1
|
Wells JA, Kumru K. Extracellular targeted protein degradation: an emerging modality for drug discovery. Nat Rev Drug Discov 2024; 23:126-140. [PMID: 38062152 DOI: 10.1038/s41573-023-00833-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/23/2023] [Indexed: 02/08/2024]
Abstract
Targeted protein degradation (TPD) has emerged in the past decade as a major new drug modality to remove intracellular proteins with bispecific small molecules that recruit the protein of interest (POI) to an E3 ligase for degradation in the proteasome. Unlike classic occupancy-based drugs, intracellular TPD (iTPD) eliminates the target and works catalytically, and so can be more effective and sustained, with lower dose requirements. Recently, this approach has been expanded to the extracellular proteome, including both secreted and membrane proteins. Extracellular targeted protein degradation (eTPD) uses bispecific antibodies, conjugates or small molecules to degrade extracellular POIs by trafficking them to the lysosome for degradation. Here, we focus on recent advances in eTPD, covering degrader systems, targets, molecular designs and parameters to advance them. Now almost any protein, intracellular or extracellular, is addressable in principle with TPD.
Collapse
Affiliation(s)
- James A Wells
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, USA.
- Department of Cellular & Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA.
| | - Kaan Kumru
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
2
|
Štepihar D, Florke Gee RR, Hoyos Sanchez MC, Fon Tacer K. Cell-specific secretory granule sorting mechanisms: the role of MAGEL2 and retromer in hypothalamic regulated secretion. Front Cell Dev Biol 2023; 11:1243038. [PMID: 37799273 PMCID: PMC10548473 DOI: 10.3389/fcell.2023.1243038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 08/31/2023] [Indexed: 10/07/2023] Open
Abstract
Intracellular protein trafficking and sorting are extremely arduous in endocrine and neuroendocrine cells, which synthesize and secrete on-demand substantial quantities of proteins. To ensure that neuroendocrine secretion operates correctly, each step in the secretion pathways is tightly regulated and coordinated both spatially and temporally. At the trans-Golgi network (TGN), intrinsic structural features of proteins and several sorting mechanisms and distinct signals direct newly synthesized proteins into proper membrane vesicles that enter either constitutive or regulated secretion pathways. Furthermore, this anterograde transport is counterbalanced by retrograde transport, which not only maintains membrane homeostasis but also recycles various proteins that function in the sorting of secretory cargo, formation of transport intermediates, or retrieval of resident proteins of secretory organelles. The retromer complex recycles proteins from the endocytic pathway back to the plasma membrane or TGN and was recently identified as a critical player in regulated secretion in the hypothalamus. Furthermore, melanoma antigen protein L2 (MAGEL2) was discovered to act as a tissue-specific regulator of the retromer-dependent endosomal protein recycling pathway and, by doing so, ensures proper secretory granule formation and maturation. MAGEL2 is a mammalian-specific and maternally imprinted gene implicated in Prader-Willi and Schaaf-Yang neurodevelopmental syndromes. In this review, we will briefly discuss the current understanding of the regulated secretion pathway, encompassing anterograde and retrograde traffic. Although our understanding of the retrograde trafficking and sorting in regulated secretion is not yet complete, we will review recent insights into the molecular role of MAGEL2 in hypothalamic neuroendocrine secretion and how its dysregulation contributes to the symptoms of Prader-Willi and Schaaf-Yang patients. Given that the activation of many secreted proteins occurs after they enter secretory granules, modulation of the sorting efficiency in a tissue-specific manner may represent an evolutionary adaptation to environmental cues.
Collapse
Affiliation(s)
- Denis Štepihar
- School of Veterinary Medicine, Texas Tech University, Amarillo, TX, United States
- Texas Center for Comparative Cancer Research (TC3R), Amarillo, TX, United States
- Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Rebecca R. Florke Gee
- School of Veterinary Medicine, Texas Tech University, Amarillo, TX, United States
- Texas Center for Comparative Cancer Research (TC3R), Amarillo, TX, United States
| | - Maria Camila Hoyos Sanchez
- School of Veterinary Medicine, Texas Tech University, Amarillo, TX, United States
- Texas Center for Comparative Cancer Research (TC3R), Amarillo, TX, United States
| | - Klementina Fon Tacer
- School of Veterinary Medicine, Texas Tech University, Amarillo, TX, United States
- Texas Center for Comparative Cancer Research (TC3R), Amarillo, TX, United States
| |
Collapse
|
3
|
Di Michele F, Chillón I, Feil R. Imprinted Long Non-Coding RNAs in Mammalian Development and Disease. Int J Mol Sci 2023; 24:13647. [PMID: 37686455 PMCID: PMC10487962 DOI: 10.3390/ijms241713647] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/30/2023] [Accepted: 09/01/2023] [Indexed: 09/10/2023] Open
Abstract
Imprinted genes play diverse roles in mammalian development, homeostasis, and disease. Most imprinted chromosomal domains express one or more long non-coding RNAs (lncRNAs). Several of these lncRNAs are strictly nuclear and their mono-allelic expression controls in cis the expression of protein-coding genes, often developmentally regulated. Some imprinted lncRNAs act in trans as well, controlling target gene expression elsewhere in the genome. The regulation of imprinted gene expression-including that of imprinted lncRNAs-is susceptible to stochastic and environmentally triggered epigenetic changes in the early embryo. These aberrant changes persist during subsequent development and have long-term phenotypic consequences. This review focuses on the expression and the cis- and trans-regulatory roles of imprinted lncRNAs and describes human disease syndromes associated with their perturbed expression.
Collapse
Affiliation(s)
- Flavio Di Michele
- Institute of Molecular Genetics of Montpellier (IGMM), CNRS, 1919 Route de Mende, 34093 Montpellier, France
- University of Montpellier, 163 Rue Auguste Broussonnet, 34090 Montpellier, France
| | - Isabel Chillón
- Institute of Molecular Genetics of Montpellier (IGMM), CNRS, 1919 Route de Mende, 34093 Montpellier, France
- University of Montpellier, 163 Rue Auguste Broussonnet, 34090 Montpellier, France
| | - Robert Feil
- Institute of Molecular Genetics of Montpellier (IGMM), CNRS, 1919 Route de Mende, 34093 Montpellier, France
- University of Montpellier, 163 Rue Auguste Broussonnet, 34090 Montpellier, France
| |
Collapse
|
4
|
Wan HT, Ng AH, Lee WK, Shi F, Wong CKC. Identification and characterization of a membrane receptor that binds to human STC1. Life Sci Alliance 2022; 5:5/11/e202201497. [PMID: 35798563 PMCID: PMC9263378 DOI: 10.26508/lsa.202201497] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 06/28/2022] [Accepted: 06/28/2022] [Indexed: 11/24/2022] Open
Abstract
A study using TriCEPS-based ligand–receptor methodology and surface plasmon resonance assays identified that human stanniocalcin-1 binds to insulin-like growth factor-2 receptors in human leukemia monocytic cells with high affinity. Stanniocalcin-1 (STC1) is a hypocalcemic hormone originally identified in bony fishes. The mammalian homolog is found to be involved in inflammation and carcinogenesis, among other physiological functions. In this study, we used the TriCEPS-based ligand–receptor methodology to identify the putative binding proteins of human STC1 (hSTC1) in the human leukemia monocytic cell line, ThP-1. LC–MS/MS analysis of peptides from shortlisted hSTC1-binding proteins detected 32 peptides that belong to IGF2/MPRI. Surface plasmon resonance assay demonstrated that hSTC1 binds to immobilized IGF2R/MPRI with high affinity (10–20 nM) and capacity (Rmax 70–100%). The receptor binding data are comparable with those of (CREG) cellular repressor of E1A-stimulated gene a known ligand of IGF2R/MPRI, with Rmax of 75–80% and affinity values of 1–2 nM. The surface plasmon resonance competitive assays showed CREG competed with hSTC1 in binding to IGF2R/MPRI. The biological effects of hSTC1 on ThP-1 cells were demonstrated via IGF2R/MPRI to significantly reduce secreted levels of IL-1β. This is the first study to reveal the high-affinity binding of hSTC1 to the membrane receptor IGF2R/MPRI.
Collapse
Affiliation(s)
- Hin Ting Wan
- Department of Biology, Croucher Institute for Environmental Sciences, Hong Kong Baptist University, Hong Kong SAR, China
| | - Alice Hm Ng
- Department of Biology, Croucher Institute for Environmental Sciences, Hong Kong Baptist University, Hong Kong SAR, China
| | - Wang Ka Lee
- Department of Biology, Croucher Institute for Environmental Sciences, Hong Kong Baptist University, Hong Kong SAR, China
| | - Feng Shi
- Department of Biology, Croucher Institute for Environmental Sciences, Hong Kong Baptist University, Hong Kong SAR, China
| | - Chris Kong-Chu Wong
- Department of Biology, Croucher Institute for Environmental Sciences, Hong Kong Baptist University, Hong Kong SAR, China
| |
Collapse
|
5
|
Jorgensen MM, de la Puente P. Leukemia Inhibitory Factor: An Important Cytokine in Pathologies and Cancer. Biomolecules 2022; 12:biom12020217. [PMID: 35204717 PMCID: PMC8961628 DOI: 10.3390/biom12020217] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/19/2022] [Accepted: 01/24/2022] [Indexed: 02/07/2023] Open
Abstract
Leukemia Inhibitory Factor (LIF) is a member of the IL-6 cytokine family and is expressed in almost every tissue type within the body. Although LIF was named for its ability to induce differentiation of myeloid leukemia cells, studies of LIF in additional diseases and solid tumor types have shown that it has the potential to contribute to many other pathologies. Exploring the roles of LIF in normal physiology and non-cancer pathologies can give important insights into how it may be dysregulated within cancers, and the possible effects of this dysregulation. Within various cancer types, LIF expression has been linked to hallmarks of cancer, such as proliferation, metastasis, and chemoresistance, as well as overall patient survival. The mechanisms behind these effects of LIF are not well understood and can differ between different tissue types. In fact, research has shown that while LIF may promote malignancy progression in some solid tumors, it can have anti-neoplastic effects in others. This review will summarize current knowledge of how LIF expression impacts cellular function and dysfunction to help reveal new adjuvant treatment options for cancer patients, while also revealing potential adverse effects of treatments targeting LIF signaling.
