1
|
Yao Y, Qiu L, Wei X, Chen J, Choy KW, Zheng G, Yang T, Li S, Yang F. Functional study of a rare L1CAM gene c.1759G>C variant prove its pathogenicity. Cell Biochem Funct 2024; 42:e4034. [PMID: 38715189 DOI: 10.1002/cbf.4034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 04/29/2024] [Accepted: 04/29/2024] [Indexed: 05/14/2024]
Abstract
L1 syndrome, a neurological disorder with an X-linked inheritance pattern, mainly results from mutations occurring in the L1 cell adhesion molecule (L1CAM) gene. The L1CAM molecule, belonging to the immunoglobulin (Ig) superfamily of neurocyte adhesion molecules, plays a pivotal role in facilitating intercellular signal transmission across membranes and is indispensable for proper neuronal development and function. This study identified a rare missense variant (c.1759G>C; p.G587R) in the L1CAM gene within a male fetus presenting with hydrocephalus. Due to a lack of functional analysis, the significance of the L1CAM mutation c.1759G>C (p.G587R) remains unknown. We aimed to perform further verification for its pathogenicity. Blood samples were obtained from the proband and his parents for trio clinical exome sequencing and mutation analysis. Expression level analysis was conducted using western blot techniques. Immunofluorescence was employed to investigate L1CAM subcellular localization, while cell aggregation and cell scratch assays were utilized to assess protein function. The study showed that the mutation (c.1759G>C; p.G587R) affected posttranslational glycosylation modification and induced alterations in the subcellular localization of L1-G587R in the cells. It resulted in the diminished expression of L1CAM on the cell surface and accumulation in the endoplasmic reticulum. The p.G587R altered the function of L1CAM protein and reduced homophilic adhesion capacity of proteins, leading to impaired adhesion and migration of proteins between cells. Our findings provide first biological evidence for the association between the missense mutation (c.1759G>c; p.G587R) in the L1CAM gene and L1 syndrome, confirming the pathogenicity of this missense mutation.
Collapse
Affiliation(s)
- Yuqing Yao
- Department of Fetal Medicine and Prenatal Diagnosis, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Liyan Qiu
- Department of Fetal Medicine and Prenatal Diagnosis, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Xingyu Wei
- Department of Fetal Medicine and Prenatal Diagnosis, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Jianping Chen
- Medical Equipment Department, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Kwong Wai Choy
- Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Hong Kong SAR, China
- Laboratory of Genetics and Genomics, Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Guiyun Zheng
- Department of Fetal Medicine and Prenatal Diagnosis, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Tuyin Yang
- Department of Fetal Medicine and Prenatal Diagnosis, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Sisi Li
- Department of Fetal Medicine and Prenatal Diagnosis, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Fang Yang
- Department of Fetal Medicine and Prenatal Diagnosis, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
2
|
Hu J, Lin SL, Schachner M. A fragment of cell adhesion molecule L1 reduces amyloid-β plaques in a mouse model of Alzheimer's disease. Cell Death Dis 2022; 13:48. [PMID: 35013124 PMCID: PMC8748658 DOI: 10.1038/s41419-021-04348-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 10/02/2021] [Accepted: 10/13/2021] [Indexed: 02/05/2023]
Abstract
Deposition of amyloid-β (Aβ) in the brain is one of the important histopathological features of Alzheimer's disease (AD). Previously, we reported a correlation between cell adhesion molecule L1 (L1) expression and the occurrence of AD, but its relationship was unclear. Here, we report that the expression of L1 and a 70 kDa cleavage product of L1 (L1-70) was reduced in the hippocampus of AD (APPswe) mice. Interestingly, upregulation of L1-70 expression in the hippocampus of 18-month-old APPswe mice, by parabiosis involving the joining of the circulatory system of an 18-month-old APPswe mouse with a 2-month-old wild-type C57BL/6 mouse, reduced amyloid plaque deposition. Furthermore, the reduction was accompanied by the appearance of a high number of activated microglia. Mechanistically, we observed that L1-70 could combine with topoisomerase 1 (Top1) to form a complex, L1-70/Top1, that was able to regulate expression of macrophage migration inhibitory factor (MIF), resulting in the activation of microglia and reduction of Aβ plaques. Also, transforming growth factor β1 (TGFβ-1) transferred from the blood of young wild-type C57BL/6 mice to the aged AD mice, was identified as a circulating factor that induces full-length L1 and L1-70 expression. All together, these findings suggest that L1-70 contributes to the clearance of Aβ in AD, thereby adding a novel perspective in understanding AD pathogenesis.
Collapse
Affiliation(s)
- Junkai Hu
- Center for Neuroscience, Shantou University Medical College, 22 Xin Ling Road, Shantou, Guangdong, 515041, China
| | - Stanley Li Lin
- Deaprtment of Cell Biology, Shantou University Medical College, 22 Xin Ling Road, Shantou, Guangdong, 515041, China
- Guangdong Provincial Key Laboratory for Breast Cancer Diagnosis and Treatment, Shantou University Medical College, Shantou, China
| | - Melitta Schachner
- Center for Neuroscience, Shantou University Medical College, 22 Xin Ling Road, Shantou, Guangdong, 515041, China
- Keck Center for Collaborative Neuroscience, Department of Cell Biology and Neuroscience, School of Arts and Sciences, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| |
Collapse
|
3
|
Desse VE, Blanchette CR, Nadour M, Perrat P, Rivollet L, Khandekar A, Bénard CY. Neuronal post-developmentally acting SAX-7S/L1CAM can function as cleaved fragments to maintain neuronal architecture in C. elegans. Genetics 2021; 218:6296841. [PMID: 34115111 DOI: 10.1093/genetics/iyab086] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 05/24/2021] [Indexed: 01/09/2023] Open
Abstract
Whereas remarkable advances have uncovered mechanisms that drive nervous system assembly, the processes responsible for the lifelong maintenance of nervous system architecture remain poorly understood. Subsequent to its establishment during embryogenesis, neuronal architecture is maintained throughout life in the face of the animal's growth, maturation processes, the addition of new neurons, body movements, and aging. The C. elegans protein SAX-7, homologous to the vertebrate L1 protein family of neural adhesion molecules, is required for maintaining the organization of neuronal ganglia and fascicles after their successful initial embryonic development. To dissect the function of sax-7 in neuronal maintenance, we generated a null allele and sax-7S-isoform-specific alleles. We find that the null sax-7(qv30) is, in some contexts, more severe than previously described mutant alleles, and that the loss of sax-7S largely phenocopies the null, consistent with sax-7S being the key isoform in neuronal maintenance. Using a sfGFP::SAX-7S knock-in, we observe sax-7S to be predominantly expressed across the nervous system, from embryogenesis to adulthood. Yet, its role in maintaining neuronal organization is ensured by post-developmentally acting SAX-7S, as larval transgenic sax-7S(+) expression alone is sufficient to profoundly rescue the null mutants' neuronal maintenance defects. Moreover, the majority of the protein SAX-7 appears to be cleaved, and we show that these cleaved SAX-7S fragments together, not individually, can fully support neuronal maintenance. These findings contribute to our understanding of the role of the conserved protein SAX-7/L1CAM in long-term neuronal maintenance, and may help decipher processes that go awry in some neurodegenerative conditions.
Collapse
Affiliation(s)
- Virginie E Desse
- Department of Biological Sciences, CERMO-FC Research Center, Université du Québec à Montréal, Montréal, QC H2X 1Y4, Canada
| | - Cassandra R Blanchette
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Malika Nadour
- Department of Biological Sciences, CERMO-FC Research Center, Université du Québec à Montréal, Montréal, QC H2X 1Y4, Canada
| | - Paola Perrat
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Lise Rivollet
- Department of Biological Sciences, CERMO-FC Research Center, Université du Québec à Montréal, Montréal, QC H2X 1Y4, Canada
| | - Anagha Khandekar
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Claire Y Bénard
- Department of Biological Sciences, CERMO-FC Research Center, Université du Québec à Montréal, Montréal, QC H2X 1Y4, Canada
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| |
Collapse
|
4
|
Giordano M, Cavallaro U. Different Shades of L1CAM in the Pathophysiology of Cancer Stem Cells. J Clin Med 2020; 9:E1502. [PMID: 32429448 PMCID: PMC7291284 DOI: 10.3390/jcm9051502] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 05/07/2020] [Accepted: 05/13/2020] [Indexed: 12/12/2022] Open
Abstract
L1 cell adhesion molecule (L1CAM) is aberrantly expressed in several tumor types where it is causally linked to malignancy and therapy resistance, acting also as a poor prognosis factor. Accordingly, several approaches have been developed to interfere with L1CAM function or to deliver cytotoxic agents to L1CAM-expressing tumors. Metastatic dissemination, tumor relapse and drug resistance can be fueled by a subpopulation of neoplastic cells endowed with peculiar biological properties that include self-renewal, efficient DNA repair, drug efflux machineries, quiescence, and immune evasion. These cells, known as cancer stem cells (CSC) or tumor-initiating cells, represent, therefore, an ideal target for tumor eradication. However, the molecular and functional traits of CSC have been unveiled only to a limited extent. In this context, it appears that L1CAM is expressed in the CSC compartment of certain tumors, where it plays a causal role in stemness itself and/or in biological processes intimately associated with CSC (e.g., epithelial-mesenchymal transition (EMT) and chemoresistance). This review summarizes the role of L1CAM in cancer focusing on its functional contribution to CSC pathophysiology. We also discuss the clinical usefulness of therapeutic strategies aimed at targeting L1CAM in the context of anti-CSC treatments.
Collapse
Affiliation(s)
| | - Ugo Cavallaro
- Unit of Gynaecological Oncology Research, European Institute of Oncology IRCSS, 20128 Milan, Italy;
| |
Collapse
|
5
|
Maten MVD, Reijnen C, Pijnenborg JMA, Zegers MM. L1 Cell Adhesion Molecule in Cancer, a Systematic Review on Domain-Specific Functions. Int J Mol Sci 2019; 20:ijms20174180. [PMID: 31455004 PMCID: PMC6747497 DOI: 10.3390/ijms20174180] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 08/13/2019] [Accepted: 08/23/2019] [Indexed: 12/15/2022] Open
Abstract
L1 cell adhesion molecule (L1CAM) is a glycoprotein involved in cancer development and is associated with metastases and poor prognosis. Cellular processing of L1CAM results in expression of either full-length or cleaved forms of the protein. The different forms of L1CAM may localize at the plasma membrane as a transmembrane protein, or in the intra- or extracellular environment as cleaved or exosomal forms. Here, we systematically analyze available literature that directly relates to L1CAM domains and associated signaling pathways in cancer. Specifically, we chart its domain-specific functions in relation to cancer progression, and outline pre-clinical assays used to assess L1CAM. It is found that full-length L1CAM has both intracellular and extracellular targets, including interactions with integrins, and linkage with ezrin. Cellular processing leading to proteolytic cleavage and/or exosome formation results in extracellular soluble forms of L1CAM that may act through similar mechanisms as compared to full-length L1CAM, such as integrin-dependent signals, but also through distinct mechanisms. We provide an algorithm to guide a step-wise analysis on L1CAM in clinical samples, to promote interpretation of domain-specific expression. This systematic review infers that L1CAM has an important role in cancer progression that can be attributed to domain-specific forms. Most studies focus on the full-length plasma membrane L1CAM, yet knowledge on the domain-specific forms is a prerequisite for selective targeting treatment.
