1
|
Chapagai D, Strebhardt K, Wyatt MD, McInnes C. Structural regulation of PLK1 activity: implications for cell cycle function and drug discovery. Cancer Gene Ther 2025:10.1038/s41417-025-00907-7. [PMID: 40379873 DOI: 10.1038/s41417-025-00907-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 04/02/2025] [Accepted: 04/09/2025] [Indexed: 05/19/2025]
Abstract
Polo Like Kinase 1 (PLK1), a key regulator of mitosis whose overexpression is often associated with poor survival rates in cancer, continues to be widely investigated as an oncology drug target with clinical trials evaluating second and third generation inhibitors. In addition to the conserved N-terminal kinase domain (KD), a unique characteristic of the Polo-Like kinase family is the C-terminal polo-box domain (PBD). The PBD contains a phosphopeptide binding site that recognizes substrates primed by other kinases and furthermore is responsible for subcellular localization of PLK1 to specific sites in the nucleus including centrosomes and kinetochores. Another role of the PBD is its regulatory ability through domain-domain interactions with the KD to maintain an autoinhibited state of PLK1. Insights into post translational modifications and the PBD - KD domain-domain association have been obtained and show that key events in PLK1 regulation include phosphosubstrate binding, T210 phosphorylation and engagement with the Bora protein. These can induce an open and active conformation where the domain-domain inhibitory interactions no longer dominate. Further regulatory events recently described include the interchange between monomeric and dimeric forms, which can also serve to inhibit or activate PLK1 during the cell cycle. Different oligomeric forms of PLK1, existing as homodimers and heterodimers with PLK2, have been identified and likely play context dependent roles. This review provides an overview of recent information describing structural and mechanistic insights into inhibition of PLK1 and the temporal and spatial requirements of its activation and regulation. It also covers recent insights into the conformational regulation of other members of the Polo-Like kinase family. The implications of the conformational regulation of PLK1 with respect to cell cycle function and drug discovery are significant and are therefore discussed in detail.
Collapse
Affiliation(s)
- Danda Chapagai
- Krantz Family Center for Cancer Research, Massachusetts General Hospital, and Harvard Medical School, Boston, MA, 02129, USA
| | - Klaus Strebhardt
- Department of Gynecology, University Hospital, Goethe University, Theodor-Stern-Kai 7-9, Frankfurt am Main, 60596, Germany
| | - Michael D Wyatt
- Drug Discovery and Biomedical Sciences, University of South Carolina, 715 Sumter Street, Columbia, 29208, USA
| | - Campbell McInnes
- Drug Discovery and Biomedical Sciences, University of South Carolina, 715 Sumter Street, Columbia, 29208, USA.
| |
Collapse
|
2
|
Pulito C, Vaccarella S, Palcau AC, Ganci F, Brandi R, Frascolla C, Sacconi A, Canu V, Benedetti A, De Pascale V, Donzelli S, Fisch AS, Manciocco V, Covello R, Pimpinelli F, Morrone A, Fazi F, Pellini R, Muti P, Meens J, Karamboulas C, Nichols AC, Strano S, Klinghammer K, Tinhofer I, Ailles L, Fontemaggi G, Blandino G. MicroRNA-mediated PTEN downregulation as a novel non-genetic mechanism of acquired resistance to PI3Kα inhibitors of head & neck squamous cell carcinoma. Drug Resist Updat 2025; 81:101251. [PMID: 40382983 DOI: 10.1016/j.drup.2025.101251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 05/02/2025] [Accepted: 05/07/2025] [Indexed: 05/20/2025]
Abstract
AIMS Head and neck squamous cell carcinomas (HNSCCs) frequently harbor alterations in the PI3K signalling axis and, particularly, in the PIK3CA gene. The promising rationale of using PI3K inhibitors for the treatment of HNSCC has, however, clashed with the spontaneous development of resistance over time. METHODS To identify valuable targets for overcoming acquired resistance to PI3Kα inhibitors in HNSCC, we performed microRNA profiling on a cohort of HNSCC PDXs that were treated with alpelisib, including both responsive and resistant tumors. Using CRISPR/Cas9, siRNA, and PTEN-/- isogenic and alpelisib-resistant cell models, we examined the role of PTEN in resistance acquisition. Phospho-proteomic analysis identified PTEN-dependent phosphorylation events, while PI3Kα inhibitor-resistant organoids were used to assess PLK1 inhibitor efficacy. RESULTS We identified microRNAs altered in resistant PDXs, including members of the miR-17-92 cluster. Mechanistically, we observed that the hyperactive c-Myc was recruited to MIR17HG regulatory regions in alpelisib-resistant cells, sustaining miR-17-5p, miR-19b-3p, and miR-20a-5p expression, which downregulated PTEN. PTEN knockout or depletion conferred alpelisib resistance in HNSCC cells. We identified PTEN-dependent phosphorylation events, such as p-PLK1-T210, involved in resistance. Interestingly, pharmacological inhibition of PLK1 strongly reduced the viability of PI3Kα-resistant organoids derived from HNSCC PDXs and cell line models. CONCLUSION Overall, this study unveils a novel, microRNA-driven, non-genetic mechanism contributing to acquired resistance to PI3Kα inhibitors in HNSCC. Indeed, linking hyperactive c-Myc to sustain miR-17-92 expression and consequent PTEN downregulation, we also propose that targeting PTEN-dependent downstream effectors, such as PLK1, may offer a powerful therapeutic strategy for resistant HNSCC.
Collapse
Affiliation(s)
- Claudio Pulito
- Translational Oncology Research Unit, IRCCS Regina Elena National Cancer Institute, Rome 00144, Italy
| | - Sebastiano Vaccarella
- Translational Oncology Research Unit, IRCCS Regina Elena National Cancer Institute, Rome 00144, Italy
| | - Alina Catalina Palcau
- Microbiology and Virology Unit, San Gallicano Dermatological Institute IRCSS, Rome 00144, Italy
| | - Federica Ganci
- Translational Oncology Research Unit, IRCCS Regina Elena National Cancer Institute, Rome 00144, Italy
| | - Renata Brandi
- Translational Oncology Research Unit, IRCCS Regina Elena National Cancer Institute, Rome 00144, Italy
| | - Carlotta Frascolla
- Translational Oncology Research Unit, IRCCS Regina Elena National Cancer Institute, Rome 00144, Italy
| | - Andrea Sacconi
- UOSD Clinical Trial Center, Biostatistics and Bioinformatics, IRCCS Regina Elena National Cancer Institute, Rome 00144, Italy
| | - Valeria Canu
- Translational Oncology Research Unit, IRCCS Regina Elena National Cancer Institute, Rome 00144, Italy
| | - Anna Benedetti
- Translational Oncology Research Unit, IRCCS Regina Elena National Cancer Institute, Rome 00144, Italy
| | - Valentina De Pascale
- Translational Oncology Research Unit, IRCCS Regina Elena National Cancer Institute, Rome 00144, Italy
| | - Sara Donzelli
- Translational Oncology Research Unit, IRCCS Regina Elena National Cancer Institute, Rome 00144, Italy
| | - Anne-Sophie Fisch
- Department of Radiooncology and Radiotherapy, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Valentina Manciocco
- Department of Otorhinolaryngology, IRCCS Regina Elena National Cancer Institute, Rome 00144, Italy
| | - Renato Covello
- Department of Pathology, IRCCS Regina Elena National Cancer Institute, Rome 00144, Italy
| | - Fulvia Pimpinelli
- Microbiology and Virology Unit, San Gallicano Dermatological Institute IRCSS, Rome 00144, Italy
| | - Aldo Morrone
- Scientific Director Office, IRCCS San Gallicano Dermatology Institute, Rome 00144, Italy
| | - Francesco Fazi
- Department of Anatomical, Histological, Forensic & Orthopedic Sciences, Section of Histology & Medical Embryology, Sapienza University of Rome, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Rome, Italy
| | - Raul Pellini
- Department of Otorhinolaryngology, IRCCS Regina Elena National Cancer Institute, Rome 00144, Italy
| | - Paola Muti
- Department of Biomedical, Surgical and Dental Sciences, University of Milan La Statale, Milan 20122, Italy
| | - Jalna Meens
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Christina Karamboulas
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Anthony C Nichols
- Department of Otolaryngology - Head and Neck Surgery, Western University, London, Ontario, Canada
| | - Sabrina Strano
- SAFU Unit, IRCCS Regina Elena National Cancer Institute, Rome 00144, Italy
| | - Konrad Klinghammer
- Department of Hematology, Oncology and Cancer Immunology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Ingeborg Tinhofer
- Department of Radiooncology and Radiotherapy, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany; German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Laurie Ailles
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Giulia Fontemaggi
- Translational Oncology Research Unit, IRCCS Regina Elena National Cancer Institute, Rome 00144, Italy.
| | - Giovanni Blandino
- Translational Oncology Research Unit, IRCCS Regina Elena National Cancer Institute, Rome 00144, Italy.
| |
Collapse
|
3
|
Li W, Wang X, Liu J, Liu B, Hao Y. Crosstalk Between Plk1 and PTEN in Mitosis Affects Chromosomal Stability. DNA Cell Biol 2025. [PMID: 40117175 DOI: 10.1089/dna.2024.0246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2025] Open
Abstract
The mitotic phase involves the distribution and regulation of genetic material. Defects in gene regulation can lead to serious errors in genetic transmission, such as increased instability of chromosomes, thereby increasing susceptibility to cancer and promoting its development. The maintenance of chromosome stability depends on several mechanisms, such as efficient DNA repair, proper sister chromatid separation, and timely cytokinesis. The serine/threonine kinase Plk1 is a key molecule in maintaining chromosome stability, participating in multiple stages of precise regulation during mitosis, including promoting entry into mitosis, facilitating centrosome maturation and bipolar spindle formation, promoting sister chromatid separation, and facilitating cytokinesis. Several proteins can regulate the kinase activity of Plk1 through protein-protein interactions, coordinating the genetic stability of the cell, including the kinases Aurora A, c-Abl, and Chk1 as well as the phosphatase phosphatase and tension homolog (PTEN). PTEN has been described as an essential regulator of Plk1 for dephosphorylation and chromosomal stability during cell division, and Plk1 may directly interact with and phosphorylate PTEN at centromeres. Here, we review the bidirectional interplay between Plk1 and PTEN and how it contributes to genomic stability during mitosis.
Collapse
Affiliation(s)
- Wei Li
- Department of Nuclear Radiation Injury and Monitoring, The PLA Rocket Force Characteristic Medical Center, Beijing, China
- Department of Disease Prevention and Control, The PLA Rocket Force Characteristic Medical Center, Beijing, China
| | - Xianning Wang
- College of Engineering, Michigan State University, East Lansing, MI, USA
| | - Jiannan Liu
- Department of Nuclear Radiation Injury and Monitoring, The PLA Rocket Force Characteristic Medical Center, Beijing, China
| | - Bing Liu
- Department of Disease Prevention and Control, The PLA Rocket Force Characteristic Medical Center, Beijing, China
| | - Yongjian Hao
- Department of Disease Prevention and Control, The PLA Rocket Force Characteristic Medical Center, Beijing, China
| |
Collapse
|
4
|
Williams I, O’Malley M, DeHart H, Walker B, Ulhaskumar V, Jothirajah P, Ray H, Landrum LM, Delaney JR, Nephew KP, Carpenter RL. MYC and HSF1 Cooperate to Drive Sensitivity to Polo-like Kinase 1 Inhibitor Volasertib in High-grade Serous Ovarian Cancer. CANCER RESEARCH COMMUNICATIONS 2025; 5:253-266. [PMID: 39831777 PMCID: PMC11799878 DOI: 10.1158/2767-9764.crc-24-0400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 12/10/2024] [Accepted: 01/15/2025] [Indexed: 01/22/2025]
Abstract
SIGNIFICANCE We show that HSF1 and MYC genes are co-amplified in more than 30% of HGSOC and demonstrate that HSF1 and MYC functionally cooperate to drive the growth of HGSOC cells. This work provides the foundation for HSF1 and MYC co-amplification as a biomarker for treatment efficacy of the polo-like kinase 1 inhibitor volasertib in HGSOC.
