1
|
King EM, Panfil AR. Dynamic Roles of RNA and RNA Epigenetics in HTLV-1 Biology. Viruses 2025; 17:124. [PMID: 39861913 PMCID: PMC11769288 DOI: 10.3390/v17010124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/07/2025] [Accepted: 01/14/2025] [Indexed: 01/27/2025] Open
Abstract
Since the discovery of RNA in the early 1900s, scientific understanding of RNA form and function has evolved beyond protein coding. Viruses, particularly retroviruses like human T-cell leukemia virus type 1 (HTLV-1), rely heavily on RNA and RNA post-transcriptional modifications to regulate the viral lifecycle, pathogenesis, and evasion of host immune responses. With the emergence of new sequencing technologies in the last decade, our ability to dissect the intricacies of RNA has flourished. The ability to study RNA epigenetic modifications and splice variants has become more feasible with the recent development of third-generation sequencing technologies, such as Oxford nanopore sequencing. This review will highlight the dynamic roles of known RNA and post-transcriptional RNA epigenetic modifications within HTLV-1 biology, including viral hbz, long noncoding RNAs, microRNAs (miRNAs), transfer RNAs (tRNAs), R-loops, N6-methyladenosine (m6A) modifications, and RNA-based therapeutics and vaccines.
Collapse
Affiliation(s)
- Emily M. King
- Center for Retrovirus Research, Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA
| | - Amanda R. Panfil
- Center for Retrovirus Research, Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA
- Center for RNA Biology, Comprehensive Cancer Center, Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
2
|
Ajoolabady A, Pratico D, Lin L, Mantzoros CS, Bahijri S, Tuomilehto J, Ren J. Inflammation in atherosclerosis: pathophysiology and mechanisms. Cell Death Dis 2024; 15:817. [PMID: 39528464 PMCID: PMC11555284 DOI: 10.1038/s41419-024-07166-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 08/26/2024] [Accepted: 10/17/2024] [Indexed: 11/16/2024]
Abstract
Atherosclerosis imposes a heavy burden on cardiovascular health due to its indispensable role in the pathogenesis of cardiovascular disease (CVD) such as coronary artery disease and heart failure. Ample clinical and experimental evidence has corroborated the vital role of inflammation in the pathophysiology of atherosclerosis. Hence, the demand for preclinical research into atherosclerotic inflammation is on the horizon. Indeed, the acquisition of an in-depth knowledge of the molecular and cellular mechanisms of inflammation in atherosclerosis should allow us to identify novel therapeutic targets with translational merits. In this review, we aimed to critically discuss and speculate on the recently identified molecular and cellular mechanisms of inflammation in atherosclerosis. Moreover, we delineated various signaling cascades and proinflammatory responses in macrophages and other leukocytes that promote plaque inflammation and atherosclerosis. In the end, we highlighted potential therapeutic targets, the pros and cons of current interventions, as well as anti-inflammatory and atheroprotective mechanisms.
Collapse
Affiliation(s)
- Amir Ajoolabady
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Domenico Pratico
- Alzheimer's Center at Temple, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| | - Ling Lin
- Shanghai Institute of Cardiovascular Diseases, Department of Cardiology, Zhongshan Hospital Fudan University, Shanghai, 200032, China
- National Clinical Research Center for Interventional Medicine, Shanghai, 200032, China
| | | | - Suhad Bahijri
- Diabetes Research Group, King Abdulaziz University, Jeddah, Saudi Arabia.
| | - Jaakko Tuomilehto
- Diabetes Research Group, King Abdulaziz University, Jeddah, Saudi Arabia.
- Department of Public Health, University of Helsinki, Helsinki, Finland.
- Health Promotion Unit, Finnish Institute for Health and Welfare, Helsinki, Finland.
| | - Jun Ren
- Shanghai Institute of Cardiovascular Diseases, Department of Cardiology, Zhongshan Hospital Fudan University, Shanghai, 200032, China.
- National Clinical Research Center for Interventional Medicine, Shanghai, 200032, China.
| |
Collapse
|
3
|
Marino-Merlo F, Grelli S, Mastino A, Lai M, Ferrari P, Nicolini A, Pistello M, Macchi B. Human T-Cell Leukemia Virus Type 1 Oncogenesis between Active Expression and Latency: A Possible Source for the Development of Therapeutic Targets. Int J Mol Sci 2023; 24:14807. [PMID: 37834255 PMCID: PMC10572738 DOI: 10.3390/ijms241914807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 09/16/2023] [Accepted: 09/28/2023] [Indexed: 10/15/2023] Open
Abstract
The human T-cell leukemia virus type 1 (HTLV-1) is the only known human oncogenic retrovirus. HTLV-1 can cause a type of cancer called adult T-cell leukemia/lymphoma (ATL). The virus is transmitted through the body fluids of infected individuals, primarily breast milk, blood, and semen. At least 5-10 million people in the world are infected with HTLV-1. In addition to ATL, HTLV-1 infection can also cause HTLV-I-associated myelopathy (HAM/TSP). ATL is characterized by a low viral expression and poor prognosis. The oncogenic mechanism triggered by HTLV-1 is extremely complex and the molecular pathways are not fully understood. However, viral regulatory proteins Tax and HTLV-1 bZIP factor (HBZ) have been shown to play key roles in the transformation of HTLV-1-infected T cells. Moreover, several studies have shown that the final fate of HTLV-1-infected transformed Tcell clones is the result of a complex interplay of HTLV-1 oncogenic protein expression with cellular transcription factors that subvert the cell cycle and disrupt regulated cell death, thereby exerting their transforming effects. This review provides updated information on the mechanisms underlying the transforming action of HTLV-1 and highlights potential therapeutic targets to combat ATL.
Collapse
Affiliation(s)
- Francesca Marino-Merlo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy;
| | - Sandro Grelli
- Department of Experimental Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy;
| | - Antonio Mastino
- The Institute of Translational Pharmacology, CNR, 00133 Rome, Italy;
| | - Michele Lai
- Retrovirus Center and Virology Section, Department of Translational Research, University of Pisa, 56100 Pisa, Italy; (M.L.); (M.P.)
| | - Paola Ferrari
- Unit of Oncology, Department of Medical and Oncological Area, Azienda Ospedaliera—Universitaria Pisana, 56125 Pisa, Italy;
| | - Andrea Nicolini
- Department of Oncology, Transplantations and New Technologies in Medicine, University of Pisa, 56126 Pisa, Italy
| | - Mauro Pistello
- Retrovirus Center and Virology Section, Department of Translational Research, University of Pisa, 56100 Pisa, Italy; (M.L.); (M.P.)
| | - Beatrice Macchi
- Department of Chemical Science and Technology, University of Rome “Tor Vergata”, 00133 Rome, Italy;
| |
Collapse
|
4
|
Smith S, Seth J, Midkiff A, Stahl R, Syu YC, Shkriabai N, Kvaratskhelia M, Musier-Forsyth K, Jain P, Green PL, Panfil AR. The Pleiotropic Effects of YBX1 on HTLV-1 Transcription. Int J Mol Sci 2023; 24:13119. [PMID: 37685922 PMCID: PMC10487795 DOI: 10.3390/ijms241713119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/18/2023] [Accepted: 08/21/2023] [Indexed: 09/10/2023] Open
Abstract
HTLV-1 is an oncogenic human retrovirus and the etiologic agent of the highly aggressive ATL malignancy. Two viral genes, Tax and Hbz, are individually linked to oncogenic transformation and play an important role in the pathogenic process. Consequently, regulation of HTLV-1 gene expression is a central feature in the viral lifecycle and directly contributes to its pathogenic potential. Herein, we identified the cellular transcription factor YBX1 as a binding partner for HBZ. We found YBX1 activated transcription and enhanced Tax-mediated transcription from the viral 5' LTR promoter. Interestingly, YBX1 also interacted with Tax. shRNA-mediated loss of YBX1 decreased transcript and protein abundance of both Tax and HBZ in HTLV-1-transformed T-cell lines, as well as Tax association with the 5' LTR. Conversely, YBX1 transcriptional activation of the 5' LTR promoter was increased in the absence of HBZ. YBX1 was found to be associated with both the 5' and 3' LTRs in HTLV-1-transformed and ATL-derived T-cell lines. Together, these data suggest that YBX1 positively influences transcription from both the 5' and 3' promoter elements. YBX1 is able to interact with Tax and help recruit Tax to the 5' LTR. However, through interactions with HBZ, YBX1 transcriptional activation of the 5' LTR is repressed.
Collapse
Affiliation(s)
- Susan Smith
- Center for Retrovirus Research, Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA; (S.S.); (J.S.); (A.M.)
| | - Jaideep Seth
- Center for Retrovirus Research, Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA; (S.S.); (J.S.); (A.M.)
| | - Amanda Midkiff
- Center for Retrovirus Research, Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA; (S.S.); (J.S.); (A.M.)
| | - Rachel Stahl
- Center for Retrovirus Research, Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA; (S.S.); (J.S.); (A.M.)
| | - Yu-Ci Syu
- Center for Retrovirus Research, Department of Chemistry and Biochemistry, Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA; (Y.-C.S.); (K.M.-F.)
| | - Nikoloz Shkriabai
- Division of Infectious Diseases, Anschutz Medical Campus, University of Colorado School of Medicine, Aurora, CO 80045, USA; (N.S.); (M.K.)
| | - Mamuka Kvaratskhelia
- Division of Infectious Diseases, Anschutz Medical Campus, University of Colorado School of Medicine, Aurora, CO 80045, USA; (N.S.); (M.K.)
| | - Karin Musier-Forsyth
- Center for Retrovirus Research, Department of Chemistry and Biochemistry, Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA; (Y.-C.S.); (K.M.-F.)
| | - Pooja Jain
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19129, USA;
| | - Patrick L. Green
- Center for Retrovirus Research, Comprehensive Cancer Center and Solove Research Institute, Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA;
| | - Amanda R. Panfil
- Center for Retrovirus Research, Comprehensive Cancer Center and Solove Research Institute, Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA;
| |
Collapse
|
5
|
Nainu F, Ophinni Y, Shiratsuchi A, Nakanishi Y. Apoptosis and Phagocytosis as Antiviral Mechanisms. Subcell Biochem 2023; 106:77-112. [PMID: 38159224 DOI: 10.1007/978-3-031-40086-5_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Viruses are infectious entities that make use of the replication machinery of their hosts to produce more progenies, causing disease and sometimes death. To counter viral infection, metazoan hosts are equipped with various defense mechanisms, from the rapid-evoking innate immune responses to the most advanced adaptive immune responses. Previous research demonstrated that cells in fruit flies and mice infected with Drosophila C virus and influenza, respectively, undergo apoptosis, which triggers the engulfment of apoptotic virus-infected cells by phagocytes. This process involves the recognition of eat-me signals on the surface of virus-infected cells by receptors of specialized phagocytes, such as macrophages and neutrophils in mice and hemocytes in fruit flies, to facilitate the phagocytic elimination of virus-infected cells. Inhibition of phagocytosis led to severe pathologies and death in both species, indicating that apoptosis-dependent phagocytosis of virus-infected cells is a conserved antiviral mechanism in multicellular organisms. Indeed, our understanding of the mechanisms underlying apoptosis-dependent phagocytosis of virus-infected cells has shed a new perspective on how hosts defend themselves against viral infection. This chapter explores the mechanisms of this process and its potential for developing new treatments for viral diseases.
