1
|
Ballal A, Apte SK. Cyanobacterial KdpD modulates in vivo and in vitro activities of a membrane-anchored histidine kinase. Biochim Biophys Acta Gen Subj 2025:130817. [PMID: 40360126 DOI: 10.1016/j.bbagen.2025.130817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 04/23/2025] [Accepted: 05/08/2025] [Indexed: 05/15/2025]
Abstract
Prokaryotic KdpATPAse complex, encoded by the kdpABC operon, is an inducible, high-affinity K+ transporter. In E. coli, the operon is transcriptionally regulated by a two-component sensor-kinase response-regulator system, constituted by the KdpD and KdpE proteins. In contrast, cyanobacteria exhibit a truncated kdpD gene that encodes a KdpD homolog that is similar to the N-terminal domain (NTD) of E. coli KdpD, but lacks the transmitter, histidine kinase-containing, C-terminal domain (CTD). Here we show that the cyanobacterium Anabaena sp. strain L-31 constitutively transcribes the short kdpD gene, but synthesizes KdpATPase only during potassium starvation. However, unlike E. coli., expression of the kdpD gene remains unaffected by K+ limitation in Anabaena. To gain insight into the possible role of Anabaena KdpD, the chimeric Anacoli KdpD protein, wherein the NTD of E. coli KdpD was replaced with Anabaena KdpD, was functionally analyzed. Detailed investigation has revealed that the Anacoli KdpD (a) responds to a much lower threshold of external K+ than the E. coli KdpD (b) exhibits much reduced ability to induce kdp in response to ionic osmolytes than E. coli KdpD, and therefore shows slower growth in the presence of these osmolytes and (c) displays higher in vitro phosphatase activity than the wild type E. coli KdpD. Thus, Anabaena KdpD modulates properties of E. coli KdpD-CTD in a manner that is quite distinct from the E. coli KdpD-NTD. Based on these evidences, a model for kdp regulation by the short KdpD is proposed.
Collapse
Affiliation(s)
- Anand Ballal
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India; Homi Bhabha National Institute, Training School Complex, Anushaktinagar, 400094 Mumbai, India.
| | - Shree Kumar Apte
- School of Biosciences, UM-DAE-Centre for Excellence in Basic Sciences, Vidyanagari, Kalina, Mumbai 400098, India
| |
Collapse
|
2
|
Jung H, Han G, Lee D, Jung HK, Kim YS, Kong HJ, Kim YO, Seo YS, Park J. Understanding the Impact of Salt Stress on Plant Pathogens Through Phenotypic and Transcriptomic Analysis. PLANTS (BASEL, SWITZERLAND) 2025; 14:97. [PMID: 39795357 PMCID: PMC11722782 DOI: 10.3390/plants14010097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/14/2024] [Accepted: 09/18/2024] [Indexed: 01/13/2025]
Abstract
For plant diseases to become established, plant pathogens require not only virulence factors and susceptible hosts, but also optimal environmental conditions. The accumulation of high soil salinity can have serious impacts on agro-biological ecosystems. However, the interactions between plant pathogens and salinity have not been fully characterized. This study investigated the effects of salt stress on representative plant pathogens, such as Burkholderia gladioli, Burkholderia glumae, Pectobacterium carotovorum subsp. carotovorum (Pcc), Ralstonia solanacearum, and Xanthomonas oryzae pv. oryzae. Phenotypic assays revealed that B. gladioli and R. solanacearum are highly sensitive to salt stress, exhibiting significant reductions in growth, motility, and enzyme production, whereas Pcc showed notable tolerance. Pan-genome-based comparative transcriptomics identified co-downregulated patterns in B. gladioli and R. solanacearum under stress conditions, indicating the suppression of bacterial chemotaxis and type III secretion systems. Uniquely upregulated patterns in Pcc were associated with enhanced survival under high salinity, such as protein quality control, osmotic equilibrium, and iron acquisition. Additionally, the application of salt stress combined with the beneficial bacterium Chryseobacterium salivictor significantly reduced tomato wilt caused by R. solanacearum, suggesting a potential management strategy. This study underscores practical implications for effectively understanding and controlling plant pathogens under future climate changes involving salt stress.
Collapse
Affiliation(s)
- Hyejung Jung
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Republic of Korea
- Biotechnology Research Division, National Institute of Fisheries Science, Busan 46083, Republic of Korea
| | - Gil Han
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Republic of Korea
| | - Duyoung Lee
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Republic of Korea
| | - Hyun-Kyoung Jung
- Biotechnology Research Division, National Institute of Fisheries Science, Busan 46083, Republic of Korea
| | - Young-Sam Kim
- Biotechnology Research Division, National Institute of Fisheries Science, Busan 46083, Republic of Korea
| | - Hee Jeong Kong
- Biotechnology Research Division, National Institute of Fisheries Science, Busan 46083, Republic of Korea
| | - Young-Ok Kim
- Biotechnology Research Division, National Institute of Fisheries Science, Busan 46083, Republic of Korea
| | - Young-Su Seo
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Republic of Korea
| | - Jungwook Park
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Republic of Korea
- Biotechnology Research Division, National Institute of Fisheries Science, Busan 46083, Republic of Korea
| |
Collapse
|
3
|
Burton AT, Zeinert R, Storz G. Large Roles of Small Proteins. Annu Rev Microbiol 2024; 78:1-22. [PMID: 38772630 PMCID: PMC12005717 DOI: 10.1146/annurev-micro-112723-083001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2024]
Abstract
Bacterial proteins of ≤50 amino acids, denoted small proteins or microproteins, have been traditionally understudied and overlooked, as standard computational, biochemical, and genetic approaches often do not detect proteins of this size. However, with the realization that small proteins are stably expressed and have important cellular roles, there has been increased identification of small proteins in bacteria and eukaryotes. Gradually, the functions of a few of these small proteins are being elucidated. Many interact with larger protein products to modulate their subcellular localization, stabilities, or activities. Here, we provide an overview of these diverse functions in bacteria, highlighting generalities among bacterial small proteins and similarly sized proteins in eukaryotic organisms and discussing questions for future research.
Collapse
Affiliation(s)
- Aisha T Burton
- Postdoctoral Research Associate Program, National Institute of General Medical Sciences, National Institutes of Health, Bethesda, Maryland, USA
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, Maryland, USA;
| | - Rilee Zeinert
- Postdoctoral Research Associate Program, National Institute of General Medical Sciences, National Institutes of Health, Bethesda, Maryland, USA
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, Maryland, USA;
| | - Gisela Storz
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, Maryland, USA;
| |
Collapse
|
4
|
Duan Y, Santos-Júnior CD, Schmidt TS, Fullam A, de Almeida BLS, Zhu C, Kuhn M, Zhao XM, Bork P, Coelho LP. A catalog of small proteins from the global microbiome. Nat Commun 2024; 15:7563. [PMID: 39214983 PMCID: PMC11364881 DOI: 10.1038/s41467-024-51894-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024] Open
Abstract
Small open reading frames (smORFs) shorter than 100 codons are widespread and perform essential roles in microorganisms, where they encode proteins active in several cell functions, including signal pathways, stress response, and antibacterial activities. However, the ecology, distribution and role of small proteins in the global microbiome remain unknown. Here, we construct a global microbial smORFs catalog (GMSC) derived from 63,410 publicly available metagenomes across 75 distinct habitats and 87,920 high-quality isolate genomes. GMSC contains 965 million non-redundant smORFs with comprehensive annotations. We find that archaea harbor more smORFs proportionally than bacteria. We moreover provide a tool called GMSC-mapper to identify and annotate small proteins from microbial (meta)genomes. Overall, this publicly-available resource demonstrates the immense and underexplored diversity of small proteins.
Collapse
Affiliation(s)
- Yiqian Duan
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Célio Dias Santos-Júnior
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- Laboratory of Microbial Processes & Biodiversity - LMPB; Department of Hydrobiology, Universidade Federal de São Carlos - UFSCar, São Carlos, São Paulo, Brazil
| | - Thomas Sebastian Schmidt
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
- APC Microbiome and School of Medicine, University College Cork, Cork, Ireland
| | - Anthony Fullam
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Breno L S de Almeida
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Chengkai Zhu
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Michael Kuhn
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Xing-Ming Zhao
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China.
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, China.
- Lingang Laboratory, Shanghai, 200031, China.
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Fudan University, Shanghai, China.
- MOE Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China.
| | - Peer Bork
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
- Max Delbrück Centre for Molecular Medicine, Berlin, Germany
- Department of Bioinformatics, Biocenter, University of Würzburg, Würzburg, Germany
| | - Luis Pedro Coelho
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China.
- Centre for Microbiome Research, School of Biomedical Sciences, Queensland University of Technology, Translational Research Institute, Woolloongabba, QLD, Australia.
- Centre for Data Science, Queensland University of Technology, Brisbane, QLD, Australia.
| |
Collapse
|
5
|
Hu J, Yao J, Lei C, Sun X. c-di-AMP accumulation impairs toxin expression of Bacillus anthracis by down-regulating potassium importers. Microbiol Spectr 2024; 12:e0378623. [PMID: 38899864 PMCID: PMC11302148 DOI: 10.1128/spectrum.03786-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 04/20/2024] [Indexed: 06/21/2024] Open
Abstract
The Gram-positive bacterium Bacillus anthracis is the causative agent of anthrax and a bioterrorism threat worldwide. As a crucial second messenger in many bacterial species, cyclic di-AMP (c-di-AMP) modulates various key processes for bacterial homeostasis and pathogenesis. Overaccumulation of c-di-AMP alters cellular growth and reduces anthrax toxin expression as well as virulence in Bacillus anthracis by unresolved underlying mechanisms. In this report, we discovered that c-di-AMP binds to a series of receptors involved in potassium uptake in B. anthracis. By analyzing Kdp and Ktr mutants for osmotic stress, gene expression, and anthrax toxin expression, we also showed that c-di-AMP inhibits Kdp operon expression through binding to the KdpD and ydaO riboswitch; up-regulating intracellular potassium promotes anthrax toxin expression in c-di-AMP accumulated B. anthracis. Decreased anthrax toxin expression at high c-di-AMP occurs through the inhibition of potassium uptake. Understanding the molecular basis of how potassium uptake affects anthrax toxin has the potential to provide new insight into the control of B. anthracis.IMPORTANCEThe bacterial second messenger cyclic di-AMP (c-di-AMP) is a conserved global regulator of potassium homeostasis. How c-di-AMP regulates bacterial virulence is unknown. With this study, we provide a link between potassium uptake and anthrax toxin expression in Bacillus anthracis. c-di-AMP accumulation might inhibit anthrax toxin expression by suppressing potassium uptake.
Collapse
Affiliation(s)
- Jia Hu
- Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Junmin Yao
- Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Chengfeng Lei
- Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Xiulian Sun
- Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, China
| |
Collapse
|
6
|
Kojima D, Tanaka S, Kurosaki A, Zhiyu X, Ito M. Isolation and Cs + resistance mechanism of Escherichia coli strain ZX-1. Front Microbiol 2024; 14:1340033. [PMID: 38304862 PMCID: PMC10831881 DOI: 10.3389/fmicb.2023.1340033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 12/29/2023] [Indexed: 02/03/2024] Open
Abstract
This research aims to elucidate the physiological mechanisms behind the accidental acquisition of high-concentration cesium ions (Cs+) tolerance of Escherichia coli and apply this understanding to develop bioremediation technologies. Bacterial Cs+ resistance has attracted attention, but its physiological mechanism remains largely unknown and poorly understood. In a prior study, we identified the Cs+/H+ antiporter TS_CshA in Microbacterium sp. TS-1, resistant to high Cs+ concentrations, exhibits a low Cs+ affinity with a Km value of 370 mM at pH 8.5. To enhance bioremediation efficacy, we conducted random mutagenesis of TS_cshA using Error-Prone PCR, aiming for higher-affinity mutants. The mutations were inserted downstream of the PBAD promoter in the pBAD24 vector, creating a mutant library. This was then transformed into E. coli-competent cells. As a result, we obtained a Cs+-resistant strain, ZX-1, capable of thriving in 400 mM CsCl-a concentration too high for ordinary E. coli. Unlike the parent strain Mach1™, which struggled in 300 mM CsCl, ZX-1 showed robust growth even in 700 mM CsCl. After 700 mM CsCl treatment, the 70S ribosome of Mach1™ collapsed, whereas ZX-1 and its derivative ΔZX-1/pBR322ΔAp remained stable. This means that the ribosomes of ZX-1 are more stable to high Cs+. The inverted membrane vesicles from strain ZX-1 showed an apparent Km value of 28.7 mM (pH 8.5) for Cs+/H+ antiport activity, indicating an approximately 12.9-fold increase in Cs+ affinity. Remarkably, the entire plasmid isolated from ZX-1, including the TS_cshA region, was mutation-free. Subsequent whole-genome analysis of ZX-1 identified multiple SNPs on the chromosome that differed from those in the parent strain. No mutations in transporter-related genes were identified in ZX-1. However, three mutations emerged as significant: genes encoding the ribosomal bS6 modification enzyme RimK, the phage lysis regulatory protein LysB, and the flagellar base component protein FlgG. These mutations are hypothesized to affect post-translational modifications, influencing the Km value of TS_CshA and accessory protein expression. This study unveils a novel Cs+ resistance mechanism in ZX-1, enhancing our understanding of Cs+ resistance and paving the way for developing technology to recover radioactive Cs+ from water using TS_CshA-expressing inverted membrane vesicles.