Collapse
Affiliation(s)
- Imade Williams
- Medical Sciences Program, Indiana University School of Medicine, Bloomington, Indiana
| | - Matthew O’Malley
- Medical Sciences Program, Indiana University School of Medicine, Bloomington, Indiana
- Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, Indiana
| | - Haddie DeHart
- Medical Sciences Program, Indiana University School of Medicine, Bloomington, Indiana
- Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, Indiana
| | - Bobby Walker
- Medical Sciences Program, Indiana University School of Medicine, Bloomington, Indiana
| | - Vrushabh Ulhaskumar
- Medical Sciences Program, Indiana University School of Medicine, Bloomington, Indiana
| | - Pranav Jothirajah
- Medical Sciences Program, Indiana University School of Medicine, Bloomington, Indiana
| | - Haimanti Ray
- Medical Sciences Program, Indiana University School of Medicine, Bloomington, Indiana
| | - Lisa M. Landrum
- Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, Indiana
- Obstetrics and Gynecology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Joe R. Delaney
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina
| | - Kenneth P. Nephew
- Medical Sciences Program, Indiana University School of Medicine, Bloomington, Indiana
- Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, Indiana
- Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Richard L. Carpenter
- Medical Sciences Program, Indiana University School of Medicine, Bloomington, Indiana
- Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, Indiana
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana
| |
Collapse
|
5
|
Wang L, He D, Li Q, Orren D, Wang C, Liu J, Li Z, Liu X. PLK1 phosphorylates WRN at replication forks. J Pharmacol Exp Ther 2025; 392:100051. [PMID: 40023583 DOI: 10.1016/j.jpet.2024.100051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 11/25/2024] [Indexed: 03/04/2025] Open
Abstract
Prostate cancer, particularly castration-resistant prostate cancer, remains a serious public health issue. Androgen signaling inhibitors have emerged as a major treatment approach but with limited success. Thus, identification of novel treatment targets is of high clinical relevance. Polo-like kinase 1 (PLK1) has documented roles in various aspects of prostate cancer, including resistance to androgen inhibitors. Radiotherapy is another major approach for treating prostate cancer, but how Plk1 might regulate the efficacy of radiotherapy is unknown. Nonhomologous end joining (NHEJ) and homologous recombination (HR) are 2 major DNA repair pathways, with cellular choices between NHEJ and HR being elegantly regulated by end-processing. However, how the long-range DNA end resection is regulated remains poorly understood. It has been documented that Werner syndrome protein (WRN) is actively involved in the long-range resection pathway. In this study, we demonstrate that PLK1-associated phosphorylation of WRN regulates end resection at double-strand breaks, thereby promoting HR and chromosome stability. Cells expressing the WRN nonphosphorylatable mutant show the phenotype similar to WRN null cells because they lack the ability for long-range resection and increase NHEJ. In summary, we reveal that PLK1-associated Mre11, Rad50 and Nbs1 phosphorylation promotes end resection, eventually affecting cellular choices for double-strand break repair pathways. SIGNIFICANCE STATEMENT: Both DNA damage repair and PLK1 play critical roles in the efficacy of radiotherapy of prostate cancer. The data presented here will provide guidance on how to manipulate PLK1 to improve the efficacy of radiotherapy in clinical settings.
Collapse
Affiliation(s)
- Lei Wang
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, Kentucky
| | - Daheng He
- Markey Cancer Center, University of Kentucky, Lexington, Kentucky
| | - Qianjin Li
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, Kentucky
| | - David Orren
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, Kentucky; Markey Cancer Center, University of Kentucky, Lexington, Kentucky
| | - Chi Wang
- Markey Cancer Center, University of Kentucky, Lexington, Kentucky; Department of Internal Medicine, University of Kentucky, Lexington, Kentucky
| | - Jinpeng Liu
- Markey Cancer Center, University of Kentucky, Lexington, Kentucky; Department of Internal Medicine, University of Kentucky, Lexington, Kentucky
| | - Zhiguo Li
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, Kentucky; Markey Cancer Center, University of Kentucky, Lexington, Kentucky
| | - Xiaoqi Liu
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, Kentucky; Markey Cancer Center, University of Kentucky, Lexington, Kentucky.
| |
Collapse
|
6
|
Williams I, DeHart H, O'Malley M, Walker B, Ulhaskumar V, Ray H, Delaney JR, Nephew KP, Carpenter RL. MYC and HSF1 Cooperate to Drive PLK1 inhibitor Sensitivity in High Grade Serous Ovarian Cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.11.598486. [PMID: 38915574 PMCID: PMC11195273 DOI: 10.1101/2024.06.11.598486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Ovarian cancer is a deadly female cancer with high rates of recurrence. The primary treatment strategy for patients is platinum-based therapy regimens that almost universally develop resistance. Consequently, new therapeutic avenues are needed to overcome the plateau that current therapies have on patient outcomes. We describe a gene amplification involving both HSF1 and MYC, wherein these two genes on chromosome 8q are co-amplified in over 7% of human tumors that is enriched to over 30% of patients with ovarian cancer. We further found that HSF1 and MYC transcriptional activity is correlated in human tumors and ovarian cancer cell lines, suggesting they may cooperate in ovarian cancer cells. CUT&RUN for HSF1 and MYC in co-amplified ovarian cancer cells revealed that HSF1 and MYC have overlapping binding at a substantial number of locations throughout the genome where their binding peaks are near identical. Consistent with these data, a protein-protein interaction between HSF1 and MYC was detected in ovarian cancer cells, implying these two transcription factors have a molecular cooperation. Further supporting their cooperation, growth of HSF1-MYC co-amplified ovarian cancer cells were found to be dependent on both HSF1 and MYC. In an attempt to identify a therapeutic target that could take advantage of this dependency on both HSF1 and MYC, PLK1 was identified as being correlated with HSF1 and MYC in primary human tumor specimens, consistent with a previously established effect of PLK1 on HSF1 and MYC protein levels. Targeting PLK1 with the compound volasertib (BI-6727) revealed a greater than 200-fold increased potency of volasertib in HSF1-MYC co-amplified ovarian cancer cells compared to ovarian cancer cells wild-type HSF1 and MYC copy number, which extended to several growth assays, including spheroid growth. Volasertib, and other PLK1 inhibitors, have not shown great success in clinical trials and this study suggests that targeting PLK1 may be viable in a precision medicine approach using HSF1-MYC co-amplification as a biomarker for response.
Collapse
|
7
|
Zhang S, Yu J, Tan X, Cheng S, Liu H, Li Z, Wei S, Pan W, Luo H. A novel L-shaped ortho-quinone analog as PLK1 inhibitor blocks prostate cancer cells in G 2 phase. Biochem Pharmacol 2024; 219:115960. [PMID: 38049008 DOI: 10.1016/j.bcp.2023.115960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/28/2023] [Accepted: 11/29/2023] [Indexed: 12/06/2023]
Abstract
Prostate cancer is the most common malignant tumor among men worldwide. Currently, the main treatments are radical prostatectomy, radiotherapy, chemotherapy, and endocrine therapy. However, most of them are poorly effective and induce side effects. Polo-like kinase 1 (PLK1) regulates cell cycle and mitosis. Its inhibitor BI2536 promotes the therapeutic effect of nilotinib in chronic myeloid leukemia, enhances the sensitivity of neural tube cell tumors to radiation therapy and PLK1 silencing enhances the sensitivity of squamous cell carcinoma to cisplatin. Therefore, the aim of this study was to evaluate the effect of the PLK1 inhibitor L-shaped ortho-quinone analog TE6 on prostate cancer. In vitro on prostate cancer cells showed that TE6 inhibited PLK1 protein expression and consequently cell proliferation by blocking the cell cycle at G2 phase. In vivo on a subcutaneous tumor model in nude mice confirmed that TE6 effectively inhibited tumor growth in nude mice, inhibited PLK1 expression and regulated the expression of cell cycle proteins such as p21, p53, CDK1, Cdc25C, and cyclinB1. Thus, PLK1 was identified as the target protein of TE6, these results reveal the critical role of PLK1 in the growth and survival of prostate cancer and point out the ability of TE6 on targeting PLK1, being a potential drug for prostate cancer therapy.
Collapse
Affiliation(s)
- Shaowei Zhang
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; Natural Products Research Center of Guizhou Province, Guiyang 550014, Guizhou Province, China; School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China
| | - Jia Yu
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; Natural Products Research Center of Guizhou Province, Guiyang 550014, Guizhou Province, China
| | - Xin Tan
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; Natural Products Research Center of Guizhou Province, Guiyang 550014, Guizhou Province, China
| | - Sha Cheng
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; Natural Products Research Center of Guizhou Province, Guiyang 550014, Guizhou Province, China
| | - Hanfei Liu
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; Natural Products Research Center of Guizhou Province, Guiyang 550014, Guizhou Province, China
| | - Zhiyao Li
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; Natural Products Research Center of Guizhou Province, Guiyang 550014, Guizhou Province, China
| | - Shinan Wei
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; Natural Products Research Center of Guizhou Province, Guiyang 550014, Guizhou Province, China
| | - Weidong Pan
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; Natural Products Research Center of Guizhou Province, Guiyang 550014, Guizhou Province, China.
| | - Heng Luo
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; Natural Products Research Center of Guizhou Province, Guiyang 550014, Guizhou Province, China.
| |
Collapse
|
8
|
Ertay A, Ewing RM, Wang Y. Synthetic lethal approaches to target cancers with loss of PTEN function. Genes Dis 2023; 10:2511-2527. [PMID: 37533462 PMCID: PMC7614861 DOI: 10.1016/j.gendis.2022.12.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 12/26/2022] [Accepted: 12/27/2022] [Indexed: 02/05/2023] Open
Abstract
Phosphatase and tensin homolog (PTEN) is a tumour suppressor gene and has a role in inhibiting the oncogenic AKT signalling pathway by dephosphorylating phosphatidylinositol 3,4,5-triphosphate (PIP3) into phosphatidylinositol 4,5-bisphosphate (PIP2). The function of PTEN is regulated by different mechanisms and inactive PTEN results in aggressive tumour phenotype and tumorigenesis. Identifying targeted therapies for inactive tumour suppressor genes such as PTEN has been challenging as it is difficult to restore the tumour suppressor functions. Therefore, focusing on the downstream signalling pathways to discover a targeted therapy for inactive tumour suppressor genes has highlighted the importance of synthetic lethality studies. This review focuses on the potential synthetic lethality genes discovered in PTEN-inactive cancer types. These discovered genes could be potential targeted therapies for PTEN-inactive cancer types and may improve the treatment response rates for aggressive types of cancer.
