1
|
Uwada J, Nakazawa H, Kiyoi T, Yazawa T, Muramatsu I, Masuoka T. PIKFYVE inhibition induces endosome- and lysosome-derived vacuole enlargement via ammonium accumulation. J Cell Sci 2025; 138:jcs262236. [PMID: 39588583 DOI: 10.1242/jcs.262236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 11/04/2024] [Indexed: 11/27/2024] Open
Abstract
FYVE-type zinc finger-containing phosphoinositide kinase (PIKFYVE), which is essential for phosphatidylinositol 3,5-bisphosphate [PtdIns(3,5)P2] production, is an important regulator of lysosomal homeostasis. PIKFYVE dysfunction leads to cytoplasmic vacuolization; however, the underlying mechanism remains unknown. In this study, we explored the cause of vacuole enlargement upon PIKFYVE inhibition in DU145 prostate cancer cells. Enlargement of vacuoles upon PIKFYVE inhibition required glutamine and its metabolism by glutaminases. Addition of ammonia, a metabolite of glutamine, was sufficient to enlarge vacuoles via PIKFYVE inhibition. Moreover, PIKFYVE inhibition led to intracellular ammonium accumulation. Endosome-lysosome permeabilization resulted in ammonium leakage from the cells, indicating ammonium accumulation in the endosomes and lysosomes. Ammonium accumulation and vacuole expansion were suppressed by the lysosomal lumen neutralization. It is therefore assumed that PIKFYVE inhibition interferes with the efflux of NH4+, which formed through protonation of NH3 in the lysosomal lumen, leading to osmotic swelling of vacuoles. Notably, glutamine or ammonium is required for PIKFYVE inhibition-induced suppression of lysosomal function and autophagic flux. In conclusion, this study shows that PIKFYVE inhibition disrupts lysosomal homeostasis via ammonium accumulation.
Collapse
Affiliation(s)
- Junsuke Uwada
- Department of Pharmacology, School of Medicine, Kanazawa Medical University, Ishikawa 920-0293, Japan
| | - Hitomi Nakazawa
- Department of Pharmacology, School of Medicine, Kanazawa Medical University, Ishikawa 920-0293, Japan
| | - Takeshi Kiyoi
- Department of Pharmacology, School of Medicine, Kanazawa Medical University, Ishikawa 920-0293, Japan
| | - Takashi Yazawa
- Department of Biochemistry, Asahikawa Medical University, Asahikawa 078-8510, Japan
| | - Ikunobu Muramatsu
- Department of Pharmacology, School of Medicine, Kanazawa Medical University, Ishikawa 920-0293, Japan
| | - Takayoshi Masuoka
- Department of Pharmacology, School of Medicine, Kanazawa Medical University, Ishikawa 920-0293, Japan
| |
Collapse
|
2
|
Abstract
Phosphoinositides (PIs) are phospholipids derived from phosphatidylinositol. PIs are regulated via reversible phosphorylation, which is directed by the opposing actions of PI kinases and phosphatases. PIs constitute a minor fraction of the total cellular lipid pool but play pleiotropic roles in multiple aspects of cell biology. Genetic mutations of PI regulatory enzymes have been identified in rare congenital developmental syndromes, including ciliopathies, and in numerous human diseases, such as cancer and metabolic and neurological disorders. Accordingly, PI regulatory enzymes have been targeted in the design of potential therapeutic interventions for human diseases. Recent advances place PIs as central regulators of membrane dynamics within functionally distinct subcellular compartments. This brief review focuses on the emerging role PIs play in regulating cell signaling within the primary cilium and in directing transfer of molecules at interorganelle membrane contact sites and identifies new roles for PIs in subcellular spaces.
Collapse
Affiliation(s)
- Elizabeth Michele Davies
- Cancer Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Victoria 3800, Australia
| | - Christina Anne Mitchell
- Cancer Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Victoria 3800, Australia
| | - Harald Alfred Stenmark
- Department of Molecular Cell Biology, Institute for Cancer Research. The Norwegian Radium Hospital, Montebello, N-0379 Oslo, Norway
- Centre for Cancer Cell Reprogramming, Faculty of Medicine, University of Oslo, Montebello, N-0379 Oslo, Norway
| |
Collapse
|
3
|
Qiu S, Lavallée-Adam M, Côté M. Proximity Interactome Map of the Vac14-Fig4 Complex Using BioID. J Proteome Res 2021; 20:4959-4973. [PMID: 34554760 DOI: 10.1021/acs.jproteome.1c00408] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Conversion between phosphatidylinositol-3-phosphate and phosphatidylinositol-3,5-bisphosphate on endosomal membranes is critical for the maturation of early endosomes to late endosomes/lysosomes and is regulated by the PIKfyve-Vac14-Fig4 complex. Despite the importance of this complex for endosomal homeostasis and vesicular trafficking, there is little known about how its activity is regulated or how it interacts with other cellular proteins. Here, we screened for the cellular interactome of Vac14 and Fig4 using proximity-dependent biotin labeling (BioID). After independently screening the interactomes of Vac14 and Fig4, we identified 89 high-confidence protein hits shared by both proteins. Network analysis of these hits revealed pathways with known involvement of the PIKfyve-Vac14-Fig4 complex, including vesicular organization and PI3K/Akt signaling, as well as novel pathways including cell cycle and mitochondrial regulation. We also identified subunits of coatomer complex I (COPI), a Golgi-associated complex with an emerging role in endosomal dynamics. Using proximity ligation assays, we validated the interaction between Vac14 and COPI subunit COPB1 and between Vac14 and Arf1, a GTPase required for COPI assembly. In summary, this study used BioID to comprehensively map the Vac14-Fig4 interactome, revealing potential roles for these proteins in diverse cellular processes and pathways, including preliminary evidence of an interaction between Vac14 and COPI. Data are available via ProteomeXchange with the identifier PXD027917.
Collapse
Affiliation(s)
- Shirley Qiu
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa K1H 8M5, Canada.,Ottawa Institute of Systems Biology, University of Ottawa, Ottawa K1H 8M5, Canada.,Centre for Infection, Immunity, and Inflammation, University of Ottawa, Ottawa K1H 8M5, Canada
| | - Mathieu Lavallée-Adam
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa K1H 8M5, Canada.,Ottawa Institute of Systems Biology, University of Ottawa, Ottawa K1H 8M5, Canada
| | - Marceline Côté
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa K1H 8M5, Canada.,Ottawa Institute of Systems Biology, University of Ottawa, Ottawa K1H 8M5, Canada.,Centre for Infection, Immunity, and Inflammation, University of Ottawa, Ottawa K1H 8M5, Canada
| |
Collapse
|
4
|
Lafontaine M, Lia AS, Bourthoumieu S, Beauvais-Dzugan H, Derouault P, Arné-Bes MC, Sarret C, Laffargue F, Magot A, Sturtz F, Magy L, Magdelaine C. Clinical features of homozygous FIG4-p.Ile41Thr Charcot-Marie-Tooth 4J patients. Ann Clin Transl Neurol 2021; 8:471-476. [PMID: 33405357 PMCID: PMC7886039 DOI: 10.1002/acn3.51175] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 07/31/2020] [Accepted: 08/11/2020] [Indexed: 11/21/2022] Open
Abstract
We describe the clinical, electrodiagnostic, and genetic findings of three homozygous FIG4‐c.122T>C patients suffering from Charcot‐Marie‐Tooth disease type 4J (AR‐CMT‐FIG4). This syndrome usually involves compound heterozygosity associating FIG4‐c.122T>C, a hypomorphic allele coding an unstable FIG4‐p.Ile41Thr protein, and a null allele. While the compound heterozygous patients presenting with early onset usually show rapid progression, the homozygous patients described here show the signs of relative clinical stability. As FIG4 activity is known to be dose dependent, these patients’ observations could suggest that the therapeutic perspective of increasing levels of the protein to improve the phenotype of AR‐CMT‐FIG4‐patients might be efficient.
Collapse
Affiliation(s)
| | - Anne-Sophie Lia
- Service de Biochimie et Génétique Moléculaire, CHU Limoges, France.,Université de Limoges, MMNP, Limoges, France.,UF de Bio-informatique, CHU Limoges, France
| | | | - Hélène Beauvais-Dzugan
- Service de Biochimie et Génétique Moléculaire, CHU Limoges, France.,Université de Limoges, MMNP, Limoges, France
| | - Paco Derouault
- Service d'Histologie, Cytologie et Cytogénétique, CHU Limoges, France
| | - Marie-Christine Arné-Bes
- Explorations Neurophysiologiques, Centre SLA, Centre de référence de pathologie neuromusculaire, CHU Toulouse, France
| | | | | | - Armelle Magot
- Centre de Référence des maladies neuromusculaires AOC, CHU Hôtel Dieu, Nantes, France
| | - Franck Sturtz
- Service de Biochimie et Génétique Moléculaire, CHU Limoges, France.,Université de Limoges, MMNP, Limoges, France
| | - Laurent Magy
- Université de Limoges, MMNP, Limoges, France.,CRMR Neuropathies Périphériques Rares, CHU Limoges, France
| | - Corinne Magdelaine
- Service de Biochimie et Génétique Moléculaire, CHU Limoges, France.,Université de Limoges, MMNP, Limoges, France
| |
Collapse
|
5
|
Zimmermann M, Schuster S, Boesch S, Korenke GC, Mohr J, Reichbauer J, Kernstock C, Kotzot D, Spahlinger V, Schüle-Freyer R, Schöls L. FIG4 mutations leading to parkinsonism and a phenotypical continuum between CMT4J and Yunis Varón syndrome. Parkinsonism Relat Disord 2020; 74:6-11. [PMID: 32268254 DOI: 10.1016/j.parkreldis.2020.03.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 03/16/2020] [Accepted: 03/23/2020] [Indexed: 11/18/2022]
Abstract
BACKGROUND Charcot-Marie-Tooth disease type 4J (CMT4J) originates from mutations in the FIG4 gene and leads to distal muscle weakness. Two null alleles of FIG4 cause Yunis Varón syndrome with severe central nervous system involvement, cleidocranial dysmorphism, absent thumbs and halluces and early death. OBJECTIVES To analyse the phenotypic spectrum of FIG4-related disease and explore effects of residual FIG4 protein. METHODS Phenotyping of five new patients with FIG4-related disease. Western Blot analyses of FIG4 from patient fibroblasts. RESULTS Next generation sequencing revealed compound heterozygous variants in FIG4 in five patients. All five patients presented with peripheral neuropathy, various degree of dysmorphism and a central nervous system involvement comprising Parkinsonism in 3/5 patients, cerebellar ataxia (1/5), spasticity of lower limbs (1/5), epilepsy (1/5) and/or cognitive deficits (2/5). Onset varied between the first and the seventh decade. There was no residual FIG4 protein detectable in fibroblasts of the four analysed patients. CONCLUSION This study extends the phenotypic spectrum of FIG4-related disease to Parkinsonism as a feature and demonstrates new phenotypes on a continuum between CMT4J and Yunis Varón syndrome.