Collapse
Affiliation(s)
- Firzan Nainu
- Department of Pharmacy, Faculty of Pharmacy, Hasanuddin University, Makassar, Indonesia.
| | - Youdiil Ophinni
- Division of Clinical Virology, Center for Infectious Diseases, Kobe University Graduate School of Medicine, Kobe, Japan
- Laboratory of Host Defense, Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Akiko Shiratsuchi
- Center for Medical Education, Sapporo Medical University, Sapporo, Japan
- Division of Biological Function and Regulation, Graduate School of Medicine, Sapporo Medical University, Sapporo, Japan
| | | |
Collapse
|
6
|
Ramanayake S, Moulding DA, Tanaka Y, Singh A, Bangham CRM. Dynamics and consequences of the HTLV-1 proviral plus-strand burst. PLoS Pathog 2022; 18:e1010774. [PMID: 36441826 PMCID: PMC9731428 DOI: 10.1371/journal.ppat.1010774] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 12/08/2022] [Accepted: 11/15/2022] [Indexed: 11/30/2022] Open
Abstract
Expression of the transcriptional transactivator protein Tax, encoded on the proviral plus-strand of human T-cell leukaemia virus type 1 (HTLV-1), is crucial for the replication of the virus, but Tax-expressing cells are rarely detected in fresh blood ex vivo. The dynamics and consequences of the proviral plus-strand transcriptional burst remain insufficiently characterised. We combined time-lapse live-cell imaging, single-cell tracking and mathematical modelling to study the dynamics of Tax expression at single-cell resolution in two naturally-infected, non-malignant T-cell clones transduced with a short-lived enhanced green fluorescent protein (d2EGFP) Tax reporter system. Five different patterns of Tax expression were observed during the 30-hour observation period; the distribution of these patterns differed between the two clones. The mean duration of Tax expression in the two clones was 94 and 417 hours respectively, estimated from mathematical modelling of the experimental data. Tax expression was associated with a transient slowing in cell-cycle progression and proliferation, increased apoptosis, and enhanced activation of the DNA damage response pathways. Longer-term follow-up (14 days) revealed an increase in the proportion of proliferating cells and a decrease in the fraction of apoptotic cells as the cells ceased Tax expression, resulting in a greater net expansion of the initially Tax-positive population. Time-lapse live-cell imaging showed enhanced cell-to-cell adhesion among Tax-expressing cells, and decreased cell motility of Tax-expressing cells at the single-cell level. The results demonstrate the within-clone and between-clone heterogeneity in the dynamics and patterns of HTLV-1 plus-strand transcriptional bursts and the balance of positive and negative consequences of the burst for the host cell.
Collapse
Affiliation(s)
- Saumya Ramanayake
- Department of Infectious Diseases, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Dale A. Moulding
- Light Microscopy Core Facility, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Yuetsu Tanaka
- Department of Infectious Disease and Immunology, Okinawa-Asia Research Center of Medical Science, Faculty of Medicine, University of the Ryukyus, Nishihara, Okinawa, Japan
| | - Abhyudai Singh
- Department of Electrical and Computer Engineering, University of Delaware, Newark, Delaware, United States of America
| | - Charles R. M. Bangham
- Department of Infectious Diseases, Faculty of Medicine, Imperial College London, London, United Kingdom
- * E-mail:
| |
Collapse
|
7
|
Suksri K, Semprasert N, Limjindaporn T, Yenchitsomanus PT, Kooptiwoot S, Kooptiwut S. Cytoprotective effect of genistein against dexamethasone-induced pancreatic β-cell apoptosis. Sci Rep 2022; 12:12950. [PMID: 35902739 PMCID: PMC9334585 DOI: 10.1038/s41598-022-17372-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 07/25/2022] [Indexed: 11/10/2022] Open
Abstract
Steroid-induced diabetes is a well-known metabolic side effect of long-term use of glucocorticoid (GC). Our group recently demonstrated dexamethasone-induced pancreatic β-cell apoptosis via upregulation of TRAIL and TRAIL death receptor (DR5). Genistein protects against pancreatic β-cell apoptosis induced by toxic agents. This study aimed to investigate the cytoprotective effect of genistein against dexamethasone-induced pancreatic β-cell apoptosis in cultured rat insulinoma (INS-1) cell line and in isolated mouse islets. In the absence of genistein, dexamethasone-induced pancreatic β-cell apoptosis was associated with upregulation of TRAIL, DR5, and superoxide production, but downregulation of TRAIL decoy receptor (DcR1). Dexamethasone also activated the expression of extrinsic and intrinsic apoptotic proteins, including Bax, NF-κB, caspase-8, and caspase-3, but suppressed the expression of the anti-apoptotic Bcl-2 protein. Combination treatment with dexamethasone and genistein protected against pancreatic β-cell apoptosis, and reduced the effects of dexamethasone on the expressions of TRAIL, DR5, DcR1, superoxide production, Bax, Bcl-2, NF-κB, caspase-8, and caspase-3. Moreover, combination treatment with dexamethasone and genistein reduced the expressions of TRAIL and DR5 in isolated mouse islets. The results of this study demonstrate the cytoprotective effect of genistein against dexamethasone-induced pancreatic β-cell apoptosis in both cell line and islets via reduced TRAIL and DR5 protein expression.
Collapse
Affiliation(s)
- Kanchana Suksri
- Division of Endocrinology, Department of Physiology, Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Wanglang Road, Bangkoknoi, Bangkok, 10700, Thailand
| | - Namoiy Semprasert
- Division of Endocrinology, Department of Physiology, Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Wanglang Road, Bangkoknoi, Bangkok, 10700, Thailand
| | - Thawornchai Limjindaporn
- Department of Anatomy, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Pa-Thai Yenchitsomanus
- Division of Molecular Medicine, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Sirirat Kooptiwoot
- Department of Psychiatry, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Suwattanee Kooptiwut
- Division of Endocrinology, Department of Physiology, Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Wanglang Road, Bangkoknoi, Bangkok, 10700, Thailand.
| |
Collapse
|
8
|
Kiik H, Ramanayake S, Miura M, Tanaka Y, Melamed A, Bangham CRM. Time-course of host cell transcription during the HTLV-1 transcriptional burst. PLoS Pathog 2022; 18:e1010387. [PMID: 35576236 PMCID: PMC9135347 DOI: 10.1371/journal.ppat.1010387] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 05/26/2022] [Accepted: 04/22/2022] [Indexed: 12/30/2022] Open
Abstract
The human T-cell leukemia virus type 1 (HTLV-1) transactivator protein Tax has pleiotropic functions in the host cell affecting cell-cycle regulation, DNA damage response pathways and apoptosis. These actions of Tax have been implicated in the persistence and pathogenesis of HTLV-1-infected cells. It is now known that tax expression occurs in transcriptional bursts of the proviral plus-strand, but the effects of the burst on host transcription are not fully understood. We carried out RNA sequencing of two naturally-infected T-cell clones transduced with a Tax-responsive Timer protein, which undergoes a time-dependent shift in fluorescence emission, to study transcriptional changes during successive phases of the HTLV-1 plus-strand burst. We found that the transcriptional regulation of genes involved in the NF-κB pathway, cell-cycle regulation, DNA damage response and apoptosis inhibition were immediate effects accompanying the plus-strand burst, and are limited to the duration of the burst. The results distinguish between the immediate and delayed effects of HTLV-1 reactivation on host transcription, and between clone-specific effects and those observed in both clones. The major transcriptional changes in the infected host T-cells observed here, including NF-κB, are transient, suggesting that these pathways are not persistently activated at high levels in HTLV-1-infected cells. The two clones diverged strongly in their expression of genes regulating the cell cycle. Up-regulation of senescence markers was a delayed effect of the proviral plus-strand burst and the up-regulation of some pro-apoptotic genes outlasted the burst. We found that activation of the aryl hydrocarbon receptor (AhR) pathway enhanced and prolonged the proviral burst, but did not increase the rate of reactivation. Our results also suggest that sustained plus-strand expression is detrimental to the survival of infected cells.
Collapse
Affiliation(s)
- Helen Kiik
- Department of Infectious Diseases, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Saumya Ramanayake
- Department of Infectious Diseases, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Michi Miura
- Department of Infectious Diseases, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Yuetsu Tanaka
- Department of Infectious Disease and Immunology, Okinawa-Asia Research Center of Medical Science, Faculty of Medicine, University of the Ryukyus, Nishihara, Okinawa, Japan
| | - Anat Melamed
- Department of Infectious Diseases, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Charles R. M. Bangham
- Department of Infectious Diseases, Faculty of Medicine, Imperial College London, London, United Kingdom
| |
Collapse
|
9
|
Regulation of HTLV-1 Transformation. Biosci Rep 2022; 42:230803. [PMID: 35169839 PMCID: PMC8919135 DOI: 10.1042/bsr20211921] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/07/2022] [Accepted: 02/15/2022] [Indexed: 11/17/2022] Open
Abstract
Human T-cell leukemia virus type 1 (HTLV-1) is the only identified oncogenic human retrovirus. HTLV-1 infects approximately 5–10 million people worldwide and is the infectious cause of adult T-cell leukemia/lymphoma (ATL) and several chronic inflammatory diseases, including HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP), dermatitis, and uveitis. Unlike other oncogenic retroviruses, HTLV-1 does not capture a cellular proto-oncogene or induce proviral insertional mutagenesis. HTLV-1 is a trans-activating retrovirus and encodes accessory proteins that induce cellular transformation over an extended period of time, upwards of several years to decades. Inarguably the most important viral accessory protein involved in transformation is Tax. Tax is a multifunctional protein that regulates several different pathways and cellular processes. This single viral protein is able to modulate viral gene expression, activate NF-κB signaling pathways, deregulate the cell cycle, disrupt apoptosis, and induce genomic instability. The summation of these processes results in cellular transformation and virus-mediated oncogenesis. Interestingly, HTLV-1 also encodes a protein called Hbz from the antisense strand of the proviral genome that counters many Tax functions in the infected cell, such as Tax-mediated viral transcription and NF-κB activation. However, Hbz also promotes cellular proliferation, inhibits apoptosis, and disrupts genomic integrity. In addition to viral proteins, there are other cellular factors such as MEF-2, superoxide-generating NAPDH oxidase 5-α (Nox5α), and PDLIM2 which have been shown to be critical for HTLV-1-mediated T-cell transformation. This review will highlight the important viral and cellular factors involved in HTLV-1 transformation and the available in vitro and in vivo tools used to study this complex process.
Collapse
|
10
|
Abstract
Human T-cell leukemia virus type 1 (HTLV-1) was discovered in 1980 as the first, and to date, the only retrovirus that causes human cancer. While HTLV-1 infection is generally asymptomatic, 3-5% of infected individuals develop a T cell neoplasm known as adult T cell leukemia/lymphoma (ATL) decades after infection. Since its discovery, HTLV-1 has served as a model for understanding retroviral oncogenesis, transcriptional regulation, cellular signal transduction, and cell-associated viral infection and spread. Much of the initial research was focused on the viral trans-activator/oncoprotein, Tax. Over the past decade, the study of HTLV-1 has entered the genomic era. With the development of new systems for studying HTLV-1 infection and pathogenesis, the completion of the whole genome, exome and transcriptome sequencing analyses of ATL, and the discovery of HBZ as another HTLV-1 oncogene, many established concepts about how HTLV-1 infects, persists and causes disease have undergone substantial revision. This chapter seeks to integrate our current understanding of the mechanisms of action of Tax and HBZ with the comprehensive genomic information of ATL to provide an overview of how HTLV-1 infects, replicates and causes leukemia.
