasemann CA. Structures of human MAP kinase kinase 1 (MEK1) and MEK2 describe novel noncompetitive kinase inhibition. Nat Struct Mol Biol 2004; 11:1192-7. [PMID: 15543157 DOI: 10.1038/nsmb859] [Citation(s) in RCA: 456] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2004] [Accepted: 09/30/2004] [Indexed: 01/10/2023]
Abstract
MEK1 and MEK2 are closely related, dual-specificity tyrosine/threonine protein kinases found in the Ras/Raf/MEK/ERK mitogen-activated protein kinase (MAPK) signaling pathway. Approximately 30% of all human cancers have a constitutively activated MAPK pathway, and constitutive activation of MEK1 results in cellular transformation. Here we present the X-ray structures of human MEK1 and MEK2, each determined as a ternary complex with MgATP and an inhibitor to a resolution of 2.4 A and 3.2 A, respectively. The structures reveal that MEK1 and MEK2 each have a unique inhibitor-binding pocket adjacent to the MgATP-binding site. The presence of the potent inhibitor induces several conformational changes in the unphosphorylated MEK1 and MEK2 enzymes that lock them into a closed but catalytically inactive species. Thus, the structures reported here reveal a novel, noncompetitive mechanism for protein kinase inhibition.
Collapse
Affiliation(s)
- Jeffrey F Ohren
- Department of Discovery Technologies, Pfizer Global Research & Development, 2800 Plymouth Road, Ann Arbor, Michigan 48105, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Spence HJ, Dhillon AS, James M, Winder SJ. Dystroglycan, a scaffold for the ERK-MAP kinase cascade. EMBO Rep 2004; 5:484-9. [PMID: 15071496 PMCID: PMC1299052 DOI: 10.1038/sj.embor.7400140] [Citation(s) in RCA: 135] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2003] [Revised: 03/01/2004] [Accepted: 03/02/2004] [Indexed: 11/09/2022] Open
Abstract
Dystroglycan is an important cell adhesion receptor linking the actin cytoskeleton, via utrophin and dystrophin, to laminin in the extracellular matrix. To identify adhesion-related signalling molecules associated with dystroglycan, we conducted a yeast two-hybrid screen and identified mitogen-activated protein (MAP) kinase kinase 2 (MEK2) as a beta-dystroglycan interactor. Pull-down experiments and localization studies substantiated a physiological link between beta-dystroglycan and MEK and localized MEK with dystroglycan in membrane ruffles. Moreover, we also identified active extracellular signal-regulated kinase (ERK), the downstream kinase from MEK, as another interacting partner for beta-dystroglycan and localized both active ERK and dystroglycan to focal adhesions in fibroblast cells. These studies suggest a role for dystroglycan as a multifunctional adaptor or scaffold capable of interacting with components of the ERK-MAP kinase cascade including MEK and ERK. These findings have important implications for our understanding of the role of dystroglycan in normal cellular processes and in disease states such as muscular dystrophy.
Collapse
Affiliation(s)
- Heather J Spence
- The Beatson Institute for Cancer Research, CRUK Beatson Laboratories, Switchback Road, Glasgow G61 1BD, UK
| | - Amardeep S Dhillon
- The Beatson Institute for Cancer Research, CRUK Beatson Laboratories, Switchback Road, Glasgow G61 1BD, UK
| | - Marian James
- Centre for Developmental Genetics, Department of Biomedical Science, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
- Present address: Ascent Technology Ltd, Leicester LE19 1SX, UK
| | - Steven J Winder
- Centre for Developmental Genetics, Department of Biomedical Science, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
- Tel: +44 114 222 2332; Fax: +44 114 276 5413; E-mail:
| |
Collapse
|
19
|
Whitehurst AW, Robinson FL, Moore MS, Cobb MH. The Death Effector Domain Protein PEA-15 Prevents Nuclear Entry of ERK2 by Inhibiting Required Interactions. J Biol Chem 2004; 279:12840-7. [PMID: 14707138 DOI: 10.1074/jbc.m310031200] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
ERK2 nuclear-cytoplasmic distribution is regulated in response to hormones and cellular state without the requirement for karyopherin-mediated nuclear import. One proposed mechanism for the movement of ERK2 into the nucleus is through a direct interaction between ERK2 and nucleoporins present in the nuclear pore complex. Previous reports have attributed regulation of ERK2 localization to proteins that activate or deactivate ERK2, such as the mitogen-activated protein (MAP) kinase kinase MEK1 and MAP kinase phosphatases. Recently, a small non-catalytic protein, PEA-15, has also been demonstrated to promote a cytoplasmic ERK2 localization. We found that the MAP kinase insert in ERK2 is required for its interaction with PEA-15. Consistent with its recognition of the MAP kinase insert, PEA-15 blocked activation of ERK2 by MEK1, which also requires the MAP kinase insert to interact productively with ERK2. To determine how PEA-15 influences the localization of ERK2, we used a permeabilized cell system to examine the effect of PEA-15 on the localization of ERK2 and mutants that have lost the ability to bind PEA-15. Wild type ERK2 was unable to enter the nucleus in the presence of an excess of PEA-15; however, ERK2 lacking the MAP kinase insert largely retained the ability to enter the nucleus. Binding assays demonstrated that PEA-15 interfered with the ability of ERK2 to bind to nucleoporins. These results suggest that PEA-15 sequesters ERK2 in the cytoplasm at least in part by interfering with its ability to interact with nucleoporins, presenting a potential paradigm for regulation of ERK2 localization.
Collapse
Affiliation(s)
- Angelique W Whitehurst
- Department of Pharmacology, the University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9041, USA
| | | | | | | |
Collapse
|
20
|
Chou FL, Hill JM, Hsieh JC, Pouyssegur J, Brunet A, Glading A, Uberall F, Ramos JW, Werner MH, Ginsberg MH. PEA-15 binding to ERK1/2 MAPKs is required for its modulation of integrin activation. J Biol Chem 2003; 278:52587-97. [PMID: 14506247 DOI: 10.1074/jbc.m309322200] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Activation of Raf-1 suppresses integrin activation, potentially through the activation of extracellular signal-regulated kinases 1 and 2 (ERK1/2). However, bulk ERK1/2 activation does not correlate with suppression. PEA-15 reverses suppression of integrin activation and binds ERK1/2. Here we report that PEA-15 reversal of integrin suppression depends on its capacity to bind ERK1/2, indicating that ERK1/2 function is indeed required for suppression. Mutations in either the death effector domain or C-terminal tail of PEA-15 that block ERK1/2 binding abrogated the reversal of integrin suppression. Furthermore, we used ERK/p38 chimeras and site-directed mutagenesis to identify ERK1/2 residues required for binding PEA-15. Mutations of residues that precede the alphaG helix and within the mitogen-activated protein kinase insert blocked ERK2 binding to PEA-15, but not activation of ERK2. These ERK2 mutants blocked the ability of PEA-15 to reverse suppression of integrin activation. Thus, PEA-15 regulation of integrin activation depends on its binding to ERK1/2. To directly test the role of ERK1/2 localization in suppression, we enforced membrane association of ERK1 and 2 by joining a membrane-targeting CAAX box sequence to them. Both ERK1-CAAX and ERK2-CAAX were membrane-localized and suppressed integrin activation. In contrast to suppression by membrane-targeted Raf-CAAX, suppression by ERK1/2-CAAX was not reversed by PEA-15. Thus, ERK1/2 are the Raf effectors for suppression of integrin activation, and PEA-15 reverses suppression by binding ERK1/2.