Collapse
Affiliation(s)
- Milan Zimmermann
- Department of Neurology and Hertie Institute for Clinical Brain Research and Center of Neurology, University of Tübingen, Hoppe-Seyler-Str. 3, 72076, Tübingen, Germany; German Center for Neurodegenerative Diseases (DZNE), 72076, Tübingen, Germany.
| | - Stefanie Schuster
- Department of Neurology and Hertie Institute for Clinical Brain Research and Center of Neurology, University of Tübingen, Hoppe-Seyler-Str. 3, 72076, Tübingen, Germany; German Center for Neurodegenerative Diseases (DZNE), 72076, Tübingen, Germany
| | - Sylvia Boesch
- Department of Neurology, Medical University, Christoph-Probst-Platz 52, 6020, Innsbruck, Austria
| | - G Christoph Korenke
- Department of Neuropediatrics, University of Oldenburg, Rahel-Straus-Straße 10, 26133, Oldenburg, Germany
| | - Julia Mohr
- Center for Genomics and Transcriptomics (CeGaT) GmbH and Practice for Human Genetics, Paul-Ehrlich-Straße 23, 72076, Tübingen, Germany
| | - Jennifer Reichbauer
- Department of Neurology and Hertie Institute for Clinical Brain Research and Center of Neurology, University of Tübingen, Hoppe-Seyler-Str. 3, 72076, Tübingen, Germany
| | - Christoph Kernstock
- University Eye Hospital, Center for Ophthalmology, Elfriede-Aulhorn-Str. 7, 72076, Tübingen, Germany
| | - Dieter Kotzot
- Institute of Human Genetics, Medical University Innsbruck, Christoph-Probst-Platz 52, 6020, Innsbruck, Austria; Division of Clinical Genetics, Department of Pediatrics, Paracelsus Medical University, Strubergasse 21, 5020, Salzburg, Austria
| | - Veronika Spahlinger
- Department of Neurology and Hertie Institute for Clinical Brain Research and Center of Neurology, University of Tübingen, Hoppe-Seyler-Str. 3, 72076, Tübingen, Germany
| | - Rebecca Schüle-Freyer
- Department of Neurology and Hertie Institute for Clinical Brain Research and Center of Neurology, University of Tübingen, Hoppe-Seyler-Str. 3, 72076, Tübingen, Germany; German Center for Neurodegenerative Diseases (DZNE), 72076, Tübingen, Germany
| | - Ludger Schöls
- Department of Neurology and Hertie Institute for Clinical Brain Research and Center of Neurology, University of Tübingen, Hoppe-Seyler-Str. 3, 72076, Tübingen, Germany; German Center for Neurodegenerative Diseases (DZNE), 72076, Tübingen, Germany
| |
Collapse
|
6
|
Shisheva A, Sbrissa D, Hu B, Li J. Severe Consequences of SAC3/FIG4 Phosphatase Deficiency to Phosphoinositides in Patients with Charcot-Marie-Tooth Disease Type-4J. Mol Neurobiol 2019; 56:8656-8667. [PMID: 31313076 PMCID: PMC11995980 DOI: 10.1007/s12035-019-01693-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 07/01/2019] [Indexed: 01/26/2023]
Abstract
Charcot-Marie-Tooth disease type-4J (CMT4J), an autosomal recessively inherited peripheral neuropathy characterized by neuronal degeneration, segmental demyelination, and limb muscle weakness, is caused by compound heterozygous mutations in the SAC3/FIG4 gene, resulting in SAC3/FIG4 protein deficiency. SAC3/FIG4 is a phosphatase that not only turns over PtdIns(3,5)P2 to PtdIns3P but also promotes PtdIns(3,5)P2 synthesis by activating the PIKFYVE kinase that also makes PtdIns5P. Whether CMT4J patients have alterations in PtdIns(3,5)P2, PtdIns5P or in other phosphoinositides (PIs), and if yes, in what direction these changes might be, has never been examined. We performed PI profiling in primary fibroblasts from a cohort of CMT4J patients. Subsequent to myo-[2-3H]inositol cell labeling to equilibrium, steady-state levels of PIs were quantified by HPLC under conditions concurrently detecting PtdIns5P, PtdIns(3,5)P2, and the other PIs. Immunoblotting verified SAC3/FIG4 depletion in CMT4J fibroblasts. Compared to normal human controls (n = 9), both PtdIns(3,5)P2 and PtdIns5P levels were significantly decreased in CMT4J fibroblasts (n = 13) by 36.4 ± 3.6% and 43.1 ± 4.4%, respectively (p < 0.0001). These reductions were independent of patients' gender or disease onset. Although mean values for PtdIns3P in the CMT4J cohort remained unchanged, there were high variations in PtdIns3P among individual patients. Aberrant endolysosomal vacuoles, typically seen under PtdIns(3,5)P2 reduction, were apparent but not in fibroblasts from all patients. The subset of patients without aberrant vacuoles exhibited especially low PtdIns3P levels. Concomitant decreases in PtdIns5P and PtdIns(3,5)P2 and the link between PtdIns3P levels and cellular vacuolization are novel insights shedding further light into the molecular determinants in CMT4J polyneuropathy.
Collapse
Affiliation(s)
- Assia Shisheva
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI, USA.
| | - Diego Sbrissa
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Bo Hu
- Department of Neurology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Jun Li
- Department of Neurology, Wayne State University School of Medicine, Detroit, MI, USA
- John D. Dingell VA Medical Center, Detroit, MI, USA
| |
Collapse
|
7
|
Understanding phosphoinositides: rare, dynamic, and essential membrane phospholipids. Biochem J 2019; 476:1-23. [PMID: 30617162 DOI: 10.1042/bcj20180022] [Citation(s) in RCA: 177] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 12/03/2018] [Accepted: 12/07/2018] [Indexed: 12/15/2022]
Abstract
Polyphosphoinositides (PPIs) are essential phospholipids located in the cytoplasmic leaflet of eukaryotic cell membranes. Despite contributing only a small fraction to the bulk of cellular phospholipids, they make remarkable contributions to practically all aspects of a cell's life and death. They do so by recruiting cytoplasmic proteins/effectors or by interacting with cytoplasmic domains of membrane proteins at the membrane-cytoplasm interface to organize and mold organelle identity. The present study summarizes aspects of our current understanding concerning the metabolism, manipulation, measurement, and intimate roles these lipids play in regulating membrane homeostasis and vital cell signaling reactions in health and disease.
Collapse
|
8
|
Hu B, Mccollum M, Ravi V, Arpag S, Moiseev D, Castoro R, Mobley BC, Burnette BW, Siskind C, Day JW, Yawn R, Feely S, Li Y, Yan Q, Shy ME, Li J. Myelin abnormality in Charcot-Marie-Tooth type 4J recapitulates features of acquired demyelination. Ann Neurol 2018; 83:756-770. [PMID: 29518270 PMCID: PMC5912982 DOI: 10.1002/ana.25198] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Revised: 03/05/2018] [Accepted: 03/07/2018] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Charcot-Marie-Tooth type 4J (CMT4J) is a rare autosomal recessive neuropathy caused by mutations in FIG4 that result in loss of FIG4 protein. This study investigates the natural history and mechanisms of segmental demyelination in CMT4J. METHODS Over the past 9 years, we have enrolled and studied a cohort of 12 CMT4J patients, including 6 novel FIG4 mutations. We evaluated these patients and related mouse models using morphological, electrophysiological, and biochemical approaches. RESULTS We found sensory motor demyelinating polyneuropathy consistently in all patients. This underlying myelin pathology was associated with nonuniform slowing of conduction velocities, conduction block, and temporal dispersion on nerve conduction studies, which resemble those features in acquired demyelinating peripheral nerve diseases. Segmental demyelination was also confirmed in mice without Fig4 (Fig4-/- ). The demyelination was associated with an increase of Schwann cell dedifferentiation and macrophages in spinal roots where nerve-blood barriers are weak. Schwann cell dedifferentiation was induced by the increasing intracellular Ca2+ . Suppression of Ca2+ level by a chelator reduced dedifferentiation and demyelination of Schwann cells in vitro and in vivo. Interestingly, cell-specific knockout of Fig4 in mouse Schwann cells or neurons failed to cause segmental demyelination. INTERPRETATION Myelin change in CMT4J recapitulates the features of acquired demyelinating neuropathies. This pathology is not Schwann cell autonomous. Instead, it relates to systemic processes involving interactions of multiple cell types and abnormally elevated intracellular Ca2+ . Injection of a Ca2+ chelator into Fig4-/- mice improved segmental demyelination, thereby providing a therapeutic strategy against demyelination. Ann Neurol 2018;83:756-770.
