1
|
Gutierrez-Morton E, Wang Y. The role of SUMOylation in biomolecular condensate dynamics and protein localization. CELL INSIGHT 2024; 3:100199. [PMID: 39399482 PMCID: PMC11467568 DOI: 10.1016/j.cellin.2024.100199] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/23/2024] [Accepted: 08/24/2024] [Indexed: 10/15/2024]
Abstract
As a type of protein post-translational modification, SUMOylation is the process that attaches a small ubiquitin-like modifier (SUMO) to lysine residues of protein substrates. Not only do SUMO and ubiquitin exhibit structure similarity, but the enzymatic cascades for SUMOylation and ubiquitination are also similar. It is well established that protein ubiquitination triggers proteasomal degradation, but the function of SUMOylation remains poorly understood compared to ubiquitination. Recent studies reveal the role of SUMOylation in regulating protein localization, stability, and interaction networks. SUMO can be covalently attached to substrates either as an individual monomer (monoSUMOylation) or as a polymeric SUMO chain (polySUMOylation). Strikingly, mono- and polySUMOylation likely play distinct roles in protein subcellular localization and the assembly/disassembly of biomolecular condensates, which are membraneless cellular compartments with concentrated biomolecules. In this review, we summarize the recent advances in the understanding of the function and regulation of SUMOylation, which could reveal potential therapeutic targets in disease pathogenesis.
Collapse
Affiliation(s)
- Emily Gutierrez-Morton
- Department of Biomedical Sciences, College of Medicine, Florida State University, 1115 West Call Street, Tallahassee, FL, 32306-4300, USA
| | - Yanchang Wang
- Department of Biomedical Sciences, College of Medicine, Florida State University, 1115 West Call Street, Tallahassee, FL, 32306-4300, USA
| |
Collapse
|
2
|
Orren DK, Machwe A. Response to Replication Stress and Maintenance of Genome Stability by WRN, the Werner Syndrome Protein. Int J Mol Sci 2024; 25:8300. [PMID: 39125869 PMCID: PMC11311767 DOI: 10.3390/ijms25158300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/16/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
Werner syndrome (WS) is an autosomal recessive disease caused by loss of function of WRN. WS is a segmental progeroid disease and shows early onset or increased frequency of many characteristics of normal aging. WRN possesses helicase, annealing, strand exchange, and exonuclease activities and acts on a variety of DNA substrates, even complex replication and recombination intermediates. Here, we review the genetics, biochemistry, and probably physiological functions of the WRN protein. Although its precise role is unclear, evidence suggests WRN plays a role in pathways that respond to replication stress and maintain genome stability particularly in telomeric regions.
Collapse
Affiliation(s)
- David K. Orren
- Department of Toxicology and Cancer Biology, University of Kentucky College of Medicine, Lexington, KY 40536, USA;
- Markey Cancer Center, University of Kentucky, Lexington, KY 40506, USA
| | - Amrita Machwe
- Department of Toxicology and Cancer Biology, University of Kentucky College of Medicine, Lexington, KY 40536, USA;
- Markey Cancer Center, University of Kentucky, Lexington, KY 40506, USA
| |
Collapse
|
3
|
Ip WH, Tatham MH, Krohne S, Gruhne J, Melling M, Meyer T, Gornott B, Bertzbach LD, Hay RT, Rodriguez E, Dobner T. Adenovirus E1B-55K controls SUMO-dependent degradation of antiviral cellular restriction factors. J Virol 2023; 97:e0079123. [PMID: 37916833 PMCID: PMC10688335 DOI: 10.1128/jvi.00791-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 10/16/2023] [Indexed: 11/03/2023] Open
Abstract
IMPORTANCE Human adenoviruses (HAdVs) generally cause mild and self-limiting diseases of the upper respiratory and gastrointestinal tracts but pose a serious risk to immunocompromised patients and children. Moreover, they are widely used as vectors for vaccines and vector-based gene therapy approaches. It is therefore vital to thoroughly characterize HAdV gene products and especially HAdV virulence factors. Early region 1B 55 kDa protein (E1B-55K) is a multifunctional HAdV-encoded oncoprotein involved in various viral and cellular pathways that promote viral replication and cell transformation. We analyzed the E1B-55K dependency of SUMOylation, a post-translational protein modification, in infected cells using quantitative proteomics. We found that HAdV increases overall cellular SUMOylation and that this increased SUMOylation can target antiviral cellular pathways that impact HAdV replication. Moreover, we showed that E1B-55K orchestrates the SUMO-dependent degradation of certain cellular antiviral factors. These results once more emphasize the key role of E1B-55K in the regulation of viral and cellular proteins in productive HAdV infections.
Collapse
Affiliation(s)
- Wing-Hang Ip
- Department of Viral Transformation, Leibniz Institute of Virology (LIV), Hamburg, Germany
| | - Michael H. Tatham
- Molecular, Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dundee, Scotland, United Kingdom
| | - Steewen Krohne
- Department of Viral Transformation, Leibniz Institute of Virology (LIV), Hamburg, Germany
| | - Julia Gruhne
- Department of Viral Transformation, Leibniz Institute of Virology (LIV), Hamburg, Germany
| | - Michael Melling
- Department of Viral Transformation, Leibniz Institute of Virology (LIV), Hamburg, Germany
| | - Tina Meyer
- Department of Viral Transformation, Leibniz Institute of Virology (LIV), Hamburg, Germany
| | - Britta Gornott
- Department of Viral Transformation, Leibniz Institute of Virology (LIV), Hamburg, Germany
| | - Luca D. Bertzbach
- Department of Viral Transformation, Leibniz Institute of Virology (LIV), Hamburg, Germany
| | - Ronald T. Hay
- Molecular, Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dundee, Scotland, United Kingdom
| | - Estefania Rodriguez
- Department of Viral Transformation, Leibniz Institute of Virology (LIV), Hamburg, Germany
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- German Centre for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Braunschweig, Germany
| | - Thomas Dobner
- Department of Viral Transformation, Leibniz Institute of Virology (LIV), Hamburg, Germany
| |
Collapse
|
4
|
Loughran ST, Walls D. Tagging Recombinant Proteins to Enhance Solubility and Aid Purification. Methods Mol Biol 2023; 2699:97-123. [PMID: 37646996 DOI: 10.1007/978-1-0716-3362-5_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Protein fusion technology has had a major impact on the efficient production and purification of individual recombinant proteins. The use of genetically engineered affinity and solubility-enhancing polypeptide "tags" has a long history, and there is a considerable repertoire of these that can be used to address issues related to the expression, stability, solubility, folding, and purification of their fusion partner. In the case of large-scale proteomic studies, the development of purification procedures tailored to individual proteins is not practicable, and affinity tags have become indispensable tools for structural and functional proteomic initiatives that involve the expression of many proteins in parallel. In this chapter, the rationale and applications of a range of established and more recently developed solubility-enhancing and affinity tags is described.
Collapse
Affiliation(s)
- Sinéad T Loughran
- Department of Life and Health Sciences, School of Health and Science, Dundalk Institute of Technology, Dundalk, Louth, Ireland.
| | - Dermot Walls
- School of Biotechnology, Dublin City University, Dublin, Ireland
| |
Collapse
|
5
|
Hop PJ, Luijk R, Daxinger L, van Iterson M, Dekkers KF, Jansen R, van Meurs JBJ, 't Hoen PAC, Ikram MA, van Greevenbroek MMJ, Boomsma DI, Slagboom PE, Veldink JH, van Zwet EW, Heijmans BT. Genome-wide identification of genes regulating DNA methylation using genetic anchors for causal inference. Genome Biol 2020; 21:220. [PMID: 32859263 PMCID: PMC7453518 DOI: 10.1186/s13059-020-02114-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 07/21/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND DNA methylation is a key epigenetic modification in human development and disease, yet there is limited understanding of its highly coordinated regulation. Here, we identify 818 genes that affect DNA methylation patterns in blood using large-scale population genomics data. RESULTS By employing genetic instruments as causal anchors, we establish directed associations between gene expression and distant DNA methylation levels, while ensuring specificity of the associations by correcting for linkage disequilibrium and pleiotropy among neighboring genes. The identified genes are enriched for transcription factors, of which many consistently increased or decreased DNA methylation levels at multiple CpG sites. In addition, we show that a substantial number of transcription factors affected DNA methylation at their experimentally determined binding sites. We also observe genes encoding proteins with heterogenous functions that have widespread effects on DNA methylation, e.g., NFKBIE, CDCA7(L), and NLRC5, and for several examples, we suggest plausible mechanisms underlying their effect on DNA methylation. CONCLUSION We report hundreds of genes that affect DNA methylation and provide key insights in the principles underlying epigenetic regulation.
