1
|
Bikharudin A, Okada M, Sung PC, Matsumoto T. Co-precipitating calcium phosphate as oral detoxification of cadmium. JOURNAL OF HAZARDOUS MATERIALS 2025; 487:137307. [PMID: 39847936 DOI: 10.1016/j.jhazmat.2025.137307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 12/19/2024] [Accepted: 01/19/2025] [Indexed: 01/25/2025]
Abstract
Bone-eating (also known as osteophagia), found in wild animals, is primarily recognized as a means to supplement phosphorus and calcium intake. Herein, we describe a novel function of bone-eating in detoxifying heavy metal ions through the dissolution and co-precipitation of bone minerals as they travel through the gastrointestinal (GI) tract. In this study, cadmium (Cd), a heavy metal ion, served as a toxic model. We demonstrated that hydroxyapatite (HAp), the major calcium phosphate (CaP) in bone, dissolves in the stomach and acts as a co-precipitant in the intestine for Cd detoxification. We compared HAp to a common antidote, activated charcoal (AC), which did not precipitate within the GI tract. In vitro experiments showed that HAp dissolves under acidic conditions and, upon return to a neutral environment, efficiently re-sequesters Cd. Similarly, oral administration of HAp effectively prevented Cd absorption and accumulation, resulting in enhanced Cd excretion in the feces when compared to AC. A co-precipitating CaP in the GI tract could serve as an excellent detoxification system, as it helps prevent the accumulation of toxic substances and aids in developing appropriate strategies to reduce tissue toxicity. Moreover, understanding this detoxification system would be a valuable indicator for designing efficient detoxification materials.
Collapse
Affiliation(s)
- Ahmad Bikharudin
- Department of Biomaterials, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 7008558, Japan
| | - Masahiro Okada
- Department of Biomaterials, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 7008558, Japan.
| | - Ping-Chin Sung
- Department of Biomaterials, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 7008558, Japan
| | - Takuya Matsumoto
- Department of Biomaterials, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 7008558, Japan.
| |
Collapse
|
2
|
Stumpff F, Manneck D. Prebiotics as modulators of colonic calcium and magnesium uptake. Acta Physiol (Oxf) 2025; 241:e14262. [PMID: 39803707 PMCID: PMC11726438 DOI: 10.1111/apha.14262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 11/23/2024] [Accepted: 01/01/2025] [Indexed: 01/16/2025]
Abstract
Ca2+ and Mg2+ are essential nutrients, and deficiency can cause serious health problems. Thus, lack of Ca2+ and Mg2+ can lead to osteoporosis, with incidence rising both in absolute and age-specific terms, while Mg2+ deficiency is associated with type II diabetes. Prevention via vitamin D or estrogen is controversial, and the bioavailability of Ca2+ and Mg2+ from supplements is significantly lower than that from milk products. Problems are likely to increase as populations age and the number of people on vegan diets surges. Developing new therapeutic strategies requires a better understanding of the molecular mechanisms involved in absorption by intestinal epithelia. The vitamin-D dependent, active pathway for the uptake of Ca2+ from the upper small intestine involving TRPV6 is highly efficient but only accounts for about 20% of total uptake. Instead, most Ca2+ uptake is thought to occur via passive paracellular diffusion across the ileum, although sufficiently high luminal concentrations are difficult to achieve.. Interestingly, colon and caecum also have a considerable capacity for the active absorption of Ca2+ and Mg2+, the molecular mechanisms of which are unclear. Intriguingly, stimulating fermentation by prebiotics enhances colonic absorption, which can rise from ~10% to ~30% of the total. Notably, fermentation releases protons, which inhibits channels highly selective for Ca2+ and Mg2+ (TRPV6 and TRPM6/TRPM7). Conversely, the non-selective cation channel TRPV3 is stimulated by both intracellular acidification and by numerous herbal compounds. Spicy, fiber-rich food, as traditionally consumed in many cultures, might enhance the uptake of Ca2+ and Mg2+ via this pathway.
Collapse
Affiliation(s)
- Friederike Stumpff
- Institute for Molecular MedicineHealth and Medical University PotsdamPotsdamGermany
| | - David Manneck
- Institute for Molecular MedicineHealth and Medical University PotsdamPotsdamGermany
| |
Collapse
|
3
|
Chankamngoen W, Thammayon N, Suntornsaratoon P, Nammultriputtar K, Kitiyanant N, Donpromma N, Chaichanan J, Supcharoen P, Teerapo K, Teerapornpuntakit J, Rodrat M, Panupinthu N, Svasti S, Wongdee K, Charoenphandhu N. Fibroblast growth factor-21 potentiates the stimulatory effects of 1,25-dihydroxyvitamin D 3 on transepithelial calcium transport and TRPV6 Ca 2+ channel expression. Biochem Biophys Res Commun 2024; 733:150429. [PMID: 39053106 DOI: 10.1016/j.bbrc.2024.150429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/15/2024] [Accepted: 07/18/2024] [Indexed: 07/27/2024]
Abstract
Fibroblast growth factor (FGF)-21 is a salient liver-derived endocrine regulator for metabolism of glucose and triglyceride as well as bone remodeling. Previously, certain peptides in the FGF family have been shown to modulate calcium absorption across the intestinal epithelia. Since FGF21 receptor, i.e., FGF receptor-1, is abundantly expressed in the enterocytes, there was a possibility that FGF21 might exert direct actions on the intestine. Herein, a large-scale production of recombinant FGF21 at the multi-gram level was developed in order to minimize variations among various batches. In the oral glucose tolerance test, recombinant FGF21 was found to reduce plasma glucose levels in mice fed high-fat diet. A series of experiments applying radioactive tracer 45Ca in Ussing chamber showed that FGF21 potentiated the stimulatory effect of low-dose 1,25-dihydroxyvitamin D3 [10 nM 1,25(OH)2D3] on the transepithelial calcium transport across intestinal epithelium-like Caco-2 monolayer. FGF21 + 1,25(OH)2D3 also decreased transepithelial resistance, but had no effect on epithelial potential difference or short-circuit current. Furthermore, 1,25(OH)2D3 alone upregulated the Caco-2 mRNA expression of the major apical calcium channels, i.e., transient receptor potential vanilloid subfamily member 6 (TRPV6), which was further elevated by a combination of FGF21 and 1,25(OH)2D3, consistent with the upregulated TRPV6 protein expression in enterocytes of FGF21-treated mice. However, FGF21 was without effects on the mRNA expression of voltage-gated calcium channel 1.3, calbindin-D9k, plasma membrane Ca2+-ATPase 1b, claudin-12 or claudin-15. In conclusion, FGF21 did exert a direct action on the intestinal epithelial cells by potentiating the 1,25(OH)2D3-enhanced calcium transport, presumably through the upregulation of TRPV6 expression.
Collapse
Affiliation(s)
- Wasutorn Chankamngoen
- Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Nithipak Thammayon
- Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Panan Suntornsaratoon
- Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok, Thailand; Department of Physiology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Ketsaraporn Nammultriputtar
- Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok, Thailand; Graduate Program in Molecular Medicine, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Narisorn Kitiyanant
- Center for Advanced Therapeutics (CAT), Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, Thailand
| | - Natthida Donpromma
- Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok, Thailand; Center for Advanced Therapeutics (CAT), Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, Thailand
| | - Jirapan Chaichanan
- Establishment of Mahidol University Bio-industrial Development Center, Mahidol University, Nakhon Pathom, Thailand
| | - Promsup Supcharoen
- Mahidol University Frontier Research Facility (MU-FRF), Mahidol University, Nakhon Pathom, Thailand
| | - Kittitat Teerapo
- Mahidol University Frontier Research Facility (MU-FRF), Mahidol University, Nakhon Pathom, Thailand
| | | | - Mayuree Rodrat
- Center for Advanced Therapeutics (CAT), Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, Thailand
| | - Nattapon Panupinthu
- Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok, Thailand; Department of Physiology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Saovaros Svasti
- Thalassemia Research Center, Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, Thailand
| | - Kannikar Wongdee
- Faculty of Allied Health Sciences, Burapha University, Chonburi, Thailand.
| | - Narattaphol Charoenphandhu
- Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok, Thailand; Department of Physiology, Faculty of Science, Mahidol University, Bangkok, Thailand; Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, Thailand; The Academy of Science, The Royal Society of Thailand, Bangkok, Thailand.
| |
Collapse
|
4
|
Du Y, Hao D, Liu W, Liu W, Li D, Lei Q, Zhou Y, Liu J, Cao D, Wang J, Sun Y, Chen F, Han H, Li F. Plasma Biochemistry, Intestinal Health, and Transcriptome Analysis Reveal Why Laying Hens Produce Translucent Eggs. Animals (Basel) 2024; 14:2593. [PMID: 39272378 PMCID: PMC11394436 DOI: 10.3390/ani14172593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 08/24/2024] [Accepted: 09/02/2024] [Indexed: 09/15/2024] Open
Abstract
Producing translucent eggs has been found to reduce the quality and safety of the eggs, as well as the demand from consumers. However, the intestinal function and the molecular mechanism for the production of translucent eggs remain uncertain. A total of 120 eggs from 276-day-old Jining Bairi were divided into two groups based on eggshell translucence: the translucent egg group (group T) and the normal group (group C). Group T exhibited thicker eggshells and a lower egg yolk color. Subsequently, we divided the chickens into translucent and normal groups based on their egg quality. We then assessed the plasma biochemical index, intestinal morphology and structure, enzyme activity, and antioxidant capacity of the hens producing translucent eggs compared to those producing normal eggs. The results showed that the ratio of duodenal villus length to crypt depth, succinate dehydrogenase (SDH) activity, chymotrypsin, total ATPase (T-ATPase), alkaline phosphatase (AKP), and glutathione peroxidase (GSH-Px) activities were decreased in the hens produced translucent eggs (p < 0.05), but malondialdehyde (MDA) content was increased (p < 0.05); jejunal lipase activity, Na+K+-ATPase activity, total antioxidant capacity (T-AOC), and GSH-Px activities were decreased (p < 0.05) in group T; ileal amylase and Ca2+Mg2+-ATPase activities were also decreased (p < 0.05) in group T. In addition, we identified a total of 471 differentially expressed genes (DEGs) in duodenal tissue, with 327 up-regulated genes and 144 down-regulated genes (|log2FC| ≥ 1 and p < 0.05). Enrichment analysis showed that the up-regulated genes, such as GSTT1, GSTO2, and GSTA3, were mostly enriched in metabolism of xenobiotics by cytochrome P450, drug metabolism-cytochrome P450, and oxidative phosphorylation pathways. The results of our study indicate that plasma lipid metabolism disorder, decreased intestinal antioxidant capacity, and altered intestinal metabolism capabilities may influence the formation of translucent eggs.