Collapse
Affiliation(s)
- Bo Hu
- Department of Neurology, Center for Human Genetic Research, and Vanderbilt Brain Institute, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Megan Mccollum
- Department of Neurology, Center for Human Genetic Research, and Vanderbilt Brain Institute, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Vignesh Ravi
- Department of Neurology, Center for Human Genetic Research, and Vanderbilt Brain Institute, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Sezgi Arpag
- Department of Neurology, Center for Human Genetic Research, and Vanderbilt Brain Institute, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Daniel Moiseev
- Department of Neurology, Center for Human Genetic Research, and Vanderbilt Brain Institute, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Ryan Castoro
- Department of PMR, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Bret C. Mobley
- Department of Pathology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Bryan W. Burnette
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Carly Siskind
- Department of Neurology, Stanford University, Palo Alto, California
| | - John W. Day
- Department of Neurology, Stanford University, Palo Alto, California
| | - Robin Yawn
- Department of Neurology, Center for Human Genetic Research, and Vanderbilt Brain Institute, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Shawna Feely
- Department of Neurology, University of Iowa, Iowa City, Iowa
| | - Yuebing Li
- Department of Neurology, Cleveland Clinic Foundation, Cleveland, Ohio
| | - Qing Yan
- Department of Neurology, Center for Human Genetic Research, and Vanderbilt Brain Institute, Vanderbilt University Medical Center, Nashville, Tennessee
- Department of Laboratory Medicine, the Second Affiliated Hospital of Qingdao University, Qingdao, China
| | - Michael E. Shy
- Department of Neurology, University of Iowa, Iowa City, Iowa
| | - Jun Li
- Department of Neurology, Center for Human Genetic Research, and Vanderbilt Brain Institute, Vanderbilt University Medical Center, Nashville, Tennessee
- Tennessee Valley Healthcare System – Nashville VA, Nashville, Tennessee
| |
Collapse
|
9
|
Orengo JP, Khemani P, Day JW, Li J, Siskind CE. Charcot Marie Tooth disease type 4J with complex central nervous system features. Ann Clin Transl Neurol 2018; 5:222-225. [PMID: 29468183 PMCID: PMC5817837 DOI: 10.1002/acn3.525] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 12/11/2017] [Accepted: 12/12/2017] [Indexed: 01/28/2023] Open
Abstract
We describe a family with Charcot Marie Tooth disease type 4J presenting with features of Charcot Marie Tooth disease plus parkinsonism and aphemia. Genetic testing found two variants in the FIG4 gene: c.122T>C (p.I41T) – the most common Charcot Marie Tooth disease type 4J variant – and c.1949‐10T>G (intronic). Proband fibroblasts showed absent FIG4 protein on western blot, and skipping of exon 18 by RT‐PCR. As most patients with Charcot Marie Tooth disease type 4J do not have central nervous system deficits, we postulate the intronic variant and I41T mutation together are causing loss of FIG4 protein and subsequently the central nervous system findings in our family.
Collapse
Affiliation(s)
- James P Orengo
- Department of Neurology Baylor College of Medicine Houston Texas
| | - Pravin Khemani
- Department of Neurology University of Texas Southwestern Medical Center Dallas Texas
| | - John W Day
- Department of Neurology Stanford University Stanford California
| | - Jun Li
- Department of Neurology Vanderbilt University Nashville Tennessee
| | - Carly E Siskind
- Neurosciences Department Stanford Health Care Palo Alto California
| |
Collapse
|
10
|
Qiu S, Leung A, Bo Y, Kozak RA, Anand SP, Warkentin C, Salambanga FDR, Cui J, Kobinger G, Kobasa D, Côté M. Ebola virus requires phosphatidylinositol (3,5) bisphosphate production for efficient viral entry. Virology 2017; 513:17-28. [PMID: 29031163 DOI: 10.1016/j.virol.2017.09.028] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 09/28/2017] [Accepted: 09/30/2017] [Indexed: 12/11/2022]
Abstract
For entry, Ebola virus (EBOV) requires the interaction of its viral glycoprotein with the cellular protein Niemann-Pick C1 (NPC1) which resides in late endosomes and lysosomes. How EBOV is trafficked and delivered to NPC1 and whether this is positively regulated during entry remain unclear. Here, we show that the PIKfyve-ArPIKfyve-Sac3 cellular complex, which is involved in the metabolism of phosphatidylinositol (3,5) bisphosphate (PtdIns(3,5)P2), is critical for EBOV infection. Although the expression of all subunits of the complex was required for efficient entry, PIKfyve kinase activity was specifically critical for entry by all pathogenic filoviruses. Inhibition of PIKfyve prevented colocalization of EBOV with NPC1 and led to virus accumulation in intracellular vesicles with characteristics of early endosomes. Importantly, genetically-encoded phosphoinositide probes revealed an increase in PtdIns(3,5)P2-positive vesicles in cells during EBOV entry. Taken together, our studies suggest that EBOV requires PtdIns(3,5)P2 production in cells to promote efficient delivery to NPC1.
Collapse
Affiliation(s)
- Shirley Qiu
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Canada; Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Canada
| | - Anders Leung
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Canada
| | - Yuxia Bo
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Canada; Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Canada
| | - Robert A Kozak
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Canada
| | - Sai Priya Anand
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Canada; Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Canada
| | - Corina Warkentin
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Canada; Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Canada
| | - Fabiola D R Salambanga
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Canada; Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Canada
| | - Jennifer Cui
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Canada; Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Canada
| | - Gary Kobinger
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Canada
| | - Darwyn Kobasa
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Canada; Department of Medical Microbiology, University of Manitoba, Winnipeg, Canada
| | - Marceline Côté
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Canada; Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Canada.
| |
Collapse
|
11
|
Morioka S, Nigorikawa K, Hazeki K, Ohmura M, Sakamoto H, Matsumura T, Takasuga S, Hazeki O. Phosphoinositide phosphatase Sac3 regulates the cell surface expression of scavenger receptor A and formation of lipid droplets in macrophages. Exp Cell Res 2017; 357:252-259. [DOI: 10.1016/j.yexcr.2017.05.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 05/12/2017] [Accepted: 05/23/2017] [Indexed: 11/25/2022]
|
12
|
De Craene JO, Bertazzi DL, Bär S, Friant S. Phosphoinositides, Major Actors in Membrane Trafficking and Lipid Signaling Pathways. Int J Mol Sci 2017; 18:ijms18030634. [PMID: 28294977 PMCID: PMC5372647 DOI: 10.3390/ijms18030634] [Citation(s) in RCA: 145] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 03/02/2017] [Accepted: 03/06/2017] [Indexed: 11/30/2022] Open
Abstract
Phosphoinositides are lipids involved in the vesicular transport of proteins and lipids between the different compartments of eukaryotic cells. They act by recruiting and/or activating effector proteins and thus are involved in regulating various cellular functions, such as vesicular budding, membrane fusion and cytoskeleton dynamics. Although detected in small concentrations in membranes, their role is essential to cell function, since imbalance in their concentrations is a hallmark of many cancers. Their synthesis involves phosphorylating/dephosphorylating positions D3, D4 and/or D5 of their inositol ring by specific lipid kinases and phosphatases. This process is tightly regulated and specific to the different intracellular membranes. Most enzymes involved in phosphoinositide synthesis are conserved between yeast and human, and their loss of function leads to severe diseases (cancer, myopathy, neuropathy and ciliopathy).
Collapse
Affiliation(s)
- Johan-Owen De Craene
- Department of Molecular and Cellular Genetics, Université de Strasbourg, CNRS, GMGM UMR 7156, F-67000 Strasbourg, France.
| | - Dimitri L Bertazzi
- Department of Molecular and Cellular Genetics, Université de Strasbourg, CNRS, GMGM UMR 7156, F-67000 Strasbourg, France.
| | - Séverine Bär
- Department of Molecular and Cellular Genetics, Université de Strasbourg, CNRS, GMGM UMR 7156, F-67000 Strasbourg, France.
| | - Sylvie Friant
- Department of Molecular and Cellular Genetics, Université de Strasbourg, CNRS, GMGM UMR 7156, F-67000 Strasbourg, France.
| |
Collapse
|
13
|
Bharadwaj R, Cunningham KM, Zhang K, Lloyd TE. FIG4 regulates lysosome membrane homeostasis independent of phosphatase function. Hum Mol Genet 2015; 25:681-92. [PMID: 26662798 DOI: 10.1093/hmg/ddv505] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2015] [Accepted: 12/07/2015] [Indexed: 12/31/2022] Open
Abstract
FIG4 is a phosphoinositide phosphatase that is mutated in several diseases including Charcot-Marie-Tooth Disease 4J (CMT4J) and Yunis-Varon syndrome (YVS). To investigate the mechanism of disease pathogenesis, we generated Drosophila models of FIG4-related diseases. Fig4 null mutant animals are viable but exhibit marked enlargement of the lysosomal compartment in muscle cells and neurons, accompanied by an age-related decline in flight ability. Transgenic animals expressing Drosophila Fig4 missense mutations corresponding to human pathogenic mutations can partially rescue lysosomal expansion phenotypes, consistent with these mutations causing decreased FIG4 function. Interestingly, Fig4 mutations predicted to inactivate FIG4 phosphatase activity rescue lysosome expansion phenotypes, and mutations in the phosphoinositide (3) phosphate kinase Fab1 that performs the reverse enzymatic reaction also causes a lysosome expansion phenotype. Since FIG4 and FAB1 are present together in the same biochemical complex, these data are consistent with a model in which FIG4 serves a phosphatase-independent biosynthetic function that is essential for lysosomal membrane homeostasis. Lysosomal phenotypes are suppressed by genetic inhibition of Rab7 or the HOPS complex, demonstrating that FIG4 functions after endosome-to-lysosome fusion. Furthermore, disruption of the retromer complex, implicated in recycling from the lysosome to Golgi, does not lead to similar phenotypes as Fig4, suggesting that the lysosomal defects are not due to compromised retromer-mediated recycling of endolysosomal membranes. These data show that FIG4 plays a critical noncatalytic function in maintaining lysosomal membrane homeostasis, and that this function is disrupted by mutations that cause CMT4J and YVS.