Collapse
Affiliation(s)
- Megan M Jorgensen
- Cancer Biology and Immunotherapies Group, Sanford Research, Sioux Falls, SD 57104, USA
- MD/PhD Program, University of South Dakota Sanford School of Medicine, Sioux Falls, SD 57105, USA
| | - Pilar de la Puente
- Cancer Biology and Immunotherapies Group, Sanford Research, Sioux Falls, SD 57104, USA
- Department of Surgery, University of South Dakota Sanford School of Medicine, Sioux Falls, SD 57105, USA
| |
Collapse
|
6
|
Miller JJ, Bohnsack RN, Olson LJ, Ishihara M, Aoki K, Tiemeyer M, Dahms NM. Tissue plasminogen activator is a ligand of cation-independent mannose 6-phosphate receptor and consists of glycoforms that contain mannose 6-phosphate. Sci Rep 2021; 11:8213. [PMID: 33859256 PMCID: PMC8050316 DOI: 10.1038/s41598-021-87579-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 03/30/2021] [Indexed: 01/18/2023] Open
Abstract
Plasmin is the key enzyme in fibrinolysis. Upon interaction with plasminogen activators, the zymogen plasminogen is converted to active plasmin. Some studies indicate plasminogen activation is regulated by cation-independent mannose 6-phosphate receptor (CI-MPR), a protein that facilitates lysosomal enzyme trafficking and insulin-like growth factor 2 downregulation. Plasminogen regulation may be accomplished by CI-MPR binding to plasminogen or urokinase plasminogen activator receptor. We asked whether other members of the plasminogen activation system, such as tissue plasminogen activator (tPA), also interact with CI-MPR. Because tPA is a glycoprotein with three N-linked glycosylation sites, we hypothesized that tPA contains mannose 6-phosphate (M6P) and binds CI-MPR in a M6P-dependent manner. Using surface plasmon resonance, we found that two sources of tPA bound the extracellular region of human and bovine CI-MPR with low-mid nanomolar affinities. Binding was partially inhibited with phosphatase treatment or M6P. Subsequent studies revealed that the five N-terminal domains of CI-MPR were sufficient for tPA binding, and this interaction was also partially mediated by M6P. The three glycosylation sites of tPA were analyzed by mass spectrometry, and glycoforms containing M6P and M6P-N-acetylglucosamine were identified at position N448 of tPA. In summary, we found that tPA contains M6P and is a CI-MPR ligand.
Collapse
Affiliation(s)
- James J Miller
- Department of Biochemistry, Medical College of Wisconsin, 8701 W. Watertown Plank Rd, Milwaukee, WI, 53226, USA
| | - Richard N Bohnsack
- Department of Biochemistry, Medical College of Wisconsin, 8701 W. Watertown Plank Rd, Milwaukee, WI, 53226, USA
| | - Linda J Olson
- Department of Biochemistry, Medical College of Wisconsin, 8701 W. Watertown Plank Rd, Milwaukee, WI, 53226, USA
| | - Mayumi Ishihara
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Rd, Athens, GA, 30602, USA
| | - Kazuhiro Aoki
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Rd, Athens, GA, 30602, USA
| | - Michael Tiemeyer
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Rd, Athens, GA, 30602, USA.
| | - Nancy M Dahms
- Department of Biochemistry, Medical College of Wisconsin, 8701 W. Watertown Plank Rd, Milwaukee, WI, 53226, USA.
| |
Collapse
|
7
|
Beletskiy A, Chesnokova E, Bal N. Insulin-Like Growth Factor 2 As a Possible Neuroprotective Agent and Memory Enhancer-Its Comparative Expression, Processing and Signaling in Mammalian CNS. Int J Mol Sci 2021; 22:ijms22041849. [PMID: 33673334 PMCID: PMC7918606 DOI: 10.3390/ijms22041849] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/04/2021] [Accepted: 02/08/2021] [Indexed: 12/13/2022] Open
Abstract
A number of studies performed on rodents suggest that insulin-like growth factor 2 (IGF-2) or its analogs may possibly be used for treating some conditions like Alzheimer’s disease, Huntington’s disease, autistic spectrum disorders or aging-related cognitive impairment. Still, for translational research a comparative knowledge about the function of IGF-2 and related molecules in model organisms (rats and mice) and humans is necessary. There is a number of important differences in IGF-2 signaling between species. In the present review we emphasize species-specific patterns of IGF-2 expression in rodents, humans and some other mammals, using, among other sources, publicly available transcriptomic data. We provide a detailed description of Igf2 mRNA expression regulation and pre-pro-IGF-2 protein processing in different species. We also summarize the function of IGF-binding proteins. We describe three different receptors able to bind IGF-2 and discuss the role of IGF-2 signaling in learning and memory, as well as in neuroprotection. We hope that comprehensive understanding of similarities and differences in IGF-2 signaling between model organisms and humans will be useful for development of more effective medicines targeting IGF-2 receptors.
Collapse
|
8
|
Insulin-Like Growth Factor 2 Receptor Expression Is Promoted by Human Herpesvirus 8-Encoded Interleukin-6 and Contributes to Viral Latency and Productive Replication. J Virol 2019; 93:JVI.02026-18. [PMID: 30541844 DOI: 10.1128/jvi.02026-18] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 11/29/2018] [Indexed: 12/29/2022] Open
Abstract
Human herpesvirus 8 (HHV-8) viral interleukin-6 (vIL-6) localizes largely to the endoplasmic reticulum (ER) and here associates functionally with both the gp130 signal transducer and the novel ER membrane protein vitamin K epoxide reductase complex subunit 1 variant-2 (VKORC1v2). The latter interaction contributes to the viability of latently infected primary effusion lymphoma (PEL) cells and to HHV-8 productive replication, in part via promotion of ER-associated degradation (ERAD) of nascent pro-cathepsin D (pCatD) and consequent suppression of lysosome-localized proapoptotic mature CatD. Here we report that VKORC1v2 associates with insulin-like growth factor 2 receptor (IGF2R), also known as cation-independent mannose-6-phosphate receptor, which is involved in trafficking of mannose-6-phosphate-conjugated glycoproteins to lysosomes. VKORC1v2 effected reduced IGF2R expression in a manner dependent on VKORC1v2-IGF2R interaction, while vIL-6, which could inhibit VKORC1v2-IGF2R interaction, effected increased expression of IGF2R. These effects were independent of changes in IGF2R mRNA levels, indicating likely posttranslational mechanisms. In kinetic analyses involving labeling of either newly synthesized or preexisting IGF2R, vIL-6 promoted accumulation of the former while having no detectable effect on the latter. Furthermore, vIL-6 led to decreased K48-linked ubiquitination of IGF2R and suppression of ERAD proteins effected increased IGF2R expression and loss of IGF2R regulation by vIL-6. Depletion-based experiments identified IGF2R as a promoter of PEL cell viability and virus yields from lytically reactivated cultures. Our findings identify ER-transiting nascent IGF2R as an interaction partner of VKORC1v2 and target of vIL-6 regulation and IGF2R as a positive contributor to HHV-8 biology, thereby extending understanding of the mechanisms of VKORC1v2-associated vIL-6 function.IMPORTANCE HHV-8 vIL-6 promotes productive replication in the context of reactivated lytic replication in primary effusion lymphoma (PEL) and endothelial cells and sustains latently infected PEL cell viability. Viral IL-6 is also considered to contribute significantly to HHV-8-associated pathogenesis, since vIL-6 can promote cell proliferation, cell survival, and angiogenesis that are characteristic of HHV-8-associated Kaposi's sarcoma, PEL and multicentric Castleman's disease (MCD), in addition to proinflammatory activities observed in MCD-like "Kaposi's sarcoma-associated herpesvirus-induced cytokine syndrome." We show in the present study that vIL-6 can promote productive replication and latent PEL cell viability through upregulation of the mannose-6-phosphate- and peptide hormone-interacting receptor IGF2R, which is a positive factor in HHV-8 biology via these activities. VKORC1v2-enhanced ER-associated degradation of IGF2R and vIL-6 promotion of IGF2R expression through prevention of its interaction with VKORC1v2 and consequent rescue from degradation represent newly recognized activities of VKOCR1v2 and vIL-6.
Collapse
|
9
|
Wang Y, MacDonald RG, Thinakaran G, Kar S. Insulin-Like Growth Factor-II/Cation-Independent Mannose 6-Phosphate Receptor in Neurodegenerative Diseases. Mol Neurobiol 2017; 54:2636-2658. [PMID: 26993302 PMCID: PMC5901910 DOI: 10.1007/s12035-016-9849-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 03/09/2016] [Indexed: 12/11/2022]
Abstract
The insulin-like growth factor II/mannose 6-phosphate (IGF-II/M6P) receptor is a multifunctional single transmembrane glycoprotein. Recent studies have advanced our understanding of the structure, ligand-binding properties, and trafficking of the IGF-II/M6P receptor. This receptor has been implicated in a variety of important cellular processes including growth and development, clearance of IGF-II, proteolytic activation of enzymes, and growth factor precursors, in addition to its well-known role in the delivery of lysosomal enzymes. The IGF-II/M6P receptor, distributed widely in the central nervous system, has additional roles in mediating neurotransmitter release and memory enhancement/consolidation, possibly through activating IGF-II-related intracellular signaling pathways. Recent studies suggest that overexpression of the IGF-II/M6P receptor may have an important role in regulating the levels of transcripts and proteins involved in the development of Alzheimer's disease (AD)-the prevalent cause of dementia affecting the elderly population in our society. It is reported that IGF-II/M6P receptor overexpression can increase the levels/processing of amyloid precursor protein leading to the generation of β-amyloid peptide, which is associated with degeneration of neurons and subsequent development of AD pathology. Given the significance of the receptor in mediating the transport and functioning of the lysosomal enzymes, it is being considered for therapeutic delivery of enzymes to the lysosomes to treat lysosomal storage disorders. Notwithstanding these results, additional studies are required to validate and fully characterize the function of the IGF-II/M6P receptor in the normal brain and its involvement in various neurodegenerative disorders including AD. It is also critical to understand the interaction between the IGF-II/M6P receptor and lysosomal enzymes in neurodegenerative processes, which may shed some light on developing approaches to detect and prevent neurodegeneration through the dysfunction of the receptor and the endosomal-lysosomal system.
Collapse
Affiliation(s)
- Y Wang
- Department of Psychiatry, University of Alberta, Edmonton, AB, T6G 2M8, Canada
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, AB, Canada
| | - R G MacDonald
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - G Thinakaran
- Departments of Neurobiology, Neurology, and Pathology, The University of Chicago, Chicago, IL, 60637, USA
| | - S Kar
- Department of Psychiatry, University of Alberta, Edmonton, AB, T6G 2M8, Canada.
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, AB, Canada.
- Department of Medicine (Neurology), University of Alberta, Edmonton, AB, T6G 2M8, Canada.
| |
Collapse
|
10
|
Abstract
Soluble M6P/IGFIIR has the potential to be a significant carrier of IGF-II and mannose 6-P proteins in the circulation and play an important role as an antagonist to the cellular receptor. Evidence suggests that soluble receptor plays a role in fetal and childhood growth by opposing the growth stimulatory effects of IGF-II. Maternal serum levels of M6P/IGFIIR are elevated in late pregnancy and the IGF-II:soluble M6P/IGFIIR ratio in cord blood correlates strongly with weight at birth and placental weight suggesting an important role in fetal growth and development. However, elevated soluble receptor levels may also be indicative of disease in later life, such as liver cirrhosis and some tumor types and may be a useful marker for monitoring treatment and progression of the disease. Further investigation of the regulation of this soluble receptor in health and disease is required to fully elucidate its role in the circulation.