Collapse
Affiliation(s)
- Daiki Kojima
- Graduate School of Life Sciences, Toyo University, Oura-gun, Gunma, Japan
| | - Shunsuke Tanaka
- Faculty of Life Sciences, Toyo University, Oura-gun, Gunma, Japan
| | - Ayane Kurosaki
- Faculty of Life Sciences, Toyo University, Oura-gun, Gunma, Japan
| | - Xiong Zhiyu
- Faculty of Life Sciences, Toyo University, Oura-gun, Gunma, Japan
| | - Masahiro Ito
- Graduate School of Life Sciences, Toyo University, Oura-gun, Gunma, Japan
- Faculty of Life Sciences, Toyo University, Oura-gun, Gunma, Japan
- Bio-Nano Electronics Research Center, Toyo University, Kawagoe, Saitama, Japan
- Bio-Resilience Research Project (BRRP), Toyo University, Oura-gun, Gunma, Japan
| |
Collapse
|
7
|
Simoens L, Fijalkowski I, Van Damme P. Exposing the small protein load of bacterial life. FEMS Microbiol Rev 2023; 47:fuad063. [PMID: 38012116 PMCID: PMC10723866 DOI: 10.1093/femsre/fuad063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 11/10/2023] [Accepted: 11/24/2023] [Indexed: 11/29/2023] Open
Abstract
The ever-growing repertoire of genomic techniques continues to expand our understanding of the true diversity and richness of prokaryotic genomes. Riboproteogenomics laid the foundation for dynamic studies of previously overlooked genomic elements. Most strikingly, bacterial genomes were revealed to harbor robust repertoires of small open reading frames (sORFs) encoding a diverse and broadly expressed range of small proteins, or sORF-encoded polypeptides (SEPs). In recent years, continuous efforts led to great improvements in the annotation and characterization of such proteins, yet many challenges remain to fully comprehend the pervasive nature of small proteins and their impact on bacterial biology. In this work, we review the recent developments in the dynamic field of bacterial genome reannotation, catalog the important biological roles carried out by small proteins and identify challenges obstructing the way to full understanding of these elusive proteins.
Collapse
Affiliation(s)
- Laure Simoens
- iRIP Unit, Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, K. L. Ledeganckstraat 35, 9000 Ghent, Belgium
| | - Igor Fijalkowski
- iRIP Unit, Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, K. L. Ledeganckstraat 35, 9000 Ghent, Belgium
| | - Petra Van Damme
- iRIP Unit, Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, K. L. Ledeganckstraat 35, 9000 Ghent, Belgium
| |
Collapse
|
8
|
Tantoso E, Eisenhaber B, Sinha S, Jensen LJ, Eisenhaber F. About the dark corners in the gene function space of Escherichia coli remaining without illumination by scientific literature. Biol Direct 2023; 18:7. [PMID: 36855185 PMCID: PMC9976479 DOI: 10.1186/s13062-023-00362-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 02/21/2023] [Indexed: 03/02/2023] Open
Abstract
BACKGROUND Although Escherichia coli (E. coli) is the most studied prokaryote organism in the history of life sciences, many molecular mechanisms and gene functions encoded in its genome remain to be discovered. This work aims at quantifying the illumination of the E. coli gene function space by the scientific literature and how close we are towards the goal of a complete list of E. coli gene functions. RESULTS The scientific literature about E. coli protein-coding genes has been mapped onto the genome via the mentioning of names for genomic regions in scientific articles both for the case of the strain K-12 MG1655 as well as for the 95%-threshold softcore genome of 1324 E. coli strains with known complete genome. The article match was quantified with the ratio of a given gene name's occurrence to the mentioning of any gene names in the paper. The various genome regions have an extremely uneven literature coverage. A group of elite genes with ≥ 100 full publication equivalents (FPEs, FPE = 1 is an idealized publication devoted to just a single gene) attracts the lion share of the papers. For K-12, ~ 65% of the literature covers just 342 elite genes; for the softcore genome, ~ 68% of the FPEs is about only 342 elite gene families (GFs). We also find that most genes/GFs have at least one mentioning in a dedicated scientific article (with the exception of at least 137 protein-coding transcripts for K-12 and 26 GFs from the softcore genome). Whereas the literature growth rates were highest for uncharacterized or understudied genes until 2005-2010 compared with other groups of genes, they became negative thereafter. At the same time, literature for anyhow well-studied genes started to grow explosively with threshold T10 (≥ 10 FPEs). Typically, a body of ~ 20 actual articles generated over ~ 15 years of research effort was necessary to reach T10. Lineage-specific co-occurrence analysis of genes belonging to the accessory genome of E. coli together with genomic co-localization and sequence-analytic exploration hints previously completely uncharacterized genes yahV and yddL being associated with osmotic stress response/motility mechanisms. CONCLUSION If the numbers of scientific articles about uncharacterized and understudied genes remain at least at present levels, full gene function lists for the strain K-12 MG1655 and the E. coli softcore genome are in reach within the next 25-30 years. Once the literature body for a gene crosses 10 FPEs, most of the critical fundamental research risk appears overcome and steady incremental research becomes possible.
Collapse
Affiliation(s)
- Erwin Tantoso
- Agency for Science, Technology and Research (A*STAR), Genome Institute of Singapore (GIS), 60 Biopolis Street, Singapore, 138672, Republic of Singapore.,Agency for Science, Technology and Research (A*STAR), Bioinformatics Institute (BII), 30 Biopolis Street #07-01, Matrix Building, Singapore, 138671, Republic of Singapore
| | - Birgit Eisenhaber
- Agency for Science, Technology and Research (A*STAR), Genome Institute of Singapore (GIS), 60 Biopolis Street, Singapore, 138672, Republic of Singapore.,Agency for Science, Technology and Research (A*STAR), Bioinformatics Institute (BII), 30 Biopolis Street #07-01, Matrix Building, Singapore, 138671, Republic of Singapore
| | - Swati Sinha
- Agency for Science, Technology and Research (A*STAR), Genome Institute of Singapore (GIS), 60 Biopolis Street, Singapore, 138672, Republic of Singapore.,Agency for Science, Technology and Research (A*STAR), Bioinformatics Institute (BII), 30 Biopolis Street #07-01, Matrix Building, Singapore, 138671, Republic of Singapore.,European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD, UK
| | - Lars Juhl Jensen
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Frank Eisenhaber
- Agency for Science, Technology and Research (A*STAR), Genome Institute of Singapore (GIS), 60 Biopolis Street, Singapore, 138672, Republic of Singapore. .,Agency for Science, Technology and Research (A*STAR), Bioinformatics Institute (BII), 30 Biopolis Street #07-01, Matrix Building, Singapore, 138671, Republic of Singapore. .,School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Republic of Singapore.
| |
Collapse
|
9
|
Boase K, González C, Vergara E, Neira G, Holmes D, Watkin E. Prediction and Inferred Evolution of Acid Tolerance Genes in the Biotechnologically Important Acidihalobacter Genus. Front Microbiol 2022; 13:848410. [PMID: 35516430 PMCID: PMC9062700 DOI: 10.3389/fmicb.2022.848410] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 02/28/2022] [Indexed: 11/18/2022] Open
Abstract
Acidihalobacter is a genus of acidophilic, gram-negative bacteria known for its ability to oxidize pyrite minerals in the presence of elevated chloride ions, a capability rare in other iron-sulfur oxidizing acidophiles. Previous research involving Acidihalobacter spp. has focused on their applicability in saline biomining operations and their genetic arsenal that allows them to cope with chloride, metal and oxidative stress. However, an understanding of the molecular adaptations that enable Acidihalobacter spp. to thrive under both acid and chloride stress is needed to provide a more comprehensive understanding of how this genus can thrive in such extreme biomining conditions. Currently, four genomes of the Acidihalobacter genus have been sequenced: Acidihalobacter prosperus DSM 5130T, Acidihalobacter yilgarnensis DSM 105917T, Acidihalobacter aeolianus DSM 14174T, and Acidihalobacter ferrooxydans DSM 14175T. Phylogenetic analysis shows that the Acidihalobacter genus roots to the Chromatiales class consisting of mostly halophilic microorganisms. In this study, we aim to advance our knowledge of the genetic repertoire of the Acidihalobacter genus that has enabled it to cope with acidic stress. We provide evidence of gene gain events that are hypothesized to help the Acidihalobacter genus cope with acid stress. Potential acid tolerance mechanisms that were found in the Acidihalobacter genomes include multiple potassium transporters, chloride/proton antiporters, glutamate decarboxylase system, arginine decarboxylase system, urease system, slp genes, squalene synthesis, and hopanoid synthesis. Some of these genes are hypothesized to have entered the Acidihalobacter via vertical decent from an inferred non-acidophilic ancestor, however, horizontal gene transfer (HGT) from other acidophilic lineages is probably responsible for the introduction of many acid resistance genes.
Collapse
Affiliation(s)
- Katelyn Boase
- Curtin Medical School, Curtin University, Perth, WA, Australia
| | - Carolina González
- Center for Bioinformatics and Genome Biology, Centro Ciencia & Vida, Santiago, Chile
| | - Eva Vergara
- Center for Bioinformatics and Genome Biology, Centro Ciencia & Vida, Santiago, Chile
| | - Gonzalo Neira
- Center for Bioinformatics and Genome Biology, Centro Ciencia & Vida, Santiago, Chile
| | - David Holmes
- Center for Bioinformatics and Genome Biology, Centro Ciencia & Vida, Santiago, Chile
- Facultad de Medicina y Ciencias, Universidad San Sebastián, Santiago, Chile
- *Correspondence: David S. Holmes,
| | - Elizabeth Watkin
- Curtin Medical School, Curtin University, Perth, WA, Australia
- Elizabeth Watkin,
| |
Collapse
|
10
|
Salvail H, Choi J, Groisman EA. Differential synthesis of novel small protein times Salmonella virulence program. PLoS Genet 2022; 18:e1010074. [PMID: 35245279 PMCID: PMC8896665 DOI: 10.1371/journal.pgen.1010074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 02/03/2022] [Indexed: 11/18/2022] Open
Abstract
Gene organization in operons enables concerted transcription of functionally related genes and efficient control of cellular processes. Typically, an operon is transcribed as a polycistronic mRNA that is translated into corresponding proteins. Here, we identify a bicistronic operon transcribed as two mRNAs, yet only one allows translation of both genes. We establish that the novel gene ugtS forms an operon with virulence gene ugtL, an activator of the master virulence regulatory system PhoP/PhoQ in Salmonella enterica serovar Typhimurium. Only the longer ugtSugtL mRNA carries the ugtS ribosome binding site and therefore allows ugtS translation. Inside macrophages, the ugtSugtL mRNA species allowing translation of both genes is produced hours before that allowing translation solely of ugtL. The small protein UgtS controls the kinetics of PhoP phosphorylation by antagonizing UgtL activity, preventing premature activation of a critical virulence program. Moreover, S. enterica serovars that infect cold-blooded animals lack ugtS. Our results establish how foreign gene control of ancestral regulators enables pathogens to time their virulence programs. Pathogens must express their virulence genes at precisely the right time to cause disease. Here, we identify a novel small protein that governs a critical virulence program in the pathogen Salmonella enterica serovar Typhimurium (S. Typhimurium). We establish that the novel small protein UgtS prevents the virulence protein UgtL from activating the master virulence regulator PhoP inside macrophages. S. Typhimurium produces two ugtSugtL mRNAs, but only one of them allows ugtS translation. The absence of ugtS from S. enterica serovars that infect cold-blooded animals raises the possibility of UgtS playing a regulatory role during infection of warm-blooded animals. Our findings establish how a horizontally acquired bicistron enables pathogens to time their virulence programs by controlling ancestral regulators.
Collapse
Affiliation(s)
- Hubert Salvail
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, Connecticut, United States of America
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut, United States of America
| | - Jeongjoon Choi
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, Connecticut, United States of America
- Department of Genetics, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Eduardo A. Groisman
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, Connecticut, United States of America
- Yale Microbial Sciences Institute, West Haven, Connecticut, United States of America
- * E-mail:
| |
Collapse
|
11
|
Yadavalli SS, Yuan J. Bacterial Small Membrane Proteins: the Swiss Army Knife of Regulators at the Lipid Bilayer. J Bacteriol 2022; 204:e0034421. [PMID: 34516282 PMCID: PMC8765417 DOI: 10.1128/jb.00344-21] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Small membrane proteins represent a subset of recently discovered small proteins (≤100 amino acids), which are a ubiquitous class of emerging regulators underlying bacterial adaptation to environmental stressors. Until relatively recently, small open reading frames encoding these proteins were not designated genes in genome annotations. Therefore, our understanding of small protein biology was primarily limited to a few candidates associated with previously characterized larger partner proteins. Following the first systematic analyses of small proteins in Escherichia coli over a decade ago, numerous small proteins across different bacteria have been uncovered. An estimated one-third of these newly discovered proteins in E. coli are localized to the cell membrane, where they may interact with distinct groups of membrane proteins, such as signal receptors, transporters, and enzymes, and affect their activities. Recently, there has been considerable progress in functionally characterizing small membrane protein regulators aided by innovative tools adapted specifically to study small proteins. Our review covers prototypical proteins that modulate a broad range of cellular processes, such as transport, signal transduction, stress response, respiration, cell division, sporulation, and membrane stability. Thus, small membrane proteins represent a versatile group of physiology regulators at the membrane and the whole cell. Additionally, small membrane proteins have the potential for clinical applications, where some of the proteins may act as antibacterial agents themselves while others serve as alternative drug targets for the development of novel antimicrobials.