Collapse
Affiliation(s)
- Fan-Li Chou
- Department of Cell Biology, The Scripps Research Institute, La Jolla, California 92037, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Ho DT, Bardwell AJ, Abdollahi M, Bardwell L. A docking site in MKK4 mediates high affinity binding to JNK MAPKs and competes with similar docking sites in JNK substrates. J Biol Chem 2003; 278:32662-72. [PMID: 12788955 PMCID: PMC3017503 DOI: 10.1074/jbc.m304229200] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Specific docking interactions between MAPKs and their activating MAPK kinases (MKKs or MEKs) are crucial for efficient and accurate signal transmission. Here, we report the identification of a MAPK-docking site, or "D-site," in the N terminus of human MKK4/JNKK1. This docking site conforms to the consensus sequence for known D-sites in other MKKs and contains the first of the two cleavage sites for anthrax lethal factor protease that have been found in the N terminus of MKK4. This docking site was both necessary and sufficient for the high affinity binding of the MAPKs JNK1, JNK2, JNK3, p38 alpha, and p38 beta to MKK4. Mutations that altered conserved residues in this docking site reduced JNK/p38 binding. In addition, a peptide version of this docking site, as well as a peptide version of the JNK-binding site of the JIP-1 scaffold protein, inhibited both MKK4/JNK binding and MKK4-mediated phosphorylation of JNK1. These same peptides also inhibited JNK2-mediated phosphorylation of c-Jun and ATF2, suggesting that transcription factors, MKK4, and the JIP scaffold compete for docking to JNK. Finally, the selectivity of the MKK4, MEK1, and MEK2 D-sites for JNK versus ERK was quantified. The MEK1 and MEK2 D-sites displayed a strong selectivity for their cognate MAPK (ERK2) versus a non-cognate MAPK (JNK). In contrast, the MKK4 D-site exhibited only limited selectivity for JNK versus ERK.
Collapse
Affiliation(s)
- David T. Ho
- Department of Developmental and Cell Biology, University of California, Irvine, California 92697
| | - A. Jane Bardwell
- Department of Developmental and Cell Biology, University of California, Irvine, California 92697
| | - Mahsa Abdollahi
- Department of Developmental and Cell Biology, University of California, Irvine, California 92697
| | - Lee Bardwell
- Department of Developmental and Cell Biology, University of California, Irvine, California 92697
| |
Collapse
|
22
|
Burgermeister E, Lanzendoerfer M, Scheuer W. Comparative analysis of docking motifs in MAP-kinases and nuclear receptors. J Biomol Struct Dyn 2003; 20:623-34. [PMID: 12643765 DOI: 10.1080/07391102.2003.10506879] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Nuclear receptor (NR) agonists induce activation of mitogen-activated protein kinases (MAPK) through an yet unknown rapid non-genomic mechanism. Vice versa, NR are targets for phosphorylation by MAPK. By multiple alignment of the amino acid sequences and comparative analysis of the secondary and tertiary structures we identified four peptides in MAPK with similarity to bona fide protein-protein-interaction motifs in NR. In both molecule species, these motifs mediate selective docking to dimerization partners, coregulators or phosphoacceptors. We therefore propose that similar motifs may direct the site-specific association of NR with MAPK. Based on mutual allosteric interactions within a kinase-receptor complex, we discuss a novel principle how NR-agonists may regulate kinase activity and thus expression of hormone-dependent genes.
Collapse
Affiliation(s)
- Elke Burgermeister
- Dept. of Biological Regulation, The Weizmann Institute of Science, I-76100 Rehovot, Israel.
| | | | | |
Collapse
|
23
|
Abstract
We have developed a novel method for quantitating protein phosphorylation by a variety of protein kinases. It can be used with purified kinases and their substrates in vitro or in combination with cell extracts. The method is based on the knowledge that protein kinase C (PKC) adds three phosphates to each molecule of its preferred substrate, myelin basic protein (MBP). A time course is performed in which a kinase is allowed to phosphorylate its preferred substrate or the protein under investigation in the presence of [gamma-32P]ATP. At the same time PKC is allowed to fully phosphorylate MBP. After resolving the products by SDS-PAGE, electrophoretic transfer, and determining the degree of incorporation of 32P by phosphorImager analysis, the data are converted to moles phosphate/mole protein by normalization with phosphorylated MBP. The method is both sensitive and relatively rapid and all the steps are commonly available in the biochemistry laboratory. We have used this method to confirm and extend information on the relationship of MEK1 and MAPK/Erk2 in rat lung fibroblasts exposed to V(2)O(5). A 4-h exposure to V(2)O(5) results in partial phosphorylation of MAPK/Erk2 such that 25% of the potential phosphorylation sites are occupied. We also demonstrate that despite multiple potential phosphorylation sites, recombinant human AP endonuclease is weakly phosphorylated in vitro (4% at best) by PKC, cGMP-dependent protein kinase, casein kinase II, and casein kinase I and not at all phosphorylated by MAPK. Furthermore we are unable to demonstrate phosphorylation in cell extracts from HeLa cells, mouse fibroblasts after oxidative damage with H(2)O(2) or alkylation damage with methylmethane sulfonate, or rat lung fibroblasts after oxidative damage with V(2)O(5).