Collapse
Affiliation(s)
- Carolyn D Scott
- Kolling Institute of Medical Research, Royal North Shore Hospital and University of Sydney, Sydney, Australia.
| | - Wieland Kiess
- Hospital for Children and Adolescents, Centre for Pediatric Research, University of Leipzig, Leipzig, Germany.
| |
Collapse
|
11
|
Li N, Zhao G, Qiao M, Shao J, Liu X, Li H, Li X, Yu Z. The effects of early life lead exposure on the expression of insulin-like growth factor 1 and 2 (IGF1, IGF2) in the hippocampus of mouse pups. Food Chem Toxicol 2013; 63:48-52. [PMID: 24200854 DOI: 10.1016/j.fct.2013.10.037] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Revised: 10/21/2013] [Accepted: 10/23/2013] [Indexed: 02/08/2023]
Abstract
The present study was undertaken to investigate the effects of maternal lead exposure on expression of IGF1 and IGF2 in the hippocampus of mice offspring. Lead exposure initiated from beginning of gestation to weaning. Lead acetate administered in drinking solutions was dissolved in distilled deionized water at the concentrations of 0.1%, 0.5% and 1% groups respectively. On the 21st postnatal day, the learning and memory ability was tested by Water Maze test and the Pb levels were also determined by graphite furnace atomic absorption spectrometry. The expression of IGF1 and IGF2 in hippocampus was examined by immunohistochemistry and western blotting. The lead levels in blood and hippocampus of all lead exposure groups were significantly higher than that of the control group (P<0.05). In Water Maze test, the performances of 0.5% and 1% lead exposure groupswere worse than that of the control group (P<0.05). The expression of IGF1 and IGF2 was decreased in lead exposed groups than that of the control group (P<0.05). The low expression of IGF1 and IGF2 in the hippocampus of pups may contribute to the impairment of learning and memory associated with maternal Pb exposure.
Collapse
Affiliation(s)
- Ning Li
- College of Food Science and Technology, Henan Agriculture University, Zhengzhou 450002, China
| | - Gaiming Zhao
- College of Food Science and Technology, Henan Agriculture University, Zhengzhou 450002, China
| | - Mingwu Qiao
- College of Food Science and Technology, Henan Agriculture University, Zhengzhou 450002, China
| | - Jianfeng Shao
- College of Food Science and Technology, Henan Agriculture University, Zhengzhou 450002, China
| | - Xiaozhuan Liu
- Public Health College, Zhengzhou University, Zhengzhou 450001, China
| | - Haozhe Li
- College of Food Science and Technology, Henan Agriculture University, Zhengzhou 450002, China
| | - Xing Li
- Public Health College, Zhengzhou University, Zhengzhou 450001, China
| | - Zengli Yu
- Public Health College, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
12
|
Amritraj A, Posse de Chaves EI, Hawkes C, Macdonald RG, Kar S. Single-transmembrane domain IGF-II/M6P receptor: potential interaction with G protein and its association with cholesterol-rich membrane domains. Endocrinology 2012; 153:4784-98. [PMID: 22903618 DOI: 10.1210/en.2012-1139] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The IGF-II/mannose 6-phosphate (M6P) receptor is a single-transmembrane domain glycoprotein that plays an important role in the intracellular trafficking of lysosomal enzymes and endocytosis-mediated degradation of IGF-II. The receptor may also mediate certain biological effects in response to IGF-II binding by interacting with G proteins. However, the nature of the IGF-II/M6P receptor's interaction with the G protein or with G protein-coupled receptor (GPCR) interacting proteins such as β-arrestin remains unclear. Here we report that [(125)I]IGF-II receptor binding in the rat hippocampal formation is sensitive to guanosine-5'-[γ-thio]triphosphate, mastoparan, and Mas-7, which are known to interfere with the coupling of the classical GPCR with G protein. Monovalent and divalent cations also influenced [(125)I]IGF-II receptor binding. The IGF-II/M6P receptor, as observed for several GPCRs, was found to be associated with β-arrestin 2, which exhibits sustained ubiquitination after stimulation with Leu(27)IGF-II, an IGF-II analog that binds rather selectively to the IGF-II/M6P receptor. Activation of the receptor by Leu(27)IGF-II induced stimulation of extracellular signal-related kinase 1/2 via a pertussis toxin-dependent pathway. Additionally, we have shown that IGF-II/M6P receptors under normal conditions are associated mostly with detergent-resistant membrane domains, but after stimulation with Leu(27)IGF-II, are translocated to the detergent-soluble fraction along with a portion of β-arrestin 2. Collectively these results suggest that the IGF-II/M6P receptor may interact either directly or indirectly with G protein as well as β-arrestin 2, and activation of the receptor by an agonist can lead to alteration in its subcellular distribution along with stimulation of an intracellular signaling cascade.
Collapse
Affiliation(s)
- Asha Amritraj
- Department of Psychiatry, Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Alberta, Canada
| | | | | | | | | |
Collapse
|
13
|
Wei Y, Li J, Huang J, Zhang X, Zhao H, Cui C, Li Y, Hu S. Elevation of IGF-2 receptor and the possible underlying implications in end-stage heart failure patients before and after heart transplantation. J Cell Mol Med 2012; 16:1038-46. [PMID: 21895964 PMCID: PMC4365882 DOI: 10.1111/j.1582-4934.2011.01414.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Up-regulation of insulin-like growth factor 2 receptor (IGF-2R) involved in angiotensin II–induced cell apoptosis in cardiomyoblasts, and correlated with cardiomyocyte apoptosis in hypertensive rat hearts. Here, we detected IGF-2R levels and explored the possible underlying implications in end-stage heart failure (HF) patients before and after heart transplantation. Western blot and immunohistochemistry were used to measure cardiac IGF-2R levels. ELISA was used to detect serum IGF-2R and CD8 levels. Labelling of DNA strand breaks and dihydroethidium detection were used to determine cellular apoptosis and reactive oxygen species, respectively. Cardiac IGF-2R levels increased in end-stage HF patients (n = 11) compared with non-failing control subjects. Leu27-IGF-2, an IGF-2 analogue to activate specially the IGF-2R, could induce apoptosis and reactive oxygen species production in neonatal rat ventricular myocytes. The serum IGF-2R levels were significantly higher in HF patients than those in non-failing control subjects. An unexpected observation is that the serum IGF-2R levels further increased after heart transplantation, peaked at the first month, and gradually reduced close to the levels before heart transplantation at the 6th months after heart transplantation. Serum CD8, a marker of acute rejection, had no change after heart transplantation, but IGF-2R and Granzyme B, as a ligand for the IGF-2R and a marker for CD8 T lymphocyte activation, coexisted in the transplanted hearts. Our preliminary studies suggest that elevation of IGF-2R may participate in pathological process of end-stage HF and involved in the acute cellular rejection after heart transplantation.
Collapse
Affiliation(s)
- Yingjie Wei
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital & Cardiovascular Institute, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China.
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Mathieu ME, Saucourt C, Mournetas V, Gauthereau X, Thézé N, Praloran V, Thiébaud P, Bœuf H. LIF-dependent signaling: new pieces in the Lego. Stem Cell Rev Rep 2012; 8:1-15. [PMID: 21537995 PMCID: PMC3285761 DOI: 10.1007/s12015-011-9261-7] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
LIF, a member of the IL6 family of cytokine, displays pleiotropic effects on various cell types and organs. Its critical role in stem cell models (e.g.: murine ES, human mesenchymal cells) and its essential non redundant function during the implantation process of embryos, in eutherian mammals, put this cytokine at the core of many studies aiming to understand its mechanisms of action, which could benefit to medical applications. In addition, its conservation upon evolution raised the challenging question concerning the function of LIF in species in which there is no implantation. We present the recent knowledge about the established and potential functions of LIF in different stem cell models, (embryonic, hematopoietic, mesenchymal, muscle, neural stem cells and iPSC). We will also discuss EVO-DEVO aspects of this multifaceted cytokine.
Collapse
Affiliation(s)
- Marie-Emmanuelle Mathieu
- Univ. de Bordeaux, CIRID, UMR5164, F-33000 Bordeaux, France
- CNRS, CIRID, UMR5164, F-33000 Bordeaux, France
| | - Claire Saucourt
- Univ. de Bordeaux, CIRID, UMR5164, F-33000 Bordeaux, France
- CNRS, CIRID, UMR5164, F-33000 Bordeaux, France
| | - Virginie Mournetas
- Univ. de Bordeaux, CIRID, UMR5164, F-33000 Bordeaux, France
- CNRS, CIRID, UMR5164, F-33000 Bordeaux, France
| | - Xavier Gauthereau
- Univ. de Bordeaux, CIRID, UMR5164, F-33000 Bordeaux, France
- CNRS, CIRID, UMR5164, F-33000 Bordeaux, France
| | - Nadine Thézé
- Univ. de Bordeaux, CIRID, UMR5164, F-33000 Bordeaux, France
- CNRS, CIRID, UMR5164, F-33000 Bordeaux, France
| | - Vincent Praloran
- Univ. de Bordeaux, CIRID, UMR5164, F-33000 Bordeaux, France
- CNRS, CIRID, UMR5164, F-33000 Bordeaux, France
| | - Pierre Thiébaud
- Univ. de Bordeaux, CIRID, UMR5164, F-33000 Bordeaux, France
- CNRS, CIRID, UMR5164, F-33000 Bordeaux, France
| | - Hélène Bœuf
- Univ. de Bordeaux, CIRID, UMR5164, F-33000 Bordeaux, France
- CNRS, CIRID, UMR5164, F-33000 Bordeaux, France
| |
Collapse
|
15
|
Abstract
Tissue angiotensin generation depends on the uptake of circulating (kidney-derived) renin and/or its precursor prorenin [together denoted as (pro)renin]. Since tissue renin levels are usually somewhat higher than expected based upon the amount of (renin-containing) blood in tissue, an active uptake mechanism has been proposed. Several candidates have been evaluated in the past three decades, including a renin-binding protein, the mannose 6-phosphate/insulin-like growth factor II receptor and the (pro)renin receptor. Although the latter seemed the most promising, its nanomolar affinity for renin and prorenin is several orders of magnitude above their actual (picomolar) levels in blood, raising doubt on whether (pro)renin–(pro)renin receptor interaction will ever occur in vivo. A wide range of in vitro studies have now demonstrated (pro)renin-receptor-induced effects at nanomolar renin and prorenin concentrations, resulting in a profibrotic phenotype. In addition, beneficial in vivo effects of the putative (pro)renin receptor blocker HRP (handle region peptide) have been observed, particularly in diabetic animal models. Despite these encouraging results, many other studies have reported either no or even contrasting effects of HRP, and (pro)renin-receptor-knockout studies revealed lethal consequences that are (pro)renin-independent, most probably due to the fact that the (pro)renin receptor co-localizes with vacuolar H+-ATPase and possibly determines the stability of this vital enzyme. The present review summarizes all of the recent findings on the (pro)renin receptor and its blockade, and critically compares it with the other candidates that have been proposed to mediate (pro)renin uptake from blood. It ends with the conclusion that the (pro)renin–(pro)renin receptor interaction, if it occurs in vivo, is limited to (pro)renin-synthesizing organs such as the kidney.