Collapse
Affiliation(s)
- Srujana S. Yadavalli
- Waksman Institute of Microbiology, Rutgers University, Piscataway, New Jersey, USA
- Department of Genetics, Rutgers University, Piscataway, New Jersey, USA
| | - Jing Yuan
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
- LOEWE Center for Synthetic Microbiology (SYNMIKRO), Marburg, Germany
| |
Collapse
|
12
|
Deciphering ion transport and ATPase coupling in the intersubunit tunnel of KdpFABC. Nat Commun 2021; 12:5098. [PMID: 34429416 PMCID: PMC8385062 DOI: 10.1038/s41467-021-25242-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 07/29/2021] [Indexed: 02/07/2023] Open
Abstract
KdpFABC, a high-affinity K+ pump, combines the ion channel KdpA and the P-type ATPase KdpB to secure survival at K+ limitation. Here, we apply a combination of cryo-EM, biochemical assays, and MD simulations to illuminate the mechanisms underlying transport and the coupling to ATP hydrolysis. We show that ions are transported via an intersubunit tunnel through KdpA and KdpB. At the subunit interface, the tunnel is constricted by a phenylalanine, which, by polarized cation-π stacking, controls K+ entry into the canonical substrate binding site (CBS) of KdpB. Within the CBS, ATPase coupling is mediated by the charge distribution between an aspartate and a lysine. Interestingly, individual elements of the ion translocation mechanism of KdpFABC identified here are conserved among a wide variety of P-type ATPases from different families. This leads us to the hypothesis that KdpB might represent an early descendant of a common ancestor of cation pumps.
Collapse
|
13
|
Abstract
Escherichia coli was one of the first species to have its genome sequenced and remains one of the best-characterized model organisms. Thus, it is perhaps surprising that recent studies have shown that a substantial number of genes have been overlooked. Genes encoding more than 140 small proteins, defined as those containing 50 or fewer amino acids, have been identified in E. coli in the past 10 years, and there is substantial evidence indicating that many more remain to be discovered. This review covers the methods that have been successful in identifying small proteins and the short open reading frames that encode them. The small proteins that have been functionally characterized to date in this model organism are also discussed. It is hoped that the review, along with the associated databases of known as well as predicted but undetected small proteins, will aid in and provide a roadmap for the continued identification and characterization of these proteins in E. coli as well as other bacteria.
Collapse
|
14
|
Stautz J, Hellmich Y, Fuss MF, Silberberg JM, Devlin JR, Stockbridge RB, Hänelt I. Molecular Mechanisms for Bacterial Potassium Homeostasis. J Mol Biol 2021; 433:166968. [PMID: 33798529 DOI: 10.1016/j.jmb.2021.166968] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 03/11/2021] [Accepted: 03/22/2021] [Indexed: 10/21/2022]
Abstract
Potassium ion homeostasis is essential for bacterial survival, playing roles in osmoregulation, pH homeostasis, regulation of protein synthesis, enzyme activation, membrane potential adjustment and electrical signaling. To accomplish such diverse physiological tasks, it is not surprising that a single bacterium typically encodes several potassium uptake and release systems. To understand the role each individual protein fulfills and how these proteins work in concert, it is important to identify the molecular details of their function. One needs to understand whether the systems transport ions actively or passively, and what mechanisms or ligands lead to the activation or inactivation of individual systems. Combining mechanistic information with knowledge about the physiology under different stress situations, such as osmostress, pH stress or nutrient limitation, one can identify the task of each system and deduce how they are coordinated with each other. By reviewing the general principles of bacterial membrane physiology and describing the molecular architecture and function of several bacterial K+-transporting systems, we aim to provide a framework for microbiologists studying bacterial potassium homeostasis and the many K+-translocating systems that are still poorly understood.
Collapse
Affiliation(s)
- Janina Stautz
- Institute of Biochemistry, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Yvonne Hellmich
- Institute of Biochemistry, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Michael F Fuss
- Institute of Biochemistry, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Jakob M Silberberg
- Institute of Biochemistry, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Jason R Devlin
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, United States
| | - Randy B Stockbridge
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, United States.
| | - Inga Hänelt
- Institute of Biochemistry, Goethe University Frankfurt, Frankfurt am Main, Germany.
| |
Collapse
|
15
|
Steinberg R, Koch HG. The largely unexplored biology of small proteins in pro- and eukaryotes. FEBS J 2021; 288:7002-7024. [PMID: 33780127 DOI: 10.1111/febs.15845] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/11/2021] [Accepted: 03/26/2021] [Indexed: 12/29/2022]
Abstract
The large abundance of small open reading frames (smORFs) in prokaryotic and eukaryotic genomes and the plethora of smORF-encoded small proteins became only apparent with the constant advancements in bioinformatic, genomic, proteomic, and biochemical tools. Small proteins are typically defined as proteins of < 50 amino acids in prokaryotes and of less than 100 amino acids in eukaryotes, and their importance for cell physiology and cellular adaptation is only beginning to emerge. In contrast to antimicrobial peptides, which are secreted by prokaryotic and eukaryotic cells for combatting pathogens and competitors, small proteins act within the producing cell mainly by stabilizing protein assemblies and by modifying the activity of larger proteins. Production of small proteins is frequently linked to stress conditions or environmental changes, and therefore, cells seem to use small proteins as intracellular modifiers for adjusting cell metabolism to different intra- and extracellular cues. However, the size of small proteins imposes a major challenge for the cellular machinery required for protein folding and intracellular trafficking and recent data indicate that small proteins can engage distinct trafficking pathways. In the current review, we describe the diversity of small proteins in prokaryotes and eukaryotes, highlight distinct and common features, and illustrate how they are handled by the protein trafficking machineries in prokaryotic and eukaryotic cells. Finally, we also discuss future topics of research on this fascinating but largely unexplored group of proteins.
Collapse
Affiliation(s)
- Ruth Steinberg
- Institute for Biochemistry and Molecular Biology, Zentrum für Biochemie und Molekulare Medizin (ZMBZ), Faculty of Medicine, Albert-Ludwigs-Universität Freiburg, Germany
| | - Hans-Georg Koch
- Institute for Biochemistry and Molecular Biology, Zentrum für Biochemie und Molekulare Medizin (ZMBZ), Faculty of Medicine, Albert-Ludwigs-Universität Freiburg, Germany
| |
Collapse
|
16
|
The Small Toxic Salmonella Protein TimP Targets the Cytoplasmic Membrane and Is Repressed by the Small RNA TimR. mBio 2020; 11:mBio.01659-20. [PMID: 33172998 PMCID: PMC7667032 DOI: 10.1128/mbio.01659-20] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Next-generation sequencing (NGS) has enabled the revelation of a vast number of genomes from organisms spanning all domains of life. To reduce complexity when new genome sequences are annotated, open reading frames (ORFs) shorter than 50 codons in length are generally omitted. However, it has recently become evident that this procedure sorts away ORFs encoding small proteins of high biological significance. For instance, tailored small protein identification approaches have shown that bacteria encode numerous small proteins with important physiological functions. As the number of predicted small ORFs increase, it becomes important to characterize the corresponding proteins. In this study, we discovered a conserved but previously overlooked small enterobacterial protein. We show that this protein, which we dubbed TimP, is a potent toxin that inhibits bacterial growth by targeting the cell membrane. Toxicity is relieved by a small regulatory RNA, which binds the toxin mRNA to inhibit toxin synthesis. Small proteins are gaining increased attention due to their important functions in major biological processes throughout the domains of life. However, their small size and low sequence conservation make them difficult to identify. It is therefore not surprising that enterobacterial ryfA has escaped identification as a small protein coding gene for nearly 2 decades. Since its identification in 2001, ryfA has been thought to encode a noncoding RNA and has been implicated in biofilm formation in Escherichia coli and pathogenesis in Shigella dysenteriae. Although a recent ribosome profiling study suggested ryfA to be translated, the corresponding protein product was not detected. In this study, we provide evidence that ryfA encodes a small toxic inner membrane protein, TimP, overexpression of which causes cytoplasmic membrane leakage. TimP carries an N-terminal signal sequence, indicating that its membrane localization is Sec-dependent. Expression of TimP is repressed by the small RNA (sRNA) TimR, which base pairs with the timP mRNA to inhibit its translation. In contrast to overexpression, endogenous expression of TimP upon timR deletion permits cell growth, possibly indicating a toxicity-independent function in the bacterial membrane.
Collapse
|
17
|
Choudhary KS, Kleinmanns JA, Decker K, Sastry AV, Gao Y, Szubin R, Seif Y, Palsson BO. Elucidation of Regulatory Modes for Five Two-Component Systems in Escherichia coli Reveals Novel Relationships. mSystems 2020; 5:e00980-20. [PMID: 33172971 PMCID: PMC7657598 DOI: 10.1128/msystems.00980-20] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 10/20/2020] [Indexed: 11/27/2022] Open
Abstract
Escherichia coli uses two-component systems (TCSs) to respond to environmental signals. TCSs affect gene expression and are parts of E. coli's global transcriptional regulatory network (TRN). Here, we identified the regulons of five TCSs in E. coli MG1655: BaeSR and CpxAR, which were stimulated by ethanol stress; KdpDE and PhoRB, induced by limiting potassium and phosphate, respectively; and ZraSR, stimulated by zinc. We analyzed RNA-seq data using independent component analysis (ICA). ChIP-exo data were used to validate condition-specific target gene binding sites. Based on these data, we do the following: (i) identify the target genes for each TCS; (ii) show how the target genes are transcribed in response to stimulus; and (iii) reveal novel relationships between TCSs, which indicate noncognate inducers for various response regulators, such as BaeR to iron starvation, CpxR to phosphate limitation, and PhoB and ZraR to cell envelope stress. Our understanding of the TRN in E. coli is thus notably expanded.IMPORTANCE E. coli is a common commensal microbe found in the human gut microenvironment; however, some strains cause diseases like diarrhea, urinary tract infections, and meningitis. E. coli's two-component systems (TCSs) modulate target gene expression, especially related to virulence, pathogenesis, and antimicrobial peptides, in response to environmental stimuli. Thus, it is of utmost importance to understand the transcriptional regulation of TCSs to infer bacterial environmental adaptation and disease pathogenicity. Utilizing a combinatorial approach integrating RNA sequencing (RNA-seq), independent component analysis, chromatin immunoprecipitation coupled with exonuclease treatment (ChIP-exo), and data mining, we suggest five different modes of TCS transcriptional regulation. Our data further highlight noncognate inducers of TCSs, which emphasizes the cross-regulatory nature of TCSs in E. coli and suggests that TCSs may have a role beyond their cognate functionalities. In summary, these results can lead to an understanding of the metabolic capabilities of bacteria and correctly predict complex phenotype under diverse conditions, especially when further incorporated with genome-scale metabolic models.
Collapse
Affiliation(s)
- Kumari Sonal Choudhary
- Department of Bioengineering, University of California, San Diego, San Diego, California, USA
| | - Julia A Kleinmanns
- Department of Bioengineering, University of California, San Diego, San Diego, California, USA
| | - Katherine Decker
- Department of Bioengineering, University of California, San Diego, San Diego, California, USA
| | - Anand V Sastry
- Department of Bioengineering, University of California, San Diego, San Diego, California, USA
| | - Ye Gao
- Department of Bioengineering, University of California, San Diego, San Diego, California, USA
| | - Richard Szubin
- Department of Bioengineering, University of California, San Diego, San Diego, California, USA
| | - Yara Seif
- Department of Bioengineering, University of California, San Diego, San Diego, California, USA
| | - Bernhard O Palsson
- Department of Bioengineering, University of California, San Diego, San Diego, California, USA
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| |
Collapse
|
18
|
Steinberg R, Origi A, Natriashvili A, Sarmah P, Licheva M, Walker PM, Kraft C, High S, Luirink J, Shi WQ, Helmstädter M, Ulbrich MH, Koch HG. Posttranslational insertion of small membrane proteins by the bacterial signal recognition particle. PLoS Biol 2020; 18:e3000874. [PMID: 32997663 PMCID: PMC7549839 DOI: 10.1371/journal.pbio.3000874] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 10/12/2020] [Accepted: 09/02/2020] [Indexed: 01/05/2023] Open
Abstract
Small membrane proteins represent a largely unexplored yet abundant class of proteins in pro- and eukaryotes. They essentially consist of a single transmembrane domain and are associated with stress response mechanisms in bacteria. How these proteins are inserted into the bacterial membrane is unknown. Our study revealed that in Escherichia coli, the 27-amino-acid-long model protein YohP is recognized by the signal recognition particle (SRP), as indicated by in vivo and in vitro site-directed cross-linking. Cross-links to SRP were also observed for a second small membrane protein, the 33-amino-acid-long YkgR. However, in contrast to the canonical cotranslational recognition by SRP, SRP was found to bind to YohP posttranslationally. In vitro protein transport assays in the presence of a SecY inhibitor and proteoliposome studies demonstrated that SRP and its receptor FtsY are essential for the posttranslational membrane insertion of YohP by either the SecYEG translocon or by the YidC insertase. Furthermore, our data showed that the yohP mRNA localized preferentially and translation-independently to the bacterial membrane in vivo. In summary, our data revealed that YohP engages an unique SRP-dependent posttranslational insertion pathway that is likely preceded by an mRNA targeting step. This further highlights the enormous plasticity of bacterial protein transport machineries.