Collapse
Affiliation(s)
- Miriam van der Maten
- Department of Obstetrics and Gynaecology, Radboud university medical center, 6525 GA Nijmegen, The Netherlands
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud university medical center, 6525 GA Nijmegen, The Netherlands
| | - Casper Reijnen
- Department of Obstetrics and Gynaecology, Radboud university medical center, 6525 GA Nijmegen, The Netherlands
- Department of Obstetrics and Gynaecology, Canisius-Wilhelmina Hospital, 6532 SZ Nijmegen, The Netherlands
| | - Johanna M A Pijnenborg
- Department of Obstetrics and Gynaecology, Radboud university medical center, 6525 GA Nijmegen, The Netherlands.
| | - Mirjam M Zegers
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud university medical center, 6525 GA Nijmegen, The Netherlands.
| |
Collapse
|
6
|
Tai Y, Gallo NB, Wang M, Yu JR, Van Aelst L. Axo-axonic Innervation of Neocortical Pyramidal Neurons by GABAergic Chandelier Cells Requires AnkyrinG-Associated L1CAM. Neuron 2019; 102:358-372.e9. [PMID: 30846310 DOI: 10.1016/j.neuron.2019.02.009] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 12/20/2018] [Accepted: 02/04/2019] [Indexed: 11/17/2022]
Abstract
Among the diverse interneuron subtypes in the neocortex, chandelier cells (ChCs) are the only population that selectively innervate pyramidal neurons (PyNs) at their axon initial segment (AIS), the site of action potential initiation, allowing them to exert powerful control over PyN output. Yet, mechanisms underlying their subcellular innervation of PyN AISs are unknown. To identify molecular determinants of ChC/PyN AIS innervation, we performed an in vivo RNAi screen of PyN-expressed axonal cell adhesion molecules (CAMs) and select Ephs/ephrins. Strikingly, we found the L1 family member L1CAM to be the only molecule required for ChC/PyN AIS innervation. Further, we show that L1CAM is required during both the establishment and maintenance of innervation, and that selective innervation of PyN AISs by ChCs requires AIS anchoring of L1CAM by the cytoskeletal ankyrin-G/βIV-spectrin complex. Thus, our findings identify PyN-expressed L1CAM as a critical CAM required for innervation of neocortical PyN AISs by ChCs. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- Yilin Tai
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Nicholas B Gallo
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA; Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY 11794, USA
| | - Minghui Wang
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Jia-Ray Yu
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Linda Van Aelst
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA.
| |
Collapse
|
7
|
Molecular basis of Mitomycin C enhanced corneal sensory nerve repair after debridement wounding. Sci Rep 2018; 8:16960. [PMID: 30446696 PMCID: PMC6240058 DOI: 10.1038/s41598-018-35090-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 10/25/2018] [Indexed: 12/30/2022] Open
Abstract
The ocular surface is covered by stratified squamous corneal epithelial cells that are in cell:cell contact with the axonal membranes of a dense collection of sensory nerve fibers that act as sentinels to detect chemical and mechanical injuries which could lead to blindness. The sheerness of the cornea makes it susceptible to superficial abrasions and recurrent erosions which demand continuous regrowth of the axons throughout life. We showed previously that topical application of the antibiotic and anticancer drug Mitomycin C (MMC) enhances reinnervation of the corneal nerves and reduces recurrent erosions in mice via an unknown mechanism. Here we show using RNA-seq and confocal imaging that wounding the corneal epithelium by debridement upregulates proteases and protease inhibitors within the epithelium and leads to stromal nerve disruption. MMC attenuates these effects after debridement injury by increasing serpine1 gene and protein expression preserving L1CAM on axon surfaces of reinnervating sensory nerves. These data demonstrate at the molecular level that gene expression changes in the corneal epithelium and stroma modulate sensory axon integrity. By preserving the ability of axons to adhere to corneal epithelial cells, MMC enhances sensory nerve recovery after mechanical debridement injury.
Collapse
|
8
|
Burgett ME, Lathia JD, Roth P, Nowacki AS, Galileo DS, Pugacheva E, Huang P, Vasanji A, Li M, Byzova T, Mikkelsen T, Bao S, Rich JN, Weller M, Gladson CL. Direct contact with perivascular tumor cells enhances integrin αvβ3 signaling and migration of endothelial cells. Oncotarget 2018; 7:43852-43867. [PMID: 27270311 PMCID: PMC5190064 DOI: 10.18632/oncotarget.9700] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 05/13/2016] [Indexed: 12/15/2022] Open
Abstract
The secretion of soluble pro-angiogenic factors by tumor cells and stromal cells in the perivascular niche promotes the aggressive angiogenesis that is typical of glioblastoma (GBM). Here, we show that angiogenesis also can be promoted by a direct interaction between brain tumor cells, including tumor cells with cancer stem-like properties (CSCs), and endothelial cells (ECs). As shown in vitro, this direct interaction is mediated by binding of integrin αvβ3 expressed on ECs to the RGD-peptide in L1CAM expressed on CSCs. It promotes both EC network formation and enhances directed migration toward basic fibroblast growth factor. Activation of αvβ3 and bone marrow tyrosine kinase on chromosome X (BMX) is required for migration stimulated by direct binding but not for migration stimulated by soluble factors. RGD-peptide treatment of mice with established intracerebral GBM xenografts significantly reduced the percentage of Sox2-positive tumor cells and CSCs in close proximity to ECs, decreased integrin αvβ3 and BMX activation and p130CAS phosphorylation in the ECs, and reduced the vessel surface area. These results reveal a previously unrecognized aspect of the regulation of angiogenesis in GBM that can impact therapeutic anti-angiogenic targeting.
Collapse
Affiliation(s)
- Monica E Burgett
- Department of Cancer Biology, Cleveland Clinic, Cleveland, OH, USA.,School of Biomedical Sciences, Kent State University, Kent, OH, USA
| | - Justin D Lathia
- Department of Cellular and Molecular Medicine, Cleveland Clinic, Cleveland, OH, USA
| | - Patrick Roth
- Department of Neurology, Laboratory of Molecular Neuro-Oncology, University Hospital, Zurich, Switzerland
| | - Amy S Nowacki
- Department of Quantitative Health Sciences, Cleveland Clinic, Cleveland, OH, USA
| | - Deni S Galileo
- Department of Biological Sciences, University of Delaware and Helen F. Graham Cancer Center and Research Institute, Christiana Care Health System, Newark, DE, USA
| | - Elena Pugacheva
- Department of Biochemistry, West Virginia University, Morgantown, VA, USA
| | - Ping Huang
- Department of Cancer Biology, Cleveland Clinic, Cleveland, OH, USA
| | | | - Meizhang Li
- Department of Cellular and Molecular Medicine, Cleveland Clinic, Cleveland, OH, USA
| | - Tatiana Byzova
- Department of Molecular Cardiology, Cleveland Clinic, Cleveland, OH, USA
| | - Tom Mikkelsen
- Department of Neurosurgery, Henry Ford Hospital, Detroit, MI, USA
| | - Shideng Bao
- Department of Stem Cell Biology and Regenerative Medicine, Cleveland Clinic, Cleveland, OH, USA
| | - Jeremy N Rich
- Department of Stem Cell Biology and Regenerative Medicine, Cleveland Clinic, Cleveland, OH, USA
| | - Michael Weller
- Department of Neurology, Laboratory of Molecular Neuro-Oncology, University Hospital, Zurich, Switzerland
| | | |
Collapse
|
9
|
Notaro S, Reimer D, Duggan-Peer M, Fiegl H, Wiedermair A, Rössler J, Altevogt P, Marth C, Zeimet AG. Evaluating L1CAM expression in human endometrial cancer using qRT-PCR. Oncotarget 2018; 7:40221-40232. [PMID: 27233077 PMCID: PMC5130004 DOI: 10.18632/oncotarget.9574] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 05/08/2016] [Indexed: 12/22/2022] Open
Abstract
Background Management of endometrial carcinoma (EC) still needs improvement of risk assessment. Recently, L1CAM immunohistochemical (IHC) evaluation showed a unique value to predict the outcome of early EC. However IHC results are often conflicting for lack of inter-laboratory standardisation. Methods Here, as a proof of concept and to increase reproducibility we assayed eighty-two EC and 26 normal endometrium samples for L1CAM expression (L1CAMEXP) via qRT-PCR. The IHC evaluation was performed in 50 cancer samples. Moreover, we aimed to substantiate the in-vitro findings of L1CAM regulation through its promoter methylation (L1CAMMET), miR-34a expression and miR-34a promoter methylation. DNA methylation was assessed with MethyLight PCR technique. Results High overall concordant results between IHC and RT-PCR evaluations were found. L1CAMEXP was detected in 11% of cancer specimens. These positive cancers exhibited a worse DFS (p=0.032) and OS (p=0.016) in a multivariate COX-regression model. L1CAMEXP predicted distant failure (p=0.007) and L1CAMMET predicted risk-reduction of lymph-node involvement (p=0.005). Inverse correlations between L1CAMEXP and L1CAMMET (p=0.004) and between L1CAMEXP and miR-34a expression (p=0.002) were found. Conclusions In conclusion qRT-PCR analysis is a reliable approach to evaluate L1CAM status in EC and L1CAMEXP was highly predictive for distant failure and poor outcome, confirming the large IHC-based studies. Interestingly, L1CAMMET was able to assess the risk of pelvic lymph-node involvement. Especially the latter finding has to be confirmed in larger prospective series.
Collapse
Affiliation(s)
- Sara Notaro
- Department of Gynecology and Obstetrics, Medical University of Innsbruck, Innsbruck, Austria.,Department of Gynecology and Obstetrics, University of Brescia, Brescia, Italy
| | - Daniel Reimer
- Department of Gynecology and Obstetrics, Medical University of Innsbruck, Innsbruck, Austria
| | - Michaela Duggan-Peer
- Department of Gynecology and Obstetrics, Medical University of Innsbruck, Innsbruck, Austria
| | - Heidi Fiegl
- Department of Gynecology and Obstetrics, Medical University of Innsbruck, Innsbruck, Austria
| | - Annamarie Wiedermair
- Department of Gynecology and Obstetrics, Medical University of Innsbruck, Innsbruck, Austria
| | - Julia Rössler
- Department of Gynecology and Obstetrics, Medical University of Innsbruck, Innsbruck, Austria
| | - Peter Altevogt
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Mannheim, Germany
| | - Christian Marth
- Department of Gynecology and Obstetrics, Medical University of Innsbruck, Innsbruck, Austria
| | - Alain Gustave Zeimet
- Department of Gynecology and Obstetrics, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
10
|
Eles JR, Vazquez AL, Snyder NR, Lagenaur C, Murphy MC, Kozai TDY, Cui XT. Neuroadhesive L1 coating attenuates acute microglial attachment to neural electrodes as revealed by live two-photon microscopy. Biomaterials 2016; 113:279-292. [PMID: 27837661 DOI: 10.1016/j.biomaterials.2016.10.054] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 10/26/2016] [Accepted: 10/30/2016] [Indexed: 12/15/2022]
Abstract
Implantable neural electrode technologies for chronic neural recordings can restore functional control to paralysis and limb loss victims through brain-machine interfaces. These probes, however, have high failure rates partly due to the biological responses to the probe which generate an inflammatory scar and subsequent neuronal cell death. L1 is a neuronal specific cell adhesion molecule and has been shown to minimize glial scar formation and promote electrode-neuron integration when covalently attached to the surface of neural probes. In this work, the acute microglial response to L1-coated neural probes was evaluated in vivo by implanting coated devices into the cortex of mice with fluorescently labeled microglia, and tracking microglial dynamics with multi-photon microscopy for the ensuing 6 h in order to understand L1's cellular mechanisms of action. Microglia became activated immediately after implantation, extending processes towards both L1-coated and uncoated control probes at similar velocities. After the processes made contact with the probes, microglial processes expanded to cover 47.7% of the control probes' surfaces. For L1-coated probes, however, there was a statistically significant 83% reduction in microglial surface coverage. This effect was sustained through the experiment. At 6 h post-implant, the radius of microglia activation was reduced for the L1 probes by 20%, shifting from 130.0 to 103.5 μm with the coating. Microglia as far as 270 μm from the implant site displayed significantly lower morphological characteristics of activation for the L1 group. These results suggest that the L1 surface treatment works in an acute setting by microglial mediated mechanisms.
