1
|
Harmon RM, Ayers JL, McCarthy EF, Kowalczyk AP, Green KJ, Simpson CL. Pumping the Breaks on Acantholytic Skin Disorders: Targeting Calcium Pumps, Desmosomes, and Downstream Signaling in Darier, Hailey-Hailey, and Grover Disease. J Invest Dermatol 2025; 145:494-508. [PMID: 39207315 PMCID: PMC11846705 DOI: 10.1016/j.jid.2024.06.1289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/11/2024] [Accepted: 06/14/2024] [Indexed: 09/04/2024]
Abstract
Acantholytic skin disorders, by definition, compromise intercellular adhesion between epidermal keratinocytes. The root cause of blistering in these diseases traces back to direct disruption of adhesive cell-cell junctions, exemplified by autoantibody-mediated attack on desmosomes in pemphigus. However, genetic acantholytic disorders originate from more indirect mechanisms. Darier disease and Hailey-Hailey disease arise from mutations in the endoplasmic reticulum calcium pump, SERCA2, and the Golgi calcium/manganese pump, SPCA1, respectively. Though the disease-causing mutations have been known for nearly 25 years, the mechanistic linkage between dysregulation of intracellular ion stores and weakening of cell-cell junctions at the plasma membrane remains puzzling. The molecular underpinnings of a related idiopathic disorder, Grover disease, are even less understood. Due to an incomplete understanding of acantholytic pathology at the molecular level, these disorders lack proven, targeted treatment options, leaving patients with the significant physical and psychological burdens of chronic skin blistering, infections, and pain. This article aims to review what is known at the molecular, cellular, and clinical levels regarding these under-studied disorders and to highlight knowledge gaps and promising ongoing research. Armed with this knowledge, our goal is to aid investigators in defining essential questions about disease pathogenesis and to accelerate progress toward novel therapeutic strategies.
Collapse
Affiliation(s)
- Robert M Harmon
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA; Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA.
| | - Jessica L Ayers
- Molecular Medicine and Mechanisms of Disease PhD Program, Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA; Department of Dermatology, University of Washington, Seattle, Washington, USA; Institute for Stem Cell & Regenerative Medicine, University of Washington, Seattle, Washington, USA
| | - Erin F McCarthy
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA; Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Andrew P Kowalczyk
- Department of Dermatology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA; Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| | - Kathleen J Green
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA; Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Cory L Simpson
- Department of Dermatology, University of Washington, Seattle, Washington, USA; Institute for Stem Cell & Regenerative Medicine, University of Washington, Seattle, Washington, USA.
| |
Collapse
|
2
|
Lin J, Wang X, Ma S, Yang D, Li K, Li D, Zeng X. Calcium channels as therapeutic targets in head and neck squamous cell carcinoma: current evidence and clinical trials. Front Oncol 2024; 14:1516357. [PMID: 39759147 PMCID: PMC11695298 DOI: 10.3389/fonc.2024.1516357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Accepted: 12/09/2024] [Indexed: 01/07/2025] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) originates from the mucosal epithelium of the oral cavity, pharynx, and larynx, and is marked by high rates of recurrence and metastasis. Calcium signaling is associated with the progression of HNSCC and the development of drug resistance. Changes in calcium ion flow can trigger severe pathophysiological processes, including malignant transformation, tumor proliferation, epithelial-mesenchymal transition, and apoptosis evasion. Calcium channels regulate and facilitate these processes. Remodeling of calcium signaling has become one of the most prevalent adaptive mechanisms in cancer cells. Preclinical and clinical evidence indicates that alterations in calcium signaling are crucial for the progression of HNSCC. This review examines the role of calcium channels in HNSCC development and evaluates current clinical trials targeting these channels to assess the feasibility of calcium signaling-based therapies for HNSCC.
Collapse
Affiliation(s)
| | | | | | | | | | - Dongcai Li
- Department of Otolaryngology, Longgang Otolaryngology hospital & Shenzhen Key Laboratory of Otolaryngology, Shenzhen Institute of Otolaryngology, Shenzhen, China
| | - Xianhai Zeng
- Department of Otolaryngology, Longgang Otolaryngology hospital & Shenzhen Key Laboratory of Otolaryngology, Shenzhen Institute of Otolaryngology, Shenzhen, China
| |
Collapse
|
3
|
Inci R, Gillstedt M, Kallionpää RA, Peltonen S, Polesie S. Patients with Darier disease have an increased risk of keratinocyte carcinoma: a Swedish registry-based nationwide cohort study. Orphanet J Rare Dis 2024; 19:463. [PMID: 39681873 DOI: 10.1186/s13023-024-03497-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 12/04/2024] [Indexed: 12/18/2024] Open
Abstract
BACKGROUND Darier disease is a genodermatosis which manifests as hyperkeratotic papules and superficial erosions mainly in seborrheic skin areas. This retrospective registry-based cohort study aimed to estimate the association between Darier disease and skin cancer. RESULTS Patients diagnosed with Darier disease were identified from the patient registry of Sahlgrenska University Hospital (Gothenburg, Sweden) in 2016-2020. The local cohort included 13 patients. Verification of Darier disease diagnosis in the National Patient Registry showed positive predictive value of more than 90%. National Patient Registry was searched for Darier disease in 2001-2020, Swedish Cancer Registry for cancers and Prescribed Drug Register for medications. The national cohort included 770 patients and tenfold matched control cohort. Patients with Darier disease had an increased relative risk of keratinocyte carcinoma (basal cell carcinoma and cutaneous squamous cell carcinoma combined) (hazard ratio [HR], 1.6, 95% confidence interval [CI], 1.0-2.5, P = 0.036). The risk increase was significant for basal cell carcinoma (HR, 1.8, 95% CI, 1.1-2.9, P = 0.012), whereas there was a trend for cutaneous squamous cell carcinoma, (HR, 1.9, 95% CI, 0.9-4.1, P = 0.086) and cutaneous melanoma (HR, 2.4, 95% CI, 0.9-6.2, P = 0.083). Standardized incidence ratio for keratinocyte cancers was 2.9 (95% CI, 2.4-3.3. The results were consistent in two subgroup analyses adjusting for use of retinoid and/or immunosuppressive drugs. CONCLUSION Patients with Darier disease have an increased risk of skin cancer, particularly keratinocyte carcinoma. This risk was consistent even when known risk modifiers for keratinocyte carcinoma were excluded in sensitivity analyses. The results support previously proposed molecular links between Darier disease and skin cancer, but further investigations are needed. Additional studies are also required to develop clinical management recommendations for Darier disease. In the meantime, dermatologists should be aware of the cancer risk in these patients and remain vigilant, as detecting cancer can be challenging in hyperkeratotic and/or eroded skin.
Collapse
Affiliation(s)
- Rahime Inci
- Department of Dermatology and Venereology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gröna stråket 16, Gothenburg, SE-413 45, Sweden.
- Region Västra Götaland, Department of Dermatology and Venereology, Sahlgrenska University Hospital, Gothenburg, Sweden.
| | - Martin Gillstedt
- Department of Dermatology and Venereology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gröna stråket 16, Gothenburg, SE-413 45, Sweden
- Region Västra Götaland, Department of Dermatology and Venereology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Roope A Kallionpää
- Department of Dermatology and Venereology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gröna stråket 16, Gothenburg, SE-413 45, Sweden
- Cancer Research Unit and FICAN West Cancer Centre, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Sirkku Peltonen
- Department of Dermatology and Venereology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gröna stråket 16, Gothenburg, SE-413 45, Sweden
- Region Västra Götaland, Department of Dermatology and Venereology, Sahlgrenska University Hospital, Gothenburg, Sweden
- Department of Dermatology and Allergology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Sam Polesie
- Department of Dermatology and Venereology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gröna stråket 16, Gothenburg, SE-413 45, Sweden
- Region Västra Götaland, Department of Dermatology and Venereology, Sahlgrenska University Hospital, Gothenburg, Sweden
| |
Collapse
|
4
|
Chavda J, Siwach A, Sabharwal S, Janaagal A, Bhatia D, Gupta I. BODIPYS Based Fluorescent Markers To Monitor Autophagic Lysosomes and Lipid Droplets in TNBC. ACS Med Chem Lett 2024; 15:2115-2120. [PMID: 39691523 PMCID: PMC11647722 DOI: 10.1021/acsmedchemlett.4c00275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/09/2024] [Accepted: 09/09/2024] [Indexed: 12/19/2024] Open
Abstract
Lysosomal enzymes and high accumulation of lipid droplets are associated with breast cancer. The lysosomes and lipid droplets were monitored by BODIPYs, acting as autophagy activators in cancer cells. BD-1 and BD-2 were synthesized and characterized by Mass, UV-visible, fluorescence, and NMR spectroscopies. In BODIPYs, the effect of carbazole groups was reflected by the large Stokes shifts (2143-1651 cm-1) and red fluorescence. BODIPYs generated ROS and induced autophagy in triple negative breast cancer cells (MDA-MB-231) under white light. Confocal experiments revealed that BD-1 and BD-2 preferentially colocalized in lysosomes and lipid droplets. Autophagic lysosomes and lipid droplets released Ca2+ ions in the cytoplasm, which was evident with blue fluorescence of Fura-2M dye. In combination with an autophagy inhibitor, BD-1 displayed excellent photocytotoxicity (5.57 μM) on triple negative breast cancer cells under white light. This work demonstrates the potential of BODIPYs as theranostic agents for the photodynamic therapy against TNBC.
Collapse
Affiliation(s)
- Jaydeepsinh Chavda
- Department
of Chemistry, IIT Gandhinagar, Palaj, Gandhinagar, Gujarat 382055, India
| | - Arjun Siwach
- Department
of Chemistry, IIT Gandhinagar, Palaj, Gandhinagar, Gujarat 382055, India
| | - Sudhir Sabharwal
- Department
of Chemistry, IIT Gandhinagar, Palaj, Gandhinagar, Gujarat 382055, India
| | - Anu Janaagal
- Department
of Chemistry, IIT Gandhinagar, Palaj, Gandhinagar, Gujarat 382055, India
| | - Dhiraj Bhatia
- Department
of Biological Engineering, IIT Gandhinagar,
Palaj, Gandhinagar, Gujarat 382055, India
| | - Iti Gupta
- Department
of Chemistry, IIT Gandhinagar, Palaj, Gandhinagar, Gujarat 382055, India
| |
Collapse
|
5
|
Roth-Carter QR, Burks HE, Ren Z, Koetsier JL, Tsoi LC, Harms PW, Xing X, Kirma J, Harmon RM, Godsel LM, Perl AL, Gudjonsson JE, Green KJ. Transcriptional profiling of rare acantholytic disorders suggests common mechanisms of pathogenesis. JCI Insight 2023; 8:e168955. [PMID: 37471166 PMCID: PMC10543711 DOI: 10.1172/jci.insight.168955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 07/06/2023] [Indexed: 07/22/2023] Open
Abstract
Darier, Hailey-Hailey, and Grover diseases are rare acantholytic skin diseases. While these diseases have different underlying causes, they share defects in cell-cell adhesion in the epidermis and desmosome organization. To better understand the underlying mechanisms leading to disease in these conditions, we performed RNA-seq on lesional skin samples from patients. The transcriptomic profiles of Darier, Hailey-Hailey, and Grover diseases were found to share a remarkable overlap, which did not extend to other common inflammatory skin diseases. Analysis of enriched pathways showed a shared increase in keratinocyte differentiation, and a decrease in cell adhesion and actin organization pathways in Darier, Hailey-Hailey, and Grover diseases. Direct comparison to atopic dermatitis and psoriasis showed that the downregulation in actin organization pathways was a unique feature in the acantholytic skin diseases. Furthermore, upstream regulator analysis suggested that a decrease in SRF/MRTF activity was responsible for the downregulation of actin organization pathways. Staining for MRTFA in lesional skin samples showed a decrease in nuclear MRTFA in patient skin compared with normal skin. These findings highlight the significant level of similarity in the transcriptome of Darier, Hailey-Hailey, and Grover diseases, and identify decreases in actin organization pathways as a unique signature present in these conditions.