Collapse
Affiliation(s)
- Ruth Steinberg
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | - Andrea Origi
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, Albert-Ludwigs-University Freiburg, Freiburg, Germany
- Faculty of Biology, Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | - Ana Natriashvili
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, Albert-Ludwigs-University Freiburg, Freiburg, Germany
- Faculty of Biology, Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | - Pinku Sarmah
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, Albert-Ludwigs-University Freiburg, Freiburg, Germany
- Faculty of Biology, Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | - Mariya Licheva
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, Albert-Ludwigs-University Freiburg, Freiburg, Germany
- Faculty of Biology, Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | - Princess M. Walker
- Department of Chemistry, Ball State University, Muncie, Indiana, United States of America
| | - Claudine Kraft
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | - Stephen High
- School of Biological Sciences, University of Manchester, Manchester, United Kingdom
| | - Joen Luirink
- Molecular Microbiology, AIMMS, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Wei. Q. Shi
- Department of Chemistry, Ball State University, Muncie, Indiana, United States of America
| | - Martin Helmstädter
- Internal Medicine IV, Department of Medicine, Medical Center − University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Maximilian H. Ulbrich
- Internal Medicine IV, Department of Medicine, Medical Center − University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - Hans-Georg Koch
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, Albert-Ludwigs-University Freiburg, Freiburg, Germany
| |
Collapse
|
19
|
Small proteins regulate Salmonella survival inside macrophages by controlling degradation of a magnesium transporter. Proc Natl Acad Sci U S A 2020; 117:20235-20243. [PMID: 32753384 DOI: 10.1073/pnas.2006116117] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
All cells require Mg2+ to replicate and proliferate. The macrophage protein Slc11a1 is proposed to protect mice from invading microbes by causing Mg2+ starvation in host tissues. However, the Mg2+ transporter MgtB enables the facultative intracellular pathogen Salmonella enterica serovar Typhimurium to cause disease in mice harboring a functional Slc11a1 protein. Here, we report that, unexpectedly, the Salmonella small protein MgtR promotes MgtB degradation by the protease FtsH, which raises the question: How does Salmonella preserve MgtB to promote survival inside macrophages? We establish that the Salmonella small protein MgtU prevents MgtB proteolysis, even when MgtR is absent. Like MgtB, MgtU is necessary for survival in Slc11a1 +/+ macrophages, resistance to oxidative stress, and growth under Mg2+ limitation conditions. The Salmonella Mg2+ transporter MgtA is not protected by MgtU despite sharing 50% amino acid identity with MgtB and being degraded in an MgtR- and FtsH-dependent manner. Surprisingly, the mgtB, mgtR, and mgtU genes are part of the same transcript, providing a singular example of transcript-specifying proteins that promote and hinder degradation of the same target. Our findings demonstrate that small proteins can confer pathogen survival inside macrophages by altering the abundance of related transporters, thereby furthering homeostasis.
Collapse
|
20
|
Abstract
In bacteria, K+ is used to maintain cell volume and osmotic potential. Homeostasis normally involves a network of constitutively expressed transport systems, but in K+ deficient environments, the KdpFABC complex uses ATP to pump K+ into the cell. This complex appears to be a hybrid of two types of transporters, with KdpA descending from the superfamily of K+ transporters and KdpB belonging to the superfamily of P-type ATPases. Studies of enzymatic activity documented a catalytic cycle with hallmarks of classical P-type ATPases and studies of ion transport indicated that K+ import into the cytosol occurred in the second half of this cycle in conjunction with hydrolysis of an aspartyl phosphate intermediate. Atomic structures of the KdpFABC complex from X-ray crystallography and cryo-EM have recently revealed conformations before and after formation of this aspartyl phosphate that appear to contradict the functional studies. Specifically, structural comparisons with the archetypal P-type ATPase, SERCA, suggest that K+ transport occurs in the first half of the cycle, accompanying formation of the aspartyl phosphate. Further controversy has arisen regarding the path by which K+ crosses the membrane. The X-ray structure supports the conventional view that KdpA provides the conduit, whereas cryo-EM structures suggest that K+ moves from KdpA through a long, intramembrane tunnel to reach canonical ion binding sites in KdpB from which they are released to the cytosol. This review discusses evidence supporting these contradictory models and identifies key experiments needed to resolve discrepancies and produce a unified model for this fascinating mechanistic hybrid.
Collapse
Affiliation(s)
- Bjørn P Pedersen
- a Department of Molecular Biology and Genetics, Aarhus University , Aarhus C , Denmark
| | - David L Stokes
- b Department of Cell Biology, New York University School of Medicine, Skirball Institute , New York , NY , USA
| | - Hans-Jürgen Apell
- c Department of Biology, University of Konstanz , Konstanz , Germany
| |
Collapse
|
21
|
Gibhardt J, Hoffmann G, Turdiev A, Wang M, Lee VT, Commichau FM. c-di-AMP assists osmoadaptation by regulating the Listeria monocytogenes potassium transporters KimA and KtrCD. J Biol Chem 2019; 294:16020-16033. [PMID: 31506295 DOI: 10.1074/jbc.ra119.010046] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 09/03/2019] [Indexed: 12/30/2022] Open
Abstract
Many bacteria and some archaea produce the second messenger cyclic diadenosine monophosphate (c-di-AMP). c-di-AMP controls the uptake of osmolytes in Firmicutes, including the human pathogen Listeria monocytogenes, making it essential for growth. c-di-AMP is known to directly regulate several potassium channels involved in osmolyte transport in species such as Bacillus subtilis and Streptococcus pneumoniae, but whether this same mechanism is involved in L. monocytogenes, or even whether similar ion channels were present, was not known. Here, we have identified and characterized the putative L. monocytogenes' potassium transporters KimA, KtrCD, and KdpABC. We demonstrate that Escherichia coli expressing KimA and KtrCD, but not KdpABC, transport potassium into the cell, and both KimA and KtrCD are inhibited by c-di-AMP in vivo For KimA, c-di-AMP-dependent regulation requires the C-terminal domain. In vitro assays demonstrated that the dinucleotide binds to the cytoplasmic regulatory subunit KtrC and to the KdpD sensor kinase of the KdpDE two-component system, which in Staphylococcus aureus regulates the corresponding KdpABC transporter. Finally, we also show that S. aureus contains a homolog of KimA, which mediates potassium transport. Thus, the c-di-AMP-dependent control of systems involved in potassium homeostasis seems to be conserved in phylogenetically related bacteria. Surprisingly, the growth of an L. monocytogenes mutant lacking the c-di-AMP-synthesizing enzyme cdaA is only weakly inhibited by potassium. Thus, the physiological impact of the c-di-AMP-dependent control of potassium uptake seems to be less pronounced in L. monocytogenes than in other Firmicutes.
Collapse
Affiliation(s)
- Johannes Gibhardt
- Department of General Microbiology, Institute for Microbiology and Genetics, Georg-August University Göttingen, D-37077 Göttingen, Germany
| | - Gregor Hoffmann
- Department of General Microbiology, Institute for Microbiology and Genetics, Georg-August University Göttingen, D-37077 Göttingen, Germany
| | - Asan Turdiev
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland 20742
| | - Mengyi Wang
- Department of General Microbiology, Institute for Microbiology and Genetics, Georg-August University Göttingen, D-37077 Göttingen, Germany
| | - Vincent T Lee
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland 20742
| | - Fabian M Commichau
- Department of General Microbiology, Institute for Microbiology and Genetics, Georg-August University Göttingen, D-37077 Göttingen, Germany
| |
Collapse
|
22
|
Sberro H, Fremin BJ, Zlitni S, Edfors F, Greenfield N, Snyder MP, Pavlopoulos GA, Kyrpides NC, Bhatt AS. Large-Scale Analyses of Human Microbiomes Reveal Thousands of Small, Novel Genes. Cell 2019; 178:1245-1259.e14. [PMID: 31402174 PMCID: PMC6764417 DOI: 10.1016/j.cell.2019.07.016] [Citation(s) in RCA: 152] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 05/06/2019] [Accepted: 07/11/2019] [Indexed: 12/12/2022]
Abstract
Small proteins are traditionally overlooked due to computational and experimental difficulties in detecting them. To systematically identify small proteins, we carried out a comparative genomics study on 1,773 human-associated metagenomes from four different body sites. We describe >4,000 conserved protein families, the majority of which are novel; ∼30% of these protein families are predicted to be secreted or transmembrane. Over 90% of the small protein families have no known domain and almost half are not represented in reference genomes. We identify putative housekeeping, mammalian-specific, defense-related, and protein families that are likely to be horizontally transferred. We provide evidence of transcription and translation for a subset of these families. Our study suggests that small proteins are highly abundant and those of the human microbiome, in particular, may perform diverse functions that have not been previously reported.
Collapse
Affiliation(s)
- Hila Sberro
- Department of Medicine (Hematology; Blood and Marrow Transplantation) and Genetics, Stanford University, Stanford, CA, USA; Department of Genetics, Stanford University, Stanford, CA, USA
| | - Brayon J Fremin
- Department of Medicine (Hematology; Blood and Marrow Transplantation) and Genetics, Stanford University, Stanford, CA, USA
| | - Soumaya Zlitni
- Department of Medicine (Hematology; Blood and Marrow Transplantation) and Genetics, Stanford University, Stanford, CA, USA
| | - Fredrik Edfors
- Department of Genetics, Stanford University, Stanford, CA, USA
| | | | | | - Georgios A Pavlopoulos
- Department of Energy, Joint Genome Institute, Walnut Creek, CA, USA; Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center Alexander Fleming, Vari, Greece
| | - Nikos C Kyrpides
- Department of Energy, Joint Genome Institute, Walnut Creek, CA, USA; Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Ami S Bhatt
- Department of Medicine (Hematology; Blood and Marrow Transplantation) and Genetics, Stanford University, Stanford, CA, USA; Department of Genetics, Stanford University, Stanford, CA, USA.
| |
Collapse
|
23
|
Weaver J, Mohammad F, Buskirk AR, Storz G. Identifying Small Proteins by Ribosome Profiling with Stalled Initiation Complexes. mBio 2019; 10:e02819-18. [PMID: 30837344 PMCID: PMC6401488 DOI: 10.1128/mbio.02819-18] [Citation(s) in RCA: 126] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Accepted: 01/24/2019] [Indexed: 11/20/2022] Open
Abstract
Small proteins consisting of 50 or fewer amino acids have been identified as regulators of larger proteins in bacteria and eukaryotes. Despite the importance of these molecules, the total number of small proteins remains unknown because conventional annotation pipelines usually exclude small open reading frames (smORFs). We previously identified several dozen small proteins in the model organism Escherichia coli using theoretical bioinformatic approaches based on sequence conservation and matches to canonical ribosome binding sites. Here, we present an empirical approach for discovering new proteins, taking advantage of recent advances in ribosome profiling in which antibiotics are used to trap newly initiated 70S ribosomes at start codons. This approach led to the identification of many novel initiation sites in intergenic regions in E. coli We tagged 41 smORFs on the chromosome and detected protein synthesis for all but three. Not only are the corresponding genes intergenic but they are also found antisense to other genes, in operons, and overlapping other open reading frames (ORFs), some impacting the translation of larger downstream genes. These results demonstrate the utility of this method for identifying new genes, regardless of their genomic context.IMPORTANCE Proteins comprised of 50 or fewer amino acids have been shown to interact with and modulate the functions of larger proteins in a range of organisms. Despite the possible importance of small proteins, the true prevalence and capabilities of these regulators remain unknown as the small size of the proteins places serious limitations on their identification, purification, and characterization. Here, we present a ribosome profiling approach with stalled initiation complexes that led to the identification of 38 new small proteins.
Collapse
Affiliation(s)
- Jeremy Weaver
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, Maryland, USA
| | - Fuad Mohammad
- Department of Molecular Biology and Genetics, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Allen R Buskirk
- Department of Molecular Biology and Genetics, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Gisela Storz
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, Maryland, USA
| |
Collapse
|
24
|
Cryo-EM structures of KdpFABC suggest a K + transport mechanism via two inter-subunit half-channels. Nat Commun 2018; 9:4971. [PMID: 30478378 PMCID: PMC6255902 DOI: 10.1038/s41467-018-07319-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 10/24/2018] [Indexed: 12/16/2022] Open
Abstract
P-type ATPases ubiquitously pump cations across biological membranes to maintain vital ion gradients. Among those, the chimeric K+ uptake system KdpFABC is unique. While ATP hydrolysis is accomplished by the P-type ATPase subunit KdpB, K+ has been assumed to be transported by the channel-like subunit KdpA. A first crystal structure uncovered its overall topology, suggesting such a spatial separation of energizing and transporting units. Here, we report two cryo-EM structures of the 157 kDa, asymmetric KdpFABC complex at 3.7 Å and 4.0 Å resolution in an E1 and an E2 state, respectively. Unexpectedly, the structures suggest a translocation pathway through two half-channels along KdpA and KdpB, uniting the alternating-access mechanism of actively pumping P-type ATPases with the high affinity and selectivity of K+ channels. This way, KdpFABC would function as a true chimeric complex, synergizing the best features of otherwise separately evolved transport mechanisms.
Collapse
|
25
|
Lemaire ON, Infossi P, Ali Chaouche A, Espinosa L, Leimkühler S, Giudici-Orticoni MT, Méjean V, Iobbi-Nivol C. Small membranous proteins of the TorE/NapE family, crutches for cognate respiratory systems in Proteobacteria. Sci Rep 2018; 8:13576. [PMID: 30206249 PMCID: PMC6134056 DOI: 10.1038/s41598-018-31851-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 08/23/2018] [Indexed: 01/18/2023] Open
Abstract
In this report, we investigate small proteins involved in bacterial alternative respiratory systems that improve the enzymatic efficiency through better anchorage and multimerization of membrane components. Using the small protein TorE of the respiratory TMAO reductase system as a model, we discovered that TorE is part of a subfamily of small proteins that are present in proteobacteria in which they play a similar role for bacterial respiratory systems. We reveal by microscopy that, in Shewanella oneidensis MR1, alternative respiratory systems are evenly distributed in the membrane contrary to what has been described for Escherichia coli. Thus, the better efficiency of the respiratory systems observed in the presence of the small proteins is not due to a specific localization in the membrane, but rather to the formation of membranous complexes formed by TorE homologs with their c-type cytochrome partner protein. By an in vivo approach combining Clear Native electrophoresis and fluorescent translational fusions, we determined the 4:4 stoichiometry of the complexes. In addition, mild solubilization of the cytochrome indicates that the presence of the small protein reinforces its anchoring to the membrane. Therefore, assembly of the complex induced by this small protein improves the efficiency of the respiratory system.