Collapse
Affiliation(s)
| | | | | | - Thomas E Lloyd
- Department of Neurology, and The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
14
|
Ikonomov OC, Sbrissa D, Compton LM, Kumar R, Tisdale EJ, Chen X, Shisheva A. The Protein Complex of Neurodegeneration-related Phosphoinositide Phosphatase Sac3 and ArPIKfyve Binds the Lewy Body-associated Synphilin-1, Preventing Its Aggregation. J Biol Chem 2015; 290:28515-28529. [PMID: 26405034 DOI: 10.1074/jbc.m115.669929] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Indexed: 12/14/2022] Open
Abstract
The 5-phosphoinositide phosphatase Sac3, in which loss-of-function mutations are linked to neurodegenerative disorders, forms a stable cytosolic complex with the scaffolding protein ArPIKfyve. The ArPIKfyve-Sac3 heterodimer interacts with the phosphoinositide 5-kinase PIKfyve in a ubiquitous ternary complex that couples PtdIns(3,5)P2 synthesis with turnover at endosomal membranes, thereby regulating the housekeeping endocytic transport in eukaryotes. Neuron-specific associations of the ArPIKfyve-Sac3 heterodimer, which may shed light on the neuropathological mechanisms triggered by Sac3 dysfunction, are unknown. Here we conducted mass spectrometry analysis for brain-derived interactors of ArPIKfyve-Sac3 and unraveled the α-synuclein-interacting protein Synphilin-1 (Sph1) as a new component of the ArPIKfyve-Sac3 complex. Sph1, a predominantly neuronal protein that facilitates aggregation of α-synuclein, is a major component of Lewy body inclusions in neurodegenerative α-synucleinopathies. Modulations in ArPIKfyve/Sac3 protein levels by RNA silencing or overexpression in several mammalian cell lines, including human neuronal SH-SY5Y or primary mouse cortical neurons, revealed that the ArPIKfyve-Sac3 complex specifically altered the aggregation properties of Sph1-GFP. This effect required an active Sac3 phosphatase and proceeded through mechanisms that involved increased Sph1-GFP partitioning into the cytosol and removal of Sph1-GFP aggregates by basal autophagy but not by the proteasomal system. If uncoupled from ArPIKfyve elevation, overexpressed Sac3 readily aggregated, markedly enhancing the aggregation potential of Sph1-GFP. These data identify a novel role of the ArPIKfyve-Sac3 complex in the mechanisms controlling aggregate formation of Sph1 and suggest that Sac3 protein deficiency or overproduction may facilitate aggregation of aggregation-prone proteins, thereby precipitating the onset of multiple neuronal disorders.
Collapse
Affiliation(s)
- Ognian C Ikonomov
- Departments of Physiology, Wayne State School of Medicine, Detroit, Michigan 48201
| | - Diego Sbrissa
- Departments of Physiology, Wayne State School of Medicine, Detroit, Michigan 48201
| | - Lauren M Compton
- Departments of Physiology, Wayne State School of Medicine, Detroit, Michigan 48201
| | - Rita Kumar
- Departments of Physiology, Wayne State School of Medicine, Detroit, Michigan 48201; Departments of Emergency Medicine, Wayne State School of Medicine, Detroit, Michigan 48201
| | - Ellen J Tisdale
- Departments of Pharmacology, Wayne State School of Medicine, Detroit, Michigan 48201
| | - Xuequn Chen
- Departments of Physiology, Wayne State School of Medicine, Detroit, Michigan 48201
| | - Assia Shisheva
- Departments of Physiology, Wayne State School of Medicine, Detroit, Michigan 48201.
| |
Collapse
|
15
|
Bertazzi DL, De Craene JO, Bär S, Sanjuan-Vazquez M, Raess MA, Friant S. [Phosphoinositides: lipidic essential actors in the intracellular traffic]. Biol Aujourdhui 2015; 209:97-109. [PMID: 26115715 DOI: 10.1051/jbio/2015006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Indexed: 06/04/2023]
Abstract
Phosphoinositides (PPIn) are lipids involved in the vesicular transport of proteins between the different intracellular compartments. They act by recruiting and/or activating effector proteins and are thus involved in crucial cellular functions including vesicle budding, fusion and dynamics of membranes and regulation of the cytoskeleton. Although they are present in low concentrations in membranes, their activity is essential for cell survival and needs to be tightly controlled. Therefore, phosphatases and kinases specific of the various cellular membranes can phosphorylate/dephosphorylate their inositol ring on the positions D3, D4 and/or D5. The differential phosphorylation determines the intracellular localisation and the activity of the PPIn. Indeed, non-phosphorylated phosphatidylinositol (PtdIns) is the basic component of the PPIn and can be found in all eukaryotic cells at the cytoplasmic face of the ER, the Golgi, mitochondria and microsomes. It can get phosphorylated on position D4 to obtain PtdIns4P, a PPIn enriched in the Golgi compartment and involved in the maintenance of this organelle as well as anterograde and retrograde transport to and from the Golgi. PtdIns phosphorylation on position D3 results in PtdIns3P that is required for endosomal transport and multivesicular body (MVB) formation and sorting. These monophosphorylated PtdIns can be further phosphorylated to produce bisphophorylated PtdIns. Thus, PtdIns(4,5)P2, mainly produced by PtdIns4P phosphorylation, is enriched in the plasma membrane and involved in the regulation of actin cytoskeleton and endocytosis. PtdIns(3,5)P2, mainly produced by PtdIns3P phosphorylation, is enriched in late endosomes, MVBs and the lysosome/vacuole and plays a role in endosome to vacuole transport. PtdIns(3,4)P2 is absent in yeast, cells and mainly produced by PtdIns4P phosphorylation in human cells; PtdIns(3,4)P2 is localised in the plasma membrane and plays an important role as a second messenger by recruiting specific protein kinases (Akt and PDK1). Finally the triple phosphorylated PPIn, PtdIns(3,4,5)P3 also absent in yeast, is produced by the phosphorylation of PtdIns(3,4)P2 and localized at the plasma membrane of human cells where it binds proteins via their PH domain. Interaction partners include members of the Arf (ADP-ribosylation factors) family, PDK1 (Phosphoinositide Dependent Kinase 1) and Akt. Therefore this last PPIn is essential for the control of cell proliferation and its deregulation leads to the development of numerous cancers. In conclusion, the regulation of PPIn phosphorylation/dephosphorylation is complex and needs to be very precisely regulated. Indeed phosphatases and kinases allow the maintenance of the equilibrium between the different forms. PPIn play a crucial role in numerous cellular functions and a loss in their synthesis or regulation results in severe genetic diseases.
Collapse
|
16
|
Waugh MG. PIPs in neurological diseases. Biochim Biophys Acta Mol Cell Biol Lipids 2015; 1851:1066-82. [PMID: 25680866 DOI: 10.1016/j.bbalip.2015.02.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Revised: 01/29/2015] [Accepted: 02/01/2015] [Indexed: 12/19/2022]
Abstract
Phosphoinositide (PIP) lipids regulate many aspects of cell function in the nervous system including receptor signalling, secretion, endocytosis, migration and survival. Levels of PIPs such as PI4P, PI(4,5)P2 and PI(3,4,5)P3 are normally tightly regulated by phosphoinositide kinases and phosphatases. Deregulation of these biochemical pathways leads to lipid imbalances, usually on intracellular endosomal membranes, and these changes have been linked to a number of major neurological diseases including Alzheimer's, Parkinson's, epilepsy, stroke, cancer and a range of rarer inherited disorders including brain overgrowth syndromes, Charcot-Marie-Tooth neuropathies and neurodevelopmental conditions such as Lowe's syndrome. This article analyses recent progress in this area and explains how PIP lipids are involved, to varying degrees, in almost every class of neurological disease. This article is part of a Special Issue entitled Brain Lipids.
Collapse
Affiliation(s)
- Mark G Waugh
- Lipid and Membrane Biology Group, Institute for Liver and Digestive Health, UCL, Royal Free Campus, Rowland Hill Street, London NW3 2PF, United Kingdom.
| |
Collapse
|
17
|
Schulze U, Vollenbröker B, Braun DA, Van Le T, Granado D, Kremerskothen J, Fränzel B, Klosowski R, Barth J, Fufezan C, Wolters DA, Pavenstädt H, Weide T. The Vac14-interaction network is linked to regulators of the endolysosomal and autophagic pathway. Mol Cell Proteomics 2014; 13:1397-411. [PMID: 24578385 DOI: 10.1074/mcp.m113.034108] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The scaffold protein Vac14 acts in a complex with the lipid kinase PIKfyve and its counteracting phosphatase FIG4, regulating the interconversion of phosphatidylinositol-3-phosphate to phosphatidylinositol-3,5-bisphosphate. Dysfunctional Vac14 mutants, a deficiency of one of the Vac14 complex components, or inhibition of PIKfyve enzymatic activity results in the formation of large vacuoles in cells. How these vacuoles are generated and which processes are involved are only poorly understood. Here we show that ectopic overexpression of wild-type Vac14 as well as of the PIKfyve-binding deficient Vac14 L156R mutant causes vacuoles. Vac14-dependent vacuoles and PIKfyve inhibitor-dependent vacuoles resulted in elevated levels of late endosomal, lysosomal, and autophagy-associated proteins. However, only late endosomal marker proteins were bound to the membranes of these enlarged vacuoles. In order to decipher the linkage between the Vac14 complex and regulators of the endolysosomal pathway, a protein affinity approach combined with multidimensional protein identification technology was conducted, and novel molecular links were unraveled. We found and verified the interaction of Rab9 and the Rab7 GAP TBC1D15 with Vac14. The identified Rab-related interaction partners support the theory that the regulation of vesicular transport processes and phosphatidylinositol-modifying enzymes are tightly interconnected.
Collapse
Affiliation(s)
- Ulf Schulze
- From the ‡Department of Internal Medicine D, Molecular Nephrology, University Hospital of Muenster, Albert-Schweitzer Campus 1, A14, D-48149 Muenster, Germany
| | - Beate Vollenbröker
- From the ‡Department of Internal Medicine D, Molecular Nephrology, University Hospital of Muenster, Albert-Schweitzer Campus 1, A14, D-48149 Muenster, Germany
| | - Daniela A Braun
- From the ‡Department of Internal Medicine D, Molecular Nephrology, University Hospital of Muenster, Albert-Schweitzer Campus 1, A14, D-48149 Muenster, Germany
| | - Truc Van Le
- From the ‡Department of Internal Medicine D, Molecular Nephrology, University Hospital of Muenster, Albert-Schweitzer Campus 1, A14, D-48149 Muenster, Germany
| | - Daniel Granado
- From the ‡Department of Internal Medicine D, Molecular Nephrology, University Hospital of Muenster, Albert-Schweitzer Campus 1, A14, D-48149 Muenster, Germany
| | - Joachim Kremerskothen
- From the ‡Department of Internal Medicine D, Molecular Nephrology, University Hospital of Muenster, Albert-Schweitzer Campus 1, A14, D-48149 Muenster, Germany
| | - Benjamin Fränzel
- ‖Analytical Chemistry NC4/72, Biomolecular Mass Spectrometry/Proteincenter, Ruhr-University Bochum, Universitätsstr. 150, D-44801 Bochum, Germany
| | - Rafael Klosowski
- ‖Analytical Chemistry NC4/72, Biomolecular Mass Spectrometry/Proteincenter, Ruhr-University Bochum, Universitätsstr. 150, D-44801 Bochum, Germany
| | - Johannes Barth
- ‡‡Institute of Plant Biology and Biotechnology, University of Muenster, Schlossplatz 8, D-48143 Muenster, Germany
| | - Christian Fufezan
- ‡‡Institute of Plant Biology and Biotechnology, University of Muenster, Schlossplatz 8, D-48143 Muenster, Germany
| | - Dirk A Wolters
- ‖Analytical Chemistry NC4/72, Biomolecular Mass Spectrometry/Proteincenter, Ruhr-University Bochum, Universitätsstr. 150, D-44801 Bochum, Germany
| | - Hermann Pavenstädt
- From the ‡Department of Internal Medicine D, Molecular Nephrology, University Hospital of Muenster, Albert-Schweitzer Campus 1, A14, D-48149 Muenster, Germany;
| | - Thomas Weide
- From the ‡Department of Internal Medicine D, Molecular Nephrology, University Hospital of Muenster, Albert-Schweitzer Campus 1, A14, D-48149 Muenster, Germany;
| |
Collapse
|
18
|
Abstract
The endolysosomal system and autophagy are essential components of macromolecular turnover in eukaryotic cells. The low-abundance signaling lipid PI(3,5)P2 is a key regulator of this pathway. Analysis of mouse models with defects in PI(3,5)P2 biosynthesis has revealed the unique dependence of the mammalian nervous system on this signaling pathway. This insight led to the discovery of the molecular basis for several human neurological disorders, including Charcot-Marie-Tooth disease and Yunis-Varon syndrome. Spontaneous mutants, conditional knockouts, transgenic lines, and gene-trap alleles of Fig4, Vac14, and Pikfyve (Fab1) in the mouse have provided novel information regarding the role of PI(3,5)P2in vivo. This review summarizes what has been learned from mouse models and highlights the utility of manipulating complex signaling pathways in vivo.