Collapse
Affiliation(s)
| | | | - Ziyou Ren
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | | | - Lam C. Tsoi
- Department of Dermatology
- Department of Computational Medicine & Bioinformatics
- Department of Biostatistics, and
| | - Paul W. Harms
- Department of Dermatology
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, USA
| | | | | | | | - Lisa M. Godsel
- Department of Pathology, and
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | | | | | - Kathleen J. Green
- Department of Pathology, and
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois, USA
| |
Collapse
|
6
|
Abby E, Dentro SC, Hall MWJ, Fowler JC, Ong SH, Sood R, Herms A, Piedrafita G, Abnizova I, Siebel CW, Gerstung M, Hall BA, Jones PH. Notch1 mutations drive clonal expansion in normal esophageal epithelium but impair tumor growth. Nat Genet 2023; 55:232-245. [PMID: 36658434 PMCID: PMC9925379 DOI: 10.1038/s41588-022-01280-z] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 12/07/2022] [Indexed: 01/21/2023]
Abstract
NOTCH1 mutant clones occupy the majority of normal human esophagus by middle age but are comparatively rare in esophageal cancers, suggesting NOTCH1 mutations drive clonal expansion but impede carcinogenesis. Here we test this hypothesis. Sequencing NOTCH1 mutant clones in aging human esophagus reveals frequent biallelic mutations that block NOTCH1 signaling. In mouse esophagus, heterozygous Notch1 mutation confers a competitive advantage over wild-type cells, an effect enhanced by loss of the second allele. Widespread Notch1 loss alters transcription but has minimal effects on the epithelial structure and cell dynamics. In a carcinogenesis model, Notch1 mutations were less prevalent in tumors than normal epithelium. Deletion of Notch1 reduced tumor growth, an effect recapitulated by anti-NOTCH1 antibody treatment. Notch1 null tumors showed reduced proliferation. We conclude that Notch1 mutations in normal epithelium are beneficial as wild-type Notch1 favors tumor expansion. NOTCH1 blockade may have therapeutic potential in preventing esophageal squamous cancer.
Collapse
Affiliation(s)
| | - Stefan C Dentro
- Wellcome Sanger Institute, Hinxton, UK
- European Molecular Biology Laboratory, European Bioinformatics Institute, Cambridge, UK
- Artificial Intelligence in Oncology (B450), Deutsches Krebsforschungszentrum, Heidelberg, Germany
| | - Michael W J Hall
- Wellcome Sanger Institute, Hinxton, UK
- Department of Oncology, University of Cambridge, Cambridge, UK
| | | | | | | | - Albert Herms
- Wellcome Sanger Institute, Hinxton, UK
- Department of Biomedical Sciences, Faculty of Medicine, University of Barcelona, Barcelona, Spain
| | - Gabriel Piedrafita
- Department of Biochemistry and Molecular Biology, Complutense University, Madrid, Spain
- Epithelial Carcinogenesis Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | | | - Christian W Siebel
- Department of Discovery Oncology, Genentech, South San Francisco, CA, USA
| | - Moritz Gerstung
- European Molecular Biology Laboratory, European Bioinformatics Institute, Cambridge, UK
- Artificial Intelligence in Oncology (B450), Deutsches Krebsforschungszentrum, Heidelberg, Germany
| | - Benjamin A Hall
- Department of Medical Physics and Biomedical Engineering, University College London, London, UK
| | - Philip H Jones
- Wellcome Sanger Institute, Hinxton, UK.
- Department of Oncology, University of Cambridge, Cambridge, UK.
| |
Collapse
|
7
|
Di Gregorio E, Israel S, Staelens M, Tankel G, Shankar K, Tuszyński JA. The distinguishing electrical properties of cancer cells. Phys Life Rev 2022; 43:139-188. [PMID: 36265200 DOI: 10.1016/j.plrev.2022.09.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 09/30/2022] [Indexed: 11/07/2022]
Abstract
In recent decades, medical research has been primarily focused on the inherited aspect of cancers, despite the reality that only 5-10% of tumours discovered are derived from genetic causes. Cancer is a broad term, and therefore it is inaccurate to address it as a purely genetic disease. Understanding cancer cells' behaviour is the first step in countering them. Behind the scenes, there is a complicated network of environmental factors, DNA errors, metabolic shifts, and electrostatic alterations that build over time and lead to the illness's development. This latter aspect has been analyzed in previous studies, but how the different electrical changes integrate and affect each other is rarely examined. Every cell in the human body possesses electrical properties that are essential for proper behaviour both within and outside of the cell itself. It is not yet clear whether these changes correlate with cell mutation in cancer cells, or only with their subsequent development. Either way, these aspects merit further investigation, especially with regards to their causes and consequences. Trying to block changes at various levels of occurrence or assisting in their prevention could be the key to stopping cells from becoming cancerous. Therefore, a comprehensive understanding of the current knowledge regarding the electrical landscape of cells is much needed. We review four essential electrical characteristics of cells, providing a deep understanding of the electrostatic changes in cancer cells compared to their normal counterparts. In particular, we provide an overview of intracellular and extracellular pH modifications, differences in ionic concentrations in the cytoplasm, transmembrane potential variations, and changes within mitochondria. New therapies targeting or exploiting the electrical properties of cells are developed and tested every year, such as pH-dependent carriers and tumour-treating fields. A brief section regarding the state-of-the-art of these therapies can be found at the end of this review. Finally, we highlight how these alterations integrate and potentially yield indications of cells' malignancy or metastatic index.
Collapse
Affiliation(s)
- Elisabetta Di Gregorio
- Dipartimento di Ingegneria Meccanica e Aerospaziale (DIMEAS), Politecnico di Torino, Corso Duca degli Abruzzi, 24, Torino, 10129, TO, Italy; Autem Therapeutics, 35 South Main Street, Hanover, 03755, NH, USA
| | - Simone Israel
- Dipartimento di Ingegneria Meccanica e Aerospaziale (DIMEAS), Politecnico di Torino, Corso Duca degli Abruzzi, 24, Torino, 10129, TO, Italy; Autem Therapeutics, 35 South Main Street, Hanover, 03755, NH, USA
| | - Michael Staelens
- Department of Physics, University of Alberta, 11335 Saskatchewan Drive NW, Edmonton, T6G 2E1, AB, Canada
| | - Gabriella Tankel
- Department of Mathematics & Statistics, McMaster University, 1280 Main Street West, Hamilton, L8S 4K1, ON, Canada
| | - Karthik Shankar
- Department of Electrical & Computer Engineering, University of Alberta, 9211 116 Street NW, Edmonton, T6G 1H9, AB, Canada
| | - Jack A Tuszyński
- Dipartimento di Ingegneria Meccanica e Aerospaziale (DIMEAS), Politecnico di Torino, Corso Duca degli Abruzzi, 24, Torino, 10129, TO, Italy; Department of Physics, University of Alberta, 11335 Saskatchewan Drive NW, Edmonton, T6G 2E1, AB, Canada; Department of Oncology, University of Alberta, 11560 University Avenue, Edmonton, T6G 1Z2, AB, Canada.
| |
Collapse
|
8
|
Fornasiero F, Scapin C, Vitadello M, Pizzo P, Gorza L. Active nNOS Is Required for Grp94-Induced Antioxidant Cytoprotection: A Lesson from Myogenic to Cancer Cells. Int J Mol Sci 2022; 23:ijms23062915. [PMID: 35328344 PMCID: PMC8954037 DOI: 10.3390/ijms23062915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 03/02/2022] [Accepted: 03/04/2022] [Indexed: 11/16/2022] Open
Abstract
The endoplasmic reticulum (ER) chaperone Grp94/gp96 appears to be involved in cytoprotection without being required for cell survival. This study compared the effects of Grp94 protein levels on Ca2+ homeostasis, antioxidant cytoprotection and protein–protein interactions between two widely studied cell lines, the myogenic C2C12 and the epithelial HeLa, and two breast cancer cell lines, MDA-MB-231 and HS578T. In myogenic cells, but not in HeLa, Grp94 overexpression exerted cytoprotection by reducing ER Ca2+ storage, due to an inhibitory effect on SERCA2. In C2C12 cells, but not in HeLa, Grp94 co-immunoprecipitated with non-client proteins, such as nNOS, SERCA2 and PMCA, which co-fractionated by sucrose gradient centrifugation in a distinct, medium density, ER vesicular compartment. Active nNOS was also required for Grp94-induced cytoprotection, since its inhibition by L-NNA disrupted the co-immunoprecipitation and co-fractionation of Grp94 with nNOS and SERCA2, and increased apoptosis. Comparably, only the breast cancer cell line MDA-MB-231, which showed Grp94 co-immunoprecipitation with nNOS, SERCA2 and PMCA, increased oxidant-induced apoptosis after nNOS inhibition or Grp94 silencing. These results identify the Grp94-driven multiprotein complex, including active nNOS as mechanistically involved in antioxidant cytoprotection by means of nNOS activity and improved Ca2+ homeostasis.
Collapse
Affiliation(s)
- Filippo Fornasiero
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy; (F.F.); (C.S.); (P.P.)
| | - Cristina Scapin
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy; (F.F.); (C.S.); (P.P.)
| | - Maurizio Vitadello
- CNR-Neuroscience Institute, National Research Council, 35131 Padova, Italy;
| | - Paola Pizzo
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy; (F.F.); (C.S.); (P.P.)
- CNR-Neuroscience Institute, National Research Council, 35131 Padova, Italy;
| | - Luisa Gorza
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy; (F.F.); (C.S.); (P.P.)
- Correspondence:
| |
Collapse
|
9
|
MS4A15 drives ferroptosis resistance through calcium-restricted lipid remodeling. Cell Death Differ 2022; 29:670-686. [PMID: 34663908 PMCID: PMC8901757 DOI: 10.1038/s41418-021-00883-z] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 09/20/2021] [Accepted: 09/23/2021] [Indexed: 01/07/2023] Open
Abstract
Ferroptosis is an iron-dependent form of cell death driven by biochemical processes that promote oxidation within the lipid compartment. Calcium (Ca2+) is a signaling molecule in diverse cellular processes such as migration, neurotransmission, and cell death. Here, we uncover a crucial link between ferroptosis and Ca2+ through the identification of the novel tetraspanin MS4A15. MS4A15 localizes to the endoplasmic reticulum, where it blocks ferroptosis by depleting luminal Ca2+ stores and reprogramming membrane phospholipids to ferroptosis-resistant species. Specifically, prolonged Ca2+ depletion inhibits lipid elongation and desaturation, driving lipid droplet dispersion and formation of shorter, more saturated ether lipids that protect phospholipids from ferroptotic reactive species. We further demonstrate that increasing luminal Ca2+ levels can preferentially sensitize refractory cancer cell lines. In summary, MS4A15 regulation of anti-ferroptotic lipid reservoirs provides a key resistance mechanism that is distinct from antioxidant and lipid detoxification pathways. Manipulating Ca2+ homeostasis offers a compelling strategy to balance cellular lipids and cell survival in ferroptosis-associated diseases.
Collapse
|
10
|
Bertocci LA, Rovatti JR, Wu A, Morey A, Bose DD, Kinney SRM. Calcium handling genes are regulated by promoter DNA methylation in colorectal cancer cells. Eur J Pharmacol 2022; 915:174698. [PMID: 34896109 DOI: 10.1016/j.ejphar.2021.174698] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 11/18/2021] [Accepted: 12/07/2021] [Indexed: 11/24/2022]
Abstract
Calcium signaling regulates various cellular processes, including proliferation and cell death. DNA methylation of gene promoters is an epigenetic modification that facilitates transcriptional suppression. Disruption of calcium homeostasis and DNA methylation in cancer are each linked to tumor development and progression. However, the possible connection between these two processes has not been thoroughly studied. Therefore, we measured the expression of six gene families involved in calcium regulation (ATP2A, ITPR, ORAI, RyR, STIM, and TRPC) in a colorectal cancer cell model, HCT116, with either genetic (Double Knock-out/DKO) or pharmacological (5-aza-2'-deoxycytidine/DAC) inhibition of DNA methyltransferases. Fourteen of the 20 examined calcium handling genes were expressed at higher levels in DKO cells as compared to HCT116. Expression of five genes was increased in HCT116 cells treated with DAC, three matching DKO. Due to a unique expression pattern of the three ATP2A genes in our model, encoding the Sarcoplasmic/Endoplasmic Reticulum Calcium ATPase (SERCA) pumps, we chose to evaluate the methylation status of these genes, protein expression, and potential associated physiological effects, using the SERCA inhibitor thapsigarin (TG). We observed an expected pattern of promoter methylation coinciding with reduced expression and vice versa. This differential mRNA expression was associated with altered SERCA3 protein expression and cytosolic calcium levels with TG exposure. As a result, DKO cells displayed less TG-induced cytotoxicity, as compared to HCT116 cells. Overall, it is likely that at least several calcium regulatory genes are transcriptionally regulated by DNA methylation, and this may play a role in tumorigenesis through altering apoptosis in cancer.