Collapse
Affiliation(s)
- Yuanjun Du
- Jinan Key Laboratory of Poultry Germplasm Resources Innovation and Healthy Breeding, Shandong Academy of Agricultural Sciences, Poultry Institute, Jinan 250100, China
- Shandong Technology Innovation Center of Laying Hens, Jinan 250102, China
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao 266109, China
| | - Dan Hao
- Jinan Key Laboratory of Poultry Germplasm Resources Innovation and Healthy Breeding, Shandong Academy of Agricultural Sciences, Poultry Institute, Jinan 250100, China
| | - Wei Liu
- Jinan Key Laboratory of Poultry Germplasm Resources Innovation and Healthy Breeding, Shandong Academy of Agricultural Sciences, Poultry Institute, Jinan 250100, China
| | - Wei Liu
- Shandong Technology Innovation Center of Laying Hens, Jinan 250102, China
| | - Dapeng Li
- Jinan Key Laboratory of Poultry Germplasm Resources Innovation and Healthy Breeding, Shandong Academy of Agricultural Sciences, Poultry Institute, Jinan 250100, China
| | - Qiuxia Lei
- Jinan Key Laboratory of Poultry Germplasm Resources Innovation and Healthy Breeding, Shandong Academy of Agricultural Sciences, Poultry Institute, Jinan 250100, China
| | - Yan Zhou
- Jinan Key Laboratory of Poultry Germplasm Resources Innovation and Healthy Breeding, Shandong Academy of Agricultural Sciences, Poultry Institute, Jinan 250100, China
| | - Jie Liu
- Jinan Key Laboratory of Poultry Germplasm Resources Innovation and Healthy Breeding, Shandong Academy of Agricultural Sciences, Poultry Institute, Jinan 250100, China
| | - Dingguo Cao
- Jinan Key Laboratory of Poultry Germplasm Resources Innovation and Healthy Breeding, Shandong Academy of Agricultural Sciences, Poultry Institute, Jinan 250100, China
| | - Jie Wang
- Jinan Key Laboratory of Poultry Germplasm Resources Innovation and Healthy Breeding, Shandong Academy of Agricultural Sciences, Poultry Institute, Jinan 250100, China
| | - Yan Sun
- Jinan Key Laboratory of Poultry Germplasm Resources Innovation and Healthy Breeding, Shandong Academy of Agricultural Sciences, Poultry Institute, Jinan 250100, China
| | - Fu Chen
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao 266109, China
| | - Haixia Han
- Jinan Key Laboratory of Poultry Germplasm Resources Innovation and Healthy Breeding, Shandong Academy of Agricultural Sciences, Poultry Institute, Jinan 250100, China
| | - Fuwei Li
- Jinan Key Laboratory of Poultry Germplasm Resources Innovation and Healthy Breeding, Shandong Academy of Agricultural Sciences, Poultry Institute, Jinan 250100, China
- Shandong Blue Horizon Ecological Agriculture Co., Ltd., Jinan 250100, China
| |
Collapse
|
5
|
Bobkov DE, Lukacheva AV, Kever LV, Furman VV, Semenova SB. Role of Calcium Channels in Glucose Uptake Regulation in the In Vitro Model of Polarized Intestinal Epithelium. CELL AND TISSUE BIOLOGY 2024; 18:429-438. [DOI: 10.1134/s1990519x24700366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 10/25/2023] [Accepted: 10/27/2023] [Indexed: 04/07/2025]
|
6
|
Vieira-Neto A, Lean IJ, Santos JEP. Periparturient Mineral Metabolism: Implications to Health and Productivity. Animals (Basel) 2024; 14:1232. [PMID: 38672379 PMCID: PMC11047658 DOI: 10.3390/ani14081232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/02/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
Mineral metabolism, in particular Ca, and to a lesser extent phosphorus (P) and magnesium (Mg), is altered with the onset of lactation because of extensive irreversible loss to synthesize colostrum and milk. The transient reduction in the concentration of Ca in blood, particularly when it lasts days, increases the risk of mineral-related disorders such as hypocalcemia and, to a lesser extent, hypophosphatemia. Although the incidence of clinical hypocalcemia can be reduced by prepartum dietary interventions, subclinical hypocalcemia remains prevalent, affecting up to 60% of the dairy cows in the first 3 d postpartum. More importantly, strong associations exist between hypocalcemia and increased susceptibility to other peripartum diseases and impaired reproductive performance. Mechanistic experiments have demonstrated the role of Ca on innate immune response in dairy cows, which presumably predisposes them to other diseases. Hypocalcemia is not related to inadequate Ca intake as prepartum diets marginal to deficient in Ca reduce the risk of the disease. Therefore, the understanding of how Ca homeostasis is regulated, in particular how calciotropic hormones such as parathyroid hormone and 1,25-dihydroxyvitamin D3, affect blood Ca concentrations, gastrointestinal Ca absorption, bone remodeling, and renal excretion of Ca become critical to develop novel strategies to prevent mineral imbalances either by nutritional or pharmacological interventions. A common method to reduce the risk of hypocalcemia is the manipulation of the prepartum dietary cation-anion difference. Feeding acidogenic diets not only improves Ca homeostasis and reduces hypocalcemia, but also reduces the risk of uterine diseases and improves productive performance. Feeding diets that induce a negative Ca balance in the last weeks of gestation also reduce the risk of clinical hypocalcemia, and recent work shows that the incorporation of mineral sequestering agents, presumably by reducing the absorption of P and Ca prepartum, increases blood Ca at calving, although benefits to production and health remain to be shown. Alternative strategies to minimize subclinical hypocalcemia with the use of vitamin D metabolites either fed prepartum or as a pharmacological agent administered immediately after calving have shown promising results in reducing hypocalcemia and altering immune cell function, which might prove efficacious to prevent diseases in early lactation. This review summarizes the current understanding of Ca homeostasis around parturition, the limited knowledge of the exact mechanisms for gastrointestinal Ca absorption in bovine, the implications of hypocalcemia on the health of dairy cows, and discusses the methods to minimize the risk of hypocalcemia and their impacts on productive performance and health in dairy cows.
Collapse
Affiliation(s)
- Achilles Vieira-Neto
- Department of Animal Sciences, University of Florida, Gainesville, FL 32611, USA;
| | - Ian J. Lean
- Scibus, Camden, NSW 2570, Australia;
- Faculty of Veterinary Science, The University of Sydney, Camden, NSW 2570, Australia
| | - José Eduardo P. Santos
- Department of Animal Sciences, University of Florida, Gainesville, FL 32611, USA;
- DH Barron Reproductive and Perinatal Biology Research Program, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
7
|
Bobkov DE, Lukacheva AV, Kever LV, Furman VV, Semenova SB. Role of calcium channels in glucose uptake regulation in the <i>in vitro</i> model of polarized intestinal epithelium. ЦИТОЛОГИЯ 2024; 66:150-160. [DOI: 10.31857/s0041377124020051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/08/2025]
Abstract
Glucose is the main energy substrate that ensures metabolic processes in the human and animal bodies. Impaired carbohydrate metabolism is often associated with obesity and concomitant diseases, such as cardiovascular diseases, arterial hypertension, insulin resistance, etc. Current data indicate that intestinal glucose absorption is coupled with Ca2+ influx, but additional research is needed to confirm this interaction. We used a cellular model of human intestinal epithelium to elucidate the role of Ca2+ channels in the regulation of glucose absorption. The results of immunofluorescence and immunoelectron microscopy showed that high cellular glucose loading (50 mM) leads to an increase in the density of TRPV6 calcium channels on the apical membrane of the intestinal epithelium. The level of the calcium sensor STIM1, responsible for store-dependent calcium entry (SOCE), on the contrary, showed a decrease when Caco-2 cells were overloaded with glucose, which was accompanied by a decrease in SOCE. Excessive saturation of Caco-2 cells with glucose also led to a decrease in the expression level of the NF-kB transcription factor p65 subunit responsible for the expression of STIM1. The results showed that Ca2+ channels are not only involved in the regulation of glucose uptake, but may themselves be under the control of glucose.
Collapse
Affiliation(s)
- D. E. Bobkov
- Institute of Cytology, Russian Academy of Sciences
| | | | - L. V. Kever
- Institute of Cytology, Russian Academy of Sciences
| | - V. V. Furman
- Institute of Cytology, Russian Academy of Sciences
| | | |
Collapse
|
8
|
Binobaid L, As Sobeai HM, Alhazzani K, AlAbdi L, Alwazae MM, Alotaibi M, Parrington J, Alhoshani A. Whole-exome sequencing identifies cancer-associated variants of the endo-lysosomal ion transport channels in the Saudi population. Saudi Pharm J 2024; 32:101961. [PMID: 38313820 PMCID: PMC10832475 DOI: 10.1016/j.jsps.2024.101961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2024] Open
Abstract
Background Although national efforts are underway to document the genomic variability of the Saudi population relative to other populations, such variability remains largely unexplored. Genetic variability is known to impact the fate of cells and increase or decrease the risk of a variety of complex diseases including cancer forms. Therefore, the identification of variants associated with cancer susceptibility in Saudi population may protect individuals from cancer or aid in patient-tailored therapies. The endo-lysosomal ion transport genes responsible for cationic ion homeostasis within the cell. We screened 703 single-nucleotide polymorphisms (SNPs) of the endo-lysosomal ion transporter genes in the Saudi population and identified cancer-associated variants that have been reported in other populations. Methods Utilizing previously derived local data of Whole-Exome Sequencing (WES), we examined SNPs of TPCN1, TPCN2, P2RX4, TRPM7, TRPV4, TRPV4, and TRPV6 genes. The SNPs were identified for those genes by our in-house database. We predicted the pathogenicity of these variants using in silico tools CADD, Polyphen-2, SIFT, PrimateAI, and FATHMM-XF. Then, we validated our findings by exploring the genetics database (VarSome, dbSNP NCB, OMIM, ClinVar, Ensembl, and GWAS Catalog) to further link cancer risk. Results The WES database yielded 703 SNPs found in TPCN2, P2RX4, TRPM7, TRPV4, and TRPV6 genes in 1,144 subjects. The number of variants that were found to be common in our population was 150 SNPs. We identified 13 coding-region non-synonymous variants of the endo-lysosomal genes that were most common with a minor allele frequency (MAF) of ≥ 1 %. Twelve of these variants are rs2376558, rs3750965, rs61746574, rs35264875, rs3829241, rs72928978, rs25644, rs8042919, rs17881456, rs4987682, rs4987667, and rs4987657 that were classified as cancer-associated genes. Conclusion Our study highlighted cancer-associated SNPs in the endo-lysosomal genes among Saudi individuals. The allelic frequencies on polymorphic variants confer susceptibility to complex diseases that are comparable to other populations. There is currently insufficient clinical data supporting the link between these SNPs and cancer risk in the Saudi population. Our data argues for initiating future cohort studies in which individuals with the identified SNPs are monitored and assessed for their likelihood of developing malignancies and therapy outcomes.
Collapse
Affiliation(s)
- Lama Binobaid
- Dept. of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11454, Saudi Arabia
| | - Homood M. As Sobeai
- Dept. of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11454, Saudi Arabia
| | - Khalid Alhazzani
- Dept. of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11454, Saudi Arabia
| | - Lama AlAbdi
- Department of Zoology, College of Science, King Saud University, P.O. Box 2457, Riyadh 11454, Saudi Arabia
| | - Meshari M. Alwazae
- Computational Sciences Department, Center of Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Moureq Alotaibi
- Dept. of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11454, Saudi Arabia
| | - John Parrington
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, United Kingdom
| | - Ali Alhoshani
- Dept. of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11454, Saudi Arabia
| |
Collapse
|
9
|
Rohacs T. Phosphoinositide Regulation of TRP Channels: A Functional Overview in the Structural Era. Annu Rev Physiol 2024; 86:329-355. [PMID: 37871124 DOI: 10.1146/annurev-physiol-042022-013956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Transient receptor potential (TRP) ion channels have diverse activation mechanisms including physical stimuli, such as high or low temperatures, and a variety of intracellular signaling molecules. Regulation by phosphoinositides and their derivatives is their only known common regulatory feature. For most TRP channels, phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2] serves as a cofactor required for activity. Such dependence on PI(4,5)P2 has been demonstrated for members of the TRPM subfamily and for the epithelial TRPV5 and TRPV6 channels. Intracellular TRPML channels show specific activation by PI(3,5)P2. Structural studies uncovered the PI(4,5)P2 and PI(3,5)P2 binding sites for these channels and shed light on the mechanism of channel opening. PI(4,5)P2 regulation of TRPV1-4 as well as some TRPC channels is more complex, involving both positive and negative effects. This review discusses the functional roles of phosphoinositides in TRP channel regulation and molecular insights gained from recent cryo-electron microscopy structures.
Collapse
Affiliation(s)
- Tibor Rohacs
- Department of Pharmacology, Physiology and Neuroscience, Rutgers New Jersey Medical School, Newark, New Jersey;
| |
Collapse
|
10
|
Humer C, Radiskovic T, Horváti K, Lindinger S, Groschner K, Romanin C, Höglinger C. Bidirectional Allosteric Coupling between PIP 2 Binding and the Pore of the Oncochannel TRPV6. Int J Mol Sci 2024; 25:618. [PMID: 38203789 PMCID: PMC10779433 DOI: 10.3390/ijms25010618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 12/31/2023] [Accepted: 01/01/2024] [Indexed: 01/12/2024] Open
Abstract
The epithelial ion channel TRPV6 plays a pivotal role in calcium homeostasis. Channel function is intricately regulated at different stages, involving the lipid phosphatidylinositol-4,5-bisphosphate (PIP2). Given that dysregulation of TRPV6 is associated with various diseases, including different types of cancer, there is a compelling need for its pharmacological targeting. Structural studies provide insights on how TRPV6 is affected by different inhibitors, with some binding to sites else occupied by lipids. These include the small molecule cis-22a, which, however, also binds to and thereby blocks the pore. By combining calcium imaging, electrophysiology and optogenetics, we identified residues within the pore and the lipid binding site that are relevant for regulation by cis-22a and PIP2 in a bidirectional manner. Yet, mutation of the cytosolic pore exit reduced inhibition by cis-22a but preserved sensitivity to PIP2 depletion. Our data underscore allosteric communication between the lipid binding site and the pore and vice versa for most sites along the pore.
Collapse
Affiliation(s)
- Christina Humer
- Institute of Biophysics, Johannes Kepler University Linz, 4020 Linz, Austria; (C.H.); (T.R.); (C.R.)
| | - Tamara Radiskovic
- Institute of Biophysics, Johannes Kepler University Linz, 4020 Linz, Austria; (C.H.); (T.R.); (C.R.)
| | - Kata Horváti
- Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, 1117 Budapest, Hungary;
| | - Sonja Lindinger
- Institute of Biophysics, Johannes Kepler University Linz, 4020 Linz, Austria; (C.H.); (T.R.); (C.R.)
| | - Klaus Groschner
- Gottfried Schatz Research Center, Division of Biophysics, Medical University of Graz, 8010 Graz, Austria;
| | - Christoph Romanin
- Institute of Biophysics, Johannes Kepler University Linz, 4020 Linz, Austria; (C.H.); (T.R.); (C.R.)
| | - Carmen Höglinger
- Institute of Biophysics, Johannes Kepler University Linz, 4020 Linz, Austria; (C.H.); (T.R.); (C.R.)
| |
Collapse
|
11
|
Liesegang A, Burger B, de Vries de Heekelingen T, Schroeter-Vogt C, Hatt JM, Kowalewski MP, Clauss M. Rabbits (Oryctolagus cuniculus) increase caecal calcium absorption at increasing dietary calcium levels. J Anim Physiol Anim Nutr (Berl) 2024; 108:185-193. [PMID: 37664966 DOI: 10.1111/jpn.13880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/18/2023] [Accepted: 08/23/2023] [Indexed: 09/05/2023]
Abstract
Hindgut fermenting herbivores from different vertebrate taxa, including tortoises, and among mammals some afrotheria, perissodactyla incl. equids, several rodents as well as lagomorphs absorb more calcium (Ca) from the digesta than they require, and excrete the surplus via urine. Both proximate and ultimate causes are elusive. It was suggested that this mechanism might ensure phosphorus availability for the hindgut microbiome by removing potentially complex-building Ca from the digesta. Here we use Ussing chamber experiments to show that rabbits (Oryctolagus cuniculus) maintained on four different diets (six animals/diet) increase active Ca absorption at increasing Ca levels. This contradicts the common assumption that at higher dietary levels, where passive uptake should be more prevalent, active transport can relax and hence supports the deliberate removal hypothesis. In the rabbits, this absorption was distinctively higher in the caecum than in the duodenum, which is unexpected in mammals. Additional quantification of the presence of two proteins involved in active Ca absorption (calbindin-D9K CB; vitamin D receptor, VDR) showed higher presence with higher dietary Ca. However, their detailed distribution across the intestinal tract and the diet groups suggests that other factors not investigated in this study must play major roles in Ca absorption in rabbits. Investigating strategies of herbivores to mitigate potential negative effects of Ca in the digesta on microbial activity and growth might represent a promising area of future research.
