1
|
Wu P, Zhang Y, Shan Q, Wang Z, Cheng S, Wang L, Liu B, Li W, Chen Z, Luo J, Liang Y. The investigation of the mechanism underlying variations in oxidative stress tolerance of Lacticaseibacillus paracasei resulting from fermentation methods through endogenous CRISPR-Cas9 editing methodology. Food Microbiol 2025; 127:104697. [PMID: 39667861 DOI: 10.1016/j.fm.2024.104697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 11/28/2024] [Accepted: 11/28/2024] [Indexed: 12/14/2024]
Abstract
The probiotic effects of lactic acid bacteria make them widely used in human and animal breeding industry. However, the presence of oxidative stress during the production and application process can cause bacterial damage or even death, significantly compromising the functionality of probiotics. Despite its potential for broader application scenarios that could provide a more comprehensive understanding of bacteria's internal adaptation strategies, there is a lack of research investigating oxidative stress from the perspective of culture methods. In this study, the tolerance to oxidative stress was compared between bacteria cultivated through solid-state fermentation (SSF) and liquid-state fermentation (LSF), and the physiological and transcriptional disparities between these two bacterial strains were investigated. Additionally, a novel and efficient gene editing method was developed to elucidate the genetic basis underlying these differences in tolerance. The results demonstrated a significantly higher tolerance to oxidative stress in SSF bacteria compared to LSF bacteria, along with a stronger capacity for maintaining intracellular microenvironment stability and the activity of key metabolic enzymes. It is noteworthy that the bacteria from SSF significantly enhance the transport of carbohydrate substances and facilitate intracellular metabolic flow. Gene editing experiments have confirmed the crucial role of genes glpF and glpO in regulating the glycerol metabolism pathway, which is essential for enhancing the tolerance of bacteria from SSF to oxidative stress. Based on these findings, the mechanism underlying the disparity in oxidative stress tolerance resulting from different culture methods has been summarized. Furthermore, investigation into different culture modes has revealed that moderate oxygen levels during cultivation significantly influence variation in bacterial tolerance to oxidative stress. Importantly, these variations are species-specific and depend on the ecological niche distribution of Lactobacilli. These findings elucidate a novel mechanism by which Lacticaseibacillus paracasei Zhang tolerates oxidative stress, and also suggest that distinct cultivation and processing methods should be tailored based on the specific Lactobacilli groups to achieve optimal application effects in production.
Collapse
Affiliation(s)
- Pengyu Wu
- Henan Key Laboratory of Industrial Microbial Resources and Fermentation Technology, Nanyang Institute of Technology, Nanyang, Henan, 473004, China; School of Biological and Chemical Engineering, Nanyang Institute of Technology, Nanyang, 473004, China.
| | - Yutian Zhang
- Zhangzhongjing School of Traditional Chinese Medicine, Nanyang Institute of Technology, Nanyang, 473004, China
| | - Qiantong Shan
- School of Biological and Chemical Engineering, Nanyang Institute of Technology, Nanyang, 473004, China
| | - Ziyang Wang
- School of Biological and Chemical Engineering, Nanyang Institute of Technology, Nanyang, 473004, China
| | - Shuang Cheng
- School of Biological and Chemical Engineering, Nanyang Institute of Technology, Nanyang, 473004, China
| | - Laiyou Wang
- School of Biological and Chemical Engineering, Nanyang Institute of Technology, Nanyang, 473004, China
| | - Bingbing Liu
- School of Biological and Chemical Engineering, Nanyang Institute of Technology, Nanyang, 473004, China
| | - Wenhuan Li
- School of Biological and Chemical Engineering, Nanyang Institute of Technology, Nanyang, 473004, China
| | - Zhenmin Chen
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jiancheng Luo
- School of Biological and Chemical Engineering, Nanyang Institute of Technology, Nanyang, 473004, China
| | - Yunxiang Liang
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
2
|
Zhu Z, Hu Z, Ojima S, Yu X, Sugiyama M, Ono HK, Hu DL. Critical Involvement of the Thioredoxin Reductase Gene ( trxB) in Salmonella Gallinarum-Induced Systemic Infection in Chickens. Microorganisms 2024; 12:1180. [PMID: 38930562 PMCID: PMC11205728 DOI: 10.3390/microorganisms12061180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 06/07/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
Salmonella enterica serovar Gallinarum biovar Gallinarum (SG) causes fowl typhoid, a notifiable infectious disease in poultry. However, the pathogenic mechanism of SG-induced systemic infection in chickens remains unclear. Thioredoxin reductase (TrxB) is a redox protein crucial for regulating various enzyme activities in Salmonella serovar, but the role in SG-induced chicken systemic infection has yet to be determined. Here, we constructed a mutant SG strain lacking the trxB gene (trxB::Cm) and used chicken embryo inoculation and chicken oral infection to investigate the role of trxB gene in the pathogenicity of SG. Our results showed that trxB::Cm exhibited no apparent differences in colony morphology and growth conditions but exhibited reduced tolerance to H2O2 and increased resistance to bile acids. In the chicken embryo inoculation model, there was no significant difference in the pathogenicity of trxB::Cm and wild-type (WT) strains. In the chicken oral infection, the WT-infected group exhibited typical clinical symptoms of fowl typhoid, with complete mortality between days 6 and 9 post infection. In contrast, the trxB::Cm group showed a 100% survival rate, with no apparent clinical symptoms or pathological changes observed. The viable bacterial counts in the liver and spleen of the trxB::Cm-infected group were significantly reduced, accompanied by decreased expression of cytokines and chemokines (IL-1β, IL-6, IL-12, CXCLi1, TNF-α, and IFN-γ), which were significantly lower than those in the WT group. These results show that the pathogenicity of the trxB-deficient strain was significantly attenuated, indicating that the trxB gene is a crucial virulence factor in SG-induced systemic infection in chickens, suggesting that trxB may become a potentially effective target for controlling and preventing SG infection in chickens.
Collapse
Affiliation(s)
- Zhihao Zhu
- Department of Zoonoses, Kitasato University School of Veterinary Medicine, Towada 034-8628, Japan; (Z.Z.); (Z.H.); (S.O.); (X.Y.); (H.K.O.)
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Zuo Hu
- Department of Zoonoses, Kitasato University School of Veterinary Medicine, Towada 034-8628, Japan; (Z.Z.); (Z.H.); (S.O.); (X.Y.); (H.K.O.)
| | - Shinjiro Ojima
- Department of Zoonoses, Kitasato University School of Veterinary Medicine, Towada 034-8628, Japan; (Z.Z.); (Z.H.); (S.O.); (X.Y.); (H.K.O.)
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Xiaoying Yu
- Department of Zoonoses, Kitasato University School of Veterinary Medicine, Towada 034-8628, Japan; (Z.Z.); (Z.H.); (S.O.); (X.Y.); (H.K.O.)
- College of Veterinary Medicine, Southwest University, Chongqing 400715, China
| | - Makoto Sugiyama
- Laboratory of Veterinary Anatomy, Kitasato University School of Veterinary Medicine, Towada 034-8628, Japan;
| | - Hisaya K. Ono
- Department of Zoonoses, Kitasato University School of Veterinary Medicine, Towada 034-8628, Japan; (Z.Z.); (Z.H.); (S.O.); (X.Y.); (H.K.O.)
| | - Dong-Liang Hu
- Department of Zoonoses, Kitasato University School of Veterinary Medicine, Towada 034-8628, Japan; (Z.Z.); (Z.H.); (S.O.); (X.Y.); (H.K.O.)
| |
Collapse
|
3
|
Shikha S, Kumar V, Jain A, Dutta D, Bhattacharyya MS. Unraveling the mechanistic insights of sophorolipid-capped gold nanoparticle-induced cell death in Vibrio cholerae. Microbiol Spectr 2023; 11:e0017523. [PMID: 37811987 PMCID: PMC10715219 DOI: 10.1128/spectrum.00175-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 08/21/2023] [Indexed: 10/10/2023] Open
Abstract
IMPORTANCE Vibrio cholerae, a Gram-negative bacterium, is the causative agent of a fatal disease, "cholera." Prevention of cholera outbreak is possible by eliminating the bacteria from the environment. However, antimicrobial resistance developed in microorganisms has posed a threat and challenges to its treatment. Application of nanoparticles is a useful and effective option for the elimination of such microorganisms. Metal-based nanopaticles exhibit microbial toxicity through non-specific mechanisms. To prevent resistance development and increase antibacterial efficiency, rational designing of nanoparticles is required. Thus, knowledge on the exact mechanism of action of nanoparticles is highly essential. In this study, we explore the possible mechanisms of antibacterial activity of AuNPs-SL against V. cholerae. We show that the interaction of AuNPs-SL with V. cholerae enhances ROS production and membrane depolarization, change in permeability, and leakage of intracellular content. This action leads to the depletion of cellular ATP level, DNA damage, and subsequent cell death.
Collapse
Affiliation(s)
- Sristy Shikha
- Biochemical Engineering Research and Process Development Centre (BERPDC), CSIR-Institute of Microbial Technology (IMTECH), Chandigarh, India
| | - Vineet Kumar
- Molecular Microbiology Laboratory, CSIR-Institute of Microbial Technology (IMTECH), Chandigarh, India
| | - Ankita Jain
- Biochemical Engineering Research and Process Development Centre (BERPDC), CSIR-Institute of Microbial Technology (IMTECH), Chandigarh, India
| | - Dipak Dutta
- Molecular Microbiology Laboratory, CSIR-Institute of Microbial Technology (IMTECH), Chandigarh, India
| | - Mani Shankar Bhattacharyya
- Biochemical Engineering Research and Process Development Centre (BERPDC), CSIR-Institute of Microbial Technology (IMTECH), Chandigarh, India
| |
Collapse
|
4
|
Park JS, Rustamov N, Roh YS. The Roles of NFR2-Regulated Oxidative Stress and Mitochondrial Quality Control in Chronic Liver Diseases. Antioxidants (Basel) 2023; 12:1928. [PMID: 38001781 PMCID: PMC10669501 DOI: 10.3390/antiox12111928] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/24/2023] [Accepted: 10/27/2023] [Indexed: 11/26/2023] Open
Abstract
Chronic liver disease (CLD) affects a significant portion of the global population, leading to a substantial number of deaths each year. Distinct forms like non-alcoholic fatty liver disease (NAFLD) and alcoholic fatty liver disease (ALD), though they have different etiologies, highlight shared pathologies rooted in oxidative stress. Central to liver metabolism, mitochondria are essential for ATP production, gluconeogenesis, fatty acid oxidation, and heme synthesis. However, in diseases like NAFLD, ALD, and liver fibrosis, mitochondrial function is compromised by inflammatory cytokines, hepatotoxins, and metabolic irregularities. This dysfunction, especially electron leakage, exacerbates the production of reactive oxygen species (ROS), augmenting liver damage. Amidst this, nuclear factor erythroid 2-related factor 2 (NRF2) emerges as a cellular protector. It not only counters oxidative stress by regulating antioxidant genes but also maintains mitochondrial health by overseeing autophagy and biogenesis. The synergy between NRF2 modulation and mitochondrial function introduces new therapeutic potentials for CLD, focusing on preserving mitochondrial integrity against oxidative threats. This review delves into the intricate role of oxidative stress in CLD, shedding light on innovative strategies for its prevention and treatment, especially through the modulation of the NRF2 and mitochondrial pathways.
Collapse
Affiliation(s)
| | | | - Yoon-Seok Roh
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju 28160, Republic of Korea; (J.-S.P.); (N.R.)
| |
Collapse
|
5
|
Shimizu T, Hashimoto M, Masuda T. Thioredoxin-2 Regulates SqrR-Mediated Polysulfide-Responsive Transcription via Reduction of a Polysulfide Link in SqrR. Antioxidants (Basel) 2023; 12:antiox12030699. [PMID: 36978947 PMCID: PMC10044876 DOI: 10.3390/antiox12030699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/09/2023] [Accepted: 03/09/2023] [Indexed: 03/14/2023] Open
Abstract
Polysulfide plays an essential role in controlling various physiological activities in almost all organisms. We recently investigated the impact of polysulfide metabolic enzymes on the temporal dynamics of cellular polysulfide speciation and transcriptional regulation by the polysulfide-responsive transcription factor SqrR in Rhodobacter capsulatus. However, how the polysulfidation of thiol groups in SqrR is reduced remains unclear. In the present study, we examined the reduction of polysulfidated thiol residues by the thioredoxin system. TrxC interacted with SqrR in vitro and reduced the polysulfide crosslink between two cysteine residues in SqrR. Furthermore, we found that exogenous sulfide-induced SqrR de-repression during longer culture times is maintained upon disruption of the trxC gene. These results establish a novel signaling pathway in SqrR-mediated polysulfide-induced transcription, by which thioredoxin-2 restores SqrR to a transcriptionally repressed state via the reduction of polysulfidated thiol residues.