Collapse
Affiliation(s)
- Ayse Ertay
- Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton SO17 1BJ, UK
| | - Rob M. Ewing
- Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton SO17 1BJ, UK
- Institute for Life Sciences, University of Southampton, Southampton SO17 1BJ, UK
| | - Yihua Wang
- Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton SO17 1BJ, UK
- Institute for Life Sciences, University of Southampton, Southampton SO17 1BJ, UK
| |
Collapse
|
9
|
Milletti G, Colicchia V, Cecconi F. Cyclers' kinases in cell division: from molecules to cancer therapy. Cell Death Differ 2023; 30:2035-2052. [PMID: 37516809 PMCID: PMC10482880 DOI: 10.1038/s41418-023-01196-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/08/2023] [Accepted: 07/18/2023] [Indexed: 07/31/2023] Open
Abstract
Faithful eucaryotic cell division requires spatio-temporal orchestration of multiple sequential events. To ensure the dynamic nature of these molecular and morphological transitions, a swift modulation of key regulatory pathways is necessary. The molecular process that most certainly fits this description is phosphorylation, the post-translational modification provided by kinases, that is crucial to allowing the progression of the cell cycle and that culminates with the separation of two identical daughter cells. In detail, from the early stages of the interphase to the cytokinesis, each critical step of this process is tightly regulated by multiple families of kinases including the Cyclin-dependent kinases (CDKs), kinases of the Aurora, Polo, Wee1 families, and many others. While cell-cycle-related CDKs control the timing of the different phases, preventing replication machinery errors, the latter modulate the centrosome cycle and the spindle function, avoiding karyotypic abnormalities typical of chromosome instability. Such chromosomal abnormalities may result from replication stress (RS) and chromosome mis-segregation and are considered a hallmark of poor prognosis, therapeutic resistance, and metastasis in cancer patients. Here, we discuss recent advances in the understanding of how different families of kinases concur to govern cell cycle, preventing RS and mitotic infidelity. Additionally, considering the growing number of clinical trials targeting these molecules, we review to what extent and in which tumor context cell-cycle-related kinases inhibitors are worth exploiting as an effective therapeutic strategy.
Collapse
Affiliation(s)
- Giacomo Milletti
- DNA Replication and Cancer Group, Danish Cancer Institute, 2100, Copenhagen, Denmark.
- Department of Pediatric Hematology and Oncology and of Cell and Gene Therapy, IRCCS Ospedale Pediatrico Bambino Gesù, Rome, Italy.
| | - Valeria Colicchia
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
- IRBM S.p.A., Via Pontina Km 30.60, 00070, Pomezia, Italy
| | - Francesco Cecconi
- Cell Stress and Survival Group, Center for Autophagy, Recycling and Disease (CARD), Danish Cancer Institute, Copenhagen, Denmark.
- Università Cattolica del Sacro Cuore and Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy.
| |
Collapse
|
10
|
Feng Y, Li T, Lin Z, Li Y, Han X, Pei X, Fu Z, Wu Q, Shao D, Li C. Inhibition of Polo-like kinase 1 (PLK1) triggers cell apoptosis via ROS-caused mitochondrial dysfunction in colorectal carcinoma. J Cancer Res Clin Oncol 2023; 149:6883-6899. [PMID: 36810816 DOI: 10.1007/s00432-023-04624-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 01/27/2023] [Indexed: 02/24/2023]
Abstract
BACKGROUND Colorectal cancer (CRC) is one of the most frequently diagnosed cancers. Polo-like kinase 1 (PLK1), a member of the serine/threonine kinase PLK family, is the most investigated and essential in the regulation of cell cycle progression, including chromosome segregation, centrosome maturation and cytokinesis. However, the nonmitotic role of PLK1 in CRC is poorly understood. In this study, we explored the tumorigenic effects of PLK1 and its potential as a therapeutic target in CRC. METHODS GEPIA database and immunohistochemistry analysis were performed to evaluate the abnormal expression of PLK1 in CRC patients. MTT assay, colony formation and transwell assay were performed to assess cell viability, colony formation ability and migration ability after inhibiting PLK1 by RNAi or the small molecule inhibitor BI6727. Cell apoptosis, mitochondrial membrane potential (MMP) and ROS levels were evaluated by flow cytometry. Bioluminescence imaging was performed to evaluate the impact of PLK1 on CRC cell survival in a preclinical model. Finally, xenograft tumor model was established to study the effect of PLK1 inhibition on tumor growth. RESULTS First, immunohistochemistry analysis revealed the significant accumulation of PLK1 in patient-derived CRC tissues compared with adjacent healthy tissues. Furthermore, PLK1 inhibition genetically or pharmacologically significantly reduced cell viability, migration and colony formation, and triggered apoptosis of CRC cells. Additionally, we found that PLK1 inhibition elevated cellular reactive oxygen species (ROS) accumulation and decreased the Bcl2/Bax ratio, which led to mitochondrial dysfunction and the release of Cytochrome c, a key process in initiating cell apoptosis. CONCLUSION These data provide new insights into the pathogenesis of CRC and support the potential value of PLK1 as an appealing target for CRC treatment. Overall, the underlying mechanism of inhibiting PLK1-induced apoptosis indicates that the PLK1 inhibitor BI6727 may be a novel potential therapeutic strategy in the treatment of CRC.
Collapse
Affiliation(s)
- Ya Feng
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin, 300350, People's Republic of China
| | - Tianjiao Li
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin, 300350, People's Republic of China
| | - Zhoujun Lin
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin, 300350, People's Republic of China
| | - Yin Li
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin, 300350, People's Republic of China
| | - Xiao Han
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin, 300350, People's Republic of China
| | - Xiaolin Pei
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin, 300350, People's Republic of China
| | - Zhenkun Fu
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin, 300350, People's Republic of China
- Department of Immunology & Wu Lien-Teh Institute & Heilongjiang Provincial Key Laboratory for Infection and Immunity, Harbin Medical University & Heilongjiang Academy of Medical Science, Harbin, 150081, People's Republic of China
| | - Qiao Wu
- Department of Hepatobiliary Surgery, Beijing Chao Yang Hospital, Capital Medical University, Beijing, 10020, People's Republic of China
| | - Di Shao
- Chongqing Emergency Medical Center, Chongqing University Central Hospital, No. 1 Health Road, Yuzhong District, Chongqing, 400014, People's Republic of China.
| | - Chenggang Li
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin, 300350, People's Republic of China.
| |
Collapse
|
11
|
Ware KE, Thomas BC, Olawuni PD, Sheth MU, Hawkey N, Yeshwanth M, Miller BC, Vietor KJ, Jolly MK, Kim SY, Armstrong AJ, Somarelli JA. A synthetic lethal screen for Snail-induced enzalutamide resistance identifies JAK/STAT signaling as a therapeutic vulnerability in prostate cancer. Front Mol Biosci 2023; 10:1104505. [PMID: 37228586 PMCID: PMC10203420 DOI: 10.3389/fmolb.2023.1104505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 04/25/2023] [Indexed: 05/27/2023] Open
Abstract
Despite substantial improvements in the treatment landscape of prostate cancer, the evolution of hormone therapy-resistant and metastatic prostate cancer remains a major cause of cancer-related death globally. The mainstay of treatment for advanced prostate cancer is targeting of androgen receptor signaling, including androgen deprivation therapy plus second-generation androgen receptor blockade (e.g., enzalutamide, apalutamide, darolutamide), and/or androgen synthesis inhibition (abiraterone). While these agents have significantly prolonged the lives of patients with advanced prostate cancer, is nearly universal. This therapy resistance is mediated by diverse mechanisms, including both androgen receptor-dependent mechanisms, such as androgen receptor mutations, amplifications, alternative splicing, and amplification, as well as non-androgen receptor-mediated mechanisms, such as lineage plasticity toward neuroendocrine-like or epithelial-mesenchymal transition (EMT)-like lineages. Our prior work identified the EMT transcriptional regulator Snail as critical to hormonal therapy resistance and is commonly detected in human metastatic prostate cancer. In the current study, we sought to interrogate the actionable landscape of EMT-mediated hormone therapy resistant prostate cancer to identify synthetic lethality and collateral sensitivity approaches to treating this aggressive, therapy-resistant disease state. Using a combination of high-throughput drug screens and multi-parameter phenotyping by confluence imaging, ATP production, and phenotypic plasticity reporters of EMT, we identified candidate synthetic lethalities to Snail-mediated EMT in prostate cancer. These analyses identified multiple actionable targets, such as XPO1, PI3K/mTOR, aurora kinases, c-MET, polo-like kinases, and JAK/STAT as synthetic lethalities in Snail+ prostate cancer. We validated these targets in a subsequent validation screen in an LNCaP-derived model of resistance to sequential androgen deprivation and enzalutamide. This follow-up screen provided validation of inhibitors of JAK/STAT and PI3K/mTOR as therapeutic vulnerabilities for both Snail+ and enzalutamide-resistant prostate cancer.
Collapse
Affiliation(s)
- Kathryn E. Ware
- Department of Medicine, Division of Medical Oncology, Duke University Medical Center, Durham, NC, United States
- Duke Cancer Institute Center for Prostate and Urologic Cancers, Duke University Medical Center, Durham, NC, United States
| | - Beatrice C. Thomas
- Dr. Kiran C Patel College of Allopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL, United States
| | - Pelumi D. Olawuni
- Department of Medicine, Division of Medical Oncology, Duke University Medical Center, Durham, NC, United States
- Duke Cancer Institute Center for Prostate and Urologic Cancers, Duke University Medical Center, Durham, NC, United States
| | - Maya U. Sheth
- Department of Medicine, Division of Medical Oncology, Duke University Medical Center, Durham, NC, United States
- Duke Cancer Institute Center for Prostate and Urologic Cancers, Duke University Medical Center, Durham, NC, United States
| | - Nathan Hawkey
- Department of Medicine, Division of Medical Oncology, Duke University Medical Center, Durham, NC, United States
- Duke Cancer Institute Center for Prostate and Urologic Cancers, Duke University Medical Center, Durham, NC, United States
| | - M. Yeshwanth
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore, India
| | - Brian C. Miller
- Division of Oncology, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Katherine J. Vietor
- Division of Oncology, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Mohit Kumar Jolly
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore, India
| | - So Young Kim
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, United States
| | - Andrew J. Armstrong
- Department of Medicine, Division of Medical Oncology, Duke University Medical Center, Durham, NC, United States
- Duke Cancer Institute Center for Prostate and Urologic Cancers, Duke University Medical Center, Durham, NC, United States
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, United States
| | - Jason A. Somarelli
- Department of Medicine, Division of Medical Oncology, Duke University Medical Center, Durham, NC, United States
- Duke Cancer Institute Center for Prostate and Urologic Cancers, Duke University Medical Center, Durham, NC, United States
| |
Collapse
|
12
|
Patterson JC, Varkaris A, Croucher PJP, Ridinger M, Dalrymple S, Nouri M, Xie F, Varmeh S, Jonas O, Whitman MA, Chen S, Rashed S, Makusha L, Luo J, Isaacs JT, Erlander MG, Einstein DJ, Balk SP, Yaffe MB. Plk1 Inhibitors and Abiraterone Synergistically Disrupt Mitosis and Kill Cancer Cells of Disparate Origin Independently of Androgen Receptor Signaling. Cancer Res 2023; 83:219-238. [PMID: 36413141 PMCID: PMC9852064 DOI: 10.1158/0008-5472.can-22-1533] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 10/20/2022] [Accepted: 11/18/2022] [Indexed: 11/23/2022]
Abstract
Abiraterone is a standard treatment for metastatic castrate-resistant prostate cancer (mCRPC) that slows disease progression by abrogating androgen synthesis and antagonizing the androgen receptor (AR). Here we report that inhibitors of the mitotic regulator polo-like kinase-1 (Plk1), including the clinically active third-generation Plk1 inhibitor onvansertib, synergizes with abiraterone in vitro and in vivo to kill a subset of cancer cells from a wide variety of tumor types in an androgen-independent manner. Gene-expression analysis identified an AR-independent synergy-specific gene set signature upregulated upon abiraterone treatment that is dominated by pathways related to mitosis and the mitotic spindle. Abiraterone treatment alone caused defects in mitotic spindle orientation, failure of complete chromosome condensation, and improper cell division independently of its effects on AR signaling. These effects, although mild following abiraterone monotherapy, resulted in profound sensitization to the antimitotic effects of Plk1 inhibition, leading to spindle assembly checkpoint-dependent mitotic cancer cell death and entosis. In a murine patient-derived xenograft model of abiraterone-resistant metastatic castration-resistant prostate cancer (mCRPC), combined onvansertib and abiraterone resulted in enhanced mitotic arrest and dramatic inhibition of tumor cell growth compared with either agent alone. Overall, this work establishes a mechanistic basis for the phase II clinical trial (NCT03414034) testing combined onvansertib and abiraterone in mCRPC patients and indicates this combination may have broad utility for cancer treatment. SIGNIFICANCE Abiraterone treatment induces mitotic defects that sensitize cancer cells to Plk1 inhibition, revealing an AR-independent mechanism for this synergistic combination that is applicable to a variety of cancer types.