Collapse
Affiliation(s)
- J Andres Mckenzie
- Department of Biology, Northeastern University, Boston, MA 02115, USA
| | | |
Collapse
|
24
|
Shibayama S, Shibata-Seita R, Miura K, Kirino Y, Takishima K. Identification of a C-terminal region that is required for the nuclear translocation of ERK2 by passive diffusion. J Biol Chem 2002; 277:37777-82. [PMID: 12149268 DOI: 10.1074/jbc.m206163200] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Extracellular signal-regulated kinase 2 (ERK2) is located in the cytoplasm of resting cells and translocates into the nucleus upon extracellular stimuli by active transport of a dimer. Passive transport of an ERK2 monomer through the nuclear pore is also reported to coexist. We attempted to characterize the cytoplasmic retention and nuclear translocation of fusion proteins between deletion and site-directed mutants of ERK2 and green fluorescent protein (GFP). The overexpressed ERK2-GFP fusion protein is usually localized to both the cytoplasm and the nucleus unless a cytoplasmic anchoring protein is coexpressed. Deletion of 45 residues, but not 43 residues, from the C terminus of ERK2 prevented the nuclear distribution of the ERK2-GFP fusion protein. Substitution of a part of residues 299-313 to alanine residues also prevented the nuclear distribution of the ERK2-GFP fusion protein without abrogation of its nuclear active transport. These observations may indicate that the passive diffusion of ERK2 into the nucleus is not simple diffusion but includes a specific interaction process between residues 299-313 and the nuclear pore complex and that this interaction is not required for the active transport. We also showed that substitution of Tyr(314) to alanine residue abrogated the cytoplasmic retention of the ERK2-GFP fusion protein by PTP-SL but not by MEK1.
Collapse
Affiliation(s)
- Sotaro Shibayama
- Department of Biochemistry I, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama 359-8513, Japan
| | | | | | | | | |
Collapse
|
25
|
Eblen ST, Slack JK, Weber MJ, Catling AD. Rac-PAK signaling stimulates extracellular signal-regulated kinase (ERK) activation by regulating formation of MEK1-ERK complexes. Mol Cell Biol 2002; 22:6023-33. [PMID: 12167697 PMCID: PMC134005 DOI: 10.1128/mcb.22.17.6023-6033.2002] [Citation(s) in RCA: 188] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Utilizing mutants of extracellular signal-regulated kinase 2 (ERK2) that are defective for intrinsic mitogen-activated protein kinase or ERK kinase (MEK) binding, we have identified a convergent signaling pathway that facilitates regulated MEK-ERK association and ERK activation. ERK2-delta19-25 mutants defective in MEK binding could be phosphorylated in response to mitogens; however, signaling from the Raf-MEK pathway alone was insufficient to stimulate their phosphorylation in COS-1 cells. Phosphorylation of ERK2-delta19-25 but not of wild-type ERK2 in response to Ras V12 was greatly inhibited by dominant-negative Rac. Activated forms of Rac and Cdc42 could enhance the association of wild-type ERK2 with MEK1 but not with MEK2 in serum-starved adherent cells. This effect was p21-activated kinase (PAK) dependent and required the putative PAK phosphorylation sites T292 and S298 of MEK1. In detached cells placed in suspension, ERK2 was complexed with MEK2 but not with MEK1. However, upon replating of cells onto a fibronectin matrix, there was a substantial induction of MEK1-ERK2 association and ERK activation, both of which could be inhibited by dominant-negative PAK1. These data show that Rac facilitates the assembly of a mitogen-activated protein kinase signaling complex required for ERK activation and that this facilitative signaling pathway is active during adhesion to the extracellular matrix. These findings reveal a novel mechanism by which adhesion and growth factor signals are integrated during ERK activation.
Collapse
Affiliation(s)
- Scott T Eblen
- Department of Microbiology, School of Medicine, University of Virginia, Charlottesville, Virginia 22908, USA.
| | | | | | | |
Collapse
|
26
|
Robinson FL, Whitehurst AW, Raman M, Cobb MH. Identification of novel point mutations in ERK2 that selectively disrupt binding to MEK1. J Biol Chem 2002; 277:14844-52. [PMID: 11823456 DOI: 10.1074/jbc.m107776200] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Extracellular signal-regulated kinases 1 and 2 (ERK1 and ERK2) are essential components of pathways through which signals received at membrane receptors are converted into specific changes in protein function and gene expression. As with other members of the mitogen-activated protein (MAP) kinase family, ERK1 and ERK2 are activated by phosphorylations catalyzed by dual-specificity protein kinases known as MAP/ERK kinases (MEKs). MEKs exhibit stringent specificity for individual MAP kinases. Indeed, MEK1 and MEK2 are the only known activators of ERK1 and ERK2. ERK2 small middle dotMEK1/2 complexes can be detected in vitro and in vivo. The biochemical nature of such complexes and their role in MAP kinase signaling are under investigation. This report describes the use of a yeast two-hybrid screen to identify point mutations in ERK2 that impair its interaction with MEK1/2, yet do not alter its interactions with other proteins. ERK2 residues identified in this screen are on the surface of the C-terminal domain of the kinase, either within or immediately preceding alpha-helix G, or within the MAP kinase insert. Some mutations identified in this manner impaired the two-hybrid interaction of ERK2 with both MEK1 and MEK2, whereas others had a predominant effect on the interaction with either MEK1 or MEK2. Mutant ERK2 proteins displayed reduced activation in HEK293 cells following epidermal growth factor treatment, consistent with their impaired interaction with MEK1/2. However, ERK2 proteins containing MEK-specific mutations retained kinase activity, and were similar to wild type ERK2 in their activation following overexpression of constitutively active MEK1. Unlike wild type ERK2, proteins containing MEK-specific point mutations were constitutively localized in the nucleus, even in the presence of overexpressed MEK1. These data suggest an essential role for the MAP kinase insert and residues within or just preceding alpha-helix G in the interaction of ERK2 with MEK1/2.
Collapse
Affiliation(s)
- Fred L Robinson
- Department of Pharmacology, The University of Texas Southwestern Medical Center, Dallas, Texas 75390-9041, USA
| | | | | | | |
Collapse
|
27
|
Robinson MJ, Xu Be BE, Stippec S, Cobb MH. Different domains of the mitogen-activated protein kinases ERK3 and ERK2 direct subcellular localization and upstream specificity in vivo. J Biol Chem 2002; 277:5094-100. [PMID: 11741894 DOI: 10.1074/jbc.m110935200] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Extracellular signal-regulated kinase 3 (ERK3) is a member of the mitogen-activated protein (MAP) kinase family. ERK3 is most similar in its kinase catalytic domain to ERK2, yet it displays many unique properties. Among these, unlike ERK2, which translocates to the nucleus following activation, ERK3 is constitutively localized to the nucleus, despite the lack of a defined nuclear localization sequence. We created two chimeras between ERK2 and the catalytic domain of ERK3 (ERK3DeltaC), and some mutants of these chimeras, to examine the basis for the different behaviors of these two MAP kinase family members. We find the following: 1) the N-terminal folding domain of ERK3 functions in phosphoryl transfer reactions with the C-terminal folding domain of ERK2; 2) the C-terminal halves of ERK2 and ERK3DeltaC are primarily responsible for their subcellular localization in resting cells; and 3) the N-terminal folding domain of ERK2 is required for its activation in cells, its interaction with MEK1, and its accumulation in the nucleus.