Collapse
Affiliation(s)
- Lauren A Bertocci
- Department of Pharmaceutical and Health Sciences, Western New England University, College of Pharmacy and Health Sciences, Springfield, MA, USA.
| | - Jeffrey R Rovatti
- Department of Pharmaceutical and Health Sciences, Western New England University, College of Pharmacy and Health Sciences, Springfield, MA, USA.
| | - Alex Wu
- Department of Pharmaceutical and Health Sciences, Western New England University, College of Pharmacy and Health Sciences, Springfield, MA, USA.
| | - Amber Morey
- Department of Pharmaceutical and Health Sciences, Western New England University, College of Pharmacy and Health Sciences, Springfield, MA, USA.
| | - Diptiman D Bose
- Department of Pharmaceutical and Health Sciences, Western New England University, College of Pharmacy and Health Sciences, Springfield, MA, USA.
| | - Shannon R M Kinney
- Department of Pharmaceutical and Health Sciences, Western New England University, College of Pharmacy and Health Sciences, Springfield, MA, USA.
| |
Collapse
|
11
|
Colom B, Herms A, Hall MWJ, Dentro SC, King C, Sood RK, Alcolea MP, Piedrafita G, Fernandez-Antoran D, Ong SH, Fowler JC, Mahbubani KT, Saeb-Parsy K, Gerstung M, Hall BA, Jones PH. Mutant clones in normal epithelium outcompete and eliminate emerging tumours. Nature 2021; 598:510-514. [PMID: 34646013 PMCID: PMC7612642 DOI: 10.1038/s41586-021-03965-7] [Citation(s) in RCA: 112] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 08/26/2021] [Indexed: 02/08/2023]
Abstract
Human epithelial tissues accumulate cancer-driver mutations with age1-9, yet tumour formation remains rare. The positive selection of these mutations suggests that they alter the behaviour and fitness of proliferating cells10-12. Thus, normal adult tissues become a patchwork of mutant clones competing for space and survival, with the fittest clones expanding by eliminating their less competitive neighbours11-14. However, little is known about how such dynamic competition in normal epithelia influences early tumorigenesis. Here we show that the majority of newly formed oesophageal tumours are eliminated through competition with mutant clones in the adjacent normal epithelium. We followed the fate of nascent, microscopic, pre-malignant tumours in a mouse model of oesophageal carcinogenesis and found that most were rapidly lost with no indication of tumour cell death, decreased proliferation or an anti-tumour immune response. However, deep sequencing of ten-day-old and one-year-old tumours showed evidence of selection on the surviving neoplasms. Induction of highly competitive clones in transgenic mice increased early tumour removal, whereas pharmacological inhibition of clonal competition reduced tumour loss. These results support a model in which survival of early neoplasms depends on their competitive fitness relative to that of mutant clones in the surrounding normal tissue. Mutant clones in normal epithelium have an unexpected anti-tumorigenic role in purging early tumours through cell competition, thereby preserving tissue integrity.
Collapse
Affiliation(s)
- B Colom
- Wellcome Sanger Institute, Hinxton, UK
| | - A Herms
- Wellcome Sanger Institute, Hinxton, UK
| | - M W J Hall
- Wellcome Sanger Institute, Hinxton, UK
- MRC Cancer Unit, University of Cambridge, Hutchison-MRC Research Centre, Cambridge, UK
| | - S C Dentro
- Wellcome Sanger Institute, Hinxton, UK
- European Molecular Biology Laboratory, European Bioinformatics Institute, Cambridge, UK
| | - C King
- Wellcome Sanger Institute, Hinxton, UK
| | - R K Sood
- Wellcome Sanger Institute, Hinxton, UK
| | - M P Alcolea
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, University of Cambridge, Cambridge, UK
- Department of Oncology, University of Cambridge, Hutchison-MRC Research Centre, Cambridge, UK
| | - G Piedrafita
- Wellcome Sanger Institute, Hinxton, UK
- Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - D Fernandez-Antoran
- Wellcome Sanger Institute, Hinxton, UK
- Wellcome Trust-Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, UK
| | - S H Ong
- Wellcome Sanger Institute, Hinxton, UK
| | | | - K T Mahbubani
- Department of Surgery and Cambridge NIHR Biomedical Research Centre, Cambridge, UK
| | - K Saeb-Parsy
- Department of Surgery and Cambridge NIHR Biomedical Research Centre, Cambridge, UK
| | - M Gerstung
- European Molecular Biology Laboratory, European Bioinformatics Institute, Cambridge, UK
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany
| | - B A Hall
- Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
| | - P H Jones
- Wellcome Sanger Institute, Hinxton, UK.
- MRC Cancer Unit, University of Cambridge, Hutchison-MRC Research Centre, Cambridge, UK.
| |
Collapse
|
12
|
Nakajima K, Ishiwata M, Weitemier AZ, Shoji H, Monai H, Miyamoto H, Yamakawa K, Miyakawa T, McHugh TJ, Kato T. Brain-specific heterozygous loss-of-function of ATP2A2, endoplasmic reticulum Ca2+ pump responsible for Darier's disease, causes behavioral abnormalities and a hyper-dopaminergic state. Hum Mol Genet 2021; 30:1762-1772. [PMID: 34104969 PMCID: PMC8411987 DOI: 10.1093/hmg/ddab137] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 05/05/2021] [Accepted: 05/06/2021] [Indexed: 01/09/2023] Open
Abstract
A report of a family of Darier's disease with mood disorders drew attention when the causative gene was identified as ATP2A2 (or SERCA2), which encodes a Ca2+ pump on the endoplasmic reticulum (ER) membrane and is important for intracellular Ca2+ signaling. Recently, it was found that loss-of-function mutations of ATP2A2 confer a risk of neuropsychiatric disorders including depression, bipolar disorder and schizophrenia. In addition, a genome-wide association study found an association between ATP2A2 and schizophrenia. However, the mechanism of how ATP2A2 contributes to vulnerability to these mental disorders is unknown. Here, we analyzed Atp2a2 heterozygous brain-specific conditional knockout (hetero cKO) mice. The ER membranes prepared from the hetero cKO mouse brain showed decreased Ca2+ uptake activity. In Atp2a2 heterozygous neurons, decays of cytosolic Ca2+ level were slower than control neurons after depolarization. The hetero cKO mice showed altered behavioral responses to novel environments and impairments in fear memory, suggestive of enhanced dopamine signaling. In vivo dialysis demonstrated that extracellular dopamine levels in the NAc were indeed higher in the hetero cKO mice. These results altogether indicate that the haploinsufficiency of Atp2a2 in the brain causes prolonged cytosolic Ca2+ transients, which possibly results in enhanced dopamine signaling, a common feature of mood disorders and schizophrenia. These findings elucidate how ATP2A2 mutations causing a dermatological disease may exert their pleiotropic effects on the brain and confer a risk for mental disorders.
Collapse
Affiliation(s)
- Kazuo Nakajima
- Laboratory for Molecular Dynamics of Mental Disorders, RIKEN Center for Brain Science, Saitama 351-0198, Japan
| | - Mizuho Ishiwata
- Laboratory for Molecular Dynamics of Mental Disorders, RIKEN Center for Brain Science, Saitama 351-0198, Japan
| | - Adam Z Weitemier
- Laboratory for Molecular Dynamics of Mental Disorders, RIKEN Center for Brain Science, Saitama 351-0198, Japan
- Laboratory for Circuit and Behavioral Physiology, RIKEN Center for Brain Science, Saitama, Japan
| | - Hirotaka Shoji
- Division of Systems Medical Science, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Aichi 470-1192, Japan
| | - Hiromu Monai
- Laboratory for Neuron-Glia Circuitry, RIKEN Center for Brain Science, Saitama, Japan
- Faculty of Core Research Natural Science Division, Ochanomizu University, Tokyo 112-8610, Japan
| | - Hiroyuki Miyamoto
- Laboratory for Neurogenetics, RIKEN Center for Brain Science, Saitama, Japan
| | - Kazuhiro Yamakawa
- Laboratory for Neurogenetics, RIKEN Center for Brain Science, Saitama, Japan
- Department of Neurodevelopmental Disorder Genetics, Nagoya City University Graduate School of Medical Sciences, Institute of Brain Science, Nagoya, Aichi 467-8601, Japan
| | - Tsuyoshi Miyakawa
- Division of Systems Medical Science, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Aichi 470-1192, Japan
| | - Thomas J McHugh
- Laboratory for Circuit and Behavioral Physiology, RIKEN Center for Brain Science, Saitama, Japan
| | - Tadafumi Kato
- Laboratory for Molecular Dynamics of Mental Disorders, RIKEN Center for Brain Science, Saitama 351-0198, Japan
- Department of Psychiatry and Behavioral Science, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| |
Collapse
|
13
|
Lysosomal Calcium Channels in Autophagy and Cancer. Cancers (Basel) 2021; 13:cancers13061299. [PMID: 33803964 PMCID: PMC8001254 DOI: 10.3390/cancers13061299] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/05/2021] [Accepted: 03/09/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Autophagy is a cellular self-eating process that uses lysosome, the waste disposal system of the cell, to degrade and recycle intracellular materials to maintain cellular homeostasis. Defects in autophagy are linked to a variety of pathological states, including cancer. Calcium is an important cellular messenger that regulates the survival of all animal cells. Alterations to calcium homoeostasis are associated with cancer. While it has long been considered as cellular recycling center, the lysosome is now widely known as an intracellular calcium store that regulates autophagy and cancer progression by releasing calcium via some ion channels residing in the lysosomal membrane. In this review, we summarize existing mechanisms of autophagy regulation by lysosomal calcium channels and their implications in cancer development. We hope to guide readers toward a more in-depth understanding of the importance of lysosomal calcium channels in cancer, and potentially facilitate the development of new therapeutics for some cancers. Abstract Ca2+ is pivotal intracellular messenger that coordinates multiple cell functions such as fertilization, growth, differentiation, and viability. Intracellular Ca2+ signaling is regulated by both extracellular Ca2+ entry and Ca2+ release from intracellular stores. Apart from working as the cellular recycling center, the lysosome has been increasingly recognized as a significant intracellular Ca2+ store that provides Ca2+ to regulate many cellular processes. The lysosome also talks to other organelles by releasing and taking up Ca2+. In lysosomal Ca2+-dependent processes, autophagy is particularly important, because it has been implicated in many human diseases including cancer. This review will discuss the major components of lysosomal Ca2+ stores and their roles in autophagy and human cancer progression.
Collapse
|
14
|
Pagliaro L, Marchesini M, Roti G. Targeting oncogenic Notch signaling with SERCA inhibitors. J Hematol Oncol 2021; 14:8. [PMID: 33407740 PMCID: PMC7789735 DOI: 10.1186/s13045-020-01015-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 12/02/2020] [Indexed: 12/26/2022] Open
Abstract
P-type ATPase inhibitors are among the most successful and widely prescribed therapeutics in modern pharmacology. Clinical transition has been safely achieved for H+/K+ ATPase inhibitors such as omeprazole and Na+/K+-ATPase inhibitors like digoxin. However, this is more challenging for Ca2+-ATPase modulators due to the physiological role of Ca2+ in cardiac dynamics. Over the past two decades, sarco-endoplasmic reticulum Ca2+-ATPase (SERCA) modulators have been studied as potential chemotherapy agents because of their Ca2+-mediated pan-cancer lethal effects. Instead, recent evidence suggests that SERCA inhibition suppresses oncogenic Notch1 signaling emerging as an alternative to γ-secretase modulators that showed limited clinical activity due to severe side effects. In this review, we focus on how SERCA inhibitors alter Notch1 signaling and show that Notch on-target-mediated antileukemia properties of these molecules can be achieved without causing overt Ca2+ cellular overload.
Collapse
Affiliation(s)
- Luca Pagliaro
- Department of Medicine and Surgery, University of Parma, 43126, Parma, Italy
| | - Matteo Marchesini
- Department of Medicine and Surgery, University of Parma, 43126, Parma, Italy
| | - Giovanni Roti
- Department of Medicine and Surgery, University of Parma, 43126, Parma, Italy.
| |
Collapse
|
15
|
Kim MS, Choi HS, Wu M, Myung J, Kim EJ, Kim YS, Ro S, Ha SE, Bartlett A, Wei L, Ryu HS, Choi SC, Park WC, Kim KY, Lee MY. Potential Role of PDGFRβ-Associated THBS4 in Colorectal Cancer Development. Cancers (Basel) 2020; 12:2533. [PMID: 32899998 PMCID: PMC7564555 DOI: 10.3390/cancers12092533] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/24/2020] [Accepted: 08/31/2020] [Indexed: 12/16/2022] Open
Abstract
Colorectal cancer is a significant cause of death since it frequently metastasizes to several organs such as the lung or liver. Tumor development is affected by various factors, including a tumor microenvironment, which may be an essential factor that leads to tumor growth, proliferation, invasion, and metastasis. In the tumor microenvironment, abnormal changes in various growth factors, enzymes, and cytokines can wield a strong influence on cancer. Thrombospondin-4 (THBS4), which is an extracellular matrix protein, also plays essential roles in the tumor microenvironment and mediates angiogenesis by transforming growth factor-β (TGFβ) signaling. Platelet-derived growth factor receptor β (PDGFRβ), which is a receptor tyrosine kinase and is also a downstream signal of TGFβ, is associated with invasion and metastasis in colorectal cancer. We identified that PDGFRβ and THBS4 are overexpressed in tumor tissues of colorectal cancer patients, and that PDGF-D expression increased after TGFβ treatment in the colon cancer cell line DLD-1. TGFβ and PDGF-D increased cellular THBS4 protein levels and secretion but did not increase THBS4 mRNA levels. This response was further confirmed by the inositol 1,4,5-triphosphate receptor (IP3R) and stromal interaction molecule 1 (STIM1) blockade as well as the PDGFRβ blockade. We propose that the PDGFRβ signal leads to a modification of the incomplete form of THBS4 to its complete form through IP3R, STIM1, and Ca2+-signal proteins, which further induces THBS4 secretion. Additionally, we identified that DLD-1 cell-conditioned medium stimulated with PDGF-D promotes adhesion, migration, and proliferation of colon myofibroblast CCD-18co cells, and this effect was intensified in the presence of thrombin. These findings suggest that excessive PDGFRβ signaling due to increased TGFβ and PDGF-D in colorectal tumors leads to over-secretion of THBS4 and proliferative tumor development.