Collapse
|
6
|
Margalit A, Carolan JC, Walsh F. Global protein responses of multi-drug resistant plasmid containing Escherichia coli to ampicillin, cefotaxime, imipenem and ciprofloxacin. J Glob Antimicrob Resist 2021; 28:90-96. [PMID: 34922055 DOI: 10.1016/j.jgar.2021.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/07/2021] [Accepted: 12/08/2021] [Indexed: 10/19/2022] Open
Abstract
OBJECTIVES This study compared the proteomics of Escherichia coli containing the multi-drug resistance pEK499 plasmid under antimicrobial stress and no antimicrobial. METHODS We utilised mass spectrometry-based proteomics to compare the proteomes of the bacteria and plasmid under antimicrobial stress and no antimicrobial. RESULTS Our analysis identified statistically significant differentially abundant proteins common to groups exposed to the β-lactam antimicrobials but not ciprofloxacin, indicating a β-lactam stress response to exposure from this class of drugs, irrespective of β-lactam resistance or susceptibility. Data arising from comparisons of the proteomes of ciprofloxacin-treated E. coli and controls detected an increase in the relative abundance of proteins associated with ribosomes, translation, the TCA-cycle and several proteins associated with detoxification and a decrease in the relative abundances of proteins associated with stress response, including oxidative stress. We identified changes in proteins associated with persister formation in the presence of ciprofloxacin but not the β-lactams. The plasmid proteome differed across each treatment and did not follow the pattern of antimicrobial - AMR protein associations: a relative increase in the amount of blaCTX-M-15 in the presence of cefotaxime and ciprofloxacin but not the other β-lactams, suggesting regulation of the blaCTX-M-15 protein production. CONCLUSIONS The proteomic data from the this study provided novel insights into the proteins produced from the chromosome and plasmid under different antimicrobial stresses. These data also identified novel proteins not previously associated with AMR or antimicrobials responses in pathogens, which may well represent potential targets of AMR inhibition.
Collapse
Affiliation(s)
- Anatte Margalit
- Department of Biology, Maynooth University, Co. Kildare, Ireland
| | - James C Carolan
- Department of Biology, Maynooth University, Co. Kildare, Ireland
| | - Fiona Walsh
- Department of Biology, Maynooth University, Co. Kildare, Ireland.
| |
Collapse
|
7
|
Nordstedt NP, Jones ML. Genomic Analysis of Serratia plymuthica MBSA-MJ1: A Plant Growth Promoting Rhizobacteria That Improves Water Stress Tolerance in Greenhouse Ornamentals. Front Microbiol 2021; 12:653556. [PMID: 34046022 PMCID: PMC8144289 DOI: 10.3389/fmicb.2021.653556] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 04/14/2021] [Indexed: 12/26/2022] Open
Abstract
Water stress decreases the health and quality of horticulture crops by inhibiting photosynthesis, transpiration, and nutrient uptake. Application of plant growth promoting rhizobacteria (PGPR) can increase the growth, stress tolerance, and overall quality of field and greenhouse grown crops subjected to water stress. Here, we evaluated Serratia plymuthica MBSA-MJ1 for its ability to increase plant growth and quality of Petunia × hybrida (petunia), Impatiens walleriana (impatiens), and Viola × wittrockiana (pansy) plants recovering from severe water stress. Plants were treated weekly with inoculum of MBSA-MJ1, and plant growth and quality were evaluated 2 weeks after recovery from water stress. Application of S. plymuthica MBSA-MJ1 increased the visual quality and shoot biomass of petunia and impatiens and increased the flower number of petunia after recovery from water stress. In addition, in vitro characterizations showed that MBSA-MJ1 is a motile bacterium with moderate levels of antibiotic resistance that can withstand osmotic stress. Further, comprehensive genomic analyses identified genes putatively involved in bacterial osmotic and oxidative stress responses and the synthesis of osmoprotectants and vitamins that could potentially be involved in increasing plant water stress tolerance. This work provides a better understanding of potential mechanisms involved in beneficial plant-microbe interactions under abiotic stress using a novel S. plymuthica strain as a model.
Collapse
Affiliation(s)
- Nathan P Nordstedt
- Department of Horticulture and Crop Science, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH, United States
| | - Michelle L Jones
- Department of Horticulture and Crop Science, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH, United States
| |
Collapse
|
8
|
Daer S, Goodwill JE, Ikuma K. Effect of ferrate and monochloramine disinfection on the physiological and transcriptomic response of Escherichia coli at late stationary phase. WATER RESEARCH 2021; 189:116580. [PMID: 33166917 DOI: 10.1016/j.watres.2020.116580] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 10/08/2020] [Accepted: 10/29/2020] [Indexed: 06/11/2023]
Abstract
Biological mechanisms of disinfection not only vary by disinfectant but also remain not well understood. We investigated the physiological and transcriptomic response of Escherichia coli at late stationary phase to ferrate and monochloramine in amended lake water. Although ferrate and monochloramine treatments similarly reduced culturable cell concentrations by 3-log10, 64% and 11% of treated cells were viable following monochloramine and ferrate treatment, respectively. This observed induction of viable but non-culturable (VBNC) state following monochloramine treatment but not ferrate is attributed to slower monochloramine disinfection kinetics (by 2.8 times) compared to ferrate. Transcriptomic analysis of E. coli at 15 min of exposure revealed that 3 times as many genes related to translation and transcription were downregulated by monochloramine compared to ferrate, suggesting that monochloramine treatment may be inducing VBNC through reduced protein synthesis and metabolism. Downregulation of universal stress response genes (rpoS, uspA) was attributed to growth-related physiological stressors during late stationary phase which may have contributed to the elevated expression levels of general stress responses pre-disinfection and, subsequently, their significant downregulation post-disinfection. Both disinfectants upregulated oxidative stress response genes (trxC, grxA, soxS), although levels of upregulation were time sensitive. This work shows that bacterial inactivation responses to disinfectants is mediated by complex molecular and growth-related responses.
Collapse
Affiliation(s)
- Sahar Daer
- Department of Civil, Construction and Environmental Engineering, Iowa State University, Ames, IA, United States; Environmental Sciences Interdepartmental Graduate Program, Iowa State University, Ames, IA, United States
| | - Joseph E Goodwill
- Department of Civil and Environmental Engineering, University of Rhode Island, United States
| | - Kaoru Ikuma
- Department of Civil, Construction and Environmental Engineering, Iowa State University, Ames, IA, United States; Environmental Sciences Interdepartmental Graduate Program, Iowa State University, Ames, IA, United States; Interdepartmental Microbiology Graduate Program, Iowa State University, Ames, IA, United States.
| |
Collapse
|
9
|
Seco-Cervera M, González-Cabo P, Pallardó FV, Romá-Mateo C, García-Giménez JL. Thioredoxin and Glutaredoxin Systems as Potential Targets for the Development of New Treatments in Friedreich's Ataxia. Antioxidants (Basel) 2020; 9:antiox9121257. [PMID: 33321938 PMCID: PMC7763308 DOI: 10.3390/antiox9121257] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/04/2020] [Accepted: 12/07/2020] [Indexed: 12/11/2022] Open
Abstract
The thioredoxin family consists of a small group of redox proteins present in all organisms and composed of thioredoxins (TRXs), glutaredoxins (GLRXs) and peroxiredoxins (PRDXs) which are found in the extracellular fluid, the cytoplasm, the mitochondria and in the nucleus with functions that include antioxidation, signaling and transcriptional control, among others. The importance of thioredoxin family proteins in neurodegenerative diseases is gaining relevance because some of these proteins have demonstrated an important role in the central nervous system by mediating neuroprotection against oxidative stress, contributing to mitochondrial function and regulating gene expression. Specifically, in the context of Friedreich’s ataxia (FRDA), thioredoxin family proteins may have a special role in the regulation of Nrf2 expression and function, in Fe-S cluster metabolism, controlling the expression of genes located at the iron-response element (IRE) and probably regulating ferroptosis. Therefore, comprehension of the mechanisms that closely link thioredoxin family proteins with cellular processes affected in FRDA will serve as a cornerstone to design improved therapeutic strategies.
Collapse
Affiliation(s)
- Marta Seco-Cervera
- Centre for Biomedical Research on Rare Diseases (CIBERER), 46010 Valencia, Spain; (M.S.-C.); (P.G.-C.); (F.V.P.)
- Department of Physiology, Faculty of Medicine and Dentistry, Universitat de València (UV), 46010 Valencia, Spain
- Biomedical Research Institute INCLIVA, 46010 Valencia, Spain
| | - Pilar González-Cabo
- Centre for Biomedical Research on Rare Diseases (CIBERER), 46010 Valencia, Spain; (M.S.-C.); (P.G.-C.); (F.V.P.)
- Department of Physiology, Faculty of Medicine and Dentistry, Universitat de València (UV), 46010 Valencia, Spain
- Biomedical Research Institute INCLIVA, 46010 Valencia, Spain
| | - Federico V. Pallardó
- Centre for Biomedical Research on Rare Diseases (CIBERER), 46010 Valencia, Spain; (M.S.-C.); (P.G.-C.); (F.V.P.)
- Department of Physiology, Faculty of Medicine and Dentistry, Universitat de València (UV), 46010 Valencia, Spain
- Biomedical Research Institute INCLIVA, 46010 Valencia, Spain
| | - Carlos Romá-Mateo
- Centre for Biomedical Research on Rare Diseases (CIBERER), 46010 Valencia, Spain; (M.S.-C.); (P.G.-C.); (F.V.P.)
- Department of Physiology, Faculty of Medicine and Dentistry, Universitat de València (UV), 46010 Valencia, Spain
- Biomedical Research Institute INCLIVA, 46010 Valencia, Spain
- Correspondence: (C.R.-M.); (J.L.G.-G.); Tel.: +34-963-864-646 (C.R.-M. & J.L.G.-G.)
| | - José Luis García-Giménez
- Centre for Biomedical Research on Rare Diseases (CIBERER), 46010 Valencia, Spain; (M.S.-C.); (P.G.-C.); (F.V.P.)
- Department of Physiology, Faculty of Medicine and Dentistry, Universitat de València (UV), 46010 Valencia, Spain
- Biomedical Research Institute INCLIVA, 46010 Valencia, Spain
- Correspondence: (C.R.-M.); (J.L.G.-G.); Tel.: +34-963-864-646 (C.R.-M. & J.L.G.-G.)
| |
Collapse
|
10
|
Wang P, Wang J, Xie Z, Zhou J, Lu Q, Zhao Y, Dong C, Zou L. Depletion of multidrug-resistant uropathogenic Escherichia coli BC1 by ebselen and silver ion. J Cell Mol Med 2020; 24:13139-13150. [PMID: 32975381 PMCID: PMC7701569 DOI: 10.1111/jcmm.15920] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 08/19/2020] [Accepted: 09/07/2020] [Indexed: 12/18/2022] Open
Abstract
Ebselen, an organo‐selenium compound with well‐characterized toxicology and pharmacology, recently exhibited potent antibacterial activity against glutathione (GSH)‐negative bacteria by disrupting redox homeostasis. In this paper, we show that ebselen and silver ion in combination exert strong bactericidal activity against multidrug‐resistant (MDR) uropathogenic Escherichia coli (UPEC) BC1, a model MDR GSH‐positive bacterium. The mechanisms were found to involve consumption of total intracellular GSH and inhibition of thioredoxin reductase activity, which was highly related to reactive oxygen species up‐regulation. Furthermore, the therapeutic efficacy of ebselen and silver ion against UPEC‐induced cystitis was assessed in a mouse model. Treatment with ebselen and silver ion significantly reduced bacterial loads, down‐regulated the expression levels of tumour necrosis factor‐α (TNF‐α) and interferon‐γ (IFN‐γ) on‐site and decreased white/red blood cell counts in mild cystitis model mice, which demonstrated the anti‐inflammatory property of these agents. In addition, ebselen and silver ion also exhibited significantly high protective ability (100%) against acute cystitis infections. These results together may lay the foundation for further analysis and development of ebselen and silver ion as antibacterial agents for treatment of MDR UPEC infections.