Collapse
Affiliation(s)
- Megan J Robinson
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9041, USA
| | | | | | | |
Collapse
|
28
|
Haynes MP, Li L, Russell KS, Bender JR. Rapid vascular cell responses to estrogen and membrane receptors. Vascul Pharmacol 2002; 38:99-108. [PMID: 12379956 DOI: 10.1016/s0306-3623(02)00133-7] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
There is a growing interest in the effects of estrogen on the vascular wall, due to the marked gender difference in the incidence of clinically apparent coronary heart disease, when comparing premenopausal women with age-matched males. Estrogen has numerous effects on vascular endothelial and smooth muscle cells, both of which express estrogen receptors (ERs). Although ERs are classically defined as ligand-activated transcription factors, it has become increasingly clear that estrogen-stimulated, ER-dependent cellular responses can be rapid consequences of signal transduction cascades. The cellular localization and molecular form of the ER(s) which mediates rapid signaling are poorly defined. In this review, we describe the mounting evidence for membrane-localized ERs that vary in structure from classical forms. We also discuss ER-catalyzed molecular complex formations and a variety of estrogen-triggered signal transduction cascades, including those involving phosphatidylinositol 3-kinase/Akt, MAP kinase and G-protein-coupled receptors, all of which may induce "protective" profiles in vascular cells.
Collapse
Affiliation(s)
- M Page Haynes
- Sections of Cardiovascular Medicine and Immunobiology, Boyer Center for Molecular Medicine, Yale University School of Medicine, New Haven, CT 06536, USA
| | | | | | | |
Collapse
|
29
|
Berman K, McKay J, Avery L, Cobb M. Isolation and characterization of pmk-(1-3): three p38 homologs in Caenorhabditis elegans. MOLECULAR CELL BIOLOGY RESEARCH COMMUNICATIONS : MCBRC 2001; 4:337-44. [PMID: 11703092 PMCID: PMC4460246 DOI: 10.1006/mcbr.2001.0300] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
p38, a member of the mitogen-activated protein kinase (MAPK) superfamily, is activated in response to a variety of cellular stresses and ligands. Since the genome of the nematode C. elegans has been sequenced, we sought to identify and characterize the nematode homolog of mammalian p38. By sequence analysis and RT-PCR, we isolated cDNAs encoding three kinases, PMK-1, PMK-2, and PMK-3, which we call p38 map kinases due to their high sequence identity with p38. The three genes are contiguous on chromosome IV and comprise an operon. By use of a GFP reporter, we found that the promoter of the pmks is active throughout the intestine. An active form of MAPK/ERK kinase 6 (MEK6) phosphorylated and activated recombinant PMK-1 and PMK-2 in vitro. PMK-1 and PMK-2 phosphorylated activating transcription factor-2 (ATF-2), indicating an activity similar to mammalian p38. When transfected into mammalian cells, these kinases, like p38, are stimulated by osmotic stresses.
Collapse
Affiliation(s)
- Kevin Berman
- Department of Pharmacology, University of Texas Southwestern Medical Center at Dallas, 5323 Harry Hines Blvd., Dallas, TX 75390
| | - Jim McKay
- Department of Molecular Biology, University of Texas Southwestern Medical Center at Dallas, 5323 Harry Hines Blvd., Dallas, TX 75390
| | - Leon Avery
- Department of Molecular Biology, University of Texas Southwestern Medical Center at Dallas, 5323 Harry Hines Blvd., Dallas, TX 75390
| | - Melanie Cobb
- Department of Pharmacology, University of Texas Southwestern Medical Center at Dallas, 5323 Harry Hines Blvd., Dallas, TX 75390
| |
Collapse
|
30
|
Zhao Y, Zhang ZY. The mechanism of dephosphorylation of extracellular signal-regulated kinase 2 by mitogen-activated protein kinase phosphatase 3. J Biol Chem 2001; 276:32382-91. [PMID: 11432864 DOI: 10.1074/jbc.m103369200] [Citation(s) in RCA: 136] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The mitogen-activated protein (MAP) kinase phosphatase-3 (MKP3) is a dual specificity phosphatase that specifically inactivates one subfamily of MAP kinases, the extracellular signal-regulated kinases (ERKs). Inactivation of MAP kinases occurs by dephosphorylation of Thr(P) and Tyr(P) in the TXY kinase activation motif. To gain insight into the mechanism of ERK2 inactivation by MKP3, we have carried out an analysis of the MKP3-catalyzed dephosphorylation of the phosphorylated ERK2. We find that ERK2/pTpY dephosphorylation by MKP3 involves an ordered, distributive mechanism in which MKP3 binds the bisphosphorylated ERK2/pTpY, dephosphorylates Tyr(P) first, dissociates and releases the monophosphorylated ERK2/pT, which is then subjected to dephosphorylation by a second MKP3, yielding the fully dephosphorylated ERK2. The bisphosphorylated ERK2 is a highly specific substrate for MKP3 with a k(cat)/K(m) of 3.8 x 10(6) m(-1) s(-1), which is more than 6 orders of magnitude higher than that for small molecule aryl phosphates and an ERK2-derived phosphopeptide encompassing the pTEpY motif. This strikingly high substrate specificity displayed by MKP3 may result from a combination of high affinity binding interactions between the N-terminal domain of MKP3 and ERK2 and specific ERK2-induced allosteric activation of the MKP3 C-terminal phosphatase domain.
Collapse
Affiliation(s)
- Y Zhao
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | |
Collapse
|
31
|
Wolf I, Rubinfeld H, Yoon S, Marmor G, Hanoch T, Seger R. Involvement of the activation loop of ERK in the detachment from cytosolic anchoring. J Biol Chem 2001; 276:24490-7. [PMID: 11328824 DOI: 10.1074/jbc.m103352200] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Extracellular signal-regulated kinases (ERKs) are translocated into the nucleus in response to mitogenic stimulation. The mechanism of translocation and the residues in ERKs that govern this process are not clear as yet. Here we studied the involvement of residues in the activation loop of ERK2 in determining its subcellular localization. Substitution of residues in the activation loop to alanines indicated that residues 173-181 do not play a significant role in the phosphorylation and activation of ERK2. However, residues 176-181 are responsible for the detachment of ERK2 from MEK1 upon mitogenic stimulation. This dissociation can be mimicked by substitution of residues 176-178 to alanines and is prevented by deletion of these residues or by substitution of residues 179-181 to alanines. On the other hand, residues 176-181, as well as residues essential for ERK2 dimerization, do not play a role in the shuttle of ERK2 through nuclear pores. Thus, phosphorylation-induced conformational rearrangement of residues in the activation loop of ERK2 plays a major role in the control of subcellular localization of this protein.