Collapse
Affiliation(s)
- Annette Liesegang
- Institute of Animal Nutrition and Dietetics, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Bettina Burger
- Clinic for Zoo Animals, Exotic Pets and Wildlife, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | | | | | - Jean-Michel Hatt
- Clinic for Zoo Animals, Exotic Pets and Wildlife, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | | | - Marcus Clauss
- Clinic for Zoo Animals, Exotic Pets and Wildlife, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| |
Collapse
|
12
|
Neuberger A, Sobolevsky AI. Molecular pharmacology of the onco-TRP channel TRPV6. Channels (Austin) 2023; 17:2266669. [PMID: 37838981 PMCID: PMC10578198 DOI: 10.1080/19336950.2023.2266669] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 09/29/2023] [Indexed: 10/17/2023] Open
Abstract
TRPV6, a representative of the vanilloid subfamily of TRP channels, serves as the principal calcium uptake channel in the gut. Dysregulation of TRPV6 results in disturbed calcium homeostasis leading to a variety of human diseases, including many forms of cancer. Inhibitors of this oncochannel are therefore particularly needed. In this review, we provide an overview of recent advances in structural pharmacology that uncovered the molecular mechanisms of TRPV6 inhibition by a variety of small molecules, including synthetic and natural, plant-derived compounds as well as some prospective and clinically approved drugs.
Collapse
Affiliation(s)
- Arthur Neuberger
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | | |
Collapse
|
13
|
Neuberger A, Trofimov YA, Yelshanskaya MV, Khau J, Nadezhdin KD, Khosrof LS, Krylov NA, Efremov RG, Sobolevsky AI. Molecular pathway and structural mechanism of human oncochannel TRPV6 inhibition by the phytocannabinoid tetrahydrocannabivarin. Nat Commun 2023; 14:4630. [PMID: 37532722 PMCID: PMC10397291 DOI: 10.1038/s41467-023-40362-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 07/25/2023] [Indexed: 08/04/2023] Open
Abstract
The calcium-selective oncochannel TRPV6 is an important driver of cell proliferation in human cancers. Despite increasing interest of pharmacological research in developing synthetic inhibitors of TRPV6, natural compounds acting at this channel have been largely neglected. On the other hand, pharmacokinetics of natural small-molecule antagonists optimized by nature throughout evolution endows these compounds with a medicinal potential to serve as potent and safe next-generation anti-cancer drugs. Here we report the structure of human TRPV6 in complex with tetrahydrocannabivarin (THCV), a natural cannabinoid inhibitor extracted from Cannabis sativa. We use cryo-electron microscopy combined with electrophysiology, calcium imaging, mutagenesis, and molecular dynamics simulations to identify THCV binding sites in the portals that connect the membrane environment surrounding the protein to the central cavity of the channel pore and to characterize the allosteric mechanism of TRPV6 inhibition. We also propose the molecular pathway taken by THCV to reach its binding site. Our study provides a foundation for the development of new TRPV6-targeting drugs.
Collapse
Affiliation(s)
- Arthur Neuberger
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Yury A Trofimov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Maria V Yelshanskaya
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Jeffrey Khau
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Kirill D Nadezhdin
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Lena S Khosrof
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Nikolay A Krylov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Roman G Efremov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Alexander I Sobolevsky
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA.
| |
Collapse
|
14
|
Wang L, Cai R, Chen XZ, Peng JB. Molecular insights into the structural and dynamical changes of calcium channel TRPV6 induced by its interaction with phosphatidylinositol 4,5-bisphosphate. J Biomol Struct Dyn 2023; 41:6559-6568. [PMID: 35950523 PMCID: PMC9918602 DOI: 10.1080/07391102.2022.2109752] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 07/30/2022] [Indexed: 10/15/2022]
Abstract
Transient receptor potential vanilloid subfamily member 6 (TRPV6) is an epithelial calcium channel that regulates the initial step of the transcellular calcium transport pathway. TRPV6 is expressed in the kidney, intestine, placenta, and other tissues, and the dysregulation of the channel is implicated in several human cancers. It has been reported that phosphatidylinositol 4,5-bisphosphate (PIP2) activates TRPV6 and its close homologue TRPV5; however, the underlying molecular mechanism is less clear. Recently, a structure of rabbit TRPV5 in complex with dioctanoyl (diC8) PIP2, a soluble form of PIP2, was determined by cryo-electron microscopy. Based on this structure, the structural model of human TRPV6 with PIP2 was set up, and then molecular dynamics simulations were performed for TRPV6 with and without PIP2. Simulation results show that the positively charged residues responsible for TRPV5 binding of diC8 PIP2 are conserved in the interactions between TRPV6 and PIP2. The binding of PIP2 to TRPV6 increases the distance between the diagonally opposed residues D542 in the selectivity filter and that between the diagonally opposed M578 residues in the lower gate of TRPV6. A secondary structural analysis reveals that residues M578 in TRPV6 undergo structural and position changes during the binding of PIP2 with TRPV6. In addition, principal component analysis indicates that the binding of PIP2 increases the dynamical motions of both the selectivity filter and the lower gate of TRPV6. These changes induced by PIP2 favor the channel opening. Thus, this study provides a basis for understanding the mechanism underlying the PIP2-induced TRPV6 channel activation.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Lingyun Wang
- Division of Nephrology, Department of Medicine, Nephrology Research and Training Center, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Ruiqi Cai
- Membrane Protein Disease Research Group, Department of Physiology, Faculty of Medicine and Dentistry, University of Alberta, T6G 2H7 Edmonton, AB, Canada
| | - Xing-Zhen Chen
- Membrane Protein Disease Research Group, Department of Physiology, Faculty of Medicine and Dentistry, University of Alberta, T6G 2H7 Edmonton, AB, Canada
| | - Ji-Bin Peng
- Division of Nephrology, Department of Medicine, Nephrology Research and Training Center, University of Alabama at Birmingham, Birmingham, AL 35294
- Department of Urology, University of Alabama at Birmingham, Birmingham, AL 35294
| |
Collapse
|
15
|
Neuberger A, Trofimov YA, Yelshanskaya MV, Nadezhdin KD, Krylov NA, Efremov RG, Sobolevsky AI. Structural mechanism of human oncochannel TRPV6 inhibition by the natural phytoestrogen genistein. Nat Commun 2023; 14:2659. [PMID: 37160865 PMCID: PMC10169861 DOI: 10.1038/s41467-023-38352-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 04/27/2023] [Indexed: 05/11/2023] Open
Abstract
Calcium-selective oncochannel TRPV6 is the major driver of cell proliferation in human cancers. While significant effort has been invested in the development of synthetic TRPV6 inhibitors, natural channel blockers have been largely neglected. Here we report the structure of human TRPV6 in complex with the plant-derived phytoestrogen genistein, extracted from Styphnolobium japonicum, that was shown to inhibit cell invasion and metastasis in cancer clinical trials. Despite the pharmacological value, the molecular mechanism of TRPV6 inhibition by genistein has remained enigmatic. We use cryo-EM combined with electrophysiology, calcium imaging, mutagenesis, and molecular dynamics simulations to show that genistein binds in the intracellular half of the TRPV6 pore and acts as an ion channel blocker and gating modifier. Genistein binding to the open channel causes pore closure and a two-fold symmetrical conformational rearrangement in the S4-S5 and S6-TRP helix regions. The unprecedented mechanism of TRPV6 inhibition by genistein uncovers new possibilities in structure-based drug design.
Collapse
Affiliation(s)
- Arthur Neuberger
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Yury A Trofimov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Maria V Yelshanskaya
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Kirill D Nadezhdin
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Nikolay A Krylov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Roman G Efremov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Alexander I Sobolevsky
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA.
| |
Collapse
|
16
|
Abstract
The ability to detect stimuli from the environment plays a pivotal role in our survival. The molecules that allow the detection of such signals include ion channels, which are proteins expressed in different cells and organs. Among these ion channels, the transient receptor potential (TRP) family responds to the presence of diverse chemicals, temperature, and osmotic changes, among others. This family of ion channels includes the TRPV or vanilloid subfamily whose members serve several physiological functions. Although these proteins have been studied intensively for the last two decades, owing to their structural and functional complexities, a number of controversies regarding their function still remain. Here, we discuss some salient features of their regulation in light of these controversies and outline some of the efforts pushing the field forward.
Collapse
Affiliation(s)
- Tamara Rosenbaum
- Department of Cognitive Neuroscience, Neuroscience Division, Institute for Cellular Physiology, National Autonomous University of Mexico, Coyoacán, México;
| | - León D Islas
- Department of Physiology, School of Medicine, National Autonomous University of Mexico, Coyoacán, México
| |
Collapse
|
17
|
Zhang L, Xu Y, Ma Y, Xie T, Liu C, Liu Q. Research trends in transient receptor potential vanilloid in cardiovascular disease: Bibliometric analysis and visualization. Front Cardiovasc Med 2023; 10:1071198. [PMID: 36910533 PMCID: PMC9992894 DOI: 10.3389/fcvm.2023.1071198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 02/02/2023] [Indexed: 02/24/2023] Open
Abstract
Background Transient receptor potential vanilloid (TRPV) is one of the transient receptor potential protein groups; cardiovascular system disease is a crucial cause of mortality among people globally. Objective This article is intended to accomplish a bibliometric analysis of the trends and public interest since TRPV was reported for the first time. Methods The article summarized the Web of Science (WOS) Core Collection on the relationship between TRPV and cardiovascular system disease each year from 2000 to 2021. Data extraction and visualization were completed by R package bibliometrix. Keyword citation burst and co-citation networks were generated and produced by CiteSpace. The map evaluating the distribution of country and region was painted in GunnMap 2 (lert.co.nz). The ranking was performed using the Standard Competition Ranking method. Co-authorship and co-occurrence were analyzed with VOSviewer. Results After removing duplicated data, books, conference proceedings, and articles of uncertain age, 493 were included, and 17 were excluded. The pattern of publication years showed that the number of publications increased rapidly from 2008 to 2021 with no peak in the number of publications until 2021. The geographical distribution pattern revealed a considerable gap in the number of publications between the United States, China, and other countries, with East Asian institutions leading the world in this area. The pattern of co-authorship showed that 77 institutions were divided into 19 clusters, each covering one country or region.These results suggest that intercontinental cooperation among institutions should be strengthened. The core authors section displayed the change in the most published authors. Keyword analysis listed six burst keywords. Co-citation analysis of references from 2011 to 2021 showed the number and centrality of citations to leading articles. Conclusion Our findings reveal trends and public interest in transient receptor potential vanilloid for cardiovascular disease. These findings suggest that the field has experienced significant growth since 2008, with the United States and China in dominant positions. Our findings also suggest that intercontinental cooperation should be strengthened, and that future research hotspots may focus on pharmacological mechanisms and in-depth exploration of drug clinical trials and new clinical disease application areas such as hypertension, diabetes, and cardiac arrhythmias, which could serve as a foundation for further research.
Collapse
Affiliation(s)
- Lingfeng Zhang
- Department of Cardiovascular Medicine, The Second Xiangya Hospital of Central South University, Changsha, China.,Xiangya School of Medicine, Central South University, Changsha, China
| | - Yantao Xu
- Xiangya School of Medicine, Central South University, Changsha, China.,Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
| | - Yingxu Ma
- Department of Cardiovascular Medicine, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Tianjian Xie
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Chan Liu
- International Medical Department, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Qiming Liu
- Department of Cardiovascular Medicine, The Second Xiangya Hospital of Central South University, Changsha, China.,Xiangya School of Medicine, Central South University, Changsha, China
| |
Collapse
|
18
|
Walker V, Vuister GW. Biochemistry and pathophysiology of the Transient Potential Receptor Vanilloid 6 (TRPV6) calcium channel. Adv Clin Chem 2023; 113:43-100. [PMID: 36858649 DOI: 10.1016/bs.acc.2022.11.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
TRPV6 is a Transient Receptor Potential Vanilloid (TRPV) cation channel with high selectivity for Ca2+ ions. First identified in 1999 in a search for the gene which mediates intestinal Ca2+ absorption, its far more extensive repertoire as a guardian of intracellular Ca2+ has since become apparent. Studies on TRPV6-deficient mice demonstrated additional important roles in placental Ca2+ transport, fetal bone development and male fertility. The first reports of inherited deficiency in newborn babies appeared in 2018, revealing its physiological importance in humans. There is currently strong evidence that TRPV6 also contributes to the pathogenesis of some common cancers. The recently reported association of TRPV6 deficiency with non-alcoholic chronic pancreatitis suggests a role in normal pancreatic function. Over time and with greater awareness of TRPV6, other disease-associations are likely to emerge. Powerful analytical tools have provided invaluable insights into the structure and operation of TRPV6. Its roles in Ca2+ signaling and carcinogenesis, and the use of channel inhibitors in cancer treatment are being intensively investigated. This review first briefly describes the biochemistry and physiology of the channel, and analytical methods used to investigate these. The focus subsequently shifts to the clinical disorders associated with abnormal expression and the underlying pathophysiology. The aims of this review are to increase awareness of this channel, and to draw together findings from a wide range of sources which may help to formulate new ideas for further studies.