Collapse
|
11
|
Czaja AJ. Review article: opportunities to improve and expand thiopurine therapy for autoimmune hepatitis. Aliment Pharmacol Ther 2020; 51:1286-1304. [PMID: 32363674 DOI: 10.1111/apt.15743] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 03/07/2020] [Accepted: 03/31/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND Thiopurines in combination with glucocorticoids are used as first-line, second-line and maintenance therapies in autoimmune hepatitis and opportunities exist to improve and expand their use. AIMS To describe the metabolic pathways and key factors implicated in the efficacy and toxicity of the thiopurine drugs and to indicate the opportunities to improve outcomes by monitoring and manipulating metabolic pathways, individualising dosage and strengthening the response. METHODS English abstracts were identified in PubMed by multiple search terms. Full-length articles were selected for review, and secondary and tertiary bibliographies were developed. RESULTS Thiopurine methyltransferase activity and 6-tioguanine (6-thioguanine) nucleotide levels influence drug efficacy and safety, and they can be manipulated to improve treatment response and prevent myelosuppression. Methylated thiopurine metabolites are associated with hepatotoxicity, drug intolerance and nonresponse and their production can be reduced or bypassed. Universal pre-treatment assessment of thiopurine methyltransferase activity and individualisation of dosage to manipulate metabolite thresholds could improve outcomes. Early detection of thiopurine resistance by metabolite testing, accurate estimations of drug onset and strength by surrogate markers and adjunctive use of allopurinol could improve the management of refractory disease. Dose-restricted tioguanine (thioguanine) could expand treatment options by reducing methylated metabolites, increasing the bioavailability of 6-tioguanine nucleotides and ameliorating thiopurine intolerance or resistance. CONCLUSIONS The efficacy and safety of thiopurines in autoimmune hepatitis can be improved by investigational efforts that establish monitoring strategies that allow individualisation of dosage and prediction of outcome, increase bioavailability of the active metabolites and demonstrate superiority to alternative agents.
Collapse
Affiliation(s)
- Albert J Czaja
- Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| |
Collapse
|
12
|
Martinez Cuesta L, Nieto Farias MV, Lendez PA, Rowland RRR, Sheahan MA, Cheuquepán Valenzuela FA, Marin MS, Dolcini G, Ceriani MC. Effect of bovine leukemia virus on bovine mammary epithelial cells. Virus Res 2019; 271:197678. [PMID: 31381943 DOI: 10.1016/j.virusres.2019.197678] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 07/26/2019] [Accepted: 07/28/2019] [Indexed: 12/20/2022]
Abstract
Bovine leukemia virus (BLV) is a retrovirus that infects cattle and is associated with an increase in secondary infections. The objective of this study was to analyze the effect of BLV infection on cell viability, apoptosis and morphology of a bovine mammary epithelial cell line (MAC-T), as well as Toll like receptors (TLR) and cytokine mRNA expression. Our findings show that BLV infection causes late syncytium formation, a decrease in cell viability, downregulation of the anti-apoptotic gene Bcl-2, and an increase in TLR9 mRNA expression. Moreover, we analyzed how this stably infected cell line respond to the exposure to Staphylococcus aureus (S. aureus), a pathogen known to cause chronic mastitis. In the presence of S. aureus, MAC-T BLV cells had decreased viability and decreased Bcl-2 and TLR2 mRNA expression. The results suggest that mammary epithelial cells infected with BLV have altered the apoptotic and immune pathways, probably affecting their response to bacteria and favoring the development of mastitis.
Collapse
Affiliation(s)
- Lucia Martinez Cuesta
- Laboratorio de Virología, Centro de Investigación Veterinaria de Tandil (CIVETAN, CONICET-CICPBA), Facultad de Cs. Veterinarias, UNCPBA, Pinto 399, Tandil (7000) Pcia., Buenos Aires, Argentina; Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA.
| | - Maria Victoria Nieto Farias
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, C1033AAJ Buenos Aires, Argentina
| | - Pamela A Lendez
- Laboratorio de Virología, Centro de Investigación Veterinaria de Tandil (CIVETAN, CONICET-CICPBA), Facultad de Cs. Veterinarias, UNCPBA, Pinto 399, Tandil (7000) Pcia., Buenos Aires, Argentina
| | - Raymond R R Rowland
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Maureen A Sheahan
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Felipe A Cheuquepán Valenzuela
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, C1033AAJ Buenos Aires, Argentina; Área de Producción Animal, Estación Experimental Agropecuaria Balcarce, Instituto Nacional de Tecnología Agropecuaria (INTA), Ruta Nacional 226 Km 73.5 (7620), Balcarce, Buenos Aires, Argentina
| | - Maia S Marin
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, C1033AAJ Buenos Aires, Argentina; Área de Producción Animal, Estación Experimental Agropecuaria Balcarce, Instituto Nacional de Tecnología Agropecuaria (INTA), Ruta Nacional 226 Km 73.5 (7620), Balcarce, Buenos Aires, Argentina
| | - Guillermina Dolcini
- Laboratorio de Virología, Centro de Investigación Veterinaria de Tandil (CIVETAN, CONICET-CICPBA), Facultad de Cs. Veterinarias, UNCPBA, Pinto 399, Tandil (7000) Pcia., Buenos Aires, Argentina
| | - Maria Carolina Ceriani
- Laboratorio de Virología, Centro de Investigación Veterinaria de Tandil (CIVETAN, CONICET-CICPBA), Facultad de Cs. Veterinarias, UNCPBA, Pinto 399, Tandil (7000) Pcia., Buenos Aires, Argentina.
| |
Collapse
|
13
|
Shojaei S, Hashemi SM, Ghanbarian H, Salehi M, Mohammadi-Yeganeh S. Effect of mesenchymal stem cells-derived exosomes on tumor microenvironment: Tumor progression versus tumor suppression. J Cell Physiol 2018; 234:3394-3409. [PMID: 30362503 DOI: 10.1002/jcp.27326] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 08/08/2018] [Indexed: 12/19/2022]
Abstract
Mesenchymal stem cells (MSCs) are multipotent cells with the potential to differentiate into different cell types. Owing to their immunosuppressive and anti-inflammatory properties, they are widely used in regenerative medicine, but they have a dual effect on cancer progression and exert both growth-stimulatory or -inhibitory effects on different cancer types. It has been proposed that these controversial effects of MSC in tumor microenvironment (TME) are mediated by their polarization to proinflammatory or anti-inflammatory phenotype. In addition, they can polarize the immune system cells that in turn influence tumor progression. One of the mechanisms involved in the TME communications is extracellular vesicles (EVs). MSCs, as one of cell populations in TME, produce a large amount of EVs that can influence tumor development. Similar to MSC, MSC-EVs can exert both anti- or protumorigenic effects. In the current study, we will investigate the current knowledge related to MSC role in cancer progression with a focus on the MSC-EV content in limiting tumor growth, angiogenesis, and metastasis. We suppose MSC-EVs can be used as safe vehicles for delivering antitumor agents to TME.
Collapse
Affiliation(s)
- Samaneh Shojaei
- Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Mahmoud Hashemi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hossein Ghanbarian
- Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Salehi
- Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Samira Mohammadi-Yeganeh
- Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
14
|
Virus Infection and Death Receptor-Mediated Apoptosis. Viruses 2017; 9:v9110316. [PMID: 29077026 PMCID: PMC5707523 DOI: 10.3390/v9110316] [Citation(s) in RCA: 135] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 10/23/2017] [Accepted: 10/25/2017] [Indexed: 02/07/2023] Open
Abstract
Virus infection can trigger extrinsic apoptosis. Cell-surface death receptors of the tumor necrosis factor family mediate this process. They either assist persistent viral infection or elicit the elimination of infected cells by the host. Death receptor-mediated apoptosis plays an important role in viral pathogenesis and the host antiviral response. Many viruses have acquired the capability to subvert death receptor-mediated apoptosis and evade the host immune response, mainly by virally encoded gene products that suppress death receptor-mediated apoptosis. In this review, we summarize the current information on virus infection and death receptor-mediated apoptosis, particularly focusing on the viral proteins that modulate death receptor-mediated apoptosis.
Collapse
|
15
|
Karimi M, Mohammadi H, Hemmatzadeh M, Mohammadi A, Rafatpanah H, Baradaran B. Role of the HTLV-1 viral factors in the induction of apoptosis. Biomed Pharmacother 2016; 85:334-347. [PMID: 27887847 DOI: 10.1016/j.biopha.2016.11.034] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Revised: 11/07/2016] [Accepted: 11/08/2016] [Indexed: 12/22/2022] Open
Abstract
Adult T-cell leukemia (ATL) and HTLV-1-associated Myelopathy/Tropical Spastic Paraparesis (HAM/TSP) are the two main diseases that are caused by the HTLV-1 virus. One of the features of HTLV-1 infection is its resistance against programmed cell death, which maintains the survival of cells to oncogenic transformation and underlies the viruses' therapeutic resistance. Two main genes by which the virus develops cancer are Tax and HBZ; playing an essential role in angiogenesis in regulating viral transcription and modulating multiple host factors as well as apoptosis pathways. Here we have reviewed by prior research how the apoptosis pathways are suppressed by the Tax and HBZ and new drugs which have been designed to deal with this suppression.
Collapse
Affiliation(s)
- Mohammad Karimi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran; Tabriz University of Medical Sciences, International Branch (Aras), Tabriz, Iran
| | - Hamed Mohammadi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Hemmatzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Asadollah Mohammadi
- Inflammation and Inflammatory Diseases Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Houshang Rafatpanah
- Inflammation and Inflammatory Diseases Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
16
|
Giam CZ, Semmes OJ. HTLV-1 Infection and Adult T-Cell Leukemia/Lymphoma-A Tale of Two Proteins: Tax and HBZ. Viruses 2016; 8:v8060161. [PMID: 27322308 PMCID: PMC4926181 DOI: 10.3390/v8060161] [Citation(s) in RCA: 108] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 05/31/2016] [Accepted: 06/01/2016] [Indexed: 12/19/2022] Open
Abstract
HTLV-1 (Human T-cell lymphotropic virus type 1) is a complex human delta retrovirus that currently infects 10–20 million people worldwide. While HTLV-1 infection is generally asymptomatic, 3%–5% of infected individuals develop a highly malignant and intractable T-cell neoplasm known as adult T-cell leukemia/lymphoma (ATL) decades after infection. How HTLV-1 infection progresses to ATL is not well understood. Two viral regulatory proteins, Tax and HTLV-1 basic zipper protein (HBZ), encoded by the sense and antisense viral transcripts, respectively, are thought to play indispensable roles in the oncogenic process of ATL. This review focuses on the roles of Tax and HBZ in viral replication, persistence, and oncogenesis. Special emphasis is directed towards recent literature on the mechanisms of action of these two proteins and the roles of Tax and HBZ in influencing the outcomes of HTLV-1 infection including senescence induction, viral latency and persistence, genome instability, cell proliferation, and ATL development. Attempts are made to integrate results from cell-based studies of HTLV-1 infection and studies of HTLV-1 proviral integration site preference, clonality, and clonal expansion based on high throughput DNA sequencing. Recent data showing that Tax hijacks key mediators of DNA double-strand break repair signaling—the ubiquitin E3 ligase, ring finger protein 8 (RNF8) and the ubiquitin E2 conjugating enzyme (UBC13)—to activate the canonical nuclear factor kappa-light-chain-enhancer of activated B-cells (NF-κB) and other signaling pathways will be discussed. A perspective on how the Tax-RNF8 signaling axis might impact genomic instability and how Tax may collaborate with HBZ to drive oncogenesis is provided.