Collapse
Affiliation(s)
- James R Eles
- Bioengineering, University of Pittsburgh, United States; Center for the Neural Basis of Cognition, University of Pittsburgh and Carnegie Mellon University, United States
| | - Alberto L Vazquez
- Bioengineering, University of Pittsburgh, United States; Radiology, University of Pittsburgh, United States; Neurobiology, University of Pittsburgh, United States
| | - Noah R Snyder
- Bioengineering, University of Pittsburgh, United States; Center for the Neural Basis of Cognition, University of Pittsburgh and Carnegie Mellon University, United States
| | - Carl Lagenaur
- Neurobiology, University of Pittsburgh, United States
| | | | - Takashi D Y Kozai
- Bioengineering, University of Pittsburgh, United States; Center for the Neural Basis of Cognition, University of Pittsburgh and Carnegie Mellon University, United States; McGowan Institute for Regenerative Medicine, University of Pittsburgh, United States; NeuroTech Center of the University of Pittsburgh Brain Institute, United States.
| | - X Tracy Cui
- Bioengineering, University of Pittsburgh, United States; Center for the Neural Basis of Cognition, University of Pittsburgh and Carnegie Mellon University, United States; McGowan Institute for Regenerative Medicine, University of Pittsburgh, United States.
| |
Collapse
|
11
|
Haase G, Gavert N, Brabletz T, Ben-Ze'ev A. A point mutation in the extracellular domain of L1 blocks its capacity to confer metastasis in colon cancer cells via CD10. Oncogene 2016; 36:1597-1606. [PMID: 27641335 DOI: 10.1038/onc.2016.329] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 07/24/2016] [Accepted: 08/01/2016] [Indexed: 12/11/2022]
Abstract
The neural L1 transmembrane cell adhesion receptor of the immunoglobulin-like family is a target gene of Wnt-β-catenin signaling in human colorectal cancer (CRC) cells and is expressed at the invasive edge of the tumor tissue. L1 overexpression in cultured CRC cells confers enhanced proliferation, motility and liver metastasis. We have analyzed the mechanisms of L1-mediated signaling in CRC cells by using various point mutations in the L1 ectodomain that are known to cause severe genetically inherited mental retardation disorders in patients. We found that all such L1 ectodomain mutations abolish the ability of L1 to confer metastatic properties in CRC cells. Using gene array analysis, we identified L1-mutation-specific gene expression signatures for the L1/H210Q and L1/D598N mutations. We identified CD10, a metalloprotease (neprilysin, neutral endopeptidase) and a gene that is specifically induced in CRC cells by L1 in an L1/H210Q mutation-specific manner. CD10 expression was required for the L1-mediated induction of cell proliferation, motility and metastasis, as suppression of CD10 levels in L1-expressing CRC cells abolished the L1 effects on CRC progression. The signaling from L1 to CD10 was mediated through the L1-ezrin-NF-κB pathway. In human CRC tissue L1 and CD10 were localized in partially overlapping regions in the more invasive areas of the tumor tissue. The results suggest that CD10 is a necessary component conferring the L1 effects in CRC cells. The identification of gene expression patterns of L1-domain-specific point mutations may provide novel markers and targets for interfering with L1-mediated CRC progression.
Collapse
Affiliation(s)
- G Haase
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - N Gavert
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - T Brabletz
- Department of Experimental Medicine I, University of Erlangen-Nuernberg, Erlangen, Germany
| | - A Ben-Ze'ev
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
12
|
Anderson HJ, Galileo DS. Small-molecule inhibitors of FGFR, integrins and FAK selectively decrease L1CAM-stimulated glioblastoma cell motility and proliferation. Cell Oncol (Dordr) 2016; 39:229-42. [PMID: 26883759 DOI: 10.1007/s13402-016-0267-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/06/2016] [Indexed: 12/17/2022] Open
Abstract
PURPOSE The cell adhesion/recognition protein L1CAM (L1; CD171) has previously been shown to act through integrin, focal adhesion kinase (FAK) and fibroblast growth factor receptor (FGFR) signaling pathways to increase the motility and proliferation of glioblastoma cells in an autocrine/paracrine manner. Here, we investigated the effects of clinically relevant small-molecule inhibitors of the integrin, FAK and FGFR signaling pathways on glioblastoma-derived cells to determine their effectiveness and selectivity for diminishing L1-mediated stimulation. METHODS The effects of the FGFR inhibitor PD173074, the FAK inhibitors PF431396 and Y15 and the αvβ3/αvβ5 integrin inhibitor cilengitide were assessed in L1-positive and L1-negative variants of the human glioblastoma-derived cell lines T98G and U-118 MG. Their motility and proliferation were quantified using time-lapse microscopy and DNA content/cell cycle analyses, respectively. RESULTS The application of all four inhibitors resulted in reductions in L1-mediated motility and proliferation rates of L1-positive glioblastoma-derived cells, down to the level of L1-negative cells when used at nanomolar concentrations, whereas no or much smaller reductions in these rates were obtained in L1-negative cells. In addition, we found that single inhibitor treatment resulted in maximum effects (i.e., combinations of FAK or integrin inhibitors with the FGFR inhibitor were rarely more effective). These results suggest that FAK may act as a point of convergence between the integrin and FGFR signaling pathways stimulated by L1 in these cells. CONCLUSIONS We here show for the first time that small-molecule inhibitors of FGFR, integrins and FAK effectively and selectively abolish L1-stimulated migration and proliferation of glioblastoma-derived cells. Our results suggest that these inhibitors have the potential to reduce the aggressiveness of high-grade gliomas expressing L1.
Collapse
Affiliation(s)
- Hannah J Anderson
- Department of Biological Sciences, University of Delaware, Newark, DE, 19716, USA
| | - Deni S Galileo
- Department of Biological Sciences, University of Delaware, Newark, DE, 19716, USA. .,Helen F. Graham Cancer Center and Research Institute, Christiana Care Health System, Newark, DE, 19713, USA.
| |
Collapse
|
13
|
Cell Adhesion Molecules and Ubiquitination-Functions and Significance. BIOLOGY 2015; 5:biology5010001. [PMID: 26703751 PMCID: PMC4810158 DOI: 10.3390/biology5010001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 12/02/2015] [Accepted: 12/15/2015] [Indexed: 12/11/2022]
Abstract
Cell adhesion molecules of the immunoglobulin (Ig) superfamily represent the biggest group of cell adhesion molecules. They have been analyzed since approximately 40 years ago and most of them have been shown to play a role in tumor progression and in the nervous system. All members of the Ig superfamily are intensively posttranslationally modified. However, many aspects of their cellular functions are not yet known. Since a few years ago it is known that some of the Ig superfamily members are modified by ubiquitin. Ubiquitination has classically been described as a proteasomal degradation signal but during the last years it became obvious that it can regulate many other processes including internalization of cell surface molecules and lysosomal sorting. The purpose of this review is to summarize the current knowledge about the ubiquitination of cell adhesion molecules of the Ig superfamily and to discuss its potential physiological roles in tumorigenesis and in the nervous system.
Collapse
|
14
|
Altevogt P, Doberstein K, Fogel M. L1CAM in human cancer. Int J Cancer 2015; 138:1565-76. [DOI: 10.1002/ijc.29658] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 06/19/2015] [Indexed: 12/18/2022]
Affiliation(s)
- Peter Altevogt
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany and Department of Dermatology, Venereology and Allergology; University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg; Mannheim Germany
| | - Kai Doberstein
- Ovarian Cancer Research Center, Perelman School of Medicine; University of Pennsylvania; Philadelphia, PA
| | - Mina Fogel
- Central Laboratories; Kaplan Medical Center; Rehovot Israel
| |
Collapse
|
15
|
Zeimet AG, Reimer D, Huszar M, Winterhoff B, Puistola U, Abdel Azim S, Müller-Holzner E, Ben-Arie A, van Kempen LC, Petru E, Jahn S, Geels YP, Massuger LF, Amant F, Polterauer S, Lappi-Blanco E, Bulten J, Meuter A, Tanouye S, Oppelt P, Stroh-Weigert M, Reinthaller A, Mariani A, Hackl W, Netzer M, Schirmer U, Vergote I, Altevogt P, Marth C, Fogel M. L1CAM in Early-Stage Type I Endometrial Cancer: Results of a Large Multicenter Evaluation. ACTA ACUST UNITED AC 2013; 105:1142-50. [DOI: 10.1093/jnci/djt144] [Citation(s) in RCA: 162] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
16
|
Kiefel H, Bondong S, Hazin J, Ridinger J, Schirmer U, Riedle S, Altevogt P. L1CAM: a major driver for tumor cell invasion and motility. Cell Adh Migr 2012; 6:374-84. [PMID: 22796939 DOI: 10.4161/cam.20832] [Citation(s) in RCA: 168] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The L1 cell adhesion molecule (L1CAM) plays a major role in the development of the nervous system and in the malignancy of human tumors. In terms of biological function, L1CAM comes along in two different flavors: (1) a static function as a cell adhesion molecule that acts as a glue between cells; (2) a motility promoting function that drives cell migration during neural development and supports metastasis of human cancers. Important factors that contribute to the switch in the functional mode of L1CAM are: (1) the cleavage from the cell surface by membrane proximal proteolysis and (2) the ability to change binding partners and engage in L1CAM-integrin binding. Recent studies have shown that the cleavage of L1CAM by metalloproteinases and the binding of L1CAM to integrins via its RGD-motif in the sixth Ig-domain activate signaling pathways distinct from the ones elicited by homophilic binding. Here we highlight important features of L1CAM proteolysis and the signaling of L1CAM via integrin engagement. The novel insights into L1CAM downstream signaling and its regulation during tumor progression and epithelial-mesenchymal transition (EMT) will lead to a better understanding of the dualistic role of L1CAM as a cell adhesion and/or motility promoting cell surface molecule.