Collapse
Affiliation(s)
- Jesse C. Patterson
- Center for Precision Cancer Medicine, David H. Koch Institute for Integrative Cancer Research, Departments of Biology and Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Andreas Varkaris
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, 02114, USA,Division of Medical Oncology, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
| | | | | | - Susan Dalrymple
- Department of Urology, James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA,Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Mannan Nouri
- Division of Medical Oncology, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
| | - Fang Xie
- Division of Medical Oncology, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
| | - Shohreh Varmeh
- Center for Precision Cancer Medicine, David H. Koch Institute for Integrative Cancer Research, Departments of Biology and Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Oliver Jonas
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Matthew A. Whitman
- Center for Precision Cancer Medicine, David H. Koch Institute for Integrative Cancer Research, Departments of Biology and Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Sen Chen
- Division of Medical Oncology, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
| | - Saleh Rashed
- Center for Precision Cancer Medicine, David H. Koch Institute for Integrative Cancer Research, Departments of Biology and Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Lovemore Makusha
- Center for Precision Cancer Medicine, David H. Koch Institute for Integrative Cancer Research, Departments of Biology and Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Jun Luo
- Department of Urology, James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA,Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - John T. Isaacs
- Department of Urology, James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA,Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | | | - David J. Einstein
- Division of Medical Oncology, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
| | - Steven P. Balk
- Division of Medical Oncology, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
| | - Michael B. Yaffe
- Center for Precision Cancer Medicine, David H. Koch Institute for Integrative Cancer Research, Departments of Biology and Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
13
|
Javed A, Özduman G, Altun S, Duran D, Yerli D, Özar T, Şimşek F, Korkmaz KS. Mitotic Kinase Inhibitors as Therapeutic Interventions for Prostate Cancer: Evidence from In Vitro Studies. Endocr Metab Immune Disord Drug Targets 2023; 23:1699-1712. [PMID: 36872354 DOI: 10.2174/1871530323666230303092243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 01/05/2023] [Accepted: 01/10/2023] [Indexed: 03/07/2023]
Abstract
Prostate cancer is one of the devastating diseases characterized by genetic changes leading to uncontrolled growth and metastasis of the cells of the prostate gland and affects men worldwide. Conventional hormonal and chemotherapeutic agents are effective in mitigating the disease if diagnosed at an early stage. All dividing eukaryotic cells require mitotic progression for the maintenance of genomic integrity in progeny populations. The protein kinases, upon activation and de-activation in an ordered fashion, lead to spatial and temporal regulation of the cell division process. The entry into mitosis along with the progression into sub-phases of mitosis is ensured due to the activity of mitotic kinases. These kinases include Polo-Like-Kinase 1 (PLK1), Aurora kinases, and Cyclin-Dependent- Kinase 1 (CDK1), among others. The mitotic kinases, among others, are usually overexpressed in many cancers and can be targeted using small molecule inhibitors to reduce the effects of these regulators on mechanisms, such as regulation of genomic integrity and mitotic fidelity. In this review, we attempted to discuss the appropriate functions of mitotic kinases revealed through cell culture studies and the impact of their respective inhibitors derived in pre-clinical studies. The review is designed to elucidate the growing field of small molecule inhibitors and their functional screening or mode of action at the cellular and molecular level in the context of Prostate Cancer. Therefore, studies performed specifically on cells of Prostatic-origin are narrated in this review, culminating in a comprehensive view of the specific field of mitotic kinases that can be targeted for therapy of Prostate cancer.
Collapse
Affiliation(s)
- Aadil Javed
- Department of Bioengineering, Faculty of Engineering, Cancer Biology Laboratory, Ege University, Bornova, Izmir, Turkey
| | - Gülseren Özduman
- Department of Bioengineering, Faculty of Engineering, Cancer Biology Laboratory, Ege University, Bornova, Izmir, Turkey
| | - Sevda Altun
- Department of Bioengineering, Faculty of Engineering, Cancer Biology Laboratory, Ege University, Bornova, Izmir, Turkey
| | - Doğan Duran
- Department of Bioengineering, Faculty of Engineering, Cancer Biology Laboratory, Ege University, Bornova, Izmir, Turkey
| | - Dilan Yerli
- Department of Bioengineering, Faculty of Engineering, Cancer Biology Laboratory, Ege University, Bornova, Izmir, Turkey
| | - Tilbe Özar
- Department of Bioengineering, Faculty of Engineering, Cancer Biology Laboratory, Ege University, Bornova, Izmir, Turkey
| | - Faruk Şimşek
- Department of Bioengineering, Faculty of Engineering, Cancer Biology Laboratory, Ege University, Bornova, Izmir, Turkey
| | - Kemal Sami Korkmaz
- Department of Bioengineering, Faculty of Engineering, Cancer Biology Laboratory, Ege University, Bornova, Izmir, Turkey
| |
Collapse
|
14
|
Zhang J, Zhang L, Wang J, Ouyang L, Wang Y. Polo-like Kinase 1 Inhibitors in Human Cancer Therapy: Development and Therapeutic Potential. J Med Chem 2022; 65:10133-10160. [PMID: 35878418 DOI: 10.1021/acs.jmedchem.2c00614] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Polo-like kinase 1 (PLK1) plays an important role in a variety of cellular functions, including the regulation of mitosis, DNA replication, autophagy, and the epithelial-mesenchymal transition (EMT). PLK1 overexpression is often associated with cell proliferation and poor prognosis in cancer patients, making it a promising antitumor target. To date, at least 10 PLK1 inhibitors (PLK1i) have been entered into clinical trials, among which the typical kinase domain (KD) inhibitor BI 6727 (volasertib) was granted "breakthrough therapy designation" by the FDA in 2013. Unfortunately, many other KD inhibitors showed poor specificity, resulting in dose-limiting toxicity, which has greatly impeded their development. Researchers recently discovered many PLK1i with higher selectivity, stronger potency, and better absorption, distribution, metabolism, and elimination (ADME) characteristics. In this review, we emphasize the structure-activity relationships (SARs) of PLK1i, providing insights into new drugs targeting PLK1 for antitumor clinical practice.
Collapse
Affiliation(s)
- Jifa Zhang
- Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Joint Research Institution of Altitude Health, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.,State Key Laboratory of Biotherapy and Cancer Center, Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Lele Zhang
- Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Joint Research Institution of Altitude Health, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.,State Key Laboratory of Biotherapy and Cancer Center, Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Jiaxing Wang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis 38163, Tennessee, United States
| | - Liang Ouyang
- Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Joint Research Institution of Altitude Health, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.,State Key Laboratory of Biotherapy and Cancer Center, Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Yuxi Wang
- Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Joint Research Institution of Altitude Health, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.,State Key Laboratory of Biotherapy and Cancer Center, Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| |
Collapse
|
15
|
Gao P, Hao JL, Xie QW, Han GQ, Xu BB, Hu H, Sa NE, Du XW, Tang HL, Yan J, Dong XM. PELO facilitates PLK1-induced the ubiquitination and degradation of Smad4 and promotes the progression of prostate cancer. Oncogene 2022; 41:2945-2957. [PMID: 35437307 DOI: 10.1038/s41388-022-02316-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 04/01/2022] [Accepted: 04/05/2022] [Indexed: 12/16/2022]
Abstract
PLK1 and Smad4 are two important factors in prostate cancer initiation and progression. They have been reported to play the opposite role in Pten-deleted mice, one is an oncogene, the other is a tumor suppressor. Moreover, they could reversely regulate the PI3K/AKT/mTOR pathway and the activation of MYC. However, the connections between PLK1 and Smad4 have never been studied. Here, we showed that PLK1 could interact with Smad4 and promote the ubiquitination and degradation of Smad4 in PCa cells. PLK1 and PELO could bind to different domains of Smad4 and formed a protein complex. PELO facilitated the degradation of Smad4 through cooperating with PLK1, thereby resulting in proliferation and metastasis of prostate cancer cell. Changes in protein levels of Smad4 led to the alteration of biological function that caused by PLK1 in prostate cancer cells. Further studies showed that PELO upregulation was positively associated with high grade PCa and knockdown of PELO expression significantly decreased PCa cell proliferation and metastasis in vitro and vivo. PELO knockdown in PCa cells could enhance the tumor suppressive role of PLK1 inhibitor. In addition, blocking the interaction between PELO and Smad4 by using specific peptide could effectively inhibit PCa cell metastasis ability in vitro and vivo. Overall, these findings identified a novel regulatory relationship among PLK1, Smad4 and PELO, and provided a potential therapeutic strategy for advanced PCa therapy by co-targeting PLK1 and PELO.
Collapse
Affiliation(s)
- Ping Gao
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China.
| | - Jing-Lan Hao
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
| | - Qian-Wen Xie
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
| | - Gui-Qin Han
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
| | - Bin-Bing Xu
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
| | - Hang Hu
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
| | - Na-Er Sa
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
| | - Xiao-Wen Du
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
| | - Hai-Long Tang
- Department of Hematology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Jian Yan
- School of Medicine, Northwest University, Xi'an, 710069, China.,Department of Biomedical Sciences, City University of Hong Kong, Hong Kong SAR, China
| | - Xiao-Ming Dong
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China.
| |
Collapse
|
16
|
Craig SN, Baxter M, Chapagai D, Stafford JM, Nurmemmedov E, Altomare D, Wyatt MD, McInnes C. Structure-activity and mechanistic studies of non-peptidic inhibitors of the PLK1 polo box domain identified through REPLACE. Eur J Med Chem 2022; 227:113926. [PMID: 34735919 PMCID: PMC9137042 DOI: 10.1016/j.ejmech.2021.113926] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 10/06/2021] [Accepted: 10/13/2021] [Indexed: 01/07/2023]
Abstract
Polo-like kinase 1 (PLK1) is a serine/threonine-protein kinase involved in cell cycle regulation and mitotic progression. Studies have shown that PLK1 is upregulated in many tumors and high levels are adversely related to a poor prognosis. Knocking down or inhibiting PLK1 results in synthetic lethality in PTEN deficient prostate tumors and Kras mutant colorectal tumors, further validating PLK1 as an oncotarget. Substrate recognition by PLK1 occurs through the Polo-Box Domain (PBD), which is a phospho-peptide binding site also responsible for subcellular localization. Much effort has been directed to target this kinase therapeutically through the ATP-binding site, and a few such inhibitors have advanced to clinical trials however with limited clinical efficacy. Moreover, it has been shown that a point mutation in PLK1 (C67V) confers dramatic cellular resistance to catalytic site inhibitors. An alternative approach to target PLK1 potently and selectively is through the PBD to block its protein-protein interactions. Through the REPLACE strategy, for converting peptide inhibitors into more drug-like non peptidic compounds, a PBD targeting compound series ("ABBAs"), has been identified and the key determinants of potency and selectivity elucidated through structure-activity relationship studies. In cellular experiments, the ABBAs were shown to lead to profound effects on the cell cycle, to inhibit tumor proliferation and overcome resistance of cells expressing the PLK1 C67V mutant to ATP-based inhibitors. These non-ATP competitive inhibitors of PLK1 were also used chemical biology probes to investigate the gene regulatory effects of PLK1, known to act on transcription factors such as p53.