Collapse
|
16
|
Piecewicz SM, Pandey A, Roy B, Hua Xiang S, Zetter BR, Sengupta S. Insulin-like growth factors promote vasculogenesis in embryonic stem cells. PLoS One 2012; 7:e32191. [PMID: 22363814 PMCID: PMC3283730 DOI: 10.1371/journal.pone.0032191] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2011] [Accepted: 01/24/2012] [Indexed: 01/09/2023] Open
Abstract
The ability of embryonic stem cells to differentiate into endothelium and form functional blood vessels has been well established and can potentially be harnessed for therapeutic angiogenesis. However, after almost two decades of investigation in this field, limited knowledge exists for directing endothelial differentiation. A better understanding of the cellular mechanisms regulating vasculogenesis is required for the development of embryonic stem cell-based models and therapies. In this study, we elucidated the mechanistic role of insulin-like growth factors (IGF1 and 2) and IGF receptors (IGFR1 and 2) in endothelial differentiation using an embryonic stem cell embryoid body model. Both IGF1 or IGF2 predisposed embryonic stem to differentiate towards a mesodermal lineage, the endothelial precursor germ layer, as well as increased the generation of significantly more endothelial cells at later stages. Inhibition of IGFR1 signaling using neutralizing antibody or a pharmacological inhibitor, picropodophyllin, significantly reduced IGF-induced mesoderm and endothelial precursor cell formation. We confirmed that IGF-IGFR1 signaling stabilizes HIF1α and leads to up-regulation of VEGF during vasculogenesis in embryoid bodies. Understanding the mechanisms that are critical for vasculogenesis in various models will bring us one step closer to enabling cell based therapies for neovascularization.
Collapse
Affiliation(s)
- Stephanie M. Piecewicz
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- Harvard-MIT Division of Health Sciences and Technology, Cambridge, Massachusetts, United States of America
| | - Ambarish Pandey
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Bhaskar Roy
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Medical Science and Technology, Indian Institute of Technology, Kharagpur, India
| | - Soh Hua Xiang
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Bruce R. Zetter
- Vascular Biology Program and Department of Surgery, Children's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Shiladitya Sengupta
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- Harvard-MIT Division of Health Sciences and Technology, Cambridge, Massachusetts, United States of America
| |
Collapse
|
17
|
Barnes J, Warejcka D, Simpliciano J, Twining S, Steet R. Latency-associated peptide of transforming growth factor-β1 is not subject to physiological mannose phosphorylation. J Biol Chem 2012; 287:7526-34. [PMID: 22262853 DOI: 10.1074/jbc.m111.308825] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Latent TGF-β1 was one of the first non-lysosomal glycoproteins reported to bear mannose 6-phosphate (Man-6-P) residues on its N-glycans. Prior studies have suggested that this sugar modification regulates the activation of latent TGF-β1 by allowing it to bind cell surface-localized Man-6-P receptors. Man-6-P has also been proposed as an anti-scarring therapy based on its ability to directly block the activation of latent TGF-β1. A complete understanding of the physiological relevance of latent TGF-β1 mannose phosphorylation, however, is still lacking. Here we investigate the degree of mannose phosphorylation on secreted latent TGF-β1 and examine its Man-6-P-dependent activation in primary human corneal stromal fibroblasts. Contrary to earlier reports, minimal to no Man-6-P modification was found on secreted and cell-associated latent TGF-β1 produced from multiple primary and transformed cell types. Results showed that the inability to detect Man-6-P residues was not due to masking by the latent TGF-β1-binding protein (LTBP). Moreover, the efficient processing of glycans on latent TGF-β1 to complex type structures was consistent with the lack of mannose phosphorylation during biosynthesis. We further demonstrated that the conversion of corneal stromal fibroblast to myofibroblasts, a well known TGF-β1-dependent process, was not altered by Man-6-P addition when latent forms of this growth factor were present. Collectively, these findings indicate that Man-6-P-dependent effects on latent TGF-β1 activation are not mediated by direct modification of its latency-associated peptide.
Collapse
Affiliation(s)
- Jarrod Barnes
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602, USA
| | | | | | | | | |
Collapse
|
18
|
Barragan-Montero V, Awwad A, Combemale S, de Santa Barbara P, Jover B, Molès JP, Montero JL. Synthesis of mannose-6-phosphate analogues and their utility as angiogenesis regulators. ChemMedChem 2011; 6:1771-4. [PMID: 21793221 DOI: 10.1002/cmdc.201100293] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Indexed: 11/12/2022]
Affiliation(s)
- Véronique Barragan-Montero
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247 UM2-UM1-CNRS, ENSCM, 8 rue de l'Ecole Normale, 34296 Montpellier cedex 5, France.
| | | | | | | | | | | | | |
Collapse
|
19
|
Barnes J, Lim JM, Godard A, Blanchard F, Wells L, Steet R. Extensive mannose phosphorylation on leukemia inhibitory factor (LIF) controls its extracellular levels by multiple mechanisms. J Biol Chem 2011; 286:24855-64. [PMID: 21613225 PMCID: PMC3137060 DOI: 10.1074/jbc.m111.221432] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2011] [Revised: 05/24/2011] [Indexed: 01/15/2023] Open
Abstract
In addition to soluble acid hydrolases, many nonlysosomal proteins have been shown to bear mannose 6-phosphate (Man-6-P) residues. Quantification of the extent of mannose phosphorylation and the relevance to physiological function, however, remain poorly defined. In this study, we investigated the mannose phosphorylation status of leukemia inhibitory factor (LIF), a previously identified high affinity ligand for the cation-independent mannose 6-phosphate receptor (CI-MPR), and we analyzed the effects of this modification on its secretion and uptake in cultured cells. When media from LIF-overexpressing cells were fractionated using a CI-MPR affinity column, 35-45% of the total LIF molecules were bound and specifically eluted with free Man-6-P thus confirming LIF as a bona fide Man-6-P-modified protein. Surprisingly, mass spectrometric analysis of LIF glycopeptides enriched on the CI-MPR column revealed that all six N-glycan sites could be Man-6-P-modified. The relative utilization of these sites, however, was not uniform. Analysis of glycan-deleted LIF mutants demonstrated that loss of glycans bearing the majority of Man-6-P residues leads to higher steady-state levels of secreted LIF. Using mouse embryonic stem cells, we showed that the mannose phosphorylation of LIF mediates its internalization thereby reducing extracellular levels and stimulating embryonic stem cell differentiation. Finally, immunofluorescence experiments indicate that LIF is targeted directly to lysosomes following its biosynthesis, providing another mechanism whereby mannose phosphorylation serves to control extracellular levels of LIF. Failure to modify LIF in the context of mucolipidosis II and its subsequent accumulation in the extracellular space may have important implications for disease pathogenesis.
Collapse
Affiliation(s)
- Jarrod Barnes
- From the Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602
| | - Jae-Min Lim
- From the Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602
| | - Anne Godard
- INSERM U892 CRCNA, University of Nantes, F-44035 Nantes, France, and
| | | | - Lance Wells
- From the Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602
| | - Richard Steet
- From the Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602
| |
Collapse
|
20
|
Kim JJP, Olson LJ, Dahms NM. Carbohydrate recognition by the mannose-6-phosphate receptors. Curr Opin Struct Biol 2009; 19:534-42. [PMID: 19801188 DOI: 10.1016/j.sbi.2009.09.002] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2009] [Revised: 09/01/2009] [Accepted: 09/04/2009] [Indexed: 10/20/2022]
Abstract
The two P-type lectins, the 46kDa cation-dependent mannose-6-phosphate (Man-6-P) receptor (CD-MPR), and the 300kDa cation-independent Man-6-P receptor (CI-MPR), are the founding members of the growing family of mannose-6-phosphate receptor homology (MRH) proteins. A major cellular function of the MPRs is to transport Man-6-P-containing acid hydrolases from the Golgi to endosomal/lysosomal compartments. Recent advances in the structural analyses of both CD-MPR and CI-MPR have revealed the structural basis for phosphomannosyl recognition by these receptors and provided insights into how the receptors load and unload their cargo. A surprising finding is that the CD-MPR is dynamic, with at least two stable quaternary states, the open (ligand-bound) and closed (ligand-free) conformations, similar to those of hemoglobin. Ligand binding stabilizes the open conformation; changes in the pH of the environment at the cell surface and in endosomal compartments weaken the ligand-receptor interaction and/or weaken the electrostatic interactions at the subunit interface, resulting in the closed conformation.
Collapse
Affiliation(s)
- Jung-Ja P Kim
- Department of Biochemistry, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA.
| | | | | |
Collapse
|
21
|
CREG inhibits migration of human vascular smooth muscle cells by mediating IGF-II endocytosis. Exp Cell Res 2009; 315:3301-11. [PMID: 19769965 DOI: 10.1016/j.yexcr.2009.09.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2009] [Revised: 09/15/2009] [Accepted: 09/15/2009] [Indexed: 11/23/2022]
Abstract
We previously determined that the cellular repressor of E1A-stimulated genes, (CREG) plays a role in the maintenance of the mature phenotype of vascular smooth muscle cells (SMCs). This study aimed to identify the role of CREG in modulating the migration of SMCs. Recombinant virus-mediated CREG expression inhibited the cellular migration of cultured SMCs associated with down-regulated activity of matrix metalloproteinase-9 (MMP-9). In contrast, CREG knockdown via the retroviral transfer of short hairpin RNAs promoted cellular migration. Enzyme-linked immunosorbent assay and endocytosis analysis revealed that CREG knockdown attenuated the internalization and increased secretion of insulin-like growth factor (IGF)-II. Western blot analysis demonstrated that both phosphoinositide 3-kinase (PI3K) and phosphatase Akt were enhanced in CREG knockdown SMCs. Furthermore, the effect of CREG knockdown on SMC migration was abrogated in a dose-dependent manner by the addition of either IGF-II neutralizing antibody or the PI3K inhibitor, LY294002. These results indicate that the CREG knockdown-mediated increase in IGF-II secretion promoted cellular migration in SMCs via the PI3K/Akt signal pathway. Additionally, blockage of IGF-II binding to the mannose-6-phosphate/IGF-II receptor (M6P/IGF2R) by IGF2R antibody or recombinant IGF2R fragment attenuated the endocytosis of IGF-II in cells overexpressing CREG. This indicates that M6P/IGF2R is involved in the regulation of CREG-mediated IGF-II endocytosis. In summary, these data demonstrate for the first time that CREG plays a critical role in the inhibition of SMC migration, as well as maintaining SMCs in a mature phenotype. These results may provide a new therapeutic target for vascular disease associated with neointimal hyperplasia.
Collapse
|
22
|
Martin-Kleiner I, Gall Troselj K. Mannose-6-phosphate/insulin-like growth factor 2 receptor (M6P/IGF2R) in carcinogenesis. Cancer Lett 2009; 289:11-22. [PMID: 19646808 DOI: 10.1016/j.canlet.2009.06.036] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2009] [Revised: 06/29/2009] [Accepted: 06/30/2009] [Indexed: 01/18/2023]
Abstract
The cation-independent mannose-6-phosphate/insulin-like growth factor 2 receptor (M6P/IGF2R) is a multifunctional receptor. It is involved in a variety of cellular processes which become dysregulated in cancer. Its tumor suppressor role was recognized a long time ago. However, due to its multifunctionality, it is not easy to understand the extent of its relevance to normal cellular physiology. Accordingly, it is even more difficult understanding its role in carcinogenesis. This review presents critical and focused highlights of data relating to M6P/IGF2R, obtained during more than 25 years of cancer research.