Collapse
Affiliation(s)
- Helena Kiefel
- Translational Immunology, German Cancer Research Center, Heidelberg, Germany
| | | | | | | | | | | | | |
Collapse
|
17
|
Role of L1CAM for axon sprouting and branching. Cell Tissue Res 2012; 349:39-48. [DOI: 10.1007/s00441-012-1345-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Accepted: 01/25/2012] [Indexed: 01/02/2023]
|
18
|
Blessmann M, Gröbe A, Quaas A, Kaifi JT, Mistakidis G, Bernreuther C, Sauter G, Gros S, Rawnaq T, Friedrich R, Mautner VF, Smeets R, Heiland M, Schachner M, Izbicki JR. Adhesion molecule L1 is down-regulated in malignant peripheral nerve sheath tumors versus benign neurofibromatosis type 1–associated tumors. Oral Surg Oral Med Oral Pathol Oral Radiol 2012; 113:239-44. [DOI: 10.1016/j.tripleo.2011.04.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2011] [Revised: 04/14/2011] [Accepted: 04/15/2011] [Indexed: 01/27/2023]
|
19
|
Bondong S, Kiefel H, Hielscher T, Zeimet AG, Zeillinger R, Pils D, Schuster E, Castillo-Tong DC, Cadron I, Vergote I, Braicu I, Sehouli J, Mahner S, Fogel M, Altevogt P. Prognostic significance of L1CAM in ovarian cancer and its role in constitutive NF-κB activation. Ann Oncol 2012; 23:1795-802. [PMID: 22228447 DOI: 10.1093/annonc/mdr568] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Overexpression of L1-cell adhesion molecule (L1CAM) has been observed for various carcinomas and correlates with poor prognosis and late-stage disease. In vitro, L1CAM enhances proliferation, cell migration, adhesion and chemoresistance. We tested L1CAM and interleukin-1 beta (IL-1β) expression in tumor samples and ascitic fluid from ovarian carcinoma patients to examine its role as a prognostic marker. PATIENTS AND METHODS We investigated tumor samples and ascitic fluid from 232 serous ovarian carcinoma patients for L1CAM by enzyme-linked immunosorbent assay. L1CAM expression was correlated with pathoclinical parameters and patients' outcome. IL-1β levels were measured in tumor cell lysates. Ovarian cancer cell lines were analyzed for the contribution of L1CAM to IL-1β production and nuclear factor 'kappa-light-chain-enhancer' of activated B-cells (NF-κB) activation. RESULTS We observed that L1CAM-expressing tumors show a highly invasive phenotype associated with restricted tumor resectability at primary debulking surgery and increased lymphogenic spread. Soluble L1CAM proved to be a marker for poor progression-free survival and chemoresistance. In ovarian carcinoma cell lines, the specific knock-down of L1CAM reduces IL-1β expression and NF-κB activity. CONCLUSIONS L1CAM expression contributes to the invasive and metastatic phenotype of serous ovarian carcinoma. L1CAM expression and shedding in the tumor microenvironment could contribute to enhanced invasion and tumor progression through increased IL-1β production and NF-κB activation.
Collapse
Affiliation(s)
- S Bondong
- Department of Translational Immunology, German Cancer Research Center, Heidelberg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
L1CAM-integrin interaction induces constitutive NF-kappaB activation in pancreatic adenocarcinoma cells by enhancing IL-1beta expression. Oncogene 2010; 29:4766-78. [PMID: 20543863 DOI: 10.1038/onc.2010.230] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
L1 cell adhesion molecule (L1CAM) overexpression is often associated with bad prognosis in various human carcinomas. Recent studies also suggest a role of L1CAM in pancreatic ductal adenocarcinomas (PDAC). To further address its contribution, we expressed functional domains of L1CAM in PT45-P1 PDAC cells. We found that L1CAM that is full length (L1-FL), but neither the soluble ectodomain (L1ecto) nor the cytoplasmic part (L1cyt), could enhance cell proliferation or tumour growth in mice. Expression of L1-FL resulted in constitutive activation of NF-kappaB, which was abolished by L1CAM knockdown. We showed that the expression of IL-1beta was selectively upregulated by L1-FL, and increased IL-1beta levels were instrumental for sustained NF-kappaB activation. IL-1beta production and NF-kappaB activation were abolished by knockdown of alpha5-integrin and integrin-linked kinase, but insensitive to depletion of L1CAM cleavage proteinases. Supporting these data, PT45-P1 cells transduced with an L1CAM mutant deficient in integrin binding (L1-RGE) did not support the described L1-FL functions. Our results suggest that membranous L1CAM interacts with RGD-binding integrins, leading to sustained NF-kappaB activation by IL-1beta production and autocrine/paracrine signalling. The unravelling of this novel mechanism sheds new light on the important role of L1CAM expression in PDAC cells.
Collapse
|
21
|
ADAM10 Is Upregulated in Melanoma Metastasis Compared with Primary Melanoma. J Invest Dermatol 2010; 130:763-73. [DOI: 10.1038/jid.2009.335] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
22
|
Yang M, Adla S, Temburni MK, Patel VP, Lagow EL, Brady OA, Tian J, Boulos MI, Galileo DS. Stimulation of glioma cell motility by expression, proteolysis, and release of the L1 neural cell recognition molecule. Cancer Cell Int 2009; 9:27. [PMID: 19874583 PMCID: PMC2776596 DOI: 10.1186/1475-2867-9-27] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2009] [Accepted: 10/29/2009] [Indexed: 12/31/2022] Open
Abstract
Background Malignant glioma cells are particularly motile and can travel diffusely through the brain parenchyma, apparently without following anatomical structures to guide their migration. The neural adhesion/recognition protein L1 (L1CAM; CD171) has been implicated in contributing to stimulation of motility and metastasis of several non-neural cancer types. We explored the expression and function of L1 protein as a stimulator of glioma cell motility using human high-grade glioma surgical specimens and established rat and human glioma cell lines. Results L1 protein expression was found in 17 out of 18 human high-grade glioma surgical specimens by western blotting. L1 mRNA was found to be present in human U-87/LacZ and rat C6 and 9L glioma cell lines. The glioma cell lines were negative for surface full length L1 by flow cytometry and high resolution immunocytochemistry of live cells. However, fixed and permeablized cells exhibited positive staining as numerous intracellular puncta. Western blots of cell line extracts revealed L1 proteolysis into a large soluble ectodomain (~180 kDa) and a smaller transmembrane proteolytic fragment (~32 kDa). Exosomal vesicles released by the glioma cell lines were purified and contained both full-length L1 and the proteolyzed transmembrane fragment. Glioma cell lines expressed L1-binding αvβ5 integrin cell surface receptors. Quantitative time-lapse analyses showed that motility was reduced significantly in glioma cell lines by 1) infection with an antisense-L1 retroviral vector and 2) L1 ectodomain-binding antibodies. Conclusion Our novel results support a model of autocrine/paracrine stimulation of cell motility in glioma cells by a cleaved L1 ectodomain and/or released exosomal vesicles containing L1. This mechanism could explain the diffuse migratory behavior of high-grade glioma cancer cells within the brain.
Collapse
Affiliation(s)
- Muhua Yang
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Makhina T, Loers G, Schulze C, Ueberle B, Schachner M, Kleene R. Extracellular GAPDH binds to L1 and enhances neurite outgrowth. Mol Cell Neurosci 2009; 41:206-18. [PMID: 19285135 DOI: 10.1016/j.mcn.2009.02.010] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2008] [Revised: 12/08/2008] [Accepted: 02/26/2009] [Indexed: 10/21/2022] Open
Abstract
We have identified glyceraldehyde-3-phosphate dehydrogenase (GAPDH) as a binding partner for the cell adhesion molecule L1. GAPDH binds to sites within the extracellular domain of L1, namely the immunoglobulin-like domains I-VI and the fibronectin type III homologous repeats 4-5. Extracellular GAPDH was detected at the cell surface of neuronal cells by surface biotinylation and immunocytochemistry. Addition of GAPDH antibodies to cultured cerebellar neurons inhibited L1-dependent neurite outgrowth in the presence of ATP, while the application of exogenous GAPDH promoted L1-dependent neurite outgrowth. Pre-treatment of substrate-coated L1-Fc with ATP and GAPDH, which phosphorylates L1, subsequently led to an enhanced neurite outgrowth. Furthermore, aggregation of L1-Fc carrying beads was enhanced in the presence of both GAPDH and ATP. L1-dependent neurite outgrowth and aggregation of L1 were diminished in the presence of alkaline phosphatase or a protein kinase inhibitor. Our results show that GAPDH-dependent phosphorylation of L1 is a novel mechanism in regulating L1-mediated neurite outgrowth.
Collapse
Affiliation(s)
- Tatjana Makhina
- Zentrum für Molekulare Neurobiologie, Universität Hamburg, Martinistrasse 52, 20246 Hamburg, Germany
| | | | | | | | | | | |
Collapse
|
24
|
White R, Gonsior C, Krämer-Albers EM, Stöhr N, Hüttelmaier S, Trotter J. Activation of oligodendroglial Fyn kinase enhances translation of mRNAs transported in hnRNP A2-dependent RNA granules. ACTA ACUST UNITED AC 2008; 181:579-86. [PMID: 18490510 PMCID: PMC2386098 DOI: 10.1083/jcb.200706164] [Citation(s) in RCA: 149] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Central nervous system myelination requires the synthesis of large amounts of myelin basic protein (MBP) at the axon–glia contact site. MBP messenger RNA (mRNA) is transported in RNA granules to oligodendroglial processes in a translationally silenced state. This process is regulated by the trans-acting factor heterogeneous nuclear ribonucleoprotein (hnRNP) A2 binding to the cis-acting A2 response element (A2RE). Release of this repression of MBP mRNA translation is thus essential for myelination. Mice deficient in the Src family tyrosine kinase Fyn are hypomyelinated and contain reduced levels of MBP. Here, we identify hnRNP A2 as a target of activated Fyn in oligodendrocytes. We show that active Fyn phosphorylates hnRNP A2 and stimulates translation of an MBP A2RE–containing reporter construct. Neuronal adhesion molecule L1 binding to oligodendrocytes results in Fyn activation, which leads to an increase in hnRNP A2 phosphorylation. These results suggest that Fyn kinase activation results in the localized translation of MBP mRNA at sites of axon–glia contact and myelin deposition.
Collapse
Affiliation(s)
- Robin White
- Molecular Cell Biology, Department of Biology, Johannes Gutenberg University of Mainz, 55128 Mainz, Germany
| | | | | | | | | | | |
Collapse
|
25
|
Functional dissection of the C. elegans cell adhesion molecule SAX-7, a homologue of human L1. Mol Cell Neurosci 2008; 37:56-68. [DOI: 10.1016/j.mcn.2007.08.014] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2007] [Revised: 08/08/2007] [Accepted: 08/21/2007] [Indexed: 11/24/2022] Open
|
26
|
Kulahin N, Li S, Hinsby A, Kiselyov V, Berezin V, Bock E. Fibronectin type III (FN3) modules of the neuronal cell adhesion molecule L1 interact directly with the fibroblast growth factor (FGF) receptor. Mol Cell Neurosci 2007; 37:528-36. [PMID: 18222703 DOI: 10.1016/j.mcn.2007.12.001] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2007] [Revised: 11/30/2007] [Accepted: 12/04/2007] [Indexed: 12/18/2022] Open
Abstract
The neuronal cell adhesion molecule (CAM) L1 promotes axonal outgrowth, presumably through an interaction with the fibroblast growth factor receptor (FGFR). The present study demonstrates a direct interaction between L1 fibronectin type III (FN3) modules I-V and FGFR1 immunoglobulin (Ig) modules II and III by surface plasmon resonance analysis. Binding of L1 to FGFR1 was enhanced by adenosine 5'-triphosphate (ATP), adenylylmethylenediphosphonate (AMP-PCP), and guanosine-5'-triphosphate (GTP), but not adenosine monophosphate (AMP). The L1-FN3 modules were capable of activating FGFR1, reflected by receptor phosphorylation, and this resulted in the induction of differentiation of primary neurons, reflected by neurite outgrowth. Furthermore, ATP modulated L1-induced neuronal differentiation and FGFR1 phosphorylation through regulation of the L1-FGFR1 interaction.