Collapse
Affiliation(s)
- Sandra N Craig
- Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, 29208, USA.
| | - Merissa Baxter
- Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, 29208, USA.
| | - Danda Chapagai
- Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, 29208, USA
| | - Jessy M Stafford
- Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, 29208, USA
| | - Elmar Nurmemmedov
- Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, 29208, USA
| | - Diego Altomare
- Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, 29208, USA
| | - Michael D Wyatt
- Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, 29208, USA
| | - Campbell McInnes
- Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, 29208, USA.
| |
Collapse
|
17
|
Iliaki S, Beyaert R, Afonina IS. Polo-like kinase 1 (PLK1) signaling in cancer and beyond. Biochem Pharmacol 2021; 193:114747. [PMID: 34454931 DOI: 10.1016/j.bcp.2021.114747] [Citation(s) in RCA: 114] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/23/2021] [Accepted: 08/24/2021] [Indexed: 02/07/2023]
Abstract
PLK1 is an evolutionary conserved Ser/Thr kinase that is best known for its role in cell cycle regulation and is expressed predominantly during the G2/S and M phase of the cell cycle. PLK1-mediated phosphorylation of specific substrates controls cell entry into mitosis, centrosome maturation, spindle assembly, sister chromatid cohesion and cytokinesis. In addition, a growing body of evidence describes additional roles of PLK1 beyond the cell cycle, more specifically in the DNA damage response, autophagy, apoptosis and cytokine signaling. PLK1 has an indisputable role in cancer as it controls several key transcription factors and promotes cell proliferation, transformation and epithelial-to-mesenchymal transition. Furthermore, deregulation of PLK1 results in chromosome instability and aneuploidy. PLK1 is overexpressed in many cancers, which is associated with poor prognosis, making PLK1 an attractive target for cancer treatment. Additionally, PLK1 is involved in immune and neurological disorders including Graft versus Host Disease, Huntington's disease and Alzheimer's disease. Unfortunately, newly developed small compound PLK1 inhibitors have only had limited success so far, due to low therapeutic response rates and toxicity. In this review we will highlight the current knowledge about the established roles of PLK1 in mitosis regulation and beyond. In addition, we will discuss its tumor promoting but also tumor suppressing capacities, as well as the available PLK1 inhibitors, elaborating on their efficacy and limitations.
Collapse
Affiliation(s)
- Styliani Iliaki
- Center for Inflammation Research, Unit of Molecular Signal Transduction in Inflammation, VIB, B-9052 Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, B-9052 Ghent, Belgium
| | - Rudi Beyaert
- Center for Inflammation Research, Unit of Molecular Signal Transduction in Inflammation, VIB, B-9052 Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, B-9052 Ghent, Belgium.
| | - Inna S Afonina
- Center for Inflammation Research, Unit of Molecular Signal Transduction in Inflammation, VIB, B-9052 Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, B-9052 Ghent, Belgium
| |
Collapse
|
18
|
Chapagai D, Ramamoorthy G, Varghese J, Nurmemmedov E, McInnes C, Wyatt MD. Nonpeptidic, Polo-Box Domain-Targeted Inhibitors of PLK1 Block Kinase Activity, Induce Its Degradation and Target-Resistant Cells. J Med Chem 2021; 64:9916-9925. [PMID: 34210138 PMCID: PMC10451095 DOI: 10.1021/acs.jmedchem.1c00133] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
PLK1, polo-like kinase 1, is a central player regulating mitosis. Inhibition of the subcellular localization and kinase activity of PLK1 through the PBD, polo-box domain, is a viable alternative to ATP-competitive inhibitors, for which the development of resistance and inhibition of related PLK family members are concerns. We describe novel nonpeptidic PBD-binding inhibitors, termed abbapolins, identified through successful application of the REPLACE strategy and demonstrate their potent antiproliferative activity in prostate tumors and other cell lines. Furthermore, abbapolins show PLK1-specific binding and inhibitory activity, as measured by a cellular thermal shift assay and an ability to block phosphorylation of TCTP, a validated target of PLK1-mediated kinase activity. Additional evidence for engagement of PLK1 was obtained through the unique observation that abbapolins induce PLK1 degradation in a manner that closely matches antiproliferative activity. Moreover, abbapolins demonstrate antiproliferative activity in cells that are dramatically resistant to ATP-competitive PLK1 inhibitors.
Collapse
Affiliation(s)
- Danda Chapagai
- Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Gurusankar Ramamoorthy
- Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Jessy Varghese
- Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Elmar Nurmemmedov
- John Wayne Cancer Institute and Pacific Neuroscience Institute at Providence Saint John's Health Center, Santa Monica, California 90404-2312, United States
| | - Campbell McInnes
- Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Michael D Wyatt
- Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, South Carolina 29208, United States
| |
Collapse
|
19
|
Zhang Z, Cheng L, Zhang Q, Kong Y, He D, Li K, Rea M, Wang J, Wang R, Liu J, Li Z, Yuan C, Liu E, Fondufe‐Mittendorf YN, Li L, Han T, Wang C, Liu X. Co-Targeting Plk1 and DNMT3a in Advanced Prostate Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2101458. [PMID: 34051063 PMCID: PMC8261504 DOI: 10.1002/advs.202101458] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 04/30/2021] [Indexed: 05/05/2023]
Abstract
Because there is no effective treatment for late-stage prostate cancer (PCa) at this moment, identifying novel targets for therapy of advanced PCa is urgently needed. A new network-based systems biology approach, XDeath, is developed to detect crosstalk of signaling pathways associated with PCa progression. This unique integrated network merges gene causal regulation networks and protein-protein interactions to identify novel co-targets for PCa treatment. The results show that polo-like kinase 1 (Plk1) and DNA methyltransferase 3A (DNMT3a)-related signaling pathways are robustly enhanced during PCa progression and together they regulate autophagy as a common death mode. Mechanistically, it is shown that Plk1 phosphorylation of DNMT3a leads to its degradation in mitosis and that DNMT3a represses Plk1 transcription to inhibit autophagy in interphase, suggesting a negative feedback loop between these two proteins. Finally, a combination of the DNMT inhibitor 5-Aza-2'-deoxycytidine (5-Aza) with inhibition of Plk1 suppresses PCa synergistically.
Collapse
Affiliation(s)
- Zhuangzhuang Zhang
- Department of Toxicology and Cancer BiologyUniversity of KentuckyLexingtonKY40536USA
| | - Lijun Cheng
- Department of Biomedical InformaticsThe Ohio State UniversityColumbusOH43210USA
| | - Qiongsi Zhang
- Department of Toxicology and Cancer BiologyUniversity of KentuckyLexingtonKY40536USA
| | - Yifan Kong
- Department of Toxicology and Cancer BiologyUniversity of KentuckyLexingtonKY40536USA
| | - Daheng He
- Markey Cancer CenterUniversity of KentuckyLexingtonKY40536USA
| | - Kunyu Li
- Department of Toxicology and Cancer BiologyUniversity of KentuckyLexingtonKY40536USA
| | - Matthew Rea
- Department of Molecular and Cellular BiochemistryUniversity of KentuckyLexingtonKY40536USA
| | - Jianling Wang
- Department of Toxicology and Cancer BiologyUniversity of KentuckyLexingtonKY40536USA
| | - Ruixin Wang
- Department of Toxicology and Cancer BiologyUniversity of KentuckyLexingtonKY40536USA
| | - Jinghui Liu
- Department of Toxicology and Cancer BiologyUniversity of KentuckyLexingtonKY40536USA
| | - Zhiguo Li
- Department of Toxicology and Cancer BiologyUniversity of KentuckyLexingtonKY40536USA
| | - Chongli Yuan
- School of Chemical EngineeringPurdue UniversityWest LafayetteIN47907USA
| | - Enze Liu
- Department of Biomedical InformaticsThe Ohio State UniversityColumbusOH43210USA
| | | | - Lang Li
- Department of Biomedical InformaticsThe Ohio State UniversityColumbusOH43210USA
| | - Tao Han
- Department of Biomedical InformaticsThe Ohio State UniversityColumbusOH43210USA
| | - Chi Wang
- Markey Cancer CenterUniversity of KentuckyLexingtonKY40536USA
| | - Xiaoqi Liu
- Department of Toxicology and Cancer BiologyUniversity of KentuckyLexingtonKY40536USA
- Markey Cancer CenterUniversity of KentuckyLexingtonKY40536USA
| |
Collapse
|
20
|
Fan X, Kraynak J, Knisely JPS, Formenti SC, Shen WH. PTEN as a Guardian of the Genome: Pathways and Targets. Cold Spring Harb Perspect Med 2020; 10:cshperspect.a036194. [PMID: 31932469 DOI: 10.1101/cshperspect.a036194] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Faithful transmission of genetic information is only possible with the structural and functional integrity of the genome. PTEN has been recognized as a guardian of the genome since the identification of its noncanonical localization and function in the nucleus. Yet, the role of PTEN in guarding the genome relies on integration of diverse mechanisms elicited by its canonical activity in antagonizing PI3K as well as emerging noncanonical functions. In the nucleus, PTEN maintains the structural integrity of chromosomes and the architecture of heterochromatin by physically interacting with chromosomal and nucleosomal components. PTEN also controls the functional integrity of key genetic transmission machineries by promoting proper assembly of the replisome and mitotic spindles. Deregulation of PTEN signaling impairs genome integrity, leading to spontaneous replication/mitotic stress and subsequent stress tolerance. Identification of novel targets of PTEN signaling and illumination of the interplay of diverse PTEN pathways in genome maintenance will help us better understand mechanisms underlying tumor evolution and therapeutic resistance.
Collapse
Affiliation(s)
- Xinyi Fan
- Department of Radiation Oncology, Weill Cornell Medicine, Cornell University, New York, New York 10065, USA
| | - Jeffrey Kraynak
- Department of Radiation Oncology, Weill Cornell Medicine, Cornell University, New York, New York 10065, USA
| | - Jonathan P S Knisely
- Department of Radiation Oncology, Weill Cornell Medicine, Cornell University, New York, New York 10065, USA
| | - Silvia C Formenti
- Department of Radiation Oncology, Weill Cornell Medicine, Cornell University, New York, New York 10065, USA.,Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, Cornell University, New York, New York 10065, USA
| | - Wen H Shen
- Department of Radiation Oncology, Weill Cornell Medicine, Cornell University, New York, New York 10065, USA.,Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, Cornell University, New York, New York 10065, USA
| |
Collapse
|
21
|
Baxter M, Chapagai D, Craig S, Hurtado C, Varghese J, Nurmemmedov E, Wyatt MD, McInnes C. Peptidomimetic Polo-Box-Targeted Inhibitors that Engage PLK1 in Tumor Cells and Are Selective against the PLK3 Tumor Suppressor. ChemMedChem 2020; 15:1058-1066. [PMID: 32232973 PMCID: PMC7703809 DOI: 10.1002/cmdc.202000137] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Indexed: 12/26/2022]
Abstract
The polo-box domain (PBD) of PLK1 determines mitotic substrate recognition and subcellular localization. Compounds that target PLK1 selectively are required due to the tumor-suppressor roles of PLK3. A structure-activity analysis of the PBD phosphopeptide binding motif has identified potent peptides that delineate the determinants required for mimicry by nonpeptidic inhibitors and provide insights into the structural basis for the selectivity of inhibitors for the PLK1 PBD. Fragment-ligated inhibitory peptides (FLIPs) obtained through REPLACE have been optimized to enhance in vitro binding and a systematic analysis of selectivity for PLK1 vs PLK3 has been carried out for peptides and peptidomimetics. Furthermore, these more drug-like non-ATP-competitive inhibitors had on-target engagement in a cellular context, as evidenced by stabilization of PLK1 in a thermal-shift assay and by inhibition of the phosphorylation of TCTP, a target of PLK1. Investigation in cells expressing a mutant PLK1 showed that these cells are sensitive to PBD inhibitors but dramatically resistant to clinically investigated ATP-competitive compounds. These results further validate targeting the PBD binding site in the move towards PLK1 inhibitors that are active against tumors resistant to ATP inhibitors.