Collapse
|
23
|
Brown J, Jones EY, Forbes BE. Interactions of IGF-II with the IGF2R/cation-independent mannose-6-phosphate receptor mechanism and biological outcomes. VITAMINS AND HORMONES 2009; 80:699-719. [PMID: 19251056 DOI: 10.1016/s0083-6729(08)00625-0] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The cation-independent mannose-6-phosphate/insulin-like growth factor-II receptor (IGF2R) is a membrane-bound glycoprotein consisting of 15 homologous extracellular repeat domains. The major function of this receptor is trafficking of lysosomal enzymes from the trans-Golgi network to the endosomes and their subsequent transfer to lysosomes. The IGF2R also plays a major role in binding and regulating the circulating and tissue levels of IGF-II. As this ligand is important for cell growth, survival, and migration, the maintenance of correct IGF-II levels influences its actions in normal growth and development. Deregulation of IGF2R expression has therefore been associated with growth related disease and cancer. This review highlights recent advances in understanding the IGF2R structure and mechanism of interaction with its ligands, in particular IGF-II. Recent mutagenesis studies combined with the crystal structure of domains 11-14 in complex with IGF-II have mapped the sites of interaction and explain how the IGF2R specificity for IGF-II is achieved. The role of domain 13 in high-affinity IGF-II binding is also revealed. Characterization of ligand:IGF2R interactions is vital for the understanding of the mechanism of IGF2R actions and will allow the development of specific cancer therapies in the future.
Collapse
Affiliation(s)
- J Brown
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | | | | |
Collapse
|
24
|
El‐Shewy HM, Luttrell LM. Chapter 24 Insulin‐Like Growth Factor‐2/Mannose‐6 Phosphate Receptors. VITAMINS & HORMONES 2009; 80:667-97. [DOI: 10.1016/s0083-6729(08)00624-9] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
25
|
Dahms NM, Olson LJ, Kim JJP. Strategies for carbohydrate recognition by the mannose 6-phosphate receptors. Glycobiology 2008; 18:664-78. [PMID: 18621992 DOI: 10.1093/glycob/cwn061] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The two members of the P-type lectin family, the 46 kDa cation-dependent mannose 6-phosphate receptor (CD-MPR) and the 300 kDa cation-independent mannose 6-phosphate receptor (CI-MPR), are ubiquitously expressed throughout the animal kingdom and are distinguished from all other lectins by their ability to recognize phosphorylated mannose residues. The best-characterized function of the MPRs is their ability to direct the delivery of approximately 60 different newly synthesized soluble lysosomal enzymes bearing mannose 6-phosphate (Man-6-P) on their N-linked oligosaccharides to the lysosome. In addition to its intracellular role in lysosome biogenesis, the CI-MPR, but not the CD-MPR, participates in a number of other biological processes by interacting with various molecules at the cell surface. The list of extracellular ligands recognized by this multifunctional receptor has grown to include a diverse spectrum of Man-6-P-containing proteins as well as several non-Man-6-P-containing ligands. Recent structural studies have given us a clearer view of how these two receptors use related, but yet distinct, approaches in the recognition of phosphomannosyl residues.
Collapse
Affiliation(s)
- Nancy M Dahms
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| | | | | |
Collapse
|
26
|
Gary-Bobo M, Nirdé P, Jeanjean A, Morère A, Garcia M. Mannose 6-phosphate receptor targeting and its applications in human diseases. Curr Med Chem 2008; 14:2945-53. [PMID: 18220730 DOI: 10.2174/092986707782794005] [Citation(s) in RCA: 130] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The cation-independent mannose 6-phosphate receptor is a multifunctional protein which binds at the cell surface to two distinct classes of ligands, the mannose 6-phosphate (M6P) bearing proteins and IGF-II. Its major function is to bind and transport M6P-enzymes to lysosomes, but it can also modulate the activity of a variety of extracellular M6P-glycoproteins (i.e., latent TGFbeta precursor, urokinase-type plasminogen activator receptor, Granzyme B, growth factors, Herpes virus). The purpose of this review is to highlight the synthesis and potential use of high affinity M6P analogues able to target this receptor. Several M6P analogues with phosphonate, carboxylate or malonate groups display a higher affinity and a stronger stability in human serum than M6P itself. These derivatives could be used to favour the delivery of specific therapeutic compounds to lysosomes, notably in enzyme replacement therapies of lysosomal diseases or in neoplastic drug targeting. In addition, their potential applications in preventing clinical disorders, which are associated with the activities of other M6P-proteins involved in wound healing, cell growth or viral infection, will be discussed.
Collapse
Affiliation(s)
- M Gary-Bobo
- Inserm unité 826, Bâtiment recherche, CRLC Val d'Aurelle, 34298 Montpellier, France
| | | | | | | | | |
Collapse
|
27
|
Hawkes C, Amritraj A, Macdonald RG, Jhamandas JH, Kar S. Heterotrimeric G proteins and the single-transmembrane domain IGF-II/M6P receptor: functional interaction and relevance to cell signaling. Mol Neurobiol 2008; 35:329-45. [PMID: 17917122 DOI: 10.1007/s12035-007-0021-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2007] [Revised: 11/30/1999] [Accepted: 04/02/2007] [Indexed: 12/11/2022]
Abstract
The G protein-coupled receptor (GPCR) family represents the largest and most versatile group of cell surface receptors. Classical GPCR signaling constitutes ligand binding to a seven-transmembrane domain receptor, receptor interaction with a heterotrimeric G protein, and the subsequent activation or inhibition of downstream intracellular effectors to mediate a cellular response. However, recent reports on direct, receptor-independent G protein activation, G protein-independent signaling by GPCRs, and signaling of nonheptahelical receptors via trimeric G proteins have highlighted the intrinsic complexities of G protein signaling mechanisms. The insulin-like growth factor-II/mannose-6 phosphate (IGF-II/M6P) receptor is a single-transmembrane glycoprotein whose principal function is the intracellular transport of lysosomal enzymes. In addition, the receptor also mediates some biological effects in response to IGF-II binding in both neuronal and nonneuronal systems. Multidisciplinary efforts to elucidate the intracellular signaling pathways that underlie these effects have generated data to suggest that the IGF-II/M6P receptor might mediate transmembrane signaling via a G protein-coupled mechanism. The purpose of this review is to outline the characteristics of traditional and nontraditional GPCRs, to relate the IGF-II/M6P receptor's structure with its role in G protein-coupled signaling and to summarize evidence gathered over the years regarding the putative signaling of the IGF-II/M6P receptor mediated by a G protein.
Collapse
Affiliation(s)
- C Hawkes
- Department of Psychiatry, Centre for Alzheimer and Neurodegenerative Research, University of Alberta, Edmonton, AB, T6G 2B7, Canada
| | | | | | | | | |
Collapse
|
28
|
Waguri S, Tomiyama Y, Ikeda H, Hida T, Sakai N, Taniike M, Ebisu S, Uchiyama Y. The luminal domain participates in the endosomal trafficking of the cation-independent mannose 6-phosphate receptor. Exp Cell Res 2006; 312:4090-107. [PMID: 17069798 DOI: 10.1016/j.yexcr.2006.09.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2006] [Revised: 08/07/2006] [Accepted: 09/12/2006] [Indexed: 01/20/2023]
Abstract
Although the role of the cytoplasmic tail of the cation-independent mannose 6-phosphate receptor (CIMPR) has been well established in the receptor trafficking, that of the luminal domain is still controversial. We noticed that the peripheral distribution of GFP, fused to the transmembrane and cytoplasmic domains of CIMPR (G-CIMPR-tail), was distinct from that of endogenous CIMPR or of GFP fused to the full-length CIMPR (G-CIMPR-full). By live-cell imaging, trans-Golgi-network (TGN)-derived transport carriers containing G-CIMPR-full more frequently stopped and overlapped with transferrin-containing endosomes in the peripheral region than those containing G-CIMPR-tail. G-CIMPR-full was recycled back to the perinuclear TGN more slowly than that for G-CIMPR-tail, evidenced by fluorescence recovery after photobleaching analysis. Moreover, endogenous CIMPR and G-CIMPR-full, but not GFP-CIMPR-tail, drastically altered the characteristic distribution after treatment with chloroquine. A mutant receptor, G-CIMPR-full R/A, that cannot recognize the mannose 6-phosphate (M6P)-signal, behaved similarly to G-CIMPR-full, indicating that these differences are not attributable to the M6P-ligands binding situation. Interestingly, we also found that U18666A treatment was able to discriminate the M6P-ligand binding-dependent trafficking of CIMPR. Based on these findings, we propose that the CIMPR luminal domain is required for tight interaction with endocytic compartments, and retention by them, and that there are additional transport steps, in which the binding to M6P-ligands is involved.
Collapse
Affiliation(s)
- Satoshi Waguri
- Department of Anatomy and Histology, Fukushima Medical University, School of Medicine, 1-Hikarigaoka, Fukushima City, Fukushima 960-1295, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Hébert E. Mannose-6-phosphate/Insulin-like Growth Factor II Receptor Expression and Tumor Development. Biosci Rep 2006; 26:7-17. [PMID: 16779663 DOI: 10.1007/s10540-006-9002-3] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
The mannose-6-phosphate/insulin-like growth factor II receptor (M6P/IGF-IIR) is a multi-functional transmembrane glycoprotein whose major function is to bind and transport M6P-bearing glycoproteins from the trans-Golgi network or the cell surface to lysosomes. The cell surface M6P/IGF-IIR also bind and internalizes the insulin-like growth factor II. The receptor gene is considered a « candidate » tumor suppressor gene. The phenotypic consequences of loss of M6P/IGF-IIR through somatic mutation are potentially very complex since M6P/IGF-IIR has a number of roles in cellular physiology. Loss of function mutations in M6P/IGF-IIR gene could contribute to multi-step carcinogenesis. In the light of the multi-functional cellular potential roles of the M6P/IGF-IIR the purpose of this review is to highlight some recent data concerning its normal functions and the potential role of its loss in tumor pathophysiology with the aim to try to clarify the possible underlying mechanisms of its involvement in tumor development.