Collapse
Affiliation(s)
- Olivier N Lemaire
- Aix-Marseille Université, Laboratoire de Bioénergétique et Ingénierie des Protéines, Institut de Microbiologie de la Méditerranée, Centre National de la Recherche Scientifique, 13402, Marseille, France
| | - Pascale Infossi
- Aix-Marseille Université, Laboratoire de Bioénergétique et Ingénierie des Protéines, Institut de Microbiologie de la Méditerranée, Centre National de la Recherche Scientifique, 13402, Marseille, France
| | - Amine Ali Chaouche
- Aix-Marseille Université, Laboratoire de Bioénergétique et Ingénierie des Protéines, Institut de Microbiologie de la Méditerranée, Centre National de la Recherche Scientifique, 13402, Marseille, France
| | - Leon Espinosa
- Aix-Marseille Université, Laboratoire de Chimie Bactérienne, Institut de Microbiologie de la Méditerranée, Centre National de la Recherche Scientifique, 13402, Marseille, France
| | - Silke Leimkühler
- Institute of Biochemistry and Biology, Department of Molecular Enzymology, University of Potsdam, 14476, Potsdam, Germany
| | - Marie-Thérèse Giudici-Orticoni
- Aix-Marseille Université, Laboratoire de Bioénergétique et Ingénierie des Protéines, Institut de Microbiologie de la Méditerranée, Centre National de la Recherche Scientifique, 13402, Marseille, France
| | - Vincent Méjean
- Aix-Marseille Université, Laboratoire de Bioénergétique et Ingénierie des Protéines, Institut de Microbiologie de la Méditerranée, Centre National de la Recherche Scientifique, 13402, Marseille, France
| | - Chantal Iobbi-Nivol
- Aix-Marseille Université, Laboratoire de Bioénergétique et Ingénierie des Protéines, Institut de Microbiologie de la Méditerranée, Centre National de la Recherche Scientifique, 13402, Marseille, France.
| |
Collapse
|
26
|
VanOrsdel CE, Kelly JP, Burke BN, Lein CD, Oufiero CE, Sanchez JF, Wimmers LE, Hearn DJ, Abuikhdair FJ, Barnhart KR, Duley ML, Ernst SEG, Kenerson BA, Serafin AJ, Hemm MR. Identifying New Small Proteins in Escherichia coli. Proteomics 2018; 18:e1700064. [PMID: 29645342 PMCID: PMC6001520 DOI: 10.1002/pmic.201700064] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 03/05/2018] [Indexed: 12/11/2022]
Abstract
The number of small proteins (SPs) encoded in the Escherichia coli genome is unknown, as current bioinformatics and biochemical techniques make short gene and small protein identification challenging. One method of small protein identification involves adding an epitope tag to the 3′ end of a short open reading frame (sORF) on the chromosome, with synthesis confirmed by immunoblot assays. In this study, this strategy was used to identify new E. coli small proteins, tagging 80 sORFs in the E. coli genome, and assayed for protein synthesis. The selected sORFs represent diverse sequence characteristics, including degrees of sORF conservation, predicted transmembrane domains, sORF direction with respect to flanking genes, ribosome binding site (RBS) prediction, and ribosome profiling results. Of 80 sORFs, 36 resulted in encoded synthesized proteins—a 45% success rate. Modeling of detected versus non‐detected small proteins analysis showed predictions based on RBS prediction, transcription data, and ribosome profiling had statistically‐significant correlation with protein synthesis; however, there was no correlation between current sORF annotation and protein synthesis. These results suggest substantial numbers of small proteins remain undiscovered in E. coli, and existing bioinformatics techniques must continue to improve to facilitate identification.
Collapse
Affiliation(s)
- Caitlin E VanOrsdel
- Department of Biological Sciences, Smith Hall, Towson University, Towson, MD, USA
| | - John P Kelly
- Department of Biological Sciences, Smith Hall, Towson University, Towson, MD, USA
| | - Brittany N Burke
- Department of Biological Sciences, Smith Hall, Towson University, Towson, MD, USA
| | - Christina D Lein
- Department of Biological Sciences, Smith Hall, Towson University, Towson, MD, USA
| | | | - Joseph F Sanchez
- Department of Biological Sciences, Smith Hall, Towson University, Towson, MD, USA
| | - Larry E Wimmers
- Department of Biological Sciences, Smith Hall, Towson University, Towson, MD, USA
| | - David J Hearn
- Department of Biological Sciences, Smith Hall, Towson University, Towson, MD, USA
| | - Fatimeh J Abuikhdair
- Department of Biological Sciences, Smith Hall, Towson University, Towson, MD, USA
| | - Kathryn R Barnhart
- Department of Biological Sciences, Smith Hall, Towson University, Towson, MD, USA
| | - Michelle L Duley
- Department of Biological Sciences, Smith Hall, Towson University, Towson, MD, USA
| | - Sarah E G Ernst
- Department of Biological Sciences, Smith Hall, Towson University, Towson, MD, USA
| | - Briana A Kenerson
- Department of Biological Sciences, Smith Hall, Towson University, Towson, MD, USA
| | - Aubrey J Serafin
- Department of Biological Sciences, Smith Hall, Towson University, Towson, MD, USA
| | - Matthew R Hemm
- Department of Biological Sciences, Smith Hall, Towson University, Towson, MD, USA
| |
Collapse
|
27
|
Duval M, Cossart P. Small bacterial and phagic proteins: an updated view on a rapidly moving field. Curr Opin Microbiol 2017; 39:81-88. [PMID: 29111488 DOI: 10.1016/j.mib.2017.09.010] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 09/17/2017] [Indexed: 01/21/2023]
Abstract
Small proteins, that is, polypeptides of 50 amino acids (aa) or less, are increasingly recognized as important regulators in bacteria. Secreted or not, their small size make them versatile proteins, involved in a wide range of processes. They may allow bacteria to sense and to respond to stresses, to send signals and communicate, and to modulate infections. Bacteriophages also produce small proteins to influence lysogeny/lysis decisions. In this review, we update the present view on small proteins functions, and discuss their possible applications.
Collapse
Affiliation(s)
- Mélodie Duval
- Unité des Interactions Bactéries-Cellules, Institut Pasteur, Paris F-75015, France; Institut National de la Santé et de la Recherche Médicale, U604, Paris F-75015, France; Institut National de la Recherche Agronomique, Unité Sous Contrat 2020, Paris F-75015, France.
| | - Pascale Cossart
- Unité des Interactions Bactéries-Cellules, Institut Pasteur, Paris F-75015, France; Institut National de la Santé et de la Recherche Médicale, U604, Paris F-75015, France; Institut National de la Recherche Agronomique, Unité Sous Contrat 2020, Paris F-75015, France.
| |
Collapse
|
28
|
A Novel Regulatory Pathway for K + Uptake in the Legume Symbiont Azorhizobium caulinodans in Which TrkJ Represses the kdpFABC Operon at High Extracellular K + Concentrations. Appl Environ Microbiol 2017; 83:AEM.01197-17. [PMID: 28778893 DOI: 10.1128/aem.01197-17] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Accepted: 07/28/2017] [Indexed: 11/20/2022] Open
Abstract
Bacteria have multiple K+ uptake systems. Escherichia coli, for example, has three types of K+ uptake systems, which include the low-K+-inducible KdpFABC system and two constitutive systems, Trk (TrkAG and TrkAH) and Kup. Azorhizobium caulinodans ORS571, a rhizobium that forms nitrogen-fixing nodules on the stems and roots of Sesbania rostrata, also has three types of K+ uptake systems. Through phylogenetic analysis, we found that A. caulinodans has two genes homologous to trkG and trkH, designated trkI and trkJ We also found that trkI is adjacent to trkA in the genome and these two genes are transcribed as an operon; however, trkJ is present at a distinct locus. Our results demonstrated that trkAI, trkJ, and kup were expressed in the wild-type stem nodules, whereas kdpFABC was not. Interestingly, Δkup and Δkup ΔkdpA mutants formed Fix- nodules, while the Δkup ΔtrkA ΔtrkI ΔtrkJ mutant formed Fix+ nodules, suggesting that with the additional deletion of Trk system genes in the Δkup mutant, Fix+ nodule phenotypes were recovered. kdpFABC of the Δkup ΔtrkJ mutant was expressed in stem nodules, but not in the free-living state, under high-K+ conditions. However, kdpFABC of the Δkup ΔtrkA ΔtrkI ΔtrkJ mutant was highly expressed even under high-K+ conditions. The cytoplasmic K+ levels in the Δkup ΔtrkA ΔtrkI mutant, which did not express kdpFABC under high-K+ conditions, were markedly lower than those in the Δkup ΔtrkA ΔtrkI ΔtrkJ mutant. Taking all these results into consideration, we propose that TrkJ is involved in the repression of kdpFABC in response to high external K+ concentrations and that the TrkAI system is unable to function in stem nodules.IMPORTANCE K+ is a major cytoplasmic cation in prokaryotic and eukaryotic cells. Bacteria have multiple K+ uptake systems to control the cytoplasmic K+ levels. In many bacteria, the K+ uptake system KdpFABC is expressed under low-K+ conditions. For years, many researchers have argued over how bacteria sense K+ concentrations. Although KdpD of Escherichia coli is known to sense both cytoplasmic and extracellular K+ concentrations, the detailed mechanism of K+ sensing is still unclear. In this study, we propose that the transmembrane TrkJ protein of Azorhizobium caulinodans acts as a sensor for the extracellular K+ concentration and that high extracellular K+ concentrations repress the expression of KdpFABC via TrkJ.
Collapse
|
29
|
Abstract
Cellular potassium import systems play a fundamental role in osmoregulation, pH homeostasis and membrane potential in all domains of life. In bacteria, the kdp operon encodes a four subunit potassium pump that maintains intracellular homeostasis as well as cell shape and turgor under conditions where potassium is limiting1. This membrane complex, called KdpFABC, has one channel-like subunit (KdpA) belonging to the Superfamily of Potassium Transporters and another pump-like subunit (KdpB) belonging to the Superfamily of P-type ATPases. Although there is considerable structural and functional information about members from both superfamilies, the mechanism by which uphill potassium transport through KdpA is coupled with ATP hydrolysis by KdpB remains poorly understood. Here we report the 2.9 Å X-ray structure of the complete Escherichia coli KdpFABC complex with a potassium ion within the selectivity filter of KdpA as well as a water molecule at a canonical cation site in the transmembrane domain of KdpB. The structure also reveals two structural elements that appear to mediate the coupling between these two subunits. Specifically, a protein-embedded tunnel runs between these potassium and water sites and a helix controlling the cytoplasmic gate of KdpA is linked to the phosphorylation domain of KdpB. Based on these observations, we propose an unprecedented mechanism that repurposes protein channel architecture for active transport across biomembranes.
Collapse
Affiliation(s)
- Ching-Shin Huang
- Molecular Biophysics Graduate Program, New York University School of Medicine, Skirball Institute, 540 First Avenue, New York, New York 10016, USA
| | - Bjørn Panyella Pedersen
- Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10, DK-8000 Aarhus C, Denmark.,Aarhus Institute of Advanced Studies, Aarhus University, Høegh-Guldbergs Gade 6B, DK-8000 Aarhus C, Denmark
| | - David L Stokes
- Department of Cell Biology, New York University School of Medicine, Skirball Institute, 540 First Avenue, New York, New York 10016, USA
| |
Collapse
|
30
|
Ali MK, Li X, Tang Q, Liu X, Chen F, Xiao J, Ali M, Chou SH, He J. Regulation of Inducible Potassium Transporter KdpFABC by the KdpD/KdpE Two-Component System in Mycobacterium smegmatis. Front Microbiol 2017; 8:570. [PMID: 28484428 PMCID: PMC5401905 DOI: 10.3389/fmicb.2017.00570] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 03/20/2017] [Indexed: 12/28/2022] Open
Abstract
Kdp-ATPase is an inducible high affinity potassium uptake system that is widely distributed in bacteria, and is generally regulated by the KdpD/KdpE two-component system (TCS). In this study, conducted on Mycobacterium smegmatis, the kdpFABC (encoding Kdp-ATPase) expression was found to be affected by low concentration of K+, high concentrations of Na+, and/or [Formula: see text] of the medium. The KdpE was found to be a transcriptional regulator that bound to a specific 22-bp sequence in the promoter region of kdpFABC operon to positively regulate kdpFABC expression. The KdpE binding motif was highly conserved in the promoters of kdpFABC among the mycobacterial species. 5'-RACE data indicated a transcriptional start site (TSS) of the kdpFABC operon within the coding sequence of MSMEG_5391, which comprised a 120-bp long 5'-UTR and an open reading frame of the 87-bp kdpF gene. The kdpE deletion resulted in altered growth rate under normal and low K+ conditions. Furthermore, under K+ limiting conditions, a single transcript (kdpFABCDE) spanning kdpFABC and kdpDE operons was observed. This study provided the first insight into the regulation of kdpFABC operon by the KdpD/KdpE TCS in M. smegmatis.