Collapse
Affiliation(s)
- Valerie Walker
- Department of Clinical Biochemistry, University Hospital Southampton NHS Foundation Trust, Southampton General Hospital, Southampton, United Kingdom.
| | - Geerten W Vuister
- Department of Molecular and Cell Biology, Leicester Institute of Structural and Chemical Biology, University of Leicester, Leicester, United Kingdom
| |
Collapse
|
19
|
Delgado BD, Long SB. Mechanisms of ion selectivity and throughput in the mitochondrial calcium uniporter. SCIENCE ADVANCES 2022; 8:eade1516. [PMID: 36525497 PMCID: PMC9757755 DOI: 10.1126/sciadv.ade1516] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 11/17/2022] [Indexed: 06/17/2023]
Abstract
The mitochondrial calcium uniporter, which regulates aerobic metabolism by catalyzing mitochondrial Ca2+ influx, is arguably the most selective ion channel known. The mechanisms for this exquisite Ca2+ selectivity have not been defined. Here, using a reconstituted system, we study the electrical properties of the channel's minimal Ca2+-conducting complex, MCU-EMRE, from Tribolium castaneum to probe ion selectivity mechanisms. The wild-type TcMCU-EMRE complex recapitulates hallmark electrophysiological properties of endogenous Uniporter channels. Through interrogation of pore-lining mutants, we find that a ring of glutamate residues, the "E-locus," serves as the channel's selectivity filter. Unexpectedly, a nearby "D-locus" at the mouth of the pore has diminutive influence on selectivity. Anomalous mole fraction effects indicate that multiple Ca2+ ions are accommodated within the E-locus. By facilitating ion-ion interactions, the E-locus engenders both exquisite Ca2+ selectivity and high ion throughput. Direct comparison with structural information yields the basis for selective Ca2+ conduction by the channel.
Collapse
Affiliation(s)
- Bryce D. Delgado
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
- Graduate Program in Biochemistry and Structural Biology, Cell and Developmental Biology, and Molecular Biology, Weill Cornell Medicine Graduate School of Medical Sciences, New York, NY 10065, USA
| | - Stephen B. Long
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| |
Collapse
|
20
|
Kogel A, Fecher-Trost C, Wissenbach U, Flockerzi V, Schaefer M. Ca2+ transport via TRPV6 is regulated by rapid internalization of the channel. Cell Calcium 2022; 106:102634. [DOI: 10.1016/j.ceca.2022.102634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 06/09/2022] [Accepted: 07/15/2022] [Indexed: 11/29/2022]
|
21
|
Rohacs T, Fluck EC, De Jesús-Pérez JJ, Moiseenkova-Bell VY. What structures did, and did not, reveal about the function of the epithelial Ca 2+ channels TRPV5 and TRPV6. Cell Calcium 2022; 106:102620. [PMID: 35834842 PMCID: PMC11500022 DOI: 10.1016/j.ceca.2022.102620] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/29/2022] [Accepted: 07/01/2022] [Indexed: 12/15/2022]
Abstract
Transient Receptor Potential Vanilloid 5 and 6 (TRPV5 and TRPV6) are Ca2+ selective epithelial ion channels. They are the products of a relatively recent gene duplication in mammals, and have high sequence homology to each other. Their functional properties are also much more similar to each other than to other members of the TRPV subfamily. They are both constitutively active, and this activity depends on the endogenous cofactor phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2]. Both channels undergo Ca2+-induced inactivation, which is mediated by direct binding of the ubiquitous Ca2+ binding protein calmodulin (CaM) to the channels, and by a decrease in PI(4,5)P2 levels by Ca2+ -induced activation of phospholipase C (PLC). Recent cryo electron microscopy (cryo-EM) and X-ray crystallography structures provided detailed structural information for both TRPV5 and TRPV6. This review will discuss this structural information in the context of the function of these channels focusing on the mechanism of CaM inhibition, activation by PI(4,5)P2 and binding of pharmacological modulators.
Collapse
Affiliation(s)
- Tibor Rohacs
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers University, Newark, New Jersey 07103, USA.
| | - Edwin C Fluck
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - José J De Jesús-Pérez
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Vera Y Moiseenkova-Bell
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.
| |
Collapse
|
22
|
Fleet JC. Vitamin D-Mediated Regulation of Intestinal Calcium Absorption. Nutrients 2022; 14:3351. [PMID: 36014856 PMCID: PMC9416674 DOI: 10.3390/nu14163351] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/09/2022] [Accepted: 08/10/2022] [Indexed: 11/27/2022] Open
Abstract
Vitamin D is a critical regulator of calcium and bone homeostasis. While vitamin D has multiple effects on bone and calcium metabolism, the regulation of intestinal calcium (Ca) absorption efficiency is a critical function for vitamin D. This is necessary for optimal bone mineralization during growth, the protection of bone in adults, and the prevention of osteoporosis. Intestinal Ca absorption is regulated by 1,25 dihydroxyvitamin D (1,25(OH)2 D), a hormone that activates gene transcription following binding to the intestinal vitamin D receptor (VDR). When dietary Ca intake is low, Ca absorption follows a vitamin-D-regulated, saturable pathway, but when dietary Ca intake is high, Ca absorption is predominately through a paracellular diffusion pathway. Deletion of genes that mediate vitamin D action (i.e., VDR) or production (CYP27B1) eliminates basal Ca absorption and prevents the adaptation of mice to low-Ca diets. Various physiologic or disease states modify vitamin-D-regulated intestinal absorption of Ca (enhanced during late pregnancy, reduced due to menopause and aging).
Collapse
Affiliation(s)
- James C Fleet
- Department of Nutritional Sciences, University of Texas, Austin, TX 78723, USA
| |
Collapse
|
23
|
Beggs MR, Bhullar H, Dimke H, Alexander RT. The contribution of regulated colonic calcium absorption to the maintenance of calcium homeostasis. J Steroid Biochem Mol Biol 2022; 220:106098. [PMID: 35339651 DOI: 10.1016/j.jsbmb.2022.106098] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 03/05/2022] [Accepted: 03/20/2022] [Indexed: 11/20/2022]
Abstract
Calcium absorption and secretion can occur along the length of the small and large intestine. To date, the focus of research into intestinal calcium absorption has been the small intestine, the site contributing the majority of intestinal calcium absorption. However, evidence that the colon contributes as much as 10% of enteral calcium transport has been available for decades. Transcellular calcium absorption and bidirectional paracellular calcium flux contributing to either net absorption or secretion have been observed in the colon, depending on the physiological state. Moreover, the calcium transport pathways contributing to colonic absorption or secretion are regulated by a variety of hormones, including calcitriol, plasma calcium and dietary factors, including prebiotics. Herein we review historical and recent research highlighting the role of colonic calcium transport in overall maintenance of calcium balance, and suggest these data are consistent with the colon being a site of significant regulated transepithelial calcium transport.
Collapse
Affiliation(s)
- Megan R Beggs
- Department of Physiology, University of Alberta, Canada; Women's and Children's Health Institute, Alberta, Canada
| | | | - Henrik Dimke
- Department of Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Demark; Department of Nephrology, Odense University Hospital, Denmark
| | - R Todd Alexander
- Department of Physiology, University of Alberta, Canada; Women's and Children's Health Institute, Alberta, Canada; Department of Paediatrics, University of Alberta, Canada.
| |
Collapse
|
24
|
Yelshanskaya MV, Sobolevsky AI. Ligand-Binding Sites in Vanilloid-Subtype TRP Channels. Front Pharmacol 2022; 13:900623. [PMID: 35652046 PMCID: PMC9149226 DOI: 10.3389/fphar.2022.900623] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 04/06/2022] [Indexed: 02/02/2023] Open
Abstract
Vanilloid-subfamily TRP channels TRPV1-6 play important roles in various physiological processes and are implicated in numerous human diseases. Advances in structural biology, particularly the "resolution revolution" in cryo-EM, have led to breakthroughs in molecular characterization of TRPV channels. Structures with continuously improving resolution uncover atomic details of TRPV channel interactions with small molecules and protein-binding partners. Here, we provide a classification of structurally characterized binding sites in TRPV channels and discuss the progress that has been made by structural biology combined with mutagenesis, functional recordings, and molecular dynamics simulations toward understanding of the molecular mechanisms of ligand action. Given the similarity in structural architecture of TRP channels, 16 unique sites identified in TRPV channels may be shared between TRP channel subfamilies, although the chemical identity of a particular ligand will likely depend on the local amino-acid composition. The characterized binding sites and molecular mechanisms of ligand action create a diversity of druggable targets to aid in the design of new molecules for tuning TRP channel function in disease conditions.
Collapse
Affiliation(s)
| | - Alexander I. Sobolevsky
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, United States
| |
Collapse
|
25
|
Fluck EC, Yazici AT, Rohacs T, Moiseenkova-Bell VY. Structural basis of TRPV5 regulation by physiological and pathophysiological modulators. Cell Rep 2022; 39:110737. [PMID: 35476976 PMCID: PMC9088182 DOI: 10.1016/j.celrep.2022.110737] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 03/02/2022] [Accepted: 04/05/2022] [Indexed: 12/11/2022] Open
Abstract
Transient receptor potential vanilloid 5 (TRPV5) is a kidney-specific Ca2+-selective ion channel that plays a key role in Ca2+ homeostasis. The basal activity of TRPV5 is balanced through activation by phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) and inhibition by Ca2+-bound calmodulin (CaM). Parathyroid hormone (PTH), the key extrinsic regulator of Ca2+ homeostasis, increases the activity of TRPV5 via protein kinase A (PKA)-mediated phosphorylation. Metabolic acidosis leads to reduced TRPV5 activity independent of PTH, causing hypercalciuria. Using cryoelectron microscopy (cryo-EM), we show that low pH inhibits TRPV5 by precluding PI(4,5)P2 activation. We capture intermediate conformations at low pH, revealing a transition from open to closed state. In addition, we demonstrate that PI(4,5)P2 is the primary modulator of channel gating, yet PKA controls TRPV5 activity by preventing CaM binding and channel inactivation. Our data provide detailed molecular mechanisms for regulation of TRPV5 by two key extrinsic modulators, low pH and PKA.
Collapse
Affiliation(s)
- Edwin C Fluck
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Aysenur Torun Yazici
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers University, Newark, NJ 07103, USA
| | - Tibor Rohacs
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers University, Newark, NJ 07103, USA
| | - Vera Y Moiseenkova-Bell
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
26
|
Khattar V, Wang L, Peng JB. Calcium selective channel TRPV6: Structure, function, and implications in health and disease. Gene 2022; 817:146192. [PMID: 35031425 PMCID: PMC8950124 DOI: 10.1016/j.gene.2022.146192] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 12/20/2021] [Accepted: 01/07/2022] [Indexed: 12/14/2022]
Abstract
Calcium-selective channel TRPV6 (Transient Receptor Potential channel family, Vanilloid subfamily member 6) belongs to the TRP family of cation channels and plays critical roles in transcellular calcium (Ca2+) transport, reuptake of Ca2+ into cells, and maintaining a local low Ca2+ environment for certain biological processes. Recent crystal and cryo-electron microscopy-based structures of TRPV6 have revealed mechanistic insights on how the protein achieves Ca2+ selectivity, permeation, and inactivation by calmodulin. The TRPV6 protein is expressed in a range of epithelial tissues such as the intestine, kidney, placenta, epididymis, and exocrine glands such as the pancreas, prostate and salivary, sweat, and mammary glands. The TRPV6 gene is a direct transcriptional target of the active form of vitamin D and is efficiently regulated to meet the body's need for Ca2+ demand. In addition, TRPV6 is also regulated by the level of dietary Ca2+ and under physiological conditions such as pregnancy and lactation. Genetic models of loss of function in TRPV6 display hypercalciuria, decreased bone marrow density, deficient weight gain, reduced fertility, and in some cases alopecia. The models also reveal that the channel plays an indispensable role in maintaining maternal-fetal Ca2+ transport and low Ca2+ environment in the epididymal lumen that is critical for male fertility. Most recently, loss of function mutations in TRPV6 gene is linked to transient neonatal hyperparathyroidism and early onset chronic pancreatitis. TRPV6 is overexpressed in a wide range of human malignancies and its upregulation is strongly correlated to tumor aggressiveness, metastasis, and poor survival in selected cancers. This review summarizes the current state of knowledge on the expression, structure, biophysical properties, function, polymorphisms, and regulation of TRPV6. The aberrant expression, polymorphisms, and dysfunction of this protein linked to human diseases are also discussed.