Collapse
Affiliation(s)
- Peng Wang
- The First College of Clinical Medical Science, China Three Gorges University, Yichang, Hubei, China.,The Institute of Infection and Inflammation, Medical College, China Three Gorges University, Yichang, Hubei, China.,Central Laboratory, The People's Hospital of China Three Gorges University, Yichang, Hubei, China
| | - Jun Wang
- The Institute of Infection and Inflammation, Medical College, China Three Gorges University, Yichang, Hubei, China.,Central Laboratory, The People's Hospital of China Three Gorges University, Yichang, Hubei, China
| | - Zonglan Xie
- The First College of Clinical Medical Science, China Three Gorges University, Yichang, Hubei, China
| | - Jingxuan Zhou
- The Institute of Infection and Inflammation, Medical College, China Three Gorges University, Yichang, Hubei, China.,Central Laboratory, The People's Hospital of China Three Gorges University, Yichang, Hubei, China
| | - Qianqian Lu
- The Institute of Infection and Inflammation, Medical College, China Three Gorges University, Yichang, Hubei, China.,Central Laboratory, The People's Hospital of China Three Gorges University, Yichang, Hubei, China
| | - Ying Zhao
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing, China
| | - Chuanjiang Dong
- The First College of Clinical Medical Science, China Three Gorges University, Yichang, Hubei, China
| | - Lili Zou
- The First College of Clinical Medical Science, China Three Gorges University, Yichang, Hubei, China.,The Institute of Infection and Inflammation, Medical College, China Three Gorges University, Yichang, Hubei, China.,Central Laboratory, The People's Hospital of China Three Gorges University, Yichang, Hubei, China
| |
Collapse
|
11
|
Ren X, Zou L, Holmgren A. Targeting Bacterial Antioxidant Systems for Antibiotics Development. Curr Med Chem 2020; 27:1922-1939. [PMID: 31589114 DOI: 10.2174/0929867326666191007163654] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 09/18/2018] [Accepted: 12/13/2018] [Indexed: 12/15/2022]
Abstract
The emergence of multidrug-resistant bacteria has become an urgent issue in modern medicine which requires novel strategies to develop antibiotics. Recent studies have supported the hypothesis that antibiotic-induced bacterial cell death is mediated by Reactive Oxygen Species (ROS). The hypothesis also highlighted the importance of antioxidant systems, the defense mechanism which contributes to antibiotic resistance. Thioredoxin and glutathione systems are the two major thiol-dependent systems which not only provide antioxidant capacity but also participate in various biological events in bacteria, such as DNA synthesis and protein folding. The biological importance makes them promising targets for novel antibiotics development. Based on the idea, ebselen and auranofin, two bacterial thioredoxin reductase inhibitors, have been found to inhibit the growth of bacteria lacking the GSH efficiently. A recent study combining ebselen and silver exhibited a strong synergistic effect against Multidrug-Resistant (MDR) Gram-negative bacteria which possess both thioredoxin and glutathione systems. These drug-repurposing studies are promising for quick clinical usage due to their well-known profile.
Collapse
Affiliation(s)
- Xiaoyuan Ren
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Lili Zou
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-171 77 Stockholm, Sweden.,Translational Neuroscience & Neural Regeneration and Repair Institute/ Institute of Cell Therapy, The First Hospital of Yichang, Three Gorges University, 443000 Yichang, China
| | - Arne Holmgren
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| |
Collapse
|
12
|
González D, Álamos P, Rivero M, Orellana O, Norambuena J, Chávez R, Levicán G. Deciphering the Role of Multiple Thioredoxin Fold Proteins of Leptospirillum sp. in Oxidative Stress Tolerance. Int J Mol Sci 2020; 21:E1880. [PMID: 32164170 PMCID: PMC7084401 DOI: 10.3390/ijms21051880] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 03/04/2020] [Accepted: 03/05/2020] [Indexed: 12/22/2022] Open
Abstract
Thioredoxin fold proteins (TFPs) form a family of diverse proteins involved in thiol/disulfide exchange in cells from all domains of life. Leptospirillum spp. are bioleaching bacteria naturally exposed to extreme conditions like acidic pH and high concentrations of metals that can contribute to the generation of reactive oxygen species (ROS) and consequently the induction of thiol oxidative damage. Bioinformatic studies have predicted 13 genes that encode for TFP proteins in Leptospirillum spp. We analyzed the participation of individual tfp genes from Leptospirillum sp. CF-1 in the response to oxidative conditions. Genomic context analysis predicted the involvement of these genes in the general thiol-reducing system, cofactor biosynthesis, carbon fixation, cytochrome c biogenesis, signal transduction, and pilus and fimbria assembly. All tfp genes identified were transcriptionally active, although they responded differentially to ferric sulfate and diamide stress. Some of these genes confer oxidative protection to a thioredoxin-deficient Escherichia coli strain by restoring the wild-type phenotype under oxidative stress conditions. These findings contribute to our understanding of the diversity and complexity of thiol/disulfide systems, and of adaptations that emerge in acidophilic microorganisms that allow them to thrive in highly oxidative environments. These findings also give new insights into the physiology of these microorganisms during industrial bioleaching operations.
Collapse
Affiliation(s)
- Daniela González
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Avenida Libertador Bernardo O’Higgins 3363, Estación Central Santiago 917022, Chile; (D.G.); (P.Á.); (M.R.); (J.N.); (R.C.)
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile;
| | - Pamela Álamos
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Avenida Libertador Bernardo O’Higgins 3363, Estación Central Santiago 917022, Chile; (D.G.); (P.Á.); (M.R.); (J.N.); (R.C.)
| | - Matías Rivero
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Avenida Libertador Bernardo O’Higgins 3363, Estación Central Santiago 917022, Chile; (D.G.); (P.Á.); (M.R.); (J.N.); (R.C.)
| | - Omar Orellana
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile;
| | - Javiera Norambuena
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Avenida Libertador Bernardo O’Higgins 3363, Estación Central Santiago 917022, Chile; (D.G.); (P.Á.); (M.R.); (J.N.); (R.C.)
| | - Renato Chávez
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Avenida Libertador Bernardo O’Higgins 3363, Estación Central Santiago 917022, Chile; (D.G.); (P.Á.); (M.R.); (J.N.); (R.C.)
| | - Gloria Levicán
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Avenida Libertador Bernardo O’Higgins 3363, Estación Central Santiago 917022, Chile; (D.G.); (P.Á.); (M.R.); (J.N.); (R.C.)
| |
Collapse
|
13
|
Transcriptomic Response of Nitrosomonas europaea Transitioned from Ammonia- to Oxygen-Limited Steady-State Growth. mSystems 2020; 5:5/1/e00562-19. [PMID: 31937676 PMCID: PMC6967387 DOI: 10.1128/msystems.00562-19] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Nitrification is a ubiquitous microbially mediated process in the environment and an essential process in engineered systems such as wastewater and drinking water treatment plants. However, nitrification also contributes to fertilizer loss from agricultural environments, increasing the eutrophication of downstream aquatic ecosystems, and produces the greenhouse gas nitrous oxide. As ammonia-oxidizing bacteria are the most dominant ammonia-oxidizing microbes in fertilized agricultural soils, understanding their responses to a variety of environmental conditions is essential for curbing the negative environmental effects of nitrification. Notably, oxygen limitation has been reported to significantly increase nitric oxide and nitrous oxide production during nitrification. Here, we investigate the physiology of the best-characterized ammonia-oxidizing bacterium, Nitrosomonas europaea, growing under oxygen-limited conditions. Ammonia-oxidizing microorganisms perform the first step of nitrification, the oxidation of ammonia to nitrite. The bacterium Nitrosomonas europaea is the best-characterized ammonia oxidizer to date. Exposure to hypoxic conditions has a profound effect on the physiology of N. europaea, e.g., by inducing nitrifier denitrification, resulting in increased nitric and nitrous oxide production. This metabolic shift is of major significance in agricultural soils, as it contributes to fertilizer loss and global climate change. Previous studies investigating the effect of oxygen limitation on N. europaea have focused on the transcriptional regulation of genes involved in nitrification and nitrifier denitrification. Here, we combine steady-state cultivation with whole-genome transcriptomics to investigate the overall effect of oxygen limitation on N. europaea. Under oxygen-limited conditions, growth yield was reduced and ammonia-to-nitrite conversion was not stoichiometric, suggesting the production of nitrogenous gases. However, the transcription of the principal nitric oxide reductase (cNOR) did not change significantly during oxygen-limited growth, while the transcription of the nitrite reductase-encoding gene (nirK) was significantly lower. In contrast, both heme-copper-containing cytochrome c oxidases encoded by N. europaea were upregulated during oxygen-limited growth. Particularly striking was the significant increase in transcription of the B-type heme-copper oxidase, proposed to function as a nitric oxide reductase (sNOR) in ammonia-oxidizing bacteria. In the context of previous physiological studies, as well as the evolutionary placement of N. europaea’s sNOR with regard to other heme-copper oxidases, these results suggest sNOR may function as a high-affinity terminal oxidase in N. europaea and other ammonia-oxidizing bacteria. IMPORTANCE Nitrification is a ubiquitous microbially mediated process in the environment and an essential process in engineered systems such as wastewater and drinking water treatment plants. However, nitrification also contributes to fertilizer loss from agricultural environments, increasing the eutrophication of downstream aquatic ecosystems, and produces the greenhouse gas nitrous oxide. As ammonia-oxidizing bacteria are the most dominant ammonia-oxidizing microbes in fertilized agricultural soils, understanding their responses to a variety of environmental conditions is essential for curbing the negative environmental effects of nitrification. Notably, oxygen limitation has been reported to significantly increase nitric oxide and nitrous oxide production during nitrification. Here, we investigate the physiology of the best-characterized ammonia-oxidizing bacterium, Nitrosomonas europaea, growing under oxygen-limited conditions.
Collapse
|
14
|
Dong C, Wang J, Chen H, Wang P, Zhou J, Zhao Y, Zou L. Synergistic therapeutic efficacy of ebselen and silver ions against multidrug-resistant Acinetobacter baumannii-induced urinary tract infections. Metallomics 2020; 12:860-867. [PMID: 32452501 DOI: 10.1039/d0mt00091d] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Ebselen (EbSe), an organo-selenium compound with well-characterized toxicology and pharmacology, exhibited potent antibacterial activity against glutathione (GSH)-positive bacteria when combined with silver ions (Ag+).
Collapse
Affiliation(s)
- Chuanjiang Dong
- The First College of Clinical Medical Science
- China Three Gorges University
- 443000 Yichang
- China
| | - Jun Wang
- The Institute of Cell Therapy
- The People's Hospital of China Three Gorges University
- 443000 Yichang
- China
| | - Huan Chen
- The First College of Clinical Medical Science
- China Three Gorges University
- 443000 Yichang
- China
| | - Peng Wang
- The First College of Clinical Medical Science
- China Three Gorges University
- 443000 Yichang
- China
- The Institute of Cell Therapy
| | - Jingxuan Zhou
- The Institute of Cell Therapy
- The People's Hospital of China Three Gorges University
- 443000 Yichang
- China
- The Institute of Infection and Inflammation
| | - Ying Zhao
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University)
- Ministry of Education
- College of Pharmaceutical Sciences
- Southwest University
- 400715 Chongqing
| | - Lili Zou
- The First College of Clinical Medical Science
- China Three Gorges University
- 443000 Yichang
- China
- The Institute of Infection and Inflammation
| |
Collapse
|
15
|
Distinct Roles of Shewanella oneidensis Thioredoxin in Regulation of Cellular Responses to Hydrogen and Organic Peroxides. Appl Environ Microbiol 2019; 85:AEM.01700-19. [PMID: 31444207 DOI: 10.1128/aem.01700-19] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 08/21/2019] [Indexed: 12/26/2022] Open
Abstract
The thioredoxin (Trx) and glutaredoxin (Grx) antioxidant systems are deeply involved in bacterial response to oxidative stress, but to date, we know surprisingly little about the roles of these systems in response to reactive oxygen species (ROS) other than hydrogen peroxide (H2O2). In this study, we used Shewanella oneidensis, an environmental bacterium, as a research model to investigate the roles of Trx and Grx in oxidative stress response because it has functionally intertwined ROS responsive regulators OxyR and OhrR. We found that Trx1 is the major thiol/disulfide redox system and that in its absence a Grx system becomes essential under normal conditions. Although overshadowed by Trx1 in the wild type, Trx2 can fully replace Trx1 in physiology when overproduced. Trx1 is required for OxyR to function as a repressor but, more importantly, plays a critical role in the cellular response to organic peroxide (OP) by mediating the redox status of OhrR but not OP scavenger OhrA. While none of the trx and grx genes are OxyR dependent, trxA and trxC are affected by OhrR indirectly. Additional data suggest that depletion of glutathione is likely the cue to trigger induced expression of trxA and trxC These findings underscore the particular importance of Trx in the bacterial OP stress response.IMPORTANCE The Trx and Grx systems are deeply involved in bacterial responses to H2O2-induced oxidative stress. However, little is known about their roles in response to other ROS, such as organic peroxides (OPs). In this study, we used S. oneidensis as a research model to investigate the interplay between Trx/Grx and OxyR/OhrR. We show that Trxs mediate the redox status of transcriptional OP-responding regulator OhrR. Although none of the trx or grx genes are directly controlled by OxyR or OhrR, expression of trxA and trxC is induced by tert-butyl hydroperoxide (t-BHP). We further show that the trxA and trxC genes respond to effects of glutathione (GSH) depletion rather than oxidation. These findings underscore the particular importance of Trx in the bacterial OP stress response.
