1
|
Tuli F, Kane PM. The cytosolic N-terminal domain of V-ATPase a-subunits is a regulatory hub targeted by multiple signals. Front Mol Biosci 2023; 10:1168680. [PMID: 37398550 PMCID: PMC10313074 DOI: 10.3389/fmolb.2023.1168680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 06/05/2023] [Indexed: 07/04/2023] Open
Abstract
Vacuolar H+-ATPases (V-ATPases) acidify several organelles in all eukaryotic cells and export protons across the plasma membrane in a subset of cell types. V-ATPases are multisubunit enzymes consisting of a peripheral subcomplex, V1, that is exposed to the cytosol and an integral membrane subcomplex, Vo, that contains the proton pore. The Vo a-subunit is the largest membrane subunit and consists of two domains. The N-terminal domain of the a-subunit (aNT) interacts with several V1 and Vo subunits and serves to bridge the V1 and Vo subcomplexes, while the C-terminal domain contains eight transmembrane helices, two of which are directly involved in proton transport. Although there can be multiple isoforms of several V-ATPase subunits, the a-subunit is encoded by the largest number of isoforms in most organisms. For example, the human genome encodes four a-subunit isoforms that exhibit a tissue- and organelle-specific distribution. In the yeast S. cerevisiae, the two a-subunit isoforms, Golgi-enriched Stv1 and vacuolar Vph1, are the only V-ATPase subunit isoforms. Current structural information indicates that a-subunit isoforms adopt a similar backbone structure but sequence variations allow for specific interactions during trafficking and in response to cellular signals. V-ATPases are subject to several types of environmental regulation that serve to tune their activity to their cellular location and environmental demands. The position of the aNT domain in the complex makes it an ideal target for modulating V1-Vo interactions and regulating enzyme activity. The yeast a-subunit isoforms have served as a paradigm for dissecting interactions of regulatory inputs with subunit isoforms. Importantly, structures of yeast V-ATPases containing each a-subunit isoform are available. Chimeric a-subunits combining elements of Stv1NT and Vph1NT have provided insights into how regulatory inputs can be integrated to allow V-ATPases to support cell growth under different stress conditions. Although the function and distribution of the four mammalian a-subunit isoforms present additional complexity, it is clear that the aNT domains of these isoforms are also subject to multiple regulatory interactions. Regulatory mechanisms that target mammalian a-subunit isoforms, and specifically the aNT domains, will be described. Altered V-ATPase function is associated with multiple diseases in humans. The possibility of regulating V-ATPase subpopulations via their isoform-specific regulatory interactions are discussed.
Collapse
Affiliation(s)
| | - Patricia M. Kane
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, United States
| |
Collapse
|
2
|
Tan YZ, Abbas YM, Wu JZ, Wu D, Keon KA, Hesketh GG, Bueler SA, Gingras AC, Robinson CV, Grinstein S, Rubinstein JL. CryoEM of endogenous mammalian V-ATPase interacting with the TLDc protein mEAK-7. Life Sci Alliance 2022; 5:e202201527. [PMID: 35794005 PMCID: PMC9263379 DOI: 10.26508/lsa.202201527] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/17/2022] [Accepted: 06/21/2022] [Indexed: 12/18/2022] Open
Abstract
V-ATPases are rotary proton pumps that serve as signaling hubs with numerous protein binding partners. CryoEM with exhaustive focused classification allowed detection of endogenous proteins associated with porcine kidney V-ATPase. An extra C subunit was found in ∼3% of complexes, whereas ∼1.6% of complexes bound mEAK-7, a protein with proposed roles in dauer formation in nematodes and mTOR signaling in mammals. High-resolution cryoEM of porcine kidney V-ATPase with recombinant mEAK-7 showed that mEAK-7's TLDc domain interacts with V-ATPase's stator, whereas its C-terminal α helix binds V-ATPase's rotor. This crosslink would be expected to inhibit rotary catalysis. However, unlike the yeast TLDc protein Oxr1p, exogenous mEAK-7 does not inhibit V-ATPase and mEAK-7 overexpression in cells does not alter lysosomal or phagosomal pH. Instead, cryoEM suggests that the mEAK-7:V-ATPase interaction is disrupted by ATP-induced rotation of the rotor. Comparison of Oxr1p and mEAK-7 binding explains this difference. These results show that V-ATPase binding by TLDc domain proteins can lead to effects ranging from strong inhibition to formation of labile interactions that are sensitive to the enzyme's activity.
Collapse
Affiliation(s)
- Yong Zi Tan
- Molecular Medicine Program, The Hospital for Sick Children Research Institute, Toronto, Canada
| | - Yazan M Abbas
- Molecular Medicine Program, The Hospital for Sick Children Research Institute, Toronto, Canada
| | - Jing Ze Wu
- Program in Cell Biology, The Hospital for Sick Children, Toronto, Canada
- Department of Biochemistry, University of Toronto, Toronto, Canada
| | - Di Wu
- Physical and Theoretical Chemistry Laboratory, University of Oxford, Oxford, UK
- Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, UK
| | - Kristine A Keon
- Molecular Medicine Program, The Hospital for Sick Children Research Institute, Toronto, Canada
| | - Geoffrey G Hesketh
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Canada
| | - Stephanie A Bueler
- Molecular Medicine Program, The Hospital for Sick Children Research Institute, Toronto, Canada
| | - Anne-Claude Gingras
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Carol V Robinson
- Physical and Theoretical Chemistry Laboratory, University of Oxford, Oxford, UK
- Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, UK
| | - Sergio Grinstein
- Program in Cell Biology, The Hospital for Sick Children, Toronto, Canada
- Department of Biochemistry, University of Toronto, Toronto, Canada
| | - John L Rubinstein
- Molecular Medicine Program, The Hospital for Sick Children Research Institute, Toronto, Canada
- Department of Biochemistry, University of Toronto, Toronto, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
| |
Collapse
|
3
|
Karanth DS, Martin ML, Holliday LS. Plasma Membrane Receptors Involved in the Binding and Response of Osteoclasts to Noncellular Components of the Bone. Int J Mol Sci 2021; 22:ijms221810097. [PMID: 34576260 PMCID: PMC8466431 DOI: 10.3390/ijms221810097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/13/2021] [Accepted: 09/16/2021] [Indexed: 12/21/2022] Open
Abstract
Osteoclasts differentiate from hematopoietic cells and resorb the bone in response to various signals, some of which are received directly from noncellular elements of the bone. In vitro, adherence to the bone triggers the reduction of cell–cell fusion events between osteoclasts and the activation of osteoclasts to form unusual dynamic cytoskeletal and membrane structures that are required for degrading the bone. Integrins on the surface of osteoclasts are known to receive regulatory signals from the bone matrix. Regulation of the availability of these signals is accomplished by enzymatic alterations of the bone matrix by protease activity and phosphorylation/dephosphorylation events. Other membrane receptors are present in osteoclasts and may interact with as yet unidentified signals in the bone. Bone mineral has been shown to have regulatory effects on osteoclasts, and osteoclast activity is also directly modulated by mechanical stress. As understanding of how osteoclasts and other bone cells interact with the bone has emerged, increasingly sophisticated efforts have been made to create bone biomimetics that reproduce both the structural properties of the bone and the bone’s ability to regulate osteoclasts and other bone cells. A more complete understanding of the interactions between osteoclasts and the bone may lead to new strategies for the treatment of bone diseases and the production of bone biomimetics to repair defects.
Collapse
Affiliation(s)
- Divakar S. Karanth
- Department of Orthodontics, College of Dentistry, University of Florida, Gainesville, FL 32610, USA; (D.S.K.); (M.L.M.)
| | - Macey L. Martin
- Department of Orthodontics, College of Dentistry, University of Florida, Gainesville, FL 32610, USA; (D.S.K.); (M.L.M.)
| | - Lexie S. Holliday
- Department of Orthodontics, College of Dentistry, University of Florida, Gainesville, FL 32610, USA; (D.S.K.); (M.L.M.)
- Department of Anatomy & Cell Biology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
- Correspondence:
| |
Collapse
|
4
|
Wang S, Ma Q, Xie Z, Shen Y, Zheng B, Jiang C, Yuan P, An Q, Fan S, Jie Z. An Antioxidant Sesquiterpene Inhibits Osteoclastogenesis Via Blocking IPMK/TRAF6 and Counteracts OVX-Induced Osteoporosis in Mice. J Bone Miner Res 2021; 36:1850-1865. [PMID: 33956362 DOI: 10.1002/jbmr.4328] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 04/08/2021] [Accepted: 04/29/2021] [Indexed: 12/14/2022]
Abstract
Excessive bone resorption induced by increased osteoclast activity in postmenopausal women often causes osteoporosis. Although the pharmacological treatment of osteoporosis has been extensively developed, a safer and more effective treatment is still needed. Here, we found that curcumenol (CUL), an antioxidant sesquiterpene isolated from Curcuma zedoaria, impaired receptor activator of nuclear factor-κB (NF-κB) ligand (RANKL)-induced osteoclastogenesis in vitro, whereas the osteoblastogenesis of MC3T3-E1 cells was not affected. We further demonstrated that CUL treatment during RANKL-induced osteoclastogenesis promotes proteasomal degradation of TRAF6 by increasing its K48-linked polyubiquitination, leading to suppression of mitogen-activated protein kinases (MAPKs) and NF-κB pathways and the production of reactive oxygen species (ROS). We also showed that inositol polyphosphate multikinase (IPMK) binds with TRAF6 to reduce its K48-linked polyubiquitination under RANKL stimulation. Concurrently, IPMK deficiency inhibits osteoclast differentiation. The binding between IPMK and TRAF6 blocked by CUL treatment was found in our study. Finally, we confirmed that CUL treatment prevented ovariectomy (OVX)-induced bone loss in mice. In summary, our study demonstrates that CUL could impair the stability of TRAF6 enhanced by IPMK and suppress excessive osteoclast activity in estrogen-deficient mice to treat osteoporosis. © 2021 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Shiyu Wang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Qingliang Ma
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Ziang Xie
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Yang Shen
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Bingjie Zheng
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Chao Jiang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Putao Yuan
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Qin An
- Department of Orthopaedics, Shanghai Key Laboratory of Orthopaedic Implant, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shunwu Fan
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Zhiwei Jie
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| |
Collapse
|
5
|
Sun X, Xie Z, Hu B, Zhang B, Ma Y, Pan X, Huang H, Wang J, Zhao X, Jie Z, Shi P, Chen Z. The Nrf2 activator RTA-408 attenuates osteoclastogenesis by inhibiting STING dependent NF-κb signaling. Redox Biol 2020; 28:101309. [PMID: 31487581 PMCID: PMC6728880 DOI: 10.1016/j.redox.2019.101309] [Citation(s) in RCA: 123] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 08/22/2019] [Accepted: 08/26/2019] [Indexed: 11/30/2022] Open
Abstract
The dysregulation of ROS production and osteoclastogenesis is involved in the progress of osteoporosis. To identify novel and effective targets to treat this disease, it is important to explore the underlying mechanisms. In our study, we firstly tested the effect of the Nrf2 activator RTA-408, a novel synthetic triterpenoid under clinical investigation for many diseases, on osteoclastogenesis. We found that it could inhibit osteoclast differentiation and bone resorption in a time- and dose-dependent manner. Further, RTA-408 enhanced the expression and activity of Nrf2 and significantly suppressed RANKL-induced reactive oxygen species (ROS) production. Nrf2 regulates the STING expression and STING induces the production of IFN-β. Here, we found that RTA-408 could suppress STING expression, but that it does not affect Ifnb1 expression. RANKL-induced degradation of IκBα and the nuclear translocation of P65 was suppressed by RTA-408. Although this compound was not found to influence STING-IFN-β signaling, it suppressed the RANKL-induced K63-ubiquitination of STING via inhibiting the interaction between STING and the E3 ubiquitin ligase TRAF6. Further, adenovirus-mediated STING overexpression rescued the suppressive effect of RTA-408 on NF-κB signaling and osteoclastogenesis. In vivo experiments showed that this compound could effectively attenuate ovariectomy (OVX)-induced bone loss in C57BL/6 mice by inhibiting osteoclastogenesis. Collectively, we show that RTA-408 inhibits NF-κB signaling by suppressing the recruitment of TRAF6 to STING, in addition to attenuating osteoclastogenesis and OVX-induced bone loss in vivo, suggesting that it could be a promising candidate for treating osteoporosis in the future.
Collapse
Affiliation(s)
- Xuewu Sun
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Musculoskeletal System Degeneration, Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Ziang Xie
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Musculoskeletal System Degeneration, Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Bin Hu
- Department of Orthopedic Surgery, Second Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Boya Zhang
- Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, China
| | - Yan Ma
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Musculoskeletal System Degeneration, Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Xin Pan
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Musculoskeletal System Degeneration, Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Hai Huang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Musculoskeletal System Degeneration, Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Jiying Wang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Musculoskeletal System Degeneration, Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Xiangde Zhao
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Musculoskeletal System Degeneration, Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Zhiwei Jie
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Musculoskeletal System Degeneration, Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Peihua Shi
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Musculoskeletal System Degeneration, Regeneration Translational Research of Zhejiang Province, Hangzhou, China.
| | - Zhijun Chen
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Musculoskeletal System Degeneration, Regeneration Translational Research of Zhejiang Province, Hangzhou, China.
| |
Collapse
|
6
|
McGuire CM, Collins MP, Sun-Wada G, Wada Y, Forgac M. Isoform-specific gene disruptions reveal a role for the V-ATPase subunit a4 isoform in the invasiveness of 4T1-12B breast cancer cells. J Biol Chem 2019; 294:11248-11258. [PMID: 31167791 PMCID: PMC6643023 DOI: 10.1074/jbc.ra119.007713] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 05/30/2019] [Indexed: 12/17/2022] Open
Abstract
The vacuolar H+-ATPase (V-ATPase) is an ATP-driven proton pump present in various intracellular membranes and at the plasma membrane of specialized cell types. Previous work has reported that plasma membrane V-ATPases are key players in breast cancer cell invasiveness. The two subunit a-isoforms known to target the V-ATPase to the plasma membrane are a3 and a4, and expression of a3 has been shown to correlate with plasma membrane localization of the V-ATPase in various invasive human breast cancer cell lines. Here we analyzed the role of subunit a-isoforms in the invasive mouse breast cancer cell line, 4T1-12B. Quantitation of mRNA levels for each isoform by quantitative RT-PCR revealed that a4 is the dominant isoform expressed in these cells. Using a CRISPR/Cas9-based approach to disrupt the genes encoding each of the four V-ATPase subunit a-isoforms, we found that ablation of only the a4-encoding gene significantly inhibits invasion and migration of 4T1-12B cells. Additionally, cells with disrupted a4 exhibited reduced V-ATPase expression at the leading edge, suggesting that the a4 isoform is primarily responsible for targeting the V-ATPase to the plasma membrane in 4T1-12B cells. These findings suggest that different subunit a-isoforms may direct V-ATPases to the plasma membrane of different invasive breast cancer cell lines. They further suggest that expression of V-ATPases at the cell surface is the primary factor that promotes an invasive cancer cell phenotype.
Collapse
Affiliation(s)
- Christina M McGuire
- Department of Developmental, Molecular, and Chemical Biology, Tufts University School of Medicine, Tufts University, Boston, Massachusetts 02111
- Program in Biochemistry, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, Massachusetts 02111
| | - Michael P Collins
- Department of Developmental, Molecular, and Chemical Biology, Tufts University School of Medicine, Tufts University, Boston, Massachusetts 02111
- Program in Cell, Molecular, and Developmental Biology, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, Massachusetts 02111
| | - GeHong Sun-Wada
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, Doshisha Women's College, Kyotanabe, Kyoto 610-0395, Japan
| | - Yoh Wada
- Division of Biological Science, Institute of Scientific and Industrial Research, Osaka University, Ibaraki, Osaka 567-0047, Japan
| | - Michael Forgac
- Department of Developmental, Molecular, and Chemical Biology, Tufts University School of Medicine, Tufts University, Boston, Massachusetts 02111
- Program in Biochemistry, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, Massachusetts 02111
- Program in Cell, Molecular, and Developmental Biology, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, Massachusetts 02111
| |
Collapse
|
7
|
Rody WJ, Chamberlain CA, Emory-Carter AK, McHugh KP, Wallet SM, Spicer V, Krokhin O, Holliday LS. The proteome of extracellular vesicles released by clastic cells differs based on their substrate. PLoS One 2019; 14:e0219602. [PMID: 31291376 PMCID: PMC6619814 DOI: 10.1371/journal.pone.0219602] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 06/27/2019] [Indexed: 12/29/2022] Open
Abstract
Extracellular vesicles (EVs) from osteoclasts are important regulators in intercellular communication. Here, we investigated the proteome of EVs from clastic cells plated on plastic (clasts), bone (osteoclasts) and dentin (odontoclasts) by two-dimensional high performance liquid chromatography mass spectrometry seeking differences attributable to distinct mineralized matrices. A total of 1,952 proteins were identified. Of the 500 most abundant proteins in EVs, osteoclast and odontoclast EVs were 83.3% identical, while clasts shared 70.7% of the proteins with osteoclasts and 74.2% of proteins with odontoclasts. For each protein, the differences between the total ion count values were mapped to an expression ratio histogram (Z-score) in order to detect proteins differentially expressed. Stabilin-1 and macrophage mannose receptor-1 were significantly-enriched in EVs from odontoclasts compared with osteoclasts (Z = 2.45, Z = 3.34) and clasts (Z = 13.86, Z = 1.81) and were abundant in odontoclast EVs. Numerous less abundant proteins were differentially-enriched. Subunits of known protein complexes were abundant in clastic EVs, and were present at levels consistent with them being in assembled protein complexes. These included the proteasome, COP1, COP9, the T complex and a novel sub-complex of vacuolar H+-ATPase (V-ATPase), which included the (pro) renin receptor. The (pro) renin receptor was immunoprecipitated using an anti-E-subunit antibody from detergent-solubilized EVs, supporting the idea that the V-ATPase subunits present were in the same protein complex. We conclude that the protein composition of EVs released by clastic cells changes based on the substrate. Clastic EVs are enriched in various protein complexes including a previously undescribed V-ATPase sub-complex.
Collapse
Affiliation(s)
- Wellington J. Rody
- Department of Orthodontics and Pediatric Dentistry, Stony Brook University School of Dental Medicine, Stony Brook, NY, United States of America
- * E-mail: (WJR); (LSH)
| | - Casey A. Chamberlain
- Department of Orthodontics, University of Florida College of Dentistry, Gainesville, FL, United States of America
| | - Alyssa K. Emory-Carter
- Department of Orthodontics, University of Florida College of Dentistry, Gainesville, FL, United States of America
| | - Kevin P. McHugh
- Department of Periodontology, University of Florida College of Dentistry, Gainesville, FL, United States of America
| | - Shannon M. Wallet
- School of Dental Medicine, East Carolina University, Greenville, NC, United States of America
| | - Victor Spicer
- Manitoba Center for Proteomics and Systems Biology, Winnipeg, MB, Canada
| | - Oleg Krokhin
- Manitoba Center for Proteomics and Systems Biology, Winnipeg, MB, Canada
| | - L. Shannon Holliday
- Department of Orthodontics and Pediatric Dentistry, Stony Brook University School of Dental Medicine, Stony Brook, NY, United States of America
- Department of Anatomy & Cell Biology, University of Florida College of Medicine, Gainesville, FL, United States of America
- * E-mail: (WJR); (LSH)
| |
Collapse
|
8
|
Gu W, Chen K, Zhao X, Geng H, Li J, Qin Y, Bai X, Chang YN, Xia S, Zhang J, Ma S, Wu Z, Xing G, Xing G. Highly Dispersed Fullerenols Hamper Osteoclast Ruffled Border Formation by Perturbing Ca 2+ Bundles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1802549. [PMID: 30334332 DOI: 10.1002/smll.201802549] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 09/29/2018] [Indexed: 06/08/2023]
Abstract
Osteoporosis, a common and serious bone disorder affecting aged people and postmenopausal women, is characterized by osteoclast overactivity. One therapeutic strategy is suppressing the bone resorption function of hyperactive osteoclasts, but there is no effective drug in clinical practice so far. Herein, it is demonstrated that fullerenols suppress the bone resorption of osteoclasts by inhibiting ruffled borders (RBs) formation. The RBs formation, which is supported by well-aligned actin bundles (B-actins), is a critical event for osteoclast bone resorption. To facilitate this function, osteoclast RBs dynamics is regulated by variable microenvironments to bundle F-actins, protrude cell membrane, and so on. B-actin perturbation by fullerenols is determined here, offering an opportunity to regulate osteoclast function by destroying RBs. In vivo, the therapeutic effect of fullerenols on overactive osteoclasts is confirmed in a mouse model of lipopolysaccharide-induced bone erosion. Collectively, the findings suggest that fullerenols adhere to F-actin surfaces and inhibit RBs formation in osteoclasts, mainly through hampering Ca2+ from bundling F-actins, and this is likely due to the stereo-hindrance effect caused by adherent fullerenols.
Collapse
Affiliation(s)
- Weihong Gu
- CAS Key Laboratory for Biomedical Effects of Nanomaterial and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Kui Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterial and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaoyi Zhao
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing, 100049, China
| | - Huan Geng
- Department of Orthopedics, General Hospital of Chinese People's Armed Police Forces, Beijing, 100039, China
| | - Juan Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterial and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Yanxia Qin
- CAS Key Laboratory for Biomedical Effects of Nanomaterial and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Xue Bai
- CAS Key Laboratory for Biomedical Effects of Nanomaterial and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ya-Nan Chang
- CAS Key Laboratory for Biomedical Effects of Nanomaterial and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Shibo Xia
- CAS Key Laboratory for Biomedical Effects of Nanomaterial and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiaxin Zhang
- CAS Key Laboratory for Biomedical Effects of Nanomaterial and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Sihan Ma
- CAS Key Laboratory for Biomedical Effects of Nanomaterial and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhonghua Wu
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing, 100049, China
| | - Gengyan Xing
- Department of Orthopedics, General Hospital of Chinese People's Armed Police Forces, Beijing, 100039, China
| | - Gengmei Xing
- CAS Key Laboratory for Biomedical Effects of Nanomaterial and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
9
|
Duan X, Yang S, Zhang L, Yang T. V-ATPases and osteoclasts: ambiguous future of V-ATPases inhibitors in osteoporosis. Theranostics 2018; 8:5379-5399. [PMID: 30555553 PMCID: PMC6276090 DOI: 10.7150/thno.28391] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 10/10/2018] [Indexed: 12/11/2022] Open
Abstract
Vacuolar ATPases (V-ATPases) play a critical role in regulating extracellular acidification of osteoclasts and bone resorption. The deficiencies of subunit a3 and d2 of V-ATPases result in increased bone density in humans and mice. One of the traditional drug design strategies in treating osteoporosis is the use of subunit a3 inhibitor. Recent findings connect subunits H and G1 with decreased bone density. Given the controversial effects of ATPase subunits on bone density, there is a critical need to review the subunits of V-ATPase in osteoclasts and their functions in regulating osteoclasts and bone remodeling. In this review, we comprehensively address the following areas: information about all V-ATPase subunits and their isoforms; summary of V-ATPase subunits associated with human genetic diseases; V-ATPase subunits and osteopetrosis/osteoporosis; screening of all V-ATPase subunits variants in GEFOS data and in-house data; spectrum of V-ATPase subunits during osteoclastogenesis; direct and indirect roles of subunits of V-ATPases in osteoclasts; V-ATPase-associated signaling pathways in osteoclasts; interactions among V-ATPase subunits in osteoclasts; osteoclast-specific V-ATPase inhibitors; perspective of future inhibitors or activators targeting V-ATPase subunits in the treatment of osteoporosis.
Collapse
Affiliation(s)
- Xiaohong Duan
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Department of Oral Biology, Clinic of Oral Rare and Genetic Diseases, School of Stomatology, the Fourth Military Medical University, 145 West Changle Road, Xi'an 710032, P. R. China
| | - Shaoqing Yang
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Department of Oral Biology, Clinic of Oral Rare and Genetic Diseases, School of Stomatology, the Fourth Military Medical University, 145 West Changle Road, Xi'an 710032, P. R. China
| | - Lei Zhang
- Center for Genetic Epidemiology and Genomics, School of Public Health, Medical College of Soochow University, 199 Renai Road, Suzhou, Jiangsu, P. R. China
| | - Tielin Yang
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, and Institute of Molecular Genetics, School of Life Science and Technology, Xi'an Jiaotong University, 28 West Xianning Road, Xi'an 710049, People's Republic of China
| |
Collapse
|
10
|
Holliday LS. Vacuolar H +-ATPases (V-ATPases) as therapeutic targets: a brief review and recent developments. ACTA ACUST UNITED AC 2017; 1. [PMID: 30957075 DOI: 10.21037/biotarget.2017.12.01] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Vacuolar H+-ATPases (V-ATPases) are multi-subunit enzymes that play housekeeping roles in eukaryotic cells by acidifying lysosomes, late endosomes, Golgi, and other membrane-bounded compartments. Beyond that, V-ATPases have specialized functions in certain cell types linked to diseases including osteoporosis and cancer. Efforts to identify strategies to develop inhibitors selective for V-ATPases that are involved in disease progression have been ongoing for more than two decades, but so far have not yielded a therapeutic agent that has been translated to the clinic. Recent basic science studies have identified unexpected roles for V-ATPases in nutrient and energy sensing, and renin/angiotensin signaling, which offer additional incentives for considering V-ATPases as therapeutic targets. This article briefly reviews efforts to utilize inhibitors of V-ATPases as drugs. Primary focus is on recent "rational" efforts to identify small molecule inhibitors of the V-ATPases that are selectively expressed in osteoclasts and cancer cells. Enoxacin and bis-enoxacin are two molecules that emerged from these efforts. These molecules block a binding interaction between V-ATPases and microfilaments that occurs in osteoclasts, but not most other cell types, which relates to the specialized function of V-ATPases in bone resorption. Enoxacin and bis-enoxacin have proven useful in the treatment of bone diseases and cancer in animal models and display therapeutic effects that are different, and perhaps better, than current drugs. These results provide evidence that agents targeting subsets of V-ATPases may prove useful in the clinic.
Collapse
Affiliation(s)
- L Shannon Holliday
- Departments of Orthodontics and Anatomy & Cell Biology, University of Florida College of Dentistry, Gainesville, Florida, USA
| |
Collapse
|
11
|
Dynamic gene expression response to altered gravity in human T cells. Sci Rep 2017; 7:5204. [PMID: 28701719 PMCID: PMC5507981 DOI: 10.1038/s41598-017-05580-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 05/31/2017] [Indexed: 01/02/2023] Open
Abstract
We investigated the dynamics of immediate and initial gene expression response to different gravitational environments in human Jurkat T lymphocytic cells and compared expression profiles to identify potential gravity-regulated genes and adaptation processes. We used the Affymetrix GeneChip® Human Transcriptome Array 2.0 containing 44,699 protein coding genes and 22,829 non-protein coding genes and performed the experiments during a parabolic flight and a suborbital ballistic rocket mission to cross-validate gravity-regulated gene expression through independent research platforms and different sets of control experiments to exclude other factors than alteration of gravity. We found that gene expression in human T cells rapidly responded to altered gravity in the time frame of 20 s and 5 min. The initial response to microgravity involved mostly regulatory RNAs. We identified three gravity-regulated genes which could be cross-validated in both completely independent experiment missions: ATP6V1A/D, a vacuolar H + -ATPase (V-ATPase) responsible for acidification during bone resorption, IGHD3-3/IGHD3-10, diversity genes of the immunoglobulin heavy-chain locus participating in V(D)J recombination, and LINC00837, a long intergenic non-protein coding RNA. Due to the extensive and rapid alteration of gene expression associated with regulatory RNAs, we conclude that human cells are equipped with a robust and efficient adaptation potential when challenged with altered gravitational environments.
Collapse
|
12
|
Oktay S, Chukkapalli SS, Rivera-Kweh MF, Velsko IM, Holliday LS, Kesavalu L. Periodontitis in rats induces systemic oxidative stress that is controlled by bone-targeted antiresorptives. J Periodontol 2016; 86:137-45. [PMID: 25101489 DOI: 10.1902/jop.2014.140302] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
BACKGROUND Periodontitis is a chronic, polymicrobial inflammatory disease that degrades connective tissue and alveolar bone and results in tooth loss. Oxidative stress has been linked to the onset of periodontal tissue breakdown and systemic inflammation, and the success of antiresorptive treatments will rely on how effectively they can ameliorate periodontal disease-induced oxidative stress during oral infection. METHODS Rats were infected with polybacterial inoculum consisting of Porphyromonas gingivalis, Treponema denticola, and Tannerella forsythia, as an oral lavage every other week for 12 weeks. Daily subcutaneous injections of enoxacin, bis-enoxacin, alendronate, or doxycycline were administered for 6 weeks after 6 weeks of polybacterial infection in rats. The serum levels of oxidative stress parameters and antioxidant enzymes, including glutathione peroxidase, superoxide dismutase, and catalase, were evaluated in each of the infected, treated, and sham-infected rats. RESULTS Rats infected with the periodontal pathogens displayed a five-fold increase in the oxidative stress index compared with controls as a result of increased levels of serum oxidants and decreases in total antioxidant activity. The overall decrease in antioxidant activity occurred despite increases in three important antioxidant enzymes, suggesting an imbalance between antioxidant macromolecules/small molecules production and antioxidant enzyme levels. Surprisingly, the bone-targeted antiresorptives bis-enoxacin and alendronate inhibited increases in oxidative stress caused by periodontitis. Bis-enoxacin, which has both antiresorptive and antibiotic activities, was more effective than alendronate, which acts only as an antiresorptive. CONCLUSION To the best of the authors' knowledge, this is the first study to demonstrate that the increased oxidative stress induced by periodontal infection in rats can be ameliorated by bone-targeted antiresorptives.
Collapse
Affiliation(s)
- Sehkar Oktay
- Department of Periodontology, College of Dentistry, University of Florida, Gainesville, FL
| | | | | | | | | | | |
Collapse
|
13
|
Smith GA, Howell GJ, Phillips C, Muench SP, Ponnambalam S, Harrison MA. Extracellular and Luminal pH Regulation by Vacuolar H+-ATPase Isoform Expression and Targeting to the Plasma Membrane and Endosomes. J Biol Chem 2016; 291:8500-15. [PMID: 26912656 PMCID: PMC4861423 DOI: 10.1074/jbc.m116.723395] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Indexed: 01/02/2023] Open
Abstract
Plasma membrane vacuolar H+-ATPase (V-ATPase) activity of tumor cells is a major factor in control of cytoplasmic and extracellular pH and metastatic potential, but the isoforms involved and the factors governing plasma membrane recruitment remain uncertain. Here, we examined expression, distribution, and activity of V-ATPase isoforms in invasive prostate adenocarcinoma (PC-3) cells. Isoforms 1 and 3 were the most highly expressed forms of membrane subunit a, with a1 and a3 the dominant plasma membrane isoforms. Correlation between plasma membrane V-ATPase activity and invasiveness was limited, but RNAi knockdown of either a isoform did slow cell proliferation and inhibit invasion in vitro. Isoform a1 was recruited to the cell surface from the early endosome-recycling complex pathway, its knockdown arresting transferrin receptor recycling. Isoform a3 was associated with the late endosomal/lysosomal compartment. Both a isoforms associated with accessory protein Ac45, knockdown of which stalled transit of a1 and transferrin-transferrin receptor, decreased proton efflux, and reduced cell growth and invasiveness; this latter effect was at least partly due to decreased delivery of the membrane-bound matrix metalloproteinase MMP-14 to the plasma membrane. These data indicate that in prostatic carcinoma cells, a1 and a3 isoform populations predominate in different compartments where they maintain different luminal pH. Ac45 plays a central role in navigating the V-ATPase to the plasma membrane, and hence it is an important factor in expression of the invasive phenotype.
Collapse
Affiliation(s)
- Gina A Smith
- From the Endothelial Cell Biology Unit, School of Molecular and Cellular Biology and
| | - Gareth J Howell
- From the Endothelial Cell Biology Unit, School of Molecular and Cellular Biology and
| | - Clair Phillips
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Stephen P Muench
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom
| | | | - Michael A Harrison
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom
| |
Collapse
|
14
|
Serra-Peinado C, Sicart A, Llopis J, Egea G. Actin Filaments Are Involved in the Coupling of V0-V1 Domains of Vacuolar H+-ATPase at the Golgi Complex. J Biol Chem 2016; 291:7286-99. [PMID: 26872971 DOI: 10.1074/jbc.m115.675272] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Indexed: 11/06/2022] Open
Abstract
We previously reported that actin-depolymerizing agents promote the alkalization of the Golgi stack and thetrans-Golgi network. The main determinant of acidic pH at the Golgi is the vacuolar-type H(+)-translocating ATPase (V-ATPase), whose V1domain subunitsBandCbind actin. We have generated a GFP-tagged subunitB2construct (GFP-B2) that is incorporated into the V1domain, which in turn is coupled to the V0sector. GFP-B2 subunit is enriched at distal Golgi compartments in HeLa cells. Subcellular fractionation, immunoprecipitation, and inversal FRAP experiments show that the actin depolymerization promotes the dissociation of V1-V0domains, which entails subunitB2translocation from Golgi membranes to the cytosol. Moreover, molecular interaction between subunitsB2andC1and actin were detected. In addition, Golgi membrane lipid order disruption byd-ceramide-C6 causes Golgi pH alkalization. We conclude that actin regulates the Golgi pH homeostasis maintaining the coupling of V1-V0domains of V-ATPase through the binding of microfilaments to subunitsBandCand preserving the integrity of detergent-resistant membrane organization. These results establish the Golgi-associated V-ATPase activity as the molecular link between actin and the Golgi pH.
Collapse
Affiliation(s)
- Carla Serra-Peinado
- From the Department de Biologia Cellular, Immunologia i Neurociències, Facultat de Medicina, Universitat de Barcelona, E-08036 Barcelona
| | - Adrià Sicart
- From the Department de Biologia Cellular, Immunologia i Neurociències, Facultat de Medicina, Universitat de Barcelona, E-08036 Barcelona
| | - Juan Llopis
- the Facultad de Medicina de Albacete and Centro Regional de Investigaciones Biomédicas, Universidad de Castilla-La Mancha, E-0200 Albacete, Spain
| | - Gustavo Egea
- From the Department de Biologia Cellular, Immunologia i Neurociències, Facultat de Medicina, Universitat de Barcelona, E-08036 Barcelona, the Institut d'Investigació Biomèdica August Pi i Sunyer, E-08036 Barcelona, the Institut de Nanociència i Nanotecnologia (INUB), E-08036 Barcelona, and
| |
Collapse
|
15
|
Kazami S, Takaine M, Itoh H, Kubota T, Kobayashi J, Usui T. Iejimalide C is a potent V-ATPase inhibitor, and induces actin disorganization. Biol Pharm Bull 2015; 37:1944-7. [PMID: 25451843 DOI: 10.1248/bpb.b14-00548] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Iejimalides (IEJLs) A-D are 24-membered macrolides isolated from a tunicate Eudistoma cf. rigida, and exhibit potent cytotoxicity in vitro and antitumor activity in vivo. We previously reported that the molecular target of IEJL-A and -B was the vacuolar-type H(+)-ATPases (V-ATPases). However IEJL-C and -D, which are sulfonylated IEJL-A and -B, respectively, show more potent antitumor activity, and their molecular targets remain to be discovered. Here, we report that IEJL-C is also a potent V-ATPase inhibitor by binding in a site similar to the bafilomycin-binding site. Two-hour treatment with IEJL-C resulted in the complete disappearance of acidic organelles in HeLa cells. Interestingly, after 24-h treatment, small actin aggregates were observed instead of actin fibers. The same actin reorganization was also observed in cells treated with another V-ATPase inhibitor, bafilomycin A1. Because IEJLs did not inhibit actin polymerization in vitro, these results suggest that the primary target of IEJL-C, as well as IEJL-A and -B, is V-ATPase, and actin reorganizations are probably caused by the disruption of pH homeostasis via V-ATPase inhibition.
Collapse
Affiliation(s)
- Sayaka Kazami
- Tsukuba Research Laboratory, Hamamatsu Photonics K.K
| | | | | | | | | | | |
Collapse
|
16
|
Maxson ME, Grinstein S. The vacuolar-type H⁺-ATPase at a glance - more than a proton pump. J Cell Sci 2015; 127:4987-93. [PMID: 25453113 DOI: 10.1242/jcs.158550] [Citation(s) in RCA: 179] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The vacuolar H(+)-ATPase (V-ATPase) has long been appreciated to function as an electrogenic H(+) pump. By altering the pH of intracellular compartments, the V-ATPase dictates enzyme activity, governs the dissociation of ligands from receptors and promotes the coupled transport of substrates across membranes, a role often aided by the generation of a transmembrane electrical potential. In tissues where the V-ATPase is expressed at the plasma membrane, it can serve to acidify the extracellular microenvironment. More recently, however, the V-ATPase has been implicated in a bewildering variety of additional roles that seem independent of its ability to translocate H(+). These non-canonical functions, which include fusogenicity, cytoskeletal tethering and metabolic sensing, are described in this Cell Science at a Glance article and accompanying poster, together with a brief overview of the conventional functions of the V-ATPase.
Collapse
Affiliation(s)
- Michelle E Maxson
- Program in Cell Biology, Hospital for Sick Children, 686 Bay Street, Toronto, ON, M5G 0A4, Canada
| | - Sergio Grinstein
- Program in Cell Biology, Hospital for Sick Children, 686 Bay Street, Toronto, ON, M5G 0A4, Canada Keenan Research Centre of the Li Ka Shing Knowledge Institute, St. Michael's Hospital, 290 Victoria Street, Toronto, ON, M5C 1N8, Canada
| |
Collapse
|
17
|
Cotter K, Capecci J, Sennoune S, Huss M, Maier M, Martinez-Zaguilan R, Forgac M. Activity of plasma membrane V-ATPases is critical for the invasion of MDA-MB231 breast cancer cells. J Biol Chem 2014; 290:3680-92. [PMID: 25505184 DOI: 10.1074/jbc.m114.611210] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The vacuolar (H(+))-ATPases (V-ATPases) are a family of ATP-driven proton pumps that couple ATP hydrolysis with translocation of protons across membranes. Previous studies have implicated V-ATPases in cancer cell invasion. It has been proposed that V-ATPases participate in invasion by localizing to the plasma membrane and causing acidification of the extracellular space. To test this hypothesis, we utilized two separate approaches to specifically inhibit plasma membrane V-ATPases. First, we stably transfected highly invasive MDA-MB231 cells with a V5-tagged construct of the membrane-embedded c subunit of the V-ATPase, allowing for extracellular expression of the V5 epitope. We evaluated the effect of addition of a monoclonal antibody directed against the V5 epitope on both V-ATPase-mediated proton translocation across the plasma membrane and invasion using an in vitro Matrigel assay. The addition of anti-V5 antibody resulted in acidification of the cytosol and a decrease in V-ATPase-dependent proton flux across the plasma membrane in transfected but not control (untransfected) cells. These results demonstrate that the anti-V5 antibody inhibits activity of plasma membrane V-ATPases in transfected cells. Addition of the anti-V5 antibody also inhibited in vitro invasion of transfected (but not untransfected) cells. Second, we utilized a biotin-conjugated form of the specific V-ATPase inhibitor bafilomycin. When bound to streptavidin, this compound cannot cross the plasma membrane. Addition of this compound to MDA-MB231 cells also inhibited in vitro invasion. These studies suggest that plasma membrane V-ATPases play an important role in invasion of breast cancer cells.
Collapse
Affiliation(s)
- Kristina Cotter
- From the Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine and the Program in Cellular and Molecular Physiology, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, Massachusetts 02111
| | - Joseph Capecci
- From the Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine and the Program in Cellular and Molecular Physiology, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, Massachusetts 02111
| | - Souad Sennoune
- the Department of Cell Physiology and Molecular Biophysics, Texas Tech University, Lubbock, Texas 79430
| | - Markus Huss
- the Department of Biology/Chemistry, Division of Animal Physiology, University of Osnabrück, 49069 Osnabrück, Germany, and
| | - Martin Maier
- the Institute of Organic Chemistry, University of Tuebingen, 72076 Tuebingen, Germany
| | - Raul Martinez-Zaguilan
- the Department of Cell Physiology and Molecular Biophysics, Texas Tech University, Lubbock, Texas 79430
| | - Michael Forgac
- From the Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine and the Program in Cellular and Molecular Physiology, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, Massachusetts 02111,
| |
Collapse
|
18
|
Kartner N, Manolson MF. Novel techniques in the development of osteoporosis drug therapy: the osteoclast ruffled-border vacuolar H(+)-ATPase as an emerging target. Expert Opin Drug Discov 2014; 9:505-22. [PMID: 24749538 DOI: 10.1517/17460441.2014.902155] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
INTRODUCTION Bone loss occurs in many diseases, including osteoporosis, rheumatoid arthritis and periodontal disease. For osteoporosis alone, it is estimated that 75 million people are afflicted worldwide, with high risks of fractures and increased morbidity and mortality. The demand for treatment consumes an ever-increasing share of healthcare resources. Successive generations of antiresorptive bisphosphonate drugs have reduced side effects, minimized frequency of dosing, and increased efficacy in halting osteoporotic bone loss, but their shortcomings have remained significant to the extent that a monoclonal antibody antiresorptive has recently taken a significant market share. Yet this latter, paradigm-shifting approach has its own drawbacks. AREAS COVERED This review summarizes recent literature on bone-remodeling cell and molecular biology and the background for existing approaches and emerging therapeutics and targets for treating osteoporosis. The authors discuss vacuolar H(+)-ATPase (V-ATPase) molecular biology and the recent advances in targeting the osteoclast ruffled-border V-ATPase (ORV) for the development of novel antiresorptive drugs. They also cover examples from the V-ATPase-targeted drug discovery literature, including conventional molecular biology methods, in silico drug discovery, and gene therapy in more detail as proofs of concept. EXPERT OPINION Existing therapeutic options for osteoporosis have limitations and inherent drawbacks. Thus, the search for novel approaches to osteoporosis drug discovery remains relevant. Targeting the ORV may be one of the more selective means of regulating bone resorption. Furthermore, this approach may be effective without removing active osteoclasts from the finely balanced osteoclast-osteoblast coupling required for normal bone remodeling.
Collapse
Affiliation(s)
- Norbert Kartner
- University of Toronto , 124 Edward Street, Toronto, Ontario M5G 1G6 , Canada
| | | |
Collapse
|
19
|
Rivera MF, Chukkapalli SS, Velsko IM, Lee JY, Bhattacharyya I, Dolce C, Toro EJ, Holliday LS, Kesavalu L. Bis-enoxacin blocks rat alveolar bone resorption from experimental periodontitis. PLoS One 2014; 9:e92119. [PMID: 24638087 PMCID: PMC3956892 DOI: 10.1371/journal.pone.0092119] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Accepted: 02/17/2014] [Indexed: 12/30/2022] Open
Abstract
Periodontal diseases are multifactorial, caused by polymicrobial subgingival pathogens, including Porphyromonas gingivalis, Treponema denticola, and Tannerella forsythia. Chronic periodontal infection results in inflammation, destruction of connective tissues, periodontal ligament, and alveolar bone resorption, and ultimately tooth loss. Enoxacin and a bisphosphonate derivative of enoxacin (bis-enoxacin) inhibit osteoclast formation and bone resorption and also contain antibiotic properties. Our study proposes that enoxacin and/or bis-enoxacin may be useful in reducing alveolar bone resorption and possibly bacterial colonization. Rats were infected with 10(9) cells of polymicrobial inoculum consisting of P. gingivalis, T. denticola, and T. forsythia, as an oral lavage every other week for twelve weeks. Daily subcutaneous injections of enoxacin (5 mg/kg/day), bis-enoxacin (5, 25 mg/kg/day), alendronate (1, 10 mg/kg/day), or doxycycline (5 mg/day) were administered after 6 weeks of polymicrobial infection. Periodontal disease parameters, including bacterial colonization/infection, immune response, inflammation, alveolar bone resorption, and systemic spread, were assessed post-euthanasia. All three periodontal pathogens colonized the rat oral cavity during polymicrobial infection. Polymicrobial infection induced an increase in total alveolar bone resorption, intrabony defects, and gingival inflammation. Treatment with bis-enoxacin significantly decreased alveolar bone resorption more effectively than either alendronate or doxycycline. Histologic examination revealed that treatment with bis-enoxacin and enoxacin reduced gingival inflammation and decreased apical migration of junctional epithelium. These data support the hypothesis that bis-enoxacin and enoxacin may be useful for the treatment of periodontal disease.
Collapse
Affiliation(s)
- Mercedes F. Rivera
- Department of Periodontology, College of Dentistry, University of Florida, Gainesville, Florida, United States of America
| | - Sasanka S. Chukkapalli
- Department of Periodontology, College of Dentistry, University of Florida, Gainesville, Florida, United States of America
| | - Irina M. Velsko
- Department of Periodontology, College of Dentistry, University of Florida, Gainesville, Florida, United States of America
| | - Ju-Youn Lee
- Department of Periodontology, College of Dentistry, University of Florida, Gainesville, Florida, United States of America
| | - Indraneel Bhattacharyya
- Department of Oral Diagnostic Sciences, College of Dentistry, University of Florida, Gainesville, Florida, United States of America
| | - Calogero Dolce
- Department of Orthodontics, College of Dentistry, University of Florida, Gainesville, Florida, United States of America
| | - Edgardo J. Toro
- Department of Orthodontics, College of Dentistry, University of Florida, Gainesville, Florida, United States of America
| | - L. Shannon Holliday
- Department of Orthodontics, College of Dentistry, University of Florida, Gainesville, Florida, United States of America
- Department of Anatomy and Cell Biology, College of Medicine, University of Florida, Gainesville, Florida, United States of America
| | - Lakshmyya Kesavalu
- Department of Periodontology, College of Dentistry, University of Florida, Gainesville, Florida, United States of America
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, Florida, United States of America
| |
Collapse
|
20
|
Vacuolar H+-ATPase: An Essential Multitasking Enzyme in Physiology and Pathophysiology. ACTA ACUST UNITED AC 2014. [DOI: 10.1155/2014/675430] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Vacuolar H+-ATPases (V-ATPases) are large multisubunit proton pumps that are required for housekeeping acidification of membrane-bound compartments in eukaryotic cells. Mammalian V-ATPases are composed of 13 different subunits. Their housekeeping functions include acidifying endosomes, lysosomes, phagosomes, compartments for uncoupling receptors and ligands, autophagosomes, and elements of the Golgi apparatus. Specialized cells, including osteoclasts, intercalated cells in the kidney and pancreatic beta cells, contain both the housekeeping V-ATPases and an additional subset of V-ATPases, which plays a cell type specific role. The specialized V-ATPases are typically marked by the inclusion of cell type specific isoforms of one or more of the subunits. Three human diseases caused by mutations of isoforms of subunits have been identified. Cancer cells utilize V-ATPases in unusual ways; characterization of V-ATPases may lead to new therapeutic modalities for the treatment of cancer. Two accessory proteins to the V-ATPase have been identified that regulate the proton pump. One is the (pro)renin receptor and data is emerging that indicates that V-ATPase may be intimately linked to renin/angiotensin signaling both systemically and locally. In summary, V-ATPases play vital housekeeping roles in eukaryotic cells. Specialized versions of the pump are required by specific organ systems and are involved in diseases.
Collapse
|
21
|
Sobacchi C, Schulz A, Coxon FP, Villa A, Helfrich MH. Osteopetrosis: genetics, treatment and new insights into osteoclast function. Nat Rev Endocrinol 2013; 9:522-36. [PMID: 23877423 DOI: 10.1038/nrendo.2013.137] [Citation(s) in RCA: 390] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Osteopetrosis is a genetic condition of increased bone mass, which is caused by defects in osteoclast formation and function. Both autosomal recessive and autosomal dominant forms exist, but this Review focuses on autosomal recessive osteopetrosis (ARO), also known as malignant infantile osteopetrosis. The genetic basis of this disease is now largely uncovered: mutations in TCIRG1, CLCN7, OSTM1, SNX10 and PLEKHM1 lead to osteoclast-rich ARO (in which osteoclasts are abundant but have severely impaired resorptive function), whereas mutations in TNFSF11 and TNFRSF11A lead to osteoclast-poor ARO. In osteoclast-rich ARO, impaired endosomal and lysosomal vesicle trafficking results in defective osteoclast ruffled-border formation and, hence, the inability to resorb bone and mineralized cartilage. ARO presents soon after birth and can be fatal if left untreated. However, the disease is heterogeneous in clinical presentation and often misdiagnosed. This article describes the genetics of ARO and discusses the diagnostic role of next-generation sequencing methods. The management of affected patients, including guidelines for the indication of haematopoietic stem cell transplantation (which can provide a cure for many types of ARO), are outlined. Finally, novel treatments, including preclinical data on in utero stem cell treatment, RANKL replacement therapy and denosumab therapy for hypercalcaemia are also discussed.
Collapse
Affiliation(s)
- Cristina Sobacchi
- Unit Of Support/Institute of Genetic and Biomedical Research, Milan Unit, National Research Council, Humanitas Clinical and Research Centre, Via Manzoni 113, 20089 Rozzano, Italy
| | | | | | | | | |
Collapse
|
22
|
Toro EJ, Zuo J, Gutierrez A, Guiterrez A, La Rosa RL, Gawron AJ, Bradaschia-Correa V, Arana-Chavez V, Dolce C, Rivera MF, Kesavalu L, Bhattacharyya I, Neubert JK, Holliday LS. Bis-enoxacin inhibits bone resorption and orthodontic tooth movement. J Dent Res 2013; 92:925-31. [PMID: 23958763 DOI: 10.1177/0022034513501876] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
UNLABELLED Enoxacin inhibits binding between the B-subunit of vacuolar H(+)-ATPase (V-ATPase) and microfilaments, and also between osteoclast formation and bone resorption in vitro. We hypothesized that a bisphosphonate derivative of enoxacin, bis-enoxacin (BE), which was previously studied as a bone-directed antibiotic, might have similar activities. BE shared a number of characteristics with enoxacin: It blocked binding between the recombinant B-subunit and microfilaments and inhibited osteoclastogenesis in cell culture with IC50s of about 10 µM in each case. BE did not alter the relative expression levels of various osteoclast-specific proteins. Even though tartrate-resistant acid phosphatase 5b was expressed, proteolytic activation of the latent pro-enzyme was inhibited. However, unlike enoxacin, BE stimulated caspase-3 activity. BE bound to bone slices and inhibited bone resorption by osteoclasts on BE-coated bone slices in cell culture. BE reduced the amount of orthodontic tooth movement achieved in rats after 28 days. Analysis of these data suggests that BE is a novel anti-resorptive molecule that is active both in vitro and in vivo and may have clinical uses. ABBREVIATIONS BE, bis-enoxacin; V-ATPase, vacuolar H(+)-ATPase; TRAP, tartrate-resistant acid phosphatase; αMEM D10, minimal essential media, alpha modification with 10% fetal bovine serum; SDS-PAGE, sodium dodecyl sulfate-polyacrylamide gel electrophoresis; RANKL, receptor activator of nuclear factor kappa B-ligand; NFATc1, nuclear factor of activated T-cells; ADAM, a disintegrin and metalloprotease domain; OTM, orthodontic tooth movement.
Collapse
Affiliation(s)
- E J Toro
- Department of Orthodontics, University of Florida College of Dentistry, Gainesville, FL 32610, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Tanaka H, Tanabe N, Kawato T, Nakai K, Kariya T, Matsumoto S, Zhao N, Motohashi M, Maeno M. Nicotine affects bone resorption and suppresses the expression of cathepsin K, MMP-9 and vacuolar-type H(+)-ATPase d2 and actin organization in osteoclasts. PLoS One 2013; 8:e59402. [PMID: 23555029 PMCID: PMC3598738 DOI: 10.1371/journal.pone.0059402] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Accepted: 02/16/2013] [Indexed: 11/18/2022] Open
Abstract
Tobacco smoking is an important risk factor for the development of several cancers, osteoporosis, and inflammatory diseases such as periodontitis. Nicotine is one of the major components of tobacco. In previous study, we showed that nicotine inhibits mineralized nodule formation by osteoblasts, and the culture medium from osteoblasts containing nicotine and lipopolysaccharide increases osteoclast differentiation. However, the direct effect of nicotine on the differentiation and function of osteoclasts is poorly understood. Thus, we examined the direct effects of nicotine on the expression of nicotine receptors and bone resorption-related enzymes, mineral resorption, actin organization, and bone resorption using RAW264.7 cells and bone marrow cells as osteoclast precursors. Cells were cultured with 10(-5), 10(-4), or 10(-3) M nicotine and/or 50 µM α-bungarotoxin (btx), an 7 nicotine receptor antagonist, in differentiation medium containing the soluble RANKL for up 7 days. 1-5, 7, 9, and 10 nicotine receptors were expressed on RAW264.7 cells. The expression of 7 nicotine receptor was increased by the addition of nicotine. Nicotine suppressed the number of tartrate-resistant acid phosphatase positive multinuclear osteoclasts with large nuclei(≥10 nuclei), and decreased the planar area of each cell. Nicotine decreased expression of cathepsin K, MMP-9, and V-ATPase d2. Btx inhibited nicotine effects. Nicotine increased CA II expression although decreased the expression of V-ATPase d2 and the distribution of F-actin. Nicotine suppressed the planar area of resorption pit by osteoclasts, but did not affect mineral resorption. These results suggest that nicotine increased the number of osteoclasts with small nuclei, but suppressed the number of osteoclasts with large nuclei. Moreover, nicotine reduced the planar area of resorption pit by suppressing the number of osteoclasts with large nuclei, V-ATPase d2, cathepsin K and MMP-9 expression and actin organization.
Collapse
Affiliation(s)
- Hideki Tanaka
- Department of Oral Health Sciences, Nihon University School of Dentistry, Tokyo, Japan
| | - Natsuko Tanabe
- Department of Biochemistry, Nihon University School of Dentistry, Tokyo, Japan
- Division of Functional Morphology, Dental Research Center, Nihon University School of Dentistry, Tokyo, Japan
| | - Takayuki Kawato
- Department of Oral Health Sciences, Nihon University School of Dentistry, Tokyo, Japan
- Division of Functional Morphology, Dental Research Center, Nihon University School of Dentistry, Tokyo, Japan
| | - Kumiko Nakai
- Nihon University Graduate School of Dentistry, Tokyo, Japan
| | - Taro Kariya
- Nihon University Graduate School of Dentistry, Tokyo, Japan
| | | | - Ning Zhao
- Department of Biochemistry, Nihon University School of Dentistry, Tokyo, Japan
- Department of Endodontics, School of Dentistry, Shandong University, Jinan, Shandong Province, People's Republic of China
| | - Masafumi Motohashi
- Department of Oral Health Sciences, Nihon University School of Dentistry, Tokyo, Japan
- Division of Functional Morphology, Dental Research Center, Nihon University School of Dentistry, Tokyo, Japan
| | - Masao Maeno
- Department of Oral Health Sciences, Nihon University School of Dentistry, Tokyo, Japan
- Division of Functional Morphology, Dental Research Center, Nihon University School of Dentistry, Tokyo, Japan
| |
Collapse
|
24
|
Xu X, You J, Pei F. Silencing of a novel tumor metastasis suppressor gene LASS2/TMSG1 promotes invasion of prostate cancer cell in vitro through increase of vacuolar ATPase activity. J Cell Biochem 2012; 113:2356-63. [PMID: 22573553 DOI: 10.1002/jcb.24106] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Homo sapiens longevity assurance homologue 2 of yeast LAG1 (LASS2), also known as tumor metastasis suppressor gene 1 (TMSG1), is a newly found tumor metastasis suppressor gene in 1999. Preliminary studies showed that it not only suppressed tumor growth but also closely related to tumor metastasis, however, its molecular mechanisms is still unclear. There have been reported that protein encoded by LASS2/TMSG-1 could directly interact with the C subunit of Vacuolar ATPase (V-ATPase), which suggested that LASS2/TMSG1 might inhibit the invasion and metastasis through regulating the function of V-ATPase. Thus, in this study, we explored the effect of small interference RNA (siRNA) targeting LASS2/TMSG1 on the invasion of human prostate carcinoma cell line PC-3M-2B4 and its molecular mechanisms associated with the V-ATPase. Real-time fluorogentic quantitative PCR (RFQ-PCR) and Western blot revealed dramatic reduction of 84.5% and 60% in the levels of LASS2/TMSG1 mRNA and protein after transfection of siRNA in PC-3M-2B4 cells. The V-ATPase activity and extracellular hydrogen ion concentration were significantly increased in 2B4 cells transfected with the LASS2/TMSG1-siRNA compared with the controls. The activity of secreted MMP-2 was up-regulated in LASS2/TMSG1-siRNA treated cells compared with the controls; and the capacity for migration and invasion in LASS2/TMSG1-siRNA treated cells was significantly higher than the controls. Thus, we concluded that silencing of LASS2/TMSG1 may promote invasion of prostate cancer cell in vitro through increase of V-ATPase activity and extracellular hydrogen ion concentration and in turn the activation of secreted MMP-2.
Collapse
Affiliation(s)
- Xiaoyan Xu
- Department of Pathology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, PR China
| | | | | |
Collapse
|
25
|
Toro EJ, Ostrov DA, Wronski TJ, Holliday LS. Rational identification of enoxacin as a novel V-ATPase-directed osteoclast inhibitor. Curr Protein Pept Sci 2012; 13:180-91. [PMID: 22044158 PMCID: PMC3409362 DOI: 10.2174/138920312800493151] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2011] [Revised: 06/15/2011] [Accepted: 06/16/2011] [Indexed: 11/22/2022]
Abstract
Binding between vacuolar H+-ATPases (V-ATPases) and microfilaments is mediated by an actin binding domain in the B-subunit. Both isoforms of mammalian B-subunit bind microfilaments with high affinity. A similar actin-binding activity has been demonstrated in the B-subunit of yeast. A conserved “profilin-like” domain in the B-subunit mediates this actin-binding activity, named due to its sequence and structural similarity to an actin-binding surface of the canonical actin binding protein profilin. Subtle mutations in the “profilin-like” domain eliminate actin binding activity without disrupting the ability of the altered protein to associate with the other subunits of V-ATPase to form a functional proton pump. Analysis of these mutated B-subunits suggests that the actin-binding activity is not required for the “housekeeping” functions of V-ATPases, but is important for certain specialized roles. In osteoclasts, the actin-binding activity is required for transport of V-ATPases to the plasma membrane, a prerequisite for bone resorption. A virtual screen led to the identification of enoxacin as a small molecule that bound to the actin-binding surface of the B2-subunit and competitively inhibited B2-subunit and actin interaction. Enoxacin disrupted osteoclastic bone resorption in vitro, but did not affect osteoblast formation or mineralization. Recently, enoxacin was identified as an inhibitor of the virulence of Candidaalbicans and more importantly of cancer growth and metastasis. Efforts are underway to determine the mechanisms by which enoxacin and other small molecule inhibitors of B2 and microfilament binding interaction selectively block bone resorption, the virulence of Candida, cancer growth, and metastasis.
Collapse
Affiliation(s)
- Edgardo J Toro
- Department of Orthodontics, University of Florida College of Dentistry, Gainesville, FL 32610, USA
| | | | | | | |
Collapse
|
26
|
Thomas C. Bundling actin filaments from membranes: some novel players. FRONTIERS IN PLANT SCIENCE 2012; 3:188. [PMID: 22936939 PMCID: PMC3426786 DOI: 10.3389/fpls.2012.00188] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Accepted: 08/01/2012] [Indexed: 05/04/2023]
Abstract
Progress in live-cell imaging of the cytoskeleton has significantly extended our knowledge about the organization and dynamics of actin filaments near the plasma membrane of plant cells. Noticeably, two populations of filamentous structures can be distinguished. On the one hand, fine actin filaments which exhibit an extremely dynamic behavior basically characterized by fast polymerization and prolific severing events, a process referred to as actin stochastic dynamics. On the other hand, thick actin bundles which are composed of several filaments and which are comparatively more stable although they constantly remodel as well. There is evidence that the actin cytoskeleton plays critical roles in trafficking and signaling at both the cell cortex and organelle periphery but the exact contribution of actin bundles remains unclear. A common view is that actin bundles provide the long-distance tracks used by myosin motors to deliver their cargo to growing regions and accordingly play a particularly important role in cell polarization. However, several studies support that actin bundles are more than simple passive highways and display multiple and dynamic roles in the regulation of many processes, such as cell elongation, polar auxin transport, stomatal and chloroplast movement, and defense against pathogens. The list of identified plant actin-bundling proteins is ever expanding, supporting that plant cells shape structurally and functionally different actin bundles. Here I review the most recently characterized actin-bundling proteins, with a particular focus on those potentially relevant to membrane trafficking and/or signaling.
Collapse
Affiliation(s)
- Clément Thomas
- Laboratory of Molecular and Cellular Oncology, Department of Oncology, Public Research Centre for Health (CRP-Santé)Luxembourg, Luxembourg
| |
Collapse
|
27
|
Brisson L, Reshkin SJ, Goré J, Roger S. pH regulators in invadosomal functioning: proton delivery for matrix tasting. Eur J Cell Biol 2012; 91:847-60. [PMID: 22673002 DOI: 10.1016/j.ejcb.2012.04.004] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Revised: 04/18/2012] [Accepted: 04/19/2012] [Indexed: 12/20/2022] Open
Abstract
Invadosomes are actin-rich finger-like cellular structures sensing and interacting with the surrounding extracellular matrix (ECM) and involved in its proteolytic remodeling. Invadosomes are structures distinct from other adhesion complexes, and have been identified in normal cells that have to cross tissue barriers to fulfill their function such as leukocytes, osteoclasts and endothelial cells. They also represent features of highly aggressive cancer cells, allowing them to escape from the primary tumor, to invade surrounding tissues and to reach systemic circulation. They are localized to the ventral membrane of cells grown under 2-dimensional conditions and are supposed to be present all around cells grown in 3-dimensional matrices. Indeed invadosomes are key structures in physiological processes such as inflammation and the immune response, bone remodeling, tissue repair, but also in pathological conditions such as osteopetrosis and the development of metastases. Invadosomes are subdivided into podosomes, found in normal cells, and into invadopodia specific for cancer cells. While these two structures exhibit differences in organization, size, number and half-life, they share similarities in molecular composition, participation in cell-matrix adhesion and promoting matrix degradation. A key determinant in invadosomal function is the recruitment and release of proteases, such as matrix metalloproteinases (MMPs), serine proteases and cysteine cathepsins, together with their activation in a tightly controlled and highly acidic microenvironment. Therefore numerous pH regulators such as V-ATPases and Na(+)/H(+) exchangers, are found in invadosomes and are directly involved in their constitution as well as their functioning. This review focuses on the participation of pH regulators in invadosome function in physiological and pathological conditions, with a particular emphasis on ECM remodeling by osteoclasts during bone resorption and by cancer cells.
Collapse
Affiliation(s)
- Lucie Brisson
- Nutrition, Growth and Cancer, Université François-Rabelais de Tours, Inserm U, France
| | | | | | | |
Collapse
|
28
|
Qin A, Cheng TS, Pavlos NJ, Lin Z, Dai KR, Zheng MH. V-ATPases in osteoclasts: structure, function and potential inhibitors of bone resorption. Int J Biochem Cell Biol 2012; 44:1422-35. [PMID: 22652318 DOI: 10.1016/j.biocel.2012.05.014] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2012] [Revised: 05/18/2012] [Accepted: 05/18/2012] [Indexed: 01/06/2023]
Abstract
The vacuolar-type H(+)-ATPase (V-ATPase) proton pump is a macromolecular complex composed of at least 14 subunits organized into two functional domains, V(1) and V(0). The complex is located on the ruffled border plasma membrane of bone-resorbing osteoclasts, mediating extracellular acidification for bone demineralization during bone resorption. Genetic studies from mice to man implicate a critical role for V-ATPase subunits in osteoclast-related diseases including osteopetrosis and osteoporosis. Thus, the V-ATPase complex is a potential molecular target for the development of novel anti-resorptive agents useful for the treatment of osteolytic diseases. Here, we review the current structure and function of V-ATPase subunits, emphasizing their exquisite roles in osteoclastic function. In addition, we compare several distinct classes of V-ATPase inhibitors with specific inhibitory effects on osteoclasts. Understanding the structure-function relationship of the osteoclast V-ATPase may lead to the development of osteoclast-specific V-ATPase inhibitors that may serve as alternative therapies for the treatment of osteolytic diseases.
Collapse
Affiliation(s)
- A Qin
- Centre for Orthopaedic Research, School of Surgery, The University of Western Australia, Crawley, Australia.
| | | | | | | | | | | |
Collapse
|
29
|
Prevention of wear particle-induced osteolysis by a novel V-ATPase inhibitor saliphenylhalamide through inhibition of osteoclast bone resorption. PLoS One 2012; 7:e34132. [PMID: 22509274 PMCID: PMC3324493 DOI: 10.1371/journal.pone.0034132] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Accepted: 02/22/2012] [Indexed: 11/19/2022] Open
Abstract
Wear particle-induced peri-implant loosening (Aseptic prosthetic loosening) is one of the most common causes of total joint arthroplasty. It is well established that extensive bone destruction (osteolysis) by osteoclasts is responsible for wear particle-induced peri-implant loosening. Thus, inhibition of osteoclastic bone resorption should prevent wear particle induced osteolysis and may serve as a potential therapeutic avenue for prosthetic loosening. Here, we demonstrate for the first time that saliphenylhalamide, a new V-ATPase inhibitor attenuates wear particle-induced osteolysis in a mouse calvarial model. In vitro biochemical and morphological assays revealed that the inhibition of osteolysis is partially attributed to a disruption in osteoclast acidification and polarization, both a prerequisite for osteoclast bone resorption. Interestingly, the V-ATPase inhibitor also impaired osteoclast differentiation via the inhibition of RANKL-induced NF-κB and ERK signaling pathways. In conclusion, we showed that saliphenylhalamide affected multiple physiological processes including osteoclast differentiation, acidification and polarization, leading to inhibition of osteoclast bone resorption in vitro and wear particle-induced osteolysis in vivo. The results of the study provide proof that the new generation V-ATPase inhibitors, such as saliphenylhalamide, are potential anti-resorptive agents for treatment of peri-implant osteolysis.
Collapse
|
30
|
Toro EJ, Zuo J, Ostrov DA, Catalfamo D, Bradaschia-Correa V, Arana-Chavez V, Caridad AR, Neubert JK, Wronski TJ, Wallet SM, Holliday LS. Enoxacin directly inhibits osteoclastogenesis without inducing apoptosis. J Biol Chem 2012; 287:17894-17904. [PMID: 22474295 DOI: 10.1074/jbc.m111.280511] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Enoxacin has been identified as a small molecule inhibitor of binding between the B2-subunit of vacuolar H+-ATPase (V-ATPase) and microfilaments. It inhibits bone resorption by calcitriol-stimulated mouse marrow cultures. We hypothesized that enoxacin acts directly and specifically on osteoclasts by disrupting the interaction between plasma membrane-directed V-ATPases, which contain the osteoclast-selective a3-subunit of V-ATPase, and microfilaments. Consistent with this hypothesis, enoxacin dose-dependently reduced the number of multinuclear cells expressing tartrate-resistant acid phosphatase (TRAP) activity produced by RANK-L-stimulated osteoclast precursors. Enoxacin (50 μM) did not induce apoptosis as measured by TUNEL and caspase-3 assays. V-ATPases containing the a3-subunit, but not the "housekeeping" a1-subunit, were isolated bound to actin. Treatment with enoxacin reduced the association of V-ATPase subunits with the detergent-insoluble cytoskeleton. Quantitative PCR revealed that enoxacin triggered significant reductions in several osteoclast-selective mRNAs, but levels of various osteoclast proteins were not reduced, as determined by quantitative immunoblots, even when their mRNA levels were reduced. Immunoblots demonstrated that proteolytic processing of TRAP5b and the cytoskeletal protein L-plastin was altered in cells treated with 50 μM enoxacin. Flow cytometry revealed that enoxacin treatment favored the expression of high levels of DC-STAMP on the surface of osteoclasts. Our data show that enoxacin directly inhibits osteoclast formation without affecting cell viability by a novel mechanism that involves changes in posttranslational processing and trafficking of several proteins with known roles in osteoclast function. We propose that these effects are downstream to blocking the binding interaction between a3-containing V-ATPases and microfilaments.
Collapse
Affiliation(s)
- Edgardo J Toro
- Department of Orthodontics, University of Florida College of Dentistry, Gainesville, Florida 32610
| | - Jian Zuo
- Department of Orthodontics, University of Florida College of Dentistry, Gainesville, Florida 32610
| | - David A Ostrov
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida College of Medicine, Gainesville, Florida 32610
| | - Dana Catalfamo
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, Florida 32610
| | - Vivian Bradaschia-Correa
- Laboratory of Oral Biology, Department of Dental Materials, School of Dentistry, University of São Paulo, 05508-900 São Paulo SP, Brazil
| | - Victor Arana-Chavez
- Laboratory of Oral Biology, Department of Dental Materials, School of Dentistry, University of São Paulo, 05508-900 São Paulo SP, Brazil
| | - Aliana R Caridad
- Department of Orthodontics, University of Florida College of Dentistry, Gainesville, Florida 32610
| | - John K Neubert
- Department of Orthodontics, University of Florida College of Dentistry, Gainesville, Florida 32610
| | - Thomas J Wronski
- Department of Physiological Sciences, University of Florida, Gainesville, Florida 32610
| | - Shannon M Wallet
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, Florida 32610
| | - L Shannon Holliday
- Department of Orthodontics, University of Florida College of Dentistry, Gainesville, Florida 32610; Department of Anatomy and Cell Biology, University of Florida College of Medicine, Gainesville, Florida 32610.
| |
Collapse
|
31
|
|
32
|
Ma B, Xiang Y, An L. Structural bases of physiological functions and roles of the vacuolar H(+)-ATPase. Cell Signal 2011; 23:1244-56. [PMID: 21397012 DOI: 10.1016/j.cellsig.2011.03.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2011] [Accepted: 03/03/2011] [Indexed: 12/09/2022]
Abstract
Vacuolar-type H(+)-ATPases (V-ATPases) is a large multi-protein complex containing at least 14 different subunits, in which subunits A, B, C, D, E, F, G, and H compose the peripheral 500-kDa V(1) responsible for ATP hydrolysis, and subunits a, c, c', c″, and d assembly the 250-kDa membrane-integral V(0) harboring the rotary mechanism to transport protons across the membrane. The assembly of V-ATPases requires the presence of all V(1) and V(0) subunits, in which the V(1) must be completely assembled prior to association with the V(0), accordingly the V(0) failing to assemble cannot provide a membrane anchor for the V(1), thereby prohibiting membrane association of the V-ATPase subunits. The V-ATPase mediates acidification of intracellular compartments and regulates diverse critical physiological processes of cell for functions of its numerous functional subunits. The core catalytic mechanism of the V-ATPase is a rotational catalytic mechanism. The V-ATPase holoenzyme activity is regulated by the reversible assembly/disassembly of the V(1) and V(0), the targeting and recycling of V-ATPase-containing vesicles to and from the plasma membrane, the coupling ratio between ATP hydrolysis and proton pumping, ATP, Ca(2+), and its inhibitors and activators.
Collapse
Affiliation(s)
- Binyun Ma
- Key Laboratory of Arid and Grassland Agroecology of Ministry of Education, School of Life Sciences, Lanzhou University, 730000, Lanzhou, China
| | | | | |
Collapse
|
33
|
Shum WW, Da Silva N, Belleannée C, McKee M, Brown D, Breton S. Regulation of V-ATPase recycling via a RhoA- and ROCKII-dependent pathway in epididymal clear cells. Am J Physiol Cell Physiol 2011; 301:C31-43. [PMID: 21411727 DOI: 10.1152/ajpcell.00198.2010] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Luminal acidification in the epididymis is critical for sperm maturation and storage. Clear cells express the vacuolar H(+)-ATPase (V-ATPase) in their apical membrane and are major contributors to proton secretion. We showed that this process is regulated via recycling of V-ATPase-containing vesicles. We now report that RhoA and its effector ROCKII are enriched in rat epididymal clear cells. In addition, cortical F-actin was detected beneath the apical membrane and along the lateral membrane of "resting" clear cells using a pan-actin antibody or phalloidin-TRITC. In vivo luminal perfusion of the cauda epididymal tubule with the ROCK inhibitors Y27632 (10-30 μM) and HA1077 (30 μM) or with the cell-permeable Rho inhibitor Clostridium botulinum C3 transferase (3.75 μg/ml) induced the apical membrane accumulation of V-ATPase and extension of V-ATPase-labeled microvilli in clear cells. However, these newly formed microvilli were devoid of ROCKII. In addition, Y27632 (30 μM) or HA1077 (30 μM) decreased the ratio of F-actin to G-actin detected by Western blot analysis in epididymal epithelial cells, and Y27632 also decreased the ratio of F-actin to G-actin in clear cells isolated by fluorescence activated cell sorting from B1-enhanced green fluorescence protein (EGFP) transgenic mice. These results provide evidence that depolymerization of the cortical actin cytoskeleton via inhibition of RhoA or its effector ROCKII favors the recruitment of V-ATPase from the cytosolic compartment into the apical membrane in clear cells. In addition, our data suggest that the RhoA-ROCKII pathway is not locally involved in the elongation of apical microvilli. We propose that inhibition of RhoA-ROCKII might be part of the intracellular signaling cascade that is triggered upon agonist-induced apical membrane V-ATPase accumulation.
Collapse
Affiliation(s)
- Winnie Waichi Shum
- Center for Systems Biology, Program in Membrane Biology/Nephrology Division, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, USA
| | | | | | | | | | | |
Collapse
|
34
|
Oehlke O, Martin HW, Osterberg N, Roussa E. Rab11b and its effector Rip11 regulate the acidosis-induced traffic of V-ATPase in salivary ducts. J Cell Physiol 2010; 226:638-51. [DOI: 10.1002/jcp.22388] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
35
|
Roussa E. Channels and transporters in salivary glands. Cell Tissue Res 2010; 343:263-87. [PMID: 21120532 DOI: 10.1007/s00441-010-1089-y] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2010] [Accepted: 11/03/2010] [Indexed: 01/04/2023]
Abstract
According to the two-stage hypothesis, primary saliva, a NaCl-rich plasma-like isotonic fluid is secreted by salivary acinar cells and its ionic composition becomes modified in the duct system. The ducts secrete K(+) and HCO (3) (-) and reabsorb Na(+) and Cl(-) without any water movement, thus establishing a hypotonic final saliva. Salivary secretion depends on the coordinated action of several channels and transporters localized in the apical and basolateral membrane of acinar and duct cells. Early functional studies in perfused glands, followed by the molecular cloning of several transport proteins and the subsequent analysis of mutant mice, have greatly contributed to our understanding of salivary fluid and the electrolyte secretion process. With a few exceptions, most of the key channels and transporters involved in salivary secretion have now been identified and characterized. However, the picture that has emerged from all these studies is one of a complex molecular network characterized by redundancy for several transport proteins, compensatory mechanisms, and adaptive changes in health and disease. Current research is directed to the molecular interactions between the determinants and the ways in which they are regulated by extracellular signals and intracellular mediators. This review focuses on the functionally and molecularly best-characterized channels and transporters that are considered to be involved in transepithelial fluid and electrolyte transport in salivary glands.
Collapse
Affiliation(s)
- Eleni Roussa
- Anatomy and Cell Biology II, Department of Molecular Embryology, Albert Ludwigs University Freiburg, 79104, Freiburg i. Br., Germany.
| |
Collapse
|
36
|
Kartner N, Yao Y, Li K, Crasto GJ, Datti A, Manolson MF. Inhibition of osteoclast bone resorption by disrupting vacuolar H+-ATPase a3-B2 subunit interaction. J Biol Chem 2010; 285:37476-90. [PMID: 20837476 DOI: 10.1074/jbc.m110.123281] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Vacuolar H(+)-ATPases (V-ATPases) are highly expressed in ruffled borders of bone-resorbing osteoclasts, where they play a crucial role in skeletal remodeling. To discover protein-protein interactions with the a subunit in mammalian V-ATPases, a GAL4 activation domain fusion library was constructed from an in vitro osteoclast model, receptor activator of NF-κB ligand-differentiated RAW 264.7 cells. This library was screened with a bait construct consisting of a GAL4 binding domain fused to the N-terminal domain of V-ATPase a3 subunit (NTa3), the a subunit isoform that is highly expressed in osteoclasts (a1 and a2 are also expressed, to a lesser degree, whereas a4 is kidney-specific). One of the prey proteins identified was the V-ATPase B2 subunit, which is also highly expressed in osteoclasts (B1 is not expressed). Further characterization, using pulldown and solid-phase binding assays, revealed an interaction between NTa3 and the C-terminal domains of both B1 and B2 subunits. Dual B binding domains of equal affinity were observed in NTa, suggesting a possible model for interaction between these subunits in the V-ATPase complex. Furthermore, the a3-B2 interaction appeared to be moderately favored over a1, a2, and a4 interactions with B2, suggesting a mechanism for the specific subunit assembly of plasma membrane V-ATPase in osteoclasts. Solid-phase binding assays were subsequently used to screen a chemical library for inhibitors of the a3-B2 interaction. A small molecule benzohydrazide derivative was found to inhibit osteoclast resorption with an IC(50) of ∼1.2 μm on both synthetic hydroxyapatite surfaces and dentin slices, without significantly affecting RAW 264.7 cell viability or receptor activator of NF-κB ligand-mediated osteoclast differentiation. Further understanding of these interactions and inhibitors may contribute to the design of novel therapeutics for bone loss disorders, such as osteoporosis and rheumatoid arthritis.
Collapse
Affiliation(s)
- Norbert Kartner
- Dental Research Institute, Faculty of Dentistry, University of Toronto, Toronto, Ontario M5G 1G6 Canada
| | | | | | | | | | | |
Collapse
|
37
|
Vacuolar (H+)-ATPases in Caenorhabditis elegans: what can we learn about giant H+ pumps from tiny worms? BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2010; 1797:1687-95. [PMID: 20637717 DOI: 10.1016/j.bbabio.2010.07.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2010] [Revised: 07/07/2010] [Accepted: 07/09/2010] [Indexed: 02/08/2023]
Abstract
Vacuolar (H(+))-ATPases, also called V-ATPases, are ATP-driven proton pumps that are highly phylogenetically conserved. Early biochemical and cell biological studies have revealed many details of the molecular mechanism of proton pumping and of the structure of the multi-subunit membrane complex, including the stoichiometry of subunit composition. In addition, yeast and mouse genetics have broadened our understanding of the physiological consequences of defective vacuolar acidification and its related disease etiologies. Recently, phenotypic investigation of V-ATPase mutants in Caenorhabditis elegans has revealed unexpected new roles of V-ATPases in both cellular function and early development. In this review, we discuss the functions of the V-ATPases discovered in C. elegans.
Collapse
|
38
|
McMichael BK, Meyer SM, Lee BS. c-Src-mediated phosphorylation of thyroid hormone receptor-interacting protein 6 (TRIP6) promotes osteoclast sealing zone formation. J Biol Chem 2010; 285:26641-51. [PMID: 20547766 DOI: 10.1074/jbc.m110.119909] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Osteoclasts resorb bone through the formation of a unique attachment structure called the sealing zone. In this study, a role for thyroid hormone receptor-interacting protein 6 (TRIP6) in sealing zone formation and osteoclast activity was examined. TRIP6 was shown to reside in the sealing zone through its association with tropomyosin 4, an actin-binding protein that regulates sealing dimensions and bone resorptive capacity. Suppression of TRIP6 in mature osteoclasts by RNA interference altered sealing zone dimensions and inhibited bone resorption, whereas overexpression of TRIP6 increased the sealing zone perimeter and enhanced bone resorption. Treatment of osteoclasts with lysophosphatidic acid (LPA), which phosphorylates TRIP6 at tyrosine 55 through a c-Src-dependent mechanism, caused increased association of TRIP6 with the sealing zone, as did overexpression of a TRIP6 cDNA bearing a phosphomimetic mutation at tyrosine 55. Further, LPA treatment caused increases in osteoclast fusion, sealing zone perimeter, and bone resorptive capacity. In contrast, overexpression of TRIP6 containing a nonphosphorylatable amino acid residue at position 55 severely diminished sealing zone formation and bone resorption and suppressed the effects of LPA on the cytoskeleton. LPA effects were mediated through its receptor isoform LPA(2), as indicated by treatments with receptor-specific agonists and antagonists. Thus, these studies suggest that TRIP6 is a critical downstream regulator of c-Src signaling and that its phosphorylation is permissive for its presence in the sealing zone where it plays a positive role in osteoclast bone resorptive capacity.
Collapse
Affiliation(s)
- Brooke K McMichael
- Department of Physiology and Cell Biology, The Ohio State University College of Medicine, Columbus, Ohio 43210, USA
| | | | | |
Collapse
|
39
|
Hong ZQ, Tao LM, Li L. Effect of stress on mRNA expression of H+-ATPase in osteoclasts. Mol Cell Biochem 2010; 343:183-90. [PMID: 20549545 DOI: 10.1007/s11010-010-0512-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2010] [Accepted: 06/02/2010] [Indexed: 11/30/2022]
Abstract
This study was designed to investigate the effect of various strengths and action times of flow stress on mRNA expression of H+-ATPase in osteoclasts. Osteoclasts were obtained through a classical mechanical-anatomical technique. They were identified by their morphology, tartrate-resistant acid phosphatase (TRAP) staining, and by a test of their ability to form resorption lacunae. Osteoclasts were mechanically loaded by flow stress using a cell-loading system. The stress-loading experiments were divided into various strength groups and action time groups. The morphological changes of osteoclasts after application of loading stress were analyzed using an image analysis system and Image-Pro Plus software. Expression of H+-ATPase mRNA in osteoclasts was detected by real-time fluorescent quantitative polymerase chain reaction. The existence of significant differences between experimental groups was analyzed using SPSS 12.0 software. The cytoplasm of osteoclasts with positive TRAP staining appeared with a characteristic claret-red color. Cells were able to form resorption pits in the surface of dentine slices. Morphological changes of osteoclasts with applied stress assumed an early increasing tendency before reaching a peak value and following a decreasing tendency. A significant difference of H+-ATPase mRNA expression of osteoclasts was seen between any two groups (P < 0.05). H+-ATPase mRNA expression in osteoclasts had a tendency to first increase with increasing stress and was observed to then decrease in one action time group. In this present study, a close relationship between the stress and mRNA expression of H+-ATPase in osteoclasts was observed.
Collapse
Affiliation(s)
- Zhang Qing Hong
- Department of Prosthetics, Stomatology Hospital, College of Medical Sciences, Zhejiang University, Hangzhou, China
| | | | | |
Collapse
|
40
|
McMichael BK, Cheney RE, Lee BS. Myosin X regulates sealing zone patterning in osteoclasts through linkage of podosomes and microtubules. J Biol Chem 2010; 285:9506-9515. [PMID: 20081229 DOI: 10.1074/jbc.m109.017269] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Osteoclasts use actin-rich attachment structures in place of focal adhesions for adherence to bone and non-bone substrates. On glass, osteoclasts generate podosomes, foot-like processes containing a core of F-actin and regulatory proteins that undergo high turnover. To facilitate bone resorption, osteoclasts generate an actin-rich sealing zone composed of densely packed podosome-like units. Patterning of both podosomes and sealing zones is dependent upon an intact microtubule system. A role for unconventional myosin X (Myo10), which can bind actin, microtubules, and integrins, was examined in osteoclasts. Immunolocalization showed Myo10 to be associated with the outer edges of immature podosome rings and sealing zones, suggesting a possible role in podosome and sealing zone positioning. Further, complexes containing both Myo10 and beta-tubulin were readily precipitated from osteoclasts lysates. RNAi-mediated suppression of Myo10 led to decreased cell and sealing zone perimeter, along with decreased motility and resorptive capacity. Further, siRNA-treated cells could not properly position podosomes following microtubule disruption. Osteoclasts overexpressing dominant negative Myo10 microtubule binding domains (MyTH4) showed a similar phenotype. Conversely, overexpression of full-length Myo10 led to increased formation of podosome belts along with larger sealing zones and enhanced bone resorptive capacity. These studies suggest that Myo10 plays a role in osteoclast attachment and podosome positioning by direct linkage of actin to the microtubule network.
Collapse
Affiliation(s)
- Brooke K McMichael
- Department of Physiology and Cell Biology, The Ohio State University College of Medicine, Columbus, Ohio 43210
| | - Richard E Cheney
- Department of Cell and Molecular Physiology, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599
| | - Beth S Lee
- Department of Physiology and Cell Biology, The Ohio State University College of Medicine, Columbus, Ohio 43210.
| |
Collapse
|
41
|
Serrano EM, Ricofort RD, Zuo J, Ochotny N, Manolson MF, Holliday LS. Regulation of vacuolar H(+)-ATPase in microglia by RANKL. Biochem Biophys Res Commun 2009; 389:193-7. [PMID: 19715671 PMCID: PMC2758416 DOI: 10.1016/j.bbrc.2009.08.122] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2009] [Accepted: 08/24/2009] [Indexed: 01/18/2023]
Abstract
Vacuolar H(+)-ATPases (V-ATPases) are large electrogenic proton pumps composed of numerous subunits that play vital housekeeping roles in the acidification of compartments of the endocytic pathway. Additionally, V-ATPases play specialized roles in certain cell types, a capacity that is linked to cell type selective expression of isoforms of some of the subunits. We detected low levels of the a3 isoform of the a-subunit in mouse brain extracts. Examination of various brain-derived cell types by immunoblotting showed a3 was expressed in the N9 microglia cell line and in primary microglia, but not in other cell types. The expression of a3 in osteoclasts requires stimulation by Receptor Activator of Nuclear Factor kappaB-ligand (RANKL). We found that Receptor Activator of Nuclear Factor kappaB (RANK) was expressed by microglia. Stimulation of microglia with RANKL triggered increased expression of a3. V-ATPases in microglia were shown to bind microfilaments, and stimulation with RANKL increased the proportion of V-ATPase associated with the detergent-insoluble cytoskeletal fraction and with actin. In summary, microglia express the a3-subunit of V-ATPase. The expression of a3 and the interaction between V-ATPases and microfilaments was modulated by RANKL. These data suggest a novel molecular pathway for regulating microglia.
Collapse
Affiliation(s)
- Eric M. Serrano
- Department of Orthodontics, University of Florida College of Dentistry, Gainesville, FL 32610
| | - Ryan D. Ricofort
- Department of Orthodontics, University of Florida College of Dentistry, Gainesville, FL 32610
| | - Jian Zuo
- Department of Orthodontics, University of Florida College of Dentistry, Gainesville, FL 32610
| | - Noelle Ochotny
- Department of Pharmacology, University of Toronto, Toronto, Ontario M5G 1G6, Canada
| | - Morris F. Manolson
- Faculty of Dentistry, University of Toronto, Toronto, Ontario M5G 1G6, Canada
| | - L. Shannon Holliday
- Department of Orthodontics, University of Florida College of Dentistry, Gainesville, FL 32610
- Department of Anatomy & Cell Biology, University of Florida College of Medicine, Gainesville, FL 32610
| |
Collapse
|
42
|
Wieczorek H, Beyenbach KW, Huss M, Vitavska O. Vacuolar-type proton pumps in insect epithelia. ACTA ACUST UNITED AC 2009; 212:1611-9. [PMID: 19448071 DOI: 10.1242/jeb.030007] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Active transepithelial cation transport in insects was initially discovered in Malpighian tubules, and was subsequently also found in other epithelia such as salivary glands, labial glands, midgut and sensory sensilla. Today it appears to be established that the cation pump is a two-component system of a H(+)-transporting V-ATPase and a cation/nH(+) antiporter. After tracing the discovery of the V-ATPase as the energizer of K(+)/nH(+) antiport in the larval midgut of the tobacco hornworm Manduca sexta we show that research on the tobacco hornworm V-ATPase delivered important findings that emerged to be of general significance for our knowledge of V-ATPases, which are ubiquitous and highly conserved proton pumps. We then discuss the V-ATPase in Malpighian tubules of the fruitfly Drosophila melanogaster where the potential of post-genomic biology has been impressively illustrated. Finally we review an integrated physiological approach in Malpighian tubules of the yellow fever mosquito Aedes aegypti which shows that the V-ATPase delivers the energy for both transcellular and paracellular ion transport.
Collapse
Affiliation(s)
- Helmut Wieczorek
- Department of Biology/Chemistry, University of Osnabrück, 49069 Osnabrück, Germany.
| | | | | | | |
Collapse
|
43
|
Ostrov DA, Magis AT, Wronski TJ, Chan EKL, Toro EJ, Donatelli RE, Sajek K, Haroun IN, Nagib MI, Piedrahita A, Harris A, Holliday LS. Identification of enoxacin as an inhibitor of osteoclast formation and bone resorption by structure-based virtual screening. J Med Chem 2009; 52:5144-51. [PMID: 19630402 PMCID: PMC2889180 DOI: 10.1021/jm900277z] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
An interaction between the B2 subunit of vacuolar H(+)-ATPase (V-ATPase) and microfilaments is required for osteoclast bone resorption. An atomic homology model of the actin binding site on B2 was generated and molecular docking simulations were performed. Enoxacin, a fluoroquinolone antibiotic, was identified and in vitro testing demonstrated that enoxacin blocked binding between purified B2 and microfilaments. Enoxacin dose dependently reduced the number of osteoclasts differentiating in mouse marrow cultures stimulated with 1,25-dihydroxyvitamin D(3), as well as markers of osteoclast activity, and the number of resorption lacunae formed on bone slices. Enoxacin inhibited osteoclast formation at concentrations where osteoblast formation was not altered. In summary, enoxacin is a novel small molecule inhibitor of osteoclast bone resorption that acts by an unique mechanism and is therefore an attractive lead molecule for the development of a new class of antiosteoclastic agents.
Collapse
Affiliation(s)
- David A. Ostrov
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida College of Medicine, Gainesville, Florida, 32610
| | - Andrew T. Magis
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida College of Medicine, Gainesville, Florida, 32610
| | - Thomas J. Wronski
- Department of Physiological Sciences, University of Florida, Gainesville, Florida 32610
| | - Edward K. L. Chan
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, Florida 32610
| | - Edgardo J. Toro
- Department of Orthodontics, University of Florida College of Dentistry, 1600 SW Archer Road, CB 100444, D7–18, Gainesville, Florida 32610
| | - Richard E. Donatelli
- Department of Orthodontics, University of Florida College of Dentistry, 1600 SW Archer Road, CB 100444, D7–18, Gainesville, Florida 32610
| | - Kristen Sajek
- Department of Orthodontics, University of Florida College of Dentistry, 1600 SW Archer Road, CB 100444, D7–18, Gainesville, Florida 32610
| | - Ireni N. Haroun
- Department of Orthodontics, University of Florida College of Dentistry, 1600 SW Archer Road, CB 100444, D7–18, Gainesville, Florida 32610
| | - Michael I. Nagib
- Department of Orthodontics, University of Florida College of Dentistry, 1600 SW Archer Road, CB 100444, D7–18, Gainesville, Florida 32610
| | - Ana Piedrahita
- Department of Orthodontics, University of Florida College of Dentistry, 1600 SW Archer Road, CB 100444, D7–18, Gainesville, Florida 32610
| | - Ashley Harris
- Department of Orthodontics, University of Florida College of Dentistry, 1600 SW Archer Road, CB 100444, D7–18, Gainesville, Florida 32610
| | - L. Shannon Holliday
- Department of Orthodontics, University of Florida College of Dentistry, 1600 SW Archer Road, CB 100444, D7–18, Gainesville, Florida 32610
- Department of Anatomy & Cell Biology, University of Florida College of Medicine, Gainesville, Florida 32610
| |
Collapse
|
44
|
Supino R, Scovassi AI, Croce AC, Bo LD, Favini E, Corbelli A, Farina C, Misiano P, Zunino F. Biological Effects of a New Vacuolar-H,+-ATPase Inhibitor in Colon Carcinoma Cell Lines. Ann N Y Acad Sci 2009; 1171:606-16. [DOI: 10.1111/j.1749-6632.2009.04705.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
45
|
Holliday LS, Ostrov DA, Wronski TJ, Dolce C. Osteoclast polarization and orthodontic tooth movement. Orthod Craniofac Res 2009; 12:105-12. [DOI: 10.1111/j.1601-6343.2009.01443.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
46
|
McMichael BK, Wysolmerski RB, Lee BS. Regulated proteolysis of nonmuscle myosin IIA stimulates osteoclast fusion. J Biol Chem 2009; 284:12266-75. [PMID: 19269977 DOI: 10.1074/jbc.m808621200] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The nonmuscle myosin IIA heavy chain (Myh9) is strongly associated with adhesion structures of osteoclasts. In this study, we demonstrate that during osteoclastogenesis, myosin IIA heavy chain levels are temporarily suppressed, an event that stimulates the onset of cell fusion. This suppression is not mediated by changes in mRNA or translational levels but instead is due to a temporary increase in the rate of myosin IIA degradation. Intracellular activity of cathepsin B is significantly enhanced at the onset of osteoclast precursor fusion, and specific inhibition of its activity prevents myosin IIA degradation. Further, treatment of normal cells with cathepsin B inhibitors during the differentiation process reduces cell fusion and bone resorption capacity, whereas overexpression of cathepsin B enhances fusion. Ongoing suppression of the myosin IIA heavy chain via RNA interference results in formation of large osteoclasts with significantly increased numbers of nuclei, whereas overexpression of myosin IIA results in less osteoclast fusion. Increased multinucleation caused by myosin IIA suppression does not require RANKL. Further, knockdown of myosin IIA enhances cell spreading and lessens motility. These data taken together strongly suggest that base-line expression of nonmuscle myosin IIA inhibits osteoclast precursor fusion and that a temporary, cathepsin B-mediated decrease in myosin IIA levels triggers precursor fusion during osteoclastogenesis.
Collapse
Affiliation(s)
- Brooke K McMichael
- Department of Physiology and Cell Biology, The Ohio State University College of Medicine, Columbus, Ohio 43210, USA
| | | | | |
Collapse
|
47
|
V H+-ATPase along the yeast secretory pathway: energization of the ER and Golgi membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2008; 1788:303-13. [PMID: 19059377 DOI: 10.1016/j.bbamem.2008.11.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2008] [Revised: 11/03/2008] [Accepted: 11/10/2008] [Indexed: 02/06/2023]
Abstract
H+ transport driven by V H+-ATPase was found in membrane fractions enriched with ER/PM and Golgi/Golgi-like membranes of Saccharomyces cerevisiae efficiently purified in sucrose density gradient from the vacuolar membranes according to the determination of the respective markers including vacuolar Ca2+-ATPase, Pmc1::HA. Purification of ER from PM by a removal of PM modified with concanavalin A reduced H+ transport activity of P H+-ATPase by more than 75% while that of V H+-ATPase remained unchanged. ER H+ ATPase exhibits higher resistance to bafilomycin (I50=38.4 nM) than Golgi and vacuole pumps (I50=0.18 nM). The ratio between a coupling efficiency of the pumps in ER, membranes heavier than ER, vacuoles and Golgi is 1.0, 2.1, 8.5 and 14 with the highest coupling in the Golgi. The comparative analysis of the initial velocities of H+ transport mediated by V H+-ATPases in the ER, Golgi and vacuole membrane vesicles, and immunoreactivity of the catalytic subunit A and regulatory subunit B further supported the conclusion that V H+-ATPase is the intrinsic enzyme of the yeast ER and Golgi and likely presented by distinct forms and/or selectively regulated.
Collapse
|
48
|
Coxon FP, Taylor A. Vesicular trafficking in osteoclasts. Semin Cell Dev Biol 2008; 19:424-33. [PMID: 18768162 DOI: 10.1016/j.semcdb.2008.08.004] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2008] [Revised: 08/04/2008] [Accepted: 08/08/2008] [Indexed: 11/24/2022]
Abstract
Bone-resorbing osteoclasts are highly dependent on vesicular trafficking pathways that are regulated by Rab GTPases. In particular, polarised transport of acidic vesicles of the endocytic/lysosomal pathway is required for formation of the ruffled border, the resorptive organelle of the osteoclast. The breakdown products of resorption are then transported through the osteoclast by transcytosis, enabling their excretion. In this review, we summarise these trafficking routes, highlight the emerging evidence that the bone disease osteopetrosis results from defects in vesicular trafficking in osteoclasts, and outline the similarities between the endocytic/lysosomal compartment in osteoclasts and secretory lysosomes in other cell types.
Collapse
Affiliation(s)
- Fraser P Coxon
- Bone & Musculoskeletal Programme, School of Medicine & Dentistry, Institute of Medical Sciences, University of Aberdeen, Foresterhill, UK.
| | | |
Collapse
|
49
|
Zuo J, Vergara S, Kohno S, Holliday LS. Biochemical and functional characterization of the actin-binding activity of the B subunit of yeast vacuolar H+-ATPase. ACTA ACUST UNITED AC 2008; 211:1102-8. [PMID: 18344484 DOI: 10.1242/jeb.013672] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Vacuolar H+-ATPase (V-ATPase) is a fundamentally important enzyme in eukaryotic cells that is responsible for acidification of endocytic compartments. The B subunits of V-ATPases from mammals and tobacco hornworm have been shown to bind actin filaments. Actin-binding activity by the B subunit is required for targeting V-ATPases to the plasma membrane of osteoclasts. Bacterially expressed B subunit from the yeast Saccharomyces cerevisiae bound actin filaments with a Kd of 195 nmol l(-1). The actin-binding domain of the B subunit was altered by mutations that reduced or eliminated the actin-binding activity. Mutants assembled properly with endogenous yeast subunits when expressed in B subunit-null yeast and bafilomycin-sensitive ATPase activity was not significantly different from yeast transformed with wild-type B subunit. Yeast containing the mutant subunits grew as well at pH 7.5 as wild-type. Screening null yeast or null yeast transformed with wild-type or mutant B subunits with sub-lethal doses of various drugs revealed that yeast containing the mutant B subunits were more sensitive to cycloheximide and wortmannin than those transformed with wild-type B subunits. These results suggest that actin-binding activity confers on the B subunit of yeast a function that is distinct from its role in the enzymatic activity of the proton pump.
Collapse
Affiliation(s)
- Jian Zuo
- Department of Orthodontics, University of Florida College of Dentistry, Gainesville, FL 32610, USA
| | | | | | | |
Collapse
|
50
|
Codlin S, Haines RL, Mole SE. btn1 affects endocytosis, polarization of sterol-rich membrane domains and polarized growth in Schizosaccharomyces pombe. Traffic 2008; 9:936-50. [PMID: 18346214 PMCID: PMC2440566 DOI: 10.1111/j.1600-0854.2008.00735.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
btn1, the Schizosaccharomyces pombe orthologue of the human Batten disease gene CLN3, exerts multiple cellular effects. As well as a role in vacuole pH homoeostasis, we now show that Btn1p is essential for growth at high temperatures. Its absence results in progressive defects at 37°C that culminate in total depolarized growth and cell lysis. These defects are preceded by a progressive failure to correctly polarize sterol-rich domains after cytokinesis and are accompanied by loss of Myo1p localization. Furthermore, we found that in Sz. pombe, sterol spreading is linked to defective formation/polarization of F-actin patches and disruption of endocytosis and that these processes are aberrant in btn1Δ cells. Consistent with a role for Btn1p in polarized growth, Btn1p has an altered location at 37°C and is retained in actin-dependent endomembrane structures near the cell poles or septum.
Collapse
Affiliation(s)
- Sandra Codlin
- MRC Laboratory for Molecular Cell Biology, University College London, WC1E 6BT London, UK
| | | | | |
Collapse
|