Collapse
Affiliation(s)
- Vinayak Khattar
- Division of Nephrology, Department of Medicine, Nephrology Research and Training Center, Department of Urology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Lingyun Wang
- Division of Nephrology, Department of Medicine, Nephrology Research and Training Center, Department of Urology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Ji-Bin Peng
- Division of Nephrology, Department of Medicine, Nephrology Research and Training Center, Department of Urology, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
27
|
Shum W, Zhang BL, Cao AS, Zhou X, Shi SM, Zhang ZY, Gu LY, Shi S. Calcium Homeostasis in the Epididymal Microenvironment: Is Extracellular Calcium a Cofactor for Matrix Gla Protein-Dependent Scavenging Regulated by Vitamins. Front Cell Dev Biol 2022; 10:827940. [PMID: 35252193 PMCID: PMC8893953 DOI: 10.3389/fcell.2022.827940] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 01/19/2022] [Indexed: 12/23/2022] Open
Abstract
In the male reproductive tract, the epididymis is an essential organ for sperm maturation, in which sperm cells acquire mobility and the ability to fertilize oocytes while being stored in a protective microenvironment. Epididymal function involves a specialized luminal microenvironment established by the epithelial cells of epididymal mucosa. Low-calcium concentration is a unique feature of this epididymal luminal microenvironment, its relevance and regulation are, however, incompletely understood. In the rat epididymis, the vitamin D-related calcium-dependent TRPV6-TMEM16A channel-coupler has been shown to be involved in fluid transport, and, in a spatially complementary manner, vitamin K2-related γ-glutamyl carboxylase (GGCX)-dependent carboxylation of matrix Gla protein (MGP) plays an essential role in promoting calcium-dependent protein aggregation. An SNP in the human GGCX gene has been associated with asthenozoospermia. In addition, bioinformatic analysis also suggests the involvement of a vitamin B6-axis in calcium-dependent MGP-mediated protein aggregation. These findings suggest that vitamins interact with calcium homeostasis in the epididymis to ensure proper sperm maturation and male fertility. This review article discusses the regulation mechanisms of calcium homeostasis in the epididymis, and the potential role of vitamin interactions on epididymal calcium homeostasis, especially the role of matrix calcium in the epididymal lumen as a cofactor for the carboxylated MGP-mediated scavenging function.
Collapse
Affiliation(s)
- Winnie Shum
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
- *Correspondence: Winnie Shum,
| | - Bao Li Zhang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
- NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Reproduction and Development Institution, Fudan University, Shanghai, China
| | - Albert Shang Cao
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Xin Zhou
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Su Meng Shi
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Ze Yang Zhang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Lou Yi Gu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Shuo Shi
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China
| |
Collapse
|
28
|
Fleet JC. Vitamin D and Gut Health. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1390:155-167. [PMID: 36107318 PMCID: PMC10614168 DOI: 10.1007/978-3-031-11836-4_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Vitamin D is a conditionally required nutrient that can either be obtained from skin synthesis following UVB exposure from the diet. Once in the body, it is metabolized to produce the endocrine hormone, 1,25 dihydroxyvitamin D (1,25(OH)2D), that regulates gene expression in target tissues by interacting with a ligand-activated transcription factor, the vitamin D receptor (VDR). The first, and most responsive, vitamin D target tissue is the intestine. The classical intestinal role for vitamin D is the control of calcium metabolism through the regulation of intestinal calcium absorption. However, studies clearly show that other functions of the intestine are regulated by the molecular actions of 1,25(OH)2 D that are mediated through the VDR. This includes enhancing gut barrier function, regulation of intestinal stem cells, suppression of colon carcinogenesis, and inhibiting intestinal inflammation. While research demonstrates that there are both classical, calcium-regulating and non-calcium regulating roles for vitamin D in the intestine, the challenge facing biomedical researchers is how to translate these findings in ways that optimize human intestinal health.
Collapse
Affiliation(s)
- James C Fleet
- Department of Nutritional Sciences, Dell Pediatric Research Institute, University of Texas, Austin, TX, USA.
| |
Collapse
|
29
|
Shkembi B, Huppertz T. Calcium Absorption from Food Products: Food Matrix Effects. Nutrients 2021; 14:nu14010180. [PMID: 35011055 PMCID: PMC8746734 DOI: 10.3390/nu14010180] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/23/2021] [Accepted: 12/28/2021] [Indexed: 12/14/2022] Open
Abstract
This article reviews physicochemical aspects of calcium absorption from foods. Notable differences are observed between different food products in relation to calcium absorption, which range from <10% to >50% of calcium in the foods. These differences can be related to the interactions of calcium with other food components in the food matrix, which are affected by various factors, including fermentation, and how these are affected by the conditions encountered in the gastrointestinal tract. Calcium absorption in the intestine requires calcium to be in an ionized form. The low pH in the stomach is critical for solubilization and ionization of calcium salts present in foods, although calcium oxalate complexes remain insoluble and thus poorly absorbable. In addition, the rate of gastric transit can strongly affect fractional absorption of calcium and a phased release of calcium into the intestine, resulting in higher absorption levels. Dairy products are the main natural sources of dietary calcium in many diets worldwide, which is attributable to their ability to provide high levels of absorbable calcium in a single serving. For calcium from other food products, lower levels of absorbable calcium can limit contributions to bodily calcium requirements.
Collapse
Affiliation(s)
- Blerina Shkembi
- Food Quality & Design Group, Wageningen University & Research, 6708 WG Wageningen, The Netherlands;
| | - Thom Huppertz
- Food Quality & Design Group, Wageningen University & Research, 6708 WG Wageningen, The Netherlands;
- FrieslandCampina, 3818 LE Amersfoort, The Netherlands
- Correspondence:
| |
Collapse
|
30
|
Long W, Johnson J, Kalyaanamoorthy S, Light P. TRPV1 channels as a newly identified target for vitamin D. Channels (Austin) 2021; 15:360-374. [PMID: 33825665 PMCID: PMC8032246 DOI: 10.1080/19336950.2021.1905248] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 03/15/2021] [Accepted: 03/15/2021] [Indexed: 11/23/2022] Open
Abstract
Vitamin D is known to elicit many biological effects in diverse tissue types and is thought to act almost exclusively upon its canonical receptor within the nucleus, leading to gene transcriptional changes and the subsequent cellular response. However, not all the observed effects of vitamin D can be attributed to this sole mechanism, and other cellular targets likely exist but remain to be identified. Our recent discovery that vitamin D is a partial agonist of the Transient Receptor Potential Vanilloid family 1 (TRPV1) channel may provide new insights as to how this important vitamin exerts its biological effects either independently or in addition to the nuclear vitamin D receptor. In this review, we discuss the literature surrounding this apparent discrepancy in vitamin D signaling and compare vitamin D with known TRPV1 ligands with respect to their binding to TRPV1. Furthermore, we provide evidence supporting the notion that this novel vitamin D/TRPV1 axis may explain some of the beneficial actions of this vitamin in disease states where TRPV1 expression and vitamin D deficiency are known to overlap. Finally, we discuss whether vitamin D may also act on other members of the TRP family of ion channels.
Collapse
Affiliation(s)
- Wentong Long
- Department of Pharmacology and the Alberta Diabetes Institute, University of Alberta, Edmonton, Canada
| | - Janyne Johnson
- Department of Pharmacology and the Alberta Diabetes Institute, University of Alberta, Edmonton, Canada
| | | | - Peter Light
- Department of Pharmacology and the Alberta Diabetes Institute, University of Alberta, Edmonton, Canada
| |
Collapse
|
31
|
Ebrahimie E, Zamansani F, Alanazi IO, Sabi EM, Khazandi M, Ebrahimi F, Mohammadi-Dehcheshmeh M, Ebrahimi M. Advances in understanding the specificity function of transporters by machine learning. Comput Biol Med 2021; 138:104893. [PMID: 34598069 DOI: 10.1016/j.compbiomed.2021.104893] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 09/20/2021] [Accepted: 09/22/2021] [Indexed: 11/25/2022]
Abstract
Understanding the underlying molecular mechanism of transporter activity is one of the major discussions in structural biology. A transporter can exclusively transport one ion (specific transporter) or multiple ions (general transporter). This study compared categorical and numerical features of general and specific calcium transporters using machine learning and attribute weighting models. To this end, 444 protein features, such as the frequency of dipeptides, organism, and subcellular location, were extracted for general (n = 103) and specific calcium transporters (n = 238). Aliphatic index, subcellular location, organism, Ile-Leu frequency, Glycine frequency, hydrophobic frequency, and specific dipeptides such as Ile-Leu, Phe-Val, and Tyr-Gln were the key features in differentiating general from specific calcium transporters. Calcium transporters in the cell outer membranes were specific, while the inner ones were general; additionally, when the hydrophobic frequency or Aliphatic index is increased, the calcium transporter act as a general transporter. Random Forest with accuracy criterion showed the highest accuracy (88.88% ±5.75%) and high AUC (0.964 ± 0.020), based on 5-fold cross-validation. Decision Tree with accuracy criterion was able to predict the specificity of calcium transporter irrespective of the organism and subcellular location. This study demonstrates the precise classification of transporter function based on sequence-derived physicochemical features.
Collapse
Affiliation(s)
- Esmaeil Ebrahimie
- Genomics Research Platform, School of Life Sciences, College of Science, Health and Engineering, La Trobe University, Melbourne, Victoria, 3086, Australia; School of Animal and Veterinary Sciences, The University of Adelaide, South Australia, 5371, Australia.
| | - Fatemeh Zamansani
- Department of Crop Production and Plant Breeding, College of Agriculture, Shiraz University, Shiraz, Iran.
| | - Ibrahim O Alanazi
- National Center for Biotechnology, Life Science and Environment Research Institute, King Abdulaziz City for Science and Technology (KACST), Riyadh, 6086, Saudi Arabia.
| | - Essa M Sabi
- Department of Pathology, Clinical Biochemistry Unit, College of Medicine, King Saud University, Riyadh, 11461, Saudi Arabia.
| | - Manouchehr Khazandi
- UniSA Clinical and Health Sciences, The University of South Australia, Adelaide, 5000, Australia.
| | - Faezeh Ebrahimi
- Faculty of Life Sciences and Biotechnology, Department of Microbiology and Microbial Biotechnology, Shahid Beheshti University, Tehran, Iran.
| | | | - Mansour Ebrahimi
- School of Animal and Veterinary Sciences, The University of Adelaide, South Australia, 5371, Australia; Department of Biology, School of Basic Sciences, University of Qom, Qom, Iran.
| |
Collapse
|
32
|
Abstract
As the world's population ages, the treatment of osteoporosis is a major problem to be addressed. The cause of osteoporosis remains unclear. Ca2+ is not only an important component of bones but also plays a key role in osteoporosis treatment. Transient receptor potential vanilloid (TRPV) channels are one of the TRP channel families that is widely distributed in various organs, playing an important role in the physiological regulation of the human body. Bone formation and bone absorption may require Ca2+ transport via TRPV channels. It has been proven that the TRPV subtypes 1, 2, 4, 5, 6 (TRPV1, TRPV2, TRPV4, TRPV5, TRPV6) may affect bone metabolism balance through selective regulation of Ca2+. They significantly regulate osteoblast/osteoclast proliferation, differentiation and function. The purpose of this review is to explore the mechanisms of TRPV channels involved in regulation of the differentiation of osteoblasts and osteoclasts, as well as to discuss the latest developments in current researches, which may provide new clues and directions for an in-depth study of osteoporosis and other related bone metabolic diseases.
Collapse
|
33
|
Wartenberg P, Lux F, Busch K, Fecher-Trost C, Flockerzi V, Krasteva-Christ G, Boehm U, Weissgerber P. A TRPV6 expression atlas for the mouse. Cell Calcium 2021; 100:102481. [PMID: 34628109 DOI: 10.1016/j.ceca.2021.102481] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 09/03/2021] [Accepted: 09/27/2021] [Indexed: 01/01/2023]
Abstract
The transient receptor potential vanilloid 6 (TRPV6) channel is highly Ca2+-selective and has been implicated in mediating transcellular Ca2+ transport and thus maintaining the Ca2+ balance in the body. To characterize its physiological function(s), a detailed expression profile of the TRPV6 channel throughout the body is essential. Capitalizing on a recently established murine Trpv6-reporter strain, we identified primary TRPV6 channel-expressing cells in an organism-wide manner. In a complementary experimental approach, we characterized TRPV6 expression in different tissues of wild-type mice by TRPV6 immunoprecipitation (IP) followed by mass spectrometry analysis and correlated these data with the reporter gene expression. Taken together, we present a TRPV6 expression atlas throughout the entire body of juvenile and adult mice, providing a novel resource to investigate the role of TRPV6 channels in vivo.
Collapse
Affiliation(s)
- Philipp Wartenberg
- Department of Experimental and Clinical Pharmacology and Toxicology, Center for Molecular Signaling (PZMS), Saarland University School of Medicine, Homburg, Germany
| | - Femke Lux
- Department of Experimental and Clinical Pharmacology and Toxicology, Center for Molecular Signaling (PZMS), Saarland University School of Medicine, Homburg, Germany
| | - Kai Busch
- Department of Experimental and Clinical Pharmacology and Toxicology, Center for Molecular Signaling (PZMS), Saarland University School of Medicine, Homburg, Germany
| | - Claudia Fecher-Trost
- Department of Experimental and Clinical Pharmacology and Toxicology, Center for Molecular Signaling (PZMS), Saarland University School of Medicine, Homburg, Germany
| | - Veit Flockerzi
- Department of Experimental and Clinical Pharmacology and Toxicology, Center for Molecular Signaling (PZMS), Saarland University School of Medicine, Homburg, Germany
| | | | - Ulrich Boehm
- Department of Experimental and Clinical Pharmacology and Toxicology, Center for Molecular Signaling (PZMS), Saarland University School of Medicine, Homburg, Germany
| | - Petra Weissgerber
- Department of Experimental and Clinical Pharmacology and Toxicology, Center for Molecular Signaling (PZMS), Saarland University School of Medicine, Homburg, Germany.
| |
Collapse
|
34
|
Uchida Y, Izumizaki M. Effect of menstrual cycle and female hormones on TRP and TREK channels in modifying thermosensitivity and physiological functions in women. J Therm Biol 2021; 100:103029. [PMID: 34503776 DOI: 10.1016/j.jtherbio.2021.103029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 05/10/2021] [Accepted: 05/11/2021] [Indexed: 12/15/2022]
Abstract
Thermoregulation is crucial for human survival at various ambient temperatures. Transient receptor potential (TRP) and TWIK-related K+ (TREK) channels expressed in sensory neurons play a role in peripheral thermosensitivity for temperature detection. In addition, these channels have various physiological roles in the skeletal, nervous, immune, vascular, digestive, and urinary systems. In women, the female hormones estradiol (E2) and progesterone (P4), which fluctuate during the menstrual cycle, affect various physiological functions, such as thermoregulation in hot and cold environments. The present review describes the effect of female hormones on TRP and TREK channels and related physiological functions. The P4 decreased thermosensitivity via TRPV1. E2 facilitates temporomandibular joint disease (TRPV1), breast cancer (TRPM8), and calcium absorption in the digestive system (TRPV5 and TRPV6), inhibits the facilitation of vasoconstriction (TRPM3), nerve inflammation (TRPM4), sweetness sensitivity (TRPM5), and menstrual disorders (TRPC1), and prevents insulin resistance (TRPC5) via each channel. P4 inhibits vasoconstriction (TRPM3), sweetness sensitivity (TRPM5), ciliary motility in the lungs (TRPV4), menstrual disorder (TRPC1), and immunity (TRPC3), and facilitates breast cancer (TRPV6) via each channel as indicated. The effects of female hormones on TREK channels and physiological functions are still under investigation. In summary, female hormones influence physiological functions via some TRP channels; however, the literature is not comprehensive and future studies are needed, especially those related to thermoregulation in women.