Collapse
Affiliation(s)
- Chou-Zen Giam
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Rd., Bethesda, MD 20814, USA.
| | - Oliver John Semmes
- Department of Microbiology and Molecular Cell Biology, The Leroy T. Canoles Jr Cancer Research Center, Eastern Virginia Medical School, Norfolk, VA 23501, USA.
| |
Collapse
|
17
|
Mizuguchi M, Sasaki Y, Hara T, Higuchi M, Tanaka Y, Funato N, Tanaka N, Fujii M, Nakamura M. Induction of Cell Death in Growing Human T-Cells and Cell Survival in Resting Cells in Response to the Human T-Cell Leukemia Virus Type 1 Tax. PLoS One 2016; 11:e0148217. [PMID: 26829041 PMCID: PMC4734616 DOI: 10.1371/journal.pone.0148217] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 01/14/2016] [Indexed: 12/21/2022] Open
Abstract
Tax1 encoded by the human T-cell leukemia virus type 1 (HTLV-1) has been believed to dysregulate the expression of cellular genes involved in cell survival and mortality, leading to the development of adult T-cell leukemia (ATL). The function of Tax1 in ATL development however is still controversial, primarily because Tax1 induces cell cycle progression and apoptosis. To systemically understand cell growth phase-dependent induction of cell survival or cell death by Tax1, we established a single experimental system using an interleukin 2 (IL-2)-dependent human T-cell line Kit 225 that can be forced into resting phase by IL-2 deprivation. Introduction of Tax1 and HTLV-2 Tax (Tax2B) decreased mitochondrial activity alongside apoptosis in growing cells but not in resting cells. Cell cycle profile analysis indicated that Tax1 and Tax2B were likely to perturb the S phase in growing cells. Studies with Tax1 mutants and siRNA for NF-κB/RelA revealed that Tax1-mediated cell growth inhibition and apoptosis in growing Kit 225 cells depend on RelA. Interestingly, inactivation of the non-canonical NF-κB and p38 MAPK pathways relieved Tax1-mediated apoptosis, suggesting that the Tax1-NF-κB-p38 MAPK axis may be associated with apoptosis in growing cells. Inflammatory mediators such as CCL3 and CCL4, which are involved in oncogene-induced senescence (OIS), were induced by Tax1 and Tax2B in growing cells. In contrast, RelA silencing in resting cells reduced mitochondrial activity, indicating that NF-κB/RelA is also critical for Tax1-mediated cell survival. These findings suggest that Tax1-mediated cell survival and death depend on the cell growth phase. Both effects of Tax1 may be implicated in the long latency of HTLV-1 infection.
Collapse
Affiliation(s)
- Mariko Mizuguchi
- Human Gene Sciences Center, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yuka Sasaki
- Human Gene Sciences Center, Tokyo Medical and Dental University, Tokyo, Japan
| | - Toshifumi Hara
- Division of Virology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Masaya Higuchi
- Division of Virology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Yuetsu Tanaka
- Department of Immunology, Graduate School and Faculty of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Noriko Funato
- Human Gene Sciences Center, Tokyo Medical and Dental University, Tokyo, Japan
| | - Nobuyuki Tanaka
- Division of Cancer Biology and Therapeutics, Miyagi Cancer Center Research Institute, Miyagi, Japan
| | - Masahiro Fujii
- Division of Virology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Masataka Nakamura
- Human Gene Sciences Center, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
18
|
Yoon N, Park MS, Peltier GC, Lee RH. Pre-activated human mesenchymal stromal cells in combination with doxorubicin synergistically enhance tumor-suppressive activity in mice. Cytotherapy 2015; 17:1332-41. [PMID: 26227206 DOI: 10.1016/j.jcyt.2015.06.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Revised: 05/11/2015] [Accepted: 06/18/2015] [Indexed: 12/17/2022]
Abstract
BACKGROUND AIMS Previously, we showed that human mesenchymal stromal cells (hMSCs) were activated to express tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) upon TNF-α stimulation, induced cell death in triple-negative breast cancer (TNBC) MDA-MB-231 cells (MDA), and RNA released from apoptotic MDA further increased TRAIL expression in hMSCs. This feed-forward stimulation increased apoptosis in MDA cells. Here, we tested whether TRAIL-expressing hMSCs, in combination with a sub-toxic-dose of a chemotherapy drug doxorubicin, would overcome TRAIL resistance and create synergistic effects on targeting metastatic TNBC. METHODS To optimize conditions for the combination treatment, we (i) selected an optimal condition to activate hMSCs for TRAIL expression, (ii) selected an optimal dose of doxorubicin treatment, (iii) examined underlying mechanisms in vitro and (iv) tested the efficacy of the optimized conditions in a xenograft mouse model of human breast cancer lung metastasis. RESULTS The results showed that DNA fragments from apoptotic MDA triggered hMSCs to increase further TRAIL expression in an absent in melanoma 2 (AIM2)-dependent manner, and thus higher TRAIL-expressing hMSCs stimulated with synthetic DNA, poly(deoxyadenylic-deoxythymidylic) acid [poly(dA:dT)], more effectively suppressed tumor progression in vivo. Furthermore, activated hMSCs increased apoptosis in MDA cells when combined with a sub-toxic dose of doxorubicin, which was mediated by up-regulating TRAIL and Fas-related pathways. When we combined the optimized conditions, pre-activated hMSCs with poly (dA:dT) synergistically reduced tumor burden even with minimal doxorubicin treatment in a xenograft mouse model of human breast cancer lung metastasis. CONCLUSIONS These results suggest that the treatment of hMSCs with a sub-toxic dose of doxorubicin can overcome TRAIL resistance and be a potential novel therapy for TNBC metastasis treatment.
Collapse
Affiliation(s)
- Nara Yoon
- Institute for Regenerative Medicine, College of Medicine, Texas A&M University Health Science Center, Temple, Texas, USA
| | - Min Sung Park
- Institute for Regenerative Medicine, College of Medicine, Texas A&M University Health Science Center, Temple, Texas, USA
| | - Grantham C Peltier
- Institute for Regenerative Medicine, College of Medicine, Texas A&M University Health Science Center, Temple, Texas, USA
| | - Ryang Hwa Lee
- Institute for Regenerative Medicine, College of Medicine, Texas A&M University Health Science Center, Temple, Texas, USA.
| |
Collapse
|
19
|
Human T-cell leukemia virus type 1 Tax-deregulated autophagy pathway and c-FLIP expression contribute to resistance against death receptor-mediated apoptosis. J Virol 2013; 88:2786-98. [PMID: 24352466 DOI: 10.1128/jvi.03025-13] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
UNLABELLED The human T-cell leukemia virus type 1 (HTLV-1) Tax protein is considered to play a central role in the process that leads to adult T-cell leukemia/lymphoma (ATL) and HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). HTLV-1 Tax-expressing cells show resistance to apoptosis induced by Fas ligand (FasL) and tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL). The regulation of Tax on the autophagy pathway in HeLa cells and peripheral T cells was recently reported, but the function and underlying molecular mechanism of the Tax-regulated autophagy are not yet well defined. Here, we report that HTLV-1 Tax deregulates the autophagy pathway, which plays a protective role during the death receptor (DR)-mediated apoptosis of human U251 astroglioma cells. The cellular FLICE-inhibitory protein (c-FLIP), which is upregulated by Tax, also contributes to the resistance against DR-mediated apoptosis. Both Tax-induced autophagy and Tax-induced c-FLIP expression require Tax-induced activation of IκB kinases (IKK). Furthermore, Tax-induced c-FLIP expression is regulated through the Tax-IKK-NF-κB signaling pathway, whereas Tax-triggered autophagy depends on the activation of IKK but not the activation of NF-κB. In addition, DR-mediated apoptosis is correlated with the degradation of Tax, which can be facilitated by the inhibitors of autophagy. IMPORTANCE Our study reveals that Tax-deregulated autophagy is a protective mechanism for DR-mediated apoptosis. The molecular mechanism of Tax-induced autophagy is also illuminated, which is different from Tax-increased c-FLIP. Tax can be degraded via manipulation of autophagy and TRAIL-induced apoptosis. These results outline a complex regulatory network between and among apoptosis, autophagy, and Tax and also present evidence that autophagy represents a new possible target for therapeutic intervention for the HTVL-1 related diseases.
Collapse
|
20
|
Azahri NSM, Kavurma MM. Transcriptional regulation of tumour necrosis factor-related apoptosis-inducing ligand. Cell Mol Life Sci 2013; 70:3617-29. [PMID: 23329170 PMCID: PMC11113472 DOI: 10.1007/s00018-013-1264-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Revised: 01/03/2013] [Accepted: 01/07/2013] [Indexed: 12/13/2022]
Abstract
Tumour necrosis factor-related apoptosis-inducing ligand (TRAIL) has dual functions mediating both apoptosis and survival of cells. This review focusses on the current regulatory factors that control TRAIL transcription. Here, we also highlight the role of distinct transcription factors that co-operate and regulate TRAIL in different pathological states. A better understanding of the molecular signalling pathways of TRAIL-induced cell death and survival in disease may lead to more sophisticated technologies for novel therapeutic targets.
Collapse
Affiliation(s)
- Nor Saadah M. Azahri
- Centre for Vascular Research, University of New South Wales, Sydney, NSW 2052 Australia
- School of Medical Sciences, University of New South Wales, Sydney, NSW 2052 Australia
- Department of Biomedical Science, Faculty of Allied Health Sciences, International Islamic University, 25200 Kuantan, Pahang Malaysia
| | - Mary M. Kavurma
- Centre for Vascular Research, University of New South Wales, Sydney, NSW 2052 Australia
| |
Collapse
|
21
|
Shirinian M, Kfoury Y, Dassouki Z, El-Hajj H, Bazarbachi A. Tax-1 and Tax-2 similarities and differences: focus on post-translational modifications and NF-κB activation. Front Microbiol 2013; 4:231. [PMID: 23966989 PMCID: PMC3744011 DOI: 10.3389/fmicb.2013.00231] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Accepted: 07/29/2013] [Indexed: 11/13/2022] Open
Abstract
Although human T cell leukemia virus type 1 and 2 (HTLV-1 and HTLV-2) share similar genetic organization, they have major differences in their pathogenesis and disease manifestation. HTLV-1 is capable of transforming T lymphocytes in infected patients resulting in adult T cell leukemia/lymphoma whereas HTLV-2 is not clearly associated with lymphoproliferative diseases. Numerous studies have provided accumulating evidence on the involvement of the viral transactivators Tax-1 versus Tax-2 in T cell transformation. Tax-1 is a potent transcriptional activator of both viral and cellular genes. Tax-1 post-translational modifications and specifically ubiquitylation and SUMOylation have been implicated in nuclear factor-kappaB (NF-κB) activation and may contribute to its transformation capacity. Although Tax-2 has similar protein structure compared to Tax-1, the two proteins display differences both in their protein–protein interaction and activation of signal transduction pathways. Recent studies on Tax-2 have suggested ubiquitylation and SUMOylation independent mechanisms of NF-κB activation. In this present review, structural and functional differences between Tax-1 and Tax-2 will be summarized. Specifically, we will address their subcellular localization, nuclear trafficking and their effect on cellular regulatory proteins. A special attention will be given to Tax-1/Tax-2 post-translational modification such as ubiquitylation, SUMOylation, phosphorylation, acetylation, NF-κB activation, and protein–protein interactions involved in oncogenecity both in vivo and in vitro.