Collapse
Affiliation(s)
- Min Seob Kim
- Department of Physiology, Digestive Disease Research Institute, and Institute of Wonkwang Medical Science, School of Medicine, Wonkwang University, Iksan 54538, Korea; (M.S.K.); (H.S.C.); (M.W.); (J.M.)
| | - Hyun Seok Choi
- Department of Physiology, Digestive Disease Research Institute, and Institute of Wonkwang Medical Science, School of Medicine, Wonkwang University, Iksan 54538, Korea; (M.S.K.); (H.S.C.); (M.W.); (J.M.)
| | - Moxin Wu
- Department of Physiology, Digestive Disease Research Institute, and Institute of Wonkwang Medical Science, School of Medicine, Wonkwang University, Iksan 54538, Korea; (M.S.K.); (H.S.C.); (M.W.); (J.M.)
| | - JiYeon Myung
- Department of Physiology, Digestive Disease Research Institute, and Institute of Wonkwang Medical Science, School of Medicine, Wonkwang University, Iksan 54538, Korea; (M.S.K.); (H.S.C.); (M.W.); (J.M.)
| | - Eui Joong Kim
- Department of Gastroenterology, Digestive Disease Research Institute, School of Medicine, Wonkwang University, Iksan 54538, Korea; (E.J.K.); (Y.S.K.); (H.-S.R.); (S.C.C.)
| | - Yong Sung Kim
- Department of Gastroenterology, Digestive Disease Research Institute, School of Medicine, Wonkwang University, Iksan 54538, Korea; (E.J.K.); (Y.S.K.); (H.-S.R.); (S.C.C.)
| | - Seungil Ro
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV 89557, USA; (S.R.); (S.E.H.); (A.B.); (L.W.)
| | - Se Eun Ha
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV 89557, USA; (S.R.); (S.E.H.); (A.B.); (L.W.)
| | - Allison Bartlett
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV 89557, USA; (S.R.); (S.E.H.); (A.B.); (L.W.)
| | - Lai Wei
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV 89557, USA; (S.R.); (S.E.H.); (A.B.); (L.W.)
| | - Han-Seung Ryu
- Department of Gastroenterology, Digestive Disease Research Institute, School of Medicine, Wonkwang University, Iksan 54538, Korea; (E.J.K.); (Y.S.K.); (H.-S.R.); (S.C.C.)
| | - Suck Chei Choi
- Department of Gastroenterology, Digestive Disease Research Institute, School of Medicine, Wonkwang University, Iksan 54538, Korea; (E.J.K.); (Y.S.K.); (H.-S.R.); (S.C.C.)
| | - Won Cheol Park
- Department of Surgery, Digestive Disease Research Institute, School of Medicine, Wonkwang University, Iksan 54538, Korea; (W.C.P.); (K.Y.K.)
| | - Keun Young Kim
- Department of Surgery, Digestive Disease Research Institute, School of Medicine, Wonkwang University, Iksan 54538, Korea; (W.C.P.); (K.Y.K.)
| | - Moon Young Lee
- Department of Physiology, Digestive Disease Research Institute, and Institute of Wonkwang Medical Science, School of Medicine, Wonkwang University, Iksan 54538, Korea; (M.S.K.); (H.S.C.); (M.W.); (J.M.)
| |
Collapse
|
16
|
Calcium signaling and epigenetics: A key point to understand carcinogenesis. Cell Calcium 2020; 91:102285. [PMID: 32942140 DOI: 10.1016/j.ceca.2020.102285] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 08/22/2020] [Accepted: 08/26/2020] [Indexed: 02/07/2023]
Abstract
Calcium (Ca2+) signaling controls a wide range of cellular processes, including the hallmarks of cancer. The Ca2+ signaling system encompasses several types of proteins, such as receptors, channels, pumps, exchangers, buffers, and sensors, of which several are mutated or with altered expression in cancer cells. Since epigenetic mechanisms are disrupted in all stages of carcinogenesis, and reversibly regulate gene expression, they have been studied by different research groups to understand their role in Ca2+ signaling remodeling in cancer cells and the carcinogenic process. In this review, we link Ca2+ signaling, cancer, and epigenetics fields to generate a comprehensive landscape of this complex group of diseases.
Collapse
|
17
|
Roberts O, Paraoan L. PERP-ing into diverse mechanisms of cancer pathogenesis: Regulation and role of the p53/p63 effector PERP. Biochim Biophys Acta Rev Cancer 2020; 1874:188393. [PMID: 32679166 DOI: 10.1016/j.bbcan.2020.188393] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 07/11/2020] [Accepted: 07/12/2020] [Indexed: 12/20/2022]
Abstract
The tetraspan plasma membrane protein PERP (p53 apoptosis effector related to PMP22) is a lesser-known transcriptional target of p53 and p63. A member of the PMP22/GAS3/EMP membrane protein family, PERP was originally identified as a p53 target specifically trans-activated during apoptosis, but not during cell-cycle arrest. Several studies have since shown downregulation of PERP expression in numerous cancers, suggesting that PERP is a tumour suppressor protein. This review focusses on the important advances made in elucidating the mechanisms regulating PERP expression and its function as a tumour suppressor in diverse human cancers, including breast cancer and squamous cell carcinoma. Investigating PERP's role in clinically-aggressive uveal melanoma has revealed that PERP engages a positive-feedback loop with p53 to regulate its own expression, and that p63 is required beside p53 to achieve pro-apoptotic levels of PERP in this cancer. Furthermore, the recent discovery of the apoptosis-mediating interaction of PERP with SERCA2b at the plasma membrane-endoplasmic reticulum interface demonstrates a novel mechanism of PERP stabilisation, and how PERP can mediate Ca2+ signalling to facilitate apoptosis. The multi-faceted role of PERP in cancer, involving well-documented functions in mediating apoptosis and cell-cell adhesion is discussed, alongside PERP's emerging roles in epithelial-mesenchymal transition, and PERP crosstalk with inflammation signalling pathways, and other signalling pathways. The potential for restoring PERP expression as a means of cancer therapy is also considered.
Collapse
Affiliation(s)
- Owain Roberts
- Department of Eye and Vision Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Luminita Paraoan
- Department of Eye and Vision Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom.
| |
Collapse
|
18
|
Feng M, Elaïb Z, Borgel D, Denis CV, Adam F, Bryckaert M, Rosa JP, Bobe R. NAADP/SERCA3-Dependent Ca 2+ Stores Pathway Specifically Controls Early Autocrine ADP Secretion Potentiating Platelet Activation. Circ Res 2020; 127:e166-e183. [PMID: 32588751 DOI: 10.1161/circresaha.119.316090] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
RATIONALE Ca2+ signaling is a key and ubiquitous actor of cell organization and its modulation controls many cellular responses. SERCAs (sarco-endoplasmic reticulum Ca2+-ATPases) pump Ca2+ into internal stores that play a major role in the cytosolic Ca2+ concentration rise upon cell activation. Platelets exhibit 2 types of SERCAs, SERCA2b and SERCA3 (SERCA3 deficient mice), which may exert specific roles, yet ill-defined. We have recently shown that Ca2+ mobilization from SERCA3-dependent stores was required for full platelet activation in weak stimulation conditions. OBJECTIVE To uncover the signaling mechanisms associated with Ca2+ mobilization from SERCA3-dependent stores leading to ADP secretion. METHODS AND RESULTS Using platelets from wild-type or Serca3-deficient mice, we demonstrated that an early (within 5-10 s following stimulation) secretion of ADP specifically dependent on SERCA3 stored Ca2+ is exclusively mobilized by nicotinic acid adenosine dinucleotide-phosphate (NAADP): both Ca2+ mobilization from SERCA3-dependent stores and primary ADP secretion are blocked by the NAADP receptor antagonist Ned-19, and reciprocally both are stimulated by permeant NAADP. In contrast, Ca2+ mobilization from SERCA3-dependent stores and primary ADP secretion were unaffected by inhibition of the production of IP3 (inositol-1,4,5-trisphosphate) by phospholipase-C and accordingly were not stimulated by permeant IP3. CONCLUSIONS Upon activation, an NAADP/SERCA3 Ca2+ mobilization pathway initiates an early ADP secretion, potentiating platelet activation, and a secondary wave of ADP secretion driven by both an IP3/SERCA2b-dependent Ca2+ stores pathway and the NAADP/SERCA3 pathway. This does not exclude that Ca2+ mobilized from SERCA3 stores may also enhance platelet global reactivity to agonists. Because of its modulating effect on platelet activation, this NAADP-SERCA3 pathway may be a relevant target for anti-thrombotic therapy. Graphic Abstract: A graphic abstract is available for this article.
Collapse
Affiliation(s)
- Miao Feng
- From the HITh, UMR_S1176, INSERM, Université Paris-Saclay, 94276 Le Kremlin-Bicêtre, France
| | - Ziane Elaïb
- From the HITh, UMR_S1176, INSERM, Université Paris-Saclay, 94276 Le Kremlin-Bicêtre, France
| | - Delphine Borgel
- From the HITh, UMR_S1176, INSERM, Université Paris-Saclay, 94276 Le Kremlin-Bicêtre, France
| | - Cécile V Denis
- From the HITh, UMR_S1176, INSERM, Université Paris-Saclay, 94276 Le Kremlin-Bicêtre, France
| | - Frédéric Adam
- From the HITh, UMR_S1176, INSERM, Université Paris-Saclay, 94276 Le Kremlin-Bicêtre, France
| | - Marijke Bryckaert
- From the HITh, UMR_S1176, INSERM, Université Paris-Saclay, 94276 Le Kremlin-Bicêtre, France
| | - Jean-Philippe Rosa
- From the HITh, UMR_S1176, INSERM, Université Paris-Saclay, 94276 Le Kremlin-Bicêtre, France
| | - Régis Bobe
- From the HITh, UMR_S1176, INSERM, Université Paris-Saclay, 94276 Le Kremlin-Bicêtre, France
| |
Collapse
|
19
|
Bachar-Wikstrom E, Curman P, Ahanian T, Leong IUS, Larsson H, Cederlöf M, Wikstrom JD. Darier disease is associated with heart failure: a cross-sectional case-control and population based study. Sci Rep 2020; 10:6886. [PMID: 32327688 PMCID: PMC7181854 DOI: 10.1038/s41598-020-63832-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 04/03/2020] [Indexed: 01/16/2023] Open
Abstract
Human data supporting a role for endoplasmic reticulum (ER) stress and calcium dyshomeostasis in heart disease is scarce. Darier disease (DD) is a hereditary skin disease caused by mutations in the ATP2A2 gene encoding the sarcoendoplasmic-reticulum Ca2+ ATPase isoform 2 (SERCA2), which causes calcium dyshomeostasis and ER stress. We hypothesized that DD patients would have an increased risk for common heart disease. We performed a cross-sectional case-control clinical study on 25 DD patients and 25 matched controls; and a population-based cohort study on 935 subjects with DD and matched comparison subjects. Main outcomes and measures were N-terminal pro-brain natriuretic peptide, ECG and heart diagnosis (myocardial infarction, heart failure and arrythmia). DD subjects showed normal clinical heart phenotype including heart failure markers and ECG. The risk for heart failure was 1.59 (1,16-2,19) times elevated in DD subjects, while no major differences were found in myocardial infarcation or arrhythmias. Risk for heart failure when corrected for cardivascular risk factors or alcohol misuse was 1.53 (1.11-2.11) and 1.58 (1,15-2,18) respectively. Notably, heart failure occurred several years earlier in DD patients as compared to controls. We conclude that DD patients show a disease specific increased risk of heart failure which should be taken into account in patient management. The observation also strenghtens the clinical evidence on the important role of SERCA2 in heart failure pathophysiology.