Collapse
Affiliation(s)
- Nikolaj Kulahin
- Protein Laboratory, Department of Neuroscience and Pharmacology, University of Copenhagen, Copenhagen, Denmark.
| | | | | | | | | | | |
Collapse
|
27
|
Kiryushko D, Bock E, Berezin V. Pharmacology of cell adhesion molecules of the nervous system. Curr Neuropharmacol 2007; 5:253-67. [PMID: 19305742 PMCID: PMC2644493 DOI: 10.2174/157015907782793658] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2007] [Revised: 04/27/2007] [Accepted: 07/17/2007] [Indexed: 12/15/2022] Open
Abstract
Cell adhesion molecules (CAMs) play a pivotal role in the development and maintenance of the nervous system under normal conditions. They also are involved in numerous pathological processes such as inflammation, degenerative disorders, and cancer, making them attractive targets for drug development. The majority of CAMs are signal transducing receptors. CAM-induced intracellular signalling is triggered via homophilic (CAM-CAM) and heterophilic (CAM - other counter-receptors) interactions, which both can be targeted pharmacologically. We here describe the progress in the CAM pharmacology focusing on cadherins and CAMs of the immunoglobulin (Ig) superfamily, such as NCAM and L1. Structural basis of CAM-mediated cell adhesion and CAM-induced signalling are outlined. Different pharmacological approaches to study functions of CAMs are presented including the use of specific antibodies, recombinant proteins, and synthetic peptides. We also discuss how unravelling of the 3D structure of CAMs provides novel pharmacological tools for dissection of CAM-induced signalling pathways and offers therapeutic opportunities for a range of neurological disorders.
Collapse
Affiliation(s)
- Darya Kiryushko
- Protein Laboratory, Department of Neuroscience and Pharmacology, Panum Institute Bld. 6.2, Blegdamsvej 3C, DK-2200, Copenhagen N, Denmark.
| | | | | |
Collapse
|
28
|
Kaifi JT, Reichelt U, Quaas A, Schurr PG, Wachowiak R, Yekebas EF, Strate T, Schneider C, Pantel K, Schachner M, Sauter G, Izbicki JR. L1 is associated with micrometastatic spread and poor outcome in colorectal cancer. Mod Pathol 2007; 20:1183-90. [PMID: 17873897 DOI: 10.1038/modpathol.3800955] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
L1 is a cell adhesion molecule expressed at the invasive front of colorectal tumors with an important role in metastasis. The aim of the present study was to determine L1 protein expression in a large cohort of colorectal cancer patients and its impact on early metastatic spread and survival. A total of 375 patients that underwent surgical treatment for colorectal cancer were chosen retrospectively. A tissue microarray was constructed of 576 tissue samples from these patients and analyzed by immunohistochemistry with a monoclonal antibody against human L1 (UJ127). Lymph node and bone marrow micrometastasis were assessed with monoclonal antibodies Ber-EP4 and pancytokeratin A45-B/B3, respectively. Associations between L1 expression and lymph node, bone marrow micrometastasis and survival were investigated with Fisher's, log-rank test and Cox multivariate analysis. All statistical tests were two-sided. L1 was detected in a subset of 48 (13%) of 375 patients examined. Analysis of L1 expression and survival revealed a significantly worse outcome for L1-positive patients by log-rank test (P<0.05). Multivariate Cox regression analysis showed the strongest independent prognostic impact of L1 expression (P<0.05). Fisher's test revealed a significant association of L1 expression and presence of disseminated tumor cells in lymph nodes and bone marrow (P<0.05). L1 is a powerful prognostic marker for patients that undergo complete surgical resection. It may have a role in early metastatic spread, as L1 is associated with micrometastases to both the lymph nodes and bone marrow. Thus, L1 should be explored further as a target for adjuvant therapy for micrometastatic disease.
Collapse
Affiliation(s)
- Jussuf T Kaifi
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Schultheis M, Diestel S, Schmitz B. The role of cytoplasmic serine residues of the cell adhesion molecule L1 in neurite outgrowth, endocytosis, and cell migration. Cell Mol Neurobiol 2007; 27:11-31. [PMID: 17151951 PMCID: PMC11517402 DOI: 10.1007/s10571-006-9113-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2005] [Accepted: 07/14/2006] [Indexed: 10/23/2022]
Abstract
1. The cell adhesion molecule L1 has been implicated in adhesion and migration of cells, in axon growth, guidance, and fasciculation, in myelination and synaptic plasticity. The cytoplasmic domain of neuronal L1 is highly conserved between species and has been shown to be phosphorylated at serine and tyrosine residues. 2. To investigate the significance of L1 serine phosphorylation, mutants of L1 were generated in which ser-1152, ser-1181, ser-1204, and ser-1248 were exchanged for leucine and rat B35 neuroblastoma cells were stably transfected with the L1-cDNA constructs. 3. Neurite outgrowth on poly-L-lysine (PLL) as substrate was determined either with or without differentiation into a neuronal phenotype with dbcAMP. In addition, antibody-induced endocytosis and cell migration were examined. 4. Our observations indicate that phosphorylation of single serine residues of the cytoplasmic domain of L1 contributes to neurite outgrowth through different mechanisms. Neurite growth is increased when ser-1152 or ser-1181 is replaced by a non-phosphorylatable leucine and decreased when ser-1204 or ser-1248 is mutated to leucine. Furthermore, mutation of ser-1181 to leucine results in strongly enhanced antibody-induced endocytosis of L1 and also in enhanced cell migration.
Collapse
Affiliation(s)
- M. Schultheis
- Department of Biochemistry, Institute of Animal Sciences, University of Bonn, Katzenburgweg 9a, 53115 Bonn, Germany
| | - S. Diestel
- Department of Biochemistry, Institute of Animal Sciences, University of Bonn, Katzenburgweg 9a, 53115 Bonn, Germany
| | - B. Schmitz
- Department of Biochemistry, Institute of Animal Sciences, University of Bonn, Katzenburgweg 9a, 53115 Bonn, Germany
| |
Collapse
|
30
|
Deepa SS, Carulli D, Galtrey C, Rhodes K, Fukuda J, Mikami T, Sugahara K, Fawcett JW. Composition of perineuronal net extracellular matrix in rat brain: a different disaccharide composition for the net-associated proteoglycans. J Biol Chem 2006; 281:17789-800. [PMID: 16644727 DOI: 10.1074/jbc.m600544200] [Citation(s) in RCA: 295] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We developed a method to extract differentially chondroitin sulfate proteoglycans (CSPGs) that are diffusely present in the central nervous system (CNS) matrix and CSPGs that are present in the condensed matrix of perineuronal nets (PNNs). Adult rat brain was sequentially extracted with Tris-buffered saline (TBS), TBS-containing detergent, 1 m NaCl, and 6 m urea. Extracting tissue sections with these buffers showed that the diffuse and membrane-bound CSPGs were extracted in the first three buffers, but PNN-associated CSPGs remained and were only removed by 6 m urea. Most of the CSPGs were extracted to some degree with all the buffers, with neurocan, brevican, aggrecan, and versican particularly associated with the stable urea-extractable PNNs. The CSPGs in stable complexes only extractable in urea buffer are found from postnatal day 7-14 coinciding with PNN formation. Disaccharide composition analysis indicated a different glycosaminoglycan (GAG) composition for PGs strongly associated with extracellular matrix (ECM). For CS/dermatan sulfate (DS)-GAG the content of nonsulfated, 6-O-sulfated, 2,6-O-disulfated, and 4,6-O-disulfated disaccharides were higher and for heparan sulfate (HS)-GAG, the content of 6-O-sulfated, 2-N-, 6-O-disulfated, 2-O-, 2-N-disulfated, and 2-O-, 2-N-, 6-O-trisulfated disaccharides were higher in urea extract compared with other buffer extracts. Digestions with chondroitinase ABC and hyaluronidase indicated that aggrecan, versican, neurocan, brevican, and phosphacan are retained in PNNs through binding to hyaluronan (HA). A comparison of the brain and spinal cord ECM with respect to CSPGs indicated that the PNNs in both parts of the CNS have the same composition.
Collapse
|
31
|
Kaifi JT, Strelow A, Schurr PG, Reichelt U, Yekebas EF, Wachowiak R, Quaas A, Strate T, Schaefer H, Sauter G, Schachner M, Izbicki JR. L1 (CD171) is highly expressed in gastrointestinal stromal tumors. Mod Pathol 2006; 19:399-406. [PMID: 16400320 DOI: 10.1038/modpathol.3800547] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The treatment strategy for mesenchymal tumors of the gastrointestinal tract is based upon typing of the tumor. Especially differential diagnosis of gastrointestinal stromal tumors (GISTs) to leiomyomas is crucial for determining radicality of surgery. L1 cell adhesion molecule (CD171) plays an essential role in tumor progression. The aim of this study was to determine expression of L1 in GISTs, smooth muscle tumors, desmoid-type fibromatosis and peripheral nerve sheath tumors (PNSTs). We retrospectively analyzed a total of 129 surgically resected primary tumors or metastases of 72 GISTs, 29 smooth muscle tumors, seven PNSTs and 21 desmoid-type fibromatosis by immunohistochemistry for c-kit, CD34, smooth muscle actin, desmin, vimentin, S-100 and L1 expression. L1 expression was detected in 53 (74%) of 72 GISTs but in none of 29 smooth muscle tumors or 21 desmoid-type fibromatosis (P<0.01 by Fisher's test). In all, four (57%) of seven peripheral nerve sheath tumors were L1-positive. Survival analysis of 55 surgically completely resected GISTs presenting without metastasis at initial diagnosis revealed no tumor-specific death among L1-negative patients (P=0.13 by log-rank test; median follow-up time 41 months) and one recurrence was observed (P=0.12). Interestingly high levels of L1 were seen in tumor vascular endothelial cells of smooth muscle tumors and PNSTs, but not in GISTs. Our data show that L1 is highly expressed in GISTs but not in smooth muscle tumors and desmoid-type fibromatosis being important differential diagnoses. The trend towards a reduced survival of L1-positive patients in this study has to be further evaluated in future trials with higher patient numbers.