Collapse
Affiliation(s)
- Yuki Uchida
- Department of Physiology, Showa University School of Medicine, Tokyo, Japan.
| | - Masahiko Izumizaki
- Department of Physiology, Showa University School of Medicine, Tokyo, Japan
| |
Collapse
|
35
|
Auto-inhibitory intramolecular S5/S6 interaction in the TRPV6 channel regulates breast cancer cell migration and invasion. Commun Biol 2021; 4:990. [PMID: 34413465 PMCID: PMC8376870 DOI: 10.1038/s42003-021-02521-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 08/04/2021] [Indexed: 11/09/2022] Open
Abstract
TRPV6, a Ca-selective channel, is abundantly expressed in the placenta, intestine, kidney and bone marrow. TRPV6 is vital to Ca homeostasis and its defective expression or function is linked to transient neonatal hyperparathyroidism, Lowe syndrome/Dent disease, renal stone, osteoporosis and cancers. The fact that the molecular mechanism underlying the function and regulation of TRPV6 is still not well understood hampers, in particular, the understanding of how TRPV6 contributes to breast cancer development. By electrophysiology and Ca imaging in Xenopus oocytes and cancer cells, molecular biology and numerical simulation, here we reveal an intramolecular S5/S6 helix interaction in TRPV6 that is functionally autoinhibitory and is mediated by the R532:D620 bonding. Predicted pathogenic mutation R532Q within S5 disrupts the S5/S6 interaction leading to gain-of-function of the channel, which promotes breast cancer cell progression through strengthening of the TRPV6/PI3K interaction, activation of a PI3K/Akt/GSK-3β cascade, and up-regulation of epithelial-mesenchymal transition and anti-apoptosis.
Collapse
|
36
|
Transient Receptor Potential Channels in the Epithelial-to-Mesenchymal Transition. Int J Mol Sci 2021; 22:ijms22158188. [PMID: 34360952 PMCID: PMC8348042 DOI: 10.3390/ijms22158188] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/19/2021] [Accepted: 07/27/2021] [Indexed: 12/14/2022] Open
Abstract
The epithelial-to-mesenchymal transition (EMT) is a strictly regulated process that is indispensable for normal development, but it can result in fibrosis and cancer progression. It encompasses a complete alteration of the cellular transcriptomic profile, promoting the expression of genes involved in cellular migration, invasion and proliferation. Extracellular signaling factors driving the EMT process require secondary messengers to convey their effects to their targets. Due to its remarkable properties, calcium represents an ideal candidate to translate molecular messages from receptor to effector. Therefore, calcium-permeable ion channels that facilitate the influx of extracellular calcium into the cytosol can exert major influences on cellular phenotype. Transient receptor potential (TRP) channels represent a superfamily of non-selective cation channels that decode physical and chemical stimuli into cellular behavior. Their role as cellular sensors renders them interesting proteins to study in the context of phenotypic transitions, such as EMT. In this review, we elaborate on the current knowledge regarding TRP channel expression and activity in cellular phenotype and EMT.
Collapse
|
37
|
Asowata EO, Olusanya O, Abaakil K, Chichger H, Srai SKS, Unwin RJ, Marks J. Diet-induced iron deficiency in rats impacts small intestinal calcium and phosphate absorption. Acta Physiol (Oxf) 2021; 232:e13650. [PMID: 33749990 DOI: 10.1111/apha.13650] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 02/26/2021] [Accepted: 03/17/2021] [Indexed: 12/31/2022]
Abstract
AIMS Recent reports suggest that iron deficiency impacts both intestinal calcium and phosphate absorption, although the exact transport pathways and intestinal segment responsible have not been determined. Therefore, we aimed to systematically investigate the impact of iron deficiency on the cellular mechanisms of transcellular and paracellular calcium and phosphate transport in different regions of the rat small intestine. METHODS Adult, male Sprague-Dawley rats were maintained on a control or iron-deficient diet for 2 weeks and changes in intestinal calcium and phosphate uptake were determined using the in situ intestinal loop technique. The circulating levels of the hormonal regulators of calcium and phosphate were determined by ELISA, while the expression of transcellular calcium and phosphate transporters, and intestinal claudins were determined using qPCR and western blotting. RESULTS Diet-induced iron deficiency significantly increased calcium absorption in the duodenum but had no impact in the jejunum and ileum. In contrast, phosphate absorption was significantly inhibited in the duodenum and to a lesser extent the jejunum, but remained unchanged in the ileum. The changes in duodenal calcium and phosphate absorption in the iron-deficient animals were associated with increased claudin 2 and 3 mRNA and protein levels, while levels of parathyroid hormone, fibroblast growth factor-23 and 1,25-dihydroxy vitamin D3 were unchanged. CONCLUSION We propose that iron deficiency alters calcium and phosphate transport in the duodenum. This occurs via changes to the paracellular pathway, whereby upregulation of claudin 2 increases calcium absorption and upregulation of claudin 3 inhibits phosphate absorption.
Collapse
Affiliation(s)
- Evans O. Asowata
- Department of Neuroscience, Physiology & Pharmacology University College London London UK
| | - Oluwatobi Olusanya
- Department of Neuroscience, Physiology & Pharmacology University College London London UK
| | - Kaoutar Abaakil
- Department of Neuroscience, Physiology & Pharmacology University College London London UK
| | - Havovi Chichger
- Biomedical Research Group School of Life Sciences Anglia Ruskin University Cambridge UK
| | - Surjit K. S. Srai
- Institute of Structural and Molecular Biology University College London London UK
| | - Robert J. Unwin
- Department of Renal Medicine University College London London UK
| | - Joanne Marks
- Department of Neuroscience, Physiology & Pharmacology University College London London UK
| |
Collapse
|
38
|
Wongdee K, Chanpaisaeng K, Teerapornpuntakit J, Charoenphandhu N. Intestinal Calcium Absorption. Compr Physiol 2021; 11:2047-2073. [PMID: 34058017 DOI: 10.1002/cphy.c200014] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
In this article, we focus on mammalian calcium absorption across the intestinal epithelium in normal physiology. Intestinal calcium transport is essential for supplying calcium for metabolism and bone mineralization. Dietary calcium is transported across the mucosal epithelia via saturable transcellular and nonsaturable paracellular pathways, both of which are under the regulation of 1,25-dihydroxyvitamin D3 and several other endocrine and paracrine factors, such as parathyroid hormone, prolactin, 17β-estradiol, calcitonin, and fibroblast growth factor-23. Calcium absorption occurs in several segments of the small and large intestine with varying rates and capacities. Segmental heterogeneity also includes differential expression of calcium transporters/carriers (e.g., transient receptor potential cation channel and calbindin-D9k ) and the presence of favorable factors (e.g., pH, luminal contents, and gut motility). Other proteins and transporters (e.g., plasma membrane vitamin D receptor and voltage-dependent calcium channels), as well as vesicular calcium transport that probably contributes to intestinal calcium absorption, are also discussed. © 2021 American Physiological Society. Compr Physiol 11:1-27, 2021.
Collapse
Affiliation(s)
- Kannikar Wongdee
- Faculty of Allied Health Sciences, Burapha University, Chonburi, Thailand.,Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Krittikan Chanpaisaeng
- Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok, Thailand.,Functional Ingredients and Food Innovation Research Group, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | - Jarinthorn Teerapornpuntakit
- Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok, Thailand.,Department of Physiology, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand
| | - Narattaphol Charoenphandhu
- Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok, Thailand.,Department of Physiology, Faculty of Science, Mahidol University, Bangkok, Thailand.,Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, Thailand.,The Academy of Science, The Royal Society of Thailand, Bangkok, Thailand
| |
Collapse
|
39
|
Comments on the evolution of TRPV6. Ann Anat 2021; 238:151753. [PMID: 33964462 DOI: 10.1016/j.aanat.2021.151753] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/09/2021] [Accepted: 04/09/2021] [Indexed: 10/21/2022]
Abstract
It is well known that not all biological findings derived from animals can be directly applied to humans. The TRPV6 protein may serve as an example which highlights these inter-species differences as an example of parallel evolutionary pathways. TRPV6 (and TRPV5) belong to a family of ion channels from the transient receptor potential group but are selectively permeable for Ca2+, in contrast to other members of the family. Sequences with recognizable similarity to TRPV6 can already be found in archaebacteria. These ancient sequences show clear similarity to the ion-conducting pore of TRPV6. Over the course of evolution, the duplication of the TRPV6 gene gave rise to TRPV5. Duplications of the complete genome as well as subsequent loss of genetic material have led to a variety of different TRPV5/6 combinations. In addition, there is an N-terminal extension of the protein in placental animals. This extension causes translation of TRPV6 to be initiated from an ACG codon. Inactivation of one TRPV6 allele can be correlated with alcohol-independent pancreatitis in humans while inactivation of both alleles leads to skeletal dysplasia of newborn babies. The latter effect is not observed in mice, implying that the effects due to perturbations in TRPV6 levels are much more pronounced in humans.
Collapse
|
40
|
Hernández-Díaz N, Leal F, Ramírez-Pinilla MP. Parallel evolution of placental calcium transfer in the lizard Mabuya and eutherian mammals. J Exp Biol 2021; 224:jeb.237891. [PMID: 33568441 DOI: 10.1242/jeb.237891] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 02/01/2021] [Indexed: 12/28/2022]
Abstract
An exceptional case of parallel evolution between lizards and eutherian mammals occurs in the evolution of viviparity. In the lizard genus Mabuya, viviparity provided the environment for the evolution of yolk-reduced eggs and obligate placentotrophy. One major event that favored the evolution of placentation was the reduction of the eggshell. As with all oviparous reptiles, lizard embryos obtain calcium from both the eggshell and egg yolk. Therefore, the loss of the eggshell likely imposes a constraint for the conservation of the egg yolk, which can only be obviated by the evolution of alternative mechanisms for the transport of calcium directly from the mother. The molecular and cellular mechanisms employed to solve these constraints, in a lizard with only a rudimentary eggshell such as Mabuya, are poorly understood. Here, we used RT-qPCR on placental and uterine samples during different stages of gestation in Mabuya, and demonstrate that transcripts of the calcium transporters trpv6, cabp28k, cabp9k and pmca are expressed and gradually increase in abundance through pregnancy stages, reaching their maximum expression when bone mineralization occurs. Furthermore, CABP28K/9K proteins were studied by immunofluorescence, demonstrating expression in specific regions of the mature placenta. Our results indicate that the machinery for calcium transportation in the Mabuya placenta was co-opted from other tissues elsewhere in the vertebrate bodyplan. Thus, the calcium transportation machinery in the placenta of Mabuya evolved in parallel with the mammalian placenta by redeploying the expression of similar calcium transporter genes.
Collapse
Affiliation(s)
- Nathaly Hernández-Díaz
- Grupo de Estudios en Biodiversidad, Escuela de Biología, Facultad de Ciencias, Universidad Industrial de Santander, Bucaramanga, Santander, Colombia
| | - Francisca Leal
- Grupo de Estudios en Biodiversidad, Escuela de Biología, Facultad de Ciencias, Universidad Industrial de Santander, Bucaramanga, Santander, Colombia
| | - Martha Patricia Ramírez-Pinilla
- Grupo de Estudios en Biodiversidad, Escuela de Biología, Facultad de Ciencias, Universidad Industrial de Santander, Bucaramanga, Santander, Colombia
| |
Collapse
|
41
|
Yu HT, Zhen J, Leng JY, Cai L, Ji HL, Keller BB. Zinc as a countermeasure for cadmium toxicity. Acta Pharmacol Sin 2021; 42:340-346. [PMID: 32284539 PMCID: PMC8027184 DOI: 10.1038/s41401-020-0396-4] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 03/15/2020] [Indexed: 12/11/2022]
Abstract
Cadmium (Cd) is an important environmental pollutant and long-term Cd exposure is closely related to autoimmune diseases, cancer, cardiovascular diseases (CVD), and hepatic dysfunction. Zinc (Zn) is an essential metal that plays key roles in protein structure, catalysis, and regulation of their function. Numerous studies have shown that Zn can reduce Cd toxicity; however, the underlying mechanisms have not been extensively explored. Preclinical studies have revealed direct competition for sarcolemmal uptake between these two metals. Multiple sarcolemmal transporters participate in Cd uptake, including Zn transporters, calcium channels, and DMT1 (divalent metal transporter 1). Zn also induces several protective mechanisms, including MT (metallothionein) induction and favorable redox homeostasis. This review summarizes current knowledge related to the role of Zn and metal transporters in reducing Cd toxicity and discusses potential future directions of related research.