Collapse
Affiliation(s)
- Maria K Ali
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural UniversityWuhan, China
| | - Xinfeng Li
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural UniversityWuhan, China
| | - Qing Tang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural UniversityWuhan, China
| | - Xiaoyu Liu
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural UniversityWuhan, China
| | - Fang Chen
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural UniversityWuhan, China
| | - Jinfeng Xiao
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural UniversityWuhan, China
| | - Muhammad Ali
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural UniversityWuhan, China.,Biotechnology Program, Department of Environmental Sciences, COMSATS Institute of Information TechnologyAbbottabad, Pakistan
| | - Shan-Ho Chou
- Institute of Biochemistry and NCHU Agricultural Biotechnology Center, National Chung Hsing UniversityTaichung, Taiwan
| | - Jin He
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural UniversityWuhan, China
| |
Collapse
|
31
|
Rosas Olvera M, Vivès E, Molle V, Blanc-Potard AB, Gannoun-Zaki L. Endogenous and Exogenous KdpF Peptide Increases Susceptibility of Mycobacterium bovis BCG to Nitrosative Stress and Reduces Intramacrophage Replication. Front Cell Infect Microbiol 2017; 7:115. [PMID: 28428950 PMCID: PMC5382158 DOI: 10.3389/fcimb.2017.00115] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 03/22/2017] [Indexed: 11/15/2022] Open
Abstract
Emerging antibiotic resistance in pathogenic bacteria like Mycobacterium sp., poses a threat to human health and therefore calls for the development of novel antibacterial strategies. We have recently discovered that bacterial membrane peptides, such as KdpF, possess anti-virulence properties when overproduced in pathogenic bacterial species. Overproduction of the KdpF peptide in Mycobacterium bovis BCG decreased bacterial replication within macrophages, without presenting antibacterial activity. We propose that KdpF functions as a regulatory molecule and interferes with bacterial virulence, potentially through interaction with the PDIM transporter MmpL7. We demonstrate here that KdpF overproduction in M. bovis BCG, increased bacterial susceptibility to nitrosative stress and thereby was responsible for lower replication rate within macrophages. Moreover, in a bacterial two-hybrid system, KdpF was able to interact not only with MmpL7 but also with two membrane proteins involved in nitrosative stress detoxification (NarI and NarK2), and a membrane protein of unknown function that is highly induced upon nitrosative stress (Rv2617c). Interestingly, we showed that the exogenous addition of KdpF synthetic peptide could affect the stability of proteins that interact with this peptide. Finally, the exogenous KdpF peptide presented similar biological effects as the endogenously expressed peptide including nitrosative stress susceptibility and reduced intramacrophage replication rate for M. bovis BCG. Taken together, our results establish a link between high levels of KdpF and nitrosative stress susceptibility to further highlight KdpF as a potent molecule with anti-virulence properties.
Collapse
Affiliation(s)
- Mariana Rosas Olvera
- Laboratoire de Dynamique des Interactions Membranaires Normales et Pathologiques, Université MontpellierMontpellier, France.,Centre National de la Recherche Scientifique, UMR5235Montpellier, France
| | - Eric Vivès
- CRBM, Centre National de la Recherche Scientifique UMR 5237Montpellier, France
| | - Virginie Molle
- Laboratoire de Dynamique des Interactions Membranaires Normales et Pathologiques, Université MontpellierMontpellier, France.,Centre National de la Recherche Scientifique, UMR5235Montpellier, France
| | - Anne-Béatrice Blanc-Potard
- Laboratoire de Dynamique des Interactions Membranaires Normales et Pathologiques, Université MontpellierMontpellier, France.,Centre National de la Recherche Scientifique, UMR5235Montpellier, France
| | - Laila Gannoun-Zaki
- Laboratoire de Dynamique des Interactions Membranaires Normales et Pathologiques, Université MontpellierMontpellier, France.,Centre National de la Recherche Scientifique, UMR5235Montpellier, France
| |
Collapse
|
32
|
Abstract
Increasing evidence indicates that many, if not all, small genes encoding proteins ≤100 aa are missing in annotations of bacterial genomes currently available. To uncover unannotated small genes in the model bacterium Salmonella enterica Typhimurium 14028s, we used the genomic technique ribosome profiling, which provides a snapshot of all mRNAs being translated (translatome) in a given growth condition. For comprehensive identification of unannotated small genes, we obtained Salmonella translatomes from four different growth conditions: LB, MOPS rich defined medium, and two infection-relevant conditions low Mg2+ (10 µM) and low pH (5.8). To facilitate the identification of small genes, ribosome profiling data were analyzed in combination with in silico predicted putative open reading frames and transcriptome profiles. As a result, we uncovered 130 unannotated ORFs. Of them, 98% were small ORFs putatively encoding peptides/proteins ≤100 aa, and some of them were only expressed in the infection-relevant low Mg2+ and/or low pH condition. We validated the expression of 25 of these ORFs by western blot, including the smallest, which encodes a peptide of 7 aa residues. Our results suggest that many sequenced bacterial genomes are underannotated with regard to small genes and their gene annotations need to be revised.
Collapse
|
33
|
Yang X, Jensen SI, Wulff T, Harrison SJ, Long KS. Identification and validation of novel small proteins in Pseudomonas putida. ENVIRONMENTAL MICROBIOLOGY REPORTS 2016; 8:966-974. [PMID: 27717237 DOI: 10.1111/1758-2229.12473] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 09/06/2016] [Accepted: 09/10/2016] [Indexed: 06/06/2023]
Abstract
Small proteins of 50 amino acids or less have been understudied due to difficulties that impede their annotation and detection. In order to obtain information on small open reading frames (sORFs) in Pseudomonas putida, bioinformatic and proteomic approaches were used to identify putative sORFs in the well-characterized strain KT2440. A plasmid-based system was established for sORF validation, enabling expression of C-terminal sequential peptide affinity tagged variants and their detection via protein immunoblotting. Out of 22 tested putative sORFs, the expression of 14 sORFs was confirmed, where all except one are novel. All of the validated sORFs except one are located adjacent to annotated genes on the same strand and three are in close proximity to genes with known functions. These include an ABC transporter operon and the two transcriptional regulators Fis and CysB involved in biofilm formation and cysteine biosynthesis respectively. The work sheds light on the P. putida small proteome and small protein identification, a necessary first step towards gaining insights into their functions and possible evolutionary implications.
Collapse
Affiliation(s)
- Xiaochen Yang
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Sheila I Jensen
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Tune Wulff
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Scott J Harrison
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Katherine S Long
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| |
Collapse
|
34
|
Møller TSB, Rau MH, Bonde CS, Sommer MOA, Guardabassi L, Olsen JE. Adaptive responses to cefotaxime treatment in ESBL-producingEscherichia coliand the possible use of significantly regulated pathways as novel secondary targets. J Antimicrob Chemother 2016; 71:2449-59. [DOI: 10.1093/jac/dkw198] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 04/26/2016] [Indexed: 12/12/2022] Open
|
35
|
Belda E, van Heck RGA, José Lopez-Sanchez M, Cruveiller S, Barbe V, Fraser C, Klenk HP, Petersen J, Morgat A, Nikel PI, Vallenet D, Rouy Z, Sekowska A, Martins dos Santos VAP, de Lorenzo V, Danchin A, Médigue C. The revisited genome ofPseudomonas putidaKT2440 enlightens its value as a robust metabolicchassis. Environ Microbiol 2016; 18:3403-3424. [DOI: 10.1111/1462-2920.13230] [Citation(s) in RCA: 217] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 01/16/2016] [Indexed: 01/08/2023]
Affiliation(s)
- Eugeni Belda
- Alternative Energies and Atomic Energy Commission (CEA), Genomic Institute & CNRS-UMR8030 & Evry University, Laboratory of Bioinformatics Analysis in Genomics and Metabolism; 2 rue Gaston Crémieux 91057 Evry France
- Institut Pasteur, Unit of Insect Vector Genetics and Genomics, Department of Parasitology and Mycology; 28, rue du Dr. Roux, Paris, Cedex 15 75724 France
| | - Ruben G. A. van Heck
- Laboratory of Systems and Synthetic Biology, Wageningen University; Dreijenplein 10, Building number 316 6703 HB Wageningen The Netherlands
| | - Maria José Lopez-Sanchez
- Alternative Energies and Atomic Energy Commission (CEA), Genomic Institute & CNRS-UMR8030 & Evry University, Laboratory of Bioinformatics Analysis in Genomics and Metabolism; 2 rue Gaston Crémieux 91057 Evry France
- AMAbiotics SAS, Institut du Cerveau et de la Moëlle Épinière, Hôpital de la Pitié-Salpêtrière; Paris France
| | - Stéphane Cruveiller
- Alternative Energies and Atomic Energy Commission (CEA), Genomic Institute & CNRS-UMR8030 & Evry University, Laboratory of Bioinformatics Analysis in Genomics and Metabolism; 2 rue Gaston Crémieux 91057 Evry France
| | - Valérie Barbe
- Alternative Energies and Atomic Energy Commission (CEA), Genomic Institute, National Sequencing Center; 2 rue Gaston Crémieux 91057 Evry France
| | - Claire Fraser
- Institute for Genome Sciences, Department of Microbiology and Immunology, University of Maryland School of Medicine; Baltimore MD USA
| | - Hans-Peter Klenk
- Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures; Braunschweig Germany
- School of Biology, Newcastle University; Newcastle upon Tyne NE1 7RU UK
| | - Jörn Petersen
- Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures; Braunschweig Germany
| | - Anne Morgat
- Swiss-Prot Group, SIB Swiss Institute of Bioinformatics; Geneva CH-1206 Switzerland
| | - Pablo I. Nikel
- Systems and Synthetic Biology Program, Centro Nacional de Biotecnología (CNB-CSIC); C/Darwin 3 28049 Madrid Spain
| | - David Vallenet
- Alternative Energies and Atomic Energy Commission (CEA), Genomic Institute & CNRS-UMR8030 & Evry University, Laboratory of Bioinformatics Analysis in Genomics and Metabolism; 2 rue Gaston Crémieux 91057 Evry France
| | - Zoé Rouy
- Alternative Energies and Atomic Energy Commission (CEA), Genomic Institute & CNRS-UMR8030 & Evry University, Laboratory of Bioinformatics Analysis in Genomics and Metabolism; 2 rue Gaston Crémieux 91057 Evry France
| | - Agnieszka Sekowska
- AMAbiotics SAS, Institut du Cerveau et de la Moëlle Épinière, Hôpital de la Pitié-Salpêtrière; Paris France
| | - Vitor A. P. Martins dos Santos
- Laboratory of Systems and Synthetic Biology, Wageningen University; Dreijenplein 10, Building number 316 6703 HB Wageningen The Netherlands
| | - Víctor de Lorenzo
- Systems and Synthetic Biology Program, Centro Nacional de Biotecnología (CNB-CSIC); C/Darwin 3 28049 Madrid Spain
| | - Antoine Danchin
- AMAbiotics SAS, Institut du Cerveau et de la Moëlle Épinière, Hôpital de la Pitié-Salpêtrière; Paris France
| | - Claudine Médigue
- Alternative Energies and Atomic Energy Commission (CEA), Genomic Institute & CNRS-UMR8030 & Evry University, Laboratory of Bioinformatics Analysis in Genomics and Metabolism; 2 rue Gaston Crémieux 91057 Evry France
| |
Collapse
|
36
|
Wolf S, Pflüger-Grau K, Kremling A. Modeling the Interplay of Pseudomonas putida EIIA Ntr with the Potassium Transporter KdpFABC. J Mol Microbiol Biotechnol 2015; 25:178-94. [DOI: 10.1159/000381214] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The nitrogen phosphotransferase system (PTS<sup>Ntr</sup>) of <i>Pseudomonas putida</i> is a key regulatory device that participates in controlling many physiological processes in a posttranscriptional fashion. One of the target functions of the PTS<sup>Ntr</sup> is the regulation of potassium transport. This is mediated by the direct interaction of one of its components with the sensor kinase KdpD of the two-component system controlling transcription of the <i>kdpFABC</i> genes. From a detailed experimental analysis of the activity of the <i>kdpF</i> promoter in <i>P. putida</i> wild-type and <i>pts</i> mutant strains with varying potassium concentrations, we had highly time-resolved data at hand, describing the influence of the PTS<sup>Ntr</sup> on the transcription of the KdpFABC potassium transporter. Here, this data was used to construct a mathematical model based on a black box approach. The model was able to describe the data quantitatively with convincing accuracy. The qualitative interpretation of the model allowed the prediction of two general points describing the interplay between the PTS<sup>Ntr</sup> and the KdpFABC potassium transporter: (1) the influence of cell number on the performance of the <i>kdpF</i> promoter is mainly by dilution by growth and (2) potassium uptake is regulated not only by the activity of the KdpD/KdpE two-component system (in turn influenced by PtsN). An additional controller with integrative behavior is predicted by the model structure. This suggests the presence of a novel physiological mechanism during regulation of potassium uptake with the KdpFABC transporter and may serve as a starting point for further investigations.