Collapse
Affiliation(s)
- I Wolf
- Department of Biological Regulation, The Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | | | | | |
Collapse
|
32
|
Stippec S, Robinson FL, Cobb MH. Hydrophobic as Well as Charged Residues in Both MEK1 and ERK2 Are Important for Their Proper Docking. J Biol Chem 2001; 276:26509-15. [PMID: 11352917 DOI: 10.1074/jbc.m102769200] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Docking between MEK1 and ERK2 is required for their stable interaction and efficient signal transmission. The MEK1 N terminus contains the ERK docking or D domain that consists of conserved hydrophobic and basic residues. We mutated the hydrophobic and basic residues individually and found that loss of either type reduced MEK1 phosphorylation of ERK2 in vitro and its ability to bind to ERK2 in vivo. Moreover, ERK2 was localized in both the cytoplasm and the nucleus when co-expressed with MEK1 that had mutations in either the hydrophobic or the basic residues. We then identified two conserved hydrophobic residues on ERK2 that play roles in docking with MEK1. Mutating these residues to alanine reduced the interaction of ERK2 with MEK1 in cells. These mutations also reduced the phosphorylation of MEK1 by ERK2 but had little effect on phosphorylation of MBP by ERK2. Finally, we generated docking site mutants in ERK2-MEK1 fusion proteins. Although the mutation of the MEK1 D domain significantly reduced ERK2-MEK1 activity, mutations of the putatively complementary acidic residues and hydrophobic residues on ERK2 did not change its activity. However, both types of mutations decreased the phosphorylation of Elk-1 caused by ERK2-MEK1 fusion proteins. These findings suggest complex interactions of MEK1 D domains with ERK2 that influence its activation and its effects on substrates.
Collapse
|
33
|
Calderini O, Glab N, Bergounioux C, Heberle-Bors E, Wilson C. A novel tobacco mitogen-activated protein (MAP) kinase kinase, NtMEK1, activates the cell cycle-regulated p43Ntf6 MAP kinase. J Biol Chem 2001; 276:18139-45. [PMID: 11278711 DOI: 10.1074/jbc.m010621200] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Two-hybrid screening of a tobacco BY-2 cell suspension cDNA library using the p43(Ntf6) mitogen-activated protein (MAP) kinase as bait resulted in the isolation of a cDNA encoding a protein with features characteristic of a MAP kinase kinase (MEK), which has been called NtMEK1. Two-hybrid interaction analysis and pull-down experiments showed a physical interaction between NtMEK1 and the tobacco MAP kinases p43(Ntf6) and p45(Ntf4), but not p43(Ntf3). In kinase assays NtMEK1 preferentially phosphorylated p43(Ntf6). Functional studies in yeast showed that p43(Ntf6) could complement the yeast MAP kinase mutant mpk1 when co-expressed with NtMEK1, and that this complementation depended on the kinase activity of p43(Ntf6). Expression analysis showed that the NtMEK1 and ntf6 genes are co-expressed both in plant tissues and following the induction of cell division in leaf pieces. These data suggest that NtMEK1 is an MEK for the p43(Ntf6) MAP kinase.
Collapse
Affiliation(s)
- O Calderini
- Institute of Microbiology and Genetics, University of Vienna, Dr. Bohrgasse 9, A-1030 Vienna, Austria
| | | | | | | | | |
Collapse
|
34
|
Wilsbacher JL, Cobb MH. Bacterial expression of activated mitogen-activated protein kinases. Methods Enzymol 2001; 332:387-400. [PMID: 11305113 DOI: 10.1016/s0076-6879(01)32217-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- J L Wilsbacher
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas 75235-9041, USA
| | | |
Collapse
|
35
|
Flores-Delgado G, Bringas P, Buckley S, Anderson KD, Warburton D. Nongenomic estrogen action in human lung myofibroblasts. Biochem Biophys Res Commun 2001; 283:661-7. [PMID: 11341776 DOI: 10.1006/bbrc.2001.4827] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Recent studies have suggested that the antiproliferative effects of E2 may be mediated through a nongenomic action. Herein, we asked whether nongenomic estrogen action regulates phosphorylation of Raf1 and ERK1/2 mitogen-activated protein (MAP) kinase in lung myofibroblasts. We demonstrated that lung myofibroblasts, incubated in the presence of E2, showed a rapid phosphorylation on serine-259 of Raf1 and tyrosine-204 of ERK1/2 MAP kinase at 15 min, by approximately 3- and 5-fold, respectively. This phosphorylation was followed by dephosphorylation between 30 and 60 min. Western blot analysis showed that E2 regulates tyrosine phosphorylation of four main cytoplasmic proteins in lung myofibroblasts, of 42, 44, 70 and 100 kDa. Furthermore, our results indicated that E2 inhibits cell proliferation (BrdU index) in lung myofibroblasts by approximately 30% (P < 0.01). These data provide evidence that nongenomic action of E2, regulates both serine and tyrosine phosphorylation of cytoplasmic proteins in lung myofibroblasts, including Raf1 and ERK1/2 MAP kinase, which may regulate proliferation in lung myofibroblasts.
Collapse
Affiliation(s)
- G Flores-Delgado
- Developmental Biology Program, University of Southern California, Los Angeles, California, 90027, USA.
| | | | | | | | | |
Collapse
|
36
|
Landgraf R, Xenarios I, Eisenberg D. Three-dimensional cluster analysis identifies interfaces and functional residue clusters in proteins. J Mol Biol 2001; 307:1487-502. [PMID: 11292355 DOI: 10.1006/jmbi.2001.4540] [Citation(s) in RCA: 188] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Three-dimensional cluster analysis offers a method for the prediction of functional residue clusters in proteins. This method requires a representative structure and a multiple sequence alignment as input data. Individual residues are represented in terms of regional alignments that reflect both their structural environment and their evolutionary variation, as defined by the alignment of homologous sequences. From the overall (global) and the residue-specific (regional) alignments, we calculate the global and regional similarity matrices, containing scores for all pairwise sequence comparisons in the respective alignments. Comparing the matrices yields two scores for each residue. The regional conservation score (C(R)(x)) defines the conservation of each residue x and its neighbors in 3D space relative to the protein as a whole. The similarity deviation score (S(x)) detects residue clusters with sequence similarities that deviate from the similarities suggested by the full-length sequences. We evaluated 3D cluster analysis on a set of 35 families of proteins with available cocrystal structures, showing small ligand interfaces, nucleic acid interfaces and two types of protein-protein interfaces (transient and stable). We present two examples in detail: fructose-1,6-bisphosphate aldolase and the mitogen-activated protein kinase ERK2. We found that the regional conservation score (C(R)(x)) identifies functional residue clusters better than a scoring scheme that does not take 3D information into account. C(R)(x) is particularly useful for the prediction of poorly conserved, transient protein-protein interfaces. Many of the proteins studied contained residue clusters with elevated similarity deviation scores. These residue clusters correlate with specificity-conferring regions: 3D cluster analysis therefore represents an easily applied method for the prediction of functionally relevant spatial clusters of residues in proteins.