Collapse
|
16
|
Development of an oxidative stress sensor in live bacteria using the optimized HyPer2 protein. Antonie van Leeuwenhoek 2018; 112:167-177. [DOI: 10.1007/s10482-018-1140-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 08/07/2018] [Indexed: 01/15/2023]
|
17
|
Methylmercury alters glutathione homeostasis by inhibiting glutaredoxin 1 and enhancing glutathione biosynthesis in cultured human astrocytoma cells. Toxicol Lett 2016; 256:1-10. [PMID: 27180086 DOI: 10.1016/j.toxlet.2016.05.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 04/28/2016] [Accepted: 05/11/2016] [Indexed: 02/08/2023]
Abstract
Methylmercury (MeHg) is a neurotoxin that binds strongly to thiol residues on protein and low molecular weight molecules like reduced glutathione (GSH). The mechanism of its effects on GSH homeostasis particularly at environmentally relevant low doses is not fully known. We hypothesized that exposure to MeHg would lead to a depletion of reduced glutathione (GSH) and an accumulation of glutathione disulfide (GSSG) leading to alterations in S-glutathionylation of proteins. Our results showed exposure to low concentrations of MeHg (1μM) did not significantly alter GSH levels but increased GSSG levels by ∼12-fold. This effect was associated with a significant increase in total cellular glutathione content and a decrease in GSH/GSSG. Immunoblot analyses revealed that proteins involved in glutathione synthesis were upregulated accounting for the increase in cellular glutathione. This was associated an increase in cellular Nrf2 protein levels which is required to induce the expression of antioxidant genes in response to cellular stress. Intriguingly, we noted that a key enzyme involved in reversing protein S-glutathionylation and maintaining glutathione homeostasis, glutaredoxin-1 (Grx1), was inhibited by ∼50%. MeHg treatment also increased the S-glutathionylation of a high molecular weight protein. This observation is consistent with the inhibition of Grx1 and elevated H2O2 production however; contrary to our original hypothesis we found few S-glutathionylated proteins in the astrocytoma cells. Collectively, MeHg affects multiple arms of glutathione homeostasis ranging from pool management to protein S-glutathionylation and Grx1 activity.
Collapse
|
18
|
Kawai Y, Mercier R, Wu LJ, Domínguez-Cuevas P, Oshima T, Errington J. Cell growth of wall-free L-form bacteria is limited by oxidative damage. Curr Biol 2015; 25:1613-8. [PMID: 26051891 PMCID: PMC4510147 DOI: 10.1016/j.cub.2015.04.031] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 04/09/2015] [Accepted: 04/14/2015] [Indexed: 11/30/2022]
Abstract
The peptidoglycan (PG) cell wall is a defining feature of the bacterial lineage and an important target for antibiotics, such as β-lactams and glycopeptides. Nevertheless, many bacteria are capable of switching into a cell-wall-deficient state, called the “L-form” [1–3]. These variants have been classically identified as antibiotic-resistant forms in association with a wide range of infectious diseases [4]. L-forms become completely independent of the normally essential FtsZ cell division machinery [3, 5]. Instead, L-form proliferation is driven by a simple biophysical process based on an increased ratio of surface area to cell volume synthesis [6, 7]. We recently showed that only two genetic changes are needed for the L-form transition in Bacillus subtilis [7]. Class 1 mutations work to generate excess membrane synthesis [7]. Until now, the function of the class 2 mutations was unclear. We now show that these mutations work by counteracting an increase in the cellular levels of reactive oxygen species (ROS) originating from the electron transport pathway, which occurs in wall-deficient cells. Consistent with this, addition of a ROS scavenger or anaerobic culture conditions also worked to promote L-form growth without the class 2 mutations in both Gram-positive B. subtilis and Gram-negative Escherichia coli. Our results suggest that physiological compensation for the metabolic imbalance that occurs when cell wall synthesis is blocked is crucial for L-form proliferation in a wide range of bacteria and also provide new insights into the mode of action of antibiotics that target the bacterial cell wall. The cellular levels of ROS are increased when cell wall synthesis is blocked Oxidative damage is a serious impediment to growth of wall-deficient L-forms Reduction of ROS levels promotes L-form growth L-forms provide new insights into the mode of action of cell wall antibiotics
Collapse
Affiliation(s)
- Yoshikazu Kawai
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Medical School, Newcastle University, Richardson Road, Newcastle upon Tyne NE2 4AX, UK.
| | - Romain Mercier
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Medical School, Newcastle University, Richardson Road, Newcastle upon Tyne NE2 4AX, UK
| | - Ling Juan Wu
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Medical School, Newcastle University, Richardson Road, Newcastle upon Tyne NE2 4AX, UK
| | | | - Taku Oshima
- Genomics of Bacterial Cell Functions, Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5, Takayama, Ikoma, Nara 630-0192, Japan
| | - Jeff Errington
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Medical School, Newcastle University, Richardson Road, Newcastle upon Tyne NE2 4AX, UK.
| |
Collapse
|
19
|
Parker AR, Petluru PN, Nienaber VL, Badger J, Leverett BD, Jair K, Sridhar V, Logan C, Ayala PY, Kochat H, Hausheer FH. Cysteine specific targeting of the functionally distinct peroxiredoxin and glutaredoxin proteins by the investigational disulfide BNP7787. Molecules 2015; 20:4928-50. [PMID: 25793542 PMCID: PMC6272748 DOI: 10.3390/molecules20034928] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 03/05/2015] [Indexed: 10/25/2022] Open
Abstract
Glutaredoxin (Grx), peroxiredoxin (Prx), and thioredoxin (Trx) are redoxin family proteins that catalyze different types of chemical reactions that impact cell growth and survival through functionally distinct intracellular pathways. Much research is focused on understanding the roles of these redoxin proteins in the development and/or progression of human diseases. Grx and Prx are overexpressed in human cancers, including human lung cancers. BNP7787 is a novel investigational agent that has been evaluated in previous clinical studies, including non-small cell lung cancer (NSCLC) studies. Herein, data from activity assays, mass spectrometry analyses, and X-ray crystallographic studies indicate that BNP7787 forms mixed disulfides with select cysteine residues on Grx and Prx and modulates their function. Studies of interactions between BNP7787 and Trx have been conducted and reported separately. Despite the fact that Trx, Grx, and Prx are functionally distinct proteins that impact oxidative stress, cell proliferation and disease processes through different intracellular pathways, BNP7787 can modify each protein and appears to modulate function through mechanisms that are unique to each target protein. Tumor cells are often genomically heterogeneous containing subpopulations of cancer cells that often express different tumor-promoting proteins or that have multiple dysregulated signaling pathways modulating cell proliferation and drug resistance. A multi-targeted agent that simultaneously modulates activity of proteins important in mediating cell proliferation by functionally distinct intracellular pathways could have many potentially useful therapeutic applications.
Collapse
Affiliation(s)
- Aulma R Parker
- BioNumerik Pharmaceuticals, Inc., 8122 Datapoint Drive, Ste. 1250, San Antonio, TX 78229, USA
| | - Pavankumar N Petluru
- BioNumerik Pharmaceuticals, Inc., 8122 Datapoint Drive, Ste. 1250, San Antonio, TX 78229, USA
| | - Vicki L Nienaber
- Zenobia Therapeutics, Inc., 505 Coast Blvd. South, Suite 111, La Jolla, CA 92037, USA
| | - John Badger
- Zenobia Therapeutics, Inc., 505 Coast Blvd. South, Suite 111, La Jolla, CA 92037, USA
| | - Betsy D Leverett
- BioNumerik Pharmaceuticals, Inc., 8122 Datapoint Drive, Ste. 1250, San Antonio, TX 78229, USA
| | - Kamwing Jair
- BioNumerik Pharmaceuticals, Inc., 8122 Datapoint Drive, Ste. 1250, San Antonio, TX 78229, USA
| | - Vandana Sridhar
- Zenobia Therapeutics, Inc., 505 Coast Blvd. South, Suite 111, La Jolla, CA 92037, USA
| | - Cheyenne Logan
- Zenobia Therapeutics, Inc., 505 Coast Blvd. South, Suite 111, La Jolla, CA 92037, USA
| | - Philippe Y Ayala
- BioNumerik Pharmaceuticals, Inc., 8122 Datapoint Drive, Ste. 1250, San Antonio, TX 78229, USA
| | - Harry Kochat
- BioNumerik Pharmaceuticals, Inc., 8122 Datapoint Drive, Ste. 1250, San Antonio, TX 78229, USA
| | - Frederick H Hausheer
- BioNumerik Pharmaceuticals, Inc., 8122 Datapoint Drive, Ste. 1250, San Antonio, TX 78229, USA.
| |
Collapse
|
20
|
Feyaerts J, Rogiers G, Corthouts J, Michiels CW. Thiol-reactive natural antimicrobials and high pressure treatment synergistically enhance bacterial inactivation. INNOV FOOD SCI EMERG 2015. [DOI: 10.1016/j.ifset.2014.12.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
21
|
Zhang Y, Okada R, Isaka M, Tatsuno I, Isobe KI, Hasegawa T. Analysis of the roles of NrdR and DnaB from Streptococcus pyogenes in response to host defense. APMIS 2014; 123:252-9. [PMID: 25469586 DOI: 10.1111/apm.12340] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Accepted: 10/01/2014] [Indexed: 12/01/2022]
Abstract
Toxic shock syndrome caused by Streptococcus pyogenes (S. pyogenes) is a re-emerging infectious disease. Many virulence-associated proteins play important roles in its pathogenesis and the production of these proteins is controlled by many regulatory factors. CovS is one of the most important two-component sensor proteins in S. pyogenes, and it has been analyzed extensively. Our recent analyses revealed the existence of a transposon between covS and nrdR in several strains, and we speculated that this insertion has some importance. Hence, we examined the significances of the NrdR stand-alone regulator and DnaB, which is encoded by the gene located immediately downstream of nrdR in S. pyogenes infection. We established an nrdR-only knockout strain, and both nrdR and partial dnaB knockout strain. These established knockout strains exhibited a deteriorated response to H2 O2 exposure. nrdR and partial dnaB knockout strain was more easily killed by human polynuclear blood cells, but the nrdR-only knockout strain had no significant difference compared to wild type in contrast to the combined knockout strain. In addition, the mouse infection model experiment illustrated that nrdR and partial dnaB knockout strain, but not the nrdR-only knockout strain, was less virulent compared with the parental strain. These results suggest that DnaB is involved in response to host defense.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Bacteriology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan; Department of Immunology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | | | | | | | | | | |
Collapse
|
22
|
Sengupta R, Holmgren A. Thioredoxin and glutaredoxin-mediated redox regulation of ribonucleotide reductase. World J Biol Chem 2014; 5:68-74. [PMID: 24600515 PMCID: PMC3942543 DOI: 10.4331/wjbc.v5.i1.68] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Revised: 12/17/2013] [Accepted: 01/13/2014] [Indexed: 02/05/2023] Open
Abstract
Ribonucleotide reductase (RNR), the rate-limiting enzyme in DNA synthesis, catalyzes reduction of the different ribonucleotides to their corresponding deoxyribonucleotides. The crucial role of RNR in DNA synthesis has made it an important target for the development of antiviral and anticancer drugs. Taking account of the recent developments in this field of research, this review focuses on the role of thioredoxin and glutaredoxin systems in the redox reactions of the RNR catalysis.