Collapse
Affiliation(s)
- Paul J Hop
- Molecular Epidemiology, Department of Biomedical Data Sciences, Leiden University Medical Center, 2333 ZC, Leiden, The Netherlands
- Department of Neurology, UMC Utrecht Brain Center, University Medical Centre Utrecht, Utrecht University, 3584 CG, Utrecht, The Netherlands
| | - René Luijk
- Molecular Epidemiology, Department of Biomedical Data Sciences, Leiden University Medical Center, 2333 ZC, Leiden, The Netherlands
| | - Lucia Daxinger
- Department of Human Genetics, Leiden University Medical Center, 2333 ZC, Leiden, The Netherlands
| | - Maarten van Iterson
- Molecular Epidemiology, Department of Biomedical Data Sciences, Leiden University Medical Center, 2333 ZC, Leiden, The Netherlands
| | - Koen F Dekkers
- Molecular Epidemiology, Department of Biomedical Data Sciences, Leiden University Medical Center, 2333 ZC, Leiden, The Netherlands
| | - Rick Jansen
- Department of Psychiatry, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, 1081 HV, Amsterdam, The Netherlands
| | - Joyce B J van Meurs
- Department of Internal Medicine, Erasmus Medical Centre, Rotterdam, The Netherlands
| | - Peter A C 't Hoen
- Centre for Molecular and Biomolecular Informatics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center Nijmegen, Nijmegen, The Netherlands
| | - M Arfan Ikram
- Department of Epidemiology, Erasmus University Medical Center, 3015 CE, Rotterdam, The Netherlands
| | - Marleen M J van Greevenbroek
- Department of Internal Medicine, Maastricht University Medical Center, 6211 LK, Maastricht, The Netherlands
- School for Cardiovascular Diseases (CARIM), Maastricht University Medical Center, 6229 ER, Maastricht, The Netherlands
| | - Dorret I Boomsma
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Neuroscience Campus Amsterdam, 1081 BT, Amsterdam, The Netherlands
| | - P Eline Slagboom
- Molecular Epidemiology, Department of Biomedical Data Sciences, Leiden University Medical Center, 2333 ZC, Leiden, The Netherlands
| | - Jan H Veldink
- Department of Neurology, UMC Utrecht Brain Center, University Medical Centre Utrecht, Utrecht University, 3584 CG, Utrecht, The Netherlands
| | - Erik W van Zwet
- Medical Statistics, Department of Biomedical Data Sciences, Leiden University Medical Center, 2333 ZC, Leiden, Zuid-Holland, The Netherlands
| | - Bastiaan T Heijmans
- Molecular Epidemiology, Department of Biomedical Data Sciences, Leiden University Medical Center, 2333 ZC, Leiden, The Netherlands.
| |
Collapse
|
6
|
Li M, Liu B, Yi J, Yang Y, Wang J, Zhu WG, Luo J. MIB1-mediated degradation of WRN promotes cellular senescence in response to camptothecin treatment. FASEB J 2020; 34:11488-11497. [PMID: 32652764 DOI: 10.1096/fj.202000268rrr] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 04/29/2020] [Accepted: 05/11/2020] [Indexed: 11/11/2022]
Abstract
Werner syndrome protein (WRN) plays critical roles in DNA replication, recombination, and repair, as well as transcription and cellular senescence. Ubiquitination and degradation of WRN have been reported, however, the E3 ubiquitin ligase of WRN is little known. Here, we identify mindbomb E3 ubiquitin protein ligase 1 (MIB1) as a novel E3 ubiquitin ligase for WRN protein. MIB1 physically interacts with WRN in vitro and in vivo and induces ubiquitination and degradation of WRN in the ubiquitin-proteasome pathway. Camptothecin (CPT) enhances the interaction between MIB1 and WRN, and promotes WRN degradation in a MIB1-dependent manner. In addition, CPT-induced cellular senescence is facilitated by the expression of MIB1 and attenuated by WRN expression. Our results show that MIB1-mediated degradation of WRN promotes cellular senescence and reveal a novel model executed by MIB1 and WRN to regulate cellular senescence.
Collapse
Affiliation(s)
- Meiting Li
- Department of Medical Genetics, Center for Medical Genetics, Peking University Health Science Center, Beijing, China
| | - Boya Liu
- Department of Medical Genetics, Center for Medical Genetics, Peking University Health Science Center, Beijing, China
| | - Jingjie Yi
- Institute for Cancer Genetics, Columbia University, New York, NY, USA
| | - Yang Yang
- Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, Peking University Health Science Center, Beijing, China
| | - Jiadong Wang
- Department of Radiation Medicine, Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Wei-Guo Zhu
- Department of Biochemistry and Molecular Biology, Shenzhen University School of Medicine, Shenzhen, China
| | - Jianyuan Luo
- Department of Medical Genetics, Center for Medical Genetics, Peking University Health Science Center, Beijing, China.,Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, Peking University Health Science Center, Beijing, China
| |
Collapse
|
7
|
MDM2-mediated degradation of WRN promotes cellular senescence in a p53-independent manner. Oncogene 2018; 38:2501-2515. [PMID: 30532073 DOI: 10.1038/s41388-018-0605-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 09/27/2018] [Accepted: 11/13/2018] [Indexed: 01/12/2023]
Abstract
MDM2 (Murine double minute 2) acts as a key repressor for p53-mediated tumor-suppressor functions, which includes cellular senescence. We found that MDM2 can promote cellular senescence by modulating WRN stability. Werner syndrome (WS), caused by mutations of the WRN gene, is an autosomal recessive disease, which is characterized by premature aging. Loss of WRN function induces cellular senescence in human cancer cells. Here, we found that MDM2 acts as an E3 ligase for WRN protein. MDM2 interacts with WRN both in vivo and in vitro. MDM2 induces ubiquitination of WRN and dramatically downregulates the levels of WRN protein in human cells. During DNA damage response, WRN is translocated to the nucleoplasm to facilitate its DNA repair functions; however, it is degraded by the MDM2-mediated ubiquitination pathway. Moreover, the senescent phenotype induced by DNA damage reagents, such as Etoposide, is at least in part mediated by MDM2-dependent WRN degradation as it can be significantly attenuated by ectopic expression of WRN. These results show that MDM2 is critically involved in regulating WRN function via ubiquitin-dependent degradation and reveal an unexpected role of MDM2 in promoting cellular senescence through a p53-independent manner.
Collapse
|
8
|
Maity J, Das B, Bohr VA, Karmakar P. Acidic domain of WRNp is critical for autophagy and up-regulates age associated proteins. DNA Repair (Amst) 2018; 68:1-11. [PMID: 29800817 DOI: 10.1016/j.dnarep.2018.05.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Revised: 04/06/2018] [Accepted: 05/17/2018] [Indexed: 01/07/2023]
Abstract
Impaired autophagy may be associated with normal and pathological aging. Here we explore a link between autophagy and domain function of Werner protein (WRNp). Werner (WRN) mutant cell lines AG11395, AG05229 and normal aged fibroblast AG13129 display a deficient response to tunicamycin mediated endoplasmic reticulum (ER) stress induced autophagy compared to clinically unaffected GM00637 and normal young fibroblast GM03440. Cellular endoplasmic reticulum (ER) stress mediated autophagy in WS and normal aged cells is restored after transfection with wild type full length WRN, but deletion of the acidic domain from wild type WRN fails to restore autophagy. The acidic domain of WRNp was shown to regulate its transcriptional activity, and here, we show that it affects the transcription of certain proteins involved in autophagy and aging. Furthermore, siRNA mediated silencing of WRN in normal fibroblast WI-38 resulted in decrease of age related proteins Lamin A/C and Mre11.
Collapse
Affiliation(s)
- Jyotirindra Maity
- Department of Life Science and Biotechnology, Jadavpur University, Kolkata, 700032, India
| | - Biswadip Das
- Department of Life Science and Biotechnology, Jadavpur University, Kolkata, 700032, India
| | - Vilhelm A Bohr
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Parimal Karmakar
- Department of Life Science and Biotechnology, Jadavpur University, Kolkata, 700032, India.
| |
Collapse
|
9
|
Small Ubiquitin-Like Modifier Protein 3 Enhances the Solubilization of Human Bone Morphogenetic Protein 2 in E. coli. Appl Biochem Biotechnol 2018; 186:256-270. [PMID: 29574511 DOI: 10.1007/s12010-018-2736-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 03/12/2018] [Indexed: 10/17/2022]
Abstract
Small ubiquitin-like modifier (SUMO) fusion technology is widely used in the production of heterologous proteins from prokaryotic system to aid in protein solubilization and refolding. Due to an extensive clinical application of human bone morphogenetic protein 2 (hBMP2) in bone augmentation, total RNA was isolated from human gingival tissue and mature gene was amplified through RT-PCR, cloned (pET21a), sequence analyzed, and submitted to GenBank (Accession no. KF250425). To obtain soluble expression, SUMO3 was tagged at the N-terminus of hBMP2 gene (pET21a/SUMO3-hBMP2), transferred in BL21 codon+, and ~ 40% soluble expression was obtained on induction with IPTG. The dimerized hBMP2 was confirmed with Western blot, native PAGE analysis, and purified by fast protein liquid chromatography with 0.5 M NaCl elution. The cleavage of SUMO3 tag from hBMP2 converted it to an insoluble form. Computational 3D structural analysis of the SUMO3-hBMP2 was performed and optimized by molecular dynamic simulation. Protein-protein interaction of SUMO3-hBMP2 with BMP2 receptor was carried out using HADDOCK and inferred stable interaction. The alkaline phosphatase assay of SUMO3-hBMP2 on C2C12 cells showed maximum 200-ng/ml dose-dependent activity. We conclude that SUMO3-tagged hBMP2 is more suited for generation of soluble form of the protein and addition of SUMO3 tag does not affect the functional activity of hBMP2.
Collapse
|
10
|
Zilio N, Eifler-Olivi K, Ulrich HD. Functions of SUMO in the Maintenance of Genome Stability. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 963:51-87. [PMID: 28197906 DOI: 10.1007/978-3-319-50044-7_4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Like in most other areas of cellular metabolism, the functions of the ubiquitin-like modifier SUMO in the maintenance of genome stability are manifold and varied. Perturbations of global sumoylation causes a wide spectrum of phenotypes associated with defects in DNA maintenance, such as hypersensitivity to DNA-damaging agents, gross chromosomal rearrangements and loss of entire chromosomes. Consistent with these observations, many key factors involved in various DNA repair pathways have been identified as SUMO substrates. However, establishing a functional connection between a given SUMO target, the cognate SUMO ligase and a relevant phenotype has remained a challenge, mainly because of the difficulties involved in identifying important modification sites and downstream effectors that specifically recognize the target in its sumoylated state. This review will give an overview over the major pathways of DNA repair and genome maintenance influenced by the SUMO system and discuss selected examples of SUMO's actions in these pathways where the biological consequences of the modification have been elucidated.