Collapse
|
37
|
Bräuer S, Cadillo-Quiroz H, Kyrpides N, Woyke T, Goodwin L, Detter C, Podell S, Yavitt JB, Zinder SH. Genome of Methanoregula boonei 6A8 reveals adaptations to oligotrophic peatland environments. MICROBIOLOGY-SGM 2015; 161:1572-1581. [PMID: 25998264 DOI: 10.1099/mic.0.000117] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Analysis of the genome sequence of Methanoregula boonei strain 6A8, an acidophilic methanogen isolated from an ombrotrophic (rain-fed) peat bog, has revealed unique features that likely allow it to survive in acidic, nutrient-poor conditions. First, M. boonei is predicted to generate ATP using protons that are abundant in peat, rather than sodium ions that are scarce, and the sequence of a membrane-bound methyltransferase, believed to pump Na+ in all methanogens, shows differences in key amino acid residues. Further, perhaps reflecting the hypokalemic status of many peat bogs, M. boonei demonstrates redundancy in the predicted potassium uptake genes trk, kdp and kup, some of which may have been horizontally transferred to methanogens from bacteria, possibly Geobacter spp. Overall, the putative functions of the potassium uptake, ATPase and methyltransferase genes may, at least in part, explain the cosmopolitan success of group E1/E2 and related methanogenic archaea in acidic peat bogs.
Collapse
Affiliation(s)
- Suzanna Bräuer
- Department of Biology, Appalachian State University, Boone, NC 28608, USA
| | - Hinsby Cadillo-Quiroz
- Swette Center for Environmental Biotechnology at the Biodesign Institute, Arizona State University, Tempe, AZ 85287-4501, USA
| | - Nikos Kyrpides
- Department of Energy, Joint Genome Institute, Walnut Creek, CA 94598, USA
| | - Tanja Woyke
- Department of Energy, Joint Genome Institute, Walnut Creek, CA 94598, USA
| | - Lynne Goodwin
- Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Chris Detter
- Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Sheila Podell
- Scripps Institution of Oceanography, La Jolla, CA 92093, USA
| | - Joseph B Yavitt
- Department of Natural Resources, Cornell University, Ithaca, NY 14853, USA
| | - Stephen H Zinder
- Department of Microbiology, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
38
|
Trötschel C, Follmann M, Nettekoven JA, Mohrbach T, Forrest LR, Burkovski A, Marin K, Krämer R. Methionine uptake in Corynebacterium glutamicum by MetQNI and by MetPS, a novel methionine and alanine importer of the NSS neurotransmitter transporter family. Biochemistry 2015; 47:12698-709. [PMID: 18991398 DOI: 10.1021/bi801206t] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The soil bacterium Corynebacterium glutamicum is a model organism in amino acid biotechnology. Here we present the identification of two different L-methionine uptake systems including the first characterization of a bacterial secondary methionine carrier. The primary carrier MetQNI is a high affinity ABC-type transporter specific for l-methionine. Its expression is under the control of the transcription factor McbR, the global regulator of sulfur metabolism in C. glutamicum. Besides MetQNI, a novel secondary methionine uptake system of the NSS (neurotransmitter:sodium symporter) family was identified and named MetP. The MetP system is characterized by a lower affinity for methionine and uses Na(+) ions for energetic coupling. It is also the main alanine transporter in C. glutamicum and is expressed constitutively. These observations are consistent with models of methionine, alanine, and leucine bound to MetP, derived from the X-ray crystal structure of the LeuT transporter from Aquifex aeolicus. Complementation studies show that MetP consists of two components, a large subunit with 12 predicted transmembrane segments and, surprisingly, an additional subunit with one predicted transmembrane segment only. Thus, this new member of the NSS transporter family adds a novel feature to this class of carriers, namely, the functional dependence on an additional small subunit.
Collapse
Affiliation(s)
- Christian Trötschel
- Institute of Biochemistry, University of Koln, 50674 Koln, Germany, and Max Planck Institute of Biophysics, Max-von-Laue-Strasse 3, 60438 Frankfurt, Germany
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Lluch-Senar M, Delgado J, Chen WH, Lloréns-Rico V, O'Reilly FJ, Wodke JA, Unal EB, Yus E, Martínez S, Nichols RJ, Ferrar T, Vivancos A, Schmeisky A, Stülke J, van Noort V, Gavin AC, Bork P, Serrano L. Defining a minimal cell: essentiality of small ORFs and ncRNAs in a genome-reduced bacterium. Mol Syst Biol 2015; 11:780. [PMID: 25609650 PMCID: PMC4332154 DOI: 10.15252/msb.20145558] [Citation(s) in RCA: 106] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Identifying all essential genomic components is critical for the assembly of minimal artificial life. In the genome-reduced bacterium Mycoplasma pneumoniae, we found that small ORFs (smORFs; < 100 residues), accounting for 10% of all ORFs, are the most frequently essential genomic components (53%), followed by conventional ORFs (49%). Essentiality of smORFs may be explained by their function as members of protein and/or DNA/RNA complexes. In larger proteins, essentiality applied to individual domains and not entire proteins, a notion we could confirm by expression of truncated domains. The fraction of essential non-coding RNAs (ncRNAs) non-overlapping with essential genes is 5% higher than of non-transcribed regions (0.9%), pointing to the important functions of the former. We found that the minimal essential genome is comprised of 33% (269,410 bp) of the M. pneumoniae genome. Our data highlight an unexpected hidden layer of smORFs with essential functions, as well as non-coding regions, thus changing the focus when aiming to define the minimal essential genome.
Collapse
Affiliation(s)
- Maria Lluch-Senar
- EMBL/CRG Systems Biology Research Unit, Centre for Genomic Regulation (CRG), Barcelona, Spain Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Javier Delgado
- EMBL/CRG Systems Biology Research Unit, Centre for Genomic Regulation (CRG), Barcelona, Spain Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Wei-Hua Chen
- European Molecular Biology Laboratory, Heidelberg, Germany
| | - Verónica Lloréns-Rico
- EMBL/CRG Systems Biology Research Unit, Centre for Genomic Regulation (CRG), Barcelona, Spain Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | | | - Judith Ah Wodke
- EMBL/CRG Systems Biology Research Unit, Centre for Genomic Regulation (CRG), Barcelona, Spain Universitat Pompeu Fabra (UPF), Barcelona, Spain Theoretical Biophysics, Humboldt-Universität zu Berlin, Berlin, Germany
| | - E Besray Unal
- EMBL/CRG Systems Biology Research Unit, Centre for Genomic Regulation (CRG), Barcelona, Spain Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Eva Yus
- EMBL/CRG Systems Biology Research Unit, Centre for Genomic Regulation (CRG), Barcelona, Spain Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Sira Martínez
- EMBL/CRG Systems Biology Research Unit, Centre for Genomic Regulation (CRG), Barcelona, Spain Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | | | - Tony Ferrar
- EMBL/CRG Systems Biology Research Unit, Centre for Genomic Regulation (CRG), Barcelona, Spain Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Ana Vivancos
- Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Arne Schmeisky
- Department of General Microbiology, Institute for Microbiology and Genetics, Göttingen, Germany
| | - Jörg Stülke
- Department of General Microbiology, Institute for Microbiology and Genetics, Göttingen, Germany
| | - Vera van Noort
- Centre of Microbial and Plant Genetics, KU Leuven, Leuven, Belgium
| | | | - Peer Bork
- European Molecular Biology Laboratory, Heidelberg, Germany Max-Delbrück-Centre (MDC) for Molecular Medicine, Berlin, Germany
| | - Luis Serrano
- EMBL/CRG Systems Biology Research Unit, Centre for Genomic Regulation (CRG), Barcelona, Spain Universitat Pompeu Fabra (UPF), Barcelona, Spain Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| |
Collapse
|
40
|
Allen RJ, Brenner EP, VanOrsdel CE, Hobson JJ, Hearn DJ, Hemm MR. Conservation analysis of the CydX protein yields insights into small protein identification and evolution. BMC Genomics 2014; 15:946. [PMID: 25475368 PMCID: PMC4325964 DOI: 10.1186/1471-2164-15-946] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Accepted: 11/10/2014] [Indexed: 11/27/2022] Open
Abstract
Background The reliable identification of proteins containing 50 or fewer amino acids is difficult due to the limited information content in short sequences. The 37 amino acid CydX protein in Escherichia coli is a member of the cytochrome bd oxidase complex, an enzyme found throughout Eubacteria. To investigate the extent of CydX conservation and prevalence and evaluate different methods of small protein homologue identification, we surveyed 1095 Eubacteria species for the presence of the small protein. Results Over 300 homologues were identified, including 80 unannotated genes. The ability of both closely-related and divergent homologues to complement the E. coli ΔcydX mutant supports our identification techniques, and suggests that CydX homologues retain similar function among divergent species. However, sequence analysis of these proteins shows a great degree of variability, with only a few highly-conserved residues. An analysis of the co-variation between CydX homologues and their corresponding cydA and cydB genes shows a close synteny of the small protein with the CydA long Q-loop. Phylogenetic analysis suggests that the cydABX operon has undergone horizontal gene transfer, although the cydX gene likely evolved in a progenitor of the Alpha, Beta, and Gammaproteobacteria. Further investigation of cydAB operons identified two additional conserved hypothetical small proteins: CydY encoded in CydAQlong operons that lack cydX, and CydZ encoded in more than 150 CydAQshort operons. Conclusions This study provides a systematic analysis of bioinformatics techniques required for the unique challenges present in small protein identification and phylogenetic analyses. These results elucidate the prevalence of CydX throughout the Proteobacteria, provide insight into the selection pressure and sequence requirements for CydX function, and suggest a potential functional interaction between the small protein and the CydA Q-loop, an enigmatic domain of the cytochrome bd oxidase complex. Finally, these results identify other conserved small proteins encoded in cytochrome bd oxidase operons, suggesting that small protein subunits may be a more common component of these enzymes than previously thought. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-946) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | - Matthew R Hemm
- Department of Biological Sciences, Towson University, Towson 21252MD, USA.
| |
Collapse
|
41
|
Comparative analysis of kdp and ktr mutants reveals distinct roles of the potassium transporters in the model cyanobacterium Synechocystis sp. strain PCC 6803. J Bacteriol 2014; 197:676-87. [PMID: 25313394 DOI: 10.1128/jb.02276-14] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Photoautotrophic bacteria have developed mechanisms to maintain K(+) homeostasis under conditions of changing ionic concentrations in the environment. Synechocystis sp. strain PCC 6803 contains genes encoding a well-characterized Ktr-type K(+) uptake transporter (Ktr) and a putative ATP-dependent transporter specific for K(+) (Kdp). The contributions of each of these K(+) transport systems to cellular K(+) homeostasis have not yet been defined conclusively. To verify the functionality of Kdp, kdp genes were expressed in Escherichia coli, where Kdp conferred K(+) uptake, albeit with lower rates than were conferred by Ktr. An on-chip microfluidic device enabled monitoring of the biphasic initial volume recovery of single Synechocystis cells after hyperosmotic shock. Here, Ktr functioned as the primary K(+) uptake system during the first recovery phase, whereas Kdp did not contribute significantly. The expression of the kdp operon in Synechocystis was induced by extracellular K(+) depletion. Correspondingly, Kdp-mediated K(+) uptake supported Synechocystis cell growth with trace amounts of external potassium. This induction of kdp expression depended on two adjacent genes, hik20 and rre19, encoding a putative two-component system. The circadian expression of kdp and ktr peaked at subjective dawn, which may support the acquisition of K(+) required for the regular diurnal photosynthetic metabolism. These results indicate that Kdp contributes to the maintenance of a basal intracellular K(+) concentration under conditions of limited K(+) in natural environments, whereas Ktr mediates fast potassium movements in the presence of greater K(+) availability. Through their distinct activities, both Ktr and Kdp coordinate the responses of Synechocystis to changes in K(+) levels under fluctuating environmental conditions.
Collapse
|
42
|
Gannoun-Zaki L, Belon C, Dupont C, Hilbert F, Kremer L, Blanc-Potard AB. Overexpression of theSalmonellaKdpF membrane peptide modulates expression ofkdpgenes and intramacrophage growth. FEMS Microbiol Lett 2014; 359:34-41. [DOI: 10.1111/1574-6968.12559] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Revised: 07/09/2014] [Accepted: 07/25/2014] [Indexed: 11/30/2022] Open
Affiliation(s)
- Laila Gannoun-Zaki
- Laboratoire de Dynamique des Interactions Membranaires Normales et Pathologiques; Universités de Montpellier 2 et 1; CNRS-UMR5235; Montpellier; France
| | - Claudine Belon
- Laboratoire de Dynamique des Interactions Membranaires Normales et Pathologiques; Universités de Montpellier 2 et 1; CNRS-UMR5235; Montpellier; France
| | - Christian Dupont
- Laboratoire de Dynamique des Interactions Membranaires Normales et Pathologiques; Universités de Montpellier 2 et 1; CNRS-UMR5235; Montpellier; France
| | - Friederike Hilbert
- Institute of Meat Hygiene; Meat Technology and Food Science; University of Veterinary Medicine Vienna; Vienna Austria
| | - Laurent Kremer
- Laboratoire de Dynamique des Interactions Membranaires Normales et Pathologiques; Universités de Montpellier 2 et 1; CNRS-UMR5235; Montpellier; France
- INSERM; DIMNP; CNRS-UMR5235; Montpellier France
| | - Anne-Béatrice Blanc-Potard
- Laboratoire de Dynamique des Interactions Membranaires Normales et Pathologiques; Universités de Montpellier 2 et 1; CNRS-UMR5235; Montpellier; France
| |
Collapse
|
43
|
Damnjanovic B, Apell HJ. KdpFABC reconstituted in Escherichia coli lipid vesicles: substrate dependence of the transport rate. Biochemistry 2014; 53:5674-82. [PMID: 25144826 DOI: 10.1021/bi5008244] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
KdpFABC complexes were reconstituted in Escherichia coli lipid vesicles, and ion pumping was activated by addition of ATP to the external medium which corresponds to the cytoplasm under physiological conditions. ATP-driven potassium extrusion was studied in the presence of various substrates potentially influencing transport rate. The pump current was detected as a decrease of the membrane potential by the voltage-sensitive dye DiSC3(5). The results indicate that high cytoplasmic K(+) concentrations have an inhibitory effect on the KdpFABC complex. The pump current decreased to ∼25% of the maximal value at 140 mM K(+) and minimal Mg(2+)concentrations. This effect could be counteracted with increased Mg(2+) concentrations on the cytoplasmic side. This observation may be explained by the Gouy-Chapman effect of two Mg(2+) ions probably bound with a K1/2 of 0.8 mM close to the entrance of the access channel to the binding sites. This factor ensures that under physiological conditions the rate-limiting effect of K(+) release is significantly reduced. Also both ADP and inorganic phosphate are able to reduce the turnover rate of the pump by reversing the phosphorylation step (Ki of 151 μM) and the dephosphorylation step (Ki of 268 μM), respectively. In the case of the DDM-solubilized KdpFABC complex, activation energy under turnover conditions was previously found to be 55 kJ/mol, and the o-vanadate inhibition constant is shown here to be ∼1 μM, which is in agreement with values reported for other P-type ATPases. In the case of the reconstituted enzyme, however, significant differences were observed that have to be assigned to effects of the lipid bilayer environment. The activation energy was increased by a factor of 2, whereas the inhibition by o-vanadate became reduced in a way that only ∼66% of the enzyme could be inhibited and the inhibition constant was increased to a value of ∼60 μM.