Collapse
Affiliation(s)
- Merissa Baxter
- Drug Discovery and Biomedical Sciences College of Pharmacy, University of South Carolina, Columbia, SC 29208, USA
- Present Address: NCI Shady Grove, Rockville, MD 20850-9702, USA
| | - Danda Chapagai
- Drug Discovery and Biomedical Sciences College of Pharmacy, University of South Carolina, Columbia, SC 29208, USA
| | - Sandra Craig
- Drug Discovery and Biomedical Sciences College of Pharmacy, University of South Carolina, Columbia, SC 29208, USA
- Present Address: Department of Chemistry, Wake Forest University, Winston-Salem, NC 27109, USA
| | - Cecilia Hurtado
- Drug Discovery and Biomedical Sciences College of Pharmacy, University of South Carolina, Columbia, SC 29208, USA
- Present Address: University of California San Francisco, San Francisco, CA 94115, USA
| | - Jessy Varghese
- Drug Discovery and Biomedical Sciences College of Pharmacy, University of South Carolina, Columbia, SC 29208, USA
| | - Elmar Nurmemmedov
- John Wayne Cancer Institute and Pacific Neuroscience Institute Providence Saint John's Health Center, Santa Monica, CA, USA
| | - Michael D Wyatt
- Drug Discovery and Biomedical Sciences College of Pharmacy, University of South Carolina, Columbia, SC 29208, USA
| | - Campbell McInnes
- Drug Discovery and Biomedical Sciences College of Pharmacy, University of South Carolina, Columbia, SC 29208, USA
| |
Collapse
|
22
|
García IA, Garro C, Fernandez E, Soria G. Therapeutic opportunities for PLK1 inhibitors: Spotlight on BRCA1-deficiency and triple negative breast cancers. Mutat Res 2020; 821:111693. [PMID: 32172132 DOI: 10.1016/j.mrfmmm.2020.111693] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 02/21/2020] [Accepted: 02/24/2020] [Indexed: 02/07/2023]
Abstract
Polo-Like Kinases (PLKs) are central players of mitotic progression in Eukaryotes. Given the intimate relationship between cell cycle progression and cancer development, PLKs in general and PLK1 in particular have been thoroughly studied as biomarkers and potential therapeutic targets in oncology. The oncogenic properties of PLK1 overexpression across different types of human cancers are attributed to its roles in promoting mitotic entry, centrosome maturation, spindle assembly and cytokinesis. While several academic labs and pharmaceutical companies were able to develop potent and selective inhibitors of PLK1 (PLK1i) for preclinical research, such compounds have reached only limited success in clinical trials despite their great pharmacokinetics. Even though this could be attributed to multiple causes, the housekeeping roles of PLK1 in both normal and cancer cells are most likely the main reason for clinical trials failure and withdraw due to toxicities issues. Therefore, great efforts are being invested to position PLK1i in the treatment of specific types of cancers with revised dosages schemes. In this mini review we focus on two potential niches for PLK1i that are supported by recent evidence: triple negative breast cancers (TNBCs) and BRCA1-deficient cancers. On the one hand, we recollect several lines of strong evidence indicating that TNBCs are among the cancers with highest PLK1 expression and sensitivity to PLK1i. These findings are encouraging because of the limited therapeutics options available for TNBC patients, which rely mainly on classic chemotherapy. On the other hand, we discuss recent evidence that unveils synthetic lethality induction by PLK1 inhibition in BRCA1-deficient cancers cells. This previously unforeseen therapeutic link between PLK1 and BRCA1 is promising because it defines novel therapeutic opportunities for PLK1i not only for breast cancer (i.e. TNBCs with BRCA1 deficiencies), but also for other types of cancers with BRCA1-deficiencies, such as pancreatic and prostate cancers.
Collapse
Affiliation(s)
- Iris Alejandra García
- Centro de Investigación y Desarrollo en Inmunología y Enfermedades Infecciosas, CIDIE-CONICET. Universidad Católica de Córdoba, Córdoba, Argentina; Departamento de Bioquímica Clínica. Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Cintia Garro
- Centro de Investigaciones en Bioquímica Clínica e Inmunología, CIBICI-CONICET, Córdoba, Argentina; Departamento de Bioquímica Clínica. Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Elmer Fernandez
- Centro de Investigación y Desarrollo en Inmunología y Enfermedades Infecciosas, CIDIE-CONICET. Universidad Católica de Córdoba, Córdoba, Argentina; Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Gastón Soria
- Centro de Investigaciones en Bioquímica Clínica e Inmunología, CIBICI-CONICET, Córdoba, Argentina; Departamento de Bioquímica Clínica. Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina.
| |
Collapse
|
23
|
Stratmann JA, Sebastian M. Polo-like kinase 1 inhibition in NSCLC: mechanism of action and emerging predictive biomarkers. LUNG CANCER-TARGETS AND THERAPY 2019; 10:67-80. [PMID: 31308774 PMCID: PMC6612950 DOI: 10.2147/lctt.s177618] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Accepted: 05/24/2019] [Indexed: 12/16/2022]
Abstract
Non-small cell lung cancer (NSCLC) is the leading cause of cancer death worldwide. Due to often unspecific disease symptoms, locally advanced or metastatic disease is diagnosed in the majority of all cases. Palliative treatment options comprise of conventional cytotoxic agents, immunotherapy with checkpoint inhibitors and the use of specific small-molecule tyrosine kinase inhibitors (TKI). However, these TKIs are mainly restricted to a small proportion of patients with lung cancer that harbor activating driver mutations. Still, the effectiveness and favorable safety profile of these compounds have prompted a systematic search for specific driver mechanisms of tumorigenesis and moreover the development of corresponding kinase inhibitors. In recent years, the Polo-like kinase (PLK) family has emerged as a key regulator in mitotic regulation. Its role in cell proliferation and the frequently observed overexpression in various tumor entities have raised much interest in basic and clinical oncology aiming to attenuate tumor growth by targeting the PLK. In this review, we give a comprehensive summary on the (pre-) clinical development of the different types of PLK inhibitors in lung cancer and summarize their mechanisms of action, safety and efficacy data and give an overview on translational research aiming to identify predictive biomarkers for a rational use of PLK inhibitors.
Collapse
Affiliation(s)
- Jan A Stratmann
- Department of Internal Medicine II, University Clinic of Frankfurt, 60596 Frankfurt, Germany
| | - Martin Sebastian
- Department of Internal Medicine II, University Clinic of Frankfurt, 60596 Frankfurt, Germany
| |
Collapse
|
24
|
Shin SB, Woo SU, Yim H. Cotargeting Plk1 and androgen receptor enhances the therapeutic sensitivity of paclitaxel-resistant prostate cancer. Ther Adv Med Oncol 2019; 11:1758835919846375. [PMID: 31156720 PMCID: PMC6515847 DOI: 10.1177/1758835919846375] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 04/04/2019] [Indexed: 12/21/2022] Open
Abstract
Backgrounds: Despite the clinical success of taxanes, they still have limitations, such as chemoresistance. To overcome the limitations of paclitaxel, genetic alterations and targeting effects of altered genes were observed in paclitaxel-resistant cancer. Because paclitaxel-resistant cancer shows high levels of Plk1, a promising target in chemotherapy, the effectiveness of Plk1 inhibitors in paclitaxel-resistant cancer cells has been investigated. Methods: Paclitaxel-resistant cancer cells were developed by exposure of stepwise escalating levels of paclitaxel. Genetic alterations were detected by quantitative reverse transcription polymerase chain reaction (qRT-PCR) and immunoblotting. Using a cell viability assay, combined targeting effects for Plk1 and androgen receptor (AR) were determined. Clinical data were analyzed to understand the relationship between Plk1 and AR in prostate cancer patients. Results: Treatment with Plk1 inhibitors markedly reduced the expression of MDR1, MRP1, and Plk1 in the paclitaxel-resistant cancer. Among Plk1 inhibitors, genistein, recently found as a direct Plk1 inhibitor, tended to be more effective in the paclitaxel-resistant prostate cancer than the parental cancer cells, which was related to the suppression of the AR, as well as inhibition of Plk1 activity. A combination of Plk1 inhibitors and AR antagonist bicalutamide exhibited a synergistic effect in LNCaPTXR, as well as LNCaP cells, by inhibiting Plk1 and AR. Analysis of clinical data provides evidence for the relevance between Plk1 and AR in prostate cancer patients, showing that Plk1 and AR are strong predictors of poor survival rates. Conclusions: We suggest that cotargeting Plk1 and AR would be effective in advanced chemoresistant prostate cancer cells to overcome the limitations associated with paclitaxel.
Collapse
Affiliation(s)
- Sol-Bi Shin
- Department of Pharmacy, College of Pharmacy, Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Gyeonggi-do, Korea
| | - Sang-Uk Woo
- Department of Pharmacy, College of Pharmacy, Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Gyeonggi-do, Korea
| | - Hyungshin Yim
- Department of Pharmacy, College of Pharmacy, Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Gyeonggi-do 15588, Korea
| |
Collapse
|
25
|
Hennenberg M, Kuppermann P, Yu Q, Herlemann A, Tamalunas A, Wang Y, Rutz B, Ciotkowska A, Strittmatter F, Stief CG, Gratzke C. Inhibition of Prostate Smooth Muscle Contraction by Inhibitors of Polo-Like Kinases. Front Physiol 2018; 9:734. [PMID: 29962965 PMCID: PMC6013909 DOI: 10.3389/fphys.2018.00734] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 05/25/2018] [Indexed: 11/23/2022] Open
Abstract
Background: Prostate smooth muscle contraction plays an important role for pathophysiology and treatment of male lower urinary tract symptoms (LUTS) but is incompletely understood. Because the efficacy of available medication is limited, novel options and improved understanding of prostate smooth muscle contraction are of high demand. Recently, a possible role of polo-like kinase 1 (PLK1) has been suggested for smooth muscle contraction outside the lower urinary tract. Here, we examined effects of PLK inhibitors on contraction of human prostate tissue. Methods: Prostate tissues were obtained from radical prostatectomy. RT-PCR, Western blot and immunofluorescence were performed to detect PLK expression and phosphorylated PLK. Smooth muscle contractions were induced by electric field stimulation (EFS), α1-agonists, endothelin-1, or the thromboxane A2 analog U46619 in organ bath. Results: RT-PCR, Western blot, and immunofluorescence suggested expression of PLK1 in the human prostate, which may be located and active in smooth muscle cells. EFS-induced contractions of prostate strips were reduced by SBE 13 (1 μM), cyclapolin 9 (3 μM), TAK 960 (100 nM), and Ro 3280 (100 nM). SBE 13 and cyclapolin 9 inhibited contractions by the α1-agonists methoxamine, phenylephrine, and noradrenaline. In contrast, no effects of SBE 13 or cyclapolin 9 on endothelin-1- or U46619-induced contractions were observed. Conclusion: Alpha1-adrenergic smooth muscle contraction in the human prostate can be inhibited by PLK inhibitors. PLK-dependent signaling may be a new pathway, which promotes α1-adrenergic contraction of prostate smooth muscle cells. As contractions by endothelin and U46619 are not susceptible to PLK inhibition, this reflects divergent regulation of adrenergic and non-adrenergic prostate smooth muscle contraction.