Collapse
Affiliation(s)
- Rajib Sengupta
- Rajib Sengupta, Arne Holmgren, Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institute, SE-17177 Stockholm, Sweden
| | - Arne Holmgren
- Rajib Sengupta, Arne Holmgren, Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institute, SE-17177 Stockholm, Sweden
| |
Collapse
|
23
|
Huang CJ, Wang ZC, Huang HY, Huang HD, Peng HL. YjcC, a c-di-GMP phosphodiesterase protein, regulates the oxidative stress response and virulence of Klebsiella pneumoniae CG43. PLoS One 2013; 8:e66740. [PMID: 23935824 PMCID: PMC3720812 DOI: 10.1371/journal.pone.0066740] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Accepted: 05/10/2013] [Indexed: 12/20/2022] Open
Abstract
This study shows that the expression of yjcC, an in vivo expression (IVE) gene, and the stress response regulatory genes soxR, soxS, and rpoS are paraquat inducible in Klebsiella pneumoniae CG43. The deletion of rpoS or soxRS decreased yjcC expression, implying an RpoS- or SoxRS-dependent control. After paraquat or H2O2 treatment, the deletion of yjcC reduced bacterial survival. These effects could be complemented by introducing the ΔyjcC mutant with the YjcC-expression plasmid pJR1. The recombinant protein containing only the YjcC-EAL domain exhibited phosphodiesterase (PDE) activity; overexpression of yjcC has lower levels of cyclic di-GMP. The yjcC deletion mutant also exhibited increased reactive oxygen species (ROS) formation, oxidation damage, and oxidative stress scavenging activity. In addition, the yjcC deletion reduced capsular polysaccharide production in the bacteria, but increased the LD50 in mice, biofilm formation, and type 3 fimbriae major pilin MrkA production. Finally, a comparative transcriptome analysis showed 34 upregulated and 29 downregulated genes with the increased production of YjcC. The activated gene products include glutaredoxin I, thioredoxin, heat shock proteins, chaperone, and MrkHI, and proteins for energy metabolism (transporters, cell surface structure, and transcriptional regulation). In conclusion, the results of this study suggest that YjcC positively regulates the oxidative stress response and mouse virulence but negatively affects the biofilm formation and type 3 fimbriae expression by altering the c-di-GMP levels after receiving oxidative stress signaling inputs.
Collapse
Affiliation(s)
- Ching-Jou Huang
- Institute of Molecular Medicine and Biological Technology, National Chiao Tung University, Hsin Chu, Taiwan, Republic of China
| | - Zhe-Chong Wang
- Department of Biological Science and Technology, National Chiao Tung University, Hsin Chu, Taiwan, Republic of China
| | - Hsi-Yuan Huang
- Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsin Chu, Taiwan, Republic of China
| | - Hsien-Da Huang
- Department of Biological Science and Technology, National Chiao Tung University, Hsin Chu, Taiwan, Republic of China
- Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsin Chu, Taiwan, Republic of China
| | - Hwei-Ling Peng
- Institute of Molecular Medicine and Biological Technology, National Chiao Tung University, Hsin Chu, Taiwan, Republic of China
- Department of Biological Science and Technology, National Chiao Tung University, Hsin Chu, Taiwan, Republic of China
- * E-mail:
| |
Collapse
|
24
|
Yang Y, Wang J, Xiu Z, Alvarez PJJ. Impacts of silver nanoparticles on cellular and transcriptional activity of nitrogen-cycling bacteria. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2013; 32:1488-1494. [PMID: 23554086 DOI: 10.1002/etc.2230] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Revised: 02/19/2013] [Accepted: 03/18/2013] [Indexed: 06/02/2023]
Abstract
The widespread use of silver nanoparticles (AgNPs) raises the potential for environmental releases that could impact microbial ecosystem services. In the present study, the authors address how the AgNPs and Ag(+) that they release may impact nitrogen-cycling bacteria. The authors studied the cellular and transcriptional response of the denitrifier Pseudomonas stutzeri, the nitrogen fixer Azotobacter vinelandii, and the nitrifier Nitrosomonas europaea exposed to 35 nm (carbon-coated) AgNPs or to Ag(+) (added as AgNO3 ). Based on minimum inhibitory concentrations (MICs), Ag(+) was 20 times to 48 times more toxic to the tested strains than AgNPs (including Ag(+) released during exposure). Exposure to sublethal concentrations of AgNPs or Ag(+) (representing 10% of the respective MIC for AgNO3 ) resulted in no significant effect on the expression of the denitrifying genes narG, napB, nirH, and norB in P. stutzeri or the nitrogen-fixing genes nifD, nifH, vnfD, and anfD in A. vinelandii, whereas nitrifying genes (amoA1 and amoC2) in N. europaea were upregulated (2.1- to 3.3-fold). This stimulatory effect disappeared at higher silver concentrations (60% of the Ag(+) MIC), and toxicity was exerted at concentrations higher than 60% of the Ag(+) MIC. The MIC for N. europaea was 8 times to 24 times lower than for the other strains, indicating higher susceptibility to AgNPs. This was corroborated by the lower half-lethal concentration for N. europaea (87 µg/L) compared with P. stutzeri (124 µg/L) and A. vinelandii (>250 µg/L) when cells were exposed with Ag(+) for 24 h in 1 mM bicarbonate buffer. This suggests that ammonia oxidation would be the most vulnerable nitrogen-cycling process in wastewater treatment plants receiving AgNPs and in agricultural soils amended with biosolids that concentrate them.
Collapse
Affiliation(s)
- Yu Yang
- Department of Civil and Environmental Engineering, Rice University, Houston, Texas, USA
| | | | | | | |
Collapse
|
25
|
Abstract
From microbes to multicellular eukaryotic organisms, all cells contain pathways responsible for genome maintenance. DNA replication allows for the faithful duplication of the genome, whereas DNA repair pathways preserve DNA integrity in response to damage originating from endogenous and exogenous sources. The basic pathways important for DNA replication and repair are often conserved throughout biology. In bacteria, high-fidelity repair is balanced with low-fidelity repair and mutagenesis. Such a balance is important for maintaining viability while providing an opportunity for the advantageous selection of mutations when faced with a changing environment. Over the last decade, studies of DNA repair pathways in bacteria have demonstrated considerable differences between Gram-positive and Gram-negative organisms. Here we review and discuss the DNA repair, genome maintenance, and DNA damage checkpoint pathways of the Gram-positive bacterium Bacillus subtilis. We present their molecular mechanisms and compare the functions and regulation of several pathways with known information on other organisms. We also discuss DNA repair during different growth phases and the developmental program of sporulation. In summary, we present a review of the function, regulation, and molecular mechanisms of DNA repair and mutagenesis in Gram-positive bacteria, with a strong emphasis on B. subtilis.
Collapse
|
26
|
Yuan D, Zhan XA, Wang YX. Effect of selenium sources on the expression of cellular glutathione peroxidase and cytoplasmic thioredoxin reductase in the liver and kidney of broiler breeders and their offspring. Poult Sci 2012; 91:936-42. [PMID: 22399733 DOI: 10.3382/ps.2011-01921] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In total, 180 Lingnan Yellow broiler breeders were used to investigate the effect of different sources of selenium (Se) on the expression of cellular glutathione peroxidase (GPx1) and cytoplasmic thioredoxin reductase (TrxR1) in the liver and kidney of broiler breeders and their offspring by quantitative real-time PCR. There were 6 replicates of 3 dietary treatments. Broiler breeders were fed corn-soy-based diets supplemented with 0.15 mg/kg of Se from sodium selenite, Se-enriched yeast (SY), or selenomethionine (SM). At the end of the feeding trial, liver and kidney mRNA levels of GPx1 and TrxR1 were determined by quantitative real-time PCR, as well as the activity of GPx1 and TrxR1 in liver and kidney of breeders and their offspring. The results showed that, compared with sodium selenite, SY or SM significantly increased (P < 0.05) the activity of TrxR1 in the liver and kidney of broiler breeders and their offspring but not the GPx1 activity. The liver GPx1 and TrxR1 mRNA levels in SY or SM groups were higher (P < 0.05) than that in the sodium selenite group. And the kidney TrxR1 mRNA levels were also significantly increased (P < 0.05) by using SY or SM, whereas there was no significant difference in the kidney GPx1 mRNA levels between the organic or inorganic sources of Se used.
Collapse
Affiliation(s)
- D Yuan
- Feed Science Institute, College of Animal Science, Zhejiang University, No. 388, Yuhangtang Road, Hangzhou 310058, People's Republic of China
| | | | | |
Collapse
|
27
|
Chiang SM, Schellhorn HE. Regulators of oxidative stress response genes in Escherichia coli and their functional conservation in bacteria. Arch Biochem Biophys 2012; 525:161-9. [PMID: 22381957 DOI: 10.1016/j.abb.2012.02.007] [Citation(s) in RCA: 249] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2011] [Revised: 01/31/2012] [Accepted: 02/12/2012] [Indexed: 01/24/2023]
Abstract
Oxidative stress, through the production of reactive oxygen species, is a natural consequence of aerobic metabolism. Escherichia coli has several major regulators activated during oxidative stress, including OxyR, SoxRS, and RpoS. OxyR and SoxR undergo conformation changes when oxidized in the presence of hydrogen peroxide and superoxide radicals, respectively, and subsequently control the expression of cognate genes. In contrast, the RpoS regulon is induced by an increase in RpoS levels. Current knowledge regarding the activation and function of these regulators and their dependent genes in E. coli during oxidative stress forms the scope of this review. Despite the enormous genomic diversity of bacteria, oxidative stress response regulators in E. coli are functionally conserved in a wide range of bacterial groups, possibly reflecting positive selection of these regulators. SoxRS and RpoS homologs are present and respond to oxidative stress in Proteobacteria, and OxyR homologs are present and function in H(2)O(2) resistance in a range of bacteria, from gammaproteobacteria to Actinobacteria. Bacteria have developed complex, adapted gene regulatory responses to oxidative stress, perhaps due to the prevalence of reactive oxygen species produced endogenously through metabolism or due to the necessity of aerotolerance mechanisms in anaerobic bacteria exposed to oxygen.
Collapse
Affiliation(s)
- Sarah M Chiang
- Department of Biology, McMaster University, 1280 Main St. West, Life Sciences Building, Hamilton, ON, Canada L8S 4K1
| | | |
Collapse
|
28
|
Mutations at several loci cause increased expression of ribonucleotide reductase in Escherichia coli. J Bacteriol 2012; 194:1515-22. [PMID: 22247510 DOI: 10.1128/jb.05989-11] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Production of deoxyribonucleotides for DNA synthesis is an essential and tightly regulated process. The class Ia ribonucleotide reductase (RNR), the product of the nrdAB genes, is required for aerobic growth of Escherichia coli. In catalyzing the reduction of ribonucleotides, two of the cysteines of RNR become oxidized, forming a disulfide bond. To regenerate active RNR, the cell uses thioredoxins and glutaredoxins to reduce the disulfide bond. Strains that lack thioredoxins 1 and 2 and glutaredoxin 1 do not grow because RNR remains in its oxidized, inactive form. However, suppressor mutations that lead to RNR overproduction allow glutaredoxin 3 to reduce sufficient RNR for growth of these mutant strains. We previously described suppressor mutations in the dnaA and dnaN genes that had such effects. Here we report the isolation of new mutations that lead to increased levels of RNR. These include mutations that were not known to influence production of RNR previously, such as a mutation in the hda gene and insertions in the nrdAB promoter region of insertion elements IS1 and IS5. Bioinformatic analysis raises the possibility that IS element insertion in this region represents an adaptive mechanism in nrdAB regulation in E. coli and closely related species. We also characterize mutations altering different amino acids in DnaA and DnaN from those isolated before.
Collapse
|
29
|
Müller BAL, Dhalla NS. Mechanisms of the beneficial actions of ischemic preconditioning on subcellular remodeling in ischemic-reperfused heart. Curr Cardiol Rev 2011; 6:255-64. [PMID: 22043201 PMCID: PMC3083806 DOI: 10.2174/157340310793566118] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2010] [Revised: 09/03/2010] [Accepted: 09/15/2010] [Indexed: 12/17/2022] Open
Abstract
Cardiac function is compromised by oxidative stress which occurs upon exposing the heart to ischemia reperfusion (I/R) for a prolonged period. The reactive oxygen species (ROS) that are generated during I/R incur extensive damage to the myocardium and result in subcellular organelle remodeling. The cardiac nucleus, glycocalyx, myofilaments, sarcoplasmic reticulum, sarcolemma, and mitochondria are affected by ROS during I/R injury. On the other hand, brief periods of ischemia followed by reperfusion, or ischemic preconditioning (IPC), have been shown to be cardioprotective against oxidative stress by attenuating the cellular damage and alterations of subcellular organelles caused by subsequent I/R injury. Endogenous defense mechanisms, such as antioxidant enzymes and heat shock proteins, are activated by IPC and thus prevent damage caused by oxidative stress. Although these cardioprotective effects of IPC against I/R injury are considered to be a consequence of changes in the redox state of cardiomyocytes, IPC is considered to promote the production of NO which may protect subcellular organelles from the deleterious actions of oxidative stress. The article is intended to focus on the I/R-induced oxidative damage to subcellular organelles and to highlight the cardioprotective effects of IPC. In addition, the actions of various endogenous cardioprotective interventions are discussed to illustrate that changes in the redox state due to IPC are cardioprotective against I/R injury to the heart.