Collapse
Affiliation(s)
- R Landgraf
- UCLA-DOE Laboratory of Structural Biology and Molecular Medicine, 405 Hilgard Avenue, Los Angeles, CA, 90095-1570, USA
| | | | | |
Collapse
|
37
|
Pearson G, Robinson F, Beers Gibson T, Xu BE, Karandikar M, Berman K, Cobb MH. Mitogen-activated protein (MAP) kinase pathways: regulation and physiological functions. Endocr Rev 2001; 22:153-83. [PMID: 11294822 DOI: 10.1210/edrv.22.2.0428] [Citation(s) in RCA: 1337] [Impact Index Per Article: 55.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mitogen-activated protein (MAP) kinases comprise a family of ubiquitous proline-directed, protein-serine/threonine kinases, which participate in signal transduction pathways that control intracellular events including acute responses to hormones and major developmental changes in organisms. MAP kinases lie in protein kinase cascades. This review discusses the regulation and functions of mammalian MAP kinases. Nonenzymatic mechanisms that impact MAP kinase functions and findings from gene disruption studies are highlighted. Particular emphasis is on ERK1/2.
Collapse
Affiliation(s)
- G Pearson
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | | | | | | | | | | | | |
Collapse
|
38
|
Bardwell AJ, Flatauer LJ, Matsukuma K, Thorner J, Bardwell L. A conserved docking site in MEKs mediates high-affinity binding to MAP kinases and cooperates with a scaffold protein to enhance signal transmission. J Biol Chem 2001; 276:10374-86. [PMID: 11134045 PMCID: PMC3021106 DOI: 10.1074/jbc.m010271200] [Citation(s) in RCA: 139] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The recognition of mitogen-activated protein kinases (MAPKs) by their upstream activators, MAPK/ERK kinases (MEKs), is crucial for the effective and accurate transmission of many signals. We demonstrated previously that the yeast MAPKs Kss1 and Fus3 bind with high affinity to the N terminus of the MEK Ste7, and proposed that a conserved motif in Ste7, the MAPK-docking site, mediates this interaction. Here we show that the corresponding sequences in human MEK1 and MEK2 are necessary and sufficient for the direct binding of the MAPKs ERK1 and ERK2. Mutations in MEK1, MEK2, or Ste7 that altered conserved residues in the docking site diminished binding of the cognate MAPKs. Furthermore, short peptides corresponding to the docking sites in these MEKs inhibited MEK1-mediated phosphorylation of ERK2 in vitro. In yeast cells, docking-defective alleles of Ste7 were modestly compromised in their ability to transmit the mating pheromone signal. This deficiency was dramatically enhanced when the ability of the Ste5 scaffold protein to associate with components of the MAPK cascade was also compromised. Thus, both the MEK-MAPK docking interaction and binding to the Ste5 scaffold make mutually reinforcing contributions to the efficiency of signaling by this MAPK cascade in vivo.
Collapse
Affiliation(s)
- A J Bardwell
- Department of Developmental and Cell Biology, University of California, Irvine, California 92697, USA.
| | | | | | | | | |
Collapse
|
39
|
Ligterink W, Hirt H. Mitogen-activated protein [MAP] kinase pathways in plants: versatile signaling tools. INTERNATIONAL REVIEW OF CYTOLOGY 2001; 201:209-75. [PMID: 11057833 DOI: 10.1016/s0074-7696(01)01004-x] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Mitogen-activated protein kinases (MAPKs) are important signaling tools in all eukaryotes, and function in mediating an enormous variety of external signals to appropriate cellular responses. MAPK pathways have been studied extensively in yeast and mammalian cells, and a large body of knowledge on their functioning has accumulated, which is summarized briefly. Plant MAPK pathways have attracted increasing interest, resulting in the isolation of a large number of different components of MAPK cascades. Studies on the functions of these components have revealed that MAPKs play important roles in the response to a broad variety of stresses, as well as in the signaling of most plant hormones and in developmental processes. Finally, the involvement of various plant phosphatases in the inactivation of MAPKs is discussed.
Collapse
Affiliation(s)
- W Ligterink
- Institute of Microbiology and Genetics, Vienna Biocenter, University of Vienna, Austria
| | | |
Collapse
|
40
|
Tanoue T, Maeda R, Adachi M, Nishida E. Identification of a docking groove on ERK and p38 MAP kinases that regulates the specificity of docking interactions. EMBO J 2001; 20:466-79. [PMID: 11157753 PMCID: PMC133461 DOI: 10.1093/emboj/20.3.466] [Citation(s) in RCA: 231] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
MAP kinases (MAPKs) form a complex with MAPK kinases (MAPKKs), MAPK-specific phosphatases (MKPs) and various targets including MAPKAPKs. These docking interactions contribute to regulation of the specificity and efficiency of the enzymatic reactions. We have previously identified a docking site on MAPKs, termed the CD (common docking) domain, which is utilized commonly for docking interactions with MAPKKs, MKPs and MAPKAPKs. However, the CD domain alone does not determine the docking specificity. Here we have identified a novel site on p38 and ERK2 MAPKs that regulates the docking specificity towards MAPKAPKs. Remarkably, exchange of two amino acids in this site of ERK2 for corresponding residues of p38 converted the docking specificity for MAPKAPK-3/3pk, which is a dominant target of p38, from the ERK2 type to the p38 type, and vice versa. Furthermore, our detailed analyses with a number of MAPKAPKs and MKPs suggest that a groove in the steric structure of MAPKs, which comprises the CD domain and the site identified here, serves as a common docking region for various MAPK-interacting molecules.