Collapse
Affiliation(s)
- Etty Bachar-Wikstrom
- Dermatology and Venereology Division, Department of Medicine (Solna), Karolinska Institutet, Stockholm, Sweden
| | - Philip Curman
- Dermatology and Venereology Division, Department of Medicine (Solna), Karolinska Institutet, Stockholm, Sweden
- Dermato-Venereology Clinic, Karolinska University Hospital, Stockholm, Sweden
| | - Tara Ahanian
- Dermatology and Venereology Division, Department of Medicine (Solna), Karolinska Institutet, Stockholm, Sweden
- Dermato-Venereology Clinic, Karolinska University Hospital, Stockholm, Sweden
| | - Ivone U S Leong
- Dermatology and Venereology Division, Department of Medicine (Solna), Karolinska Institutet, Stockholm, Sweden
| | - Henrik Larsson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Martin Cederlöf
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet, and Stockholm Health Care Services, Norra Stationsgatan 69, Stockholm, Sweden
| | - Jakob D Wikstrom
- Dermatology and Venereology Division, Department of Medicine (Solna), Karolinska Institutet, Stockholm, Sweden.
- Dermato-Venereology Clinic, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
20
|
Chen J, Sitsel A, Benoy V, Sepúlveda MR, Vangheluwe P. Primary Active Ca 2+ Transport Systems in Health and Disease. Cold Spring Harb Perspect Biol 2020; 12:cshperspect.a035113. [PMID: 31501194 DOI: 10.1101/cshperspect.a035113] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Calcium ions (Ca2+) are prominent cell signaling effectors that regulate a wide variety of cellular processes. Among the different players in Ca2+ homeostasis, primary active Ca2+ transporters are responsible for keeping low basal Ca2+ levels in the cytosol while establishing steep Ca2+ gradients across intracellular membranes or the plasma membrane. This review summarizes our current knowledge on the three types of primary active Ca2+-ATPases: the sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA) pumps, the secretory pathway Ca2+- ATPase (SPCA) isoforms, and the plasma membrane Ca2+-ATPase (PMCA) Ca2+-transporters. We first discuss the Ca2+ transport mechanism of SERCA1a, which serves as a reference to describe the Ca2+ transport of other Ca2+ pumps. We further highlight the common and unique features of each isoform and review their structure-function relationship, expression pattern, regulatory mechanisms, and specific physiological roles. Finally, we discuss the increasing genetic and in vivo evidence that links the dysfunction of specific Ca2+-ATPase isoforms to a broad range of human pathologies, and highlight emerging therapeutic strategies that target Ca2+ pumps.
Collapse
Affiliation(s)
- Jialin Chen
- Laboratory of Cellular Transport Systems, Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium
| | - Aljona Sitsel
- Laboratory of Cellular Transport Systems, Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium
| | - Veronick Benoy
- Laboratory of Cellular Transport Systems, Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium
| | - M Rosario Sepúlveda
- Department of Cell Biology, Faculty of Sciences, University of Granada, 18071 Granada, Spain
| | - Peter Vangheluwe
- Laboratory of Cellular Transport Systems, Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium
| |
Collapse
|
21
|
Chemaly ER, Troncone L, Lebeche D. SERCA control of cell death and survival. Cell Calcium 2017; 69:46-61. [PMID: 28747251 DOI: 10.1016/j.ceca.2017.07.001] [Citation(s) in RCA: 132] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 07/03/2017] [Accepted: 07/03/2017] [Indexed: 12/31/2022]
Abstract
Intracellular calcium (Ca2+) is a critical coordinator of various aspects of cellular physiology. It is increasingly apparent that changes in cellular Ca2+ dynamics contribute to the regulation of normal and pathological signal transduction that controls cell growth and survival. Aberrant perturbations in Ca2+ homeostasis have been implicated in a range of pathological conditions, such as cardiovascular diseases, diabetes, tumorigenesis and steatosis hepatitis. Intracellular Ca2+ concentrations are therefore tightly regulated by a number of Ca2+ handling enzymes, proteins, channels and transporters located in the plasma membrane and in Ca2+ storage organelles, which work in concert to fine tune a temporally and spatially precise Ca2+ signal. Chief amongst them is the sarco/endoplasmic reticulum (SR/ER) Ca2+ ATPase pump (SERCA) which actively re-accumulates released Ca2+ back into the SR/ER, therefore maintaining Ca2+ homeostasis. There are at least 14 different SERCA isoforms encoded by three ATP2A1-3 genes whose expressions are species- and tissue-specific. Altered SERCA expression and activity results in cellular malignancy and induction of ER stress and ER stress-associated apoptosis. The role of SERCA misregulation in the control of apoptosis in various cell types and disease setting with prospective therapeutic implications is the focus of this review. Ca2+ is a double edge sword for both life as well as death, and current experimental evidence supports a model in which Ca2+ homeostasis and SERCA activity represent a nodal point that controls cell survival. Pharmacological or genetic targeting of this axis constitutes an incredible therapeutic potential to treat different diseases sharing similar biological disorders.
Collapse
Affiliation(s)
- Elie R Chemaly
- Division of Nephrology and Hypertension, Department of Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Luca Troncone
- Cardiovascular Research Institute, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Djamel Lebeche
- Cardiovascular Research Institute, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA; Diabetes, Obesity and Metabolism Institute, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA; Graduate School of Biological Sciences, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA.
| |
Collapse
|
22
|
Marchi S, Patergnani S, Missiroli S, Morciano G, Rimessi A, Wieckowski MR, Giorgi C, Pinton P. Mitochondrial and endoplasmic reticulum calcium homeostasis and cell death. Cell Calcium 2017; 69:62-72. [PMID: 28515000 DOI: 10.1016/j.ceca.2017.05.003] [Citation(s) in RCA: 466] [Impact Index Per Article: 58.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 05/04/2017] [Accepted: 05/04/2017] [Indexed: 12/12/2022]
Abstract
The endoplasmic reticulum (ER) and mitochondria cannot be considered as static structures, as they intimately communicate, forming very dynamic platforms termed mitochondria-associated membranes (MAMs). In particular, the ER transmits proper Ca2+ signals to mitochondria, which decode them into specific inputs to regulate essential functions, including metabolism, energy production and apoptosis. Here, we will describe the different molecular players involved in the transfer of Ca2+ ions from the ER lumen to the mitochondrial matrix and how modifications in both ER-mitochondria contact sites and Ca2+ signaling can alter the cell death execution program.
Collapse
Affiliation(s)
- Saverio Marchi
- Dept. of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Simone Patergnani
- Dept. of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Sonia Missiroli
- Dept. of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Giampaolo Morciano
- Dept. of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Alessandro Rimessi
- Dept. of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | | | - Carlotta Giorgi
- Dept. of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Paolo Pinton
- Dept. of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy.
| |
Collapse
|
23
|
Li N, Park M, Xiao S, Liu Z, Diaz LA. ER-to-Golgi blockade of nascent desmosomal cadherins in SERCA2-inhibited keratinocytes: Implications for Darier's disease. Traffic 2017; 18:232-241. [PMID: 28156030 DOI: 10.1111/tra.12470] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 01/30/2017] [Indexed: 12/26/2022]
Abstract
Darier's disease (DD) is an autosomal dominantly inherited skin disorder caused by mutations in sarco/endoplasmic reticulum Ca2+ -ATPase 2 (SERCA2), a Ca2+ pump that transports Ca2+ from the cytosol to the endoplasmic reticulum (ER). Loss of desmosomes and keratinocyte cohesion is a characteristic feature of DD. Desmosomal cadherins (DC) are Ca2+ -dependent transmembrane adhesion proteins of desmosomes, which are mislocalized in the lesional but not perilesional skin of DD. We show here that inhibition of SERCA2 by 2 distinct inhibitors results in accumulation of DC precursors in keratinocytes, indicating ER-to-Golgi transport of nascent DC is blocked. Partial loss of SERCA2 by siRNA has no such effect, implicating that haploinsufficiency is not sufficient to affect nascent DC maturation. However, a synergistic effect is revealed between SERCA2 siRNA and an ineffective dose of SERCA2 inhibitor, and between an agonist of the ER Ca2+ release channel and SERCA2 inhibitor. These results suggest that reduction of ER Ca2+ below a critical level causes ER retention of nascent DC. Moreover, colocalization of DC with ER calnexin is detected in SERCA2-inhibited keratinocytes and DD epidermis. Collectively, our data demonstrate that loss of SERCA2 impairs ER-to-Golgi transport of nascent DC, which may contribute to DD pathogenesis.
Collapse
Affiliation(s)
- Ning Li
- Department of Dermatology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Moonhee Park
- Department of Dermatology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Shengxiang Xiao
- Department of Dermatology, The Second Hospital, Xi-An Jiaotong University, People's Republic of China
| | - Zhi Liu
- Department of Dermatology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Luis A Diaz
- Department of Dermatology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
24
|
Cui C, Merritt R, Fu L, Pan Z. Targeting calcium signaling in cancer therapy. Acta Pharm Sin B 2017; 7:3-17. [PMID: 28119804 PMCID: PMC5237760 DOI: 10.1016/j.apsb.2016.11.001] [Citation(s) in RCA: 418] [Impact Index Per Article: 52.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 10/28/2016] [Indexed: 12/15/2022] Open
Abstract
The intracellular calcium ions (Ca2+) act as second messenger to regulate gene transcription, cell proliferation, migration and death. Accumulating evidences have demonstrated that intracellular Ca2+ homeostasis is altered in cancer cells and the alteration is involved in tumor initiation, angiogenesis, progression and metastasis. Targeting derailed Ca2+ signaling for cancer therapy has become an emerging research area. This review summarizes some important Ca2+ channels, transporters and Ca2+-ATPases, which have been reported to be altered in human cancer patients. It discusses the current research effort toward evaluation of the blockers, inhibitors or regulators for Ca2+ channels/transporters or Ca2+-ATPase pumps as anti-cancer drugs. This review is also aimed to stimulate interest in, and support for research into the understanding of cellular mechanisms underlying the regulation of Ca2+ signaling in different cancer cells, and to search for novel therapies to cure these malignancies by targeting Ca2+ channels or transporters.