Collapse
Affiliation(s)
- Jussuf T Kaifi
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Conacci-Sorrell M, Kaplan A, Raveh S, Gavert N, Sakurai T, Ben-Ze'ev A. The shed ectodomain of Nr-CAM stimulates cell proliferation and motility, and confers cell transformation. Cancer Res 2006; 65:11605-12. [PMID: 16357171 DOI: 10.1158/0008-5472.can-05-2647] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Nr-CAM, a cell-cell adhesion molecule of the immunoglobulin-like cell adhesion molecule family, known for its function in neuronal outgrowth and guidance, was recently identified as a target gene of beta-catenin signaling in human melanoma and colon carcinoma cells and tissue. Retrovirally mediated transduction of Nr-CAM into fibroblasts induces cell motility and tumorigenesis. We investigated the mechanisms by which Nr-CAM can confer properties related to tumor cell behavior and found that Nr-CAM expression in NIH3T3 cells protects cells from apoptosis in the absence of serum by constitutively activating the extracellular signal-regulated kinase and AKT signaling pathways. We detected a metalloprotease-mediated shedding of Nr-CAM into the culture medium of cells transfected with Nr-CAM, and of endogenous Nr-CAM in B16 melanoma cells. Conditioned medium and purified Nr-CAM-Fc fusion protein both enhanced cell motility, proliferation, and extracellular signal-regulated kinase and AKT activation. Moreover, Nr-CAM was found in complex with alpha4beta1 integrins in melanoma cells, indicating that it can mediate, in addition to homophilic cell-cell adhesion, heterophilic adhesion with extracellular matrix receptors. Suppression of Nr-CAM levels by small interfering RNA in B16 melanoma inhibited the adhesive and tumorigenic capacities of these cells. Stable expression of the Nr-CAM ectodomain in NIH3T3 cells conferred cell transformation and tumorigenesis in mice, suggesting that the metalloprotease-mediated shedding of Nr-CAM is a principal route for promoting oncogenesis by Nr-CAM.
Collapse
|
33
|
Kaifi JT, Zinnkann U, Yekebas EF, Schurr PG, Reichelt U, Wachowiak R, Fiegel HC, Petri S, Schachner M, Izbicki JR. L1 is a potential marker for poorly-differentiated pancreatic neuroendocrine carcinoma. World J Gastroenterol 2006; 12:94-8. [PMID: 16440424 PMCID: PMC4077503 DOI: 10.3748/wjg.v12.i1.94] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To determine the expression of L1 in pancreatic neuroendocrine tumor and to correlate it with WHO classification of this tumor.
METHODS: We retrospectively analyzed L1 expression in 63 cases of pancreatic neuroendocrine tumor by immunohistochemistry on paraffin sections of primary tumors or metastases. Staining was performed by peroxidase technique with monoclonal antibody UJ127.11 against human L1. All tumors were classified according to WHO classification as well-differentiated neuroendocrine tumors and carcinomas or poorly-differentiated neuroendocrine carcinomas.
RESULTS: L1 was detected in 5 (7.9%) of 63 pancreatic neuroendocrine tumors. Four (44.4%) of 9 poorly-differentiated carcinomas expressed L1. In contrast, only 1 (1.9%) of 54 well-differentiated tumors or carcinomas was positive for L1. No expression was found in Langerhans islet cells of normal pancreatic tissue. Cross table analysis showed a significant association between L1 expression and classification of neuroendocrine tumors of the pancreas (P<0.01).
CONCLUSION: L1 is specifically expressed in poorly-differentiated pancreatic neuroendocrine carcinomas that are known to have the worst prognosis. L1 might be a marker for risk prediction of patients diagnosed with pancreatic neuroendocrine carcinomas.
Collapse
Affiliation(s)
- Jussuf T Kaifi
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Stoeck A, Schlich S, Issa Y, Gschwend V, Wenger T, Herr I, Marmé A, Bourbie S, Altevogt P, Gutwein P. L1 on ovarian carcinoma cells is a binding partner for Neuropilin-1 on mesothelial cells. Cancer Lett 2005; 239:212-26. [PMID: 16377081 DOI: 10.1016/j.canlet.2005.08.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2005] [Revised: 07/30/2005] [Accepted: 08/03/2005] [Indexed: 11/19/2022]
Abstract
The progression of ovarian cancer is driven by a variety of cellular factors that are incompletely understood. Binding of tumor cells to normal cells and to soluble factors influence tumor growth, angiogenesis and the stimulation of vascular permeability leading to ascites production. L1 adhesion molecule is overexpressed in ovarian carcinoma and is associated with bad prognosis. One receptor for L1 is Neuropilin-1 (NRP-1) that is also known as a receptor for VEGF(165). In the nervous system a complex of NRP-1 and L1 transmits signals by the neurorepellant Sem3A that is critical for the control of neurite outgrowth. NRP-1 has also been detected in human carcinomas but its function remains unknown. Here, we have examined NRP-1 expression in ovarian carcinoma cell lines and tissue. We report that little NRP-1 protein was detected in primary ovarian carcinoma tissues or established cell lines although mRNA for soluble and transmembrane NRP-1 were detected by RT-PCR. Instead, we observed strong expression of NRP-1 in mesothelial cells, which form the lining of the peritoneum. NRP-1 could serve as an isolation marker for primary mesothelial cells present in ascites fluid. We demonstrate that ovarian cancer cells expressing L1 can bind to NRP-1 overexpressing cells and mesothelial cells. Likewise, soluble L1 isolated from ascites of patients or produced as a fusion protein could bind to NRP-1 overexpressing cells and a direct interaction was demonstrated at the protein level. These findings suggest that L1 can support the binding of ovarian carcinoma cells to mesothelial cells via NRP-1. The L1-NRP-1 binding pathway could contribute to the growth of ovarian carcinomas and to reciprocal signalling between mesothelial cells and tumors.
Collapse
Affiliation(s)
- Alexander Stoeck
- Tumor Immunology Programme, German Cancer Research Center, D010, Im Neuenheimer Feld 280, D-69120 Heidelberg, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Cheng L, Lemmon V. Pathological missense mutations of neural cell adhesion molecule L1 affect neurite outgrowth and branching on an L1 substrate. Mol Cell Neurosci 2005; 27:522-30. [PMID: 15555929 DOI: 10.1016/j.mcn.2004.08.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2004] [Revised: 08/10/2004] [Accepted: 08/11/2004] [Indexed: 11/22/2022] Open
Abstract
A number of pathological missense mutations of L1CAM have been shown to disrupt L1-L1 homophilic binding and/or affect surface expression. To investigate whether these mutations disrupt L1-mediated neurite outgrowth, cerebellar neurons from L1 knockout mice are transfected with WT human L1 or L1 mutant constructs, and grown on an L1 substrate. Various parameters of neurite growth are quantified. Most L1 mutations do not affect neurite length significantly but several mutations cause a significant decrease in branching. Comparison of these data with data on L1 expression levels and homophilic binding strength show that changes in neurite growth cannot be simply explained by reductions in either of these parameters. Our results suggest that a coreceptor is involved in L1-mediated neurite outgrowth. Some pathological mutations have little effect on L1 mediated neurite growth, so it is unlikely that a failure of L1-mediated neurite outgrowth is the principle cause of brain defects in patients with L1 mutations.
Collapse
Affiliation(s)
- Ling Cheng
- Department of Neurosciences, Case Western Reserve University, Cleveland, OH, USA
| | | |
Collapse
|
36
|
Heck N, Garwood J, Loeffler JP, Larmet Y, Faissner A. Differential upregulation of extracellular matrix molecules associated with the appearance of granule cell dispersion and mossy fiber sprouting during epileptogenesis in a murine model of temporal lobe epilepsy. Neuroscience 2005; 129:309-24. [PMID: 15501589 DOI: 10.1016/j.neuroscience.2004.06.078] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/30/2004] [Indexed: 01/06/2023]
Abstract
We have investigated changes in the extracellular matrix of the hippocampus associated with the early progression of epileptogenesis in a murine model of temporal lobe epilepsy using immunohistochemistry. In the first week following intrahippocampal injection of the glutamate agonist, domoate, there is a latent period at the end of which begins a sequential upregulation of extracellular matrix (ECM) molecules in the granule cell layer of the dentate gyrus, beginning with neurocan and tenascin-C. This expression precedes the characteristic dispersion of the granule cell layer which is evident at 14 days post-injection when the first recurrent seizures can be recorded. At this stage, an upregulation of the chondroitin sulfate proteoglycan, phosphacan, the DSD-1 chondroitin sulfate motif, and the HNK-1 oligosaccharide are also observed. The expression of these molecules is localized differentially in the epileptogenic dentate gyrus, especially in the sprouting molecular layer, where a strong upregulation of phosphacan, tenascin-C, and HNK-1 is observed but there is no expression of the proteoglycan, neurocan, nor of the DSD-1 chondroitin sulfate motif. Hence, it appears that granule cell layer dispersion is accompanied by a general increase in the ECM, while mossy fiber sprouting in the molecular layer is associated with a more restricted repertoire. In contrast to these changes, the expression of the ECM glycoproteins, laminin and fibronectin, both of which are frequently implicated in tissue remodelling events, showed no changes associated with either granule cell dispersion or mossy fiber sprouting, indicating that the epileptogenic plasticity of the hippocampus is accompanied by ECM interactions that are characteristic of the CNS.
Collapse
Affiliation(s)
- N Heck
- LNDR, Centre de Neurochimie du CNRS, 5, rue Blaise Pascal, 67084 Strasbourg, France
| | | | | | | | | |
Collapse
|
37
|
Fogel M, Huszar M, Altevogt P, Ben-Arie A. L1 (CD171) as a novel biomarker for ovarian and endometrial carcinomas. Expert Rev Mol Diagn 2004; 4:455-62. [PMID: 15225093 DOI: 10.1586/14737159.4.4.455] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The L1 molecule has emerged as a promising new biomarker for the diagnosis and prognosis of human ovarian and endometrial tumors. It was initially described as an adhesion molecule for neural cells but its function on tumor cells is less well known. In this article, the role of L1 in promoting tumor cell adhesion and migration is discussed. The question of how L1 determination in tumor tissue samples, serum and ascites could potentially improve the diagnosis and monitoring of gynecologic tumor patients is also addressed. The presence of L1 in tissue and serum was found to be associated with recurrent disease and short survival, independently of the tumor's histological type. This provides an alternative classification of gynecologic tumors according to their aggressiveness rather than their histology. L1 expression was correlated with disease progression even in patients with Stage I endometrioid-type endometrial tumors, identifying them as high-risk patients on preoperative curettage specimens. Monitoring of soluble L1 during the follow-up period was found to signal disease progression and recurrence before clinical symptoms occur. L1-based diagnosis and prognosis has the potential to contribute to an improved disease management and could represent the basic rationale for novel tailored therapy.