Collapse
Affiliation(s)
- Nicola Zilio
- Institute of Molecular Biology (IMB), Ackermannweg 4, D-55128, Mainz, Germany
| | | | - Helle D Ulrich
- Institute of Molecular Biology (IMB), Ackermannweg 4, D-55128, Mainz, Germany.
| |
Collapse
|
11
|
Abstract
Protein fusion technology has had a major impact on the efficient production and purification of individual recombinant proteins. The use of genetically engineered affinity and solubility-enhancing polypeptide "tags" has increased greatly in recent years and there now exists a considerable repertoire of these that can be used to solve issues related to the expression, stability, solubility, folding, and purification of their fusion partner. In the case of large-scale proteomic studies, the development of purification procedures tailored to individual proteins is not practicable, and affinity tags have therefore become indispensable tools for structural and functional proteomic initiatives that involve the expression of many proteins in parallel. Here, the rationale and applications of a range of established and more recently developed solubility-enhancing and affinity tags is described.
Collapse
Affiliation(s)
- Sinéad T Loughran
- Department of Applied Sciences, Dundalk Institute of Technology, Dundalk, Ireland
| | - Dermot Walls
- School of Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland.
- National Centre for Sensor Research, Dublin City University, Glasnevin, Dublin 9, Ireland.
| |
Collapse
|
12
|
Silva S, Altmannova V, Eckert-Boulet N, Kolesar P, Gallina I, Hang L, Chung I, Arneric M, Zhao X, Buron LD, Mortensen UH, Krejci L, Lisby M. SUMOylation of Rad52-Rad59 synergistically change the outcome of mitotic recombination. DNA Repair (Amst) 2016; 42:11-25. [PMID: 27130983 DOI: 10.1016/j.dnarep.2016.04.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 04/02/2016] [Accepted: 04/05/2016] [Indexed: 11/18/2022]
Abstract
Homologous recombination (HR) is essential for maintenance of genome stability through double-strand break (DSB) repair, but at the same time HR can lead to loss of heterozygosity and uncontrolled recombination can be genotoxic. The post-translational modification by SUMO (small ubiquitin-like modifier) has been shown to modulate recombination, but the exact mechanism of this regulation remains unclear. Here we show that SUMOylation stabilizes the interaction between the recombination mediator Rad52 and its paralogue Rad59 in Saccharomyces cerevisiae. Although Rad59 SUMOylation is not required for survival after genotoxic stress, it affects the outcome of recombination to promote conservative DNA repair. In some genetic assays, Rad52 and Rad59 SUMOylation act synergistically. Collectively, our data indicate that the described SUMO modifications affect the balance between conservative and non-conservative mechanisms of HR.
Collapse
Affiliation(s)
- Sonia Silva
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen N, Denmark
| | - Veronika Altmannova
- Department of Biology, Masaryk University, Kamenice 5/A7, 62500 Brno, Czech Republic
| | - Nadine Eckert-Boulet
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen N, Denmark
| | - Peter Kolesar
- Department of Biology, Masaryk University, Kamenice 5/A7, 62500 Brno, Czech Republic
| | - Irene Gallina
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen N, Denmark
| | - Lisa Hang
- Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Inn Chung
- Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Milica Arneric
- Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Xiaolan Zhao
- Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Line Due Buron
- Department of Systems Biology, Technical University of Denmark, Building 223, 2800 Kgs. Lyngby, Denmark
| | - Uffe H Mortensen
- Department of Systems Biology, Technical University of Denmark, Building 223, 2800 Kgs. Lyngby, Denmark
| | - Lumir Krejci
- Department of Biology, Masaryk University, Kamenice 5/A7, 62500 Brno, Czech Republic; National Centre for Biomolecular Research, Masaryk University, Kamenice 5/A4, Brno 625 00, Czech Republic; International Clinical Research Center, Center for Biomolecular and Cellular Engineering, St. Anne's University Hospital Brno, Brno, Czech Republic
| | - Michael Lisby
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen N, Denmark.
| |
Collapse
|
13
|
Xu HD, Shi SP, Chen X, Qiu JD. Systematic Analysis of the Genetic Variability That Impacts SUMO Conjugation and Their Involvement in Human Diseases. Sci Rep 2015; 5:10900. [PMID: 26154679 PMCID: PMC4495600 DOI: 10.1038/srep10900] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 05/05/2015] [Indexed: 12/12/2022] Open
Abstract
Protein function has been observed to rely on select essential sites instead of requiring all sites to be indispensable. Small ubiquitin-related modifier (SUMO) conjugation or sumoylation, which is a highly dynamic reversible process and its outcomes are extremely diverse, ranging from changes in localization to altered activity and, in some cases, stability of the modified, has shown to be especially valuable in cellular biology. Motivated by the significance of SUMO conjugation in biological processes, we report here on the first exploratory assessment whether sumoylation related genetic variability impacts protein functions as well as the occurrence of diseases related to SUMO. Here, we defined the SUMOAMVR as sumoylation related amino acid variations that affect sumoylation sites or enzymes involved in the process of connectivity, and categorized four types of potential SUMOAMVRs. We detected that 17.13% of amino acid variations are potential SUMOAMVRs and 4.83% of disease mutations could lead to SUMOAMVR with our system. More interestingly, the statistical analysis demonstrates that the amino acid variations that directly create new potential lysine sumoylation sites are more likely to cause diseases. It can be anticipated that our method can provide more instructive guidance to identify the mechanisms of genetic diseases.
Collapse
Affiliation(s)
- Hao-Dong Xu
- Department of Chemistry, Nanchang University, Nanchang 330031, P.R.China
| | - Shao-Ping Shi
- Department of Mathematics, Nanchang University, Nanchang 330031, P.R.China
| | - Xiang Chen
- Department of Chemistry, Nanchang University, Nanchang 330031, P.R.China
| | - Jian-Ding Qiu
- 1] Department of Chemistry, Nanchang University, Nanchang 330031, P.R.China [2] Department of Materials and Chemical Engineering, Pingxiang College, Pingxiang 337055, P.R.China
| |
Collapse
|
14
|
Costa S, Almeida A, Castro A, Domingues L. Fusion tags for protein solubility, purification and immunogenicity in Escherichia coli: the novel Fh8 system. Front Microbiol 2014. [PMID: 24600443 DOI: 10.3389/fmicb.2014.00063.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Proteins are now widely produced in diverse microbial cell factories. The Escherichia coli is still the dominant host for recombinant protein production but, as a bacterial cell, it also has its issues: the aggregation of foreign proteins into insoluble inclusion bodies is perhaps the main limiting factor of the E. coli expression system. Conversely, E. coli benefits of cost, ease of use and scale make it essential to design new approaches directed for improved recombinant protein production in this host cell. With the aid of genetic and protein engineering novel tailored-made strategies can be designed to suit user or process requirements. Gene fusion technology has been widely used for the improvement of soluble protein production and/or purification in E. coli, and for increasing peptide's immunogenicity as well. New fusion partners are constantly emerging and complementing the traditional solutions, as for instance, the Fh8 fusion tag that has been recently studied and ranked among the best solubility enhancer partners. In this review, we provide an overview of current strategies to improve recombinant protein production in E. coli, including the key factors for successful protein production, highlighting soluble protein production, and a comprehensive summary of the latest available and traditionally used gene fusion technologies. A special emphasis is given to the recently discovered Fh8 fusion system that can be used for soluble protein production, purification, and immunogenicity in E. coli. The number of existing fusion tags will probably increase in the next few years, and efforts should be taken to better understand how fusion tags act in E. coli. This knowledge will undoubtedly drive the development of new tailored-made tools for protein production in this bacterial system.
Collapse
Affiliation(s)
- Sofia Costa
- Institute for Biotechnology and Bioengineering, Centre of Biological Engineering, University of Minho Braga, Portugal ; Instituto Nacional de Saúde Dr. Ricardo Jorge Porto, Portugal
| | - André Almeida
- Hitag Biotechnology, Lad., Biocant, Parque Technologico de Cantanhede Cantanhede, Portugal
| | - António Castro
- Instituto Nacional de Saúde Dr. Ricardo Jorge Porto, Portugal
| | - Lucília Domingues
- Institute for Biotechnology and Bioengineering, Centre of Biological Engineering, University of Minho Braga, Portugal
| |
Collapse
|
15
|
Croteau DL, Popuri V, Opresko PL, Bohr VA. Human RecQ helicases in DNA repair, recombination, and replication. Annu Rev Biochem 2014; 83:519-52. [PMID: 24606147 DOI: 10.1146/annurev-biochem-060713-035428] [Citation(s) in RCA: 427] [Impact Index Per Article: 38.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
RecQ helicases are an important family of genome surveillance proteins conserved from bacteria to humans. Each of the five human RecQ helicases plays critical roles in genome maintenance and stability, and the RecQ protein family members are often referred to as guardians of the genome. The importance of these proteins in cellular homeostasis is underscored by the fact that defects in BLM, WRN, and RECQL4 are linked to distinct heritable human disease syndromes. Each human RecQ helicase has a unique set of protein-interacting partners, and these interactions dictate its specialized functions in genome maintenance, including DNA repair, recombination, replication, and transcription. Human RecQ helicases also interact with each other, and these interactions have significant impact on enzyme function. Future research goals in this field include a better understanding of the division of labor among the human RecQ helicases and learning how human RecQ helicases collaborate and cooperate to enhance genome stability.
Collapse
Affiliation(s)
- Deborah L Croteau
- Laboratory of Molecular Gerontology, National Institute on Aging, Baltimore, Maryland 21224;
| | | | | | | |
Collapse
|
16
|
Costa S, Almeida A, Castro A, Domingues L. Fusion tags for protein solubility, purification and immunogenicity in Escherichia coli: the novel Fh8 system. Front Microbiol 2014; 5:63. [PMID: 24600443 PMCID: PMC3928792 DOI: 10.3389/fmicb.2014.00063] [Citation(s) in RCA: 269] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Accepted: 01/30/2014] [Indexed: 01/19/2023] Open
Abstract
Proteins are now widely produced in diverse microbial cell factories. The Escherichia coli is still the dominant host for recombinant protein production but, as a bacterial cell, it also has its issues: the aggregation of foreign proteins into insoluble inclusion bodies is perhaps the main limiting factor of the E. coli expression system. Conversely, E. coli benefits of cost, ease of use and scale make it essential to design new approaches directed for improved recombinant protein production in this host cell. With the aid of genetic and protein engineering novel tailored-made strategies can be designed to suit user or process requirements. Gene fusion technology has been widely used for the improvement of soluble protein production and/or purification in E. coli, and for increasing peptide's immunogenicity as well. New fusion partners are constantly emerging and complementing the traditional solutions, as for instance, the Fh8 fusion tag that has been recently studied and ranked among the best solubility enhancer partners. In this review, we provide an overview of current strategies to improve recombinant protein production in E. coli, including the key factors for successful protein production, highlighting soluble protein production, and a comprehensive summary of the latest available and traditionally used gene fusion technologies. A special emphasis is given to the recently discovered Fh8 fusion system that can be used for soluble protein production, purification, and immunogenicity in E. coli. The number of existing fusion tags will probably increase in the next few years, and efforts should be taken to better understand how fusion tags act in E. coli. This knowledge will undoubtedly drive the development of new tailored-made tools for protein production in this bacterial system.