Collapse
Affiliation(s)
- Hai-Tao Yu
- The First Hospital of Jilin University, Changchun, 130021, China
- Pediatric Research Institute, Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY, 40202, USA
- Pediatric Heart Research Program, Cardiovascular Innovation Institute, University of Louisville School of Medicine, Louisville, KY, 40202, USA
| | - Juan Zhen
- The First Hospital of Jilin University, Changchun, 130021, China
- Pediatric Research Institute, Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY, 40202, USA
- Pediatric Heart Research Program, Cardiovascular Innovation Institute, University of Louisville School of Medicine, Louisville, KY, 40202, USA
| | - Ji-Yan Leng
- The First Hospital of Jilin University, Changchun, 130021, China
| | - Lu Cai
- Pediatric Research Institute, Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY, 40202, USA
- Department of Radiation Oncology, University of Louisville School of Medicine, Louisville, KY, 40202, USA
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, 40202, USA
| | - Hong-Lei Ji
- The First Hospital of Jilin University, Changchun, 130021, China.
| | - Bradley B Keller
- Pediatric Heart Research Program, Cardiovascular Innovation Institute, University of Louisville School of Medicine, Louisville, KY, 40202, USA.
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, 40202, USA.
- Cincinnati Children's Heart Institute, Greater Louisville and Western Kentucky Practice, Louisville, KY, 40202, USA.
| |
Collapse
|
42
|
Transient receptor potential channel regulation by growth factors. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2021; 1868:118950. [PMID: 33421536 DOI: 10.1016/j.bbamcr.2021.118950] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 12/01/2020] [Accepted: 12/15/2020] [Indexed: 02/08/2023]
Abstract
Calcium (Ca2+) is one of the most universal secondary messengers, owing its success to the immense concentration gradient across the plasma membrane. Dysregulation of Ca2+ homeostasis can result in severe cell dysfunction, thereby initiating several pathologies like tumorigenesis and fibrosis. Transient receptor potential (TRP) channels represent a superfamily of Ca2+-permeable ion channels that convey diverse physical and chemical stimuli into a physiological signal. Their broad expression pattern and gating promiscuity support their potential involvement in the cellular response to an altering environment. Growth factors (GF) are essential biochemical messengers that contribute to these environmental changes. Since Ca2+ is essential in GF signaling, altering TRP channel expression or function could be a valid strategy for GF to exert their effect onto their target. In this review, a comprehensive understanding of the current knowledge regarding the activation and/or modulation of TRP channels by GF is presented.
Collapse
|
43
|
Geiger S, Patra AK, Schrapers KT, Braun HS, Aschenbach JR. Menthol stimulates calcium absorption in the rumen but not in the jejunum of sheep. J Dairy Sci 2020; 104:3067-3081. [PMID: 33358813 DOI: 10.3168/jds.2020-19372] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 10/14/2020] [Indexed: 12/15/2022]
Abstract
Stimulation of Ca2+ absorption can counteract hypocalcemia at the onset of lactation. The plant bioactive lipid compound (PBLC) menthol is an agonist for nonselective cation channels of the transient receptor potential (TRP) family. It acutely stimulated Ca2+ absorption in ruminal epithelia of nonadapted animals ex vivo and caused higher plasma Ca2+ concentrations in cows and sheep in vivo. To elucidate the pathway by which menthol feeding increases plasma Ca2+ level, the present study aimed to investigate the long-term dose-dependent effects of dietary menthol-rich PBLC on Ca2+ absorption and mRNA abundances of TRP channels in both rumen and jejunum. Twenty-four growing Suffolk sheep were equally distributed to a Con, PBLC-L, and PBLC-H group, which received 0, 80, and 160 mg/d of a menthol-rich PBLC. After 4 wk, ruminal and jejunal epithelia were analyzed for mRNA abundances of TRPA1, TRPV3, TRPV5-6, and TRPM6-8 genes. The Ca2+ flux rates and electrophysiological properties of epithelia from rumen and mid-jejunum were measured in Ussing chambers in the presence and absence of mucosal Na+. Acute changes in Ca2+ flux rates were measured after mucosal application of 50 µM menthol. Ruminal epithelia had quantifiable transcripts of TRPV3 = TRPM6 >TRPM7 >TRPA1 with no difference among feeding groups. Jejunum had quantifiable transcripts of TRPM7 >TRPA1 ≥ TRPM6 ≥ TRPV6 >TRPV5, where TRPA1, TRPV5, and TRPV6 tended to decrease linearly with increasing PBLC dose. Absorptive net flux of Ca2+ was detected only in the rumen, whereas jejunum showed a high passive permeability to Ca2+. Net flux rates of Ca2+ in the rumen increased in a quadratic manner (highest in PBLC-L animals) and were systematically decreased with the omission of mucosal Na+. Short-circuit current increased in both PBLC feeding groups compared with Con only in the rumen. Acute application of menthol-stimulated mucosal-to-serosal and net Ca2+ flux rates only in ruminal epithelia with higher stimulation in PBLC-fed animals. We conclude that Ca2+ transport is mainly active and transcellular in the rumen. It most likely involves TRPV3 that can be stimulated by menthol. Pre-feeding of menthol-rich PBLC enhances ruminal Ca2+ absorption and sensitizes it to acute stimulation by menthol. By contrast, intestinal Ca2+ absorption is not sensitive to menthol stimulation. Menthol could be used as a tool to enhance ruminal Ca2+ absorption and to prevent hypocalcemia in dairy cows.
Collapse
Affiliation(s)
- S Geiger
- Institute of Veterinary Physiology, Freie Universität Berlin, D-14163 Berlin, Germany
| | - A K Patra
- Institute of Veterinary Physiology, Freie Universität Berlin, D-14163 Berlin, Germany; Department of Animal Nutrition, West Bengal University of Animal and Fishery Sciences, 700037 Kolkata, India
| | | | - H S Braun
- PerformaNat GmbH, D-14163 Berlin, Germany
| | - J R Aschenbach
- Institute of Veterinary Physiology, Freie Universität Berlin, D-14163 Berlin, Germany.
| |
Collapse
|
44
|
Estrogen Regulates Duodenal Calcium Absorption Through Differential Role of Estrogen Receptor on Calcium Transport Proteins. Dig Dis Sci 2020; 65:3502-3513. [PMID: 31974908 DOI: 10.1007/s10620-020-06076-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 01/12/2020] [Indexed: 12/24/2022]
Abstract
BACKGROUND AND AIMS Intestinal calcium absorption from the diet plays important role in maintaining calcium homeostasis in the body. Estrogen exerts wide physiological and pathological effects in the human. Previous studies have shown that estrogen is involved in the intestinal calcium absorption. In this study, we made investigation on the mechanism of estrogen action on duodenal calcium absorption. METHODS The experiments were performed in mice, human, and human duodenal epithelial cells, SCBN cells. Murine duodenal calcium absorption was measured by using single pass perfusion of the duodenum in vivo. The calcium absorption of SCBN cells was evaluated by calcium imaging system. The expression of calcium transport proteins, transient receptor potential cation channel (TRPV6) and plasma membrane calcium pump (PMCA1b), in the duodenum or SCBN cells were analyzed by western blot. RESULTS The duodenal calcium absorption in ovariectomized mice was significantly decreased, compared with control female mice, which returned to control level after 17β-estradiol replacement treatment. Estrogen regulated the expressions of TRPV6 and PMCA1b in murine and human duodenal mucosae and SCBN cells. The further results from SCBN cells showed that 17β-estradiol regulated calcium influx through the respective effects of estrogen receptor (ER) ɑ and β on TRPV6 and PMCA1b. CONCLUSION Estrogen regulates duodenal calcium absorption through differential role of ERɑ and ERβ on duodenal epithelial cellular TRPV6 and PMCA1b. The study further elucidates the mechanism of estrogen on the regulation of intestinal calcium absorption.
Collapse
|
45
|
Cai R, Liu X, Zhang R, Hofmann L, Zheng W, Amin MR, Wang L, Hu Q, Peng JB, Michalak M, Flockerzi V, Ali DW, Chen XZ, Tang J. Autoinhibition of TRPV6 Channel and Regulation by PIP2. iScience 2020; 23:101444. [PMID: 32829285 PMCID: PMC7452202 DOI: 10.1016/j.isci.2020.101444] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 07/07/2020] [Accepted: 08/04/2020] [Indexed: 12/30/2022] Open
Abstract
Transient receptor potential vanilloid 6 (TRPV6), a calcium-selective channel possessing six transmembrane domains (S1-S6) and intracellular N and C termini, plays crucial roles in calcium absorption in epithelia and bone and is involved in human diseases including vitamin-D deficiency, osteoporosis, and cancer. The TRPV6 function and regulation remain poorly understood. Here we show that the TRPV6 intramolecular S4-S5 linker to C-terminal TRP helix (L/C) and N-terminal pre-S1 helix to TRP helix (N/C) interactions, mediated by Arg470:Trp593 and Trp321:Ile597 bonding, respectively, are autoinhibitory and are required for maintaining TRPV6 at basal states. Disruption of either interaction by mutations or blocking peptides activates TRPV6. The N/C interaction depends on the L/C interaction but not reversely. Three cationic residues in S5 or C terminus are involved in binding PIP2 to suppress both interactions thereby activating TRPV6. This study reveals "PIP2 - intramolecular interactions" regulatory mechanism of TRPV6 activation-autoinhibition, which will help elucidating the corresponding mechanisms in other TRP channels.
Collapse
Affiliation(s)
- Ruiqi Cai
- National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, Hubei 430068, China
- Membrane Protein Disease Research Group, Department of Physiology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Xiong Liu
- Membrane Protein Disease Research Group, Department of Physiology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Rui Zhang
- National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, Hubei 430068, China
| | - Laura Hofmann
- Experimentelle und Klinische Pharmakologie und Toxikologie, Universität des Saarlandes, 66421 Homburg, Germany
| | - Wang Zheng
- Membrane Protein Disease Research Group, Department of Physiology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Md Ruhul Amin
- Department of Biological Sciences, Biological Sciences Building, University of Alberta, T6G 2E9 Edmonton, AB, Canada
| | - Lingyun Wang
- Division of Nephrology, Department of Medicine, Nephrology Research and Training Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Qiaolin Hu
- Membrane Protein Disease Research Group, Department of Physiology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Ji-Bin Peng
- Division of Nephrology, Department of Medicine, Nephrology Research and Training Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Marek Michalak
- Membrane Protein Disease Research Group, Department of Biochemistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Veit Flockerzi
- Experimentelle und Klinische Pharmakologie und Toxikologie, Universität des Saarlandes, 66421 Homburg, Germany
| | - Declan W. Ali
- Department of Biological Sciences, Biological Sciences Building, University of Alberta, T6G 2E9 Edmonton, AB, Canada
| | - Xing-Zhen Chen
- Membrane Protein Disease Research Group, Department of Physiology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Jingfeng Tang
- National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, Hubei 430068, China
| |
Collapse
|
46
|
Gyimesi G, Pujol-Giménez J, Kanai Y, Hediger MA. Sodium-coupled glucose transport, the SLC5 family, and therapeutically relevant inhibitors: from molecular discovery to clinical application. Pflugers Arch 2020; 472:1177-1206. [PMID: 32767111 PMCID: PMC7462921 DOI: 10.1007/s00424-020-02433-x] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 06/24/2020] [Accepted: 07/02/2020] [Indexed: 02/06/2023]
Abstract
Sodium glucose transporters (SGLTs) belong to the mammalian solute carrier family SLC5. This family includes 12 different members in human that mediate the transport of sugars, vitamins, amino acids, or smaller organic ions such as choline. The SLC5 family belongs to the sodium symporter family (SSS), which encompasses transporters from all kingdoms of life. It furthermore shares similarity to the structural fold of the APC (amino acid-polyamine-organocation) transporter family. Three decades after the first molecular identification of the intestinal Na+-glucose cotransporter SGLT1 by expression cloning, many new discoveries have evolved, from mechanistic analysis to molecular genetics, structural biology, drug discovery, and clinical applications. All of these advances have greatly influenced physiology and medicine. While SGLT1 is essential for fast absorption of glucose and galactose in the intestine, the expression of SGLT2 is largely confined to the early part of the kidney proximal tubules, where it reabsorbs the bulk part of filtered glucose. SGLT2 has been successfully exploited by the pharmaceutical industry to develop effective new drugs for the treatment of diabetic patients. These SGLT2 inhibitors, termed gliflozins, also exhibit favorable nephroprotective effects and likely also cardioprotective effects. In addition, given the recent finding that SGLT2 is also expressed in tumors of pancreas and prostate and in glioblastoma, this opens the door to potential new therapeutic strategies for cancer treatment by specifically targeting SGLT2. Likewise, further discoveries related to the functional association of other SGLTs of the SLC5 family to human pathologies will open the door to potential new therapeutic strategies. We furthermore hope that the herein summarized information about the physiological roles of SGLTs and the therapeutic benefits of the gliflozins will be useful for our readers to better understand the molecular basis of the beneficial effects of these inhibitors, also in the context of the tubuloglomerular feedback (TGF), and the renin-angiotensin system (RAS). The detailed mechanisms underlying the clinical benefits of SGLT2 inhibition by gliflozins still warrant further investigation that may serve as a basis for future drug development.