Collapse
Affiliation(s)
- Mina Fogel
- Kaplan Medical Center, Department of Pathology, Rehovot, Israel.
| | | | | | | |
Collapse
|
38
|
Hikita ST, Cann GM, Wingerd KL, Mullick LH, Wayne WC, Webb SW, Clegg DO. Integrin alpha4beta1 (VLA-4) expression and activity in retinal and peripheral neurons. Mol Cell Neurosci 2003; 23:427-39. [PMID: 12837626 DOI: 10.1016/s1044-7431(03)00065-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The integrin alpha4beta1 fulfills important roles in inflammation and hematopoesis, but its functions in neurons are not well understood. Here we show that the alpha4 subunit is expressed on mouse retinal ganglion cells (RGCs) and undifferentiated retinal neuroblasts during the period of axon extension and migration. To determine if alpha4 integrins expressed by retinal neurons were active, neurons were cultured on known alpha4 ligands in vitro. Recombinant soluble vascular cell adhesion molecule 1 (rsVCAM-1), fibronectin, and osteopontin (OPN) induced neurite outgrowth that was diminished by function blocking antibodies specific for alpha4. Neurite outgrowth on OPN was also blocked by antibodies to the integrin beta1 subunit, implicating the alpha4beta1 heterodimer as one integrin receptor mediating outgrowth on OPN. OPN immunoreactivity was detected in the RGC fiber layer and optic nerve, suggesting that it may act as an alpha4 ligand in vivo. Neurons from chick lumbar sympathetic ganglia, chick dorsal root ganglia, and mouse superior cervical ganglia also extended neurites on rsVCAM-1, suggesting that integrin alpha4beta1 may play a role in the development of multiple neuronal cell types.
Collapse
Affiliation(s)
- Sherry T Hikita
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, CA 93106, USA
| | | | | | | | | | | | | |
Collapse
|
39
|
Mishima N, Hoffman S. Neurocan in the embryonic avian heart and vasculature. THE ANATOMICAL RECORD. PART A, DISCOVERIES IN MOLECULAR, CELLULAR, AND EVOLUTIONARY BIOLOGY 2003; 272:556-62. [PMID: 12740950 DOI: 10.1002/ar.a.10067] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The chondroitin sulfate proteoglycan (CSPG) neurocan was previously considered to be nervous-system specific. However, we have found neurocan in the embryonic heart and vasculature. In stage 11 quail embryos, neurocan was prominently expressed in the myocardium, dorsal mesocardium, heart-forming fields, splanchnic mesoderm, and vicinity of the extraembryonic vaculature, and at lower levels in the endocardium. A comparison of neurocan staining with QH1 staining of vascular endothelial cells demonstrates that neurocan is frequently expressed by cells adjacent to endothelial cells, rather than by endothelial cells themselves. In some cases, a dispersed subset of cells are neurocan-positive in a field of cells that otherwise appear uniform in morphology. Later in development, neurocan expression becomes relatively limited to the nervous system. However, even in 10-day embryos, neurocan is expressed in the chorio-allantoic membrane in the tissue that separates closely packed, small-diameter blood vessels. In summary, our results suggest that neurocan may function as a barrier that regulates vascular patterning during development.
Collapse
Affiliation(s)
- Noboru Mishima
- Division of Rheumatology, Medical University of South Carolina, Charleston, South Carolina 29425, USA
| | | |
Collapse
|
40
|
Gutwein P, Mechtersheimer S, Riedle S, Stoeck A, Gast D, Joumaa S, Zentgraf H, Fogel M, Altevogt DP. ADAM10-mediated cleavage of L1 adhesion molecule at the cell surface and in released membrane vesicles. FASEB J 2003; 17:292-4. [PMID: 12475894 DOI: 10.1096/fj.02-0430fje] [Citation(s) in RCA: 180] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Cells can release membrane components in a soluble form and as membrane vesicles. L1, an important molecule for cell migration of neural and tumor cells, is released by membrane-proximal cleavage, and soluble L1 promotes cell migration. Release of L1 is enhanced by shedding inducers such as phorbol ester and pervanadate, but it is also enhanced by depletion of cellular cholesterol with methyl-beta-cyclodextrin (MCD). How such different compounds can induce shedding is presently unknown. We show here that ADAM10 is involved in L1 cleavage, which occurs at the cell surface and in the Golgi apparatus. MCD and pervanadate treatment induced the release of microvesicles containing full-length L1 and the active form of ADAM10. L1 cleavage occurred in isolated vesicles. L1-containing microvesicles could trigger haptotactic cell migration. Only the neural L1 form carrying the RSLE signal for clathrin-dependent endocytosis was recruited and cleaved in vesicles. Phorbol ester treatment activated L1 cleavage predominantly at the cell surface. Our results provide evidence for two pathways of L1 cleavage, based on ADAM10 localization, that can be activated differentially: 1) direct cleavage at the cell surface, and 2) release and cleavage in secretory vesicles most likely derived from the Golgi apparatus. The findings establish a novel role for ADAM10 as a vesicle-based protease.
Collapse
Affiliation(s)
- Paul Gutwein
- Tumor Immunology Programme, German Cancer Research Center, D-69120 Heidelberg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Fogel M, Mechtersheimer S, Huszar M, Smirnov A, Abu-Dahi A, Tilgen W, Reichrath J, Georg T, Altevogt P, Gutwein P. L1 adhesion molecule (CD 171) in development and progression of human malignant melanoma. Cancer Lett 2003; 189:237-47. [PMID: 12490317 DOI: 10.1016/s0304-3835(02)00513-x] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The L1 adhesion molecule (CD171) plays an important role in axon guidance and cell migration in the nervous system. In the human, L1 is expressed on tumors derived from neurocrest and on certain carcinomas. We have analyzed immunohistochemically L1 expression on paraffin embedded specimens of acquired melanocytic nevi, primary cutaneous melanomas, and cutaneous and lymph node metastases of malignant melanomas. We found an increase in L1 immunoreactivity in malignant melanomas and metastases of malignant melanomas as compared to acquired melanocytic nevi that was statistically significant (P<0.05). Additionally, a correlation of L1 immunoreactivity with histological data of prognostic value such as Clark level and the expression of alphav-integrins was found. We detected soluble L1 in the conditioned medium of cultivated melanoma cells but only in 1/40 serum samples from a panel of melanoma patients representing various stages of disease. Our findings suggest that the presence of L1 might contribute to tumor progression by promoting cell adhesion and migration.
Collapse
Affiliation(s)
- Mina Fogel
- Department of Pathology, Kaplan Hospital, Rehovot, Israel
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Toba Y, Horie M, Sango K, Tokashiki A, Matsui F, Oohira A, Kawano H. Expression and immunohistochemical localization of heparan sulphate proteoglycan N-syndecan in the migratory pathway from the rat olfactory placode. Eur J Neurosci 2002; 15:1461-73. [PMID: 12028356 DOI: 10.1046/j.1460-9568.2002.01983.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
N-syndecan, a membrane-bound heparan sulphate proteoglycan, is abundantly present in the developing nervous system and thought to play important roles in the neurite outgrowth. In the present study, we examined the distribution of N-syndecan in the migratory route from the rat olfactory placode using immunohistochemistry and in situ hybridization. At embryonic day 15, both heparan sulphate and N-syndecan immunoreactivities were localized in and around the migrating cell clusters, which contained luteinizing hormone-releasing hormone (LHRH) and calbindin D-28k. Immunoreactivity for other glycosaminoglycan chains, such as chondroitin and keratan sulphate, and core proteins of the chondroitin sulphate proteoglycan, neurocan and phosphacan, were barely detected in the migratory pathway from the olfactory placode. By in situ hybridization histochemistry, N-syndecan mRNA was localized in virtually all of migrating neurons as well as in cells of the olfactory epithelium and the vomeronasal organ. N-syndecan immunoreactivity surrounded cells migrating along the vomeronasal nerves that were immunoreactive for neural cell adhesion molecules, NCAM, L1 and TAG-1. Considering that NCAM is implicated in the migratory process of LHRH neurons and specifically binds to heparan sulphate, it is likely that a heterophilic interaction between NCAM and N-syndecan participates in the neuronal migration from the rat olfactory placode.
Collapse
Affiliation(s)
- Yoko Toba
- Department of Developmental Morphology, Tokyo Metropolitan Institute for Neuroscience, 2-6 Musashidai, Fuchu 183-8526, Japan
| | | | | | | | | | | | | |
Collapse
|
43
|
The critical role of basement membrane-independent laminin gamma 1 chain during axon regeneration in the CNS. J Neurosci 2002. [PMID: 11943817 DOI: 10.1523/jneurosci.22-08-03144.2002] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We have addressed the question of whether a family of axon growth-promoting molecules known as the laminins may play a role during axon regeneration in the CNS. A narrow sickle-shaped region containing a basal lamina-independent form of laminin exists in and around the cell bodies and proximal portion of the apical dendrites of CA3 pyramidal neurons of the postnatal hippocampus. To understand the possible function of laminin in axon regeneration within this pathway, we have manipulated laminin synthesis at the mRNA level in a slice culture model of the lesioned mossy system. In this model early postnatal mossy fibers severed near the hilus can regenerate across the lesion and elongate rapidly within strata lucidum and pyramidale. In slice cultures of the postnatal day 4 hippocampus, 2 d before lesion and then continuing for 1-5 d after lesion, translation of the gamma1 chain product of laminin was reduced by using antisense oligodeoxyribonucleotides and DNA enzymes. In the setting of the lesioned organotypic hippocampal slice, astroglial repair of the lesion and overall glial patterning were unperturbed by the antisense or DNA enzyme treatments. However, unlike controls, in the treated, lesioned slices the vast majority of regenerating mossy fibers could not cross the lesion site; those that did were very much shorter than usual, and they took a meandering course. In a recovery experiment in which the DNA enzyme or antisense oligos were washed away, laminin immunoreactivity returned and mossy fiber regeneration resumed. These results demonstrate the critical role of laminin(s) in an axon regeneration model of the CNS.
Collapse
|
44
|
Yusuf-Makagiansar H, Anderson ME, Yakovleva TV, Murray JS, Siahaan TJ. Inhibition of LFA-1/ICAM-1 and VLA-4/VCAM-1 as a therapeutic approach to inflammation and autoimmune diseases. Med Res Rev 2002; 22:146-67. [PMID: 11857637 DOI: 10.1002/med.10001] [Citation(s) in RCA: 299] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
This review focuses on providing insights into the structural basis and clinical relevance of LFA-1 and VLA-4 inhibition by peptides and small molecules as adhesion-based therapeutic strategies for inflammation and autoimmune diseases. Interactions of cell adhesion molecules (CAM) play central roles in mediating immune and inflammatory responses. Leukocyte function-associated antigen (LFA-1, alpha(L)beta(2), and CD11a/CD18) and very late antigen (VLA-4, alpha(4)beta(1), and CD49d/CD29) are members of integrin-type CAM that are predominantly involved in leukocyte trafficking and extravasation. LFA-1 is exclusively expressed on leukocytes and interacts with its ligands ICAM-1, -2, and -3 to promote a variety of homotypic and heterotypic cell adhesion events required for normal and pathologic functions of the immune systems. VLA-4 is expressed mainly on lymphocyte, monocytes, and eosinophils, but is not found on neutrophils. VLA-4 interacts with its ligands VCAM-1 and fibronectin (FN) CS1 during chronic inflammatory diseases, such as rheumatoid arthritis, asthma, psoriasis, transplant-rejection, and allergy. Blockade of LFA-1 and VLA-4 interactions with their ligands is a potential target for immunosuppression. LFA-1 and VLA-4 antagonists (antibodies, peptides, and small molecules) are being developed for controlling inflammation and autoimmune diseases. The therapeutic intervention of mostly mAb-based has been extensively studied. However, due to the challenging relative efficacy/safety ratio of mAb-based therapy application, especially in terms of systemic administration and immunogenic potential, strategic alternatives in the forms of peptide, peptide mimetic inhibitors, and small molecule non-peptide antagonists are being sought. Linear and cyclic peptides derived from the sequences of LFA-1, ICAM-1, ICAM-2, VCAM-1, and FN C1 have been shown to have inhibitory effects in vitro and in vivo. Finally, understanding the mechanism of LFA-1 and VLA-4 binding to their ligands has become a fundamental basis in developing therapeutic agents for inflammation and autoimmune diseases.