Collapse
Key Words
- 20-GPPD, 20-O-β-D-glucopyranosyl-20(S)-protopanaxadiol
- Apoptosis
- CBD, cannabidiol
- CBG, cannabigerol
- CPZ, capsazepine
- CRAC, Ca2+ release-activated Ca2+ channel
- CTL, cytotoxic T cells
- CYP3A4, cytochrome P450 3A4
- Ca2+ channels
- CaM, calmodulin
- CaMKII, calmodulin-dependent protein kinase II
- Cancer therapy
- Cell proliferation
- Channel blockers;
- ER/SR, endoplasmic/sarcoplasmic reticulum
- HCX, H+/Ca2+ exchangers
- IP3, inositol 1,4,5-trisphosphate
- IP3R (1, 2, 3), IP3 receptor (type 1, type 2, type 3)
- MCU, mitochondrial Ca2+ uniporter
- MCUR1, MCU uniporter regulator 1
- MICU (1, 2, 3), mitochondrial calcium uptake (type 1, type 2, type 3)
- MLCK, myosin light-chain kinase
- Migration
- NCX, Na+/Ca2+ exchanger
- NF-κB, nuclear factor-κB
- NFAT, nuclear factor of activated T cells
- NSCLC, non-small cell lung cancer
- OSCC, oral squamous cell carcinoma cells
- PKC, protein kinase C
- PM, plasma membrane
- PMCA, plasma membrane Ca2+-ATPase
- PTP, permeability transition pore
- ROS, reactive oxygen species
- RyR, ryanodine receptor
- SERCA, SR/ER Ca2+-ATPase
- SOCE, store-operated Ca2+ entry
- SPCA, secretory pathway Ca2+-ATPase
- Store-operated Ca2+ entry
- TEA, tetraethylammonium
- TG, thapsigargin
- TPC2, two-pore channel 2
- TRIM, 1-(2-(trifluoromethyl) phenyl) imidazole
- TRP (A, C, M, ML, N, P, V), transient receptor potential (ankyrin, canonical, melastatin, mucolipin, no mechanoreceptor potential C, polycystic, vanilloid)
- VGCC, voltage-gated Ca2+ channel
- mAb, monoclonal antibody
Collapse
Affiliation(s)
- Chaochu Cui
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
- Department of Surgery, Division of Thoracic Surgery, The Ohio State University, Columbus, OH 43210, USA
| | - Robert Merritt
- Department of Surgery, Division of Thoracic Surgery, The Ohio State University, Columbus, OH 43210, USA
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | - Liwu Fu
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Zui Pan
- Department of Surgery, Division of Thoracic Surgery, The Ohio State University, Columbus, OH 43210, USA
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
- College of Nursing and Health Innovation, The University of Texas at Arlington, Arlington, TX 76019, USA
| |
Collapse
|
25
|
Toki H, Minowa O, Inoue M, Motegi H, Karashima Y, Ikeda A, Kaneda H, Sakuraba Y, Saiki Y, Wakana S, Suzuki H, Gondo Y, Shiroishi T, Noda T. Novel allelic mutations in murine Serca2 induce differential development of squamous cell tumors. Biochem Biophys Res Commun 2016; 476:175-182. [DOI: 10.1016/j.bbrc.2016.04.136] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 04/26/2016] [Indexed: 10/21/2022]
|
26
|
Full activation of mouse platelets requires ADP secretion regulated by SERCA3 ATPase-dependent calcium stores. Blood 2016; 128:1129-38. [PMID: 27301859 DOI: 10.1182/blood-2015-10-678383] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 06/01/2016] [Indexed: 01/01/2023] Open
Abstract
The role of the sarco-endoplasmic reticulum calcium (Ca(2+)) adenosine triphosphatase (ATPase) 3 (SERCA3) in platelet physiology remains poorly understood. Here, we show that SERCA3 knockout (SERCA3(-/-)) mice exhibit prolonged tail bleeding time and rebleeding. Thrombus formation was delayed both in arteries and venules in an in vivo ferric chloride-induced thrombosis model. Defective platelet adhesion and thrombus growth over collagen was confirmed in vitro. Adenosine 5'-diphosphate (ADP) removal by apyrase diminished adhesion and thrombus growth of control platelets to the level of SERCA3(-/-) platelets. Aggregation, dense granule secretion, and Ca(2+) mobilization of SERCA3(-/-) platelets induced by low collagen or low thrombin concentration were weaker than controls. Accordingly, SERCA3(-/-) platelets exhibited a partial defect in total stored Ca(2+) and in Ca(2+) store reuptake following thrombin stimulation. Importantly ADP, but not serotonin, rescued aggregation, secretion, and Ca(2+) mobilization in SERCA3(-/-) platelets, suggesting specificity. Dense granules appeared normal upon electron microscopy, mepacrine staining, and total serotonin content, ruling out a dense granule defect. ADP induced normal platelet aggregation, excluding a defect in ADP activation pathways. The SERCA3-specific inhibitor 2,5-di-(tert-butyl)-1,4-benzohydroquinone diminished both Ca(2+) mobilization and secretion of control platelets, as opposed to the SERCA2b inhibitor thapsigargin. This confirmed the specific role of catalytically active SERCA3 in ADP secretion. Accordingly, SERCA3-dependent Ca(2+) stores appeared depleted in SERCA3(-/-) platelets. Finally, αIIbβ3 integrin blockade did not affect SERCA3-dependent secretion, therefore proving independent of αIIbβ3 engagement. Altogether, these results show that SERCA3-dependent Ca(2+) stores control a specific ADP secretion pathway required for full platelet secretion induced by agonists at low concentration and independent of αIIbβ3.
Collapse
|
27
|
Dang D, Rao R. Calcium-ATPases: Gene disorders and dysregulation in cancer. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1863:1344-50. [PMID: 26608610 DOI: 10.1016/j.bbamcr.2015.11.016] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 11/08/2015] [Accepted: 11/18/2015] [Indexed: 12/14/2022]
Abstract
Ca(2+)-ATPases belonging to the superfamily of P-type pumps play an important role in maintaining low, nanomolar cytoplasmic Ca(2+) levels at rest and priming organellar stores, including the endoplasmic reticulum, Golgi, and secretory vesicles with high levels of Ca(2+) for a wide range of signaling functions. In this review, we introduce the distinct subtypes of Ca(2+)-ATPases and their isoforms and splice variants and provide an overview of their specific cellular roles as they relate to genetic disorders and cancer, with a particular emphasis on recent findings on the secretory pathway Ca(2+)-ATPases (SPCA). Mutations in human ATP2A2, ATP2C1 genes, encoding housekeeping isoforms of the endoplasmic reticulum (SERCA2) and secretory pathway (SPCA1) pumps, respectively, confer autosomal dominant disorders of the skin, whereas mutations in other isoforms underlie various muscular, neurological, or developmental disorders. Emerging evidence points to an important function of dysregulated Ca(2+)-ATPase expression in cancers of the colon, lung, and breast where they may serve as markers of differentiation or novel targets for therapeutic intervention. We review the mechanisms underlying the link between calcium homeostasis and cancer and discuss the potential clinical relevance of these observations. This article is part of a Special Issue entitled: Calcium and Cell Fate. Guest Editors: Jacques Haiech, Claus Heizmann, Joachim Krebs, Thierry Capiod and Olivier Mignen.
Collapse
Affiliation(s)
- Donna Dang
- Department of Physiology, The Johns Hopkins University School of Medicine, 725 N. Wolfe Street, Baltimore, MD 21205, USA
| | - Rajini Rao
- Department of Physiology, The Johns Hopkins University School of Medicine, 725 N. Wolfe Street, Baltimore, MD 21205, USA.
| |
Collapse
|
28
|
SERCA2 Haploinsufficiency in a Mouse Model of Darier Disease Causes a Selective Predisposition to Heart Failure. BIOMED RESEARCH INTERNATIONAL 2015; 2015:251598. [PMID: 26064889 PMCID: PMC4433638 DOI: 10.1155/2015/251598] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Revised: 12/18/2014] [Accepted: 12/23/2014] [Indexed: 12/28/2022]
Abstract
Null mutations in one copy of ATP2A2, the gene encoding sarco/endoplasmic reticulum Ca(2+)-ATPase isoform 2 (SERCA2), cause Darier disease in humans, a skin condition involving keratinocytes. Cardiac function appears to be unimpaired in Darier disease patients, with no evidence that SERCA2 haploinsufficiency itself causes heart disease. However, SERCA2 deficiency is widely considered a contributing factor in heart failure. We therefore analyzed Atp2a2 heterozygous mice to determine whether SERCA2 haploinsufficiency can exacerbate specific heart disease conditions. Despite reduced SERCA2a levels in heart, Atp2a2 heterozygous mice resembled humans in exhibiting normal cardiac physiology. When subjected to hypothyroidism or crossed with a transgenic model of reduced myofibrillar Ca(2+)-sensitivity, SERCA2 deficiency caused no enhancement of the disease state. However, when combined with a transgenic model of increased myofibrillar Ca(2+)-sensitivity, SERCA2 haploinsufficiency caused rapid onset of hypertrophy, decompensation, and death. These effects were associated with reduced expression of the antiapoptotic Hax1, increased levels of the proapoptotic genes Chop and Casp12, and evidence of perturbations in energy metabolism. These data reveal myofibrillar Ca(2+)-sensitivity to be an important determinant of the cardiac effects of SERCA2 haploinsufficiency and raise the possibility that Darier disease patients are more susceptible to heart failure under certain conditions.
Collapse
|
29
|
Abstract
Desmosomes serve as intercellular junctions in various tissues including the skin and the heart where they play a crucial role in cell-cell adhesion, signalling and differentiation. The desmosomes connect the cell surface to the keratin cytoskeleton and are composed of a transmembranal part consisting mainly of desmosomal cadherins, armadillo proteins and desmoplakin, which form the intracytoplasmic desmosomal plaque. Desmosomal genodermatoses are caused by mutations in genes encoding the various desmosomal components. They are characterized by skin, hair and cardiac manifestations occurring in diverse combinations. Their classification into a separate and distinct clinical group not only recognizes their common pathogenesis and facilitates their diagnosis but might also in the future form the basis for the design of novel and targeted therapies for these occasionally life-threatening diseases.
Collapse
|
30
|
Fan L, Li A, Li W, Cai P, Yang B, Zhang M, Gu Y, Shu Y, Sun Y, Shen Y, Wu X, Hu G, Wu X, Xu Q. Novel role of Sarco/endoplasmic reticulum calcium ATPase 2 in development of colorectal cancer and its regulation by F36, a curcumin analog. Biomed Pharmacother 2014; 68:1141-8. [DOI: 10.1016/j.biopha.2014.10.014] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Accepted: 10/16/2014] [Indexed: 11/29/2022] Open
|
31
|
SERCA2 dysfunction in Darier disease causes endoplasmic reticulum stress and impaired cell-to-cell adhesion strength: rescue by Miglustat. J Invest Dermatol 2014; 134:1961-1970. [PMID: 24390139 DOI: 10.1038/jid.2014.8] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Revised: 10/31/2013] [Accepted: 12/09/2013] [Indexed: 12/17/2022]
Abstract
Darier disease (DD) is a severe dominant genetic skin disorder characterized by the loss of cell-to-cell adhesion and abnormal keratinization. The defective gene, ATP2A2, encodes sarco/endoplasmic reticulum (ER) Ca2+ -ATPase isoform 2 (SERCA2), a Ca2+ -ATPase pump of the ER. Here we show that Darier keratinocytes (DKs) display biochemical and morphological hallmarks of constitutive ER stress with increased sensitivity to ER stressors. Desmosome and adherens junctions (AJs) displayed features of immature adhesion complexes: expression of desmosomal cadherins (desmoglein 3 (Dsg3) and desmocollin 3 (Dsc3)) and desmoplakin was impaired at the plasma membrane, as well as E-cadherin, β-, α-, and p120-catenin staining. Dsg3, Dsc3, and E-cadherin showed perinuclear staining and co-immunostaining with ER markers, indicative of ER retention. Consistent with these abnormalities, intercellular adhesion strength was reduced as shown by a dispase mechanical dissociation assay. Exposure of normal keratinocytes to the SERCA2 inhibitor thapsigargin recapitulated these abnormalities, supporting the role of loss of SERCA2 function in impaired desmosome and AJ formation. Remarkably, treatment of DKs with the orphan drug Miglustat, a pharmacological chaperone, restored mature AJ and desmosome formation, and improved adhesion strength. These results point to an important contribution of ER stress in DD pathogenesis and provide the basis for future clinical evaluation of Miglustat in Darier patients.
Collapse
|
32
|
Feng MY, Rao R. New insights into store-independent Ca(2+) entry: secretory pathway calcium ATPase 2 in normal physiology and cancer. Int J Oral Sci 2013; 5:71-4. [PMID: 23670239 PMCID: PMC3707068 DOI: 10.1038/ijos.2013.23] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Accepted: 04/01/2013] [Indexed: 11/09/2022] Open
Abstract
Recent studies in secretory pathway calcium ATPases (SPCA) revealed novel functions of SPCA2 in interacting with store-operated Ca(2+) channel Orai1 and inducing Ca(2+) influx at the cell surface. Importantly, SPCA2-mediated Ca(2+) signaling is uncoupled from its conventional role of Ca(2+)-ATPase and independent of store-operated Ca(2+) signaling pathway. SPCA2-induced store-independent Ca(2+) entry (SICE) plays essential roles in many important physiological processes, while unbalanced SICE leads to enhanced cell proliferation and tumorigenesis. Finally, we have summarized the clinical implication of SICE in oral cancer prognosis and treatment. Inhibition of SICE may be a new target for the development of cancer therapeutics.
Collapse
|
33
|
Roti G, Carlton A, Ross KN, Markstein M, Pajcini K, Su AH, Perrimon N, Pear WS, Kung AL, Blacklow SC, Aster JC, Stegmaier K. Complementary genomic screens identify SERCA as a therapeutic target in NOTCH1 mutated cancer. Cancer Cell 2013; 23:390-405. [PMID: 23434461 PMCID: PMC3709972 DOI: 10.1016/j.ccr.2013.01.015] [Citation(s) in RCA: 116] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Revised: 11/30/2012] [Accepted: 01/22/2013] [Indexed: 10/27/2022]
Abstract
Notch1 is a rational therapeutic target in several human cancers, but as a transcriptional regulator, it poses a drug discovery challenge. To identify Notch1 modulators, we performed two cell-based, high-throughput screens for small-molecule inhibitors and cDNA enhancers of a NOTCH1 allele bearing a leukemia-associated mutation. Sarco/endoplasmic reticulum calcium ATPase (SERCA) channels emerged at the intersection of these complementary screens. SERCA inhibition preferentially impairs the maturation and activity of mutated Notch1 receptors and induces a G0/G1 arrest in NOTCH1-mutated human leukemia cells. A small-molecule SERCA inhibitor has on-target activity in two mouse models of human leukemia and interferes with Notch signaling in Drosophila. These studies "credential" SERCA as a therapeutic target in cancers associated with NOTCH1 mutations.