Collapse
Affiliation(s)
- By Alison L Müller
- Institute of Cardiovascular Sciences, St Boniface Hospital Research Centre, and Department of Physiology, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada R2H 2A6
| | | |
Collapse
|
30
|
Kristiansen M, Menghi F, Hughes R, Hubank M, Ham J. Global analysis of gene expression in NGF-deprived sympathetic neurons identifies molecular pathways associated with cell death. BMC Genomics 2011; 12:551. [PMID: 22067274 PMCID: PMC3256215 DOI: 10.1186/1471-2164-12-551] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2011] [Accepted: 11/08/2011] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Developing sympathetic neurons depend on nerve growth factor (NGF) for survival and die by apoptosis after NGF withdrawal. This process requires de novo gene expression but only a small number of genes induced by NGF deprivation have been identified so far, either by a candidate gene approach or in mRNA differential display experiments. This is partly because it is difficult to obtain large numbers of sympathetic neurons for in vitro studies. Here, we describe for the first time, how advances in gene microarray technology have allowed us to investigate the expression of all known genes in sympathetic neurons cultured in the presence and absence of NGF. RESULTS We have used Affymetrix Exon arrays to study the pattern of expression of all known genes in NGF-deprived sympathetic neurons. We identified 415 up- and 813 down-regulated genes, including most of the genes previously known to be regulated in this system. NGF withdrawal activates the mixed lineage kinase (MLK)-c-Jun N-terminal kinase (JNK)-c-Jun pathway which is required for NGF deprivation-induced death. By including a mixed lineage kinase (MLK) inhibitor, CEP-11004, in our experimental design we identified which of the genes induced after NGF withdrawal are potential targets of the MLK-JNK-c-Jun pathway. A detailed Gene Ontology and functional enrichment analysis also identified genetic pathways that are highly enriched and overrepresented amongst the genes expressed after NGF withdrawal. Five genes not previously studied in sympathetic neurons - trib3, ddit3, txnip, ndrg1 and mxi1 - were validated by real time-PCR. The proteins encoded by these genes also increased in level after NGF withdrawal and this increase was prevented by CEP-11004, suggesting that these genes are potential targets of the MLK-JNK-c-Jun pathway. CONCLUSIONS The sympathetic neuron model is one of the best studied models of neuronal apoptosis. Overall, our microarray data gives a comprehensive overview of, and provides new information about, signalling pathways and transcription factors that are regulated by NGF withdrawal.
Collapse
Affiliation(s)
- Mark Kristiansen
- Molecular Haematology and Cancer Biology Unit, Institute of Child Health, University College London, 30 Guilford Street, London WC1N 1EH, UK
| | | | | | | | | |
Collapse
|
31
|
Steen A, Wiederhold E, Gandhi T, Breitling R, Slotboom DJ. Physiological adaptation of the bacterium Lactococcus lactis in response to the production of human CFTR. Mol Cell Proteomics 2011; 10:M000052MCP200. [PMID: 21742800 DOI: 10.1074/mcp.m000052-mcp200] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Biochemical and biophysical characterization of CFTR (the cystic fibrosis transmembrane conductance regulator) is thwarted by difficulties to obtain sufficient quantities of correctly folded and functional protein. Here we have produced human CFTR in the prokaryotic expression host Lactococcus lactis. The full-length protein was detected in the membrane of the bacterium, but the yields were too low (< 0.1% of membrane proteins) for in vitro functional and structural characterization, and induction of the expression of CFTR resulted in growth arrest. We used isobaric tagging for relative and absolute quantitation based quantitative proteomics to find out why production of CFTR in L. lactis was problematic. Protein abundances in membrane and soluble fractions were monitored as a function of induction time, both in CFTR expression cells and in control cells that did not express CFTR. Eight hundred and forty six proteins were identified and quantified (35% of the predicted proteome), including 163 integral membrane proteins. Expression of CFTR resulted in an increase in abundance of stress-related proteins (e.g. heat-shock and cell envelope stress), indicating the presence of misfolded proteins in the membrane. In contrast to the reported consequences of membrane protein overexpression in Escherichia coli, there were no indications that the membrane protein insertion machinery (Sec) became overloaded upon CFTR production in L. lactis. Nutrients and ATP became limiting in the control cells as the culture entered the late exponential and stationary growth phases but this did not happen in the CFTR expressing cells, which had stopped growing upon induction. The different stress responses elicited in E. coli and L. lactis upon membrane protein production indicate that different strategies are needed to overcome low expression yields and toxicity.
Collapse
Affiliation(s)
- Anton Steen
- Department of Biochemistry Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | | | | | | | | |
Collapse
|
32
|
Steen A, Wiederhold E, Gandhi T, Breitling R, Slotboom DJ. Physiological Adaptation of the Bacterium Lactococcus lactis in Response to the Production of Human CFTR. Mol Cell Proteomics 2011. [DOI: 10.1074/mcp.m000052-mcp201] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
33
|
Pillay CS, Hofmeyr JHS, Rohwer JM. The logic of kinetic regulation in the thioredoxin system. BMC SYSTEMS BIOLOGY 2011; 5:15. [PMID: 21266044 PMCID: PMC3045320 DOI: 10.1186/1752-0509-5-15] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2010] [Accepted: 01/25/2011] [Indexed: 11/10/2022]
Abstract
BACKGROUND The thioredoxin system consisting of NADP(H), thioredoxin reductase and thioredoxin provides reducing equivalents to a large and diverse array of cellular processes. Despite a great deal of information on the kinetics of individual thioredoxin-dependent reactions, the kinetic regulation of this system as an integrated whole is not known. We address this by using kinetic modeling to identify and describe kinetic behavioral motifs found within the system. RESULTS Analysis of a realistic computational model of the Escherichia coli thioredoxin system revealed several modes of kinetic regulation in the system. In keeping with published findings, the model showed that thioredoxin-dependent reactions were adaptable (i.e. changes to the thioredoxin system affected the kinetic profiles of these reactions). Further and in contrast to other systems-level descriptions, analysis of the model showed that apparently unrelated thioredoxin oxidation reactions can affect each other via their combined effects on the thioredoxin redox cycle. However, the scale of these effects depended on the kinetics of the individual thioredoxin oxidation reactions with some reactions more sensitive to changes in the thioredoxin cycle and others, such as the Tpx-dependent reduction of hydrogen peroxide, less sensitive to these changes. The coupling of the thioredoxin and Tpx redox cycles also allowed for ultrasensitive changes in the thioredoxin concentration in response to changes in the thioredoxin reductase concentration. We were able to describe the kinetic mechanisms underlying these behaviors precisely with analytical solutions and core models. CONCLUSIONS Using kinetic modeling we have revealed the logic that underlies the functional organization and kinetic behavior of the thioredoxin system. The thioredoxin redox cycle and associated reactions allows for a system that is adaptable, interconnected and able to display differential sensitivities to changes in this redox cycle. This work provides a theoretical, systems-biological basis for an experimental analysis of the thioredoxin system and its associated reactions.
Collapse
Affiliation(s)
- Ché S Pillay
- Discipline of Genetics, University of KwaZulu-Natal, South Africa, Carbis Road, Pietermaritzburg, 3201, South Africa.
| | | | | |
Collapse
|
34
|
Holmgren A, Sengupta R. The use of thiols by ribonucleotide reductase. Free Radic Biol Med 2010; 49:1617-28. [PMID: 20851762 DOI: 10.1016/j.freeradbiomed.2010.09.005] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2010] [Revised: 08/17/2010] [Accepted: 09/03/2010] [Indexed: 12/22/2022]
Abstract
Ribonucleotide reductase (RNR) catalyzes the rate-limiting de novo synthesis of 2'-deoxyribonucleotides from the corresponding ribonucleotides and thereby provides balanced deoxyribonucleotide pools required for error-free DNA replication and repair. The essential role of RNR in DNA synthesis and the use of DNA as genetic material has made it an important target for the development of anticancer and antiviral agents. The most well known feature of the universal RNR reaction in all kingdoms of life is the involvement of protein free radicals. Redox-active cysteines, thiyl radicals, and thiol redox proteins of the thioredoxin superfamily play major roles in the catalytic mechanism. The involvement of cysteine residues in catalysis is common to all three classes of RNR. Taking account of the recent progress in this field of research, this review focuses on the use of thiols in the redox mechanism of RNR enzymes.
Collapse
Affiliation(s)
- Arne Holmgren
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden.
| | | |
Collapse
|
35
|
Kyle JL, Parker CT, Goudeau D, Brandl MT. Transcriptome analysis of Escherichia coli O157:H7 exposed to lysates of lettuce leaves. Appl Environ Microbiol 2010; 76:1375-87. [PMID: 20061451 PMCID: PMC2832375 DOI: 10.1128/aem.02461-09] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2009] [Accepted: 12/28/2009] [Indexed: 01/04/2023] Open
Abstract
Harvesting and processing of leafy greens inherently cause plant tissue damage, creating niches on leaves that human pathogens can exploit. We previously demonstrated that Escherichia coli O157:H7 (EcO157) multiplies more rapidly on shredded leaves than on intact leaves (M. T. Brandl, Appl. Environ. Microbiol. 74:5285-5289, 2008). To investigate how EcO157 cells adapt to physicochemical conditions in injured lettuce tissue, we used microarray-based whole-genome transcriptional profiling to characterize gene expression patterns in EcO157 after 15- and 30-min exposures to romaine lettuce lysates. Multiple carbohydrate transport systems that have a role in the utilization of substrates known to be prevalent in plant cells were activated in EcO157. This indicates the availability to the human pathogen of a variety of carbohydrates released from injured plant cells that may promote its extensive growth in leaf lysates and, thus, in wounded leaf tissue. In addition, microarray analysis revealed the upregulation of numerous genes associated with EcO157 attachment and virulence, with oxidative stress and antimicrobial resistance (including the OxyR and Mar regulons), with detoxification of noxious compounds, and with DNA repair. Upregulation of oxidative stress and antimicrobial resistance genes in EcO157 was confirmed on shredded lettuce by quantitative reverse transcription-PCR. We further demonstrate that this adaptation to stress conditions imparts the pathogen with increased resistance to hydrogen peroxide and calcium hypochlorite. This enhanced resistance to chlorinated sanitizers combined with increased expression of virulence determinants and multiplication at sites of injury on the leaves may help explain the association of processed leafy greens with outbreaks of EcO157.
Collapse
Affiliation(s)
- Jennifer L. Kyle
- Produce Safety and Microbiology Research Unit, Western Regional Research Center, Agricultural Research Service, U.S. Department of Agriculture, Albany, California 94710
| | - Craig T. Parker
- Produce Safety and Microbiology Research Unit, Western Regional Research Center, Agricultural Research Service, U.S. Department of Agriculture, Albany, California 94710
| | - Danielle Goudeau
- Produce Safety and Microbiology Research Unit, Western Regional Research Center, Agricultural Research Service, U.S. Department of Agriculture, Albany, California 94710
| | - Maria T. Brandl
- Produce Safety and Microbiology Research Unit, Western Regional Research Center, Agricultural Research Service, U.S. Department of Agriculture, Albany, California 94710
| |
Collapse
|
36
|
Leiting W, Jianping X. Comparative genomics analysis of Mycobacterium NrdH-redoxins. Microb Pathog 2010; 48:97-102. [DOI: 10.1016/j.micpath.2010.01.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2009] [Revised: 01/10/2010] [Accepted: 01/14/2010] [Indexed: 10/19/2022]
|
37
|
Salmonella enterica serovar typhimurium trxA mutants are protective against virulent challenge and induce less inflammation than the live-attenuated vaccine strain SL3261. Infect Immun 2009; 78:326-36. [PMID: 19884329 DOI: 10.1128/iai.00768-09] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
In Salmonella enterica serovar Typhimurium, trxA encodes thioredoxin 1, a small, soluble protein with disulfide reductase activity, which catalyzes thiol disulfide redox reactions in a variety of substrate proteins. Thioredoxins are involved as antioxidants in defense against oxidative stresses, such as exposure to hydrogen peroxide and hydroxyl radicals. We have made a defined, complete deletion of trxA in the mouse-virulent S. Typhimurium strain SL1344 (SL1344 trxA), replacing the gene with a kanamycin resistance gene cassette. SL1344 trxA was attenuated for virulence in BALB/c mice by the oral and intravenous routes and when used in immunization experiments provided protection against challenge with the virulent parent strain. SL1344 trxA induced less inflammation in murine spleens and livers than SL3261, the aroA mutant, live attenuated vaccine strain. The reduced splenomegaly observed following infection with SL1344 trxA was partially attributed to a reduction in the number of both CD4(+) and CD8(+) T cells and B lymphocytes in the spleen and reduced infiltration by CD11b(+) cells into the spleen compared with spleens from mice infected with SL3261. This less severe pathological response indicates that a trxA mutation might be used to reduce reactogenicity of live attenuated vaccine strains. We tested this by deleting trxA in SL3261. SL3261 trxA was also less inflammatory than SL3261 but was slightly less effective as a vaccine strain than either the SL3261 parent strain or SL1344 trxA.