Collapse
Affiliation(s)
- Margret Shirinian
- Department of Internal Medicine, Faculty of Medicine, American University of Beirut Beirut, Lebanon
| | | | | | | | | |
Collapse
|
22
|
Godwin P, Baird AM, Heavey S, Barr MP, O'Byrne KJ, Gately K. Targeting nuclear factor-kappa B to overcome resistance to chemotherapy. Front Oncol 2013; 3:120. [PMID: 23720710 PMCID: PMC3655421 DOI: 10.3389/fonc.2013.00120] [Citation(s) in RCA: 216] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2013] [Accepted: 04/28/2013] [Indexed: 12/29/2022] Open
Abstract
Intrinsic or acquired resistance to chemotherapeutic agents is a common phenomenon and a major challenge in the treatment of cancer patients. Chemoresistance is defined by a complex network of factors including multi-drug resistance proteins, reduced cellular uptake of the drug, enhanced DNA repair, intracellular drug inactivation, and evasion of apoptosis. Pre-clinical models have demonstrated that many chemotherapy drugs, such as platinum-based agents, antracyclines, and taxanes, promote the activation of the NF-κB pathway. NF-κB is a key transcription factor, playing a role in the development and progression of cancer and chemoresistance through the activation of a multitude of mediators including anti-apoptotic genes. Consequently, NF-κB has emerged as a promising anti-cancer target. Here, we describe the role of NF-κB in cancer and in the development of resistance, particularly cisplatin. Additionally, the potential benefits and disadvantages of targeting NF-κB signaling by pharmacological intervention will be addressed.
Collapse
Affiliation(s)
- P Godwin
- Department of Clinical Medicine, Thoracic Oncology Research Group, Trinity College Dublin, St. James's Hospital Ireland Dublin, Ireland
| | | | | | | | | | | |
Collapse
|
23
|
Preactivation of Human MSCs with TNF-α Enhances Tumor-Suppressive Activity. Cell Stem Cell 2012; 11:825-35. [DOI: 10.1016/j.stem.2012.10.001] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2011] [Revised: 07/23/2012] [Accepted: 10/04/2012] [Indexed: 12/24/2022]
|
24
|
Azahri NSM, Di Bartolo BA, Khachigian LM, Kavurma MM. Sp1, acetylated histone-3 and p300 regulate TRAIL transcription: mechanisms of PDGF-BB-mediated VSMC proliferation and migration. J Cell Biochem 2012; 113:2597-606. [PMID: 22415975 DOI: 10.1002/jcb.24135] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
We recently reported that TNF-related apoptosis-inducing ligand (TRAIL) is important in atherogenesis, since it can induce vascular smooth muscle cell (VSMC) proliferation and arterial thickening following injury. Here we show the first demonstrate that TRAIL siRNA reduces platelet-derived growth factor-BB (PDGF-BB)-stimulated VSMC proliferation and migration. PDGF-BB-inducible VSMC proliferation was completely inhibited in VSMCs isolated from aortas of TRAIL(-/-) mice; whereas inducible migration was blocked compared to control VSMCs. TRAIL transcriptional control mediating this response is not established. TRAIL mRNA, protein and promoter activity was increased by PDGF-BB and subsequently inhibited by dominant-negative Sp1, suggesting that the transcription factor Sp1 plays a role. Sp1 bound multiple Sp1 sites on the TRAIL promoter, including two established (Sp1-1 and -2) and two novel Sp1-5/6 and -7 sites. PDGF-BB-inducible TRAIL promoter activity by Sp1 was mediated through these sites, since transverse mutations to each abolished inducible activity. PDGF-BB stimulation increased acetylation of histone-3 (ac-H3) and expression of the transcriptional co-activator p300, implicating chromatin remodelling. p300 overexpression increased TRAIL promoter activity, which was blocked by dominant-negative Sp1. Furthermore, PDGF-BB treatment increased the physical interaction of Sp1, p300 and ac-H3, while chromatin immunoprecipitation studies revealed Sp1, p300 and ac-H3 enrichment on the TRAIL promoter. Taken together, our studies demonstrate for the first time that PDGF-BB-induced TRAIL transcriptional activity requires the cooperation of Sp1, ac-H3 and p300, mediating increased expression of TRAIL which is important for VSMC proliferation and migration. Our findings have the promising potential for targeting TRAIL as a new therapeutic for vascular proliferative disorders.
Collapse
Affiliation(s)
- Nor Saadah M Azahri
- Centre for Vascular Research, University of New South Wales, Sydney, NSW 2052, Australia
| | | | | | | |
Collapse
|
25
|
Cheng H, Ren T, Sun SC. New insight into the oncogenic mechanism of the retroviral oncoprotein Tax. Protein Cell 2012; 3:581-9. [PMID: 22865346 DOI: 10.1007/s13238-012-2047-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Accepted: 06/07/2012] [Indexed: 12/29/2022] Open
Abstract
Human T cell leukemia virus type 1 (HTLV-1), an etiological factor that causes adult T cell leukemia and lymphoma (ATL), infects over 20 million people worldwide. About 1 million of HTLV-1-infected patients develop ATL, a highly aggressive non-Hodgkin's lymphoma without an effective therapy. The pX region of the HTLV-1 viral genome encodes an oncogenic protein, Tax, which plays a central role in transforming CD4+ T lymphocytes by deregulating oncogenic signaling pathways and promoting cell cycle progression. Expression of Tax following viral entry is critical for promoting survival and proliferation of human T cells and is required for initiation of oncogenesis. Tax exhibits diverse functions in host cells, and this oncoprotein primarily targets IκB kinase complex in the cytoplasm, resulting in persistent activation of NF-κB and upregulation of its responsive gene expressions that are crucial for T cell survival and cell cycle progression. We here review recent advances for the pathological roles of Tax in modulating IκB kinase activity. We also discuss our recent observation that Tax connects the IκB kinase complex to autophagy pathways. Understanding Tax-mediated pathogenesis will provide insights into development of new therapeutics in controlling HTLV-1-associated diseases.
Collapse
Affiliation(s)
- Hua Cheng
- Penn State Hershey Cancer Institute, Hershey, PA 17033, USA.
| | | | | |
Collapse
|
26
|
The multifaceted oncoprotein Tax: subcellular localization, posttranslational modifications, and NF-κB activation. Adv Cancer Res 2012; 113:85-120. [PMID: 22429853 DOI: 10.1016/b978-0-12-394280-7.00003-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The human T-cell lymphotropic virus type-I (HTLV-I) is the etiologic agent of adult T-cell leukemia/lymphoma (ATL) and of tropical spastic paraparesis/HTLV-I-associated myelopathy. Constitutive NF-κB activation by the viral oncoprotein Tax plays a crucial role in the induction and maintenance of cellular proliferation, transformation, and inhibition of apoptosis. In an attempt to provide a general view of the molecular mechanisms of constitutive Tax-induced NF-κB activation, we summarize in this review the recent body of literature that supports a major role for Tax posttranslational modifications, chiefly ubiquitination, and SUMOylation, in the NF-κB activity of Tax. These modifications indeed participate in the control of Tax subcellular localization and modulate its protein-protein interaction potential. Tax posttranslational modifications, which highlight the ability of HTLV-I to optimize its limited viral genome size, might represent an attractive target for the design of new therapies for ATL.
Collapse
|
27
|
Abstract
Human T-cell lymphotropic virus type 1 (HTLV-1) is the etiological agent of adult T-cell leukemia/lymphoma (ATL), whereas the highly related HTLV-2 is not associated with ATL or other cancers. In addition to ATL leukemogenesis, studies of the HTLV viruses also provide an exceptional model for understanding basic pathogenic mechanisms of virus-host interactions and human oncogenesis. Accumulating evidence suggests that the viral regulatory protein Tax and host inflammatory transcription factor NF-κB are largely responsible for the different pathogenic potentials of HTLV-1 and HTLV-2. Here, we discuss the molecular mechanisms of HTLV-1 oncogenic pathogenesis with a focus on the interplay between the Tax oncoprotein and NF-κB pro-oncogenic signaling. We also outline some of the most intriguing and outstanding questions in the fields of HTLV and NF-κB. Answers to those questions will greatly advance our understanding of ATL leukemogenesis and other NF-κB-associated tumorigenesis and will help us design personalized cancer therapies.
Collapse
|
28
|
Boxus M, Willems L. How the DNA damage response determines the fate of HTLV-1 Tax-expressing cells. Retrovirology 2012; 9:2. [PMID: 22221708 PMCID: PMC3283471 DOI: 10.1186/1742-4690-9-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2011] [Accepted: 01/05/2012] [Indexed: 11/10/2022] Open
Abstract
How the Human T lymphotropic virus type 1 (HTLV-1) Tax protein stimulates proliferation while triggering cell cycle arrest and senescence remains puzzling. There is also a debate about the ability of Tax to activate or inhibit the DNA damage response. Here, we comment on these different activities and propose a conceptual rationale for the apparently conflicting observations.
Collapse
Affiliation(s)
- Mathieu Boxus
- National Fund for Scientific Research, Gembloux Agro-Bio Tech and Interdisciplinary Cluster for Applied Genoproteomics (GIGA), University of Liège, Belgium
| | | |
Collapse
|
29
|
Apoptosis induced by mammalian reovirus is beta interferon (IFN) independent and enhanced by IFN regulatory factor 3- and NF-κB-dependent expression of Noxa. J Virol 2011; 86:1650-60. [PMID: 22090144 DOI: 10.1128/jvi.05924-11] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
A variety of signal transduction pathways are activated in response to viral infection, which dampen viral replication and transmission. These mechanisms involve both the induction of type I interferons (IFNs), which evoke an antiviral state, and the triggering of apoptosis. Mammalian orthoreoviruses are double-stranded RNA viruses that elicit apoptosis in vitro and in vivo. The transcription factors interferon regulatory factor 3 (IRF-3) and nuclear factor kappa light-chain enhancer of activated B cells (NF-κB) are required for the expression of IFN-β and the efficient induction of apoptosis in reovirus-infected cells. However, it is not known whether IFN-β induction is required for apoptosis, nor have the genes induced by IRF-3 and NF-κB that are responsible for apoptosis been identified. To determine whether IFN-β is required for reovirus-induced apoptosis, we used type I IFN receptor-deficient cells, IFN-specific antibodies, and recombinant IFN-β. We found that IFN synthesis and signaling are dispensable for the apoptosis of reovirus-infected cells. These results indicate that the apoptotic response following reovirus infection is mediated directly by genes responsive to IRF-3 and NF-κB. Noxa is a proapoptotic BH3-domain-only protein of the Bcl-2 family that requires IRF-3 and NF-κB for efficient expression. We found that Noxa is strongly induced at late times (36 to 48 h) following reovirus infection in a manner dependent on IRF-3 and NF-κB. The level of apoptosis induced by reovirus is significantly diminished in cells lacking Noxa, indicating a key prodeath function for this molecule during reovirus infection. These results suggest that prolonged innate immune response signaling induces apoptosis by eliciting Noxa expression in reovirus-infected cells.