Collapse
Affiliation(s)
- Guy M Lenk
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan, USA
| | - Miriam H Meisler
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan, USA.
| |
Collapse
|
19
|
McCartney AJ, Zhang Y, Weisman LS. Phosphatidylinositol 3,5-bisphosphate: low abundance, high significance. Bioessays 2013; 36:52-64. [PMID: 24323921 DOI: 10.1002/bies.201300012] [Citation(s) in RCA: 158] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Recent studies of the low abundant signaling lipid, phosphatidylinositol 3,5-bisphosphate (PI(3,5)P2 ), reveal an intriguingly diverse list of downstream pathways, the intertwined relationship between PI(3,5)P2 and PI5P, as well as links to neurodegenerative diseases. Derived from the structural lipid phosphatidylinositol, PI(3,5)P2 is dynamically generated on multiple cellular compartments where interactions with an increasing list of effectors regulate many cellular pathways. A complex of proteins that includes Fab1/PIKfyve, Vac14, and Fig4/Sac3 mediates the biosynthesis of PI(3,5)P2 , and mutations that disrupt complex function and/or formation cause profound consequences in cells. Surprisingly, mutations in this pathway are linked with neurological diseases, including Charcot-Marie-Tooth syndrome and amyotrophic lateral sclerosis. Future studies of PI(3,5)P2 and PI5P are likely to expand the roles of these lipids in regulation of cellular functions, as well as provide new approaches for treatment of some neurological diseases.
Collapse
Affiliation(s)
- Amber J McCartney
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, USA
| | | | | |
Collapse
|
20
|
Novel FIG4 mutations in Yunis–Varon syndrome. J Hum Genet 2013; 58:822-4. [DOI: 10.1038/jhg.2013.104] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Revised: 08/31/2013] [Accepted: 09/02/2013] [Indexed: 11/08/2022]
|
21
|
Ikonomov OC, Filios C, Sbrissa D, Chen X, Shisheva A. The PIKfyve-ArPIKfyve-Sac3 triad in human breast cancer: Functional link between elevated Sac3 phosphatase and enhanced proliferation of triple negative cell lines. Biochem Biophys Res Commun 2013; 440:342-7. [PMID: 24070605 DOI: 10.1016/j.bbrc.2013.09.080] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2013] [Accepted: 09/16/2013] [Indexed: 12/11/2022]
Abstract
The phosphoinositide 5-kinase PIKfyve and 5-phosphatase Sac3 are scaffolded by ArPIKfyve in the PIKfyve-ArPIKfyve-Sac3 (PAS) regulatory complex to trigger a unique loop of PtdIns3P-PtdIns(3,5)P2 synthesis and turnover. Whereas the metabolizing enzymes of the other 3-phosphoinositides have already been implicated in breast cancer, the role of the PAS proteins and the PtdIns3P-PtdIns(3,5)P2 conversion is unknown. To begin elucidating their roles, in this study we monitored the endogenous levels of the PAS complex proteins in cell lines derived from hormone-receptor positive (MCF7 and T47D) or triple-negative breast cancers (TNBC) (BT20, BT549 and MDA-MB-231) as well as in MCF10A cells derived from non-tumorigenic mastectomy. We report profound upregulation of Sac3 and ArPIKfyve in the triple negative vs. hormone-sensitive breast cancer or non-tumorigenic cells, with BT cell lines showing the highest levels. siRNA-mediated knockdown of Sac3, but not that of PIKfyve, significantly inhibited proliferation of BT20 and BT549 cells. In these cells, knockdown of ArPIKfyve had only a minor effect, consistent with a primary role for Sac3 in TNBC cell proliferation. Intriguingly, steady-state levels of PtdIns(3,5)P2 in BT20 and T47D cells were similar despite the 6-fold difference in Sac3 levels between these cell lines. However, steady-state levels of PtdIns3P and PtdIns5P, both regulated by the PAS complex, were significantly reduced in BT20 vs. T47D or MCF10A cell lines, consistent with elevated Sac3 affecting directly or indirectly the homeostasis of these lipids in TNBC. Together, our results uncover an unexpected role for Sac3 phosphatase in TNBC cell proliferation. Database analyses, discussed herein, reinforce the involvement of Sac3 in breast cancer pathogenesis.
Collapse
Affiliation(s)
- Ognian C Ikonomov
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI 48201, United States.
| | | | | | | | | |
Collapse
|
22
|
Reifler A, Lenk GM, Li X, Groom L, Brooks SV, Wilson D, Bowerson M, Dirksen RT, Meisler MH, Dowling JJ. Murine Fig4 is dispensable for muscle development but required for muscle function. Skelet Muscle 2013; 3:21. [PMID: 24004519 PMCID: PMC3844516 DOI: 10.1186/2044-5040-3-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Accepted: 07/29/2013] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Phosphatidylinositol phosphates (PIPs) are low-abundance phospholipids that participate in a range of cellular processes, including cell migration and membrane traffic. PIP levels and subcellular distribution are regulated by a series of lipid kinases and phosphatases. In skeletal muscle, PIPs and their enzymatic regulators serve critically important functions exemplified by mutations of the PIP phosphatase MTM1 in myotubular myopathy (MTM), a severe muscle disease characterized by impaired muscle structure and abnormal excitation-contraction coupling. FIG4 functions as a PIP phosphatase that participates in both the synthesis and breakdown of phosphatidylinositol 3,5-bisphosphate (PI(3,5)P2). Mutation of FIG4 results in a severe neurodegenerative disorder in mice and a progressive peripheral polyneuropathy in humans. The effect of FIG4 mutation on skeletal muscle has yet to be examined. METHODS Herein we characterize the impact of FIG4 on skeletal muscle development and function using the spontaneously occurring mouse mutant pale tremor (plt), a mouse line with a loss of function mutation in Fig4. RESULTS In plt mice, we characterized abnormalities in skeletal muscle, including reduced muscle size and specific force generation. We also uncovered ultrastructural abnormalities and increased programmed cell death. Conversely, we detected no structural or functional abnormalities to suggest impairment of excitation-contraction coupling, a process previously shown to be influenced by PI(3,5)P2 levels. Conditional rescue of Fig4 mutation in neurons prevented overt muscle weakness and the development of obvious muscle abnormalities, suggesting that the changes observed in the plt mice were primarily related to denervation of skeletal muscle. On the basis of the ability of reduced FIG4 levels to rescue aspects of Mtmr2-dependent neuropathy, we evaluated the effect of Fig4 haploinsufficiency on the myopathy of Mtm1-knockout mice. Male mice with a compound Fig4+/-/Mtm1-/Y genotype displayed no improvements in muscle histology, muscle size or overall survival, indicating that FIG4 reduction does not ameliorate the Mtm1-knockout phenotype. CONCLUSIONS Overall, these data indicate that loss of Fig4 impairs skeletal muscle function but does not significantly affect its structural development.
Collapse
Affiliation(s)
- Aaron Reifler
- Department of Pediatrics, University of Michigan Medical Center, Ann Arbor, MI 48109-2200, USA
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI 48109-2200, USA
| | - Guy M Lenk
- Department of Human Genetics, University of Michigan Medical Center, Ann Arbor, MI 48109-2200, USA
| | - Xingli Li
- Department of Pediatrics, University of Michigan Medical Center, Ann Arbor, MI 48109-2200, USA
| | - Linda Groom
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Susan V Brooks
- Molecular and Integrative Physiology, University of Michigan Medical Center, Ann Arbor, MI 48109-2200, USA
| | - Desmond Wilson
- Department of Pediatrics, University of Michigan Medical Center, Ann Arbor, MI 48109-2200, USA
| | - Michyla Bowerson
- Department of Pediatrics, University of Michigan Medical Center, Ann Arbor, MI 48109-2200, USA
| | - Robert T Dirksen
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Miriam H Meisler
- Department of Human Genetics, University of Michigan Medical Center, Ann Arbor, MI 48109-2200, USA
| | - James J Dowling
- Department of Pediatrics, University of Michigan Medical Center, Ann Arbor, MI 48109-2200, USA
| |
Collapse
|
23
|
Hsu F, Mao Y. The Sac domain-containing phosphoinositide phosphatases: structure, function, and disease. FRONTIERS IN BIOLOGY 2013; 8:395-407. [PMID: 24860601 PMCID: PMC4031025 DOI: 10.1007/s11515-013-1258-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Phosphoinositides (PIs) have long been known to have an essential role in cell physiology. Their intracellular localization and concentration must be tightly regulated for their proper function. This spatial and temporal regulation is achieved by a large number of PI kinases and phosphatases that are present throughout eukaryotic species. One family of these enzymes contains a conserved PI phosphatase domain termed Sac. Although the Sac domain is homologous among different Sac domain-containing proteins, all appear to exhibit varied substrate specificity and subcellular localization. Dysfunctions in several members of this family are implicated in a range of human diseases such as cardiac hypertrophy, bipolar disorder, Down's syndrome, Charcot-Marie-Tooth disease (CMT) and Amyotrophic Lateral Sclerosis (ALS). In plant, several Sac domain-containing proteins have been implicated in the stress response, chloroplast function and polarized secretion. In this review, we focus on recent findings in the family of Sac domain-containing PI phosphatases in yeast, mammal and plant, including the structural analysis into the mechanism of enzymatic activity, cellular functions, and their roles in disease pathophysiology.