Collapse
Affiliation(s)
- Helena Yusuf-Makagiansar
- Department of Pharmaceutical Chemistry, The University of Kansas, Simons Research Laboratory, 2095 Constant Avenue, Lawrence, Kansas 66047, USA
| | | | | | | | | |
Collapse
|
45
|
Mechtersheimer S, Gutwein P, Agmon-Levin N, Stoeck A, Oleszewski M, Riedle S, Postina R, Fahrenholz F, Fogel M, Lemmon V, Altevogt P. Ectodomain shedding of L1 adhesion molecule promotes cell migration by autocrine binding to integrins. J Cell Biol 2001; 155:661-73. [PMID: 11706054 PMCID: PMC2198870 DOI: 10.1083/jcb.200101099] [Citation(s) in RCA: 304] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The L1 adhesion molecule plays an important role in axon guidance and cell migration in the nervous system. L1 is also expressed by many human carcinomas. In addition to cell surface expression, the L1 ectodomain can be released by a metalloproteinase, but the biological function of this process is unknown. Here we demonstrate that membrane-proximal cleavage of L1 can be detected in tumors and in the developing mouse brain. The shedding of L1 involved a disintegrin and metalloproteinase (ADAM)10, as transfection with dominant-negative ADAM10 completely abolishes L1 release. L1-transfected CHO cells (L1-CHO) showed enhanced haptotactic migration on fibronectin and laminin, which was blocked by antibodies to alpha v beta 5 and L1. Migration of L1-CHO cells, but not the basal migration of CHO cells, was blocked by a metalloproteinase inhibitor, indicating a role for L1 shedding in the migration process. CHO and metalloproteinase-inhibited L1-CHO cells were stimulated to migrate by soluble L1-Fc protein. The induction of migration was blocked by alpha v beta 5-specific antibodies and required Arg-Gly-Asp sites in L1. A 150-kD L1 fragment released by plasmin could also stimulate CHO cell migration. We propose that ectodomain-released L1 promotes migration by autocrine/paracrine stimulation via alpha v beta 5. This regulatory loop could be relevant for migratory processes under physiological and pathophysiological conditions.
Collapse
Affiliation(s)
- S Mechtersheimer
- Tumor Immunology Program, G0100, German Cancer Research Center, D-69120 Heidelberg, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Webb K, Budko E, Neuberger TJ, Chen S, Schachner M, Tresco PA. Substrate-bound human recombinant L1 selectively promotes neuronal attachment and outgrowth in the presence of astrocytes and fibroblasts. Biomaterials 2001; 22:1017-28. [PMID: 11352083 DOI: 10.1016/s0142-9612(00)00353-7] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Axonal pathfinding is a complex process that is mediated through cell-matrix and cell-cell interactions. A large number of studies have demonstrated that ECM and ECM-derived proteins and peptides are potent promoters of neurite outgrowth, however much less attention is given to the fact that these same ligands also elicit responses in a wide variety of non-neuronal cell types. We examined the use of a substrate-bound recombinant form of human L1, an integral membrane protein, as a ligand for bridging materials for repairing the CNS by studying its effectiveness in promoting specific responses of neuronal cells in the presence of astrocytes and fibroblasts. L1, a cell adhesion molecule expressed in the developing CNS and PNS, has strong neurite promoting activity, and contributes to axonal guidance and axonal fasciculation during development. In this study, substrates treated with L1-Fc were compared to subtrates treated with fibronectin and poly-lysine (PDL) with respect to their interaction with a variety of cell types, including three types of neurons (DRG neurons, cerebellar granule neurons, and hippocampal neurons), astrocytes, dermal fibroblasts, and meningeal cells. L1-Fc-treated substrates supported significantly higher levels of neurite outgrowth relative to fibronectin and PDL, while inhibiting the attachment of astrocytes, meningeal cells, and fibroblasts. We also show that neuronal cells attach to and extend neurites on 30 microm diameter L1-Fc-treated filaments as an example of a potentially useful bridging substrate. The high level of biological specificity displayed by surface-bound L1, along with the fact that it is a potent promoter of neurite outgrowth, is normally expressed on axons and regulates axonal fasciculation during normal development bodes well for its use on bridging materials for the repair of the CNS, and suggests that cell adhesion molecules, in general, may be useful for biomaterial modification. Moreover, small diameter filaments coated with L1-Fc may function in an analogous way to pioneering axons that guide the growth of axons to distal targets during development.
Collapse
Affiliation(s)
- K Webb
- Department of Bioengineering, The Keck Center for Tissue Engineering, University of Utah, Salt Lake City 84112, USA
| | | | | | | | | | | |
Collapse
|
47
|
Zhou XH, Brakebusch C, Matthies H, Oohashi T, Hirsch E, Moser M, Krug M, Seidenbecher CI, Boeckers TM, Rauch U, Buettner R, Gundelfinger ED, Fässler R. Neurocan is dispensable for brain development. Mol Cell Biol 2001; 21:5970-8. [PMID: 11486035 PMCID: PMC87315 DOI: 10.1128/mcb.21.17.5970-5978.2001] [Citation(s) in RCA: 155] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Neurocan is a component of the extracellular matrix in brain. Due to its inhibition of neuronal adhesion and outgrowth in vitro and its expression pattern in vivo it was suggested to play an important role in axon guidance and neurite growth. To study the role of neurocan in brain development we generated neurocan-deficient mice by targeted disruption of the neurocan gene. These mice are viable and fertile and have no obvious deficits in reproduction and general performance. Brain anatomy, morphology, and ultrastructure are similar to those of wild-type mice. Perineuronal nets surrounding neurons appear largely normal. Mild deficits in synaptic plasticity may exist, as maintenance of late-phase hippocampal long-term potentiation is reduced. These data indicate that neurocan has either a redundant or a more subtle function in the development of the brain.
Collapse
Affiliation(s)
- X H Zhou
- Department of Experimental Pathology, Lund University, 221 85 Lund, Sweden
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Leyton L, Schneider P, Labra CV, Rüegg C, Hetz CA, Quest AF, Bron C. Thy-1 binds to integrin beta(3) on astrocytes and triggers formation of focal contact sites. Curr Biol 2001; 11:1028-38. [PMID: 11470407 DOI: 10.1016/s0960-9822(01)00262-7] [Citation(s) in RCA: 116] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
BACKGROUND Thy-1 is an abundant neuronal glycoprotein in mammals. Despite such prevalence, Thy-1 function remains largely obscure in the absence of a defined ligand. Astrocytes, ubiquitous cells of the brain, express a putative Thy-1 ligand that prevents neurite outgrowth. In this paper, a ligand molecule for Thy-1 was identified, and the consequences of Thy-1 binding for astrocyte function were investigated. RESULTS Thy-1 has been implicated in cell adhesion and, indeed, all known Thy-1 sequences were found to contain an integrin binding, RGD-like sequence. Thy-1 interaction with beta3 integrin on astrocytes was demonstrated in an adhesion assay using a thymoma line (EL-4) expressing high levels of Thy-1. EL-4 cells bound to astrocytes five times more readily than EL-4(-f), control cells lacking Thy-1. Binding was blocked by either anti-Thy-1 or anti-beta3 antibodies, by RGD-related peptides, or by soluble Thy-1-Fc chimeras. However, neither RGE/RLE peptides nor Thy-1(RLE)-Fc fusion protein inhibited the interaction. Immobilized Thy-1-Fc, but not Thy-1(RLE)-Fc fusion protein supported the attachment and spreading of astrocytes in a Mn(2+)-dependent manner. Binding to Thy-1-Fc was inhibited by RGD peptides. Moreover, vitronectin, fibrinogen, denatured collagen (dcollagen), and a kistrin-derived peptide, but not fibronectin, also mediated Mn(2+)-dependent adhesion, suggesting the involvement of beta3 integrin. The addition of Thy-1 to matrix-bound astrocytes induced recruitment of paxillin, vinculin, and focal adhesion kinase (FAK) to focal contacts and increased tyrosine phosphorylation of proteins such as p130(Cas) and FAK. Furthermore, astrocyte binding to immobilized Thy-1-Fc alone was sufficient to promote focal adhesion formation and phosphorylation on tyrosine. CONCLUSIONS Thy-1 binds to beta3 integrin and triggers tyrosine phosphorylation of focal adhesion proteins in astrocytes, thereby promoting focal adhesion formation, cell attachment, and spreading.
Collapse
Affiliation(s)
- L Leyton
- ICBM-Faculty of Medicine, University of Chile, Santiago, Chile.
| | | | | | | | | | | | | |
Collapse
|
49
|
Oleszewski M, Gutwein P, von der Lieth W, Rauch U, Altevogt P. Characterization of the L1-neurocan-binding site. Implications for L1-L1 homophilic binding. J Biol Chem 2000; 275:34478-85. [PMID: 10934197 DOI: 10.1074/jbc.m004147200] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The L1 adhesion molecule is a 200-220-kDa membrane glycoprotein of the Ig superfamily implicated in important neural processes including neuronal cell migration, axon outgrowth, learning, and memory formation. L1 supports homophilic L1-L1 binding that involves several Ig domains but can also bind with high affinity to the proteoglycan neurocan. It has been reported that neurocan can block homophilic binding; however, the mechanism of inhibition and the precise binding sites in both molecules have not been determined. By using fusion proteins, site-directed mutagenesis, and peptide blocking experiments, we have characterized the neurocan-binding site in the first Ig-like domain of human L1. Results from molecular modeling suggest that the sequences involved in neurocan binding are localized on the surface of the first Ig domain and largely overlap with the G-F-C beta-strands proposed to interact with the fourth Ig domain during homophilic binding. This suggests that neurocan may sterically hinder a proper alignment of L1 domains. We find that the C-terminal portion of neurocan is sufficient to mediate binding to the first Ig domain of L1, and we suggest that the sushi domain cooperates with a glycosaminoglycan side chain in forming the binding site for L1.
Collapse
Affiliation(s)
- M Oleszewski
- Tumor Immunology Programme, G0100, German Cancer Research Center, D-69120 Heidelberg, Germany
| | | | | | | | | |
Collapse
|
50
|
Abstract
Understanding how immunoglobulin superfamily cell adhesion molecules (IgCAMs) regulate nervous system development has lagged behind studies on integrins and cadherins. The recent characterization of IgCAM structures combined with cell biological studies on protein-protein interactions and membrane targeting/trafficking demonstrate that IgCAMs interact in exceedingly complex ways to regulate axonal growth and pathfinding.
Collapse
Affiliation(s)
- H Kamiguchi
- Developmental Brain Science Group, RIKEN Brain Science Institute (BSI), 2-1 Hirosawa, Saitama 351-0198, Wako, Japan.
| | | |
Collapse
|