Collapse
|
30
|
Saggioro D. Anti-apoptotic effect of Tax: an NF-κB path or a CREB way? Viruses 2011; 3:1001-14. [PMID: 21994767 PMCID: PMC3185786 DOI: 10.3390/v3071001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2011] [Revised: 06/09/2011] [Accepted: 06/11/2011] [Indexed: 12/19/2022] Open
Abstract
The NF-κB pathway is intimately linked to the survival of mammalian cells, and its activation by Tax has consequently been considered important for human T-cell leukemia/lymphoma virus type 1 (HTLV-1)-infected cell resistance to death. Very little emphasis has been given to other mechanisms, although Tax regulates the expression and activity of several cellular genes. The finding that CREB protein is activated in HTLV-1 infected cells underlines the possibility that other mechanisms of survival may be implicated in HTLV-1 infection. Indeed, CREB activation or overexpression plays a role in normal hematopoiesis, as well as in leukemia development, and CREB is considered as a survival factor in various cell systems. A better understanding of the different molecular mechanisms used by Tax to counteract cell death will also help in the development of new therapeutic strategies for HTLV-1 associated diseases.
Collapse
Affiliation(s)
- Daniela Saggioro
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, via Gattamelata 64, 35128 Padova, Italy.
| |
Collapse
|
31
|
Danthi P, Pruijssers AJ, Berger AK, Holm GH, Zinkel SS, Dermody TS. Bid regulates the pathogenesis of neurotropic reovirus. PLoS Pathog 2010; 6:e1000980. [PMID: 20617182 PMCID: PMC2895667 DOI: 10.1371/journal.ppat.1000980] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2009] [Accepted: 06/02/2010] [Indexed: 11/19/2022] Open
Abstract
Reovirus infection leads to apoptosis in both cultured cells and the murine central nervous system (CNS). NF-kappaB-driven transcription of proapoptotic cellular genes is required for the effector phase of the apoptotic response. Although both extrinsic death-receptor signaling pathways and intrinsic pathways involving mitochondrial injury are implicated in reovirus-induced apoptosis, mechanisms by which either of these pathways are activated and their relationship to NF-kappaB signaling following reovirus infection are unknown. The proapoptotic Bcl-2 family member, Bid, is activated by proteolytic cleavage following reovirus infection. To understand how reovirus integrates host signaling circuits to induce apoptosis, we examined proapoptotic signaling following infection of Bid-deficient cells. Although reovirus growth was not affected by the absence of Bid, cells lacking Bid failed to undergo apoptosis. Furthermore, we found that NF-kappaB activation is required for Bid cleavage and subsequent proapoptotic signaling. To examine the functional significance of Bid-dependent apoptosis in reovirus disease, we monitored fatal encephalitis caused by reovirus in the presence and absence of Bid. Survival of Bid-deficient mice was significantly enhanced in comparison to wild-type mice following either peroral or intracranial inoculation of reovirus. Decreased reovirus virulence in Bid-null mice was accompanied by a reduction in viral yield. These findings define a role for NF-kappaB-dependent cleavage of Bid in the cell death program initiated by viral infection and link Bid to viral virulence.
Collapse
Affiliation(s)
- Pranav Danthi
- Department of Biology, Indiana University, Bloomington, Indiana, United States of America
| | - Andrea J. Pruijssers
- Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
- Elizabeth B. Lamb Center for Pediatric Research, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Angela K. Berger
- Department of Biology, Indiana University, Bloomington, Indiana, United States of America
| | - Geoffrey H. Holm
- Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
- Elizabeth B. Lamb Center for Pediatric Research, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Sandra S. Zinkel
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Terence S. Dermody
- Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
- Elizabeth B. Lamb Center for Pediatric Research, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
- Department of Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| |
Collapse
|
32
|
Chlichlia K, Khazaie K. HTLV-1 Tax: Linking transformation, DNA damage and apoptotic T-cell death. Chem Biol Interact 2010; 188:359-65. [PMID: 20558150 DOI: 10.1016/j.cbi.2010.06.005] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2010] [Revised: 06/01/2010] [Accepted: 06/06/2010] [Indexed: 11/20/2022]
Abstract
The human T-cell leukemia virus type I (HTLV-1) is the causative agent of adult T-cell leukemia (ATL), an aggressive CD4-positive T-cell neoplasia. The HTLV-1 proto-oncogene Tax, a potent transcriptional activator of cellular and viral genes, is thought to play a pivotal role in the transforming properties of the virus by deregulating intracellular signaling pathways. During the course of HTLV-1 infection, the dysregulation of cell-cycle checkpoints and the suppression of DNA damage repair is tightly linked to the activity of the viral oncoprotein Tax. Tax activity is associated with production of reactive oxygen intermediates (ROS), chromosomal instability and DNA damage, apoptotic cell death and cellular transformation. Changes in the intracellular redox status induced by Tax promote DNA damage. Tax-mediated DNA damage is believed to be essential in initiating the transformation process by subjecting infected T cells to genetic changes that eventually promote the neoplastic state. Apoptosis and immune surveillance would then exert the necessary selection pressure for eliminating the majority of virally infected cells, while escape variants acquiring a mutator phenotype would constitute a subpopulation of genetically altered cells prone to neoplasia. While the potency of Tax-activity seems to be a determining factor for the observed effects, the cooperation of Tax with other viral proteins determines the fate and progression of HTLV-1-infected cells through DNA damage, apoptosis, survival and transformation.
Collapse
Affiliation(s)
- Katerina Chlichlia
- Department of Molecular Biology and Genetics, Democritus University of Thrace, Alexandroupolis, Greece.
| | | |
Collapse
|
33
|
Chan J, Prado-Lourenco L, Khachigian LM, Bennett MR, Di Bartolo BA, Kavurma MM. TRAIL Promotes VSMC Proliferation and Neointima Formation in a FGF-2–, Sp1 Phosphorylation–, and NFκB-Dependent Manner. Circ Res 2010; 106:1061-71. [DOI: 10.1161/circresaha.109.206029] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Jeffrey Chan
- From the Centre for Vascular Research (J.C., L.P.-L., L.M.K., B.A.D., M.M.K.), University of New South Wales, Sydney, Australia; and Division of Cardiovascular Medicine (M.R.B.), University of Cambridge, Addenbrooke’s Hospital, Cambridge, United Kingdom
| | - Leonel Prado-Lourenco
- From the Centre for Vascular Research (J.C., L.P.-L., L.M.K., B.A.D., M.M.K.), University of New South Wales, Sydney, Australia; and Division of Cardiovascular Medicine (M.R.B.), University of Cambridge, Addenbrooke’s Hospital, Cambridge, United Kingdom
| | - Levon M. Khachigian
- From the Centre for Vascular Research (J.C., L.P.-L., L.M.K., B.A.D., M.M.K.), University of New South Wales, Sydney, Australia; and Division of Cardiovascular Medicine (M.R.B.), University of Cambridge, Addenbrooke’s Hospital, Cambridge, United Kingdom
| | - Martin R. Bennett
- From the Centre for Vascular Research (J.C., L.P.-L., L.M.K., B.A.D., M.M.K.), University of New South Wales, Sydney, Australia; and Division of Cardiovascular Medicine (M.R.B.), University of Cambridge, Addenbrooke’s Hospital, Cambridge, United Kingdom
| | - Belinda A. Di Bartolo
- From the Centre for Vascular Research (J.C., L.P.-L., L.M.K., B.A.D., M.M.K.), University of New South Wales, Sydney, Australia; and Division of Cardiovascular Medicine (M.R.B.), University of Cambridge, Addenbrooke’s Hospital, Cambridge, United Kingdom
| | - Mary M. Kavurma
- From the Centre for Vascular Research (J.C., L.P.-L., L.M.K., B.A.D., M.M.K.), University of New South Wales, Sydney, Australia; and Division of Cardiovascular Medicine (M.R.B.), University of Cambridge, Addenbrooke’s Hospital, Cambridge, United Kingdom
| |
Collapse
|
34
|
Human T-cell leukemia virus type I-mediated repression of PDZ-LIM domain-containing protein 2 involves DNA methylation but independent of the viral oncoprotein tax. Neoplasia 2010; 11:1036-41. [PMID: 19794962 DOI: 10.1593/neo.09752] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2009] [Revised: 06/15/2009] [Accepted: 06/16/2009] [Indexed: 11/18/2022]
Abstract
Human T-cell leukemia virus type I (HTLV-I) is the etiological agent of adult T-cell leukemia (ATL). Our recent studies have shown that one important mechanism of HTLV-I-Mediated tumorigenesis is through PDZ-LIM domain-containing protein 2 (PDLIM2) repression, although the involved mechanism remains unknown. Here, we further report that HTLV-I-Mediated PDLIM2 repression was a pathophysiological event and the PDLIM2 repression involved DNA methylation. Whereas DNA methyltransferases 1 and 3b but not 3a were upregulated in HTLV-I-transformed T cells, the hypomethylating agent 5-aza-2'-deoxycytidine (5-aza-dC) restored PDLIM2 expression and induced death of these malignant cells. Notably, the PDLIM2 repression was independent of the viral regulatory protein Tax because neither short-term induction nor long-term stable expression of Tax could downregulate PDLIM2 expression. These studies provide important insights into PDLIM2 regulation, HTLV-I leukemogenicity, long latency, and cancer health disparities. Given the efficient antitumor activity with no obvious toxicity of 5-aza-dC, these studies also suggest potential therapeutic strategies for ATL.
Collapse
|
35
|
Boasso A. Type I interferon in HIV treatment: from antiviral drug to therapeutic target. HIV THERAPY 2009; 3:269-282. [PMID: 32280376 PMCID: PMC7147345 DOI: 10.2217/hiv.09.8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Type I interferons (IFNs) are soluble molecules that exert potent antiviral activity and are currently used for the treatment of a panel of viral infections. In the case of HIV, the use of type I IFN has had limited success, and has almost been abandoned. During the last decade, a series of studies has highlighted how HIV infection may cause overactivation of type I IFN production, which contributes to the exhaustion of the immune system and to disease progression. This review describes the transition from the proposed use of type I IFN as antiviral drugs in HIV infection, to the idea that blocking their activity or production may provide an immunologic benefit of much greater importance than their antiviral activity.
Collapse
Affiliation(s)
- Adriano Boasso
- >Department of Immunology, Division of Investigative Science, Faculty of Medicine, Imperial College, Chelsea & Westminster Hospital, 369 Fulham Road, London SW10 9NH, UK. Tel.: +44 208 746 5993; ;
| |
Collapse
|
36
|
Shepard BD, Badley AD. The Biology of TRAIL and the Role of TRAIL-Based Therapeutics in Infectious Diseases. ACTA ACUST UNITED AC 2009; 8:87-101. [PMID: 21857885 DOI: 10.2174/187152109787846060] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
TNF-related apoptosis inducing ligand (TRAIL) is a key mediator of the innate immune response to infection. While TRAIL-mediated apoptosis plays an essential role in the clearance of virus-infected cells, its physiologic role also includes immunosurveilance for cancer cells. Therapeutics that induce TRAIL-mediated apoptosis in cancer cells remain a focus of ongoing investigation in clinical trials, and much has been learned from these studies regarding the efficacy and toxicity of these interventions. These data, combined with data from numerous preclinical studies that detail the important and multifaceted role of TRAIL during infection with human immunodeficiency virus and other viruses, suggest that therapeutic exploitation of TRAIL signaling offers a novel and efficacious strategy for the management of infectious diseases.