Collapse
|
38
|
Small SK, Puri S, O’Brian MR. Heme-dependent metalloregulation by the iron response regulator (Irr) protein in Rhizobium and other Alpha-proteobacteria. Biometals 2009; 22:89-97. [PMID: 19093075 PMCID: PMC2659648 DOI: 10.1007/s10534-008-9192-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2008] [Accepted: 12/07/2008] [Indexed: 10/21/2022]
Abstract
Perception and response to nutritional iron by bacteria is essential for viability, and for the ability to adapt to the environment. The iron response regulator (Irr) is part of a novel regulatory scheme employed by Rhizobium and other Alpha-Proteobacteria to control iron-dependent gene expression. Bradyrhizobium japonicum senses iron through the status of heme biosynthesis to regulate gene expression, thus it responds to an iron-dependent process rather than to iron directly. Irr mediates this response by interacting directly with ferrochelatase, the enzyme that catalyzes the final step in heme biosynthesis. Irr is expressed under iron limitation to both positively and negatively modulate gene expression, but degrades in response to direct binding to heme in iron-sufficient cells. Studies with Rhizobium reveal that the regulation of iron homeostasis in bacteria is more diverse than has been generally assumed.
Collapse
Affiliation(s)
- Sandra K. Small
- Department of Biochemistry and the Witebsky Center for Microbial Pathogenesis and Immunology, State University of New York at Buffalo, Buffalo, New York 14214 USA
| | - Sumant Puri
- Department of Biochemistry and the Witebsky Center for Microbial Pathogenesis and Immunology, State University of New York at Buffalo, Buffalo, New York 14214 USA
| | - Mark R. O’Brian
- Department of Biochemistry and the Witebsky Center for Microbial Pathogenesis and Immunology, State University of New York at Buffalo, Buffalo, New York 14214 USA
| |
Collapse
|
39
|
Zahedi Avval F, Holmgren A. Molecular mechanisms of thioredoxin and glutaredoxin as hydrogen donors for Mammalian s phase ribonucleotide reductase. J Biol Chem 2009; 284:8233-40. [PMID: 19176520 DOI: 10.1074/jbc.m809338200] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Ribonucleotide reductase (RNR) catalyzes the rate-limiting step in deoxyribonucleotide synthesis essential for DNA replication and repair. RNR in S phase mammalian cells comprises a weak cytosolic complex of the catalytic R1 protein containing redox active cysteine residues and the R2 protein harboring the tyrosine free radical. Each enzyme turnover generates a disulfide in the active site of R1, which is reduced by C-terminally located shuttle dithiols leaving a disulfide to be reduced. Electrons for reduction come ultimately from NADPH via thioredoxin reductase and thioredoxin (Trx) or glutathione reductase, glutathione, and glutaredoxin (Grx), but the mechanism has not been clarified for mammalian RNR. Using recombinant mouse RNR, we found that Trx1 and Grx1 had similar catalytic efficiency (k(cat)/K(m)). With 4 mm GSH, Grx1 showed a higher affinity (apparent K(m) value, 0.18 microm) compared with Trx1 which displayed a higher apparent k(cat), suggesting its major role in S phase DNA replication. Surprisingly, Grx activity was strongly dependent on GSH concentrations (apparent K(m) value, 3 mm) and a Grx2 C40S mutant was active despite only one cysteine residue in the active site. This demonstrates a GSH-mixed disulfide mechanism for glutaredoxin catalysis in contrast to the dithiol mechanism for thioredoxin. This may be an advantage with the low levels of RNR for DNA repair or in tumor cells with high RNR and no or low Trx expression. Our results demonstrate mechanistic differences between the mammalian and canonical Escherichia coli RNR enzymes, which may offer an explanation for the nonconserved shuttle dithiol sequences in the C terminus of the R1.
Collapse
Affiliation(s)
- Farnaz Zahedi Avval
- Medical Nobel Institute for Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institute, SE-17177 Stockholm, Sweden
| | | |
Collapse
|
40
|
Abstract
During the last 20 years, since the appearance of the first publication on ischemic preconditioning (PC), our knowledge of this phenomenon has increased exponentially. PC is defined as an increased tolerance to ischemia and reperfusion induced by previous sublethal period ischemia. This is the most powerful mechanism known to date for limiting the infract size. This adaptation occurs in a biphasic pattern (i) early preconditioning (lasts for 2-3 h) and (ii) late preconditioning (starting at 24 h lasting until 72-96 h after initial ischemia). Early preconditioning is more potent than delayed preconditioning in reducing infract size. Late preconditioning attenuates myocardial stunning and requires genomic activation with de novo protein synthesis. Early preconditioning depends on adenosine, opioids and to a lesser degree, on bradykinin and prostaglandins, released during ischemia. These molecules activate G-protein-coupled receptor, initiate activation of K(ATP) channel and generate oxygen-free radicals, and stimulate a series of protein kinases, which include protein kinase C, tyrosine kinase, and members of MAP kinase family. Late preconditioning is triggered by a similar sequence of events, but in addition essentially depends on newly synthesized proteins, which comprise iNOS, COX-2, manganese superoxide dismutase, and possibly heat shock proteins. The final mechanism of PC is still not very clear. The present review focuses on the possible role signaling molecules that regulate cardiomyocyte life and death during ischemia and reperfusion.
Collapse
Affiliation(s)
- Manika Das
- Cardiovascular Research Center, University of Connecticut School of Medicine, Farmington, CT, USA
| | | |
Collapse
|
41
|
Hoshino T, Okamoto M, Takei S, Sakazaki Y, Iwanaga T, Aizawa H. Redox-regulated mechanisms in asthma. Antioxid Redox Signal 2008; 10:769-83. [PMID: 18179361 DOI: 10.1089/ars.2007.1936] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Homeostasis of the reduction-oxidation (redox) state is critical to protection from oxidative stress in the lungs. Therefore, the lungs have high levels of antioxidants, including glutathione, heme oxygenase, and superoxide dismutase. The numbers of inflammatory cells -- particularly eosinophils -- are increased in the airways of asthma patients, and these pulmonary inflammatory cells release large amounts of harmful reactive oxygen species and reactive nitrogen species. Human thioredoxin 1 (TRX1) is a redox-active protein of approximately 12 kDa that contains a (32)Cys-Gly-Pro-(35)Cys sequence necessary for its activity. The strong reducing activity of the sequence results from the cysteine residues acting as proton donors and cleaving disulfide (S-S) bonds in the target protein. Endogenous or exogenous TRX1 or both protect the lungs against ischemia-reperfusion injury, influenza infection, bleomycin-induced injury, or lethal pulmonary inflammation caused by interleukin-2 and interleukin-18. We showed that exogenous TRX1 inhibits airway hyperresponsiveness and pulmonary inflammation accompanied by eosinophilia in mouse models of asthma. Recently, we reported that exogenous TRX1 improves established airway remodeling in a prolonged antigen-exposure mouse asthma model. Exogenous and endogenous TRX1 also prevents the development of airway remodeling. Here, we discuss the role and clinical benefits of TRX1 in asthma.
Collapse
Affiliation(s)
- Tomoaki Hoshino
- Divisions of Respirology, Neurology, and Rheumatology, Department of Medicine, Kurume University School of Medicine, Kurume, Japan.
| | | | | | | | | | | |
Collapse
|
42
|
Abstract
All organisms possess a diverse set of genetic programs that are used to alter cellular physiology in response to environmental cues. The gram-negative bacterium, Escherichia coli, mounts what is known as the "SOS response" following DNA damage, replication fork arrest, and a myriad of other environmental stresses. For over 50 years, E. coli has served as the paradigm for our understanding of the transcriptional, and physiological changes that occur following DNA damage (400). In this chapter, we summarize the current view of the SOS response and discuss how this genetic circuit is regulated. In addition to examining the E. coli SOS response, we also include a discussion of the SOS regulatory networks in other bacteria to provide a broader perspective on how prokaryotes respond to DNA damage.
Collapse
|
43
|
Pedone E, Limauro D, Bartolucci S. The machinery for oxidative protein folding in thermophiles. Antioxid Redox Signal 2008; 10:157-69. [PMID: 17956189 DOI: 10.1089/ars.2007.1855] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Disulfide bonds are required for the stability and function of many proteins. A large number of thiol-disulfide oxidoreductases, belonging to the thioredoxin superfamily, catalyze protein disulfide bond formation in all living cells, from bacteria to humans. The protein disulfide isomerase (PDI) is the eukaryotic factor that catalyzes oxidative protein folding in the endoplasmic reticulum; by contrast, in prokaryotes, a family of disulfide bond (Dsb) proteins have an equivalent outcome in the bacterial periplasm. Recently the results from genome analysis suggested an important role for disulfide bonds in the structural stabilization of intracellular proteins from thermophiles. A specific protein disulfide oxidoreductase (PDO) has a key role in intracellular disulfide shuffling in thermophiles. Here we focus on the structural and functional characterization of PDO correlated with the multifunctional eukaryotic PDI. In addition, we highlight the chimeric nature of the machinery for oxidative protein folding in thermophiles in comparison with the mesophilic bacterial and eukaryal counterparts.
Collapse
Affiliation(s)
- Emilia Pedone
- Istituto di Biostrutture e Bioimmagini, C.N.R., Naples, Italy.
| | | | | |
Collapse
|
44
|
Serrano LM, Molenaar D, Wels M, Teusink B, Bron PA, de Vos WM, Smid EJ. Thioredoxin reductase is a key factor in the oxidative stress response of Lactobacillus plantarum WCFS1. Microb Cell Fact 2007; 6:29. [PMID: 17725816 PMCID: PMC2174512 DOI: 10.1186/1475-2859-6-29] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2007] [Accepted: 08/28/2007] [Indexed: 12/02/2022] Open
Abstract
Background Thioredoxin (TRX) is a powerful disulfide oxido-reductase that catalyzes a wide spectrum of redox reactions in the cell. The aim of this study is to elucidate the role of the TRX system in the oxidative stress response in Lactobacillus plantarum WCFS1. Results We have identified the trxB1-encoded thioredoxin reductase (TR) as a key enzyme in the oxidative stress response of Lactobacillus plantarum WCFS1. Overexpression of the trxB1 gene resulted in a 3-fold higher TR activity in comparison to the wild-type strain. Subsequently, higher TR activity was associated with an increased resistance towards oxidative stress. We further determined the global transcriptional response to hydrogen peroxide stress in the trxB1-overexpression and wild-type strains grown in continuous cultures. Hydrogen peroxide stress and overproduction of TR collectively resulted in the up-regulation of 267 genes. Additionally, gene expression profiling showed significant differential expression of 27 genes in the trxB1-overexpression strain. Over expression of trxB1 was found to activate genes associated with DNA repair and stress mechanisms as well as genes associated with the activity of biosynthetic pathways for purine and sulfur-containing amino acids. A total of 16 genes showed a response to both TR overproduction and hydrogen peroxide stress. These genes are involved in the purine metabolism, energy metabolism (gapB) as well as in stress-response (groEL, npr2), and manganese transport (mntH2). Conclusion Based on our findings we propose that overproduction of the trxB1-encoded TR in L. plantarum improves tolerance towards oxidative stress. This response coincides with simultaneous induction of a group of 16 transcripts of genes. Within this group of genes, most are associated with oxidative stress response. The obtained crossover between datasets may explain the phenotype of the trxB1-overexpression strain, which appears to be prepared for encountering oxidative stress. This latter property can be used for engineering robustness towards oxidative stress in industrial strains of L. plantarum.