Collapse
Affiliation(s)
- FoSheng Hsu
- Weill Institute for Cell and Molecular Biology and Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Yuxin Mao
- Weill Institute for Cell and Molecular Biology and Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
24
|
Abstract
Phosphoinositides (PIs) make up only a small fraction of cellular phospholipids, yet they control almost all aspects of a cell's life and death. These lipids gained tremendous research interest as plasma membrane signaling molecules when discovered in the 1970s and 1980s. Research in the last 15 years has added a wide range of biological processes regulated by PIs, turning these lipids into one of the most universal signaling entities in eukaryotic cells. PIs control organelle biology by regulating vesicular trafficking, but they also modulate lipid distribution and metabolism via their close relationship with lipid transfer proteins. PIs regulate ion channels, pumps, and transporters and control both endocytic and exocytic processes. The nuclear phosphoinositides have grown from being an epiphenomenon to a research area of its own. As expected from such pleiotropic regulators, derangements of phosphoinositide metabolism are responsible for a number of human diseases ranging from rare genetic disorders to the most common ones such as cancer, obesity, and diabetes. Moreover, it is increasingly evident that a number of infectious agents hijack the PI regulatory systems of host cells for their intracellular movements, replication, and assembly. As a result, PI converting enzymes began to be noticed by pharmaceutical companies as potential therapeutic targets. This review is an attempt to give an overview of this enormous research field focusing on major developments in diverse areas of basic science linked to cellular physiology and disease.
Collapse
Affiliation(s)
- Tamas Balla
- Section on Molecular Signal Transduction, Program for Developmental Neuroscience, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA.
| |
Collapse
|
25
|
Ikonomov OC, Sbrissa D, Delvecchio K, Feng HZ, Cartee GD, Jin JP, Shisheva A. Muscle-specific Pikfyve gene disruption causes glucose intolerance, insulin resistance, adiposity, and hyperinsulinemia but not muscle fiber-type switching. Am J Physiol Endocrinol Metab 2013; 305:E119-31. [PMID: 23673157 PMCID: PMC3725567 DOI: 10.1152/ajpendo.00030.2013] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The evolutionarily conserved kinase PIKfyve that synthesizes PtdIns5P and PtdIns(3,5)P₂ has been implicated in insulin-regulated GLUT4 translocation/glucose entry in 3T3-L1 adipocytes. To decipher PIKfyve's role in muscle and systemic glucose metabolism, here we have developed a novel mouse model with Pikfyve gene disruption in striated muscle (MPIfKO). These mice exhibited systemic glucose intolerance and insulin resistance at an early age but had unaltered muscle mass or proportion of slow/fast-twitch muscle fibers. Insulin stimulation of in vivo or ex vivo glucose uptake and GLUT4 surface translocation was severely blunted in skeletal muscle. These changes were associated with premature attenuation of Akt phosphorylation in response to in vivo insulin, as tested in young mice. Starting at 10-11 wk of age, MPIfKO mice progressively accumulated greater body weight and fat mass. Despite increased adiposity, serum free fatty acid and triglyceride levels were normal until adulthood. Together with the undetectable lipid accumulation in liver, these data suggest that lipotoxicity and muscle fiber switching do not contribute to muscle insulin resistance in MPIfKO mice. Furthermore, the 80% increase in total fat mass resulted from increased fat cell size rather than altered fat cell number. The observed profound hyperinsulinemia combined with the documented increases in constitutive Akt activation, in vivo glucose uptake, and gene expression of key enzymes for fatty acid biosynthesis in MPIfKO fat tissue suggest that the latter is being sensitized for de novo lipid anabolism. Our data provide the first in vivo evidence that PIKfyve is essential for systemic glucose homeostasis and insulin-regulated glucose uptake/GLUT4 translocation in skeletal muscle.
Collapse
Affiliation(s)
- Ognian C Ikonomov
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | | | | | | | | | | | | |
Collapse
|
26
|
Campeau P, Lenk G, Lu J, Bae Y, Burrage L, Turnpenny P, Román Corona-Rivera J, Morandi L, Mora M, Reutter H, Vulto-van Silfhout A, Faivre L, Haan E, Gibbs R, Meisler M, Lee B. Yunis-Varón syndrome is caused by mutations in FIG4, encoding a phosphoinositide phosphatase. Am J Hum Genet 2013; 92:781-91. [PMID: 23623387 DOI: 10.1016/j.ajhg.2013.03.020] [Citation(s) in RCA: 113] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Revised: 03/17/2013] [Accepted: 03/25/2013] [Indexed: 12/14/2022] Open
Abstract
Yunis-Varón syndrome (YVS) is an autosomal-recessive disorder with cleidocranial dysplasia, digital anomalies, and severe neurological involvement. Enlarged vacuoles are found in neurons, muscle, and cartilage. By whole-exome sequencing, we identified frameshift and missense mutations of FIG4 in affected individuals from three unrelated families. FIG4 encodes a phosphoinositide phosphatase required for regulation of PI(3,5)P(2) levels, and thus endosomal trafficking and autophagy. In a functional assay, both missense substitutions failed to correct the vacuolar phenotype of Fig4-null mouse fibroblasts. Homozygous Fig4-null mice exhibit features of YVS, including neurodegeneration and enlarged vacuoles in neurons. We demonstrate that Fig4-null mice also have small skeletons with reduced trabecular bone volume and cortical thickness and that cultured osteoblasts accumulate large vacuoles. Our findings demonstrate that homozygosity or compound heterozygosity for null mutations of FIG4 is responsible for YVS, the most severe known human phenotype caused by defective phosphoinositide metabolism. In contrast, in Charcot-Marie-Tooth disease type 4J (also caused by FIG4 mutations), one of the FIG4 alleles is hypomorphic and disease is limited to the peripheral nervous system. This genotype-phenotype correlation demonstrates that absence of FIG4 activity leads to central nervous system dysfunction and extensive skeletal anomalies. Our results describe a role for PI(3,5)P(2) signaling in skeletal development and maintenance.
Collapse
|
27
|
Abstract
Phosphoinositide signalling molecules interact with a plethora of effector proteins to regulate cell proliferation and survival, vesicular trafficking, metabolism, actin dynamics and many other cellular functions. The generation of specific phosphoinositide species is achieved by the activity of phosphoinositide kinases and phosphatases, which phosphorylate and dephosphorylate, respectively, the inositol headgroup of phosphoinositide molecules. The phosphoinositide phosphatases can be classified as 3-, 4- and 5-phosphatases based on their specificity for dephosphorylating phosphates from specific positions on the inositol head group. The SAC phosphatases show less specificity for the position of the phosphate on the inositol ring. The phosphoinositide phosphatases regulate PI3K/Akt signalling, insulin signalling, endocytosis, vesicle trafficking, cell migration, proliferation and apoptosis. Mouse knockout models of several of the phosphoinositide phosphatases have revealed significant physiological roles for these enzymes, including the regulation of embryonic development, fertility, neurological function, the immune system and insulin sensitivity. Importantly, several phosphoinositide phosphatases have been directly associated with a range of human diseases. Genetic mutations in the 5-phosphatase INPP5E are causative of the ciliopathy syndromes Joubert and MORM, and mutations in the 5-phosphatase OCRL result in Lowe's syndrome and Dent 2 disease. Additionally, polymorphisms in the 5-phosphatase SHIP2 confer diabetes susceptibility in specific populations, whereas reduced protein expression of SHIP1 is reported in several human leukaemias. The 4-phosphatase, INPP4B, has recently been identified as a tumour suppressor in human breast and prostate cancer. Mutations in one SAC phosphatase, SAC3/FIG4, results in the degenerative neuropathy, Charcot-Marie-Tooth disease. Indeed, an understanding of the precise functions of phosphoinositide phosphatases is not only important in the context of normal human physiology, but to reveal the mechanisms by which these enzyme families are implicated in an increasing repertoire of human diseases.
Collapse
|
28
|
Martyn C, Li J. Fig4 deficiency: a newly emerged lysosomal storage disorder? Prog Neurobiol 2012; 101-102:35-45. [PMID: 23165282 DOI: 10.1016/j.pneurobio.2012.11.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Revised: 09/07/2012] [Accepted: 11/09/2012] [Indexed: 12/31/2022]
Abstract
FIG4 (Sac3 in mammals) is a 5'-phosphoinositide phosphatase that coordinates the turnover of phosphatidylinositol-3,5-bisphosphate (PI(3,5)P(2)), a very low abundance phosphoinositide. Deficiency of FIG4 severely affects the human and mouse nervous systems by causing two distinct forms of abnormal lysosomal storage. The first form occurs in spinal sensory neurons, where vacuolated endolysosomes accumulate in perinuclear regions. A second form occurs in cortical/spinal motor neurons and glia, in which enlarged endolysosomes become filled with electron dense materials in a manner indistinguishable from other lysosomal storage disorders. Humans with a deficiency of FIG4 (known as Charcot-Marie-Tooth disease type 4J or CMT4J) present with clinical and pathophysiological phenotypes indicative of spinal motor neuron degeneration and segmental demyelination. These findings reveal a signaling pathway involving FIG4 that appears to be important for lysosomal function. In this review, we discuss the biology of FIG4 and describe how the deficiency of FIG4 results in lysosomal phenotypes. We also discuss the implications of FIG4/PI(3,5)P(2) signaling in understanding other lysosomal storage diseases, neuropathies, and acquired demyelinating diseases.