Collapse
Affiliation(s)
- Martin Hennenberg
- Department of Urology, Ludwig Maximilian University of Munich, Munich, Germany
| | - Paul Kuppermann
- Department of Urology, Ludwig Maximilian University of Munich, Munich, Germany
| | - Qingfeng Yu
- Department of Urology, Ludwig Maximilian University of Munich, Munich, Germany
| | - Annika Herlemann
- Department of Urology, Ludwig Maximilian University of Munich, Munich, Germany
| | - Alexander Tamalunas
- Department of Urology, Ludwig Maximilian University of Munich, Munich, Germany
| | - Yiming Wang
- Department of Urology, Ludwig Maximilian University of Munich, Munich, Germany
| | - Beata Rutz
- Department of Urology, Ludwig Maximilian University of Munich, Munich, Germany
| | - Anna Ciotkowska
- Department of Urology, Ludwig Maximilian University of Munich, Munich, Germany
| | - Frank Strittmatter
- Department of Urology, Ludwig Maximilian University of Munich, Munich, Germany
| | - Christian G Stief
- Department of Urology, Ludwig Maximilian University of Munich, Munich, Germany
| | - Christian Gratzke
- Department of Urology, Ludwig Maximilian University of Munich, Munich, Germany
| |
Collapse
|
26
|
Nuclear accumulation of SHIP1 mutants derived from AML patients leads to increased proliferation of leukemic cells. Cell Signal 2018; 49:87-94. [PMID: 29852247 DOI: 10.1016/j.cellsig.2018.05.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 05/18/2018] [Accepted: 05/18/2018] [Indexed: 11/22/2022]
Abstract
The inositol 5-phosphatase SHIP1 acts as negative regulator of intracellular signaling in myeloid cells and is a tumor suppressor in myeloid leukemogenesis. After relocalization from the cytoplasm to the plasma membrane SHIP1 terminates PI3-kinase mediated signaling processes. Furthermore, SHIP1 is also found in distinct puncta in the cell nucleus and nuclear SHIP1 has a pro-proliferative function. Here we report the identification of five nuclear export signals (NESs) which regulate together with the two known nuclear localization signals (NLSs) the nucleocytoplasmic shuttling of SHIP1. Mutation of NLSs reduced the nuclear import and mutation of NESs decreased the nuclear export of SHIP1 in the acute myeloid leukemia (AML) cell line UKE-1. Interestingly, four SHIP1 mutants (K210R, N508D, V684E, Q1153L) derived from AML patients showed a nuclear accumulation after expression in UKE-1 cells. In addition, overexpression of the AML patient-derived mutation N508D caused an increased proliferation rate of UKE-1 cells in comparison to wild type SHIP1. Furthermore, we identified serine and tyrosine phosphorylation as a molecular mechanism for the regulation of nucleocytoplasmic shuttling of SHIP1 where tyrosine phosphorylation of distinct residues i.e. Y864, Y914, Y1021 reduces nuclear localization, whereas serine phosphorylation at S933 enhances nuclear localization of SHIP1. In summary, our data further implicate nuclear SHIP1 in cellular signaling and suggest that enhanced accumulation of SHIP1 mutants in the nucleus may be a contributory factor of abnormally high proliferation of AML cells.
Collapse
|
27
|
The Emerging Role of Polo-Like Kinase 1 in Epithelial-Mesenchymal Transition and Tumor Metastasis. Cancers (Basel) 2017; 9:cancers9100131. [PMID: 28953239 PMCID: PMC5664070 DOI: 10.3390/cancers9100131] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 09/22/2017] [Accepted: 09/25/2017] [Indexed: 12/31/2022] Open
Abstract
Polo-like kinase 1 (PLK1) is a serine/threonine kinase that plays a key role in the regulation of the cell cycle. PLK1 is overexpressed in a variety of human tumors, and its expression level often correlates with increased cellular proliferation and poor prognosis in cancer patients. It has been suggested that PLK1 controls cancer development through multiple mechanisms that include canonical regulation of mitosis and cytokinesis, modulation of DNA replication, and cell survival. However, emerging evidence suggests novel and previously unanticipated roles for PLK1 during tumor development. In this review, we will summarize the recent advancements in our understanding of the oncogenic functions of PLK1, with a focus on its role in epithelial-mesenchymal transition and tumor invasion. We will further discuss the therapeutic potential of these functions.
Collapse
|
28
|
Hou SQ, Ouyang M, Brandmaier A, Hao H, Shen WH. PTEN in the maintenance of genome integrity: From DNA replication to chromosome segregation. Bioessays 2017; 39. [PMID: 28891157 DOI: 10.1002/bies.201700082] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Faithful DNA replication and accurate chromosome segregation are the key machineries of genetic transmission. Disruption of these processes represents a hallmark of cancer and often results from loss of tumor suppressors. PTEN is an important tumor suppressor that is frequently mutated or deleted in human cancer. Loss of PTEN has been associated with aneuploidy and poor prognosis in cancer patients. In mice, Pten deletion or mutation drives genomic instability and tumor development. PTEN deficiency induces DNA replication stress, confers stress tolerance, and disrupts mitotic spindle architecture, leading to accumulation of structural and numerical chromosome instability. Therefore, PTEN guards the genome by controlling multiple processes of chromosome inheritance. Here, we summarize current understanding of the PTEN function in promoting high-fidelity transmission of genetic information. We also discuss the PTEN pathways of genome maintenance and highlight potential targets for cancer treatment.
Collapse
Affiliation(s)
- Sheng-Qi Hou
- Department of Radiation Oncology, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Meng Ouyang
- Department of Radiation Oncology, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Andrew Brandmaier
- Department of Radiation Oncology, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Hongbo Hao
- Department of Radiation Oncology, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Wen H Shen
- Department of Radiation Oncology, Weill Cornell Medicine, Cornell University, New York, NY, USA
| |
Collapse
|
29
|
Brandmaier A, Hou SQ, Shen WH. Cell Cycle Control by PTEN. J Mol Biol 2017; 429:2265-2277. [PMID: 28602818 DOI: 10.1016/j.jmb.2017.06.004] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 05/28/2017] [Accepted: 06/02/2017] [Indexed: 12/26/2022]
Abstract
Continuous and error-free chromosome inheritance through the cell cycle is essential for genomic stability and tumor suppression. However, accumulation of aberrant genetic materials often causes the cell cycle to go awry, leading to malignant transformation. In response to genotoxic stress, cells employ diverse adaptive mechanisms to halt or exit the cell cycle temporarily or permanently. The intrinsic machinery of cycling, resting, and exiting shapes the cellular response to extrinsic stimuli, whereas prevalent disruption of the cell cycle machinery in tumor cells often confers resistance to anticancer therapy. Phosphatase and tensin homolog (PTEN) is a tumor suppressor and a guardian of the genome that is frequently mutated or deleted in human cancer. Moreover, it is increasingly evident that PTEN deficiency disrupts the fundamental processes of genetic transmission. Cells lacking PTEN exhibit cell cycle deregulation and cell fate reprogramming. Here, we review the role of PTEN in regulating the key processes in and out of cell cycle to optimize genomic integrity.
Collapse
Affiliation(s)
- Andrew Brandmaier
- Department of Radiation Oncology, Weill Cornell Medicine, Cornell University, New York, NY 10065, USA
| | - Sheng-Qi Hou
- Department of Radiation Oncology, Weill Cornell Medicine, Cornell University, New York, NY 10065, USA
| | - Wen H Shen
- Department of Radiation Oncology, Weill Cornell Medicine, Cornell University, New York, NY 10065, USA.
| |
Collapse
|
30
|
Theoretical studies on benzimidazole and imidazo[1,2-a]pyridine derivatives as Polo-like kinase 1 (Plk1) inhibitors: Pharmacophore modeling, atom-based 3D-QSAR and molecular docking approach. JOURNAL OF SAUDI CHEMICAL SOCIETY 2017. [DOI: 10.1016/j.jscs.2014.03.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
31
|
Yu L, Shang ZF, Abdisalaam S, Lee KJ, Gupta A, Hsieh JT, Asaithamby A, Chen BPC, Saha D. Tumor suppressor protein DAB2IP participates in chromosomal stability maintenance through activating spindle assembly checkpoint and stabilizing kinetochore-microtubule attachments. Nucleic Acids Res 2016; 44:8842-8854. [PMID: 27568005 PMCID: PMC5062997 DOI: 10.1093/nar/gkw746] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 07/14/2016] [Accepted: 08/17/2016] [Indexed: 01/17/2023] Open
Abstract
Defects in kinetochore-microtubule (KT-MT) attachment and the spindle assembly checkpoint (SAC) during cell division are strongly associated with chromosomal instability (CIN). CIN has been linked to carcinogenesis, metastasis, poor prognosis and resistance to cancer therapy. We previously reported that the DAB2IP is a tumor suppressor, and that loss of DAB2IP is often detected in advanced prostate cancer (PCa) and is indicative of poor prognosis. Here, we report that the loss of DAB2IP results in impaired KT-MT attachment, compromised SAC and aberrant chromosomal segregation. We discovered that DAB2IP directly interacts with Plk1 and its loss inhibits Plk1 kinase activity, thereby impairing Plk1-mediated BubR1 phosphorylation. Loss of DAB2IP decreases the localization of BubR1 at the kinetochore during mitosis progression. In addition, the reconstitution of DAB2IP enhances the sensitivity of PCa cells to microtubule stabilizing drugs (paclitaxel, docetaxel) and Plk1 inhibitor (BI2536). Our findings demonstrate a novel function of DAB2IP in the maintenance of KT-MT structure and SAC regulation during mitosis which is essential for chromosomal stability.
Collapse
Affiliation(s)
- Lan Yu
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Zeng-Fu Shang
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA School of Radiation Medicine and Protection, Medical College of Soochow University; Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou, Jiangsu 215123, China
| | - Salim Abdisalaam
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Kyung-Jong Lee
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Arun Gupta
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jer-Tsong Hsieh
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA Department of Oncology, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei 10048, Taiwan
| | - Aroumougame Asaithamby
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Benjamin P C Chen
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Debabrata Saha
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
32
|
Zhang Z, Hou SQ, He J, Gu T, Yin Y, Shen WH. PTEN regulates PLK1 and controls chromosomal stability during cell division. Cell Cycle 2016; 15:2476-85. [PMID: 27398835 PMCID: PMC5026806 DOI: 10.1080/15384101.2016.1203493] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 06/12/2016] [Accepted: 06/13/2016] [Indexed: 12/28/2022] Open
Abstract
PTEN functions as a guardian of the genome through multiple mechanisms. We have previously established that PTEN maintains the structural integrity of chromosomes. In this report, we demonstrate a fundamental role of PTEN in controlling chromosome inheritance to prevent gross genomic alterations. Disruption of PTEN or depletion of PTEN protein phosphatase activity causes abnormal chromosome content, manifested by enlarged or polyploid nuclei. We further identify polo-like kinase 1 (PLK1) as a substrate of PTEN phosphatase. PTEN can physically associate with PLK1 and reduce PLK1 phosphorylation in a phosphatase-dependent manner. We show that PTEN deficiency leads to PLK1 phosphorylation and that a phospho-mimicking PLK1 mutant causes polyploidy, imitating functional deficiency of PTEN phosphatase. Inhibition of PLK1 activity or overexpression of a non-phosphorylatable PLK1 mutant reduces the polyploid cell population. These data reveal a new mechanism by which PTEN controls genomic stability during cell division.