Collapse
Affiliation(s)
- L Mariela Serrano
- Top Institute Food and Nutrition, formerly WCFS, Wageningen, The Netherlands
- NIZO Food Research B.V., Ede, The Netherlands
- Wageningen UR, Laboratory of Microbiology, Wageningen, The Netherlands
| | - Douwe Molenaar
- Top Institute Food and Nutrition, formerly WCFS, Wageningen, The Netherlands
- NIZO Food Research B.V., Ede, The Netherlands
| | - Michiel Wels
- Top Institute Food and Nutrition, formerly WCFS, Wageningen, The Netherlands
| | - Bas Teusink
- Top Institute Food and Nutrition, formerly WCFS, Wageningen, The Netherlands
- NIZO Food Research B.V., Ede, The Netherlands
| | - Peter A Bron
- Top Institute Food and Nutrition, formerly WCFS, Wageningen, The Netherlands
| | - Willem M de Vos
- Top Institute Food and Nutrition, formerly WCFS, Wageningen, The Netherlands
- Wageningen UR, Laboratory of Microbiology, Wageningen, The Netherlands
| | - Eddy J Smid
- Top Institute Food and Nutrition, formerly WCFS, Wageningen, The Netherlands
- NIZO Food Research B.V., Ede, The Netherlands
| |
Collapse
|
45
|
Torrents E, Grinberg I, Gorovitz-Harris B, Lundström H, Borovok I, Aharonowitz Y, Sjöberg BM, Cohen G. NrdR controls differential expression of the Escherichia coli ribonucleotide reductase genes. J Bacteriol 2007; 189:5012-21. [PMID: 17496099 PMCID: PMC1951866 DOI: 10.1128/jb.00440-07] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Escherichia coli possesses class Ia, class Ib, and class III ribonucleotide reductases (RNR). Under standard laboratory conditions, the aerobic class Ia nrdAB RNR genes are well expressed, whereas the aerobic class Ib nrdEF RNR genes are poorly expressed. The class III RNR is normally expressed under microaerophilic and anaerobic conditions. In this paper, we show that the E. coli YbaD protein differentially regulates the expression of the three sets of genes. YbaD is a homolog of the Streptomyces NrdR protein. It is not essential for growth and has been renamed NrdR. Previously, Streptomyces NrdR was shown to transcriptionally regulate RNR genes by binding to specific 16-bp sequence motifs, NrdR boxes, located in the regulatory regions of its RNR operons. All three E. coli RNR operons contain two such NrdR box motifs positioned in their regulatory regions. The NrdR boxes are located near to or overlap with the promoter elements. DNA binding experiments showed that NrdR binds to each of the upstream regulatory regions. We constructed deletions in nrdR (ybaD) and showed that they caused high-level induction of transcription of the class Ib RNR genes but had a much smaller effect on induction of transcription of the class Ia and class III RNR genes. We propose a model for differential regulation of the RNR genes based on binding of NrdR to the regulatory regions. The model assumes that differences in the positions of the NrdR binding sites, and in the sequences of the motifs themselves, determine the extent to which NrdR represses the transcription of each RNR operon.
Collapse
Affiliation(s)
- Eduard Torrents
- Department of Molecular Biology and Functional Genomics, Stockholm University, SE-10691 Stockholm, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Pedone E, Limauro D, D'Alterio R, Rossi M, Bartolucci S. Characterization of a multifunctional protein disulfide oxidoreductase from Sulfolobus solfataricus. FEBS J 2006; 273:5407-20. [PMID: 17076700 DOI: 10.1111/j.1742-4658.2006.05533.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
A potential role in disulfide bond formation in the intracellular proteins of thermophilic organisms has recently been ascribed to a new family of protein disulfide oxidoreductases (PDOs). We report on the characterization of SsPDO, isolated from the hyperthermophilic archaeon Sulfolobus solfataricus. SsPDO was cloned and expressed in Escherichia coli. We revealed that SsPDO is the substrate of a thioredoxin reductase in S. solfataricus (K(M) 0.3 microm) and not thioredoxins (TrxA1 and TrxA2). SsPDO/S. solfataricus thioredoxin reductase constitute a new thioredoxin system in aerobic thermophilic archaea. While redox (reductase, oxidative and isomerase) activities of SsPDO point to its central role in the biochemistry of cytoplasmic disulfide bonds, chaperone activities also on an endogenous substrate suggest a potential role in the stabilization of intracellular proteins. Northern and western analysis have been performed in order to analyze the response to the oxidative stress.
Collapse
Affiliation(s)
- Emilia Pedone
- Istituto di Biostrutture e Bioimmagini, C.N.R., Naples, Italy
| | | | | | | | | |
Collapse
|
47
|
Peltoniemi MJ, Rytilä PH, Harju TH, Soini YM, Salmenkivi KM, Ruddock LW, Kinnula VL. Modulation of glutaredoxin in the lung and sputum of cigarette smokers and chronic obstructive pulmonary disease. Respir Res 2006; 7:133. [PMID: 17064412 PMCID: PMC1633737 DOI: 10.1186/1465-9921-7-133] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2006] [Accepted: 10/25/2006] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND One typical feature in chronic obstructive pulmonary disease (COPD) is the disturbance of the oxidant/antioxidant balance. Glutaredoxins (Grx) are thiol disulfide oxido-reductases with antioxidant capacity and catalytic functions closely associated with glutathione, the major small molecular weight antioxidant of human lung. However, the role of Grxs in smoking related diseases is unclear. METHODS Immunohistochemical and Western blot analyses were conducted with lung specimens (n = 45 and n = 32, respectively) and induced sputum (n = 50) of healthy non-smokers and smokers without COPD and at different stages of COPD. RESULTS Grx1 was expressed mainly in alveolar macrophages. The percentage of Grx1 positive macrophages was significantly lower in GOLD stage IV COPD than in healthy smokers (p = 0.021) and the level of Grx1 in total lung homogenate decreased both in stage I-II (p = 0.045) and stage IV COPD (p = 0.022). The percentage of Grx1 positive macrophages correlated with the lung function parameters (FEV1, r = 0.45, p = 0.008; FEV1%, r = 0.46, p = 0.007, FEV/FVC%, r = 0.55, p = 0.001). Grx1 could also be detected in sputum supernatants, the levels being increased in the supernatants from acute exacerbations of COPD compared to non-smokers (p = 0.013) and smokers (p = 0.051). CONCLUSION The present cross-sectional study showed that Grx1 was expressed mainly in alveolar macrophages, the levels being decreased in COPD patients. In addition, the results also demonstrated the presence of Grx1 in extracellular fluids including sputum supernatants. Overall, the present study suggests that Grx1 is a potential redox modulatory protein regulating the intracellular as well as extracellular homeostasis of glutathionylated proteins and GSH in human lung.
Collapse
Affiliation(s)
- Mirva J Peltoniemi
- Biocenter Oulu and Department of Biochemistry, University of Oulu, Oulu, Finland
- Department of Internal Medicine, University of Oulu, Oulu, Finland
| | - Paula H Rytilä
- Department of Medicine, Division of Allergology, University of Helsinki, Helsinki, Finland
| | - Terttu H Harju
- Department of Internal Medicine, University of Oulu, Oulu, Finland
| | - Ylermi M Soini
- Department of Pathology, Oulu University Hospital, Oulu, Finland
| | - Kaisa M Salmenkivi
- Department of Pathology, Helsinki University Hospital, Helsinki, Finland
| | - Lloyd W Ruddock
- Biocenter Oulu and Department of Biochemistry, University of Oulu, Oulu, Finland
| | - Vuokko L Kinnula
- Biomedicum Helsinki and Department of Medicine, Division of Pulmonary Diseases, PO Box 340 (Haartmaninkatu 4), 00029 Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
48
|
Michelet L, Zaffagnini M, Massot V, Keryer E, Vanacker H, Miginiac-Maslow M, Issakidis-Bourguet E, Lemaire SD. Thioredoxins, glutaredoxins, and glutathionylation: new crosstalks to explore. PHOTOSYNTHESIS RESEARCH 2006; 89:225-45. [PMID: 17089213 DOI: 10.1007/s11120-006-9096-2] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2006] [Accepted: 08/17/2006] [Indexed: 05/12/2023]
Abstract
Oxidants are widely considered as toxic molecules that cells have to scavenge and detoxify efficiently and continuously. However, emerging evidence suggests that these oxidants can play an important role in redox signaling, mainly through a set of reversible post-translational modifications of thiol residues on proteins. The most studied redox system in photosynthetic organisms is the thioredoxin (TRX) system, involved in the regulation of a growing number of target proteins via thiol/disulfide exchanges. In addition, recent studies suggest that glutaredoxins (GRX) could also play an important role in redox signaling especially by regulating protein glutathionylation, a post-translational modification whose importance begins to be recognized in mammals while much less is known in photosynthetic organisms. This review focuses on oxidants and redox signaling with particular emphasis on recent developments in the study of functions, regulation mechanisms and targets of TRX, GRX and glutathionylation. This review will also present the complex emerging interplay between these three components of redox-signaling networks.
Collapse
Affiliation(s)
- Laure Michelet
- Institut de Biotechnologie des Plantes, Unité Mixte de Recherche 8618, Centre National de la Recherche Scientifique/Université Paris-Sud, Bâtiment 630, Orsay Cedex, 91405, France
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Cámara Y, Duval C, Sibille B, Villarroya F. Activation of mitochondrial-driven apoptosis in skeletal muscle cells is not mediated by reactive oxygen species production. Int J Biochem Cell Biol 2006; 39:146-60. [PMID: 16968671 DOI: 10.1016/j.biocel.2006.07.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2006] [Revised: 07/20/2006] [Accepted: 07/21/2006] [Indexed: 12/15/2022]
Abstract
While the acquisition of apoptosis resistance is part of the differentiation program of skeletal muscle cells, differentiated muscle cells can undergo apoptosis in response to physiological or pathological stimuli. The generation of reactive oxygen species by mitochondria plays a major role in the control of apoptosis in many cell types. Indeed their involvement in controlling apoptosis in differentiated muscle cells, or in generating resistance to apoptosis remains unknown. Moreover, differentiated muscle cells specifically express the uncoupling protein-3, a mitochondrial protein potentially involved in controlling reactive oxygen species production. To study the role of mitochondrial reactive oxygen species in the control of apoptosis in skeletal muscle cells, L6E9 myoblasts and myotubes were exposed to staurosporine, an inducer of apoptosis via mitochondrial pathways. Staurosporine activated apoptotic pathways (i.e. caspase-3 and caspase-9) increasing reactive oxygen species in myoblasts and, to a minor extent, in myotubes. However, the increase in reactive oxygen species was not needed to induce apoptosis nor was it involved in the differential sensitization of myoblasts and myotubes to apoptosis. Moreover, expression of uncoupling protein-3 in myotubes did not affect reactive oxygen species production, although it produced a slight sensitization for staurosporine-induced apoptosis. Results indicate that apoptotic activation in skeletal muscle cells mainly involves reactive oxygen species-independent mechanisms and that mitochondrial uncoupling protein-3 is not protective either for reactive oxygen species production or for apoptotic activation in muscle cells.
Collapse
Affiliation(s)
- Yolanda Cámara
- Departament de Bioquimica i Biologia Molecular, Universitat de Barcelona, Diagonal 645, 08028-Barcelona, Spain
| | | | | | | |
Collapse
|
50
|
Lee YY, Hu HT, Liang PH, Chak KF. An E. coli lon mutant conferring partial resistance to colicin may reveal a novel role in regulating proteins involved in the translocation of colicin. Biochem Biophys Res Commun 2006; 345:1579-85. [PMID: 16750174 DOI: 10.1016/j.bbrc.2006.05.062] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2006] [Accepted: 05/11/2006] [Indexed: 11/17/2022]
Abstract
Initially, we found that a lon mutant confers partial resistance against colicin. The results of Western blotting detected a decrease in the protein expression levels of BtuB and OmpF involved in colicin translocation in the lon mutant. Moreover, 2-D gel analysis revealed that the expression level of some scavenger proteins marks the lon mutant as being in a situation similar to oxidative stress. OxyRS and SoxRS are the two major response regulators for oxidative stress. Our RT-PCR analysis revealed an elevation of expression of the oxyS gene in the lon mutant. An immunoblot assay further confirmed that overexpression of oxyS RNA can negatively control on the expression of BtuB protein. Probably the BtuB is negatively regulated by a global regulator, oxyS, induced during oxidative stress.
Collapse
Affiliation(s)
- Yuan-Yu Lee
- Institute of Biochemistry, National Yang Ming University, Shih-Pai, Taipei, Taiwan
| | | | | | | |
Collapse
|