Collapse
Affiliation(s)
- Colin Martyn
- VA Tennessee Valley Healthcare System, Nashville, TN, USA
| | | |
Collapse
|
29
|
Modulation of synaptic function by VAC14, a protein that regulates the phosphoinositides PI(3,5)P₂ and PI(5)P. EMBO J 2012; 31:3442-56. [PMID: 22842785 PMCID: PMC3419932 DOI: 10.1038/emboj.2012.200] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2011] [Accepted: 06/28/2012] [Indexed: 01/17/2023] Open
Abstract
Mice deficient for VAC14, a scaffolding protein required for PIP2 biosynthesis and linked to human neuropathies, show increased postsynaptic function due to altered AMPA receptor trafficking. Normal steady-state levels of the signalling lipids PI(3,5)P2 and PI(5)P require the lipid kinase FAB1/PIKfyve and its regulators, VAC14 and FIG4. Mutations in the PIKfyve/VAC14/FIG4 pathway are associated with Charcot-Marie-Tooth syndrome and amyotrophic lateral sclerosis in humans, and profound neurodegeneration in mice. Hence, tight regulation of this pathway is critical for neural function. Here, we examine the localization and physiological role of VAC14 in neurons. We report that endogenous VAC14 localizes to endocytic organelles in fibroblasts and neurons. Unexpectedly, VAC14 exhibits a pronounced synaptic localization in hippocampal neurons, suggesting a role in regulating synaptic function. Indeed, the amplitude of miniature excitatory postsynaptic currents is enhanced in both Vac14−/− and Fig4−/− neurons. Re-introduction of VAC14 in postsynaptic Vac14−/− cells reverses this effect. These changes in synaptic strength in Vac14−/− neurons are associated with enhanced surface levels of the AMPA-type glutamate receptor subunit GluA2, an effect that is due to diminished regulated endocytosis of AMPA receptors. Thus, VAC14, PI(3,5)P2 and/or PI(5)P play a role in controlling postsynaptic function via regulation of endocytic cycling of AMPA receptors.
Collapse
|
30
|
Bucci C, Bakke O, Progida C. Charcot-Marie-Tooth disease and intracellular traffic. Prog Neurobiol 2012; 99:191-225. [PMID: 22465036 PMCID: PMC3514635 DOI: 10.1016/j.pneurobio.2012.03.003] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2011] [Revised: 12/23/2011] [Accepted: 03/13/2012] [Indexed: 12/23/2022]
Abstract
Mutations of genes whose primary function is the regulation of membrane traffic are increasingly being identified as the underlying causes of various important human disorders. Intriguingly, mutations in ubiquitously expressed membrane traffic genes often lead to cell type- or organ-specific disorders. This is particularly true for neuronal diseases, identifying the nervous system as the most sensitive tissue to alterations of membrane traffic. Charcot-Marie-Tooth (CMT) disease is one of the most common inherited peripheral neuropathies. It is also known as hereditary motor and sensory neuropathy (HMSN), which comprises a group of disorders specifically affecting peripheral nerves. This peripheral neuropathy, highly heterogeneous both clinically and genetically, is characterized by a slowly progressive degeneration of the muscle of the foot, lower leg, hand and forearm, accompanied by sensory loss in the toes, fingers and limbs. More than 30 genes have been identified as targets of mutations that cause CMT neuropathy. A number of these genes encode proteins directly or indirectly involved in the regulation of intracellular traffic. Indeed, the list of genes linked to CMT disease includes genes important for vesicle formation, phosphoinositide metabolism, lysosomal degradation, mitochondrial fission and fusion, and also genes encoding endosomal and cytoskeletal proteins. This review focuses on the link between intracellular transport and CMT disease, highlighting the molecular mechanisms that underlie the different forms of this peripheral neuropathy and discussing the pathophysiological impact of membrane transport genetic defects as well as possible future ways to counteract these defects.
Collapse
Affiliation(s)
- Cecilia Bucci
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Via Provinciale Monteroni, 73100 Lecce, Italy.
| | | | | |
Collapse
|
31
|
Congenital CNS hypomyelination in the Fig4 null mouse is rescued by neuronal expression of the PI(3,5)P(2) phosphatase Fig4. J Neurosci 2012; 31:17736-51. [PMID: 22131434 DOI: 10.1523/jneurosci.1482-11.2011] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The plt (pale tremor) mouse carries a null mutation in the Fig4(Sac3) gene that results in tremor, hypopigmentation, spongiform degeneration of the brain, and juvenile lethality. FIG4 is a ubiquitously expressed phosphatidylinositol 3,5-bisphosphate phosphatase that regulates intracellular vesicle trafficking along the endosomal-lysosomal pathway. In humans, the missense mutation FIG4(I41T) combined with a FIG4 null allele causes Charcot-Marie-Tooth 4J disease, a severe form of peripheral neuropathy. Here we show that Fig4 null mice exhibit a dramatic reduction of myelin in the brain and spinal cord. In the optic nerve, smaller-caliber axons lack myelin sheaths entirely, whereas many large- and intermediate-caliber axons are myelinated but show structural defects at nodes of Ranvier, leading to delayed propagation of action potentials. In the Fig4 null brain and optic nerve, oligodendrocyte (OL) progenitor cells are present at normal abundance and distribution, but the number of myelinating OLs is greatly compromised. The total number of axons in the Fig4 null optic nerve is not reduced. Developmental studies reveal incomplete myelination rather than elevated cell death in the OL linage. Strikingly, there is rescue of CNS myelination and tremor in transgenic mice with neuron-specific expression of Fig4, demonstrating a non-cell-autonomous function of Fig4 in OL maturation and myelin development. In transgenic mice with global overexpression of the human pathogenic FIG4 variant I41T, there is rescue of the myelination defect, suggesting that the CNS of CMT4J patients may be protected from myelin deficiency by expression of the FIG4(I41T) mutant protein.
Collapse
|
32
|
Dyson JM, Fedele CG, Davies EM, Becanovic J, Mitchell CA. Phosphoinositide phosphatases: just as important as the kinases. Subcell Biochem 2012; 58:215-279. [PMID: 22403078 DOI: 10.1007/978-94-007-3012-0_7] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Phosphoinositide phosphatases comprise several large enzyme families with over 35 mammalian enzymes identified to date that degrade many phosphoinositide signals. Growth factor or insulin stimulation activates the phosphoinositide 3-kinase that phosphorylates phosphatidylinositol (4,5)-bisphosphate [PtdIns(4,5)P(2)] to form phosphatidylinositol (3,4,5)-trisphosphate [PtdIns(3,4,5)P(3)], which is rapidly dephosphorylated either by PTEN (phosphatase and tensin homologue deleted on chromosome 10) to PtdIns(4,5)P(2), or by the 5-phosphatases (inositol polyphosphate 5-phosphatases), generating PtdIns(3,4)P(2). 5-phosphatases also hydrolyze PtdIns(4,5)P(2) forming PtdIns(4)P. Ten mammalian 5-phosphatases have been identified, which regulate hematopoietic cell proliferation, synaptic vesicle recycling, insulin signaling, and embryonic development. Two 5-phosphatase genes, OCRL and INPP5E are mutated in Lowe and Joubert syndrome respectively. SHIP [SH2 (Src homology 2)-domain inositol phosphatase] 2, and SKIP (skeletal muscle- and kidney-enriched inositol phosphatase) negatively regulate insulin signaling and glucose homeostasis. SHIP2 polymorphisms are associated with a predisposition to insulin resistance. SHIP1 controls hematopoietic cell proliferation and is mutated in some leukemias. The inositol polyphosphate 4-phosphatases, INPP4A and INPP4B degrade PtdIns(3,4)P(2) to PtdIns(3)P and regulate neuroexcitatory cell death, or act as a tumor suppressor in breast cancer respectively. The Sac phosphatases degrade multiple phosphoinositides, such as PtdIns(3)P, PtdIns(4)P, PtdIns(5)P and PtdIns(3,5)P(2) to form PtdIns. Mutation in the Sac phosphatase gene, FIG4, leads to a degenerative neuropathy. Therefore the phosphatases, like the lipid kinases, play major roles in regulating cellular functions and their mutation or altered expression leads to many human diseases.
Collapse
Affiliation(s)
- Jennifer M Dyson
- Department of Biochemistry and Molecular Biology, Monash University, Wellington Rd, 3800, Clayton, Australia
| | | | | | | | | |
Collapse
|
33
|
Abstract
Phosphoinositides play an essential role in insulin signaling, serving as a localization signal for a variety of proteins that participate in the regulation of cellular growth and metabolism. This chapter will examine the regulation and localization of phosphoinositide species, and will explore the roles of these lipids in insulin action. We will also discuss the changes in phosphoinositide metabolism that occur in various pathophysiological states such as insulin resistance and diabetes.
Collapse
Affiliation(s)
- Dave Bridges
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | | |
Collapse
|
34
|
Abstract
PIKfyve, a phosphoinositide 5-kinase synthesizing PtdIns(3,5)P₂ and PtdIns5P in a cellular context, belongs to an evolutionarily ancient gene family of PtdIns(3,5)P₂-synthesizing enzymes that, except for plants, are products of a single-copy gene across species. In the dozen years after its discovery, enormous progress has been made in characterizing the numerous PIKfyve cellular functions and the regulatory mechanisms that govern these functions. It became clear that PIKfyve does not act alone but, rather, it engages the scaffolding regulator ArPIKfyve and the phosphatase Sac3 to make a multiprotein "PAS" complex, so called for the first letters of the protein names. This complex relays antagonistic signals, one for synthesis, another for turnover of PtdIns(3,5)P₂, whose dysregulated coordination is linked to several human diseases. The physiological significance for each protein in the PAS complex is underscored by the early lethality of the mouse models with disruption in any of the three genes. This chapter summarizes our current knowledge of the diverse and complex functionality of PIKfyve and PtdIns(3,5)P₂/PtdIns5P products with particular highlights on recent discoveries of inherited or somatic mutations in PIKfyve and Sac3 linked to human disorders.