Collapse
Affiliation(s)
- Giovanni Roti
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Arbabian A, Brouland JP, Apáti Á, Pászty K, Hegedűs L, Enyedi Á, Chomienne C, Papp B. Modulation of endoplasmic reticulum calcium pump expression during lung cancer cell differentiation. FEBS J 2012; 280:5408-18. [PMID: 23157274 DOI: 10.1111/febs.12064] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Revised: 10/23/2012] [Accepted: 11/07/2012] [Indexed: 12/14/2022]
Abstract
Cellular calcium signaling plays important roles in several signal transduction pathways that control proliferation, differentiation and apoptosis. In epithelial cells calcium signaling is initiated mainly by calcium release from endoplasmic-reticulum-associated intracellular calcium pools. Because calcium is accumulated in the endoplasmic reticulum by sarco/endoplasmic reticulum calcium ATPases (SERCA), these enzymes play a critical role in the control of calcium-dependent cell activation, growth and survival. We investigated the modulation of SERCA expression and function in human lung adenocarcinoma cells. In addition to the ubiquitous SERCA2 enzyme, the SERCA3 isoform was also expressed at variable levels. SERCA3 expression was selectively enhanced during cell differentiation in lung cancer cells, and marked SERCA3 expression was found in fully differentiated normal bronchial epithelium. As studied by using a recombinant fluorescent calcium probe, induction of the expression of SERCA3, a lower calcium affinity pump, was associated with decreased intracellular calcium storage, whereas the amplitude of capacitative calcium influx remained unchanged. Our observations indicate that the calcium homeostasis of the endoplasmic reticulum in lung adenocarcinoma cells presents a functional defect due to decreased SERCA3 expression that is corrected during pharmacologically induced differentiation. The data presented in this work show, for the first time, that endoplasmic reticulum calcium storage is anomalous in lung cancer cells, and suggest that SERCA3 may serve as a useful new phenotypic marker for the study of lung epithelial differentiation.
Collapse
Affiliation(s)
- Atousa Arbabian
- Institut National de la Santé et de la Recherche Médicale, UMR-S 940, Paris, France; Institut Universitaire d'Hématologie, Université Paris Diderot, PRES Sorbonne Paris-Cité, France
| | | | | | | | | | | | | | | |
Collapse
|
35
|
A transposon-based analysis of gene mutations related to skin cancer development. J Invest Dermatol 2012; 133:239-48. [PMID: 22832494 DOI: 10.1038/jid.2012.245] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Nonmelanoma skin cancer (NMSC) is by far the most frequent type of cancer in humans. NMSC includes several types of malignancies with different clinical outcomes, the most frequent being basal and squamous cell carcinomas. We have used the Sleeping Beauty transposon/transposase system to identify somatic mutations associated with NMSC. Transgenic mice bearing multiple copies of a mutagenic Sleeping Beauty transposon T2Onc2 and expressing the SB11 transposase under the transcriptional control of regulatory elements from the keratin K5 promoter were treated with TPA, either in wild-type or Ha-ras mutated backgrounds. After several weeks of treatment, mice with transposition developed more malignant tumors with decreased latency compared with control mice. Transposon/transposase animals also developed basal cell carcinomas. Genetic analysis of the transposon integration sites in the tumors identified several genes recurrently mutated in different tumor samples, which may represent novel candidate cancer genes. We observed alterations in the expression levels of some of these genes in human tumors. Our results show that inactivating mutations in Notch1 and Nsd1, among others, may have an important role in skin carcinogenesis.
Collapse
|
36
|
Monteith GR, Davis FM, Roberts-Thomson SJ. Calcium channels and pumps in cancer: changes and consequences. J Biol Chem 2012; 287:31666-73. [PMID: 22822055 DOI: 10.1074/jbc.r112.343061] [Citation(s) in RCA: 299] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Increases in intracellular free Ca(2+) play a major role in many cellular processes. The deregulation of Ca(2+) signaling is a feature of a variety of diseases, and modulators of Ca(2+) signaling are used to treat conditions as diverse as hypertension to pain. The Ca(2+) signal also plays a role in processes important in cancer, such as proliferation and migration. Many studies in cancer have identified alterations in the expression of proteins involved in the movement of Ca(2+) across the plasma membrane and subcellular organelles. In some cases, these Ca(2+) channels or pumps are potential therapeutic targets for specific cancer subtypes or correlate with prognosis.
Collapse
Affiliation(s)
- Gregory R Monteith
- School of Pharmacy, The University of Queensland, Brisbane 4075, Australia.
| | | | | |
Collapse
|
37
|
Wang Y, Bruce AT, Tu C, Ma K, Zeng L, Zheng P, Liu Y, Liu Y. Protein aggregation of SERCA2 mutants associated with Darier disease elicits ER stress and apoptosis in keratinocytes. J Cell Sci 2011; 124:3568-80. [PMID: 22045735 DOI: 10.1242/jcs.084053] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Mutations in sarcoplasmic/endoplasmic reticulum calcium ATPase 2 (SERCA2) underlie Darier disease (DD), a dominantly inherited skin disorder characterized by loss of keratinocyte adhesion (acantholysis) and abnormal keratinization (dyskeratosis) resulting in characteristic mucocutaneous abnormalities. However, the molecular pathogenic mechanism by which these changes influence keratinocyte adhesion and viability remains unknown. We show here that SERCA2 protein is extremely sensitive to endoplasmic reticulum (ER) stress, which typically results in aggregation and insolubility of the protein. Depletion of ER calcium stores is not necessary for the aggregation but accelerates the progression. Systematic analysis of diverse mutants identical to those found in DD patients demonstrated that the ER stress initiator is the SERCA2 mutant protein itself. These SERCA2 proteins were found to be less soluble, to aggregate and to be more polyubiquitinylated. After transduction into primary human epidermal keratinocytes, mutant SERCA2 aggregates elicited ER stress, caused increased numbers of cells to round up and detach from the culture plate, and induced apoptosis. These mutant induced events were exaggerated by increased ER stress. Furthermore, knockdown SERCA2 in keratinocytes rendered the cells resistant to apoptosis induction. These features of SERCA2 and its mutants establish a mechanistic base to further elucidate the molecular pathogenesis underlying acantholysis and dyskeratosis in DD.
Collapse
Affiliation(s)
- Yin Wang
- Department of Surgery, Division of Immunotherapy, Section of General Surgery, University of Michigan Medical Center, Ann Arbor, MI 48109, USA.
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Mekahli D, Bultynck G, Parys JB, De Smedt H, Missiaen L. Endoplasmic-reticulum calcium depletion and disease. Cold Spring Harb Perspect Biol 2011; 3:a004317. [PMID: 21441595 PMCID: PMC3098671 DOI: 10.1101/cshperspect.a004317] [Citation(s) in RCA: 355] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The endoplasmic reticulum (ER) as an intracellular Ca(2+) store not only sets up cytosolic Ca(2+) signals, but, among other functions, also assembles and folds newly synthesized proteins. Alterations in ER homeostasis, including severe Ca(2+) depletion, are an upstream event in the pathophysiology of many diseases. On the one hand, insufficient release of activator Ca(2+) may no longer sustain essential cell functions. On the other hand, loss of luminal Ca(2+) causes ER stress and activates an unfolded protein response, which, depending on the duration and severity of the stress, can reestablish normal ER function or lead to cell death. We will review these various diseases by mainly focusing on the mechanisms that cause ER Ca(2+) depletion.
Collapse
Affiliation(s)
- Djalila Mekahli
- Laboratory of Molecular and Cellular Signaling, Department of Molecular Cell Biology, KU Leuven Campus Gasthuisberg O&N I, Belgium
| | | | | | | | | |
Collapse
|
39
|
Vandecaetsbeek I, Vangheluwe P, Raeymaekers L, Wuytack F, Vanoevelen J. The Ca2+ pumps of the endoplasmic reticulum and Golgi apparatus. Cold Spring Harb Perspect Biol 2011; 3:cshperspect.a004184. [PMID: 21441596 DOI: 10.1101/cshperspect.a004184] [Citation(s) in RCA: 153] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The various splice variants of the three SERCA- and the two SPCA-pump genes in higher vertebrates encode P-type ATPases of the P(2A) group found respectively in the membranes of the endoplasmic reticulum and the secretory pathway. Of these, SERCA2b and SPCA1a represent the housekeeping isoforms. The SERCA2b form is characterized by a luminal carboxy terminus imposing a higher affinity for cytosolic Ca(2+) compared to the other SERCAs. This is mediated by intramembrane and luminal interactions of this extension with the pump. Other known affinity modulators like phospholamban and sarcolipin decrease the affinity for Ca(2+). The number of proteins reported to interact with SERCA is rapidly growing. Here, we limit the discussion to those for which the interaction site with the ATPase is specified: HAX-1, calumenin, histidine-rich Ca(2+)-binding protein, and indirectly calreticulin, calnexin, and ERp57. The role of the phylogenetically older and structurally simpler SPCAs as transporters of Ca(2+), but also of Mn(2+), is also addressed.
Collapse
Affiliation(s)
- Ilse Vandecaetsbeek
- Laboratory of Ca-transport ATPases, Department of Molecular Cell Biology, K.U. Leuven, Leuven, Belgium
| | | | | | | | | |
Collapse
|
40
|
Arbabian A, Brouland JP, Gélébart P, Kovàcs T, Bobe R, Enouf J, Papp B. Endoplasmic reticulum calcium pumps and cancer. Biofactors 2011; 37:139-49. [PMID: 21674635 DOI: 10.1002/biof.142] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2010] [Accepted: 12/15/2010] [Indexed: 12/11/2022]
Abstract
Endoplasmic reticulum calcium homeostasis is involved in a multitude of signaling, as well as "house-keeping" functions that control cell growth, differentiation or apoptosis in every human/eukaryotic cell. Calcium is actively accumulated in the endoplasmic reticulum by Sarco/Endoplasmic Reticulum Calcium transport ATPases (SERCA enzymes). SERCA-dependent calcium transport is the only calcium uptake mechanism in this organelle, and therefore the regulation of SERCA function by the cell constitutes a key mechanism to adjust calcium homeostasis in the endoplasmic reticulum depending on the cell type and its state of differentiation. The direct pharmacological modulation of SERCA activity affects cell differentiation and survival. SERCA expression levels can undergo significant changes during cell differentiation or tumorigenesis, leading to modified endoplasmic reticulum calcium storage. In several cell types such as cells of hematopoietic origin or various epithelial cells, two SERCA genes (SERCA2 and SERCA3) are simultaneously expressed. Expression levels of SERCA3, a lower calcium affinity calcium pump are highly variable. In several cell systems SERCA3 expression is selectively induced during differentiation, whereas during tumorigenesis and blastic transformation SERCA3 expression is decreased. These observations point at the existence of a cross-talk, via the regulation of SERCA3 levels, between endoplasmic reticulum calcium homeostasis and the control of cell differentiation, and show that endoplasmic reticulum calcium homeostasis itself can undergo remodeling during differentiation. The investigation of the anomalies of endoplasmic reticulum differentiation in tumor and leukemia cells may be useful for a better understanding of the contribution of calcium signaling to the establishment of malignant phenotypes.
Collapse
Affiliation(s)
- Atousa Arbabian
- Institut National de la Santé et de la Recherche Médicale, Inserm UMR-S, Institut Universitaire d'Hématologie, Université Paris Diderot-Paris, France
| | | | | | | | | | | | | |
Collapse
|
41
|
Curry MC, Roberts-Thomson SJ, Monteith GR. Plasma membrane calcium ATPases and cancer. Biofactors 2011; 37:132-8. [PMID: 21674637 DOI: 10.1002/biof.146] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2010] [Accepted: 12/15/2010] [Indexed: 01/12/2023]
Abstract
The plasma membrane calcium ATPases (PMCAs) are vital regulators of basal Ca(2+) and shape the nature of intracellular free Ca(2+) transients after cellular stimuli and are thus regulators of a plethora of cellular processes. Studies spanning many years have identified that at least some cancers are associated with a remodeling of PMCA isoform expression. This alteration in Ca(2+) efflux capacity may have a variety of consequences including reduced sensitivity to apoptosis and increases in the responsiveness of cancer cells to proliferative stimuli. In this review we provide an overview of studies focused on PMCAs in the context of cancer. We discuss how the remodeling of PMCA expression could provide a survival and/or growth advantage to cancer cells, as well as the potential of pharmacological agents that target specific PMCA isoforms to be novel therapies for the treatment of cancer.
Collapse
Affiliation(s)
- Merril C Curry
- The University of Queensland, School of Pharmacy, Brisbane, QLD, Australia
| | | | | |
Collapse
|
42
|
Shull GE, Miller ML, Prasad V. Secretory pathway stress responses as possible mechanisms of disease involving Golgi Ca2+ pump dysfunction. Biofactors 2011; 37:150-8. [PMID: 21674634 PMCID: PMC3338190 DOI: 10.1002/biof.141] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2010] [Accepted: 12/15/2010] [Indexed: 01/15/2023]
Abstract
In mammalian tissues, uptake of Ca(2+) and Mn(2+) by Golgi membranes is mediated by the secretory pathway Ca(2+) -ATPases, SPCA1 and SPCA2, encoded by the ATP2C1 and ATP2C2 genes. Loss of one copy of the ATP2C1 gene, which causes SPCA1 haploinsufficiency, leads to squamous cell tumors of keratinized epithelia in mice and to Hailey-Hailey disease, an acantholytic skin disease, in humans. Although the disease phenotypes resulting from SPCA1 haploinsufficiency in mice and humans are quite different, each species-specific phenotype is remarkably similar to those arising as a result of null mutations in one copy of the ATP2A2 gene, encoding SERCA2, the endoplasmic reticulum (ER) Ca(2+) pump. SERCA2 haploinsufficiency, like SPCA1 haploinsufficiency, causes squamous cell tumors in mice and Darier's disease, also an acantholytic skin disease, in humans. The phenotypic similarities between SPCA1 and SERCA2 haploinsufficiency in the two species, and the general functions of the two pumps in consecutive compartments of the secretory pathway, suggest that the underlying disease mechanisms are similar. In this review, we discuss evidence supporting the view that chronic Golgi stress and/or ER stress resulting from Ca(2+) pump haploinsufficiencies leads to activation of cellular stress responses in keratinocytes, with the predominance of proapoptotic pathways (although not necessarily apoptosis itself) leading to acantholytic skin disease in humans and the predominance of prosurvival pathways leading to tumors in mice.
Collapse
Affiliation(s)
- Gary E Shull
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati, College of Medicine, OH, USA.
| | | | | |
Collapse
|
43
|
Savignac M, Edir A, Simon M, Hovnanian A. Darier disease : a disease model of impaired calcium homeostasis in the skin. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2010; 1813:1111-7. [PMID: 21167218 DOI: 10.1016/j.bbamcr.2010.12.006] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2010] [Revised: 12/03/2010] [Accepted: 12/04/2010] [Indexed: 12/29/2022]
Abstract
The importance of extracellular calcium in epidermal differentiation and intra-epidermal cohesion has been recognized for many years. Darier disease (DD) was the first genetic skin disease caused by abnormal epidermal calcium homeostasis to be identified. DD is characterized by loss of cell-to-cell adhesion and abnormal keratinization. DD is caused by genetic defects in ATP2A2 encoding the sarco/endoplasmic reticulum Ca(2+)-ATPase isoform 2 (SERCA2). SERCA2 is a calcium pump of the endoplasmic reticulum (ER) transporting Ca(2+) from the cytosol to the lumen of ER. ATP2A2 mutations lead to loss of Ca(2+) transport by SERCA2 resulting in decreased ER Ca(2+) concentration in Darier keratinocytes. Here, we review the role of SERCA2 pumps and calcium in normal epidermis, and we discuss the consequences of ATP2A2 mutations on Ca(2+) signaling in DD. This article is part of a Special Issue entitled: 11th European Symposium on Calcium.
Collapse
|
44
|
Markers of squamous cell carcinoma in sarco/endoplasmic reticulum Ca2+ ATPase 2 heterozygote mice keratinocytes. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2010; 103:81-7. [DOI: 10.1016/j.pbiomolbio.2009.10.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2009] [Accepted: 10/12/2009] [Indexed: 01/12/2023]
|
45
|
Matsui K, Makino T, Nakano H, Furuichi M, Sawamura D, Shimizu T. Squamous cell carcinoma arising from Darier's disease. Clin Exp Dermatol 2010; 34:e1015-6. [PMID: 20055824 DOI: 10.1111/j.1365-2230.2009.03682.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
46
|
Simmen T, Lynes EM, Gesson K, Thomas G. Oxidative protein folding in the endoplasmic reticulum: tight links to the mitochondria-associated membrane (MAM). BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2010; 1798:1465-73. [PMID: 20430008 DOI: 10.1016/j.bbamem.2010.04.009] [Citation(s) in RCA: 178] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2010] [Revised: 04/15/2010] [Accepted: 04/16/2010] [Indexed: 12/18/2022]
Abstract
The production of secretory proteins at the ER (endoplasmic reticulum) depends on a ready supply of energy and metabolites as well as the close monitoring of the chemical conditions that favor oxidative protein folding. ER oxidoreductases and chaperones fold nascent proteins into their export-competent three-dimensional structure. Interference with these protein folding enzymes leads to the accumulation of unfolded proteins within the ER lumen, causing an acute organellar stress that triggers the UPR (unfolded protein response). The UPR increases the transcription of ER chaperones commensurate with the load of newly synthesized proteins and can protect the cell from ER stress. Persistant stress, however, can force the UPR to commit cells to undergo apoptotic cell death, which requires the emptying of ER calcium stores. Conversely, a continuous ebb and flow of calcium occurs between the ER and mitochondria during resting conditions on a domain of the ER that forms close contacts with mitochondria, the MAM (mitochondria-associated membrane). On the MAM, ER folding chaperones such as calnexin and calreticulin and oxidoreductases such as ERp44, ERp57 and Ero1alpha regulate calcium flux from the ER through reversible, calcium and redox-dependent interactions with IP3Rs (inositol 1,4,5-trisphophate receptors) and with SERCAs (sarcoplasmic/endoplasmic reticulum calcium ATPases). During apoptosis progression and depending on the identity of the ER chaperone and oxidoreductase, these interactions increase or decrease, suggesting that the extent of MAM targeting of ER chaperones and oxidoreductases could shift the readout of ER-mitochondria calcium exchange from housekeeping to apoptotic. However, little is known about the cytosolic factors that mediate the on/off interactions between ER chaperones and oxidoreductases with ER calcium channels and pumps. One candidate regulator is the multi-functional molecule PACS-2 (phosphofurin acidic cluster sorting protein-2). Recent studies suggest that PACS-2 mediates localization of a mobile pool of calnexin to the MAM in addition to regulating homeostatic ER calcium signaling as well as MAM integrity. Together, these findings suggest that cytosolic, membrane and lumenal proteins combine to form a two-way switch that determines the rate of protein secretion by providing ions and metabolites and that appears to participate in the pro-apoptotic ER-mitochondria calcium transfer.
Collapse
Affiliation(s)
- Thomas Simmen
- Faculty of Medicine and Dentistry, School of Molecular and Systems Medicine, Department of Cell Biology, University of Alberta, Edmonton, Alberta, Canada.
| | | | | | | |
Collapse
|
47
|
Vandecaetsbeek I, Raeymaekers L, Wuytack F, Vangheluwe P. Factors controlling the activity of the SERCA2a pump in the normal and failing heart. Biofactors 2009; 35:484-99. [PMID: 19904717 DOI: 10.1002/biof.63] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Heart failure is the leading cause of death in western countries and is often associated with impaired Ca(2+) handling in the cardiomyocyte. In fact, cardiomyocyte relaxation and contraction are tightly controlled by the activity of the cardiac sarco(endo)plasmic reticulum (ER/SR) Ca(2+) pump SERCA2a, pumping Ca(2+) from the cytosol into the lumen of the ER/SR. This review addresses three important facets that control the SERCA2 activity in the heart. First, we focus on the alternative splicing of the SERCA2 messenger, which is strictly regulated in the developing heart. This splicing controls the formation of three SERCA2 splice variants with different enzymatic properties. Second, we will discuss the role and regulation of SERCA2a activity in the normal and failing heart. The two well-studied Ca(2+) affinity modulators phospholamban and sarcolipin control the activity of SERCA2a within a narrow window. An aberrantly high or low Ca(2+) affinity is often observed in and may even trigger cardiac failure. Correcting SERCA2a activity might therefore constitute a therapeutic approach to improve the contractility of the failing heart. Finally, we address the controversies and unanswered questions of other putative regulators of the cardiac Ca(2+) pump, such as sarcalumenin, HRC, S100A1, Bcl-2, HAX-1, calreticulin, calnexin, ERp57, IRS-1, and -2.
Collapse
Affiliation(s)
- Ilse Vandecaetsbeek
- Department of Molecular Cell Biology, Laboratory of Ca(2+)-transport ATPases, K.U.Leuven, Leuven, Belgium
| | | | | | | |
Collapse
|
48
|
Abstract
Ca2+-ATPases (pumps) are key actors in the regulation of Ca2+ in eukaryotic cells and are thus essential to the correct functioning of the cell machinery. They have high affinity for Ca2+ and can efficiently regulate it down to very low concentration levels. Two of the pumps have been known for decades (the SERCA and PMCA pumps); one (the SPCA pump) has only become known recently. Each pump is the product of a multigene family, the number of isoforms being further increased by alternative splicing of the primary transcripts. The three pumps share the basic features of the catalytic mechanism but differ in a number of properties related to tissue distribution, regulation, and role in the cellular homeostasis of Ca2+. The molecular understanding of the function of the pumps has received great impetus from the solution of the three-dimensional structure of one of them, the SERCA pump. These spectacular advances in the structure and molecular mechanism of the pumps have been accompanied by the emergence and rapid expansion of the topic of pump malfunction, which has paralleled the rapid expansion of knowledge in the topic of Ca2+-signaling dysfunction. Most of the pump defects described so far are genetic: when they are very severe, they produce gross and global disturbances of Ca2+ homeostasis that are incompatible with cell life. However, pump defects may also be of a type that produce subtler, often tissue-specific disturbances that affect individual components of the Ca2+-controlling and/or processing machinery. They do not bring cells to immediate death but seriously compromise their normal functioning.
Collapse
|
49
|
Vangheluwe P, Sepúlveda MR, Missiaen L, Raeymaekers L, Wuytack F, Vanoevelen J. Intracellular Ca2+- and Mn2+-Transport ATPases. Chem Rev 2009; 109:4733-59. [DOI: 10.1021/cr900013m] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Peter Vangheluwe
- Laboratory of Ca2+-transport ATPases and Laboratory of Molecular and Cellular Signaling, Department of Molecular Cell Biology, Katholieke Universiteit Leuven, Leuven, Belgium
| | - M. Rosario Sepúlveda
- Laboratory of Ca2+-transport ATPases and Laboratory of Molecular and Cellular Signaling, Department of Molecular Cell Biology, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Ludwig Missiaen
- Laboratory of Ca2+-transport ATPases and Laboratory of Molecular and Cellular Signaling, Department of Molecular Cell Biology, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Luc Raeymaekers
- Laboratory of Ca2+-transport ATPases and Laboratory of Molecular and Cellular Signaling, Department of Molecular Cell Biology, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Frank Wuytack
- Laboratory of Ca2+-transport ATPases and Laboratory of Molecular and Cellular Signaling, Department of Molecular Cell Biology, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Jo Vanoevelen
- Laboratory of Ca2+-transport ATPases and Laboratory of Molecular and Cellular Signaling, Department of Molecular Cell Biology, Katholieke Universiteit Leuven, Leuven, Belgium
| |
Collapse
|
50
|
Korosec B, Glavac D, Volavsek M, Ravnik-Glavac M. ATP2A3 gene is involved in cancer susceptibility. ACTA ACUST UNITED AC 2009; 188:88-94. [PMID: 19100511 DOI: 10.1016/j.cancergencyto.2008.10.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2008] [Accepted: 10/09/2008] [Indexed: 11/30/2022]
Abstract
The sarco/endoplasmatic reticulum calcium-ATPase (SERCA) translocates Ca(2+) from cytosol to the lumen of the ER and thus regulates Ca(2+) homeostasis, perturbations of which have been suggested to contribute to cancer. We have previously detected an increased number of alterations in the ATP2A2 gene in various cancer types and in the ATP2A3 gene in head and neck squamous cell carcinoma. Here, we further analyzed the ATP2A3 gene in colon, lung, and CNS cancers. We identified a statistically significant increase of alterations in each (colon cancer, p=0.0052, lung cancer, p=0.0026, CNS tumors, p=0.0045) cancer type, and all 3 types together (p=0.0016). Epigenetic study of the ATP2A3 gene indicated an unchanged methylation status, whereas expression of the ATP2A3 gene was normal for exon 14 mutations and reduced in connection with a nucleotide change in intron VI in all studied cancer types. Identification of a significant number of alterations in cancer patients suggests that ATP2A3 is involved in increased cancer susceptibility in humans. The mostly normal expression and methylation status of the ATP2A3 gene, as well as the absence of somatic alterations, further suggest that the ATP2A3 gene may not act as a classical tumor suppressor gene, but rather haplo-insufficiency of this gene may be enough to change the cell and tissue environment in such a way to predispose to cancer development.
Collapse
Affiliation(s)
- Branka Korosec
- Department of Molecular Genetics, Institute of Pathology, Faculty of Medicine, University of Ljubljana, Korytkova 2, 1000 Ljubljana, Slovenia
| | | | | | | |
Collapse
|