Collapse
Affiliation(s)
- Gergely Gyimesi
- Membrane Transport Discovery Lab, Department of Nephrology and Hypertension, and Department of Biomedical Research, Inselspital, University of Bern, Kinderklinik, Office D845, Freiburgstrasse 15, CH-3010, Bern, Switzerland
| | - Jonai Pujol-Giménez
- Membrane Transport Discovery Lab, Department of Nephrology and Hypertension, and Department of Biomedical Research, Inselspital, University of Bern, Kinderklinik, Office D845, Freiburgstrasse 15, CH-3010, Bern, Switzerland
| | - Yoshikatsu Kanai
- Department of Bio-system Pharmacology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Matthias A Hediger
- Membrane Transport Discovery Lab, Department of Nephrology and Hypertension, and Department of Biomedical Research, Inselspital, University of Bern, Kinderklinik, Office D845, Freiburgstrasse 15, CH-3010, Bern, Switzerland.
| |
Collapse
|
47
|
Steroids and TRP Channels: A Close Relationship. Int J Mol Sci 2020; 21:ijms21113819. [PMID: 32471309 PMCID: PMC7325571 DOI: 10.3390/ijms21113819] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 05/02/2020] [Accepted: 05/04/2020] [Indexed: 02/07/2023] Open
Abstract
Transient receptor potential (TRP) channels are remarkable transmembrane protein complexes that are essential for the physiology of the tissues in which they are expressed. They function as non-selective cation channels allowing for the signal transduction of several chemical, physical and thermal stimuli and modifying cell function. These channels play pivotal roles in the nervous and reproductive systems, kidney, pancreas, lung, bone, intestine, among others. TRP channels are finely modulated by different mechanisms: regulation of their function and/or by control of their expression or cellular/subcellular localization. These mechanisms are subject to being affected by several endogenously-produced compounds, some of which are of a lipidic nature such as steroids. Fascinatingly, steroids and TRP channels closely interplay to modulate several physiological events. Certain TRP channels are affected by the typical genomic long-term effects of steroids but others are also targets for non-genomic actions of some steroids that act as direct ligands of these receptors, as will be reviewed here.
Collapse
|
48
|
Masamune A, Kotani H, Sörgel FL, Chen JM, Hamada S, Sakaguchi R, Masson E, Nakano E, Kakuta Y, Niihori T, Funayama R, Shirota M, Hirano T, Kawamoto T, Hosokoshi A, Kume K, Unger L, Ewers M, Laumen H, Bugert P, Mori MX, Tsvilovskyy V, Weißgerber P, Kriebs U, Fecher-Trost C, Freichel M, Diakopoulos KN, Berninger A, Lesina M, Ishii K, Itoi T, Ikeura T, Okazaki K, Kaune T, Rosendahl J, Nagasaki M, Uezono Y, Algül H, Nakayama K, Matsubara Y, Aoki Y, Férec C, Mori Y, Witt H, Shimosegawa T. Variants That Affect Function of Calcium Channel TRPV6 Are Associated With Early-Onset Chronic Pancreatitis. Gastroenterology 2020; 158:1626-1641.e8. [PMID: 31930989 DOI: 10.1053/j.gastro.2020.01.005] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 12/09/2019] [Accepted: 01/02/2020] [Indexed: 01/21/2023]
Abstract
BACKGROUND & AIMS Changes in pancreatic calcium levels affect secretion and might be involved in development of chronic pancreatitis (CP). We investigated the association of CP with the transient receptor potential cation channel subfamily V member 6 gene (TRPV6), which encodes a Ca2+-selective ion channel, in an international cohort of patients and in mice. METHODS We performed whole-exome DNA sequencing from a patient with idiopathic CP and from his parents, who did not have CP. We validated our findings by sequencing DNA from 300 patients with CP (not associated with alcohol consumption) and 1070 persons from the general population in Japan (control individuals). In replication studies, we sequenced DNA from patients with early-onset CP (20 years or younger) not associated with alcohol consumption from France (n = 470) and Germany (n = 410). We expressed TRPV6 variants in HEK293 cells and measured their activity using Ca2+ imaging assays. CP was induced by repeated injections of cerulein in TRPV6mut/mut mice. RESULTS We identified the variants c.629C>T (p.A210V) and c.970G>A (p.D324N) in TRPV6 in the index patient. Variants that affected function of the TRPV6 product were found in 13 of 300 patients (4.3%) and 1 of 1070 control individuals (0.1%) from Japan (odds ratio [OR], 48.4; 95% confidence interval [CI], 6.3-371.7; P = 2.4 × 10-8). Twelve of 124 patients (9.7%) with early-onset CP had such variants. In the replication set from Europe, 18 patients with CP (2.0%) carried variants that affected the function of the TRPV6 product compared with 0 control individuals (P = 6.2 × 10-8). Variants that did not affect the function of the TRPV6 product (p.I223T and p.D324N) were overrepresented in Japanese patients vs control individuals (OR, 10.9; 95% CI, 4.5-25.9; P = 7.4 × 10-9 for p.I223T and P = .01 for p.D324N), whereas the p.L299Q was overrepresented in European patients vs control individuals (OR, 3.0; 95% CI, 1.9-4.8; P = 1.2 × 10-5). TRPV6mut/mut mice given cerulein developed more severe pancreatitis than control mice, as shown by increased levels of pancreatic enzymes, histologic alterations, and pancreatic fibrosis. CONCLUSIONS We found that patients with early-onset CP not associated with alcohol consumption carry variants in TRPV6 that affect the function of its product, perhaps by altering Ca2+ balance in pancreatic cells. TRPV6 regulates Ca2+ homeostasis and pancreatic inflammation.
Collapse
Affiliation(s)
- Atsushi Masamune
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Japan.
| | - Hiroshi Kotani
- Laboratory of Molecular Biology, Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Franziska Lena Sörgel
- Else Kröner-Fresenius-Zentrum für Ernährungsmedizin, Paediatric Nutritional Medicine, Technische Universität München, Freising, Germany
| | - Jian-Min Chen
- Inserm, Univ Brest, EFS, UMR 1078, GGB, Brest, France
| | - Shin Hamada
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Reiko Sakaguchi
- Laboratory of Molecular Biology, Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan; Institute for Integrated Cell-Material Sciences, Kyoto University, Kyoto, Japan
| | - Emmanuelle Masson
- Inserm, Univ Brest, EFS, UMR 1078, GGB, Brest, France; CHU Brest, Service de Génétique, Brest, France
| | - Eriko Nakano
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yoichi Kakuta
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Tetsuya Niihori
- Department of Medical Genetics, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Ryo Funayama
- Division of Cell Proliferation, United Centers for Advanced Research and Translational Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Matsuyuki Shirota
- Division of Cell Proliferation, United Centers for Advanced Research and Translational Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Tatsuya Hirano
- Laboratory of Molecular Biology, Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Tetsuya Kawamoto
- Laboratory of Molecular Biology, Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Atsuki Hosokoshi
- Laboratory of Molecular Biology, Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Kiyoshi Kume
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Lara Unger
- Else Kröner-Fresenius-Zentrum für Ernährungsmedizin, Paediatric Nutritional Medicine, Technische Universität München, Freising, Germany
| | - Maren Ewers
- Else Kröner-Fresenius-Zentrum für Ernährungsmedizin, Paediatric Nutritional Medicine, Technische Universität München, Freising, Germany
| | - Helmut Laumen
- Else Kröner-Fresenius-Zentrum für Ernährungsmedizin, Paediatric Nutritional Medicine, Technische Universität München, Freising, Germany
| | - Peter Bugert
- Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, Heidelberg University, German Red Cross Blood Service of Baden-Württemberg-Hessen, Mannheim, Germany
| | - Masayuki X Mori
- Laboratory of Molecular Biology, Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Volodymyr Tsvilovskyy
- Pharmakologisches Institut, Universität Heidelberg, Heidelberg, Germany; German Center for Cardiovascular Research, partner site Heidelberg, Germany
| | - Petra Weißgerber
- Experimentelle und Klinische Pharmakologie und Toxikologie, Universität des Saarlandes, Homburg, Germany
| | - Ulrich Kriebs
- Pharmakologisches Institut, Universität Heidelberg, Heidelberg, Germany; German Center for Cardiovascular Research, partner site Heidelberg, Germany
| | - Claudia Fecher-Trost
- Experimentelle und Klinische Pharmakologie und Toxikologie, Universität des Saarlandes, Homburg, Germany
| | - Marc Freichel
- Pharmakologisches Institut, Universität Heidelberg, Heidelberg, Germany; German Center for Cardiovascular Research, partner site Heidelberg, Germany
| | - Kalliope N Diakopoulos
- Mildred Scheel Chair of Tumor Metabolism and Comprehensive Cancer Center Munich at the Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Alexandra Berninger
- Mildred Scheel Chair of Tumor Metabolism and Comprehensive Cancer Center Munich at the Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Marina Lesina
- Mildred Scheel Chair of Tumor Metabolism and Comprehensive Cancer Center Munich at the Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Kentaro Ishii
- Department of Gastroenterology and Hepatology, Tokyo Medical University, Tokyo, Japan
| | - Takao Itoi
- Department of Gastroenterology and Hepatology, Tokyo Medical University, Tokyo, Japan
| | - Tsukasa Ikeura
- Department of Gastroenterology and Hepatology, Kansai Medical University, Hirakata, Japan
| | - Kazuichi Okazaki
- Department of Gastroenterology and Hepatology, Kansai Medical University, Hirakata, Japan
| | - Tom Kaune
- Department of Internal Medicine I, Martin Luther University, Halle (Saale), Germany
| | - Jonas Rosendahl
- Department of Internal Medicine I, Martin Luther University, Halle (Saale), Germany
| | - Masao Nagasaki
- Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Yasuhito Uezono
- Cancer Pathophysiology Division, National Cancer Center Research Institute, Tokyo, Japan
| | - Hana Algül
- Mildred Scheel Chair of Tumor Metabolism and Comprehensive Cancer Center Munich at the Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Keiko Nakayama
- Division of Cell Proliferation, United Centers for Advanced Research and Translational Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | | | - Yoko Aoki
- Department of Medical Genetics, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Claude Férec
- Inserm, Univ Brest, EFS, UMR 1078, GGB, Brest, France; CHU Brest, Service de Génétique, Brest, France
| | - Yasuo Mori
- Laboratory of Molecular Biology, Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Heiko Witt
- Else Kröner-Fresenius-Zentrum für Ernährungsmedizin, Paediatric Nutritional Medicine, Technische Universität München, Freising, Germany
| | - Tooru Shimosegawa
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
49
|
Yelshanskaya MV, Nadezhdin KD, Kurnikova MG, Sobolevsky AI. Structure and function of the calcium-selective TRP channel TRPV6. J Physiol 2020; 599:2673-2697. [PMID: 32073143 DOI: 10.1113/jp279024] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 02/03/2020] [Indexed: 12/23/2022] Open
Abstract
Epithelial calcium channel TRPV6 is a member of the vanilloid subfamily of TRP channels that is permeable to cations and highly selective to Ca2+ ; it shows constitutive activity regulated negatively by Ca2+ and positively by phosphoinositol and cholesterol lipids. In this review, we describe the molecular structure of TRPV6 and discuss how its structural elements define its unique functional properties. High Ca2+ selectivity of TRPV6 originates from the narrow selectivity filter, where Ca2+ ions are directly coordinated by a ring of anionic aspartate side chains. Divalent cations Ca2+ and Ba2+ permeate TRPV6 pore according to the knock-off mechanism, while tight binding of Gd3+ to the aspartate ring blocks the channel and prevents Na+ from permeating the pore. The iris-like channel opening is accompanied by an α-to-π helical transition in the pore-lining transmembrane helix S6. As a result of this transition, the intracellular halves of the S6 helices bend and rotate by about 100 deg, exposing different residues to the channel pore in the open and closed states. Channel opening is also associated with changes in occupancy of the transmembrane domain lipid binding sites. The inhibitor 2-aminoethoxydiphenyl borate (2-APB) binds to TRPV6 in a pocket formed by the cytoplasmic half of the S1-S4 transmembrane helical bundle and shifts open-closed channel equilibrium towards the closed state by outcompeting lipids critical for activation. Ca2+ inhibits TRPV6 via binding to calmodulin (CaM), which mediates Ca2+ -dependent inactivation. The TRPV6-CaM complex exhibits 1:1 stoichiometry; one TRPV6 tetramer binds both CaM lobes, which adopt a distinct head-to-tail arrangement. The CaM C-terminal lobe plugs the channel through a unique cation-π interaction by inserting the side chain of lysine K115 into a tetra-tryptophan cage at the ion channel pore intracellular entrance. Recent studies of TRPV6 structure and function described in this review advance our understanding of the role of this channel in physiology and pathophysiology and inform new therapeutic design.
Collapse
Affiliation(s)
- Maria V Yelshanskaya
- Department of Biochemistry and Molecular Biophysics, Columbia University, 650 West 168th Street, New York, NY, 10032, USA
| | - Kirill D Nadezhdin
- Department of Biochemistry and Molecular Biophysics, Columbia University, 650 West 168th Street, New York, NY, 10032, USA
| | - Maria G Kurnikova
- Chemistry Department, Carnegie Mellon University, 4400 Fifth Ave, Pittsburgh, PA, 15213, USA
| | - Alexander I Sobolevsky
- Department of Biochemistry and Molecular Biophysics, Columbia University, 650 West 168th Street, New York, NY, 10032, USA
| |
Collapse
|
50
|
Wilkens MR, Nelson CD, Hernandez LL, McArt JA. Symposium review: Transition cow calcium homeostasis—Health effects of hypocalcemia and strategies for prevention. J Dairy Sci 2020; 103:2909-2927. [DOI: 10.3168/jds.2019-17268] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 11/18/2019] [Indexed: 12/14/2022]
|