Collapse
Affiliation(s)
- Zhong Zhang
- Department of Radiation Oncology, Weill Medical Medicine, Cornell University, New York, NY, USA
| | - Sheng-Qi Hou
- Department of Radiation Oncology, Weill Medical Medicine, Cornell University, New York, NY, USA
| | - Jinxue He
- Department of Radiation Oncology, Weill Medical Medicine, Cornell University, New York, NY, USA
| | - Tingting Gu
- Department of Radiation Oncology, Weill Medical Medicine, Cornell University, New York, NY, USA
| | - Yuxin Yin
- Department of Radiation Oncology, Weill Medical Medicine, Cornell University, New York, NY, USA
- Present address: Institute of Systems Biomedicine, Department of Pathology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Wen H. Shen
- Department of Radiation Oncology, Weill Medical Medicine, Cornell University, New York, NY, USA
| |
Collapse
|
33
|
Gutteridge REA, Ndiaye MA, Liu X, Ahmad N. Plk1 Inhibitors in Cancer Therapy: From Laboratory to Clinics. Mol Cancer Ther 2016; 15:1427-35. [PMID: 27330107 PMCID: PMC4936921 DOI: 10.1158/1535-7163.mct-15-0897] [Citation(s) in RCA: 295] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 04/06/2016] [Indexed: 01/06/2023]
Abstract
Polo-like kinase 1 (Plk1) overexpression has been shown to occur in a wide range of tumors, prompting research and development of Plk1 inhibitors as a means of cancer treatment. This review discusses recent advances in the development of Plk1 inhibitors for cancer management. Plk1 inhibition has been shown to cause mitotic block and apoptosis of cells with higher mitotic index and therefore higher Plk1 expression. The potential of Plk1 inhibitors as cancer therapeutics has been widely investigated. However, a complete understanding of Plk1 biology/mechanism is yet to be fully achieved. Resistance to certain chemotherapeutic drugs has been linked to Plk1 overexpression, and Plk1-mediated mitotic events such as microtubule rearrangement have been found to reduce the efficacy of chemotherapeutic agents. The Plk1 inhibitor volasertib has shown considerable promise in clinical studies, having reached phase III trials. However, preclinical success with Plk1 inhibitors has not translated well into clinical success. In our view, combined therapies targeting other relevant pathways together with Plk1 may be vital to combat issues observed with monotherapy, especially resistance. In addition, research should also be directed toward understanding the mechanisms of Plk1 and designing additional next generations of specific, potent Plk1 inhibitors to target cancer. Mol Cancer Ther; 15(7); 1427-35. ©2016 AACR.
Collapse
Affiliation(s)
| | - Mary Ann Ndiaye
- Department of Dermatology, University of Wisconsin, Madison, Wisconsin
| | - Xiaoqi Liu
- Department of Biochemistry, Purdue University, West Lafayette, Indiana
| | - Nihal Ahmad
- Department of Dermatology, University of Wisconsin, Madison, Wisconsin. William S. Middleton Memorial VA Hospital, Madison, Wisconsin.
| |
Collapse
|
34
|
Cristóbal I, Rojo F, Madoz-Gúrpide J, García-Foncillas J. Cross Talk between Wnt/β-Catenin and CIP2A/Plk1 Signaling in Prostate Cancer: Promising Therapeutic Implications. Mol Cell Biol 2016; 36:1734-9. [PMID: 27090640 PMCID: PMC4907099 DOI: 10.1128/mcb.00130-16] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Aberrant activation of the Wnt/β-catenin pathway and polo-like kinase 1 (Plk1) overexpression represent two common events in prostate cancer with relevant functional implications. This minireview analyzes their potential therapeutic significance in prostate cancer based on their role as androgen receptor (AR) signaling regulators and the pivotal role of the tumor suppressor protein phosphatase 2A (PP2A) modulating these pathways.
Collapse
Affiliation(s)
- Ion Cristóbal
- Translational Oncology Division, Oncohealth Institute, IIS Fundación Jiménez Diaz, UAM, University Hospital Fundación Jiménez Diaz, Madrid, Spain
| | - Federico Rojo
- Pathology Department, IIS Fundación Jiménez Diaz, UAM, Madrid, Spain
| | | | - Jesús García-Foncillas
- Translational Oncology Division, Oncohealth Institute, IIS Fundación Jiménez Diaz, UAM, University Hospital Fundación Jiménez Diaz, Madrid, Spain
| |
Collapse
|
35
|
Fitzgerald KA, Malhotra M, Gooding M, Sallas F, Evans JC, Darcy R, O'Driscoll CM. A novel, anisamide-targeted cyclodextrin nanoformulation for siRNA delivery to prostate cancer cells expressing the sigma-1 receptor. Int J Pharm 2016; 499:131-145. [PMID: 26721726 DOI: 10.1016/j.ijpharm.2015.12.055] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 12/18/2015] [Accepted: 12/19/2015] [Indexed: 02/08/2023]
Abstract
Prostate cancer is a leading cause of cancer-related death in men and RNA interference (RNAi) has emerged as a potential therapeutic option. However, the absence of a safe and specific delivery vector remains a major obstacle to the clinical application of RNAi. Cyclodextrin derivatives are known to be efficient delivery systems with low toxicity in a variety of cell types. In this study, a cationic cyclodextrin derivative was synthesized to complex siRNA. The nanoparticle was then further modified by exploiting the ability of the β-cyclodextrin cavity to form an inclusion complex with the hydrophobic molecule adamantane. PEGylated adamantane derivatives were synthesized with and without the anisamide-targeting ligand on the terminal end of the PEG chain. Anisamide is known to bind specifically to the sigma receptor which is overexpressed on the surface of prostate cancer cells. The resulting nanocomplexes were slightly cationic and less than 300 nm in size. They successfully protected siRNA from serum-induced nuclease degradation and were non-toxic to prostate cancer cells. In addition, the targeted nanoparticles mediated high levels of siRNA cellular uptake and corresponding PLK1 gene knockdown in prostate cancer cells in vitro. To our knowledge, this is the first time that the ability of cyclodextrins to form inclusion complexes with adamantane derivatives has been exploited for the targeted delivery of siRNA to prostate cancer cells via the sigma receptor.
Collapse
Affiliation(s)
| | - Meenakshi Malhotra
- Pharmacodelivery Group, School of Pharmacy, University College Cork, Ireland
| | - Matt Gooding
- Centre for Synthesis and Chemical Biology, University College Dublin, Ireland
| | - Florence Sallas
- Centre for Synthesis and Chemical Biology, University College Dublin, Ireland
| | - James C Evans
- Pharmacodelivery Group, School of Pharmacy, University College Cork, Ireland
| | - Raphael Darcy
- Centre for Synthesis and Chemical Biology, University College Dublin, Ireland; School of Chemistry, University College Dublin, Ireland
| | | |
Collapse
|
36
|
Zhang Z, Zhang G, Kong C. FOXM1 participates in PLK1-regulated cell cycle progression in renal cell cancer cells. Oncol Lett 2016; 11:2685-2691. [PMID: 27073539 DOI: 10.3892/ol.2016.4228] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 02/04/2016] [Indexed: 12/27/2022] Open
Abstract
The regulation of entry into and progression through mitosis is important for cell proliferation. Polo-like kinase 1 (PLK1) is involved in multiple stages of mitosis. Forkhead box protein M1 (FOXM1) has multiple functions in tumorigenesis and, in elevated levels, is frequently associated with cancer progression. The present study reports that FOXM1, a substrate of PLK1, controls the transcription mechanism that mediates the PLK1-dependent regulation of the cell cycle. The present study investigated the expression of PLK1 and FOXM1 in the clear renal cell carcinoma 769-P and ACHN cell lines, and indicated that the expression of PLK1 and FOXM1 are correlated in human renal cell cancer cell lines and that the suppression of PLK1 may decrease the expression of FOXM1. The knockdown of FOXM1 or PLK1 in renal cell cancer cell lines caused cell cycle progression to be blocked. As a result, the present study indicated the involvement of FOXM1 in PLK1-regulated cell cycle progression.
Collapse
Affiliation(s)
- Zhe Zhang
- Department of Urology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Guojun Zhang
- Department of Hematology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110022, P.R. China
| | - Chuize Kong
- Department of Urology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| |
Collapse
|
37
|
Talati C, Griffiths EA, Wetzler M, Wang ES. Polo-like kinase inhibitors in hematologic malignancies. Crit Rev Oncol Hematol 2016; 98:200-10. [PMID: 26597019 DOI: 10.1016/j.critrevonc.2015.10.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Revised: 10/12/2015] [Accepted: 10/27/2015] [Indexed: 11/22/2022] Open
Abstract
Polo-like kinases (Plk) are key regulators of the cell cycle and multiple aspects of mitosis. Two agents that inhibit the Plk signaling pathway have shown promising activity in patients with hematologic malignancies and are currently in phase III trials. Volasertib is a Plk inhibitor under evaluation combined with low-dose cytarabine in older patients with acute myeloid leukemia (AML) ineligible for intensive induction therapy. Rigosertib, a dual inhibitor of the Plk and phosphatidylinositol 3-kinase pathways, is under investigation in patients with myelodysplastic syndrome (MDS) who have failed azacitidine or decitabine treatment. The prognosis for patients with AML, who are ineligible for intensive induction therapy, and for those with MDS refractory/relapsed after a hypomethylating agent, remains poor. Novel approaches, such as Plk inhibitors, are urgently needed for these patients. Here, we provide a comprehensive overview of the current state of development of Plk inhibitors for the treatment of hematologic malignancies.
Collapse
Affiliation(s)
- Chetasi Talati
- Leukemia Section, Department of Medicine, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY 14263, USA.
| | - Elizabeth A Griffiths
- Leukemia Section, Department of Medicine, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY 14263, USA.
| | - Meir Wetzler
- Leukemia Section, Department of Medicine, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY 14263, USA
| | - Eunice S Wang
- Leukemia Section, Department of Medicine, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY 14263, USA.
| |
Collapse
|
38
|
Liu X. Targeting Polo-Like Kinases: A Promising Therapeutic Approach for Cancer Treatment. Transl Oncol 2015; 8:185-95. [PMID: 26055176 PMCID: PMC4486469 DOI: 10.1016/j.tranon.2015.03.010] [Citation(s) in RCA: 122] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Revised: 03/19/2015] [Accepted: 03/24/2015] [Indexed: 12/29/2022] Open
Abstract
Polo-like kinases (Plks) are a family of serine-threonine kinases that regulate multiple intracellular processes including DNA replication, mitosis, and stress response. Plk1, the most well understood family member, regulates numerous stages of mitosis and is overexpressed in many cancers. Plk inhibitors are currently under clinical investigation, including phase III trials of volasertib, a Plk inhibitor, in acute myeloid leukemia and rigosertib, a dual inhibitor of Plk1/phosphoinositide 3-kinase signaling pathways, in myelodysplastic syndrome. Other Plk inhibitors, including the Plk1 inhibitors GSK461364A, TKM-080301, GW843682, purpurogallin, and poloxin and the Plk4 inhibitor CFI-400945 fumarate, are in earlier clinical development. This review discusses the biologic roles of Plks in cell cycle progression and cancer, and the mechanisms of action of Plk inhibitors currently in development as cancer therapies.
Collapse
Affiliation(s)
- Xiaoqi Liu
- Purdue University, West Lafayette, IN, USA.
| |
Collapse
|
39
|
Milella M, Falcone I, Conciatori F, