1
|
Guleray Lafci N, van Goor M, Cetinkaya S, van der Wijst J, Acun M, Kurt Colak F, Cetinkaya A, Hoenderop J. Decreased calcium permeability caused by biallelic TRPV5 mutation leads to autosomal recessive renal calcium-wasting hypercalciuria. Eur J Hum Genet 2024; 32:1506-1514. [PMID: 38528055 PMCID: PMC11577068 DOI: 10.1038/s41431-024-01589-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/10/2024] [Accepted: 03/04/2024] [Indexed: 03/27/2024] Open
Abstract
Hypercalciuria is the most common metabolic risk factor in people with kidney stone disease. Its etiology is mostly multifactorial, although monogenetic causes of hypercalciuria have also been described. Despite the increased availability of genetic diagnostic tests, the vast majority of individuals with familial hypercalciuria remain unsolved. In this study, we investigated a consanguineous pedigree with idiopathic hypercalciuria. The proband additionally exhibited severe skeletal deformities and hyperparathyroidism. Whole-exome sequencing of the proband revealed a homozygous ultra-rare variant in TRPV5 (NM_019841.7:c.1792G>A; p.(Val598Met)), which encodes for a renal Ca2+-selective ion channel. The variant segregates with the three individuals with hypercalciuria. The skeletal phenotype unique to the proband was due to an additional pathogenic somatic mutation in GNAS (NM_000516.7:c.601C>T; p.(Arg201Cys)), which leads to polyostotic fibrous dysplasia. The variant in TRPV5 is located in the TRP helix, a characteristic amphipathic helix that is indispensable for the gating movements of TRP channels. Biochemical characterization of the TRPV5 p.(Val598Met) channel revealed a complete loss of Ca2+ transport capability. This defect is caused by reduced expression of the mutant channel, due to misfolding and preferential targeting to the proteasome for degradation. Based on these findings, we conclude that biallelic loss of TRPV5 function causes a novel form of monogenic autosomal recessive hypercalciuria, which we name renal Ca2+-wasting hypercalciuria (RCWH). The recessive inheritance pattern explains the rarity of RCWH and underscores the potential prevalence of RCWH in highly consanguineous populations, emphasizing the importance of exploration of this disorder within such communities.
Collapse
Affiliation(s)
- Naz Guleray Lafci
- Hacettepe University, Medical Faculty, Department of Medical Genetics, Ankara, Turkey
- Health Science University, Dr. Sami Ulus Obstetrics and Gynecology, Children Health and Disease Training and Research Hospital, Department of Medical Genetics, Ankara, Turkey
| | - Mark van Goor
- Department of Medical Biosciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Semra Cetinkaya
- Health Science University, Dr. Sami Ulus Obstetrics and Gynecology, Children Health and Disease Training and Research Hospital, Department of Pediatric Endocrinology, Ankara, Turkey
| | - Jenny van der Wijst
- Department of Medical Biosciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Melisa Acun
- Hacettepe University, Institute of Health Sciences, Department of Bioinformatics, Ankara, Turkey
| | - Fatma Kurt Colak
- Health Science University, Dr. Sami Ulus Obstetrics and Gynecology, Children Health and Disease Training and Research Hospital, Department of Medical Genetics, Ankara, Turkey
| | - Arda Cetinkaya
- Hacettepe University, Medical Faculty, Department of Medical Genetics, Ankara, Turkey.
- Hacettepe University, Institute of Health Sciences, Department of Bioinformatics, Ankara, Turkey.
| | - Joost Hoenderop
- Department of Medical Biosciences, Radboud University Medical Center, Nijmegen, The Netherlands.
| |
Collapse
|
2
|
SLC26A9 is selected for endoplasmic reticulum associated degradation (ERAD) via Hsp70-dependent targeting of the soluble STAS domain. Biochem J 2021; 478:4203-4220. [PMID: 34821356 PMCID: PMC8826537 DOI: 10.1042/bcj20210644] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 11/23/2021] [Accepted: 11/24/2021] [Indexed: 12/24/2022]
Abstract
SLC26A9, a member of the solute carrier protein family, transports chloride ions across various epithelia. SLC26A9 also associates with other ion channels and transporters linked to human health, and in some cases these heterotypic interactions are essential to support the biogenesis of both proteins. Therefore, understanding how this complex membrane protein is initially folded might provide new therapeutic strategies to overcome deficits in the function of SLC26A9 partners, one of which is associated with Cystic Fibrosis. To this end, we developed a novel yeast expression system for SLC26A9. This facile system has been used extensively with other ion channels and transporters to screen for factors that oversee protein folding checkpoints. As commonly observed for other channels and transporters, we first noted that a substantial fraction of SLC26A9 is targeted for endoplasmic reticulum associated degradation (ERAD), which destroys folding-compromised proteins in the early secretory pathway. We next discovered that ERAD selection requires the Hsp70 chaperone, which can play a vital role in ERAD substrate selection. We then created SLC26A9 mutants and found that the transmembrane-rich domain of SLC26A9 was quite stable, whereas the soluble cytosolic STAS domain was responsible for Hsp70-dependent ERAD. To support data obtained in the yeast model, we were able to recapitulate Hsp70-facilitated ERAD of the STAS domain in human tissue culture cells. These results indicate that a critical barrier to nascent membrane protein folding can reside within a specific soluble domain, one that is monitored by components associated with the ERAD machinery.
Collapse
|
3
|
Regulation of CFTR Biogenesis by the Proteostatic Network and Pharmacological Modulators. Int J Mol Sci 2020; 21:ijms21020452. [PMID: 31936842 PMCID: PMC7013518 DOI: 10.3390/ijms21020452] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 01/06/2020] [Accepted: 01/08/2020] [Indexed: 12/14/2022] Open
Abstract
Cystic fibrosis (CF) is the most common lethal inherited disease among Caucasians in North America and a significant portion of Europe. The disease arises from one of many mutations in the gene encoding the cystic fibrosis transmembrane conductance regulator, or CFTR. The most common disease-associated allele, F508del, along with several other mutations affect the folding, transport, and stability of CFTR as it transits from the endoplasmic reticulum (ER) to the plasma membrane, where it functions primarily as a chloride channel. Early data demonstrated that F508del CFTR is selected for ER associated degradation (ERAD), a pathway in which misfolded proteins are recognized by ER-associated molecular chaperones, ubiquitinated, and delivered to the proteasome for degradation. Later studies showed that F508del CFTR that is rescued from ERAD and folds can alternatively be selected for enhanced endocytosis and lysosomal degradation. A number of other disease-causing mutations in CFTR also undergo these events. Fortunately, pharmacological modulators of CFTR biogenesis can repair CFTR, permitting its folding, escape from ERAD, and function at the cell surface. In this article, we review the many cellular checkpoints that monitor CFTR biogenesis, discuss the emergence of effective treatments for CF, and highlight future areas of research on the proteostatic control of CFTR.
Collapse
|
4
|
Sobajima T, Yoshimura SI, Maeda T, Miyata H, Miyoshi E, Harada A. The Rab11-binding protein RELCH/KIAA1468 controls intracellular cholesterol distribution. J Cell Biol 2018; 217:1777-1796. [PMID: 29514919 PMCID: PMC5940305 DOI: 10.1083/jcb.201709123] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 01/20/2018] [Accepted: 02/16/2018] [Indexed: 12/29/2022] Open
Abstract
Cholesterol, which is endocytosed to the late endosome (LE)/lysosome, is delivered to other organelles through vesicular and nonvesicular transport mechanisms. In this study, we discuss a novel mechanism of cholesterol transport from recycling endosomes (REs) to the trans-Golgi network (TGN) through RELCH/KIAA1468, which is newly identified in this study as a Rab11-GTP- and OSBP-binding protein. After treating cells with 25-hydroxycholesterol to induce OSBP relocation from the cytoplasm to the TGN, REs accumulated around the TGN area, but this accumulation was diminished in RELCH- or OSBP-depleted cells. Cholesterol content in the TGN was decreased in Rab11-, RELCH-, and OSBP-depleted cells and increased in the LE/lysosome. According to in vitro reconstitution experiments, RELCH tethers Rab11-bound RE-like and OSBP-bound TGN-like liposomes and promotes OSBP-dependent cholesterol transfer from RE-like to TGN-like liposomes. These data suggest that RELCH promotes nonvesicular cholesterol transport from REs to the TGN through membrane tethering.
Collapse
Affiliation(s)
- Tomoaki Sobajima
- Department of Cell Biology, Graduate School of Medicine, Osaka University, Osaka, Japan
- Department of Molecular Biochemistry and Clinical Investigation, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Shin-Ichiro Yoshimura
- Department of Cell Biology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Tomomi Maeda
- Department of Cell Biology, Graduate School of Medicine, Osaka University, Osaka, Japan
- Department of Molecular Biochemistry and Clinical Investigation, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Haruhiko Miyata
- Department of Experimental Genome Research, Research Institute for Microbial Diseases, Osaka, Japan
| | - Eiji Miyoshi
- Department of Molecular Biochemistry and Clinical Investigation, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Akihiro Harada
- Department of Cell Biology, Graduate School of Medicine, Osaka University, Osaka, Japan
| |
Collapse
|
5
|
McClure ML, Barnes S, Brodsky JL, Sorscher EJ. Trafficking and function of the cystic fibrosis transmembrane conductance regulator: a complex network of posttranslational modifications. Am J Physiol Lung Cell Mol Physiol 2016; 311:L719-L733. [PMID: 27474090 DOI: 10.1152/ajplung.00431.2015] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 07/26/2016] [Indexed: 12/19/2022] Open
Abstract
Posttranslational modifications add diversity to protein function. Throughout its life cycle, the cystic fibrosis transmembrane conductance regulator (CFTR) undergoes numerous covalent posttranslational modifications (PTMs), including glycosylation, ubiquitination, sumoylation, phosphorylation, and palmitoylation. These modifications regulate key steps during protein biogenesis, such as protein folding, trafficking, stability, function, and association with protein partners and therefore may serve as targets for therapeutic manipulation. More generally, an improved understanding of molecular mechanisms that underlie CFTR PTMs may suggest novel treatment strategies for CF and perhaps other protein conformational diseases. This review provides a comprehensive summary of co- and posttranslational CFTR modifications and their significance with regard to protein biogenesis.
Collapse
Affiliation(s)
- Michelle L McClure
- Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama
| | - Stephen Barnes
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Jeffrey L Brodsky
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania; and
| | - Eric J Sorscher
- Department of Pediatrics, Emory University, Atlanta, Georgia
| |
Collapse
|
6
|
Vallelian F, Deuel JW, Opitz L, Schaer CA, Puglia M, Lönn M, Engelsberger W, Schauer S, Karnaukhova E, Spahn DR, Stocker R, Buehler PW, Schaer DJ. Proteasome inhibition and oxidative reactions disrupt cellular homeostasis during heme stress. Cell Death Differ 2014; 22:597-611. [PMID: 25301065 PMCID: PMC4356336 DOI: 10.1038/cdd.2014.154] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Revised: 08/04/2014] [Accepted: 08/21/2014] [Indexed: 11/18/2022] Open
Abstract
Dual control of cellular heme levels by extracellular scavenger proteins and degradation by heme oxygenases is essential in diseases associated with increased heme release. During severe hemolysis or rhabdomyolysis, uncontrolled heme exposure can cause acute kidney injury and endothelial cell damage. The toxicity of heme was primarily attributed to its pro-oxidant effects; however additional mechanisms of heme toxicity have not been studied systematically. In addition to redox reactivity, heme may adversely alter cellular functions by binding to essential proteins and impairing their function. We studied inducible heme oxygenase (Hmox1)-deficient mouse embryo fibroblast cell lines as a model to systematically explore adaptive and disruptive responses that were triggered by intracellular heme levels exceeding the homeostatic range. We extensively characterized the proteome phenotype of the cellular heme stress responses by quantitative mass spectrometry of stable isotope-labeled cells that covered more than 2000 individual proteins. The most significant signals specific to heme toxicity were consistent with oxidative stress and impaired protein degradation by the proteasome. This ultimately led to an activation of the response to unfolded proteins. These observations were explained mechanistically by demonstrating binding of heme to the proteasome that was linked to impaired proteasome function. Oxidative heme reactions and proteasome inhibition could be differentiated as synergistic activities of the porphyrin. Based on the present data a novel model of cellular heme toxicity is proposed, whereby proteasome inhibition by heme sustains a cycle of oxidative stress, protein modification, accumulation of damaged proteins and cell death.
Collapse
Affiliation(s)
- F Vallelian
- Division of Internal Medicine, University of Zurich, CH-8091 Zurich, Switzerland
| | - J W Deuel
- Division of Internal Medicine, University of Zurich, CH-8091 Zurich, Switzerland
| | - L Opitz
- Functional Genomics Center Zurich, Swiss Federal Institute of Technology Zurich/University of Zurich, Zurich, Switzerland
| | - C A Schaer
- 1] Division of Internal Medicine, University of Zurich, CH-8091 Zurich, Switzerland [2] Institute of Anesthesiology, University of Zurich, Zurich, Switzerland
| | - M Puglia
- 1] Division of Internal Medicine, University of Zurich, CH-8091 Zurich, Switzerland [2] Functional Genomics Center Zurich, Swiss Federal Institute of Technology Zurich/University of Zurich, Zurich, Switzerland
| | - M Lönn
- School of Medical Sciences, Discipline of Pathology and Bosch Institute, University of Sydney, Sydney, New South Wales, Australia
| | - W Engelsberger
- Division of Internal Medicine, University of Zurich, CH-8091 Zurich, Switzerland
| | - S Schauer
- Functional Genomics Center Zurich, Swiss Federal Institute of Technology Zurich/University of Zurich, Zurich, Switzerland
| | - E Karnaukhova
- Laboratory of Biochemistry and Vascular Biology, Center of Biologics Evaluation and Research (CBER), FDA, Bethesda, MD, USA
| | - D R Spahn
- Institute of Anesthesiology, University of Zurich, Zurich, Switzerland
| | - R Stocker
- 1] School of Medical Sciences, Discipline of Pathology and Bosch Institute, University of Sydney, Sydney, New South Wales, Australia [2] Victor Chang Cardiac Research Institute and University of New South Wales, Sydney, New South Wales, Australia
| | - P W Buehler
- Laboratory of Biochemistry and Vascular Biology, Center of Biologics Evaluation and Research (CBER), FDA, Bethesda, MD, USA
| | - D J Schaer
- 1] Division of Internal Medicine, University of Zurich, CH-8091 Zurich, Switzerland [2] Center of Evolutionary Medicine, University of Zurich, Zurich, Switzerland
| |
Collapse
|
7
|
Pranke IM, Sermet-Gaudelus I. Biosynthesis of cystic fibrosis transmembrane conductance regulator. Int J Biochem Cell Biol 2014; 52:26-38. [DOI: 10.1016/j.biocel.2014.03.020] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2014] [Revised: 03/19/2014] [Accepted: 03/20/2014] [Indexed: 01/19/2023]
|
8
|
Morris LL, Hartman IZ, Jun DJ, Seemann J, DeBose-Boyd RA. Sequential actions of the AAA-ATPase valosin-containing protein (VCP)/p97 and the proteasome 19 S regulatory particle in sterol-accelerated, endoplasmic reticulum (ER)-associated degradation of 3-hydroxy-3-methylglutaryl-coenzyme A reductase. J Biol Chem 2014; 289:19053-66. [PMID: 24860107 DOI: 10.1074/jbc.m114.576652] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Accelerated endoplasmic reticulum (ER)-associated degradation (ERAD) of the cholesterol biosynthetic enzyme 3-hydroxy-3-methylglutaryl-coenzyme A reductase results from its sterol-induced binding to ER membrane proteins called Insig-1 and Insig-2. This binding allows for subsequent ubiquitination of reductase by Insig-associated ubiquitin ligases. Once ubiquitinated, reductase becomes dislocated from ER membranes into the cytosol for degradation by 26 S proteasomes through poorly defined reactions mediated by the AAA-ATPase valosin-containing protein (VCP)/p97 and augmented by the nonsterol isoprenoid geranylgeraniol. Here, we report that the oxysterol 25-hydroxycholesterol and geranylgeraniol combine to trigger extraction of reductase across ER membranes prior to its cytosolic release. This conclusion was drawn from studies utilizing a novel assay that measures membrane extraction of reductase by determining susceptibility of a lumenal epitope in the enzyme to in vitro protease digestion. Susceptibility of the lumenal epitope to protease digestion and thus membrane extraction of reductase were tightly regulated by 25-hydroxycholesterol and geranylgeraniol. The reaction was inhibited by RNA interference-mediated knockdown of either Insigs or VCP/p97. In contrast, reductase continued to become membrane-extracted, but not cytosolically dislocated, in cells deficient for AAA-ATPases of the proteasome 19 S regulatory particle. These findings establish sequential roles for VCP/p97 and the 19 S regulatory particle in the sterol-accelerated ERAD of reductase that may be applicable to the ERAD of other substrates.
Collapse
Affiliation(s)
| | | | | | | | - Russell A DeBose-Boyd
- From the Departments of Molecular Genetics and the Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9046
| |
Collapse
|
9
|
Nakatsukasa K, Kamura T, Brodsky JL. Recent technical developments in the study of ER-associated degradation. Curr Opin Cell Biol 2014; 29:82-91. [PMID: 24867671 DOI: 10.1016/j.ceb.2014.04.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Revised: 04/04/2014] [Accepted: 04/23/2014] [Indexed: 11/25/2022]
Abstract
Endoplasmic reticulum-associated degradation (ERAD) is a mechanism during which native and misfolded proteins are recognized and retrotranslocated across the ER membrane to the cytosol for degradation by the ubiquitin-proteasome system. Like other cellular pathways, the factors required for ERAD have been analyzed using both conventional genetic and biochemical approaches. More recently, however, an integrated top-down approach has identified a functional network that underlies the ERAD system. In turn, bottom-up reconstitution has become increasingly sophisticated and elucidated the molecular mechanisms underlying substrate recognition, ubiquitylation, retrotranslocation, and degradation. In addition, a live cell imaging technique and a site-specific in vivo photo-crosslinking approach have further dissected specific steps during ERAD. These technical developments have revealed an unexpected dynamicity of the membrane-associated ERAD complex. In this article, we will discuss how these technical developments have improved our understanding of the ERAD pathway and have led to new questions.
Collapse
Affiliation(s)
- Kunio Nakatsukasa
- Division of Biological Sciences, Graduate School of Science, Nagoya University, Nagoya, Aichi 464-8602, Japan.
| | - Takumi Kamura
- Division of Biological Sciences, Graduate School of Science, Nagoya University, Nagoya, Aichi 464-8602, Japan
| | - Jeffrey L Brodsky
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA.
| |
Collapse
|
10
|
Matsumura Y, Sakai J, Skach WR. Endoplasmic reticulum protein quality control is determined by cooperative interactions between Hsp/c70 protein and the CHIP E3 ligase. J Biol Chem 2013; 288:31069-79. [PMID: 23990462 DOI: 10.1074/jbc.m113.479345] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The C terminus of Hsp70 interacting protein (CHIP) E3 ligase functions as a key regulator of protein quality control by binding the C-terminal (M/I)EEVD peptide motif of Hsp/c70(90) with its N-terminal tetratricopeptide repeat (TPR) domain and facilitating polyubiquitination of misfolded client proteins via its C-terminal catalytic U-box. Using CFTR as a model client, we recently showed that the duration of the Hsc70-client binding cycle is a primary determinant of stability. However, molecular features that control CHIP recruitment to Hsp/c70, and hence the fate of the Hsp/c70 client, remain unknown. To understand how CHIP recognizes Hsp/c70, we utilized a dominant negative mutant in which loss of a conserved proline in the U-box domain (P269A) eliminates E3 ligase activity. In a cell-free reconstituted ER-associated degradation system, P269A CHIP inhibited Hsc70-dependent CFTR ubiquitination and degradation in a dose-dependent manner. Optimal inhibition required both the TPR and the U-box, indicating cooperativity between the two domains. Neither the wild type nor the P269A mutant changed the extent of Hsc70 association with CFTR nor the dissociation rate of the Hsc70-CFTR complex. However, the U-box mutation stimulated CHIP binding to Hsc70 while promoting CHIP oligomerization. CHIP binding to Hsc70 binding was also stimulated by the presence of an Hsc70 client with a preference for the ADP-bound state. Thus, the Hsp/c70 (M/I)EEVD motif is not a simple anchor for the TPR domain. Rather CHIP recruitment involves reciprocal allosteric interactions between its TPR and U-box domains and the substrate-binding and C-terminal domains of Hsp/c70.
Collapse
Affiliation(s)
- Yoshihiro Matsumura
- From the Department of Biochemistry and Molecular Biology, Oregon Health and Science University, Portland, Oregon 97239 and
| | | | | |
Collapse
|
11
|
Making the cut: intramembrane cleavage by a rhomboid protease promotes ERAD. Nat Struct Mol Biol 2013; 19:979-81. [PMID: 23037595 DOI: 10.1038/nsmb.2398] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Endoplasmic reticulum–associated degradation (ERAD) is a cellular protein quality-control process that disposes of proteasomal substrates from the early secretory pathway. Recent work shows that the endoplasmic reticulum–resident rhomboid protease RHBDL4 facilitates ERAD by recognizing and cleaving integral membrane substrates. The work indicates that intramembrane proteolysis may have a general role in the extraction of misfolded membrane proteins from the endoplasmic reticulum.
Collapse
|
12
|
Chen C, Diao D, Guo L, Shi M, Gao J, Hu M, Yu M, Qian L, Guo N. All-trans-retinoic acid modulates ICAM-1 N-glycan composition by influencing GnT-III levels and inhibits cell adhesion and trans-endothelial migration. PLoS One 2012; 7:e52975. [PMID: 23300837 PMCID: PMC3530489 DOI: 10.1371/journal.pone.0052975] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Accepted: 11/26/2012] [Indexed: 11/25/2022] Open
Abstract
Changes in the expression of glycosyltransferases directly influence the oligosaccharide structures and conformations of cell surface glycoproteins and consequently cellular phenotype transitions and biological behaviors. In the present study, we show that all-trans-retinoic acid (ATRA) modulates the N-glycan composition of intercellular adhesion molecule-1 (ICAM-1) by manipulating the expression of two N-acetylglucosaminyltransferases, GnT-III and GnT-V, via the ERK signaling pathway. Exposure of various cells to ATRA caused a remarkable gel mobility down-shift of ICAM-1. Treatment with PNGase F confirmed that the reduction of the ICAM-1 molecular mass is attributed to the decreased complexity of N-glycans. We noticed that the expression of the mRNA encoding GnT-III, which stops branching, was significantly enhanced following ATRA exposure. In contrast, the level of the mRNA encoding GnT-V, which promotes branching, was reduced following ATRA exposure. Silencing of GnT-III prevented the molecular mass shift of ICAM-1. Moreover, ATRA induction greatly inhibited the adhesion of SW480 and U937 cells to the HUVEC monolayer, whereas knock-down of GnT-III expression effectively restored cell adhesion function. Treatment with ATRA also dramatically reduced the trans-endothelial migration of U937 cells. These data indicate that the alteration of ICAM-1 N-glycan composition by ATRA-induced GnT-III activities hindered cell adhesion and cell migration functions simultaneously, pinpointing a unique regulatory role of specific glycosyltransferases in the biological behaviors of tumor cells and a novel function of ATRA in the modulation of ICAM-1 N-glycan composition.
Collapse
Affiliation(s)
- Changguo Chen
- Department of Pathophysiology, Institute of Basic Medical Sciences, Beijing, P.R. China
- Department of Clinical Laboratory, the Navy General Hospital, No. 6 Fucheng Road, Beijing, P.R. China
| | - Dekun Diao
- Laboratory of Cellular and Molecular Immunology, Medical School of Henan University, Kaifeng, P.R. China
| | - Liang Guo
- Department of Pathophysiology, Institute of Basic Medical Sciences, Beijing, P.R. China
| | - Ming Shi
- Department of Pathophysiology, Institute of Basic Medical Sciences, Beijing, P.R. China
| | - Jie Gao
- Institute of Basic Medicine, Shandong Academy of Medical Science, Jinan, P.R. China
| | - Meiru Hu
- Department of Pathophysiology, Institute of Basic Medical Sciences, Beijing, P.R. China
| | - Ming Yu
- Department of Pathophysiology, Institute of Basic Medical Sciences, Beijing, P.R. China
| | - Lu Qian
- Department of Pathophysiology, Institute of Basic Medical Sciences, Beijing, P.R. China
- * E-mail: (LQ); (NG)
| | - Ning Guo
- Department of Pathophysiology, Institute of Basic Medical Sciences, Beijing, P.R. China
- * E-mail: (LQ); (NG)
| |
Collapse
|
13
|
Matsumura Y, David LL, Skach WR. Role of Hsc70 binding cycle in CFTR folding and endoplasmic reticulum-associated degradation. Mol Biol Cell 2011; 22:2797-809. [PMID: 21697503 PMCID: PMC3154877 DOI: 10.1091/mbc.e11-02-0137] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Hsc70 plays a productive role during cotranslational cystic fibrosis transmembrane conductance regulator folding that is outweighed by its dominant contribution to posttranslational targeting to the ubiquitin-proteasome system. Moreover, the outcome of Hsc70 binding appears highly sensitive to the duration of its binding cycle, which is governed by regulatory cochaperones. The Hsp/c70 cytosolic chaperone system facilitates competing pathways of protein folding and degradation. Here we use a reconstituted cell-free system to investigate the mechanism and extent to which Hsc70 contributes to these co- and posttranslational decisions for the membrane protein cystic fibrosis transmembrane conductance regulator (CFTR). Hsc70 binding to CFTR was destabilized by the C-terminal domain of Bag-1 (CBag), which stimulates client release by accelerating ADP-ATP exchange. Addition of CBag during CFTR translation slightly increased susceptibility of the newly synthesized protein to degradation, consistent with a profolding function for Hsc70. In contrast, posttranslational destabilization of Hsc70 binding nearly completely blocked CFTR ubiquitination, dislocation from the endoplasmic reticulum, and proteasome-mediated cleavage. This effect required molar excess of CBag relative to Hsc70 and was completely reversed by the CBag-binding subdomain of Hsc70. These results demonstrate that the profolding role of Hsc70 during cotranslational CFTR folding is counterbalanced by a dominant and essential role in posttranslational targeting to the ubiquitin-proteasome system. Moreover, the degradative outcome of Hsc70 binding appears highly sensitive to the duration of its binding cycle, which is in turn governed by the integrated expression of regulatory cochaperones.
Collapse
Affiliation(s)
- Yoshihiro Matsumura
- Department of Biochemistry and Molecular Biology, Oregon Health and Science University, Portland, OR 97239, USA
| | | | | |
Collapse
|
14
|
Brodsky JL, Skach WR. Protein folding and quality control in the endoplasmic reticulum: Recent lessons from yeast and mammalian cell systems. Curr Opin Cell Biol 2011; 23:464-75. [PMID: 21664808 DOI: 10.1016/j.ceb.2011.05.004] [Citation(s) in RCA: 191] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2011] [Revised: 04/29/2011] [Accepted: 05/17/2011] [Indexed: 12/16/2022]
Abstract
The evolution of eukaryotes was accompanied by an increased need for intracellular communication and cellular specialization. Thus, a more complex collection of secreted and membrane proteins had to be synthesized, modified, and folded. The endoplasmic reticulum (ER) thereby became equipped with devoted enzymes and associated factors that both catalyze the production of secreted proteins and remove damaged proteins. A means to modify ER function to accommodate and destroy misfolded proteins also evolved. Not surprisingly, a growing number of human diseases are linked to various facets of ER function. Each of these topics will be discussed in this article, with an emphasis on recent reports in the literature that employed diverse models.
Collapse
Affiliation(s)
- Jeffrey L Brodsky
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA.
| | | |
Collapse
|
15
|
Abstract
Cell-free expression systems provide unique tools for understanding CFTR biogenesis because they reconstitute the cellular folding environment and are readily amenable to biochemical and pharmacological manipulation. The most common system for this purpose is rabbit reticulocyte lysate (RRL), supplemented with either canine pancreatic microsomes or semi-permeabilized cells, which has yielded important insights into the folding of CFTR and its individual domains. A common problem in such studies, however, is that biogenesis of large proteins such as CFTR is often inefficient due to low translation processivity, ribosome stalling, and/or premature termination. The first part of this chapter therefore describes parameters that affect in vitro translation of CFTR in RRL. We have found that CFTR expression is uniquely dependent upon 5'- and 3'-untranslated regions (UTRs) of the mRNA. Full-length CFTR expression can be markedly increased using mRNA lacking a 5'-cap analog (G(5')ppp(5')G), whereas the reverse usually holds for smaller proteins and individual CFTR domains. In the context of the full-length mRNA, translation was further stimulated by the presence of a long 3'-UTR. The second part of this chapter describes CFTR translation in lysates derived from cultured mammalian cells including human bronchial epithelial cells. Unfortunately, mammalian cell-derived lysates showed limited ability to sustain full-length CFTR synthesis. However, they provide a unique opportunity to examine specific CFTR domains (i.e., nucleotide-binding domain 1 and transmembrane domain 1) under conditions that more closely resemble the native folding environment.
Collapse
|
16
|
Acharya P, Liao M, Engel JC, Correia MA. Liver cytochrome P450 3A endoplasmic reticulum-associated degradation: a major role for the p97 AAA ATPase in cytochrome P450 3A extraction into the cytosol. J Biol Chem 2010; 286:3815-28. [PMID: 21107009 DOI: 10.1074/jbc.m110.186981] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The CYP3A subfamily of hepatic cytochromes P450, being engaged in the metabolism and clearance of >50% of clinically relevant drugs, can significantly influence therapeutics and drug-drug interactions. Our characterization of CYP3A degradation has indicated that CYPs 3A incur ubiquitin-dependent proteasomal degradation (UPD) in an endoplasmic reticulum (ER)-associated degradation (ERAD) process. Cytochromes P450 are monotopic hemoproteins N-terminally anchored to the ER membrane with their protein bulk readily accessible to the cytosolic proteasome. Given this topology, it was unclear whether they would require the AAA-ATPase p97 chaperone complex that retrotranslocates/dislocates ubiquitinated ER-integral and luminal proteins into the cytosol for proteasomal delivery. To assess the in vivo relevance of this p97-CYP3A association, we used lentiviral shRNAs to silence p97 (80% mRNA and 90% protein knockdown relative to controls) in sandwich-cultured rat hepatocytes. This extensive hepatic p97 knockdown remarkably had no effect on cellular morphology, ER stress, and/or apoptosis, despite the well recognized strategic p97 roles in multiple important cellular processes. However, such hepatic p97 knockdown almost completely abrogated CYP3A extraction into the cytosol, resulting in a significant accumulation of parent and ubiquitinated CYP3A species that were firmly ER-tethered. Little detectable CYP3A accumulated in the cytosol, even after concomitant inhibition of proteasomal degradation, thereby documenting a major role of p97 in CYP3A extraction and delivery to the 26 S proteasome during its UPD/ERAD. Intriguingly, the accumulated parent CYP3A was functionally active, indicating that p97 can regulate physiological CYP3A content and thus influence its clinically relevant function.
Collapse
Affiliation(s)
- Poulomi Acharya
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, California 94158-2517, USA
| | | | | | | |
Collapse
|
17
|
Calpain digestion and HSP90-based chaperone protection modulate the level of plasma membrane F508del-CFTR. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2010; 1813:50-9. [PMID: 21111762 DOI: 10.1016/j.bbamcr.2010.11.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2010] [Revised: 11/12/2010] [Accepted: 11/17/2010] [Indexed: 11/23/2022]
Abstract
We are here showing that peripheral mononuclear blood cells (PBMC) from cystic fibrosis (CF) patients contain almost undetectable amounts of mature 170 kDa CF-transmembrane conductance regulator (CFTR) and a highly represented 100 kDa form. This CFTR protein, resembling the form produced by calpain digestion and present, although in lower amounts, also in normal PBMC, is localized in cytoplasmic internal vesicles. These observations are thus revealing that the calpain-mediated proteolysis is largely increased in cells from CF patients. To characterize the process leading to the accumulation of such split CFTR, FRT cells expressing the F508del-CFTR mutated channel protein and human leukaemic T cell line (JA3), expressing wild type CFTR were used. In in vitro experiments, the sensitivity of the mutated channel to the protease is identical to that of the wild type, whereas in Ca(2+)-loaded cells F508del-CFTR is more susceptible to digestion. Inhibition of intracellular calpain activity prevents CFTR degradation and leads to a 10-fold increase in the level of F508del-CFTR at the plasma membrane, further indicating the involvement of calpain activity in the maintenance of very low levels of mature channel form. The higher sensitivity to calpain of the mutated 170 kDa CFTR results from a reduced affinity for HSP90 causing a lower degree of protection from calpain digestion. The recovery of HSP90 binding capacity in F508del-CFTR, following digestion, explains the large accumulation of the 100 kDa CFTR form in circulating PBMC from CF patients.
Collapse
|
18
|
Henderson MJ, Singh OV, Zeitlin PL. Applications of proteomic technologies for understanding the premature proteolysis of CFTR. Expert Rev Proteomics 2010; 7:473-86. [PMID: 20653504 DOI: 10.1586/epr.10.42] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Cystic fibrosis (CF) is caused by mutations in the CF transmembrane conductance regulator (CFTR) gene, which encodes an ATP-dependent anion channel. Disease-causing mutations can affect channel biogenesis, trafficking or function, and result in reduced ion transport at the apical surface of many tissues. The most common CFTR mutation is a deletion of phenylalanine at position 508 (DeltaF508), which results in a misfolded protein that is prematurely targeted for degradation. This article focuses on how proteomic approaches have been utilized to explore the mechanisms of premature proteolysis in CF. Additionally, we emphasize the potential for proteomic-based technologies in expanding our understanding of CF pathophysiology and therapeutic approaches.
Collapse
Affiliation(s)
- Mark J Henderson
- Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| | | | | |
Collapse
|
19
|
Role of calpain in the regulation of CFTR (cystic fibrosis transmembrane conductance regulator) turnover. Biochem J 2010; 430:255-63. [PMID: 20557290 DOI: 10.1042/bj20100344] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The level of the mature native 170 kDa form of CFTR (cystic fibrosis transmembrane conductance regulator) at the plasma membrane is under the control of a selective proteolysis catalysed by calpain. The product of this limited digestion, consisting of discrete fragments still associated by strong interactions, is removed from the plasma membrane and internalized in vesicles and subject to an additional degradation. This process can be monitored by visualizing the accumulation of a 100 kDa fragment in a proliferating human leukaemic T-cell line and in human circulating lymphocytes. In reconstructed systems, and in intact cells, the conversion of native CFTR into the 100 kDa fragment linearly correlated with calpain activation and was prevented by addition of synthetic calpain inhibitors. A reduction in Ca2+ influx, by blocking the NMDA (N-methyl-D-aspartate) receptor Ca2+ channel, inhibited the conversion of the native 170 kDa fragment into the 100 kDa fragment, whereas an endosome acidification blocker promoted accumulation of the digested 100 kDa CFTR form. An important role in calpain-mediated turnover of CFTR is exerted by HSP90 (heat-shock protein 90), which, via association with the protein channel, modulates the degradative effect of calpain through a selective protection. Taken together these results indicate that CFTR turnover is initiated by calpain activation, which is induced by an increased Ca2+ influx and, following internalization of the cleaved channel protein, and completed by the lysosomal proteases. These findings provide new insights into the molecular mechanisms responsible for the defective functions of ion channels in human pathologies.
Collapse
|
20
|
Jurkuvenaite A, Chen L, Bartoszewski R, Goldstein R, Bebok Z, Matalon S, Collawn JF. Functional stability of rescued delta F508 cystic fibrosis transmembrane conductance regulator in airway epithelial cells. Am J Respir Cell Mol Biol 2009; 42:363-72. [PMID: 19502384 DOI: 10.1165/rcmb.2008-0434oc] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The most common mutation in the cystic fibrosis (CF) transmembrane conductance regulator (CFTR) gene, Delta F508, results in the production of a misfolded protein that is rapidly degraded. The mutant protein is temperature sensitive, and prior studies indicate that the low-temperature-rescued channel is poorly responsive to physiological stimuli, and is rapidly degraded from the cell surface at 37 degrees C. In the present studies, we tested the effect of a recently characterized pharmacological corrector, 2-(5-chloro-2-methoxy-phenylamino)-4'-methyl-[4,5'bithiazolyl-2'-yl]-phenyl-methanone (corr-4a), on cell surface stability and function of the low-temperature-rescued Delta F508 CFTR. We demonstrate that corr-4a significantly enhanced the protein stability of rescued Delta F508 CFTR for up to 12 hours at 37 degrees C (P < 0.05). Using firefly luciferase-based reporters to investigate the mechanisms by which low temperature and corr-4a enhance rescue, we found that low-temperature treatment inhibited proteasomal function, whereas corr-4a treatment inhibited the E1-E3 ubiquitination pathway. Ussing chamber studies indicated that corr-4a increased the cAMP-mediated Delta F508 CFTR response by 61% at 6 hours (P < 0.05), but not at later time points. However, addition of the CFTR channel activator, 4-methyl-2-(5-phenyl-1H-pyrazol-3-yl)-phenol, significantly augmented cAMP-stimulated currents, revealing that the biochemically detectable cell surface Delta F508 CFTR could be stimulated under the right conditions. Our studies demonstrate that stabilizing rescued Delta F508 CFTR was not sufficient to obtain maximal Delta F508 CFTR function in airway epithelial cells. These results strongly support the idea that maximal correction of Delta F508 CFTR requires a chemical corrector that: (1) promotes folding and exit from the endoplasmic reticulum; (2) enhances surface stability; and (3) improves channel activity.
Collapse
Affiliation(s)
- Asta Jurkuvenaite
- Department of Cell Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | | | | | | | | | | | |
Collapse
|
21
|
Metzger MB, Michaelis S. Analysis of quality control substrates in distinct cellular compartments reveals a unique role for Rpn4p in tolerating misfolded membrane proteins. Mol Biol Cell 2009; 20:1006-19. [PMID: 19073890 PMCID: PMC2633399 DOI: 10.1091/mbc.e08-02-0140] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2008] [Revised: 10/16/2008] [Accepted: 12/02/2008] [Indexed: 11/11/2022] Open
Abstract
ER quality control (ERQC) prevents the exit of misfolded secretory and membrane proteins from the ER. A critical aspect of ERQC is a transcriptional response called the unfolded protein response (UPR), which up-regulates genes that enable cells to cope with misfolded, ER-retained proteins. In this study, we compare the transcriptional responses in yeast resulting from the acute expression of misfolded proteins residing in three different cellular compartments (the ER lumen, membrane, and cytosol), and find that each elicits a distinct transcriptional response. The classical UPR response, here-designated UPR-L, is induced by the ER lumenal misfolded protein, CPY*. The UPR-Cyto response is induced by the cytosolic protein, VHL-L158P, and is characterized by a rapid, transient induction of cytosolic chaperones similar to the heat-shock response. In contrast, the misfolded membrane protein with a cystolic lesion, Ste6p*, elicits a unique response designated UPR-M/C, characterized by the modest induction of >20 genes regulated by Rpn4p, an activator of proteasomal genes. Independently, we identified several genes required for yeast viability during UPR-M/C stress, but not UPR-L or UPR-Cyto stress. Among these is RPN4, highlighting the importance of the Rpn4p-dependent response in tolerating UPR-M/C stress. Further analysis suggests the requirement for Rpn4p reflects severe impairment of the proteasome by UPR-M/C stress.
Collapse
Affiliation(s)
- Meredith Boyle Metzger
- Department of Cell Biology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Susan Michaelis
- Department of Cell Biology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205
| |
Collapse
|
22
|
Nakatsukasa K, Huyer G, Michaelis S, Brodsky JL. Dissecting the ER-associated degradation of a misfolded polytopic membrane protein. Cell 2008; 132:101-12. [PMID: 18191224 DOI: 10.1016/j.cell.2007.11.023] [Citation(s) in RCA: 218] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2007] [Revised: 09/10/2007] [Accepted: 11/09/2007] [Indexed: 11/29/2022]
Abstract
It remains unclear how misfolded membrane proteins are selected and destroyed during endoplasmic reticulum-associated degradation (ERAD). For example, chaperones are thought to solubilize aggregation-prone motifs, and some data suggest that these proteins are degraded at the ER. To better define how membrane proteins are destroyed, the ERAD of Ste6p(*), a 12 transmembrane protein, was reconstituted. We found that specific Hsp70/40s act before ubiquitination and facilitate Ste6p(*) association with an E3 ubiquitin ligase, suggesting an active role for chaperones. Furthermore, polyubiquitination was a prerequisite for retrotranslocation, which required the Cdc48 complex and ATP. Surprisingly, the substrate was soluble, and extraction was independent of a ubiquitin chain extension enzyme (Ufd2p). However, Ufd2p increased the degree of ubiquitination and facilitated degradation. These data indicate that polytopic membrane proteins can be extracted from the ER, and define the point of action of chaperones and the requirement for Ufd2p during membrane protein quality control.
Collapse
Affiliation(s)
- Kunio Nakatsukasa
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | | | | | | |
Collapse
|
23
|
Chen P, Harcum SW. Differential display identifies genes in Chinese hamster ovary cells sensitive to elevated ammonium. Appl Biochem Biotechnol 2008; 141:349-59. [PMID: 18025561 DOI: 10.1007/bf02729072] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2006] [Revised: 10/24/2006] [Accepted: 11/06/2006] [Indexed: 12/25/2022]
Abstract
Ammonium is a toxic waste product that has been reported to negatively inhibit cell growth and recombinant glycosylation in Chinese hamster ovary (CHO) cells; however, the effect of this toxicity on intracellular gene expression has received only limited investigation. We used a differential display method to identify genes in CHO cells that were affected by ammonium stress. Eight genes whose mRNA levels significantly changed in response to elevated ammonium were isolated and identified. Five of the genes were identified as having lower expression under the ammonium stress, whereas three genes were identified as having higher expression. Sequence homology with other mammalian organisms was used to attribute function to these newly identified genes. The identified ammonium-sensitive genes were grouped into three broad functional groups: cellular processes, energy metabolism, and genetic-information processing. The three cellular process-related genes had lower expression (anaphase-promoting complex subunit 5, eukaryotic initiation factor 5A II, KIAA1091 protein). The two energy-related genes had higher expression under ammonium stress (adenosine triphosphate synthase subunit C and mitofusin 1). Both of the genetic information-processing genes (endoplasmic reticulum [ER]-resident protein ERdj5 and structure-specific recognition protein 1) had lower expression under the ammonium stress, whereas the 26S proteasome subunit adenosine triphosphatase 3 gene had higher expression. These preliminary results indicate that ammonium stress lowers expression of genes controlling cell cycle, protein folding, and quality and raises genes that control energy metabolism and degradation. Our findings demonstrate the usefulness of mRNA differential-display techniques for the detection of CHO cell genes affected by ammonium stress.
Collapse
Affiliation(s)
- Peifeng Chen
- Department of Chemical and Biomolecular Engineering, Clemson University, 125 Earle Hall, Clemson, SC 29634-0909, USA
| | | |
Collapse
|
24
|
Hashimoto Y, Okiyoneda T, Harada K, Ueno K, Sugahara T, Yamashita A, Shuto T, Suico MA, Kai H. Phosphatidic acid metabolism regulates the intracellular trafficking and retrotranslocation of CFTR. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2008; 1783:153-62. [DOI: 10.1016/j.bbamcr.2007.08.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2007] [Revised: 08/09/2007] [Accepted: 08/24/2007] [Indexed: 11/27/2022]
|
25
|
Abstract
CF is an inherited autosomal recessive disease whose lethality arises from malfunction of CFTR, a single chloride (Cl-) ion channel protein. CF patients harbor mutations in the CFTR gene that lead to misfolding of the resulting CFTR protein, rendering it inactive and mislocalized. Hundreds of CF-related mutations have been identified, many of which abrogate CFTR folding in the endoplasmic reticulum (ER). More than 70% of patients harbor the ΔF508 CFTR mutation that causes misfolding of the CFTR proteins. Consequently, mutant CFTR is unable to reach the apical plasma membrane of epithelial cells that line the lungs and gut, and is instead targeted for degradation by the UPS. Proteins located in both the cytoplasm and ER membrane are believed to identify misfolded CFTR for UPS-mediated degradation. The aberrantly folded CFTR protein then undergoes polyubiquitylation, carried out by an E1-E2-E3 ubiquitin ligase system, leading to degradation by the 26S proteasome. This ubiquitin-dependent loss of misfolded CFTR protein can be inhibited by the application of ‘corrector’ drugs that aid CFTR folding, shielding it from the UPS machinery. Corrector molecules elevate cellular CFTR protein levels by protecting the protein from degradation and aiding folding, promoting its maturation and localization to the apical plasma membrane. Combinatory application of corrector drugs with activator molecules that enhance CFTR Cl- ion channel activity offers significant potential for treatment of CF patients. Publication history: Republished from Current BioData's Targeted Proteins database (TPdb; ).
Collapse
Affiliation(s)
- Emma L Turnbull
- Department of Cell and Developmental Biology, 526 Taylor Hall, Mason Farm Road, UNC-Chapel Hill School of Medicine, University of North Carolina, Chapel Hill, North Carolina 27599, USA.
| | | | | |
Collapse
|
26
|
Kelly SM, VanSlyke JK, Musil LS. Regulation of ubiquitin-proteasome system mediated degradation by cytosolic stress. Mol Biol Cell 2007; 18:4279-91. [PMID: 17699585 PMCID: PMC2043544 DOI: 10.1091/mbc.e07-05-0487] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
ER-associated, ubiquitin-proteasome system (UPS)-mediated degradation of the wild-type (WT) gap junction protein connexin32 (Cx32) is inhibited by mild forms of cytosolic stress at a step before its dislocation into the cytosol. We show that the same conditions (a 30-min, 42 degrees C heat shock or oxidative stress induced by arsenite) also reduce the endoplasmic reticulum (ER)-associated turnover of disease-causing mutants of Cx32 and the cystic fibrosis transmembrane conductance regulator (CFTR), as well as that of WT CFTR and unassembled Ig light chain. Stress-stabilized WT Cx32 and CFTR, but not the mutant/unassembled proteins examined, could traverse the secretory pathway. Heat shock also slowed the otherwise rapid UPS-mediated turnover of the cytosolic proteins myoD and GFPu, but not the degradation of an ubiquitination-independent construct (GFP-ODC) closely related to the latter. Analysis of mutant Cx32 from cells exposed to proteasome inhibitors and/or cytosolic stress indicated that stress reduces degradation at the level of substrate polyubiquitination. These findings reveal a new link between the cytosolic stress-induced heat shock response, ER-associated degradation, and polyubiquitination. Stress-denatured proteins may titer a limiting component of the ubiquitination machinery away from pre-existing UPS substrates, thereby sparing the latter from degradation.
Collapse
Affiliation(s)
- Sean M. Kelly
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University, Portland, OR 97239
| | - Judy K. VanSlyke
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University, Portland, OR 97239
| | - Linda S. Musil
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University, Portland, OR 97239
| |
Collapse
|
27
|
Abstract
Background Aggresomes are pericentrosomal accumulations of misfolded proteins, chaperones and proteasomes. Their positioning near the centrosome, like that of other organelles, requires active, microtubule-dependent transport. Linker proteins that can associate with the motor protein dynein, organelles, and microtubules are thought to contribute to the active maintenance of the juxtanuclear localization of many membrane bound organelles and aggresomes. Hook proteins have been proposed to serve as adaptors for the association of cargos with dynein for transport on microtubules. Hook2 was shown to localize to the centrosome, bind centriolin, and contribute to centrosomal function. Results Here we show that overexpression of hook2 promotes the accumulation of the cystic fibrosis transmembrane regulator in aggresomes without altering its biochemical properties or its steady state level. A dominant negatively acting form of hook2 that lacks the centriolin binding C-terminal inhibits aggresome formation. Conclusion We propose that hook2 contributes to the establishment and maintenance of the pericentrosomal localization of aggresomes by promoting the microtubule-based delivery of protein aggregates to pericentriolar aggresomes.
Collapse
|
28
|
Heubes S, Stemmann O. The AAA-ATPase p97-Ufd1-Npl4 is required for ERAD but not for spindle disassembly in Xenopus egg extracts. J Cell Sci 2007; 120:1325-9. [PMID: 17374636 DOI: 10.1242/jcs.006924] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The highly abundant AAA-ATPase p97 is required for diverse cellular processes, of which ER-associated protein degradation (ERAD) is understood best. Previously, a new role of p97 in spindle disassembly at the end of mitosis has been reported. However, we show that neither addition of dominant-negative p97 mutants nor depletion of crucial p97 adaptors impairs transition of meiotic spindles into interphase arrays of microtubules. The dominant-negative approach is validated by inhibition of ERAD, which we reconstitute for the first time in the powerful biochemical system of Xenopus egg extracts. The role of p97 in spindle disassembly during meiotic exit should therefore be reconsidered.
Collapse
Affiliation(s)
- Simone Heubes
- Department of Molecular Cell Biology, Max-Planck-Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | | |
Collapse
|
29
|
Mueller B, Lilley BN, Ploegh HL. SEL1L, the homologue of yeast Hrd3p, is involved in protein dislocation from the mammalian ER. ACTA ACUST UNITED AC 2006; 175:261-70. [PMID: 17043138 PMCID: PMC2064567 DOI: 10.1083/jcb.200605196] [Citation(s) in RCA: 170] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Protein quality control in the endoplasmic reticulum (ER) involves recognition of misfolded proteins and dislocation from the ER lumen into the cytosol, followed by proteasomal degradation. Viruses have co-opted this pathway to destroy proteins that are crucial for host defense. Examination of dislocation of class I major histocompatibility complex (MHC) heavy chains (HCs) catalyzed by the human cytomegalovirus (HCMV) immunoevasin US11 uncovered a conserved complex of the mammalian dislocation machinery. We analyze the contributions of a novel complex member, SEL1L, mammalian homologue of yHrd3p, to the dislocation process. Perturbation of SEL1L function discriminates between the dislocation pathways used by US11 and US2, which is a second HCMV protein that catalyzes dislocation of class I MHC HCs. Furthermore, reduction of the level of SEL1L by small hairpin RNA (shRNA) inhibits the degradation of a misfolded ribophorin fragment (RI332) independently of the presence of viral accessories. These results allow us to place SEL1L in the broader context of glycoprotein degradation, and imply the existence of multiple independent modes of extraction of misfolded substrates from the mammalian ER.
Collapse
Affiliation(s)
- Britta Mueller
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | | | | |
Collapse
|
30
|
Carlson EJ, Pitonzo D, Skach WR. p97 functions as an auxiliary factor to facilitate TM domain extraction during CFTR ER-associated degradation. EMBO J 2006; 25:4557-66. [PMID: 16977321 PMCID: PMC1589997 DOI: 10.1038/sj.emboj.7601307] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2006] [Accepted: 07/24/2006] [Indexed: 11/08/2022] Open
Abstract
The AAA-ATPase (ATPase associated with various cellular activities) p97 has been implicated in the degradation of misfolded and unassembled proteins in the endoplasmic reticulum (ERAD). To better understand its role in this process, we used a reconstituted cell-free system to define the precise contribution of p97 in degrading immature forms of the polytopic, multi-domain protein CFTR (cystic fibrosis transmembrane conductance regulator). Although p97 augmented both the rate and the extent of CFTR degradation, it was not obligatorily required for ERAD. Only a 50% decrease in degradation was observed in the complete absence of p97. Moreover, p97 specifically stimulated the degradation of CFTR transmembrane (TM) domains but had no effect on isolated cytosolic domains. Consistent with this, p97-mediated extraction of intact TM domains was independent of proteolytic cleavage and influenced by TM segment hydrophobicity, indicating that the relative contribution of p97 is partially determined by substrate stability. Thus, we propose that p97 functions in ERAD as a nonessential but important ancillary component to the proteasome where it facilitates substrate presentation and increases the degradation rate and efficiency of stable (TM) domains.
Collapse
Affiliation(s)
- Eric J Carlson
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University, Portland, OR, USA
| | - David Pitonzo
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University, Portland, OR, USA
| | - William R Skach
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University, Portland, OR, USA
| |
Collapse
|
31
|
Shibatani T, Carlson EJ, Larabee F, McCormack AL, Früh K, Skach WR. Global organization and function of mammalian cytosolic proteasome pools: Implications for PA28 and 19S regulatory complexes. Mol Biol Cell 2006; 17:4962-71. [PMID: 16987959 PMCID: PMC1679665 DOI: 10.1091/mbc.e06-04-0311] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Proteolytic activity of the 20S proteasome is regulated by activators that govern substrate movement into and out of the catalytic chamber. However, the physiological relationship between activators, and hence the relative role of different proteasome species, remains poorly understood. To address this problem, we characterized the total pool of cytosolic proteasomes in intact and functional form using a single-step method that bypasses the need for antibodies, proteasome modification, or column purification. Two-dimensional Blue Native(BN)/SDS-PAGE and tandem mass spectrometry simultaneously identified six native proteasome populations in untreated cytosol: 20S, singly and doubly PA28-capped, singly 19S-capped, hybrid, and doubly 19S-capped proteasomes. All proteasome species were highly dynamic as evidenced by recruitment and exchange of regulatory caps. In particular, proteasome inhibition with MG132 markedly stimulated PA28 binding to exposed 20S alpha-subunits and generated doubly PA28-capped and hybrid proteasomes. PA28 recruitment virtually eliminated free 20S particles and was blocked by ATP depletion. Moreover, inhibited proteasomes remained stably associated with distinct cohorts of partially degraded fragments derived from cytosolic and ER substrates. These data establish a versatile platform for analyzing substrate-specific proteasome function and indicate that PA28 and 19S activators cooperatively regulate global protein turnover while functioning at different stages of the degradation cycle.
Collapse
Affiliation(s)
- Toru Shibatani
- *Department of Biochemistry and Molecular Biology, Oregon Health & Sciences University, Portland, OR 97201; and
| | - Eric J. Carlson
- *Department of Biochemistry and Molecular Biology, Oregon Health & Sciences University, Portland, OR 97201; and
| | - Fredrick Larabee
- *Department of Biochemistry and Molecular Biology, Oregon Health & Sciences University, Portland, OR 97201; and
| | - Ashley L. McCormack
- Vaccine and Gene Therapy Institute, Oregon Health & Sciences University, Beaverton, OR 97006-3448
| | - Klaus Früh
- Vaccine and Gene Therapy Institute, Oregon Health & Sciences University, Beaverton, OR 97006-3448
| | - William R. Skach
- *Department of Biochemistry and Molecular Biology, Oregon Health & Sciences University, Portland, OR 97201; and
| |
Collapse
|
32
|
Mimnaugh EG, Xu W, Vos M, Yuan X, Neckers L. Endoplasmic Reticulum Vacuolization and Valosin-Containing Protein Relocalization Result from Simultaneous Hsp90 Inhibition by Geldanamycin and Proteasome Inhibition by Velcade. Mol Cancer Res 2006; 4:667-81. [PMID: 16966435 DOI: 10.1158/1541-7786.mcr-06-0019] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Geldanamycin and Velcade, new anticancer drugs with novel mechanisms of action, are currently undergoing extensive clinical trials. Geldanamycin interrupts Hsp90 chaperone activity and causes down-regulation of its many client proteins by the ubiquitin-proteasome pathway; Velcade is a specific proteasome inhibitor. Misfolded Hsp90 clients within the endoplasmic reticulum (ER) lumen are cleared by ER--associated protein degradation, a sequential process requiring valosin-containing protein (VCP)-dependent retrotranslocation followed by ubiquitination and proteasomal proteolysis. Cotreatment of cells with geldanamycin and Velcade prevents destruction of destabilized, ubiquitinated Hsp90 client proteins, causing them to accumulate. Here, we report that misfolded protein accumulation within the ER resulting from geldanamycin and Velcade exposure overwhelms the ability of the VCP--centered machine to maintain the ER secretory pathway, causing the ER to distend into conspicuous vacuoles. Overexpression of dominant-negative VCP or the "small VCP--interacting protein" exactly recapitulated the vacuolated phenotype provoked by the drugs, associating loss of VCP function with ER vacuolization. In cells transfected with a VCP--enhanced yellow fluorescent protein fluorescent construct, geldanamycin plus Velcade treatment redistributed VCP--enhanced yellow fluorescent protein from the cytoplasm and ER into perinuclear aggresomes. In further support of the view that compromise of VCP function is responsible for ER vacuolization, small interfering RNA interference of VCP expression induced ER vacuolization that was markedly increased by Velcade. VCP knockdown by small interfering RNA eventually deconstructed both the ER and Golgi and interdicted protein trafficking through the secretory pathway to the plasma membrane. Thus, simultaneous geldanamycin and Velcade treatment has far-reaching secondary cytotoxic consequences that likely contribute to the cytotoxic activity of this anticancer drug combination.
Collapse
Affiliation(s)
- Edward G Mimnaugh
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, NIH, 9000 Rockville Pike, Building 10, Room 1-5940, Bethesda, MD 20892-1107, USA
| | | | | | | | | |
Collapse
|
33
|
Grünberg-Etkovitz N, Greenbaum L, Grinblat B, Malik Z. Proteasomal degradation regulates expression of porphobilinogen deaminase (PBGD) mutants of acute intermittent porphyria. Biochim Biophys Acta Mol Basis Dis 2006; 1762:819-27. [PMID: 16935474 DOI: 10.1016/j.bbadis.2006.07.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2006] [Revised: 07/02/2006] [Accepted: 07/12/2006] [Indexed: 01/29/2023]
Abstract
Acute intermittent porphyria (AIP) is a neuropathic disease caused by a dominant inherited deficiency in porphobilinogen deaminase (PBGD). We investigated the expression and the degradation of the human PBGD-mutations G748A, G748C and 887insA following transfection into human SH-SY5Y neuroblastoma cells. Mutant proteins exhibited reduced protein expression compared to transfected wild-type (wt) PBGD as revealed by Western blotting. The transcription levels assessed by real-time PCR of these mutant species were identical to those of the wild type. Immuno-fluorescence microscopy revealed reduced cellular distribution of the mutated PBGDs in the cytosol and the nucleus in comparison to the wild-type PBGD. Enhanced cellular accumulation of the mutated and wild-type PBGDs was detected following inhibition of the proteasome by the inhibitors CLBL and hemin. Elevated expression of wt and mutated PBGD protein levels was either achieved by hemin or heme-arginate treatment. On the other hand, enhanced PBGD degradation was achieved by lead poisoning of ALAD in the SH-SY5Y cells concomitant with acceleration of proteasomal activity, most probably by ALAD participation in proteasomal regulation [G.G. Guo, M. Gu, J.D. Etlinger, 240-kDa proteasome inhibitor (CF-2) is identical to delta-aminolevulinic acid dehydratase. J Biol Chem 1994; 269:12399-402.] Our results suggest that the difference in expression between the wild-type and mutant proteins appears to be regulated on the level of protein degradation. In conclusion, we demonstrate that the PBGD cellular pool is controlled by the proteasome activity, which in turn is down regulated by hemin or up-regulated by Pb-ALAD.
Collapse
|
34
|
Donoso G, Herzog V, Schmitz A. Misfolded BiP is degraded by a proteasome-independent endoplasmic-reticulum-associated degradation pathway. Biochem J 2006; 387:897-903. [PMID: 15610068 PMCID: PMC1135023 DOI: 10.1042/bj20041312] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Misfolded proteins are removed from the ER (endoplasmic reticulum) by retrotranslocation to the cytosol and degradation by the ubiquitin-proteasome system in a process designated ERAD (ER-associated degradation). Analysing the turnover of a misfolded form of the ER-resident chaperone BiP (heavy-chain binding protein) (BiPDeltaA), we found that the degradation of BiPDeltaA did not follow this general ERAD pathway. In transfected cells, BiPDeltaA was degraded, although proteasome-dependent ERAD was inactivated either by proteasome inhibitors or by ATP depletion. In semi-permeabilized cells, which did not support the degradation of the proteasomal substrate alpha1-antitrypsin, the degradation of BiPDeltaA was still functional, excluding the Golgi apparatus or lysosomes as the degradative compartment. The degradation of BiPDeltaA was recapitulated in biosynthetically loaded brain microsomes and in an extract of luminal ER proteins. In contrast with proteasome-dependent ERAD, degradation fragments were detectable inside the microsomes and in the extract, and the degradation was prevented by a serine protease inhibitor. These results show that the degradation of BiPDeltaA was initiated in the ER lumen by a serine protease, and support the view that proteasome-independent ERAD pathways exist.
Collapse
Affiliation(s)
- Gerda Donoso
- Institut für Zellbiologie, Rheinische Friedrich-Wilhelms-Universität, Ulrich-Haberland-Strasse 61a, 53121 Bonn, Germany
| | - Volker Herzog
- Institut für Zellbiologie, Rheinische Friedrich-Wilhelms-Universität, Ulrich-Haberland-Strasse 61a, 53121 Bonn, Germany
| | - Anton Schmitz
- Institut für Zellbiologie, Rheinische Friedrich-Wilhelms-Universität, Ulrich-Haberland-Strasse 61a, 53121 Bonn, Germany
- To whom correspondence should be addressed (email )
| |
Collapse
|
35
|
Oberdorf J, Carlson EJ, Skach WR. Uncoupling proteasome peptidase and ATPase activities results in cytosolic release of an ER polytopic protein. J Cell Sci 2006; 119:303-13. [PMID: 16390870 DOI: 10.1242/jcs.02732] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The 26S proteasome is the primary protease responsible for degrading misfolded membrane proteins in the endoplasmic reticulum. Here we examine the specific role of beta subunit function on polypeptide cleavage and membrane release of CFTR, a prototypical ER-associated degradation substrate with 12 transmembrane segments. In the presence of ATP, cytosol and fully active proteasomes, CFTR was rapidly degraded and released into the cytosol solely in the form of trichloroacetic acid (TCA)-soluble peptide fragments. Inhibition of proteasome beta subunits markedly decreased CFTR degradation but surprisingly, had relatively minor effects on membrane extraction and release. As a result, large TCA-insoluble degradation intermediates derived from multiple CFTR domains accumulated in the cytosol where they remained stably bound to inhibited proteasomes. Production of TCA-insoluble fragments varied for different proteasome inhibitors and correlated inversely with the cumulative proteolytic activities of beta1, beta2 and beta5 subunits. By contrast, ATPase inhibition decreased CFTR release but had no effect on the TCA solubility of the released fragments. Our results indicate that the physiologic balance between membrane extraction and peptide cleavage is maintained by excess proteolytic capacity of the 20S subunit. Active site inhibitors reduce this capacity, uncouple ATPase and peptidase activities, and generate cytosolic degradation intermediates by allowing the rate of unfolding to exceed the rate of polypeptide cleavage.
Collapse
Affiliation(s)
- Jon Oberdorf
- Department of Biochemistry and Molecular Biology, Oregon Health and Sciences University, 3181 SW Sam Jackson Park Road, Portland, OR 97201, USA
| | | | | |
Collapse
|
36
|
Abstract
A cytoplasmic peptide:N-glycanase (PNGase) has been implicated in the proteasomal degradation of aberrant glycoproteins synthesized in the endoplasmic reticulum. The reaction is believed to be important for subsequent proteolysis by the proteasome since bulky N-glycan chains on misfolded glycoproteins may impair their efficient entry into the interior of the cylinder-shaped 20S proteasome, where the active sites of the proteases reside. The deglycosylation reaction by PNGase brings about two major changes on substrate proteins; one is a removal of N-glycan chains, and the other is the introduction of negative charge(s) into the core peptide by converting glycosylated asparagine residue(s) into aspartic acid residue(s). Therefore, PNGase action can be accurately monitored by detecting both changes using two different methods; that is, sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) for deglycosylation and isoelectric focusing for detection of introduction of negative charge(s) into core proteins. This chapter will describe the simple in vivo as well as in vitro assay method to detect PNGase activity.
Collapse
Affiliation(s)
- Kaori Tanabe
- Department of Biochemistry, Osaka University, Graduate School of Medicine, Japan
| | | | | |
Collapse
|
37
|
Kleizen B, van Vlijmen T, de Jonge HR, Braakman I. Folding of CFTR Is Predominantly Cotranslational. Mol Cell 2005; 20:277-87. [PMID: 16246729 DOI: 10.1016/j.molcel.2005.09.007] [Citation(s) in RCA: 132] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2004] [Revised: 07/01/2005] [Accepted: 09/06/2005] [Indexed: 11/16/2022]
Abstract
The folding process for newly synthesized, multispanning membrane proteins in the endoplasmic reticulum (ER) is largely unknown. Here, we describe early folding events of the cystic fibrosis transmembrane conductance regulator (CFTR), a member of the ABC-transporter family. In vitro translation of CFTR in the presence of semipermeabilized cells allowed us to investigate this protein during nascent chain elongation. We found that CFTR folds mostly during synthesis as determined by protease susceptibility. C-terminally truncated constructs showed that individual CFTR domains formed well-defined structures independent of C-terminal parts. We conclude that the multidomain protein CFTR folds mostly cotranslationally, domain by domain.
Collapse
Affiliation(s)
- Bertrand Kleizen
- Cellular Protein Chemistry, Department of Chemistry, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | | | | | | |
Collapse
|
38
|
Oberdorf J, Pitonzo D, Skach WR. An energy-dependent maturation step is required for release of the cystic fibrosis transmembrane conductance regulator from early endoplasmic reticulum biosynthetic machinery. J Biol Chem 2005; 280:38193-202. [PMID: 16166089 DOI: 10.1074/jbc.m504200200] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Polytopic proteins are synthesized in the endoplasmic reticulum (ER) by ribosomes docked at the Sec61 translocation channel. It is generally assumed that, upon termination of translation, polypeptides are spontaneously released into the ER membrane where final stages of folding and assembly are completed. Here we investigate early interactions between the ribosome-translocon complex and cystic fibrosis transmembrane conductance regulator (CFTR), a multidomain ABC transporter, and demonstrate that this is not always the case. Using in vitro and Xenopus oocyte expression systems we show that, during and immediately following synthesis, nascent CFTR polypeptides associate with large, heterogeneous, and dynamic protein complexes. Partial-length precursors were quantitatively isolated in a non-covalent, puromycin-sensitive complex (>3,500 kDa) that contained the Sec61 ER translocation machinery and the cytosolic chaperone Hsc70. Following the completion of synthesis, CFTR was gradually released into a smaller (600-800 kDa) ATP-sensitive complex. Surprisingly, release of full-length CFTR from the ribosome and translocon was significantly delayed after translation was completed. Moreover, this step required both nucleotide triphosphates and cytosol. Release of control proteins varied depending on their size and domain complexity. These studies thus identify a novel energy-dependent step early in the CFTR maturation pathway that is required to disengage nascent CFTR from ER biosynthetic machinery. We propose that, contrary to current models, the final stage of membrane integration is a regulated process that can be influenced by the state of nascent chain folding, and we speculate that this step is influenced by the complex multidomain structure of CFTR.
Collapse
Affiliation(s)
- Jon Oberdorf
- Department of Biochemistry and Moleculor Biology, Oregon Health & Sciences University, Portland, Oregon 97239, USA
| | | | | |
Collapse
|
39
|
Katiyar S, Joshi S, Lennarz WJ. The retrotranslocation protein Derlin-1 binds peptide:N-glycanase to the endoplasmic reticulum. Mol Biol Cell 2005; 16:4584-94. [PMID: 16055502 PMCID: PMC1237066 DOI: 10.1091/mbc.e05-04-0345] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The deglycosylating enzyme, peptide:N-glycanase, acts on misfolded N-linked glycoproteins dislocated from the endoplasmic reticulum (ER) to the cytosol. Deglycosylation has been demonstrated to occur at the ER membrane and in the cytosol. However, the mechanism of PNGase association with the ER membrane was unclear, because PNGase lacked the necessary signal to facilitate its incorporation in the ER membrane, nor was it known to bind to an integral ER protein. Using HeLa cells, we have identified a membrane protein that associates with PNGase, thereby bringing it in close proximity to the ER and providing accessibility to dislocating glycoproteins. This protein, Derlin-1, has recently been shown to mediate retrotranslocation of misfolded glycoproteins. In this study we demonstrate that Derlin-1 interacts with the N-terminal domain of PNGase via its cytosolic C-terminus. Moreover, we find PNGase distributed in two populations; ER-associated and free in the cytosol, which suggests the deglycosylation process can proceed at either site depending on the glycoprotein substrate.
Collapse
Affiliation(s)
- Samiksha Katiyar
- Department of Biochemistry and Cell Biology and The Institute for Cell and Developmental Biology, State University of New York-Stony Brook, Stony Brook, NY 11794, USA
| | | | | |
Collapse
|
40
|
Ron I, Horowitz M. ER retention and degradation as the molecular basis underlying Gaucher disease heterogeneity. Hum Mol Genet 2005; 14:2387-98. [PMID: 16000318 DOI: 10.1093/hmg/ddi240] [Citation(s) in RCA: 263] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Gaucher disease (GD), an autosomal recessive disease, is characterized by accumulation of glucosylceramide mainly in cells of the reticuloendothelial system, due to mutations in the acid beta-glucocerebrosidase gene. Some of the patients suffer from neurological symptoms (type 2 and type 3 patients), whereas patients with type 1 GD do not present neurological signs. The disease is heterogeneous even among patients with the same genotype, implicating that a mutation in the glucocerebrosidase gene is required to cause GD but other factors play an important role in the manifestation of the disease. Glucocerebrosidase is a lysosomal enzyme, synthesized on endoplasmic reticulum (ER)-bound polyribosomes and translocated into the ER. Following N-linked glycosylations, it is transported to the Golgi apparatus, from where it is trafficked to the lysosomes. In this study, we tested glucocerebrosidase protein levels, N-glycans processing and intracellular localization in skin fibroblasts derived from patients with GD. Our results strongly suggest that mutant glucocerebrosidase variants present variable levels of ER retention and undergo ER-associated degradation in the proteasomes. The degree of ER retention and proteasomal degradation is one of the factors that determine GD severity.
Collapse
Affiliation(s)
- Idit Ron
- Department of Cell Research and Immunology, Tel Aviv University, Ramat Aviv, Israel
| | | |
Collapse
|
41
|
Hu CCA, Liang FX, Zhou G, Tu L, Tang CHA, Zhou J, Kreibich G, Sun TT. Assembly of urothelial plaques: tetraspanin function in membrane protein trafficking. Mol Biol Cell 2005; 16:3937-50. [PMID: 15958488 PMCID: PMC1196309 DOI: 10.1091/mbc.e05-02-0136] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The apical surface of mammalian urothelium is covered by 16-nm protein particles packed hexagonally to form 2D crystals of asymmetric unit membranes (AUM) that contribute to the remarkable permeability barrier function of the urinary bladder. We have shown previously that bovine AUMs contain four major integral membrane proteins, i.e., uroplakins Ia, Ib, II, and IIIa, and that UPIa and Ib (both tetraspanins) form heterodimers with UPII and IIIa, respectively. Using a panel of antibodies recognizing different conformational states of uroplakins, we demonstrate that the UPIa-dependent, furin-mediated cleavage of the prosequence of UPII leads to global conformational changes in mature UPII and that UPIb also induces conformational changes in its partner UPIIIa. We further demonstrate that tetraspanins CD9, CD81, and CD82 can stabilize their partner protein CD4. These results indicate that tetraspanin uroplakins, and some other tetraspanin proteins, can induce conformational changes leading to the ER-exit, stabilization, and cell surface expression of their associated, single-transmembrane-domained partner proteins and thus can function as "maturation-facilitators." We propose a model of AUM assembly in which conformational changes in integral membrane proteins induced by uroplakin interactions, differentiation-dependent glycosylation, and the removal of the prosequence of UPII play roles in regulating the assembly of uroplakins to form AUM.
Collapse
Affiliation(s)
- Chih-Chi Andrew Hu
- Epithelial Biology Unit, The Ronald O. Perelman Department of Dermatology, New York University School of Medicine, New York, NY 10016, USA
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Protein misfolding and cellular defense mechanisms in neurodegenerative diseases. NEURODEGENER DIS 2005. [DOI: 10.1017/cbo9780511544873.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
43
|
Gong Q, Keeney DR, Molinari M, Zhou Z. Degradation of Trafficking-defective Long QT Syndrome Type II Mutant Channels by the Ubiquitin-Proteasome Pathway. J Biol Chem 2005; 280:19419-25. [PMID: 15760896 DOI: 10.1074/jbc.m502327200] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Mutations in the human ether-a-go-go-related gene (hERG) cause chromosome 7-linked long QT syndrome type II (LQT2). We have shown previously that LQT2 mutations lead to endoplasmic reticulum (ER) retention and rapid degradation of mutant hERG proteins. In this study we examined the role of the ubiquitin-proteasome pathway in the degradation of the LQT2 mutation Y611H. We showed that proteasome inhibitors N-acetyl-L-leucyl-L-leucyl-L-norleucinal and lactacystin but not lysosome inhibitor leupeptin inhibited the degradation of Y611H mutant channels. In addition, ER mannosidase I inhibitor kifunensine and down-regulation of EDEM (ER degradation-enhancing alpha-mannosidase-like protein) also suppressed the degradation of Y611H mutant channels. Proteasome inhibition but not mannosidase inhibition led to the accumulation of full-length hERG protein in the cytosol. The hERG protein accumulated in the cytosol was deglycosylated. Proteasome inhibition also resulted in the accumulation of polyubiquitinated hERG channels. These results suggest that the degradation of LQT2 mutant channels is mediated by the cytosolic proteasome in a process that involves mannose trimming, polyubiquitination, and deglycosylation of mutant channels.
Collapse
Affiliation(s)
- Qiuming Gong
- Division of Molecular Medicine, Department of Medicine, Oregon Health and Science University, Portland, Oregon 97239, USA
| | | | | | | |
Collapse
|
44
|
Wang X, Matteson J, An Y, Moyer B, Yoo JS, Bannykh S, Wilson IA, Riordan JR, Balch WE. COPII-dependent export of cystic fibrosis transmembrane conductance regulator from the ER uses a di-acidic exit code. ACTA ACUST UNITED AC 2004; 167:65-74. [PMID: 15479737 PMCID: PMC2172508 DOI: 10.1083/jcb.200401035] [Citation(s) in RCA: 165] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cystic fibrosis (CF) is a childhood hereditary disease in which the most common mutant form of the CF transmembrane conductance regulator (CFTR) ΔF508 fails to exit the endoplasmic reticulum (ER). Export of wild-type CFTR from the ER requires the coat complex II (COPII) machinery, as it is sensitive to Sar1 mutants that disrupt normal coat assembly and disassembly. In contrast, COPII is not used to deliver CFTR to ER-associated degradation. We find that exit of wild-type CFTR from the ER is blocked by mutation of a consensus di-acidic ER exit motif present in the first nucleotide binding domain. Mutation of the code disrupts interaction with the COPII coat selection complex Sec23/Sec24. We propose that the di-acidic exit code plays a key role in linking CFTR to the COPII coat machinery and is the primary defect responsible for CF in ΔF508-expressing patients.
Collapse
Affiliation(s)
- Xiaodong Wang
- Department of Cell Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Sterling KM, Shah S, Kim RJ, Johnston NIF, Salikhova AY, Abraham EH. Cystic fibrosis transmembrane conductance regulator in human and mouse red blood cell membranes and its interaction with ecto-apyrase. J Cell Biochem 2004; 91:1174-82. [PMID: 15048872 DOI: 10.1002/jcb.20017] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Elevated blood ATP and increased red blood cell (RBC) ATP transport is associated with cystic fibrosis (CF). In this report, we demonstrate the presence of the wild-type and the DeltaF508 mutant form of the CF transmembrane conductance regulator protein in RBC membranes and its putative interaction with ecto-apyrase, an ATP hydrolyzing enzyme also present in the RBC membrane. RBC membranes of control and DeltaF508 individuals and of wild-type and CF transmembrane conductance regulator-knockout mice were examined by immunoblot using several antibodies directed against different epitopes of this protein. These experiments indicated that human RBC membranes contain comparable amounts of the wild-type CF transmembrane conductance regulator protein and the DeltaF508 mutant form of the protein, respectively. CF transmembrane conductance regulator protein was also detected in wild-type mouse RBC membranes but not in the gene knockout mouse RBC membranes. Antibodies directed against ecto-apyrase co-immunoprecipitated CF transmembrane conductance regulator protein of human RBC membranes indicating a physical interaction between these two membrane proteins consistent with ATP transport and extracellular hydrolysis. We conclude that RBCs are a significant repository of CF transmembrane conductance regulator protein and should provide a novel system for evaluating its expression and function.
Collapse
|
46
|
Christianson JC, Green WN. Regulation of nicotinic receptor expression by the ubiquitin-proteasome system. EMBO J 2004; 23:4156-65. [PMID: 15483627 PMCID: PMC524400 DOI: 10.1038/sj.emboj.7600436] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2004] [Accepted: 09/14/2004] [Indexed: 01/23/2023] Open
Abstract
Control of ligand-gated ion channel (LGIC) expression is essential for the formation, maintenance and plasticity of synapses. Treatment of mouse myotubes with proteasome inhibitors increased the number of surface nicotinic acetylcholine receptors (AChRs), indicating LGIC expression is regulated by the ubiquitin-proteasome system (UPS). Elevated surface expression resulted from increased AChR delivery to the plasma membrane and not from decreased turnover from the surface. The rise in AChR trafficking was the direct result of increased assembly of subunits in the endoplasmic reticulum (ER). Because proteasome inhibitors also blocked ER-associated degradation (ERAD) of unassembled AChR subunits, the data indicate that the additional AChRs were assembled from subunits normally targeted for ERAD. Our data show that AChR surface expression is regulated by the UPS through ERAD, whose activity determines oligomeric receptor assembly efficiency.
Collapse
Affiliation(s)
- John C Christianson
- Department of Neurobiology, Pharmacology and Physiology, University of Chicago, Chicago, IL, USA
| | - William N Green
- Department of Neurobiology, Pharmacology and Physiology, University of Chicago, Chicago, IL, USA
| |
Collapse
|
47
|
Guggino WB, Banks-Schlegel SP. Macromolecular Interactions and Ion Transport in Cystic Fibrosis. Am J Respir Crit Care Med 2004; 170:815-20. [PMID: 15447951 DOI: 10.1164/rccm.200403-381ws] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Cystic fibrosis (CF) is a genetic disease caused by autosomal recessive mutations of the CF transmembrane regulator, CFTR. CFTR functions in the plasma membrane of epithelial cells lining the lung, pancreas, liver, intestines, sweat duct, and the epididymis. The primary problem in CF is that mutations in CFTR affect its ability to be made, processed, and trafficked to the plasma membrane and/or its function as a Cl(-) channel and conductance regulator. Many proteins and processes normally interact with normal CFTR throughout its life cycle and mutant CFTR during the disease process. Understanding the function of these proteins and processes is expected to provide a clearer understanding of how normal CFTR is involved in salt movement and how mutant CFTR is handled by the cell and leads to the pathophysiology of CF. Recently, efforts to find therapies that correct defective CFTR have been intensifying. To facilitate our understanding of normal and mutant CFTR and the identification of new drug targets for developing novel therapies, a panel of experts was convened by the National Heart, Lung, and Blood Institute to explore the critical questions, challenges, and current opportunities to highlight new areas of research that would facilitate a integrated understanding of the processes and proteins that impact CFTR. The meeting highlighted the multiple pathways and interacting proteins involved in CFTR folding and biosynthesis, processing, and trafficking. A number of critical areas for future study were identified. Although these therapies are promising, a big question remains as to whether simply correcting defective CFTR will lead to significant improvement in patient health or whether the symptoms manifested in CF will require therapies in addition to those that target defective CFTR specifically.
Collapse
Affiliation(s)
- William B Guggino
- Department of Physiology and Pediatrics, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | |
Collapse
|
48
|
Katiyar S, Li G, Lennarz WJ. A complex between peptide:N-glycanase and two proteasome-linked proteins suggests a mechanism for the degradation of misfolded glycoproteins. Proc Natl Acad Sci U S A 2004; 101:13774-9. [PMID: 15358861 PMCID: PMC518832 DOI: 10.1073/pnas.0405663101] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Peptide:N-glycanase (PNGase) has been proposed to participate in the proteasome-dependent glycoprotein degradation pathway. The finding that yeast PNGase interacts with the 19S proteasome subunit through the protein Rad23 supports this hypothesis. In this report, we have used immunofluorescence, subcellular fractionation, coimmunoprecipitation, and in vitro GST pull-down techniques for detecting intracellular localization and interactions of PNGase, HR23B, and S4 by using human (h) and mouse (m) homologs. Immunofluorescence studies revealed that hPNGase, hHR23B, and hS4 are present in close proximity to the endoplasmic reticulum (ER) when calnexin was used as an ER marker in HeLa cells. Subcellular fractionation suggests not only cytoplasmic but also ER association of hPNGase in HeLa cells. Immunoprecipitation analysis revealed the interaction of h/mPNGase with the 19S proteasome subunit, hS4, through hHR23B. Using an in vitro GST pull-down assay, we also have shown that recombinant mPNGase requires its N terminus and middle domain for interaction with mHR23B. Finally, using misfolded yeast carboxypeptidase Y and chicken ovalbumin as glycoprotein substrates, we have established that mHR23B acts as a receptor for deglycosylated proteins. Based on this finding, we propose that after deglycosylation of misfolded glycoproteins by PNGase, the aglyco forms of these proteins are recognized by HR23B and targeted for degradation.
Collapse
Affiliation(s)
- Samiksha Katiyar
- Department of Biochemistry and Cell Biology and Institute for Cell and Developmental Biology, Stony Brook University, Stony Brook, NY 11794-5215, USA
| | | | | |
Collapse
|
49
|
Abstract
Medical genetics so far has identified approximately 16,000 missense mutations leading to single amino acid changes in protein sequences that are linked to human disease. A majority of these mutations affect folding or trafficking, rather than specifically affecting protein function. Many disease-linked mutations occur in integral membrane proteins, a class of proteins about whose folding we know very little. We examine the phenomenon of disease-linked misassembly of membrane proteins and describe model systems currently being used to study the delicate balance between proper folding and misassembly. We review a mechanism by which cells recognize membrane proteins with a high potential to misfold before they actually do, and which targets these culprits for degradation. Serious disease phenotypes can result from loss of protein function and from misfolded proteins that the cells cannot degrade, leading to accumulation of toxic aggregates. Misassembly may be averted by small-molecule drugs that bind and stabilize the native state.
Collapse
Affiliation(s)
- Charles R Sanders
- Department of Biochemistry and Center for Structural Biology, Vanderbilt University Medical Center, Nashville, Tennessee 37232-8725, USA.
| | | |
Collapse
|
50
|
Svedine S, Wang T, Halaban R, Hebert DN. Carbohydrates act as sorting determinants in ER-associated degradation of tyrosinase. J Cell Sci 2004; 117:2937-49. [PMID: 15161941 DOI: 10.1242/jcs.01154] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The endoplasmic reticulum (ER) quality-control machinery maintains the fidelity of the maturation process by sorting aberrant proteins for ER-associated protein degradation (ERAD), a process requiring retrotranslocation from the ER lumen to the cytosol and degradation by the proteasome. Here, we assessed the role of N-linked glycans in ERAD by monitoring the degradation of wild-type (Tyr) and albino mutant (Tyr(C85S)) tyrosinase. Initially, mutant tyrosinase was established as a genuine ERAD substrate using intact melanocyte and semi-permeabilized cell systems. Inhibiting mannose trimming or accumulating Tyr(C85S) in a monoglucosylated form led to its stabilization, supporting a role for lectin chaperones in ER retention and proteasomal degradation. In contrast, ablating the lectin chaperone interactions by preventing glucose trimming caused a rapid disappearance of tyrosinase, initially due to the formation of protein aggregates, which were subsequently degraded by the proteasome. The co-localization of aggregated tyrosinase with protein disulfide isomerase and BiP, but not calnexin, supports an ER organization, which aids in protein maturation and degradation. Based on these studies, we propose a model of tyrosinase degradation in which interactions between N-linked glycans and lectin chaperones help to minimize tyrosinase aggregation and also target non-native substrates for retro-translocation and subsequent degradation.
Collapse
Affiliation(s)
- Sherri Svedine
- Department of Biochemistry and Molecular Biology, Program in Molecular and Cellular Biology, University of Massachusetts, 710 North Pleasant Street, Amherst, MA 01003, USA
| | | | | | | |
Collapse
|