Collapse
Affiliation(s)
- Takuji Tanoue
- Department of Biophysics, Graduate School of Science and Department of Cell and Developmental Biology, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan Corresponding author e-mail:
| | - Ryota Maeda
- Department of Biophysics, Graduate School of Science and Department of Cell and Developmental Biology, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan Corresponding author e-mail:
| | - Makoto Adachi
- Department of Biophysics, Graduate School of Science and Department of Cell and Developmental Biology, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan Corresponding author e-mail:
| | - Eisuke Nishida
- Department of Biophysics, Graduate School of Science and Department of Cell and Developmental Biology, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan Corresponding author e-mail:
| |
Collapse
|
41
|
Eblen ST, Catling AD, Assanah MC, Weber MJ. Biochemical and biological functions of the N-terminal, noncatalytic domain of extracellular signal-regulated kinase 2. Mol Cell Biol 2001; 21:249-59. [PMID: 11113199 PMCID: PMC88798 DOI: 10.1128/mcb.21.1.249-259.2001] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Extracellular signal-regulated kinase 1 (ERK1) and ERK2 are important components in signal transduction pathways involved in many cellular processes, including cell differentiation and proliferation. These proteins consist of a central kinase domain flanked by short N- and C-terminal noncatalytic domains. While the regulation of ERK2 by sequences within the kinase domain has been extensively studied, little is known about the small regions outside of the kinase domain. We performed mutational analysis on the N-terminal, noncatalytic domain of ERK2 in an attempt to determine its role in ERK2 function and regulation. Deleting or mutating amino acids 19 to 25 (ERK2-Delta19-25) created an ERK2 molecule that could be phosphorylated in response to growth factor and serum stimulation in a MEK (mitogen-activated protein kinase kinase or ERK kinase)-dependent manner but had little kinase activity and was unable to bind to MEK in vivo. Since MEK acts as a cytoplasmic anchor for the ERKs, the lack of a MEK interaction resulted in the aberrant nuclear localization of ERK2-Delta19-25 mutants in serum-starved cells. Assaying these mutants for their ability to affect ERK signaling revealed that ERK2-Delta19-25 mutants acted in a dominant-negative manner to inhibit transcriptional signaling through endogenous ERKs to an Elk1-responsive promoter in transfected COS-1 cells. However, ERK2-Delta19-25 had no effect on the phosphorylation of RSK2, an ERK2 cytoplasmic substrate, whereas a nonactivatable ERK (T183A) that retained these sequences could inhibit RSK2 phosphorylation. These results suggest that the N-terminal domain of ERK2 profoundly affects ERK2 localization, MEK binding, kinase activity, and signaling and identify a novel dominant-negative mutant of ERK2 that can dissociate at least some transcriptional responses from cytoplasmic responses.
Collapse
Affiliation(s)
- S T Eblen
- Department of Microbiology and Cancer Center, School of Medicine, University of Virginia, Charlottesville, Virginia 22908, USA
| | | | | | | |
Collapse
|
42
|
Hebert MA, O'Callaghan JP. Protein phosphorylation cascades associated with methamphetamine-induced glial activation. Ann N Y Acad Sci 2000; 914:238-62. [PMID: 11085325 DOI: 10.1111/j.1749-6632.2000.tb05200.x] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Reactive gliosis is the most prominent response to diverse forms of central nervous system (CNS) injury. The signaling events that mediate this characteristic response to neural injury are under intense investigation. Several studies have demonstrated the activation of phosphoproteins within the mitogen-activated protein kinase (MAPK) and Janus kinase (JAK) pathways following neural insult. These signaling pathways may be involved or responsible for the glial response following injury, by virtue of their ability to phosphorylate and dynamically regulate the activity of various transcription factors. This study sought to delineate, in vivo, the relative contribution of MAPK- and JAK-signaling components to reactive gliosis as measured by induction of glial-fibrillary acidic protein (GFAP), following chemical-induced neural damage. At time points (6, 24, and 48 h) following methamphetamine (METH, 10 mg/kg x 4, s.c.) administration, female C57BL/6J mice were sacrificed by focused microwave irradiation, a technique that preserves steady-state phosphorylation. Striatal (target) and nontarget (hippocampus) homogenates were assayed for METH-induced changes in markers of dopamine (DA) neuron integrity as well as differences in the levels of activated phosphoproteins. GFAP upregulation occurred as early as 6 h, reaching a threefold induction 48 h following METH exposure. Neurotoxicant-induced reductions in striatal levels of DA and tyrosine hydroxylase (TH) paralleled the temporal profile of GFAP induction. Blots of striatal homogenates, probed with phosphorylation-state specific antibodies, demonstrated significant changes in activated forms of extracellular-regulated kinase 1/2 (ERK 1/2), c-jun N-terminal kinase/stress-activated protein kinase (JNK/SAPK), MAPK/ERK kinase (MEK1/2), 70-kDa ribosomal S6 kinase (p70 S6), cAMP responsive element binding protein (CREB), and signal transducer and activator of transcription 3 (STAT3). MAPK-related phosphoproteins exhibited an activation profile that peaked at 6 h, remained significantly increased at 24, and fell to baseline levels 48 h following neurotoxicant treatment. The ribosomal S6 kinase was enhanced over 60% for all time points examined. Immunoreactivity profiles for the transcription factors CREB and STAT3 indicated maximal increases in phosphorylation occurring at 24 h, and measuring greater than 2- or 17-fold, respectively. Specific signaling events were found to occur with a time course suggestive of their involvement in the gliotic response. The toxicant-induced activation of these growth-associated signaling cascades suggests that these pathways could be obligatory for the triggering and/or persistence of reactive gliosis and may therefore serve as potential targets for modulation of glial response to neural damage.
Collapse
Affiliation(s)
- M A Hebert
- Department of Health & Human Services, Public Health Service, Centers for Disease Control and Prevention, Morgantown, West Virginia 26505-2888, USA
| | | |
Collapse
|
43
|
Nichols A, Camps M, Gillieron C, Chabert C, Brunet A, Wilsbacher J, Cobb M, Pouyssegur J, Shaw JP, Arkinstall S. Substrate recognition domains within extracellular signal-regulated kinase mediate binding and catalytic activation of mitogen-activated protein kinase phosphatase-3. J Biol Chem 2000; 275:24613-21. [PMID: 10811804 DOI: 10.1074/jbc.m001515200] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mitogen-activated protein (MAP) kinase phosphatase-3 (MKP-3) is a dual specificity phosphatase that inactivates extracellular signal-regulated kinase (ERK) MAP kinases. This reflects tight and specific binding between ERK and the MKP-3 amino terminus with consequent phosphatase activation and dephosphorylation of the bound MAP kinase. We have used a series of p38/ERK chimeric molecules to identify domains within ERK necessary for binding and catalytic activation of MKP-3. These studies demonstrate that ERK kinase subdomains V-XI are necessary and sufficient for binding and catalytic activation of MKP-3. These domains constitute the major COOH-terminal structural lobe of ERK. p38/ERK chimeras possessing these regions display increased sensitivity to inactivation by MKP-3. These data also reveal an overlap between ERK domains interacting with MKP-3 and those known to confer substrate specificity on the ERK MAP kinase. Consistent with this, we show that peptides representing docking sites within the target substrates Elk-1 and p90(rsk) inhibit ERK-dependent activation of MKP-3. In addition, abolition of ERK-dependent phosphatase activation following mutation of a putative kinase interaction motif (KIM) within the MKP-3 NH(2) terminus suggests that key sites of contact for the ERK COOH-terminal structural lobe include residues localized between the Cdc25 homology domains (CH2) found conserved between members of the DSP gene family.