Collapse
Affiliation(s)
- Sofia Costa
- Institute for Biotechnology and Bioengineering, Centre of Biological Engineering, University of Minho Braga, Portugal ; Instituto Nacional de Saúde Dr. Ricardo Jorge Porto, Portugal
| | - André Almeida
- Hitag Biotechnology, Lad., Biocant, Parque Technologico de Cantanhede Cantanhede, Portugal
| | - António Castro
- Instituto Nacional de Saúde Dr. Ricardo Jorge Porto, Portugal
| | - Lucília Domingues
- Institute for Biotechnology and Bioengineering, Centre of Biological Engineering, University of Minho Braga, Portugal
| |
Collapse
|
17
|
Ying S, Dünnebier T, Si J, Hamann U. Estrogen receptor alpha and nuclear factor Y coordinately regulate the transcription of the SUMO-conjugating UBC9 gene in MCF-7 breast cancer cells. PLoS One 2013; 8:e75695. [PMID: 24086615 PMCID: PMC3785449 DOI: 10.1371/journal.pone.0075695] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Accepted: 08/21/2013] [Indexed: 12/31/2022] Open
Abstract
UBC9 encodes a protein that conjugates small ubiquitin-related modifier (SUMO) to target proteins thereby changing their functions. Recently, it was noted that UBC9 expression and activity play a role in breast tumorigenesis and response to anticancer drugs. However, the underlying mechanism is poorly understood. To investigate the transcriptional regulation of the UBC9 gene, we identified and characterized its promoter and cis-elements. Promoter activity was tested using luciferase reporter assays. The binding of transcription factors to the promoter was detected by chromatin immunoprecipitation (ChIP), and their functional role was confirmed by siRNA knockdown. UBC9 mRNA and protein levels were measured by quantitative reverse transcription PCR and Western blot analysis, respectively. An increased expression of UBC9 mRNA and protein was found in MCF-7 breast cancer cells treated with 17β-estradiol (E2). Analysis of various deletion mutants revealed a 137 bp fragment upstream of the transcription initiation site to be sufficient for reporter gene transcription. Mutations of putative estrogen receptor α (ER-α) (one imperfect estrogen response element, ERE) and/or nuclear factor Y (NF-Y) binding sites (two CCAAT boxes) markedly reduced promoter activity. Similar results were obtained in ER-negative MDA-MB-231 cells except that the ERE mutation did not affect promoter activity. Additionally, promoter activity was stimulated upon E2 treatment and overexpression of ER-α or NF-YA in MCF-7 cells. ChIP confirmed direct binding of both transcription factors to the UBC9 promoter in vivo. Furthermore, UBC9 expression was diminished by ER-α and NF-Y siRNAs on the mRNA and protein levels. In conclusion, we identified the proximal UBC9 promoter and provided evidence that ER-α and NF-Y regulate UBC9 expression on the transcriptional level in response to E2 in MCF-7 cells. These findings may contribute to a better understanding of the regulation of UBC9 in ER-positive breast cancer and be useful for the development of cancer therapies targeting UBC9.
Collapse
Affiliation(s)
- Shibo Ying
- Molecular Genetics of Breast Cancer, Deutsches Krebsforschungszentrum (DKFZ), Heidelberg, Germany
| | - Thomas Dünnebier
- Molecular Genetics of Breast Cancer, Deutsches Krebsforschungszentrum (DKFZ), Heidelberg, Germany
| | - Jing Si
- Molecular Genetics of Breast Cancer, Deutsches Krebsforschungszentrum (DKFZ), Heidelberg, Germany
| | - Ute Hamann
- Molecular Genetics of Breast Cancer, Deutsches Krebsforschungszentrum (DKFZ), Heidelberg, Germany
- * E-mail:
| |
Collapse
|
18
|
Affiliation(s)
- Helle D Ulrich
- Cancer Research UK London Research Institute, Clare Hall Laboratories, Blanche Lane, South Mimms, Hertfordshire EN6 3LD, UK.
| |
Collapse
|
19
|
Bermejo JL, Kabisch M, Dünnebier T, Schnaidt S, Melchior F, Fischer HP, Harth V, Rabstein S, Pesch B, Brüning T, Justenhoven C, Brauch H, Baisch C, Ko YD, Hamann U. Exploring the association between genetic variation in the SUMO isopeptidase geneUSPL1and breast cancer through integration of data from the population-based GENICA study and external genetic databases. Int J Cancer 2013; 133:362-72. [DOI: 10.1002/ijc.28040] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Revised: 12/11/2012] [Accepted: 12/13/2012] [Indexed: 01/21/2023]
Affiliation(s)
- Justo Lorenzo Bermejo
- Institute of Medical Biometry and Informatics (IMBI); University Hospital Heidelberg; Im Neuenheimer Feld 305; 69120; Heidelberg; Germany
| | - Maria Kabisch
- Molecular Genetics of Breast Cancer; Deutsches Krebsforschungszentrum (DKFZ); Im Neuenheimer Feld 580; 69120; Heidelberg; Germany
| | - Thomas Dünnebier
- Molecular Genetics of Breast Cancer; Deutsches Krebsforschungszentrum (DKFZ); Im Neuenheimer Feld 580; 69120; Heidelberg; Germany
| | - Sven Schnaidt
- Institute of Medical Biometry and Informatics (IMBI); University Hospital Heidelberg; Im Neuenheimer Feld 305; 69120; Heidelberg; Germany
| | - Frauke Melchior
- Center for Molecular Biology at Heidelberg University (ZMBH); DKFZ-ZMBH Alliance; Im Neuenheimer Feld 282; 69120; Heidelberg; Germany
| | - Hans-Peter Fischer
- Institute of Pathology; Medical Faculty of the University of Bonn; Sigmund-Freud-Strasse 25; 53123; Bonn; Germany
| | | | - Sylvia Rabstein
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance (IPA); Bürkle-de-la-Camp Platz 1; 44789; Bochum; Germany
| | - Beate Pesch
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance (IPA); Bürkle-de-la-Camp Platz 1; 44789; Bochum; Germany
| | - Thomas Brüning
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance (IPA); Bürkle-de-la-Camp Platz 1; 44789; Bochum; Germany
| | - Christina Justenhoven
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology; Auerbachstraße 112; 70376; Stuttgart, and University of Tübingen; Tübingen; Germany
| | - Hiltrud Brauch
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology; Auerbachstraße 112; 70376; Stuttgart, and University of Tübingen; Tübingen; Germany
| | - Christian Baisch
- Department of Internal Medicine; Evangelische Kliniken Bonn gGmbH, Johanniter Krankenhaus; Johanniterstraße 3-5; 53113; Bonn; Germany
| | - Yon-Dschun Ko
- Department of Internal Medicine; Evangelische Kliniken Bonn gGmbH, Johanniter Krankenhaus; Johanniterstraße 3-5; 53113; Bonn; Germany
| | - Ute Hamann
- Molecular Genetics of Breast Cancer; Deutsches Krebsforschungszentrum (DKFZ); Im Neuenheimer Feld 580; 69120; Heidelberg; Germany
| |
Collapse
|
20
|
Altmannová V, Kolesár P, Krejčí L. SUMO Wrestles with Recombination. Biomolecules 2012; 2:350-75. [PMID: 24970142 PMCID: PMC4030836 DOI: 10.3390/biom2030350] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2012] [Revised: 06/27/2012] [Accepted: 07/13/2012] [Indexed: 01/21/2023] Open
Abstract
DNA double-strand breaks (DSBs) comprise one of the most toxic DNA lesions, as the failure to repair a single DSB has detrimental consequences on the cell. Homologous recombination (HR) constitutes an error-free repair pathway for the repair of DSBs. On the other hand, when uncontrolled, HR can lead to genome rearrangements and needs to be tightly regulated. In recent years, several proteins involved in different steps of HR have been shown to undergo modification by small ubiquitin-like modifier (SUMO) peptide and it has been suggested that deficient sumoylation impairs the progression of HR. This review addresses specific effects of sumoylation on the properties of various HR proteins and describes its importance for the homeostasis of DNA repetitive sequences. The article further illustrates the role of sumoylation in meiotic recombination and the interplay between SUMO and other post-translational modifications.
Collapse
Affiliation(s)
| | - Peter Kolesár
- Department of Biology, Masaryk University, Brno 62500, Czech Republic.
| | - Lumír Krejčí
- Department of Biology, Masaryk University, Brno 62500, Czech Republic.
| |
Collapse
|
21
|
Krejci L, Altmannova V, Spirek M, Zhao X. Homologous recombination and its regulation. Nucleic Acids Res 2012; 40:5795-818. [PMID: 22467216 PMCID: PMC3401455 DOI: 10.1093/nar/gks270] [Citation(s) in RCA: 477] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Homologous recombination (HR) is critical both for repairing DNA lesions in mitosis and for chromosomal pairing and exchange during meiosis. However, some forms of HR can also lead to undesirable DNA rearrangements. Multiple regulatory mechanisms have evolved to ensure that HR takes place at the right time, place and manner. Several of these impinge on the control of Rad51 nucleofilaments that play a central role in HR. Some factors promote the formation of these structures while others lead to their disassembly or the use of alternative repair pathways. In this article, we review these mechanisms in both mitotic and meiotic environments and in different eukaryotic taxa, with an emphasis on yeast and mammal systems. Since mutations in several proteins that regulate Rad51 nucleofilaments are associated with cancer and cancer-prone syndromes, we discuss how understanding their functions can lead to the development of better tools for cancer diagnosis and therapy.
Collapse
Affiliation(s)
- Lumir Krejci
- Department of Biology, Masaryk University, Brno, Czech Republic.
| | | | | | | |
Collapse
|
22
|
SUMOylation and de-SUMOylation in response to DNA damage. FEBS Lett 2011; 585:2891-6. [PMID: 21486569 DOI: 10.1016/j.febslet.2011.04.002] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2011] [Revised: 04/01/2011] [Accepted: 04/01/2011] [Indexed: 11/22/2022]
Abstract
To maintain genomic integrity, a cell must utilize multiple mechanisms to protect its DNA from the damage generated by environmental agents or DNA metabolism. SUMO (small ubiquitin-like modifier) can regulate protein stability, protein cellular location, and protein-protein interactions. In this review, we summarize the current understanding of the roles of SUMOylation and de-SUMOylation in DNA damage response (DDR) and DNA repair with a specific focus on the role of RPA SUMOylation in homologous recombination (HR).
Collapse
|
23
|
Nagai S, Davoodi N, Gasser SM. Nuclear organization in genome stability: SUMO connections. Cell Res 2011; 21:474-85. [PMID: 21321608 DOI: 10.1038/cr.2011.31] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Recent findings show that chromatin dynamics and nuclear organization are not only important for gene regulation and DNA replication, but also for the maintenance of genome stability. In yeast, nuclear pores play a role in the maintenance of genome stability by means of the evolutionarily conserved family of SUMO-targeted Ubiquitin ligases (STUbLs). The yeast Slx5/Slx8 STUbL associates with a class of DNA breaks that are shifted to nuclear pores. Functionally Slx5/Slx8 are needed for telomere maintenance by an unusual recombination-mediated pathway. The mammalian STUbL RNF4 associates with Promyelocytic leukaemia (PML) nuclear bodies and regulates PML/PML-fusion protein stability in response to arsenic-induced stress. A subclass of PML bodies support telomere maintenance by the ALT pathway in telomerase-deficient tumors. Perturbation of nuclear organization through either loss of pore subunits in yeast, or PML body perturbation in man, can lead to gene amplifications, deletions, translocations or end-to-end telomere fusion events, thus implicating SUMO and STUbLs in the subnuclear organization of select repair events.
Collapse
Affiliation(s)
- Shigeki Nagai
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, CH-4058 Basel, Switzerland
| | | | | |
Collapse
|
24
|
Walls D, Loughran ST. Tagging recombinant proteins to enhance solubility and aid purification. Methods Mol Biol 2011; 681:151-175. [PMID: 20978965 DOI: 10.1007/978-1-60761-913-0_9] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Protein fusion technology has enormously facilitated the efficient production and purification of individual recombinant proteins. The use of genetically engineered affinity and solubility-enhancing polypeptide "tags" has increased greatly in recent years and there now exists a considerable repertoire of these that can be used to solve issues related to the expression, stability, solubility, folding, and purification of their fusion partner. In the case of large-scale proteomic studies, the development of purification procedures tailored to individual proteins is not practicable, and affinity tags have therefore become indispensable tools for structural and functional proteomic initiatives that involve the expression of many proteins in parallel. Here, the rationale and applications of a range of established and more recently developed solubility-enhancing and affinity tags are outlined.
Collapse
Affiliation(s)
- Dermot Walls
- School of Biotechnology and National Centre for Sensor Research, Dublin City University, Dublin, Ireland.
| | | |
Collapse
|
25
|
Breitbart H, Etkovitz N. Role and regulation of EGFR in actin remodeling in sperm capacitation and the acrosome reaction. Asian J Androl 2010; 13:106-10. [PMID: 21200378 DOI: 10.1038/aja.2010.78] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
To bind and fertilize the egg, the spermatozoon should undergo few biochemical and motility changes in the female reproductive tract collectively called capacitation. The capacitated spermatozoon binds to the egg zona pellucida, and then undergoes the acrosome reaction (AR), which allows its penetration into the egg. The mechanisms regulating sperm capacitation and the AR are not completely understood. In the present review, we summarize some data regarding the role and regulation of the epidermal growth factor receptor (EGFR) in these processes. In the capacitation process, the EGFR is partially activated by protein kinase A (PKA), resulting in phospholipase D (PLD) activation and actin polymerization. Protein kinase C alpha (PKCα), which is already activated at the beginning of the capacitation, also participates in PLD activation. Further activation of the EGFR at the end of the capacitation enhances intracellular Ca(2+) concentration leading to F-actin breakdown and allows the AR to take place. Under in vivo conditions, the EGFR can be directly activated by its known ligand epidermal growth factor (EGF), and indirectly by activating PKA or by transactivation mediated by G protein-coupled receptors (GPCRs) activation or by ouabain. Under physiological conditions, sperm PKA is activated mainly by bicarbonate, which activates the soluble adenylyl cyclase to produce cyclic adenosine monophosphate (cAMP), the activator of PKA. The GPCR activators angiotensin II or lysophosphatidic acid, as well as ouabain and EGF are physiological components present in the female reproductive tract.
Collapse
Affiliation(s)
- Haim Breitbart
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 52900, Israel.
| | | |
Collapse
|
26
|
Wang Z, Li H, Guan W, Ling H, Wang Z, Mu T, Shuler FD, Fang X. Human SUMO fusion systems enhance protein expression and solubility. Protein Expr Purif 2010; 73:203-8. [DOI: 10.1016/j.pep.2010.05.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2010] [Revised: 05/04/2010] [Accepted: 05/04/2010] [Indexed: 01/28/2023]
|
27
|
Lu CY, Tsai CH, Brill SJ, Teng SC. Sumoylation of the BLM ortholog, Sgs1, promotes telomere-telomere recombination in budding yeast. Nucleic Acids Res 2009; 38:488-98. [PMID: 19906698 PMCID: PMC2810998 DOI: 10.1093/nar/gkp1008] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BLM and WRN are members of the RecQ family of DNA helicases, and in humans their loss is associated with syndromes characterized by genome instability and cancer predisposition. As the only RecQ DNA helicase in the yeast Saccharomyces cerevisiae, Sgs1 is known to safeguard genome integrity through its role in DNA recombination. Interestingly, WRN, BLM and Sgs1 are all known to be modified by the small ubiquitin-related modifier (SUMO), although the significance of this posttranslational modification remains elusive. Here, we demonstrate that Sgs1 is specifically sumoylated under the stress of DNA double strand breaks. The major SUMO attachment site in Sgs1 is lysine 621, which lies between the Top3 binding domain and the DNA helicase domain. Surprisingly, sumoylation of K621 was found to be uniquely required for Sgs1's role in telomere-telomere recombination. In contrast, sumoylation was dispensable for Sgs1's roles in DNA damage tolerance, supppression of direct repeat and rDNA recombination, and promotion of top3Delta slow growth. Our results demonstrate that although modification by SUMO is a conserved feature of RecQ family DNA helicases, the major sites of modification are located on different domains of the protein in different organisms. We suggest that sumoylation of different domains of RecQ DNA helicases from different organisms contributes to conserved roles in regulating telomeric recombination.
Collapse
Affiliation(s)
- Chia-Yin Lu
- Department of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | | | | | | |
Collapse
|
28
|
Dünnebier T, Bermejo JL, Haas S, Fischer HP, Pierl CB, Justenhoven C, Brauch H, Baisch C, Gilbert M, Harth V, Spickenheuer A, Rabstein S, Pesch B, Brüning T, Ko YD, Hamann U. Polymorphisms in the UBC9 and PIAS3 genes of the SUMO-conjugating system and breast cancer risk. Breast Cancer Res Treat 2009; 121:185-94. [DOI: 10.1007/s10549-009-0530-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2009] [Accepted: 08/26/2009] [Indexed: 10/20/2022]
|
29
|
Abstract
Around 1% of the open reading frames in the human genome encode predicted DNA and RNA helicases. One highly conserved group of DNA helicases is the RecQ family. Genetic defects in three of the five human RecQ helicases, BLM, WRN and RECQ4, give rise to defined syndromes associated with cancer predisposition, some features of premature ageing and chromosomal instability. In recent years, there has been a tremendous advance in our understanding of the cellular functions of individual RecQ helicases. In this Review, we discuss how these proteins might suppress genomic rearrangements, and therefore function as 'caretaker' tumour suppressors.
Collapse
Affiliation(s)
- Wai Kit Chu
- Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK
| | | |
Collapse
|
30
|
Ma KW, Au SWN, Waye MMY. Over-expression of SUMO-1 induces the up-regulation of heterogeneous nuclear ribonucleoprotein A2/B1 isoform B1 (hnRNP A2/B1 isoform B1) and uracil DNA glycosylase (UDG) in hepG2 cells. Cell Biochem Funct 2009; 27:228-37. [PMID: 19384898 DOI: 10.1002/cbf.1562] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Sumoylation is one of the post-translational modifications that governs many cellular activities, including subcellular localization targeting, protein-protein interaction, and transcriptional activity regulation. SUMO E3 ligases are responsible for substrate specificity determination in which PIAS is the largest E3 family that consists of five members in human; they are PIAS1, PIAS3, PIASx alpha, PIASx beta, and PIASy. Several studies showed that all these PIAS genes are highly expressed in testis but only a few reports have discussed their expression pattern in other tissues. Though liver is a multifunctional organ and one would expect to find regulation of cellular functions by sumoylation, the identified sumoylation substrates are scarce and few of them correlate with liver cancer. In this report, we have found that PIASx alpha, PIASx beta, and PIASy are highly expressed in liver as well as testis by tissue distribution studies. We thus aimed to identify any SUMO-1 related proteins in liver cancer cells by two-dimensional gel electrophoresis and mass spectrometry. Two up-regulated proteins, heterogeneous nuclear ribonucleoprotein A2/B1 isoform B1 (hnRNP A2/B1 isoform B1) and uracil DNA glycosylase (UDG), have been identified in the EGFP-SUMO-1 over-expressing HepG2 cells. The up-regulation is suggested to be mediated via changes at the translational level or protection from degradation by western blotting and RT-PCR.
Collapse
Affiliation(s)
- Kit Wan Ma
- The Croucher Laboratory for Human Genomics, MMW Bldg., the Chinese University of Hong Kong, Shatin, NT, Hong Kong, SAR, China
| | | | | |
Collapse
|
31
|
Golebiowski F, Matic I, Tatham MH, Cole C, Yin Y, Nakamura A, Cox J, Barton GJ, Mann M, Hay RT. System-wide changes to SUMO modifications in response to heat shock. Sci Signal 2009; 2:ra24. [PMID: 19471022 DOI: 10.1126/scisignal.2000282] [Citation(s) in RCA: 394] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Covalent conjugation of the small ubiquitin-like modifier (SUMO) proteins to target proteins regulates many important eukaryotic cellular mechanisms. Although the molecular consequences of the conjugation of SUMO proteins are relatively well understood, little is known about the cellular signals that regulate the modification of their substrates. Here, we show that SUMO-2 and SUMO-3 are required for cells to survive heat shock. Through quantitative labeling techniques, stringent purification of SUMOylated proteins, advanced mass spectrometric technology, and novel techniques of data analysis, we quantified heat shock-induced changes in the SUMOylation state of 766 putative substrates. In response to heat shock, SUMO was polymerized into polySUMO chains and redistributed among a wide range of proteins involved in cell cycle regulation; apoptosis; the trafficking, folding, and degradation of proteins; transcription; translation; and DNA replication, recombination, and repair. This comprehensive proteomic analysis of the substrates of a ubiquitin-like modifier (Ubl) identifies a pervasive role for SUMO proteins in the biologic response to hyperthermic stress.
Collapse
Affiliation(s)
- Filip Golebiowski
- 1Wellcome Trust Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Abstract
With the discovery in the late 1980s that the DNA-repair gene RAD6 encodes a ubiquitin-conjugating enzyme, it became clear that protein modification by ubiquitin conjugation has a much broader significance than had previously been assumed. Now, two decades later, ubiquitin and its cousin SUMO are implicated in a range of human diseases, including breast cancer and Fanconi anaemia, giving fresh momentum to studies focused on the relationships between ubiquitin, SUMO and DNA-repair pathways.
Collapse
|
33
|
Ding SL, Shen CY. Model of human aging: recent findings on Werner's and Hutchinson-Gilford progeria syndromes. Clin Interv Aging 2008; 3:431-44. [PMID: 18982914 PMCID: PMC2682376 DOI: 10.2147/cia.s1957] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The molecular mechanisms involved in human aging are complicated. Two progeria syndromes, Werner's syndrome (WS) and Hutchinson-Gilford progeria syndrome (HGPS), characterized by clinical features mimicking physiological aging at an early age, provide insights into the mechanisms of natural aging. Based on recent findings on WS and HGPS, we suggest a model of human aging. Human aging can be triggered by two main mechanisms, telomere shortening and DNA damage. In telomere-dependent aging, telomere shortening and dysfunction may lead to DNA damage responses which induce cellular senescence. In DNA damage-initiated aging, DNA damage accumulates, along with DNA repair deficiencies, resulting in genomic instability and accelerated cellular senescence. In addition, aging due to both mechanisms (DNA damage and telomere shortening) is strongly dependent on p53 status. These two mechanisms can also act cooperatively to increase the overall level ofgenomic instability, triggering the onset of human aging phenotypes.
Collapse
Affiliation(s)
- Shian-Ling Ding
- Department of Nursing, Kang-Ning Junior College of Medical Care and Management,Taipei,Taiwan.
| | | |
Collapse
|
34
|
Sidorova JM. Roles of the Werner syndrome RecQ helicase in DNA replication. DNA Repair (Amst) 2008; 7:1776-86. [PMID: 18722555 PMCID: PMC2659608 DOI: 10.1016/j.dnarep.2008.07.017] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2008] [Accepted: 07/23/2008] [Indexed: 01/20/2023]
Abstract
Congenital deficiency in the WRN protein, a member of the human RecQ helicase family, gives rise to Werner syndrome, a genetic instability and cancer predisposition disorder with features of premature aging. Cellular roles of WRN are not fully elucidated. WRN has been implicated in telomere maintenance, homologous recombination, DNA repair, and other processes. Here I review the available data that directly address the role of WRN in preserving DNA integrity during replication and propose that WRN can function in coordinating replication fork progression with replication stress-induced fork remodeling. I further discuss this role of WRN within the contexts of damage tolerance group of regulatory pathways, and redundancy and cooperation with other RecQ helicases.
Collapse
Affiliation(s)
- Julia M Sidorova
- Department of Pathology, University of Washington, Seattle, WA 98195-7705, USA.
| |
Collapse
|
35
|
Sidorova JM, Li N, Folch A, Monnat RJ. The RecQ helicase WRN is required for normal replication fork progression after DNA damage or replication fork arrest. Cell Cycle 2008; 7:796-807. [PMID: 18250621 DOI: 10.4161/cc.7.6.5566] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Werner syndrome is an autosomal recessive genetic instability and cancer predisposition syndrome with features of premature aging. Several lines of evidence have suggested that the Werner syndrome protein WRN plays a role in DNA replication and S-phase progression. In order to define the exact role of WRN in genomic replication we examined cell cycle kinetics during normal cell division and after methyl-methane-sulfonate (MMS) DNA damage or hydroxyurea (HU)-mediated replication arrest following acute depletion of WRN from human fibroblasts. Loss of WRN markedly extended the time cells needed to complete the cell cycle after either of these genotoxic treatments. Moreover, replication track analysis of individual, stretched DNA fibers showed that WRN depletion significantly reduced the speed at which replication forks elongated in vivo after MMS or HU treatment. These results establish the importance of WRN during genomic replication and indicate that WRN acts to facilitate fork progression after DNA damage or replication arrest. The data provide a mechanistic basis for a better understanding of WRN-mediated maintenance of genomic stability and for predicting the outcomes of DNA-targeting chemotherapy in several adult cancers that silence WRN expression.
Collapse
Affiliation(s)
- Julia M Sidorova
- Department of Pathology, University of Washington, Seattle, Washington 98195-7705, USA.
| | | | | | | |
Collapse
|
36
|
Mano Y, Takahashi K, Ishikawa N, Takano A, Yasui W, Inai K, Nishimura H, Tsuchiya E, Nakamura Y, Daigo Y. Fibroblast growth factor receptor 1 oncogene partner as a novel prognostic biomarker and therapeutic target for lung cancer. Cancer Sci 2007; 98:1902-13. [PMID: 17888034 PMCID: PMC11159412 DOI: 10.1111/j.1349-7006.2007.00610.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
To screen candidate molecules that might be useful as diagnostic biomarkers or for development of novel molecular-targeting therapies, we previously carried out gene-expression profile analysis of 101 lung carcinomas and detected an elevated expression of FGFR1OP (fibroblast growth factor receptor 1 oncogene partner) in the majority of lung cancers. Immunohistochemical staining using tumor tissue microarrays consisting of 372 archived non-small cell lung cancer (NSCLC) specimens revealed positive staining of FGFR1OP in 334 (89.8%) of 372 NSCLCs. We also found that the high level of FGFR1OP expression was significantly associated with shorter tumor-specific survival times (P < 0.0001 by log-rank test). Moreover, multivariate analysis determined that FGFR1OP was an independent prognostic factor for surgically treated NSCLC patients (P < 0.0001). Treatment of lung cancer cells, in which endogenous FGFR1OP was overexpressed, using FGFR1OP siRNA, suppressed its expression and resulted in inhibition of the cell growth. Furthermore, induction of FGFR1OP increased the cellular motility and growth-promoting activity of mammalian cells. To investigate its function, we searched for FGFR1OP-interacting proteins in lung cancer cells and identified ABL1 (Abelson murine leukemia viral oncogene homolog 1) and WRNIP1 (Werner helicase interacting protein 1), which was known to be involved in cell cycle progression. FGFR1OP significantly reduced ABL1-dependent phosphorylation of WRNIP1 and resulted in the promotion of cell cycle progression. Because our data imply that FGFR1OP is likely to play a significant role in lung cancer growth and progression, FGFR1OP should be useful as a prognostic biomarker and probably as a therapeutic target for lung cancer.
Collapse
Affiliation(s)
- Yuria Mano
- Laboratory of Molecular Medicine, Human Genome Center, Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Abstract
Genomic instability leads to mutations, cellular dysfunction and aberrant phenotypes at the tissue and organism levels. A number of mechanisms have evolved to cope with endogenous or exogenous stress to prevent chromosomal instability and maintain cellular homeostasis. DNA helicases play important roles in the DNA damage response. The RecQ family of DNA helicases is of particular interest since several human RecQ helicases are defective in diseases associated with premature aging and cancer. In this review, we will provide an update on our understanding of the specific roles of human RecQ helicases in the maintenance of genomic stability through their catalytic activities and protein interactions in various pathways of cellular nucleic acid metabolism with an emphasis on DNA replication and repair. We will also discuss the clinical features of the premature aging disorders associated with RecQ helicase deficiencies and how they relate to the molecular defects.
Collapse
Affiliation(s)
- Robert M Brosh
- Laboratory of Molecular Gerontology, National Institute on Aging, NIH, 5600 Nathan Shock Drive, Baltimore, MD 21224, USA
| | | |
Collapse
|
38
|
Prudden J, Pebernard S, Raffa G, Slavin DA, Perry JJP, Tainer JA, McGowan CH, Boddy MN. SUMO-targeted ubiquitin ligases in genome stability. EMBO J 2007; 26:4089-101. [PMID: 17762865 PMCID: PMC2230673 DOI: 10.1038/sj.emboj.7601838] [Citation(s) in RCA: 283] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2007] [Accepted: 07/30/2007] [Indexed: 01/02/2023] Open
Abstract
We identify the SUMO-Targeted Ubiquitin Ligase (STUbL) family of proteins and propose that STUbLs selectively ubiquitinate sumoylated proteins and proteins that contain SUMO-like domains (SLDs). STUbL recruitment to sumoylated/SLD proteins is mediated by tandem SUMO interaction motifs (SIMs) within the STUbLs N-terminus. STUbL-mediated ubiquitination maintains sumoylation pathway homeostasis by promoting target protein desumoylation and/or degradation. Thus, STUbLs establish a novel mode of communication between the sumoylation and ubiquitination pathways. STUbLs are evolutionarily conserved and include: Schizosaccharomyces pombe Slx8-Rfp (founding member), Homo sapiens RNF4, Dictyostelium discoideum MIP1 and Saccharomyces cerevisiae Slx5-Slx8. Cells lacking Slx8-Rfp accumulate sumoylated proteins, display genomic instability, and are hypersensitive to genotoxic stress. These phenotypes are suppressed by deletion of the major SUMO ligase Pli1, demonstrating the specificity of STUbLs as regulators of sumoylated proteins. Notably, human RNF4 expression restores SUMO pathway homeostasis in fission yeast lacking Slx8-Rfp, underscoring the evolutionary functional conservation of STUbLs. The DNA repair factor Rad60 and its human homolog NIP45, which contain SLDs, are candidate STUbL targets. Consistently, Rad60 and Slx8-Rfp mutants have similar DNA repair defects.
Collapse
Affiliation(s)
- John Prudden
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Stephanie Pebernard
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Grazia Raffa
- Dipartimento di Genetica e Biologia Molecolare, Università di Roma La Sapienza, Rome, Italy
| | - Daniela A Slavin
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - J Jefferson P Perry
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, CA, USA
- School of Biotechnology, Amrita Vishwa Vidya Peetham, Amritapuri, Kerala, India
| | - John A Tainer
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, CA, USA
- Life Sciences Division, Department of Molecular Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Clare H McGowan
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, CA, USA
- Department of Cell Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Michael N Boddy
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, CA, USA
- Department of Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA. Tel.: +1 858 784 7042; Fax: +1 858 784 2265; E-mail:
| |
Collapse
|
39
|
Almeida KH, Sobol RW. A unified view of base excision repair: lesion-dependent protein complexes regulated by post-translational modification. DNA Repair (Amst) 2007; 6:695-711. [PMID: 17337257 PMCID: PMC1995033 DOI: 10.1016/j.dnarep.2007.01.009] [Citation(s) in RCA: 322] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2007] [Accepted: 01/22/2007] [Indexed: 12/29/2022]
Abstract
Base excision repair (BER) proteins act upon a significantly broad spectrum of DNA lesions that result from endogenous and exogenous sources. Multiple sub-pathways of BER (short-path or long-patch) and newly designated DNA repair pathways (e.g., SSBR and NIR) that utilize BER proteins complicate any comprehensive understanding of BER and its role in genome maintenance, chemotherapeutic response, neuro-degeneration, cancer or aging. Herein, we propose a unified model of BER, comprised of three functional processes: Lesion Recognition/Strand Scission, Gap Tailoring and DNA Synthesis/Ligation, each represented by one or more multi-protein complexes and coordinated via the XRCC1/DNA Ligase III and PARP1 scaffold proteins. BER therefore may be represented by a series of repair complexes that assemble at the site of the DNA lesion and mediates repair in a coordinated fashion involving protein-protein interactions that dictate subsequent steps or sub-pathway choice. Complex formation is influenced by post-translational protein modifications that arise from the cellular state or the DNA damage response, providing an increase in specificity and efficiency to the BER pathway. In this review, we have summarized the reported BER protein-protein interactions and protein post-translational modifications and discuss the impact on DNA repair capacity and complex formation.
Collapse
Affiliation(s)
- Karen H. Almeida
- Department of Physical Sciences, Rhode Island College, 600 Mt. Pleasant Ave., Providence RI 02908-1991
| | - Robert W. Sobol
- Department of Pharmacology, University of Pittsburgh School of Medicine & University of Pittsburgh Cancer Institute, Hillman Cancer Center, Research Pavilion, Suite 2.6, 5117 Centre Avenue, Pittsburgh, PA 15213-1863
| |
Collapse
|
40
|
Langereis MA, Rosas-Acosta G, Mulder K, Wilson VG. Production of sumoylated proteins using a baculovirus expression system. J Virol Methods 2007; 139:189-94. [PMID: 17208312 PMCID: PMC1829325 DOI: 10.1016/j.jviromet.2006.09.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2006] [Revised: 09/25/2006] [Accepted: 09/26/2006] [Indexed: 12/01/2022]
Abstract
Spodoptera frugiperda Sf9 cells were found to possess an active endogenous sumoylation system. However, the endogenous sumoylation machinery did not efficiently modify exogenous proteins expressed by infection with recombinant baculoviruses. To overcome this limitation, mammalian sumoylation components were introduced by co-infection with recombinant baculoviruses expressing individual protein components of the sumoylation pathway. Expression of mammalian Ubc9 plus SUMO (either SUMO1 or SUMO3) was necessary and sufficient for active sumoylation of co-infected test proteins. This system provides a simple and convenient means to produce sumoylated mammalian proteins in a eukaryotic environment. Large-scale cultures should provide quantities of sumoylated proteins sufficient for potential purification.
Collapse
Affiliation(s)
| | | | | | - Van G. Wilson
- *Corresponding Author, Phone: (979)845-5207, Fax: (979)845-3479,
| |
Collapse
|
41
|
Kusumoto R, Muftuoglu M, Bohr VA. The role of WRN in DNA repair is affected by post-translational modifications. Mech Ageing Dev 2007; 128:50-7. [PMID: 17116323 DOI: 10.1016/j.mad.2006.11.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Werner syndrome (WS) is an autosomal recessive progeroid disease characterized by genomic instability. WRN gene encodes one of the RecQ helicase family proteins, WRN, which has ATPase, helicase, exonuclease and single stranded DNA annealing activities. There is accumulating evidence suggesting that WRN contributes to the maintenance of genomic integrity through its involvement in DNA repair, replication and recombination. The role of WRN in these pathways can be modulated by its post-translational modifications in response to DNA damage. Here, we review the functional consequences of post-translational modifications on WRN as well as specific DNA repair pathways where WRN is involved and discuss how these modifications affect DNA repair pathways.
Collapse
Affiliation(s)
- Rika Kusumoto
- Laboratory of Molecular Gerontology, National Institute on Aging, NIH, 5600 Nathan Shock Drive, Baltimore, MD 21224, USA
| | | | | |
Collapse
|
42
|
Abstract
SUMO modification (sumoylation) plays important roles in nucleo-cytoplasmic transport, maintenance of sub-nuclear architecture, the regulation of gene expression and in DNA replication, repair and recombination. Here we review recent evidence for SUMO's role in protecting genomic integrity at both the chromosomal and the DNA level. Furthermore, the involvement of sumoylation and of specific SUMO targets in cancer is discussed.
Collapse
Affiliation(s)
- J S Seeler
- Nuclear Organisation and Oncogenesis Unit, INSERM U.579, Institut Pasteur, 28 rue du Dr. Roux, 75724 Paris 15, France.
| | | | | | | |
Collapse
|
43
|
Branzei D, Sollier J, Liberi G, Zhao X, Maeda D, Seki M, Enomoto T, Ohta K, Foiani M. Ubc9- and mms21-mediated sumoylation counteracts recombinogenic events at damaged replication forks. Cell 2006; 127:509-22. [PMID: 17081974 DOI: 10.1016/j.cell.2006.08.050] [Citation(s) in RCA: 236] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2006] [Revised: 07/19/2006] [Accepted: 08/24/2006] [Indexed: 12/31/2022]
Abstract
The Ubc9 SUMO-conjugating enzyme and the Siz1 SUMO ligase sumoylate several repair and recombination proteins, including PCNA. Sumoylated PCNA binds Srs2, a helicase counteracting certain recombination events. Here we show that ubc9 mutants depend on checkpoint, recombination, and replication genes for growth. ubc9 cells maintain stalled-fork stability but exhibit a Rad51-dependent accumulation of cruciform structures during replication of damaged templates. Mutations in the Mms21 SUMO ligase resemble the ubc9 mutations. However, siz1, srs2, or pcna mutants altered in sumoylation do not exhibit the ubc9/mms21 phenotype. Like ubc9/mms21 mutants, sgs1 and top3 mutants also accumulate X molecules at damaged forks, and Sgs1/BLM is sumoylated. We propose that Ubc9 and Mms21 act in concert with Sgs1 to resolve the X structures formed during replication. Our results indicate that Ubc9- and Mms21-mediated sumoylation functions as a regulatory mechanism, different from that of replication checkpoints, to prevent pathological accumulation of cruciform structures at damaged forks.
Collapse
Affiliation(s)
- Dana Branzei
- FIRC Institute of Molecular Oncology Foundation and Department of Biomedical Sciences and Biotechnology, Università degli Studi di Milano, Via Adamello 16, 20139 Milan, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Tronnersjö S, Hanefalk C, Balciunas D, Hu GZ, Nordberg N, Murén E, Ronne H. The jmjN and jmjC domains of the yeast zinc finger protein Gis1 interact with 19 proteins involved in transcription, sumoylation and DNA repair. Mol Genet Genomics 2006; 277:57-70. [PMID: 17043893 DOI: 10.1007/s00438-006-0171-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2006] [Accepted: 09/14/2006] [Indexed: 11/25/2022]
Abstract
The jumonji domain is a highly conserved bipartite domain made up of two subdomains, jmjN and jmjC, which is found in many eukaryotic transcription factors. The jmjC domain was recently shown to possess the histone demethylase activity. Here we show that the jmjN and jmjC domains of the yeast zinc finger protein Gis1 interact in a two-hybrid system with 19 yeast proteins that include the RecQ helicase Sgs1, the silencing factors Esc1 and Sir4, the URI-type prefoldin Bud27 and the PIAS type SUMO ligase Nfi1/Siz2. Extensive interaction cross dependencies further suggest that the proteins form a larger complex. Consistent with this, 16 of the proteins also interact with a Bud27 two-hybrid bait, and three of them co-precipitate with TAP-tagged Gis1. The Gis1 jumonji domain can repress transcription when recruited to a promoter as a lexA fusion. This effect is dependent on both the jmjN and jmjC subdomains, as were all 19 two-hybrid interactions, indicating that the two subdomains form a single functional unit. The human Sgs1 homolog WRN also interacts with the Gis1 jumonji domain. Finally, we note that several jumonji domain interactors are related to proteins that are found in mammalian PML nuclear bodies.
Collapse
Affiliation(s)
- Susanna Tronnersjö
- Department of Plant Biology and Forest Genetics, Swedish University of Agricultural Sciences, P.O. Box 7080, 75007, Uppsala, Sweden
| | | | | | | | | | | | | |
Collapse
|
45
|
Sharma S, Doherty K, Brosh R. Mechanisms of RecQ helicases in pathways of DNA metabolism and maintenance of genomic stability. Biochem J 2006; 398:319-37. [PMID: 16925525 PMCID: PMC1559444 DOI: 10.1042/bj20060450] [Citation(s) in RCA: 196] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Helicases are molecular motor proteins that couple the hydrolysis of NTP to nucleic acid unwinding. The growing number of DNA helicases implicated in human disease suggests that their vital specialized roles in cellular pathways are important for the maintenance of genome stability. In particular, mutations in genes of the RecQ family of DNA helicases result in chromosomal instability diseases of premature aging and/or cancer predisposition. We will discuss the mechanisms of RecQ helicases in pathways of DNA metabolism. A review of RecQ helicases from bacteria to human reveals their importance in genomic stability by their participation with other proteins to resolve DNA replication and recombination intermediates. In the light of their known catalytic activities and protein interactions, proposed models for RecQ function will be summarized with an emphasis on how this distinct class of enzymes functions in chromosomal stability maintenance and prevention of human disease and cancer.
Collapse
Affiliation(s)
- Sudha Sharma
- Laboratory of Molecular Gerontology, National Institute on Aging, NIH, 5600 Nathan Shock Drive, Baltimore, MD 21224, U.S.A
| | - Kevin M. Doherty
- Laboratory of Molecular Gerontology, National Institute on Aging, NIH, 5600 Nathan Shock Drive, Baltimore, MD 21224, U.S.A
| | - Robert M. Brosh
- Laboratory of Molecular Gerontology, National Institute on Aging, NIH, 5600 Nathan Shock Drive, Baltimore, MD 21224, U.S.A
- To whom correspondence should be addressed (email )
| |
Collapse
|
46
|
Kawabe YI, Seki M, Yoshimura A, Nishino K, Hayashi T, Takeuchi T, Iguchi S, Kusa Y, Ohtsuki M, Tsuyama T, Imamura O, Matsumoto T, Furuichi Y, Tada S, Enomoto T. Analyses of the interaction of WRNIP1 with Werner syndrome protein (WRN) in vitro and in the cell. DNA Repair (Amst) 2006; 5:816-28. [PMID: 16769258 DOI: 10.1016/j.dnarep.2006.04.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2006] [Revised: 04/11/2006] [Accepted: 04/11/2006] [Indexed: 11/19/2022]
Abstract
Werner was originally identified as a protein that interacts with the product of the Werner syndrome (WS) gene, WRN. To examine the function of the WRNIP1/WRN complex in cells, we generated knock-out cell lines that were deficient in either WRN (WRN(-/-)), WRNIP1 (WRNIP10(-/-/-)), or both (WRNIP1(-/-/-)/WRN(-/-)), using a chicken B lymphocyte cell line, DT40. WRNIP1(-/-/-)/WRN(-/-) DT40 cells grew at a similar rate as wild-type cells, but the rate of spontaneous sister-chromatid exchange was augmented compared to that of either of the single mutant cell lines. Moreover, while WRNIP1(-/-/-) and WRN(-/-) cells were moderately sensitive to camptothecin (CPT), double mutant cells showed a synergistic increase in CPT sensitivity. This suggested that WRNIP1 and WRN do not always function cooperatively to repair DNA lesions. The lack of a discernable functional interaction between WRNIP1 and WRN prompted us to reevaluate the nature of the physical interaction between these proteins. We found that MBP-tagged WRNIP1 interacted directly with WRN, and that the interaction was enhanced by the addition of ATP. Mutations in the Walker A motifs of the two proteins revealed that WRNIP1, but not WRN, must bind ATP before an efficient interaction can occur.
Collapse
Affiliation(s)
- Yoh-ichi Kawabe
- Molecular Cell Biology Laboratory, Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba 6-3, Aramaki, Sendai 980-8578, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Moschos SJ, Mo YY. Role of SUMO/Ubc9 in DNA Damage Repair and Tumorigenesis. J Mol Histol 2006; 37:309-19. [PMID: 16758298 DOI: 10.1007/s10735-006-9030-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2006] [Accepted: 04/17/2006] [Indexed: 11/25/2022]
Abstract
DNA damage repair is an important cell function for genome integrity and its deregulation can lead to genomic instability and development of malignancies. Sumoylation is an increasingly important ubiquitin-like modification of proteins affecting protein stability, enzymatic activity, nucleocytoplasmic trafficking, and protein-protein interactions. In particular, several important DNA repair enzymes are subject to sumoylation, which appears to play a role in copping with DNA damage insults. Recent reports indicate that Ubc9, the single SUMO E2 enzyme catalyzing the conjugation of SUMO to target proteins, is overexpressed in certain tumors, such as lung adenocarcinoma, ovarian carcinoma and melanoma, suggestive of its clinic significance. This review summarizes the most important DNA damage repair pathways which are potentially affected by Ubc9/SUMO and their role in regulating the function of several proteins involved in the DNA damage repair machinery.
Collapse
Affiliation(s)
- Stergios J Moschos
- Department of Medicine, Division of Hematology-Oncology, Hillman Cancer Research Pavilion, University of Pittsburgh Medical Center, 5117 Centre Avenue, Suite 1.32e, Pittsburgh, PA 15213, USA
| | | |
Collapse
|
48
|
Rossi ML, Purohit V, Brandt PD, Bambara RA. Lagging strand replication proteins in genome stability and DNA repair. Chem Rev 2006; 106:453-73. [PMID: 16464014 DOI: 10.1021/cr040497l] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Marie L Rossi
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, New York 14642, USA
| | | | | | | |
Collapse
|
49
|
Hecker CM, Rabiller M, Haglund K, Bayer P, Dikic I. Specification of SUMO1- and SUMO2-interacting motifs. J Biol Chem 2006; 281:16117-27. [PMID: 16524884 DOI: 10.1074/jbc.m512757200] [Citation(s) in RCA: 414] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
SUMO proteins are ubiquitin-related modifiers implicated in the regulation of gene transcription, cell cycle, DNA repair, and protein localization. The molecular mechanisms by which the sumoylation of target proteins regulates diverse cellular functions remain poorly understood. Here we report isolation and characterization of SUMO1- and SUMO2-binding motifs. Using yeast two-hybrid system, bioinformatics, and NMR spectroscopy we define a common SUMO-interacting motif (SIM) and map its binding surfaces on SUMO1 and SUMO2. This motif forms a beta-strand that could bind in parallel or antiparallel orientation to the beta2-strand of SUMO due to the environment of the hydrophobic core. A negative charge imposed by a stretch of neighboring acidic amino acids and/or phosphorylated serine residues determines its specificity in binding to distinct SUMO paralogues and can modulate the spatial orientation of SUMO-SIM interactions.
Collapse
Affiliation(s)
- Christina-Maria Hecker
- Institute for Biochemistry II, Goethe University Medical School, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany
| | | | | | | | | |
Collapse
|
50
|
Abstract
Werner syndrome (WS) is a premature aging disorder characterized by genomic instability and increased cancer risk (Martin, 1978). The WRN gene product defective in WS belongs to the RecQ family of DNA helicases (Yu et al., 1996). Mutations in RecQ family members BLM and RecQ4 result in two other disorders associated with elevated chromosomal instability and cancer, Bloom syndrome and Rothmund-Thomson syndrome, respectively (for review see Opresko et al., 2004a). RecQ helicase mutants display defects in DNA replication, recombination, and repair, suggesting a role for RecQ helicases in maintaining genomic integrity. The WRN gene encodes a 1,432 amino acid protein that has several catalytic activities (Brosh and Bohr, 2002) (Fig. 1). WRN is a DNA-dependent ATPase and utilizes the energy from ATP hydrolysis to unwind double-stranded DNA. WRN is also a 3' to 5' exonuclease, consistent with the presence of three conserved exonuclease motifs homologous to the exonuclease domain of Escherichia coli DNA polymerase I and RNase D. Most recently, WRN (Machwe et al., 2005) and other human RecQ helicases (Garcia et al., 2004; Machwe et al., 2005; Sharma et al., 2005) have been reported to possess an intrinsic single-strand annealing activity. In addition to its catalytic activities, WRN interacts with a number of proteins involved in various aspects of DNA metabolism. To understand the role of WRN in the maintenance of genome stability, a number of laboratories have undertaken a thorough characterization of its molecular and cellular functions. Here, we describe methods and approaches used for the functional and mechanistic analysis of WRN helicase or exonuclease activity. Protocols for measuring ATP hydrolysis, DNA binding, and catalytic unwinding or exonuclease activity of WRN protein are provided. Application of these procedures should enable the researcher to address fundamental questions regarding the biochemical properties of WRN or related helicases or nucleases, which would serve as a platform for further investigation of its molecular and cellular functions.
Collapse
Affiliation(s)
- Robert M Brosh
- Laboratory of Molecular Gerontology, National Institute of Aging-IRP, National Institutes of Health, Baltimore, Maryland, USA
| | | | | |
Collapse
|