Collapse
Affiliation(s)
- Assia Shisheva
- Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan 48201, USA.
| |
Collapse
|
35
|
Yan Q, Guo J, Zhang X, Bai Y, Wang L, Li J. Trauma does not accelerate neuronal degeneration in Fig4 insufficient mice. J Neurol Sci 2011; 312:102-7. [PMID: 21872275 DOI: 10.1016/j.jns.2011.08.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2011] [Revised: 07/09/2011] [Accepted: 08/04/2011] [Indexed: 11/18/2022]
Abstract
Fig4 null reduces phosphatidylinositol-3,5-diphosphate concentration and causes severe neuronal degeneration in both pale-tremor (plt) mice and patients with Charcot-Marie-Tooth disease type 4J (CMT4J), an inherited condition with recessive mutations in FIG4. Our previous study shows that minor trauma is associated with an accelerated course of motor neuron degeneration in patients with CMT4J. Heterozygous loss of FIG4 function has been suggested to be a risk factor in developing sporadic amyotrophic lateral sclerosis. We therefore hypothesize that minor trauma may trigger or exacerbate motor neuron degeneration in mice with fig4 haploinsufficiency (plt+/-). We have studied 18 wild-type and 18 plt+/- mice and created nerve injury by compressing the sciatic nerve. Outcomes in the mice were evaluated by nerve conduction study, Rotarod, and nerve morphology. No differences were found between wild-type and plt+/- mice. Taken together, our results demonstrate that haploinsufficiency of fig4 does not impose risks in rodents to develop neuronal degeneration in either naïve or traumatic conditions.
Collapse
Affiliation(s)
- Qing Yan
- Department of Neurology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | | | | | | | | | | |
Collapse
|
36
|
Abstract
Phosphoinositides play an important role in organelle identity by recruiting effector proteins to the host membrane organelle, thus decorating that organelle with molecular identity. Phosphatidylinositol-3,5-bisphos- phate [PtdIns(3,5)P(2) ] is a low-abundance phosphoinositide that predominates in endolysosomes in higher eukaryotes and in the yeast vacuole. Compared to other phosphoinositides such as PtdIns(4,5)P(2) , our understanding of the regulation and function of PtdIns(3,5)P(2) remained rudimentary until more recently. Here, we review many of the recent developments in PtdIns(3,5)P(2) function and regulation. PtdIns(3,5)P(2) is now known to espouse functions, not only in the regulation of endolysosome morphology, trafficking and acidification, but also in autophagy, signaling mediation in response to stresses and hormonal cues and control of membrane and ion transport. In fact, PtdIns(3,5)P(2) misregulation is now linked with several human neuropathologies including Charcot-Marie-Tooth disease and amyotrophic lateral sclerosis. Given the functional versatility of PtdIns(3,5)P(2) , it is not surprising that regulation of PtdIns(3,5)P(2) metabolism is proving rather elaborate. PtdIns(3,5)P(2) synthesis and turnover are tightly coupled via a protein complex that includes the Fab1/PIKfyve lipid kinase and its antagonistic Fig4/Sac3 lipid phosphatase. Most interestingly, many PtdIns(3,5)P(2) regulators play simultaneous roles in its synthesis and turnover.
Collapse
Affiliation(s)
- Cheuk Y Ho
- Department of Chemistry and Biology, Ryerson University, Toronto, Ontario, Canada
| | | | | |
Collapse
|
37
|
Nicholson G, Lenk GM, Reddel SW, Grant AE, Towne CF, Ferguson CJ, Simpson E, Scheuerle A, Yasick M, Hoffman S, Blouin R, Brandt C, Coppola G, Biesecker LG, Batish SD, Meisler MH. Distinctive genetic and clinical features of CMT4J: a severe neuropathy caused by mutations in the PI(3,5)P₂ phosphatase FIG4. Brain 2011; 134:1959-71. [PMID: 21705420 PMCID: PMC3122378 DOI: 10.1093/brain/awr148] [Citation(s) in RCA: 104] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Revised: 05/05/2011] [Accepted: 05/16/2011] [Indexed: 11/12/2022] Open
Abstract
Charcot-Marie-Tooth disease is a genetically heterogeneous group of motor and sensory neuropathies associated with mutations in more than 30 genes. Charcot-Marie-Tooth disease type 4J (OMIM 611228) is a recessive, potentially severe form of the disease caused by mutations of the lipid phosphatase FIG4. We provide a more complete view of the features of this disorder by describing 11 previously unreported patients with Charcot-Marie-Tooth disease type 4J. Three patients were identified from a small cohort selected for screening because of their early onset disease and progressive proximal as well as distal weakness. Eight patients were identified by large-scale exon sequencing of an unselected group of 4000 patients with Charcot-Marie-Tooth disease. In addition, 34 new FIG4 variants were detected. Ten of the new CMT4J cases have the compound heterozygous genotype FIG4(I41T/null) described in the original four families, while one has the novel genotype FIG4(L17P/nul)(l). The population frequency of the I41T allele was found to be 0.001 by genotyping 5769 Northern European controls. Thirty four new variants of FIG4 were identified. The severity of Charcot-Marie-Tooth disease type 4J ranges from mild clinical signs to severe disability requiring the use of a wheelchair. Both mild and severe forms have been seen in patients with the same genotype. The results demonstrate that Charcot-Marie-Tooth disease type 4J is characterized by highly variable onset and severity, proximal as well as distal and asymmetric muscle weakness, electromyography demonstrating denervation in proximal and distal muscles, and frequent progression to severe amyotrophy. FIG4 mutations should be considered in Charcot-Marie-Tooth patients with these characteristics, especially if found in combination with sporadic or recessive inheritance, childhood onset and a phase of rapid progression.
Collapse
Affiliation(s)
- Garth Nicholson
- Department of Neurology, University of Sydney, ANZAC Institute, Concord Hospital, NSW 2139, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Lenk GM, Ferguson CJ, Chow CY, Jin N, Jones JM, Grant AE, Zolov SN, Winters JJ, Giger RJ, Dowling JJ, Weisman LS, Meisler MH. Pathogenic mechanism of the FIG4 mutation responsible for Charcot-Marie-Tooth disease CMT4J. PLoS Genet 2011; 7:e1002104. [PMID: 21655088 PMCID: PMC3107197 DOI: 10.1371/journal.pgen.1002104] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2010] [Accepted: 04/08/2011] [Indexed: 11/18/2022] Open
Abstract
CMT4J is a severe form of Charcot-Marie-Tooth neuropathy caused by mutation of the phosphoinositide phosphatase FIG4/SAC3. Affected individuals are compound heterozygotes carrying the missense allele FIG4-I41T in combination with a null allele. Analysis using the yeast two-hybrid system demonstrated that the I41T mutation impairs interaction of FIG4 with the scaffold protein VAC14. The critical role of this interaction was confirmed by the demonstration of loss of FIG4 protein in VAC14 null mice. We developed a mouse model of CMT4J by expressing a Fig4-I41T cDNA transgene on the Fig4 null background. Expression of the mutant transcript at a level 5× higher than endogenous Fig4 completely rescued lethality, whereas 2× expression gave only partial rescue, providing a model of the human disease. The level of FIG4-I41T protein in transgenic tissues is only 2% of that predicted by the transcript level, as a consequence of the protein instability caused by impaired interaction of the mutant protein with VAC14. Analysis of patient fibroblasts demonstrated a comparably low level of mutant I41T protein. The abundance of FIG4-I41T protein in cultured cells is increased by treatment with the proteasome inhibitor MG-132. The data demonstrate that FIG4-I41T is a hypomorphic allele encoding a protein that is unstable in vivo. Expression of FIG4-I41T protein at 10% of normal level is sufficient for long-term survival, suggesting that patients with CMT4J could be treated by increased production or stabilization of the mutant protein. The transgenic model will be useful for testing in vivo interventions to increase the abundance of the mutant protein. Charcot-Marie-Tooth disease type 4J is a severe neurological disorder with childhood or adult onset and progression to loss of mobility and death. Patients inherit a mutation that changes amino acid residue 41 of the FIG4 protein from isoleucine to threonine. We report that this mutation destabilizes the FIG4 protein by blocking its interaction with a stabilizing protein partner. We developed a mouse model of CMT4J and found that a low level of expression of the mutant protein, 10% of wildtype level, is sufficient to prevent lethality. This work provides the scientific basis for development of a directed treatment for this rare, lethal disorder.
Collapse
Affiliation(s)
- Guy M. Lenk
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Cole J. Ferguson
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Clement Y. Chow
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Natsuko Jin
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Julie M. Jones
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Adrienne E. Grant
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Sergey N. Zolov
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Jesse J. Winters
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Roman J. Giger
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - James J. Dowling
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Lois S. Weisman
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Miriam H. Meisler
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan, United States of America
- * E-mail:
| |
Collapse
|
39
|
Ikonomov OC, Sbrissa D, Delvecchio K, Xie Y, Jin JP, Rappolee D, Shisheva A. The phosphoinositide kinase PIKfyve is vital in early embryonic development: preimplantation lethality of PIKfyve-/- embryos but normality of PIKfyve+/- mice. J Biol Chem 2011; 286:13404-13. [PMID: 21349843 DOI: 10.1074/jbc.m111.222364] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Gene mutations in the phosphoinositide-metabolizing enzymes are linked to various human diseases. In mammals, PIKfyve synthesizes PtdIns(3,5)P(2) and PtdIns5P lipids that regulate endosomal trafficking and responses to extracellular stimuli. The consequence of pikfyve gene ablation in mammals is unknown. To clarify the importance of PIKfyve and PIKfyve lipid products, in this study, we have characterized the first mouse model with global deletion of the pikfyve gene using the Cre-loxP approach. We report that nearly all PIKfyve(KO/KO) mutant embryos died before the 32-64-cell stage. Cultured fibroblasts derived from PIKfyve(flox/flox) embryos and rendered pikfyve-null by Cre recombinase expression displayed severely reduced DNA synthesis, consistent with impaired cell division causing early embryo lethality. The heterozygous PIKfyve(WT/KO) mice were born at the expected Mendelian ratio and developed into adulthood. PIKfyve(WT/KO) mice were ostensibly normal by several other in vivo, ex vivo, and in vitro criteria despite the fact that their levels of the PIKfyve protein and in vitro enzymatic activity in cells and tissues were 50-55% lower than those of wild-type mice. Consistently, steady-state levels of the PIKfyve products PtdIns(3,5)P(2) and PtdIns5P selectively decreased, but this reduction (35-40%) was 10-15% less than that expected based on PIKfyve protein reduction. The nonlinear decrease of the PIKfyve protein versus PIKfyve lipid products, the potential mechanism(s) discussed herein, may explain how one functional allele in PIKfyve(WT/KO) mice is able to support the demands for PtdIns(3,5)P(2)/PtdIns5P synthesis during life. Our data also shed light on the known human disorder linked to PIKFYVE mutations.
Collapse
Affiliation(s)
- Ognian C Ikonomov
- Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan 48201, USA
| | | | | | | | | | | | | |
Collapse
|