Collapse
Affiliation(s)
- A Nichols
- Serono Pharmaceutical Research Institute, Ares-Serono International SA, Plan-les-Ouates 1228, Geneva, Switzerland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Caffrey DR, O'Neill LA, Shields DC. A method to predict residues conferring functional differences between related proteins: application to MAP kinase pathways. Protein Sci 2000; 9:655-70. [PMID: 10794408 PMCID: PMC2144617 DOI: 10.1110/ps.9.4.655] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Physicochemical properties are potentially useful in predicting functional differences between aligned protein subfamilies. We present a method that considers physicochemical properties from ancestral sequences predicted to have given rise to the subfamilies of interest by gene duplication. Comparison between two map kinases subfamilies, p38 and ERK, revealed a region that had an excess of change in properties after gene duplication followed by conservation within the two subfamilies. This region corresponded to that experimentally defined as important for substrate and pathway specificity. The derived scores for the region of interest were found to differ significantly in their distribution compared to the rest of the protein when the Kolmogorov-Smirnov test was applied (p = 0.005). Thus, the incorporation of ancestral physicochemical properties is useful in predicting functional differences between protein subfamilies. In addition, the method was applied to the MKK and MAPK components of the p38 and JNK pathways. These proteins showed a similar pattern in their evolution and regions predicted to confer functional differences are discussed.
Collapse
Affiliation(s)
- D R Caffrey
- Department of Clinical Pharmacology, Royal College of Surgeons in Ireland, Dublin
| | | | | |
Collapse
|
45
|
Enslen H, Brancho DM, Davis RJ. Molecular determinants that mediate selective activation of p38 MAP kinase isoforms. EMBO J 2000; 19:1301-11. [PMID: 10716930 PMCID: PMC305671 DOI: 10.1093/emboj/19.6.1301] [Citation(s) in RCA: 173] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The p38 mitogen-activated protein kinase (MAPK) group is represented by four isoforms in mammals (p38alpha, p38beta2, p38gamma and p38delta). These p38 MAPK isoforms appear to mediate distinct functions in vivo due, in part, to differences in substrate phosphorylation by individual p38 MAPKs and also to selective activation by MAPK kinases (MAPKKs). Here we report the identification of two factors that contribute to the specificity of p38 MAPK activation. One mechanism of specificity is the selective formation of functional complexes between MAPKK and different p38 MAPKs. The formation of these complexes requires the presence of a MAPK docking site in the N-terminus of the MAPKK. The second mechanism that confers signaling specificity is the selective recognition of the activation loop (T-loop) of p38 MAPK isoforms. Together, these processes provide a mechanism that enables the selective activation of p38 MAPK in response to activated MAPKK.
Collapse
Affiliation(s)
- H Enslen
- Howard Hughes Medical Institute, Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | | | | |
Collapse
|
46
|
Tanoue T, Adachi M, Moriguchi T, Nishida E. A conserved docking motif in MAP kinases common to substrates, activators and regulators. Nat Cell Biol 2000; 2:110-6. [PMID: 10655591 DOI: 10.1038/35000065] [Citation(s) in RCA: 634] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Mitogen-activated protein kinases (MAPKs) are specifically phosphorylated and activated by the MAPK kinases, phosphorylate various targets such as MAPK-activated protein kinases and transcription factors, and are inactivated by specific phosphatases. Recently, docking interactions via the non-catalytic regions of MAPKs have been suggested to be important in regulating these reactions. Here we identify docking sites in MAPKs and in MAPK-interacting enzymes. A docking domain in extracellular-signal-regulated kinase (ERK), a MAPK, serves as a common site for binding to the MAPK kinase MEK1, the MAPK-activated protein kinase MNK1 and the MAPK phosphatase MKP3. Two aspartic acids in this domain are essential for docking, one of which is mutated in the sevenmaker mutant of Drosophila ERK/Rolled. A corresponding domain in the MAPKs p38 and JNK/SAPK also serves as a common docking site for their MEKs, MAPK-activated protein kinases and MKPs. These docking interactions increase the efficiency of the enzymatic reactions. These findings reveal a hitherto unidentified docking motif in MAPKs that is used in common for recognition of their activators, substrates and regulators.
Collapse
Affiliation(s)
- T Tanoue
- Department of Biophysics, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | | | | | | |
Collapse
|
47
|
Xu BE, Wilsbacher JL, Collisson T, Cobb MH. The N-terminal ERK-binding site of MEK1 is required for efficient feedback phosphorylation by ERK2 in vitro and ERK activation in vivo. J Biol Chem 1999; 274:34029-35. [PMID: 10567369 DOI: 10.1074/jbc.274.48.34029] [Citation(s) in RCA: 91] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
An ERK2-binding site at the N terminus of MEK1 was reported to mediate their stable association. We examined the importance of this binding site in the feedback phosphorylation of MEK1 on Thr(292) and Thr(386) by ERK2, the phosphorylation and activation of ERK2 by MEK1, and the interaction of MEK1 with ERK2 and Raf-1. Deletion of the binding site from MEK1 reduced its phosphorylation by ERK2, but had no effect on its phosphorylation by p21-activated protein kinase-1 (PAK1). A MEK1 N-terminal peptide containing the binding site inhibited MEK1 phosphorylation by ERK2. However, it did not affect MEK1 phosphorylation by p21-activated protein kinase or myelin basic protein phosphorylation by ERK2. Deletion of the N-terminal ERK-binding domain of MEK1 also reduced its ability to phosphorylate ERK2 in vitro, to co-immunoprecipitate with ERK2, and to stimulate ERK2 activation in transfected cells, but it did not alter the association with endogenous Raf-1. Using ERK2-p38 chimeras and an ERK2 deletion mutant, a MEK1-binding site of ERK2 was localized to its N terminus.
Collapse
Affiliation(s)
- B e Xu
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas 75235-9041, USA
| | | | | | | |
Collapse
|
48
|
Abstract
MAP kinases are a family of protein kinases that are ubiquitously expressed and play roles in most signal transduction pathways. They are activated within protein kinase cascades consisting of at least three kinases acting in series. In many, if not all cases, the three-kinase cascade, conveniently referred to as a MAP kinase module, is organized on scaffolds with a variety of forms and functions. This review discusses similarities and differences in scaffolding proteins and mechanisms in yeast, flies, worms and mammals.
Collapse
Affiliation(s)
- M Karandikar
- Department of Pharmacology, Southwestern Medical Center, Dallas, TX 75235-9041, USA
| | | |
Collapse
|