Collapse
Affiliation(s)
- Brett D Shepard
- Mayo Clinic College of Medicine, Division of Infectious Diseases, Rochester, MN, 55905, USA
| | | |
Collapse
|
37
|
TRAIL as a target in anti-cancer therapy. Cancer Lett 2009; 285:1-5. [PMID: 19299078 DOI: 10.1016/j.canlet.2009.02.029] [Citation(s) in RCA: 128] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2009] [Revised: 02/18/2009] [Accepted: 02/19/2009] [Indexed: 01/29/2023]
Abstract
The tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) is a member of the TNF superfamily that can initiate apoptosis through the activation of their death receptors. The ability of TRAIL to selectively induce apoptosis of transformed or tumor cells but not normal cells promotes the development of TRAIL-based cancer therapy. Accumulating preclinical studies demonstrate that the TRAIL ligand can effectively induce cancer cell apoptosis. Completed and ongoing Phases I and II clinical trials using TRAIL are showing clinically promising outcomes without significant toxicity. Importantly, TRAIL, DR4 and DR5 can all be induced by chemotherapeutics and/or radiation, which can sensitize cancer cells to TRAIL. Thus, understanding the regulation of the TRAIL apoptosis pathway can help develop more selective TRAIL-based agents for the treatment of human cancer.
Collapse
|
38
|
Xu J, Zhou JY, Wei WZ, Philipsen S, Wu GS. Sp1-mediated TRAIL induction in chemosensitization. Cancer Res 2008; 68:6718-26. [PMID: 18701496 DOI: 10.1158/0008-5472.can-08-0657] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The regulation of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) in cancer chemotherapy is not fully understood. Here, we show that the histone deacetylase (HDAC) inhibitors induce TRAIL in human breast cancer cells. Induction of TRAIL by the HDAC inhibitor MS275 can be enhanced by Adriamycin. Using different reporter constructs in conjunction with transcription activity assays and chromatin immunoprecipitation assays, we provide evidence that the transcription factor Sp1 is responsible for TRAIL induction by MS275 alone or in combination with Adriamycin. Further, we show that the combined treatment of breast cancer cells with MS275 and Adriamycin significantly increases apoptotic cell death via the activation of both death receptor and mitochondrial apoptotic pathways. Down-regulation of TRAIL by small interfering RNA silencing decreased MS275-mediated Adriamycin-induced caspase activation and apoptosis, thus conferring Adriamycin resistance. More importantly, breast cancer T47D cells in which Sp1 was knocked down or Sp1-knockout mouse embryonic stem cells were resistant to the combined treatments. Taken together, our results indicate that induction of TRAIL by the combined treatments with MS275 and Adriamycin is mediated by Sp1 and suggest that transcription factor Sp1 is an important target for the development of novel anticancer agents.
Collapse
Affiliation(s)
- Jing Xu
- Program in Molecular Biology and Genetics, Department of Pathology, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, Michigan 48201, USA
| | | | | | | | | |
Collapse
|
39
|
Fionda C, Nappi F, Piccoli M, Frati L, Santoni A, Cippitelli M. Inhibition of trail gene expression by cyclopentenonic prostaglandin 15-deoxy-delta12,14-prostaglandin J2 in T lymphocytes. Mol Pharmacol 2007; 72:1246-57. [PMID: 17673570 DOI: 10.1124/mol.107.038042] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
15-Deoxy-Delta(12,14)-prostaglandin J(2) (15d-PGJ(2)) is a cyclopentenonic prostaglandin endowed with powerful anti-inflammatory activities, as shown in animal models of inflammatory/autoimmune diseases, where pharmacological administration of this prostanoid can ameliorate inflammation and local tissue damage via activation of the nuclear receptor peroxisome proliferator-activated receptor gamma (PPARgamma) and/or covalent modifications of cellular proteins. Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) is a member of the TNF superfamily expressed in most of the cells, including those of immune system such as T lymphocytes, in which it is up-regulated upon antigen-specific stimulation. This cytokine plays an important role in regulating various physiological and immunopathological processes, such as immunosurveillance of tumors and tissue destruction associated with different inflammatory and autoimmune diseases. Here, we demonstrate that 15d-PGJ(2) inhibits trail mRNA and protein expression by down-regulating the activity of its promoter in human T lymphocytes. Our data indicate that both the chemically reactive cyclopentenone moiety of 15d-PGJ(2) and the activation of PPARgamma may be involved in this repressive mechanism. We identified nuclear factor kappaB (NF-kappaB) as a direct target of the prostanoid. 15d-PGJ(2) significantly decreases the expression and/or DNA binding of c-rel, RelA, and p50 transcription factors to the NF-kappaB1 site of trail promoter. Moreover, 15d-PGJ(2)-mediated activation of the transcription factor heat shock factor-1 may contribute to inhibit trail promoter activity in transfected Jurkat T cells. These results suggest that modulation of TRAIL gene expression by 15d-PGJ(2) in T cells may provide a novel pharmacological tool to modify the onset and the progression of specific autoimmune and inflammatory disorders.
Collapse
Affiliation(s)
- Cinzia Fionda
- Department of Experimental Medicine, Istituto Pasteur-Fondazione Cenci Bolognetti, University La Sapienza, Viale Regina Elena 324, 00161, Rome, Italy
| | | | | | | | | | | |
Collapse
|
40
|
Kavurma MM, Bennett MR. Expression, regulation and function of trail in atherosclerosis. Biochem Pharmacol 2007; 75:1441-50. [PMID: 18061141 DOI: 10.1016/j.bcp.2007.10.020] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2007] [Revised: 10/03/2007] [Accepted: 10/11/2007] [Indexed: 01/22/2023]
Abstract
Atherosclerosis is a condition where vascular smooth muscle cells (VSMCs), inflammatory cells, lipids, cholesterol and cellular waste accumulate in the inner lining of an artery, producing a fibro-fatty plaque and resulting in the thickening of the arterial wall. The tumor necrosis factor (TNF) family of cytokines plays a major role in the progression of atherosclerosis. Recently, TNF-related apoptosis-inducing ligand (TRAIL), a member of the TNF superfamily, has been implicated in the development of atherosclerosis since it has been detected in normal and diseased atherosclerotic tissue. Not only is TRAIL involved in apoptosis and immune regulation, recent studies have provided a new function of TRAIL on vascular cells, such that TRAIL can promote endothelial cell (EC) and VSMCs migration and proliferation. In addition, TRAIL is implicated in regulating vascular tone. This review discusses our current understanding of TRAIL expression, regulation and function, and summarises the recent data implicating a role for TRAIL in atherosclerosis.
Collapse
Affiliation(s)
- Mary M Kavurma
- Centre for Vascular Research, The University of New South Wales, Kensington, Sydney, NSW 2052, Australia.
| | | |
Collapse
|
41
|
Okamoto K, Fujisawa JI, Reth M, Yonehara S. Human T-cell leukemia virus type-I oncoprotein Tax inhibits Fas-mediated apoptosis by inducing cellular FLIP through activation of NF-kappaB. Genes Cells 2007; 11:177-91. [PMID: 16436054 DOI: 10.1111/j.1365-2443.2006.00927.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Human T-cell leukemia virus type I (HTLV-I) is an etiologic agent of adult T-cell leukemia and induces autoimmune disease. Previous analyses of tax transgenic mice suggested that protection of peripheral T-cells from Fas-mediated apoptosis by virus-encoded oncoprotein Tax was relevant to the onset of HTLV-I-induced diseases. Here, we show the high level expression of cellular FLICE/caspase-8-inhibitory protein (c-FLIP) in Tax-expressing HTLV-I-infected T-cells. The silencing of c-FLIP expression by a lentivirus-based RNA interference system rendered Tax-positive HTLV-I-infected T-cells sensitive to Fas-mediated apoptosis. Exogenously expressed Tax by using a conditional Cre-loxP-mediated inducible system also inhibited Fas-mediated apoptosis by up-regulating c-FLIP expression in HTLV-I-negative T-cells. Tax mutant d3 which cannot activate CREB/ATF1, while another M22 mutant which cannot activate NF-kappaB did not, suppressed Fas-mediated apoptosis by inducing c-FLIP expression. Furthermore, expression of the dominant negative mutant of either NF-kappaB or IkappaBalpha canceled not only c-FLIP expression but also inhibitory activity against Fas-mediated apoptosis by Tax. Inactivation of NFAT, however, did not decrease the expression of c-FLIP in HTLV-I-infected T-cells. Taken together, Tax inhibits Fas-mediated apoptosis by up-regulating c-FLIP expression in HTLV-I-infected cells, and NF-kappaB activity plays an essential role in the up-regulation of c-FLIP.
Collapse
Affiliation(s)
- Kazuo Okamoto
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8507, Japan
| | | | | | | |
Collapse
|
42
|
Harhaj NS, Janic B, Ramos JC, Harrington WJ, Harhaj EW. Deregulated expression of CD40 ligand in HTLV-I infection: distinct mechanisms of downregulation in HTLV-I-transformed cell lines and ATL patients. Virology 2007; 362:99-108. [PMID: 17258259 PMCID: PMC1949045 DOI: 10.1016/j.virol.2006.12.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2006] [Revised: 11/09/2006] [Accepted: 12/18/2006] [Indexed: 10/23/2022]
Abstract
HTLV-I infection is associated with the development of adult T cell leukemia (ATL) and the neuroinflammatory disease HAM/TSP. There are quantitative and qualitative differences in the antiviral cytotoxic T cell (CTL) response in ATL and HAM/TSP although the underlying mechanisms are unclear. Here, we demonstrate that the HTLV-I Tax trans-activating protein is a transcriptional activator of CD40 ligand (CD40L), a critical regulator of dendritic cell maturation and adaptive immunity. Tax activates CD40L expression via a cyclosporin A insensitive pathway that is also independent of NF-kappaB. Although Tax upregulates CD40L gene expression, CD40L expression is absent in Tax-expressing HTLV-I-transformed cell lines via an epigenetic mechanism involving methylation. T lymphocytes cultured ex vivo from ATL patients, but not HAM/TSP or normal controls, exhibit a potent block in the induction of CD40L, but not CD69. However, the CD40L gene is not silenced by methylation in ATL patients, thus CD40L is downregulated by distinct mechanisms in HTLV-I-transformed cell lines and ATL patients.
Collapse
Affiliation(s)
- Nicole S Harhaj
- Department of Microbiology and Immunology, Sylvester Comprehensive Cancer Center, The University of Miami, Miller School of Medicine, 1550 NW 10 Avenue, Miami, FL 33136, USA
| | | | | | | | | |
Collapse
|
43
|
Dutta J, Fan Y, Gupta N, Fan G, Gélinas C. Current insights into the regulation of programmed cell death by NF-kappaB. Oncogene 2006; 25:6800-16. [PMID: 17072329 DOI: 10.1038/sj.onc.1209938] [Citation(s) in RCA: 322] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The nuclear factor-kappaB (NF-kappaB) transcription factors have emerged as major regulators of programmed cell death (PCD) whether via apoptosis or necrosis. In this context, NF-kappaB's activity has important ramifications for normal tissue development, homoeostasis and the physiological functions of various cell systems including the immune, hepatic, epidermal and nervous systems. However, improper regulation of PCD by NF-kappaB can have severe pathologic consequences, ranging from neurodegeneration to cancer, where its activity often precludes effective therapy. Although NF-kappaB generally protects cells by inducing the expression genes encoding antiapoptotic and antioxidizing proteins, its role in apoptosis and necrosis can vary markedly in different cell contexts, and NF-kappaB can sensitize cells to death-inducing stimuli in some instances. This article describes our current knowledge of the role of NF-kappaB in apoptosis and necrosis, and focuses on the many advances since we last reviewed this rapidly evolving topic in Oncogene 3 years ago. There has been substantial progress in understanding NF-kappaB's mode of action in apoptosis and necrosis and the mechanisms that regulate its anti- vs proapoptotic activities. These recent developments shed new light on the role of NF-kappaB in many disease conditions including tumor development, tumor progression and anticancer treatment.