Collapse
Affiliation(s)
- Bojana Damnjanovic
- Department of Biology and Konstanz Research School Chemical Biology, University of Konstanz , 78464 Konstanz, Germany
| | | |
Collapse
|
44
|
Damnjanovic B, Apell HJ. Role of protons in the pump cycle of KdpFABC investigated by time-resolved kinetic experiments. Biochemistry 2014; 53:3218-28. [PMID: 24766073 DOI: 10.1021/bi500336w] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The time-resolved kinetics of the KdpFABC complex solubilized in Aminoxide WS-35 was investigated by ATP concentration jump experiments. ATP was photoreleased from its inactive precursor, caged ATP, and charge movements in the membrane domain of the KdpFABC were detected by the electrochromic dye RH421. At low ATP concentrations, the ATP binding step became rate-limiting with an apparent, pH-independent ATP binding affinity of ~70 μM. At saturating ATP concentrations, the rate-limiting step is the conformational transition (E1-P → P-E2) with a rate constant of ~1.7 s(-1) at 20 °C that was independent of K(+) concentration. This observation together with the detected fluorescence decrease indicates that K(+) (or another positive ion) is bound in the membrane domain after enzyme phosphorylation and the conformational transition to the P-E2 state. pH dependence experiments revealed different roles of H(+) in the transport mechanism. Two different functions of protons for the ion pump must be distinguished. On one hand, there are electrogenically bound "functional" protons, which are not transported but prerequisite for the performance of the ATP-driven half-cycle. On the other hand, protons bind to the transport sites, acting as weak congeners of K(+). There possibly are noncompetitively bound protons, affecting the enzyme activity and/or coupling between KdpA and KdpB subunits. Finally, the recently proposed Post-Albers model for the KdpFABC complex was supplemented with stoichiometry factors of 2 for K(+) and 3 for H(+), and additional inhibitory side reactions controlled by H(+) were introduced, which are relevant at pH <6.5 and/or in the absence of K(+).
Collapse
|
45
|
Abstract
Small proteins, here defined as proteins of 50 amino acids or fewer in the absence of processing, have traditionally been overlooked due to challenges in their annotation and biochemical detection. In the past several years, however, increasing numbers of small proteins have been identified either through the realization that mutations in intergenic regions are actually within unannotated small protein genes or through the discovery that some small, regulatory RNAs encode small proteins. These insights, together with comparative sequence analysis, indicate that tens if not hundreds of small proteins are synthesized in a given organism. This review summarizes what has been learned about the functions of several of these bacterial small proteins, most of which act at the membrane, illustrating the astonishing range of processes in which these small proteins act and suggesting several general conclusions. Important questions for future studies of these overlooked proteins are also discussed.
Collapse
Affiliation(s)
- Gisela Storz
- Cell Biology and Metabolism Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892-5430;
| | | | | |
Collapse
|
46
|
Brylinski M. Exploring the "dark matter" of a mammalian proteome by protein structure and function modeling. Proteome Sci 2013; 11:47. [PMID: 24321360 PMCID: PMC3866606 DOI: 10.1186/1477-5956-11-47] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Accepted: 12/03/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND A growing body of evidence shows that gene products encoded by short open reading frames play key roles in numerous cellular processes. Yet, they are generally overlooked in genome assembly, escaping annotation because small protein-coding genes are difficult to predict computationally. Consequently, there are still a considerable number of small proteins whose functions are yet to be characterized. RESULTS To address this issue, we apply a collection of structural bioinformatics algorithms to infer molecular function of putative small proteins from the mouse proteome. Specifically, we construct 1,743 confident structure models of small proteins, which reveal a significant structural diversity with a noticeably high helical content. A subsequent structure-based function annotation of small protein models exposes 178,745 putative protein-protein interactions with the remaining gene products in the mouse proteome, 1,100 potential binding sites for small organic molecules and 987 metal-binding signatures. CONCLUSIONS These results strongly indicate that many small proteins adopt three-dimensional structures and are fully functional, playing important roles in transcriptional regulation, cell signaling and metabolism. Data collected through this work is freely available to the academic community at http://www.brylinski.org/content/databases to support future studies oriented on elucidating the functions of hypothetical small proteins.
Collapse
Affiliation(s)
- Michal Brylinski
- Department of Biological Sciences, Louisiana State University, 70803 Baton Rouge, LA, USA.
| |
Collapse
|
47
|
Stationary phase and nutrient levels trigger transcription of a genomic locus containing a novel peptide (TM1316) in the hyperthermophilic bacterium Thermotoga maritima. Appl Environ Microbiol 2013; 79:6637-46. [PMID: 23974142 DOI: 10.1128/aem.01627-13] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The genome of the hyperthermophilic bacterium Thermotoga maritima encodes numerous putative peptides/proteins of 100 amino acids or less. While most of these open reading frames (ORFs) are transcribed during growth, their corresponding physiological roles are largely unknown. The onset of stationary phase in T. maritima was accompanied by significant morphological changes and upregulation of several ORFs located in the TM1298-TM1336 genome locus. This region contains putative HicAB toxin-antitoxin pairs, hypothetical proteins, radical S-adenosylmethionine (SAM) enzymes, and ABC transporters. Of particular note was the TM1315-TM1319 operon, which includes a putative 31-amino-acid peptide (TM1316) that was the most highly transcribed gene in the transcriptome during stationary phase. Antibodies directed against a synthetic version of TM1316 were used to track its production, which correlated closely with transcriptomic data. Immunofluorescence microscopy revealed that TM1316 was localized to the cell envelope and prominent in cell aggregates formed during stationary phase. The only functionally characterized locus with an organization similar to that of TM1315-TM1319 is in Bacillus subtilis, which contains subtilosin A, a cyclic peptide with Cys-to-α-carbon linkages that functions as an antilisterial bacteriocin. While the organization of TM1316 resembled that of the Bacillus peptide (e.g., in its number of amino acids and spacing of Cys residues), preparations containing high levels of TM1316 affected the growth of neither Thermotoga species nor Pyrococcus furiosus, a hyperthermophilic archaeon isolated from the same locale as T. maritima. Several other putative Cys-rich peptides could be identified in the TM1298-TM1336 locus, and while their roles are also unclear, they merit examination as potential antimicrobial agents in hyperthermophilic biotopes.
Collapse
|
48
|
Damnjanovic B, Weber A, Potschies M, Greie JC, Apell HJ. Mechanistic analysis of the pump cycle of the KdpFABC P-type ATPase. Biochemistry 2013; 52:5563-76. [PMID: 23930894 DOI: 10.1021/bi400729e] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The high-affinity potassium uptake system KdpFABC is a unique type Ia P-type ATPase, because it separates the sites of ATP hydrolysis and ion transport on two different subunits. KdpFABC was expressed in Escherichia coli. It was then isolated and purified to homogeneity to obtain a detergent-solubilized enzyme complex that allowed the analysis of ion binding properties. The electrogenicity and binding affinities of the ion pump for K(+) and H(+) were determined in detergent-solubilized complexes by means of the electrochromic styryl dye RH421. Half-saturating K(+) concentrations and pK values for H(+) binding could be obtained in both the unphosphorylated and phosphorylated conformations of KdpFABC. The interaction of both ions with KdpFABC was studied in detail, and the presence of independent binding sites was ascertained. It is proposed that KdpFABC reconstituted in vesicles translocates protons at a low efficiency opposite from the well-established import of K(+) into the bacteria. On the basis of our results, various mechanistic pump cycle models were derived from the general Post-Albers scheme of P-type ATPases and discussed in the framework of the experimental evidence to propose a possible molecular pump cycle for KdpFABC.
Collapse
|
49
|
The Escherichia coli CydX protein is a member of the CydAB cytochrome bd oxidase complex and is required for cytochrome bd oxidase activity. J Bacteriol 2013; 195:3640-50. [PMID: 23749980 DOI: 10.1128/jb.00324-13] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Cytochrome bd oxidase operons from more than 50 species of bacteria contain a short gene encoding a small protein that ranges from ∼30 to 50 amino acids and is predicted to localize to the cell membrane. Although cytochrome bd oxidases have been studied for more than 70 years, little is known about the role of this small protein, denoted CydX, in oxidase activity. Here we report that Escherichia coli mutants lacking CydX exhibit phenotypes associated with reduced oxidase activity. In addition, cell membrane extracts from ΔcydX mutant strains have reduced oxidase activity in vitro. Consistent with data showing that CydX is required for cytochrome bd oxidase activity, copurification experiments indicate that CydX interacts with the CydAB cytochrome bd oxidase complex. Together, these data support the hypothesis that CydX is a subunit of the CydAB cytochrome bd oxidase complex that is required for complex activity. The results of mutation analysis of CydX suggest that few individual amino acids in the small protein are essential for function, at least in the context of protein overexpression. In addition, the results of analysis of the paralogous small transmembrane protein AppX show that the two proteins could have some overlapping functionality in the cell and that both have the potential to interact with the CydAB complex.
Collapse
|
50
|
Gannoun-Zaki L, Alibaud L, Carrère-Kremer S, Kremer L, Blanc-Potard AB. Overexpression of the KdpF membrane peptide in Mycobacterium bovis BCG results in reduced intramacrophage growth and altered cording morphology. PLoS One 2013; 8:e60379. [PMID: 23577107 PMCID: PMC3618439 DOI: 10.1371/journal.pone.0060379] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Accepted: 02/26/2013] [Indexed: 12/19/2022] Open
Abstract
Membrane peptides appear as an emerging class of regulatory molecules in bacteria, which can interact with membrane proteins, such as sensor kinases. To date, regulatory membrane peptides have been completely overlooked in mycobacteria. The 30 amino-acid-long KdpF peptide, which is co-transcribed with kdpABC genes and regulated by the KdpDE two-component system, is supposed to stabilize the KdpABC potassium transporter complex but may also exhibit unsuspected regulatory function(s) towards the KdpD sensor kinase. Herein, we showed by quantitative RT-PCR that the Mycobacterium bovis BCG kdpAB and kdpDE genes clusters are differentially induced in potassium-deprived broth medium or within infected macrophages. We have overexpressed the kdpF gene in M. bovis BCG to investigate its possible regulatory role and effect on mycobacterial virulence. Our results indicate that KdpF does not play a critical regulatory role on kdp genes expression despite the fact that KdpF interacts with the KdpD sensor kinase in a bacterial two-hybrid assay. However, overexpression of kdpF results in a significant reduction of M. bovis BCG growth in both murine and human primary macrophages, and is associated with a strong alteration of colonial morphology and impaired cording formation. To identify novel KdpF interactants, a mycobacterial library was screened using KdpF as bait in the bacterial two-hybrid system. This allowed us to identify members of the MmpL family of membrane proteins, known to participate in the biosynthesis/transport of various cell wall lipids, thus highlighting a possible link between KdpF and cell wall lipid metabolism. Taken together, these data suggest that KdpF overexpression reduces intramacrophage growth which may result from alteration of the mycobacterial cell wall.
Collapse
Affiliation(s)
- Laila Gannoun-Zaki
- Laboratoire de Dynamique des Interactions Membranaires Normales et Pathologiques, Universités de Montpellier 2 et 1, CNRS-UMR5235, Montpellier, France
| | - Laeticia Alibaud
- Laboratoire de Dynamique des Interactions Membranaires Normales et Pathologiques, Universités de Montpellier 2 et 1, CNRS-UMR5235, Montpellier, France
| | - Séverine Carrère-Kremer
- Laboratoire de Dynamique des Interactions Membranaires Normales et Pathologiques, Universités de Montpellier 2 et 1, CNRS-UMR5235, Montpellier, France
| | - Laurent Kremer
- Laboratoire de Dynamique des Interactions Membranaires Normales et Pathologiques, Universités de Montpellier 2 et 1, CNRS-UMR5235, Montpellier, France
- INSERM, DIMNP, CNRS-UMR5235, Montpellier, France
| | - Anne-Béatrice Blanc-Potard
- Laboratoire de Dynamique des Interactions Membranaires Normales et Pathologiques, Universités de Montpellier 2 et 1, CNRS-UMR5235, Montpellier, France
- * E-mail:
| |
Collapse
|