Collapse
Affiliation(s)
- Eric Hébert
- Vectorologie et trafic Intracellulaire, Centre de Biophysique Moléculaire, UPR no 4301 du CNRS, Rue Charles Sadron, 45071 Orleans Cedex 2, France.
| |
Collapse
|
30
|
Hawkes C, Jhamandas JH, Harris KH, Fu W, MacDonald RG, Kar S. Single transmembrane domain insulin-like growth factor-II/mannose-6-phosphate receptor regulates central cholinergic function by activating a G-protein-sensitive, protein kinase C-dependent pathway. J Neurosci 2006; 26:585-96. [PMID: 16407557 PMCID: PMC6674423 DOI: 10.1523/jneurosci.2730-05.2006] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The insulin-like growth factor-II/mannose-6-phosphate (IGF-II/M6P) receptor is a single-pass transmembrane glycoprotein that plays an important role in the intracellular trafficking of lysosomal enzymes and endocytosis-mediated degradation of IGF-II. However, its role in signal transduction after IGF-II binding remains unclear. In the present study, we report that IGF-II/M6P receptor in the rat brain is coupled to a G-protein and that its activation by Leu27IGF-II, an analog that binds rather selectively to the IGF-II/M6P receptor, potentiates endogenous acetylcholine release from the rat hippocampal formation. This effect is mediated by a pertussis toxin (PTX)-sensitive GTP-binding protein and is dependent on protein kinase Calpha (PKCalpha)-induced phosphorylation of downstream substrates, myristoylated alanine-rich C kinase substrate, and growth associated protein-43. Additionally, treatment with Leu27IGF-II causes a reduction in whole-cell currents and depolarization of cholinergic basal forebrain neurons. This effect, which is blocked by an antibody against the IGF-II/M6P receptor, is also sensitive to PTX and is mediated via activation of a PKC-dependent pathway. These results together revealed for the first time that the single transmembrane domain IGF-II/M6P receptor expressed in the brain is G-protein coupled and is involved in the regulation of central cholinergic function via the activation of specific intracellular signaling cascades.
Collapse
Affiliation(s)
- Cheryl Hawkes
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, H3A 2B4, Canada
| | | | | | | | | | | |
Collapse
|
31
|
Abstract
The insulin-like growth factor-II (IGF-II) receptor (IGF2R) regulates the level or activity of numerous proteins, including factors that control growth and differentiation. Frequent loss or inactivation of this receptor in a diverse group of tumors indicates that it may act as a tumor suppressor, but it is not known which functions of this receptor are selected against in the tumors. Lysosomal targeting and degradation of the growth-promoting IGF-II has been proposed as a mechanism for the tumor suppressor effects of IGF2R. As a genetic test of this hypothesis in vivo, we have produced Igf2r transgenic mice that ubiquitously express the transgene and have crossed these mice with mice that develop mammary tumors as a consequence of Igf2 overexpression. Our findings indicate that the presence of the Igf2r transgene delays mammary tumor onset and decreases tumor multiplicity in Igf2 transgenic mice. These findings are relevant to human tumors and preneoplastic conditions accompanied by altered IGF2 expression.
Collapse
Affiliation(s)
- Thomas L Wise
- Department of Human Genetics, New York State Institute for Basic Research in Developmental Disabilities, 1050 Forest Hill Road, Staten Island, NY 10314, USA
| | | |
Collapse
|
32
|
Russo VC, Gluckman PD, Feldman EL, Werther GA. The insulin-like growth factor system and its pleiotropic functions in brain. Endocr Rev 2005; 26:916-43. [PMID: 16131630 DOI: 10.1210/er.2004-0024] [Citation(s) in RCA: 366] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In recent years, much interest has been devoted to defining the role of the IGF system in the nervous system. The ubiquitous IGFs, their cell membrane receptors, and their carrier binding proteins, the IGFBPs, are expressed early in the development of the nervous system and are therefore considered to play a key role in these processes. In vitro studies have demonstrated that the IGF system promotes differentiation and proliferation and sustains survival, preventing apoptosis of neuronal and brain derived cells. Furthermore, studies of transgenic mice overexpressing components of the IGF system or mice with disruptions of the same genes have clearly shown that the IGF system plays a key role in vivo.
Collapse
Affiliation(s)
- V C Russo
- Centre for Hormone Research, Murdoch Children's Research Institute, Royal Children's Hospital, Flemington Road, Parkville, Victoria 3052, Australia.
| | | | | | | |
Collapse
|
33
|
Jo C, Kim H, Jo I, Choi I, Jung SC, Kim J, Kim SS, Jo SA. Leukemia inhibitory factor blocks early differentiation of skeletal muscle cells by activating ERK. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2005; 1743:187-97. [PMID: 15843032 DOI: 10.1016/j.bbamcr.2004.11.002] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2003] [Revised: 10/13/2004] [Accepted: 11/05/2004] [Indexed: 01/18/2023]
Abstract
Leukemia inhibitory factor (LIF) is a multifunctional cytokine belonging to the interleukin-6 family and has been shown to stimulate regeneration of injured skeletal muscle. Although LIF has been shown to stimulate muscle cell proliferation, its precise role in differentiation is unclear. Thus, we examined the effect of LIF on the differentiation of cultured C2C12 myoblast cells. In this study, we used both non-glycosylated LIF expressed in bacteria and glycosylated LIF secreted from NIH3T3 cells infected with Ad-LIF. Both non-glycosylated and glycosylated LIF blocked differentiation of myoblasts as measured by expression of myosin heavy chain and myotube formation. Treatment of myoblasts with LIF induced phosphorylation of ERK, and the LIF-induced inhibitory effect on myogenesis was blocked by pretreatment with U0126, a specific MEK inhibitor, and transient transfection with dominant negative (DN)-MEK1. In contrast, although LIF activated STAT3, the LIF-induced repression of the MCK transcriptional activity was not reversed by pretreatment with AG490, a specific Jak kinase inhibitor or transient transfection with DN-STAT3. Additionally, LIF exhibited its inhibitory effect on myogenesis only when cells were treated at earlier than 12 h after inducing differentiation. Taken together, these results suggest that LIF strongly inhibited early myogenic differentiation though activation of the ERK signaling pathway and its effect is irrespective of glycosylation.
Collapse
Affiliation(s)
- Chulman Jo
- Department of Biomedical Sciences, National Institute of Health, Seoul, South Korea
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Journet A, Ferro M. The potentials of MS-based subproteomic approaches in medical science: the case of lysosomes and breast cancer. MASS SPECTROMETRY REVIEWS 2004; 23:393-442. [PMID: 15290709 DOI: 10.1002/mas.20001] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Because of the great number of women who are diagnosed with breast cancer each year, and though this disease presents the lowest mortality rate among cancers, breast cancer remains a major public health problem. As for any cancer, the tumorigenic and metastatic processes are still hardly understood, and the biochemical markers that allow either a precise monitoring of the disease or the classification of the numerous forms of breast cancer remain too scarce. Therefore, great hopes are put on the development of high-throughput genomic and proteomic technologies. Such comprehensive techniques should help in understanding the processes and in defining steps of the disease by depicting specific genes or protein profiles. Because techniques dedicated to the current proteomic challenges are continuously improving, the probability of the discovery of new potential protein biomarkers is rapidly increasing. In addition, the identification of such markers should be eased by lowering the sample complexity; e.g., by sample fractionation, either according to specific physico-chemical properties of the proteins, or by focusing on definite subcellular compartments. In particular, proteins of the lysosomal compartment have been shown to be prone to alterations in their localization, expression, or post-translational modifications (PTMs) during the cancer process. Some of them, such as the aspartic protease cathepsin D (CatD), have even been proven as participating actively in the disease progression. The present review aims at giving an overview of the implication of the lysosome in breast cancer, and at showing how subproteomics and the constantly refining MS-based proteomic techniques may help in making breast cancer research progress, and thus, hopefully, in improving disease treatment.
Collapse
Affiliation(s)
- Agnès Journet
- Laboratoire de Chimie des Protéines, ERM-0201 Inserm, DRDC, CEA-Grenoble, 17 rue des Martyrs, 38054 Grenoble, France.
| | | |
Collapse
|
35
|
Hawkes C, Kar S. The insulin-like growth factor-II/mannose-6-phosphate receptor: structure, distribution and function in the central nervous system. ACTA ACUST UNITED AC 2004; 44:117-40. [PMID: 15003389 DOI: 10.1016/j.brainresrev.2003.11.002] [Citation(s) in RCA: 116] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/18/2003] [Indexed: 01/25/2023]
Abstract
The insulin-like growth factor-II/mannose-6-phosphate (IGF-II/M6P) receptor is a multifunctional single transmembrane glycoprotein which, along with the cation-dependent M6P (CD-M6P) receptor, mediates the trafficking of M6P-containing lysosomal enzymes from the trans-Golgi network (TGN) to lysosomes. Cell surface IGF-II/M6P receptors also function in the degradation of the non-glycosylated IGF-II polypeptide hormone, as well as in the capture and activation/degradation of extracellular M6P-bearing ligands. In recent years, the multifaceted role of the receptor has become apparent, as several lines of evidence have indicated that in addition to its role in lysosomal enzyme trafficking, clearance and/or activation of a variety of growth factors and endocytosis-mediated degradation of IGF-II, the IGF-II/M6P receptor may also mediate transmembrane signal transduction in response to IGF-II binding under certain conditions. However, very little is known about the physiological significance of the receptor in the function of the central nervous system (CNS). This review aims to delineate what is currently known about IGF-II/M6P receptor structure, its ligand binding properties and role in lysosomal enzyme transport. It also summarizes the recent data regarding the role of the receptor in the CNS, including its distribution, possible importance for normal and activity-dependent functioning as well as its implications in neurodegenerative disorders such as Alzheimer's disease (AD).
Collapse
Affiliation(s)
- C Hawkes
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada H4H 1R3
| | | |
Collapse
|
36
|
Duplomb L, Chaigne-Delalande B, Vusio P, Raher S, Jacques Y, Godard A, Blanchard F. Soluble mannose 6-phosphate/insulin-like growth factor II (IGF-II) receptor inhibits interleukin-6-type cytokine-dependent proliferation by neutralization of IGF-II. Endocrinology 2003; 144:5381-9. [PMID: 12959977 DOI: 10.1210/en.2003-0607] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The calcium-independent mannose 6-phosphate receptor (CIMPR) is a receptor for multiple ligands, including leukemia inhibitory factor (LIF), an IL-6 type cytokine, and IGF-II. CIMPR targets newly synthesized ligands to lysosomes and induces internalization/degradation of secreted ligands. A natural soluble form of CIMPR (sCIMPR) neutralizes IGF-II mitogenic potency on hepatocytes and fibroblasts. Herein we show that sCIMPR also inhibits LIF-driven proliferation of myeloid and lymphoid cell lines. Similar inhibition was observed with IL-6 and IL-11, two other IL-6-type cytokines that do not interact with CIMPR. Neutralizing anti-IGF-II antibodies inhibited IL-6-, IL-11-, and LIF-driven cell proliferation to the same extent as sCIMPR, suggesting that neutralization of serum IGF-II by sCIMPR plays a major role in IL-6-type cytokine-dependent cell proliferation. Confirming this idea, ERK1/2 and AKT/protein kinase B, the kinases necessary for cell proliferation and survival, were activated by IGF-II alone or by the association of IL-6-type cytokines and IGF-II. IL-6-type cytokines alone (up to 10 ng/ml) did not activate ERK1/2 or AKT, but did activate STAT3 (signal transducer and activator of transcription 3), a transcription factor necessary for the G1 to S phase cell cycle transition. Activation of ERK1/2 and AKT by IGF-II thus appears essential to sustain cellular expansion driven by IL-6-type cytokines.
Collapse
Affiliation(s)
- Laurence Duplomb
- Group of Recherche Cytokines/Récepteurs/Transduction, Institut National de la Santé et de la Recherche Médicale, Unité 463, Nantes Cedex 01, France
| | | | | | | | | | | | | |
Collapse
|
37
|
Zaina S, Nilsson J. Insulin-like growth factor II and its receptors in atherosclerosis and in conditions predisposing to atherosclerosis. Curr Opin Lipidol 2003; 14:483-9. [PMID: 14501587 DOI: 10.1097/00041433-200310000-00009] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
PURPOSE OF REVIEW Growth factors regulate cellular migration, proliferation, and the production of extracellular matrix during the development of the atherosclerotic lesion. Here we discuss experimental evidence pointing to insulin-like growth factor II and its receptors as important players in cardiovascular diseases. RECENT FINDINGS Genetically modified mice with altered levels of insulin-like growth factor II or receptors mediating insulin-like growth factor II signalling showed abnormalities known to be associated with, or contribute to, ageing and atherosclerosis in humans. These animal models displayed abnormalities in the morphology of the aortic tissue, glucose tolerance, response to oxidative stress and life span. Furthermore, human population studies showed a significant association between polymorphisms in the insulin-like growth factor II gene and obesity, a major risk factor for atherosclerosis. SUMMARY Direct and indirect evidence in animal models points to insulin-like growth factor II and its signalling receptors as crucial players in atherosclerosis and in the onset of conditions predisposing to the disease. Furthermore, human population studies have established significant associations between specific polymorphisms at the insulin-like growth factor II gene and obesity which is an important risk factor for atherosclerosis. Future investigations should aim at understanding the molecular mechanisms underlying these effects and elucidating the potential role of the type 2 insulin-like growth factor receptor in the development of atherosclerotic lesions.
Collapse
Affiliation(s)
- Silvio Zaina
- Department of Clinical Biochemistry, Rigshospitalet, Copenhagen, Denmark.
| | | |
Collapse
|
38
|
Di Bacco A, Gill G. The secreted glycoprotein CREG inhibits cell growth dependent on the mannose-6-phosphate/insulin-like growth factor II receptor. Oncogene 2003; 22:5436-45. [PMID: 12934103 DOI: 10.1038/sj.onc.1206670] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Secreted proteins and their cognate receptors are implicated in a myriad of activities that regulate cell proliferation, differentiation, and development. CREG, a cellular repressor of E1A-stimulated genes, is a secreted glycoprotein that antagonizes cellular transformation by E1A and ras. We have previously shown that CREG expression is induced very early during differentiation of pluripotent cells and, even in the absence of other inducers, CREG promotes neuronal differentiation of human teratocarcinoma NTERA-2 cells. Here we show that ectopic expression of CREG in NTERA-2 cells results in a delay of the G1/S phase transition of the cell cycle and growth inhibition. We show that CREG binds directly to the mannose-6-phosphate/insulin-like growth factor II receptor (M6P/IGF2R) dependent on CREG glycosylation. The M6P/IGF2R is a tumor suppressor that functions to control cell growth through interactions with multiple ligands. By analysing CREG activity in cells lacking M6P/IGF2R expression, we show that this receptor is required for CREG-induced growth inhibition. These studies reveal that CREG inhibits cell growth dependent on the M6P/IGF2R and suggest that interactions between CREG and a well-characterized tumor suppressor may contribute to regulation of proliferation and differentiation in multiple lineages.
Collapse
Affiliation(s)
- Alessandra Di Bacco
- Department of Pathology, Harvard Medical School, 200 Longwood Ave., Boston, MA 02115, USA
| | | |
Collapse
|
39
|
Bitard J, Daburon S, Duplomb L, Blanchard F, Vuisio P, Jacques Y, Godard A, Heath JK, Moreau JF, Taupin JL. Mutations in the immunoglobulin-like domain of gp190, the leukemia inhibitory factor (LIF) receptor, increase or decrease its affinity for LIF. J Biol Chem 2003; 278:16253-61. [PMID: 12601009 DOI: 10.1074/jbc.m207193200] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The leukemia inhibitory factor (LIF) receptor comprises the low affinity binding chain gp190 and the high affinity converter gp130. The ectodomain of gp190 is among the most complex in the hematopoietin receptor family, because it contains two typical cytokine receptor homology domains separated by an immunoglobulin-like (Ig-like) domain. Human and murine gp190 proteins share 76% homology, but murine gp190 binds human LIF with a much higher affinity, a property attributed to the Ig-like domain. Using alanine-scanning mutagenesis of the Ig-like domain, we mapped a LIF binding site at its carboxyl terminus, mainly involving residue Phe-328. Mutation of selected residues into their orthologs in the murine receptor (Q251E and N321D) significantly increased the affinity for human LIF. Interestingly, these residues, although localized at both the amino and carboxyl terminus, make a spatially unique LIF binding site in a structural model of the Ig-like module. These results demonstrate definitively the role of the Ig-like domain in LIF binding and the potential to modulate receptor affinity in this family with very limited amino acid changes.
Collapse
Affiliation(s)
- Juliette Bitard
- CNRS UMR 5540, Université de Bordeaux 2, 146 rue Léo Saignat, 33076 Bordeaux, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Hawkes C, Kar S. Insulin-like growth factor-II/mannose-6-phosphate receptor: widespread distribution in neurons of the central nervous system including those expressing cholinergic phenotype. J Comp Neurol 2003; 458:113-27. [PMID: 12596253 DOI: 10.1002/cne.10578] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The insulin-like growth factor-II/mannose-6-phosphate (IGF-II/M6P) receptor is single transmembrane glycoprotein that plays a critical role in the trafficking of lysosomal enzymes and the internalization of circulating IGF-II. At present, there is little information regarding the cellular distribution of the IGF-II/M6P receptor within the adult rat brain. With the use of immunoblotting and immunocytochemical methods, we found that the IGF-II/M6P receptor is widely but selectively expressed in all major brain areas, including the olfactory bulb, striatum, cortex, hippocampus, thalamus, hypothalamus, cerebellum, brainstem, and spinal cord. Intense IGF-II/M6P receptor immunoreactivity was apparent on neuronal cell bodies within the striatum, deeper layers (layers IV and V) of the cortex, pyramidal and granule cell layers of the hippocampal formation, selected thalamic nuclei, Purkinje cells of the cerebellum, pontine nucleus and motoneurons of the brainstem as well as in the spinal cord. Moderate neuronal labeling was evident in the olfactory bulb, basal forebrain areas, hypothalamus, superior colliculus, midbrain areas, granule cells of the cerebellum and in the intermediate regions of the spinal gray matter. We also observed dense neuropil labeling in many regions, suggesting that this receptor is localized in dendrites and/or axon terminals. Double-labeling studies further indicated that a subset of IGF-II/M6P receptor colocalizes with cholinergic cell bodies and fibers in the septum, striatum, diagonal band complex, nucleus basalis, cortex, hippocampus, and motoneurons of the brainstem and spinal cord. The observed widespread distribution and colocalization of IGF-II/M6P receptor in the adult rat brain provide an anatomic basis to suggest a multifunctional role for the receptor in a wide-spectrum of central nervous system neurons, including those expressing a cholinergic phenotype.
Collapse
Affiliation(s)
- Cheryl Hawkes
- Douglas Hospital Research Center, Department of Neurology and Neurosurgery, Verdun, Quebec H4H 1R3, Canada
| | | |
Collapse
|
41
|
Villevalois-Cam L, Rescan C, Gilot D, Ezan F, Loyer P, Desbuquois B, Guguen-Guillouzo C, Baffet G. The hepatocyte is a direct target for transforming-growth factor beta activation via the insulin-like growth factor II/mannose 6-phosphate receptor. J Hepatol 2003; 38:156-63. [PMID: 12547403 DOI: 10.1016/s0168-8278(02)00378-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
BACKGROUND/AIMS The cation-independent mannose 6-phosphate receptor (CIMPR) is overexpressed in hepatocytes during liver regeneration and has been implicated in the maturation of latent pro-transforming growth factor beta (TGFbeta). In this study, we have: (1) kinetically characterized the changes in CIMPR expression in regenerating liver and cultured proliferating hepatocytes; and (2) assessed the contribution of hepatocyte via the CIMPR to latent pro-TGFbeta activation. METHODS The expression of CIMPR protein and mRNA in livers collected after partial hepatectomy and hepatocyte primary cultures was analyzed by Western and Northern blotting. Activity of latent pro-TGFbeta was assessed by inhibition of [3H] methylthymidine incorporation into DNA. RESULTS The expression of the CIMPR protein and/or mRNA progressively increased after 8 h in regenerating liver and 42-46 h in cultured hepatocytes, prior to the onset of DNA replication. Both mature TGFbeta and latent pro-TGFbeta inhibited epidermal growth factor-stimulated DNA synthesis in hepatocytes in a dose-dependent manner. The effect of latent pro-TGFbeta was reversed by two ligands of the CIMPR: beta-galactosidase, a mannose 6-phosphate containing protein, and a CIMPR antibody. CONCLUSIONS (1) The induction of the CIMPR gene during liver regeneration and hepatocyte culture occurs in mid G1 phase; and (2) the CIMPR mediates latent proTGFbeta activation and thus may act, by targeting TGFbeta to hepatocytes, as a negative regulator of hepatocyte growth.
Collapse
Affiliation(s)
- Laurence Villevalois-Cam
- INSERM U522, Unité de Recherches Hépatologiques, IFR 97, Hôpital Pontchaillou, 35033 Rennes, France
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Hassan AB. Keys to the hidden treasures of the mannose 6-phosphate/insulin-like growth factor 2 receptor. THE AMERICAN JOURNAL OF PATHOLOGY 2003; 162:3-6. [PMID: 12507883 PMCID: PMC1851104 DOI: 10.1016/s0002-9440(10)63791-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- A Bassim Hassan
- Cancer Research United Kingdom, Cell and Development Group, Department of Zoology, University of Oxford, United Kingdom.
| |
Collapse
|
43
|
Grimaud E, Blanchard F, Charrier C, Gouin F, Redini F, Heymann D. Leukaemia inhibitory factor (lif) is expressed in hypertrophic chondrocytes and vascular sprouts during osteogenesis. Cytokine 2002; 20:224-30. [PMID: 12550107 DOI: 10.1006/cyto.2002.2002] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Avascular cartilage is replaced by highly vascularized bone tissue during endochondral ossification, a process involving capillary invasion of calcified hypertrophic cartilage in association with apoptosis of hypertrophic chondrocytes, degradation of cartilage matrix and deposition of bone matrix. All of these events are closely controlled, especially by cytokines and growth factors. Leukaemia inhibitory factor (LIF), a member of the gp130 cytokine family, is involved in osteoarticular tissue metabolism and might participate in osteogenesis. Immunohistochemical staining showed that LIF is expressed in hypertrophic chondrocytes and vascular sprouts of cartilage and bone during rat and human osteogenesis. LIF is also present in osteoblasts but not in osteoclasts. Observations in a rat endochondral ossification model were confirmed by studies of human cartilage biopsies from foetuses with osteogenesis imperfecta. LIF was never detected in adult articular chondrocytes and bone-marrow mesenchymal cells. These results and other data in the literature suggest that LIF is involved in the delicate balance between the rate of formation of calcified cartilage and its vascularization for bone development.