Collapse
Affiliation(s)
- J Dutta
- Center for Advanced Biotechnology and Medicine, Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey, Piscataway, NJ, USA
| | | | | | | | | |
Collapse
|
44
|
Xu J, Zhou JY, Wu GS. Tumor Necrosis Factor–Related Apoptosis-Inducing Ligand Is Required for Tumor Necrosis Factor α–Mediated Sensitization of Human Breast Cancer Cells to Chemotherapy. Cancer Res 2006; 66:10092-9. [PMID: 17047073 DOI: 10.1158/0008-5472.can-06-1633] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Tumor necrosis factor alpha (TNFalpha) induces apoptosis and sensitizes cancer cells to chemotherapy, but the mechanism underlying its sensitization is not fully understood. Here, we report that TNFalpha-mediated sensitization of cancer cells to chemotherapy involves activation of the TRAIL pathway. We show that the combined treatment of breast cancer cells with TNFalpha and Adriamycin significantly increases cell death compared with the treatment with either agent alone. The combined treatment activated both death receptor and mitochondrial apoptotic pathways, whereas Adriamycin alone activated only the mitochondrial pathway, and TNFalpha failed to activate either. Furthermore, we show that TNFalpha induces TRAIL through a transcriptional mechanism. Using reporter gene assays in conjunction with chromatin immunoprecipitation assays, we show that TRAIL induction by TNFalpha is regulated via both nuclear factor-kappaB and Sp1 binding sites. Importantly, down-regulation of TRAIL by small interfering RNA silencing decreased TNFalpha-mediated Adriamycin-induced caspase activation and apoptosis, and thus enhanced breast cancer cell resistance to Adriamycin. Collectively, our results suggest that induction of TRAIL by TNFalpha is critical for sensitization of breast cancer cells to chemotherapy.
Collapse
Affiliation(s)
- Jing Xu
- Program in Molecular Biology and Human Genetics, Karmanos Cancer Institute, Department of Pathology, Wayne State University School of Medicine, Detroit, Michigan 48201, USA
| | | | | |
Collapse
|
45
|
Radhakrishnan SK, Kamalakaran S. Pro-apoptotic role of NF-kappaB: implications for cancer therapy. Biochim Biophys Acta Rev Cancer 2006; 1766:53-62. [PMID: 16563635 DOI: 10.1016/j.bbcan.2006.02.001] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2005] [Revised: 02/07/2006] [Accepted: 02/07/2006] [Indexed: 01/15/2023]
Abstract
Nuclear factor-kappaB (NF-kappaB) is generally viewed as anti-apoptotic and oncogenic, leading to a quest for its inhibitors. However, recent evidence suggests that in some situations NF-kappaB may promote apoptosis. Depending on the specific cell type and the stimulus involved, NF-kappaB activation may lead to either anti- or pro-apoptotic response. Both these effects can be mediated by NF-kappaB in a context-dependent manner by selectively regulating its target genes. In this review, we discuss the evidence for NF-kappaB's pro-apoptotic role and explore the possible mechanisms behind it. We emphasize that rather than trying to inhibit NF-kappaB in cancer therapy, agents should be developed to unleash its pro-apoptotic ability.
Collapse
|
46
|
Zetterberg H, Campbell WA, Yang HW, Xia W. The cytosolic loop of the gamma-secretase component presenilin enhancer 2 protects zebrafish embryos from apoptosis. J Biol Chem 2006; 281:11933-9. [PMID: 16507571 DOI: 10.1074/jbc.m512521200] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The gamma-secretase complex, composed of presenilin, presenilin enhancer 2 (Pen-2), nicastrin, and Aph-1, catalyzes the final cleavage of amyloid precursor protein to generate the toxic amyloid beta protein, the major component of plaques in the brains of Alzheimer disease patients. To understand the in vivo function of Pen-2, we used morphant technology available in zebrafish and transiently knocked down the expression of endogenous Pen-2 by injecting the morpholino (MO) against Pen-2. Two truncated Pen-2 proteins lacking either the cytosolic or the C-terminal domain were expressed in MO-injected embryos. This deletion analysis demonstrated that the Pen-2 cytosolic loop is essential for protecting developing embryos from caspase-dependent apoptosis caused by the reduction of Pen-2. Twelve amino acids in the C terminus of Pen-2 were dispensable and could not rescue the Pen-2 knockdown-induced apoptotic phenotype. Surprisingly, double knockdown of Pen-2 and nuclear factor kappaB component p65 abrogated the single Pen-2 MO-induced caspase activation, indicating that a previously reported pro-apoptotic role of NF-kappaB in some cell types could be manifested in a whole animal and that knockdown of Pen-2 may trigger pro-apoptotic activation of NF-kappaB.
Collapse
Affiliation(s)
- Henrik Zetterberg
- Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | |
Collapse
|
47
|
Grant C, Nonnemacher M, Jain P, Pandya D, Irish B, Williams SC, Wigdahl B. CCAAT/enhancer-binding proteins modulate human T cell leukemia virus type 1 long terminal repeat activation. Virology 2006; 348:354-69. [PMID: 16458341 DOI: 10.1016/j.virol.2005.12.024] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2005] [Revised: 09/06/2005] [Accepted: 12/09/2005] [Indexed: 10/25/2022]
Abstract
CCAAT/enhancer-binding protein (C/EBP) basic region/leucine zipper (bZIP) transcription factors have been shown to form heterodimers with cAMP-responsive element binding protein 2 (CREB-2), a transcription factor involved in regulating basal and Tax-mediated transactivation of the human T cell leukemia virus type 1 (HTLV-1) long terminal repeat (LTR). In cells of the monocyte-macrophage lineage (proposed to play a role in HTLV-1 pathogenesis as an accessory target cell), several members of the C/EBP family are expressed at high levels and may have functional impact on both basal and Tax-mediated transactivation of the HTLV-1 LTR. Basal activation of the HTLV-1 LTR was enhanced by overexpression of C/EBPbeta, C/EBPdelta, or C/EBPepsilon, whereas transactivation of the LTR by Tax was inhibited by overexpression of C/EBPalpha and C/EBPbeta. Inhibition of Tax-mediated transactivation of the HTLV-1 LTR was co-activator-independent, did not require C/EBP binding to the Tax-responsive elements, and may involve heterodimerization with CREB factors.
Collapse
Affiliation(s)
- Christian Grant
- Department of Microbiology and Immunology, The Pennsylvania State University, College of Medicine, Hershey, 17033, USA
| | | | | | | | | | | | | |
Collapse
|
48
|
Kim SB, Kim JS, Lee JH, Yoon WJ, Lee DS, Ko MS, Kwon BS, Choi DH, Cho HR, Lee BJ, Chung DK, Lee HW, Park JW. NF-κB activation is required for cisplatin-induced apoptosis in head and neck squamous carcinoma cells. FEBS Lett 2005; 580:311-8. [PMID: 16376337 DOI: 10.1016/j.febslet.2005.12.012] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2005] [Revised: 11/07/2005] [Accepted: 12/02/2005] [Indexed: 02/07/2023]
Abstract
This study demonstrates a requirement for NF-kappaB activation in cis-diamminedichloroplatinum (cisplatin)-induced apoptosis in human head and neck squamous cell carcinoma (HNSCC) cell lines. This conclusion was supported by the following observations: cisplatin induced IkappaBalpha degradation and NF-kappaB-dependent transcriptional activation prior to cell death; pyrrolidine dithiocarbamate (PDTC), a chemical inhibitor of NF-kappaB activation, prevented apoptosis; lactacystin, an inhibitor of IkappaBalpha degradation, also prevented apoptosis; and finally, the expression of a super-repressor mutant IkappaBalpha blocked apoptosis. The expression of tumor necrosis factor alpha (TNFalpha) was promoted by cisplatin treatment and was suppressed by PDTC treatment. In addition, a neutralizing antibody against TNFalpha protected cells from cisplatin-induced apoptosis. These findings suggest that NF-kappaB activation is required for cisplatin-induced apoptosis and TNFalpha may play an important role in NF-kappaB-mediated apoptosis in cisplatin-treated HNSCC cell lines.
Collapse
Affiliation(s)
- Seong Bum Kim
- Department of Biological Sciences, University of Ulsan, Nam-Gu, Ulsan 680-749, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Wicovsky A, Siegmund D, Wajant H. Interferons induce proteolytic degradation of TRAILR4. Biochem Biophys Res Commun 2005; 337:184-90. [PMID: 16185657 DOI: 10.1016/j.bbrc.2005.09.039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2005] [Accepted: 09/02/2005] [Indexed: 10/25/2022]
Abstract
IFNgamma and its transcriptional target tumor necrosis factor (TNF)-related apoptosis inducing ligand (TRAIL) are two major effector molecules of activated CTLs and NK cells. Here, we show that IFNgamma as well as the type I interferon IFNalpha strongly inhibit cell surface expression of the decoy receptor TRAILR4 while having only a moderate inhibitory or even an inducing effect on TRAILR2 and CD95. Interferon-induced inhibition of TRAILR4 expression was blocked by a protease inhibitor cocktail and also by MG132, suggesting that down-regulation of TRAILR4 involves the proteasome. Inhibition of TRAILR4 expression by siRNA sensitized for TRAIL-, but not CD95L-induced apoptosis. Thus, the apoptosis-inducing action of interferons may not only rely on the well-established induction of TRAIL in effector cells but also on concomitant down-regulation of its antagonizing decoy receptor TRAILR4 in target cells.
Collapse
Affiliation(s)
- Andreas Wicovsky
- Department of Molecular Internal Medicine, Medical Polyclinic, University of Würzburg, Röntgenring 11, 97070 Wurzburg, Germany
| | | | | |
Collapse
|
50
|
Abstract
HTLV-1 and HTLV-2 are highly related complex retroviruses that have been studied intensely for nearly three decades because of their association with neoplasia, neuropathology, and/or their capacity to transform primary human T lymphocytes. The study of HTLV also represents an attractive model that has allowed investigators to dissect the mechanism of various cellular processes, several of which may be critical steps in HTLV-mediated pathogenesis. Both HTLV-1 and HTLV-2 can efficiently immortalize and transform T lymphocytes in cell culture and persist in infected individuals or experimental animals. However, the clinical manifestations of these two viruses differ significantly. HTLV-1 is associated with adult T-cell leukemia (ATL) and a variety of immune-mediated disorders including the chronic neurological disease termed HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). In contrast, HTLV-2 is much less pathogenic with reports of only a few cases of variant hairy cell leukemia and neurological disease associated with infection. The limited number of individuals shown to harbor HTLV-2 in association with specific diseases has, to date, precluded convincing epidemiological demonstration of a definitive etiologic role of HTLV-2 in human disease. Therefore, it has become clear that comparative studies designed to elucidate the mechanisms by which HTLV-1 and HTLV-2 determine distinct outcomes are likely to provide fundamental insights into the initiation of multistep leukemogenesis.
Collapse
Affiliation(s)
- Gerold Feuer
- Department of Microbiology and Immunology, SUNY Upstate Medical University, Syracuse, New York 13210, USA
| | | |
Collapse
|