Collapse
Affiliation(s)
- E Grimaud
- Pathophysiology of Bone Resorption Laboratory EE 99-01, College of Medicine, 44035, Nantes cedex 1, France
| | | | | | | | | | | |
Collapse
|
44
|
Hancock MK, Haskins DJ, Sun G, Dahms NM. Identification of residues essential for carbohydrate recognition by the insulin-like growth factor II/mannose 6-phosphate receptor. J Biol Chem 2002; 277:11255-64. [PMID: 11799115 DOI: 10.1074/jbc.m109855200] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Two distinct mannose 6-phosphate (Man-6-P) receptors (MPRs), the cation-dependent MPR (CD-MPR) and the insulin-like growth factor II/MPR (IGF-II/MPR), recognize a diverse population of Man-6-P-containing ligands. The IGF-II/MPR is a type I transmembrane glycoprotein with a large extracytoplasmic region composed of 15 repeating domains that display sequence identity to each other and to the single extracytoplasmic domain of the CD-MPR. A structure-based sequence alignment of the two distinct Man-6-P-binding sites of the IGF-II/MPR with the CD-MPR implicates several residues of IGF-II/MPR domains 3 and 9 as essential for Man-6-P binding. To test this hypothesis single amino acid substitutions were made in constructs encoding either the N- or the C-terminal Man-6-P-binding sites of the bovine IGF-II/MPR. The mutant IGF-II/MPRs secreted from COS-1 cells were analyzed by pentamannosyl phosphate-agarose affinity chromatography, identifying four residues (Gln-392, Ser-431, Glu-460, and Tyr-465) in domain 3 and four residues (Gln-1292, His-1329, Glu-1354, and Tyr-1360) in domain 9 as essential for Man-6-P recognition. Binding affinity studies using the lysosomal enzyme, beta-glucuronidase, confirmed these results. Together these analyses provide strong evidence that the two Man-6-P-binding sites of the IGF-II/MPR are structurally similar to each other and to the CD-MPR and utilize a similar carbohydrate recognition mechanism.
Collapse
Affiliation(s)
- Michael K Hancock
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
| | | | | | | |
Collapse
|
45
|
Meyer C, Eskelinen EL, Guruprasad MR, von Figura K, Schu P. μ1A deficiency induces a profound increase in MPR300/IGF-II receptor internalization rate. J Cell Sci 2001; 114:4469-76. [PMID: 11792812 DOI: 10.1242/jcs.114.24.4469] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The mannose-6-phosphate/IGF-II receptor MPR300 mediates sorting of lysosomal enzymes from the trans-Golgi network to endosomes and endocytosis of hormones, for example, of IGF-II. We analyzed transport of MPR300 in μ1A-adaptin-deficient fibroblasts, which lack a functional AP-1 clathrin adaptor complex. In μ1A-adaptin-deficient fibroblasts, the homologous MPR46 accumulates in endosomes due to a block in retrograde transport to the trans-Golgi network. The MPR300-mediated endocytosis is markedly enhanced. We demonstrate that the seven-fold increase in endocytosis is not associated with an increased steady-state concentration of receptors at the plasma membrane, but with an increased internalization rate of MPR300. Internalization of other receptors that are also endocytosed by AP-2 is not affected. More MPR300 receptors are found in clathrin-coated pits of the plasma membrane, whereas outside coated-areas, more MPR300 are concentrated in clusters and all intracellular receptors reside in endosomes, which are in equilibrium with the plasma membrane. Thus AP-1-mediated transport of MPR300 from endosomes to the TGN controls indirectly the recycling rate of the receptor between the plasma membrane and endosomes.
Collapse
Affiliation(s)
- C Meyer
- Zentrum für Biochemie und Molekulare Zellbiologie, Biochemie II, Universität Göttingen, Heinrich-Düker-Weg 12, D-37073 Göttingen, Germany
| | | | | | | | | |
Collapse
|
46
|
Ohnuma K, Munakata Y, Ishii T, Iwata S, Kobayashi S, Hosono O, Kawasaki H, Dang NH, Morimoto C. Soluble CD26/dipeptidyl peptidase IV induces T cell proliferation through CD86 up-regulation on APCs. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 167:6745-55. [PMID: 11739489 DOI: 10.4049/jimmunol.167.12.6745] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CD26 is a T cell costimulatory molecule with dipeptidyl peptidase IV enzyme activity in its extracellular region. We have previously reported that the addition of soluble CD26 (sCD26) resulted in enhanced proliferation of peripheral blood T lymphocytes induced by the recall Ag, tetanus toxoid (TT). However, the mechanism involved in this immune enhancement has not yet been elucidated. In this paper, we demonstrate that the enhancing effect of sCD26 on TT-induced T cell proliferation occurred in the early stages of immune response. The cells directly affected by exogenously added sCD26 are the CD14-positive monocytes in the peripheral blood. Mannose-6 phosphate interfered with the uptake of sCD26 into monocytes, suggesting that mannose-6 phosphate/insulin-like growth factor II receptor plays a role in the transportation of sCD26 into monocytes. When sCD26 was added after Ag presentation had taken place, enhancement in TT-induced T cell proliferation was not observed. In addition, enhancement of TT-mediated T cell proliferation by sCD26 does not result from trimming of the MHC-bound peptide on the surface of monocytes. Importantly, we also showed that exogenously added sCD26 up-regulated the expression of the costimulatory molecule CD86 on monocytes through its dipeptidyl peptidase IV activity, and that this increased expression of CD86 was observed at both protein and mRNA level. Therefore, our findings suggest that sCD26 enhances T cell immune response to recall Ag via its direct effect on APCs.
Collapse
Affiliation(s)
- K Ohnuma
- Division of Clinical Immunology, Advanced Clinical Research Center, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Linnell J, Groeger G, Hassan AB. Real time kinetics of insulin-like growth factor II (IGF-II) interaction with the IGF-II/mannose 6-phosphate receptor: the effects of domain 13 and pH. J Biol Chem 2001; 276:23986-91. [PMID: 11297550 DOI: 10.1074/jbc.m100700200] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The interaction of soluble forms of the human cation-independent insulin-like growth factor-II/mannose 6-phosphate receptor (IGF-IIR) with IGFs and mannosylated ligands was analyzed in real time. IGF-IIR proteins containing domains 1-15, 10-13, 11-13, or 11-12 were combined with rat CD4 domains 3 and 4. Following transient expression in 293T cells, secreted protein was immobilized onto biosensor chips. beta-Glucuronidase and latent transforming growth factor-beta1 bound only to domains 1-15. IGF-II bound to all constructs except a control, which contained a point mutation in domain 11. The affinity of domains 1-15, 10-13, 11-13, and 11-12 to IGF-II were 14, 120, 100, and 450 nm, respectively. Our data suggest that domain 13 acts as an enhancer of IGF-II affinity by slowing the rate of dissociation, but additional enhancement by domains other than 10-13 also occurs. As the receptor functions to transport ligands from either the trans-Golgi network or extracellular space to the endosomes, the interaction of IGF-IIR extracellular domains with IGF-II was analyzed over a pH range of 5.0-7.4. The constructs behaved differently in response to pH and in recovery after low pH exposure, suggesting that pH stability of the extracellular domains depends on domains other than 10-13.
Collapse
Affiliation(s)
- J Linnell
- Department of Zoology, University of Oxford, South Parks Rd., Oxford, OX1 3PS, United Kingdom.
| | | | | |
Collapse
|
48
|
Osipo C, Dorman S, Frankfater A. Loss of insulin-like growth factor II receptor expression promotes growth in cancer by increasing intracellular signaling from both IGF-I and insulin receptors. Exp Cell Res 2001; 264:388-96. [PMID: 11262195 DOI: 10.1006/excr.2000.5121] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The insulin-like growth factor-II receptor (IGF-IIR) is frequently mutated or deleted in some malignant human tumors, suggesting that the IGF-IIR is a tumor suppressor. However, the exact mechanism by which IGF-IIR suppresses growth in tumors has not been definitively established. We demonstrate that IGF-IIR-deficient murine L cells (D9) have higher growth rates than IGF-IIR-positive L cells (Cc2) in response to IGF-II. IGF-II levels are higher in growth-conditioned medium from D9 versus Cc2 cells. Receptor neutralization studies and measurements of insulin receptor substrate 1 phosphorylation confirm that the enhanced growth of D9 cells is due to increased stimulation of the IGF-I and insulin receptors by IGF-II. In contrast, the levels of secreted latent and active transforming growth factor beta (TGF-beta) are similar for both D9 and Cc2 cells, indicating that the slower growth of Cc2 cells is not due to activation of latent TGF-beta by IGF-IIR and growth inhibition. The results directly demonstrate that down regulation of the IGF-IIR promotes the growth of transformed D9 cells by sustaining IGF-II, which binds to and activates IGF-IR and insulin receptor to increase intracellular growth signals.
Collapse
Affiliation(s)
- C Osipo
- Division of Molecular and Cellular Biochemistry, Loyola University Medical Center, Maywood, Illinois 60153, USA
| | | | | |
Collapse
|
49
|
Abstract
The application of surface plasmon resonance biosensors in life sciences and pharmaceutical research continues to increase. This review provides a comprehensive list of the commercial 1999 SPR biosensor literature and highlights emerging applications that are of general interest to users of the technology. Given the variability in the quality of published biosensor data, we present some general guidelines to help increase confidence in the results reported from biosensor analyses.
Collapse
Affiliation(s)
- R L Rich
- Center for Biomolecular Interaction Analysis, University of Utah School of Medicine, Salt Lake City 84132, USA
| | | |
Collapse
|
50
|
Abstract
The lysosomal compartment of human monocytic cells has never been investigated by a proteomic approach. By a combination of one-dimensional (1-D) and two-dimensional (2-D) gel electrophoresis, protein identification by N-terminal sequencing, matrix assisted laser desorption/ionization-mass spectrometry (MALDI-MS) peptide mass fingerprinting and tandem mass spectrometry (MS/MS) peptide sequence analysis, we initiated an exhaustive study of the human lyososomal proteome, which aims at establishing a 2-D reference map of human soluble lyososomal proteins. Human monocytic U937 cells were induced to secrete lysosomal soluble hydrolases by addition of NH4Cl in the culture medium. Since lysosomal soluble proteins are characterized by the presence of mannose-6-phosphate, they were purified on an affinity support bearing mannose-6-phosphate receptor. Analysis of the purified fraction led to the preliminary identification of fifteen proteins, among which twelve are well-known lysosomal hydrolases, one is assumed to be lysosomal on the basis of sequence homology to cysteine proteinases of the papain family, and two (leukocystatin and the human cellular repressor of E1A-stimulated genes) are described here for the first time as mannose-6-phosphate-containing proteins.
Collapse
Affiliation(s)
- A Journet
- Laboratoire de Chimie des Protéines, CEA-Grenoble, France.
| | | | | | | | | | | |
Collapse
|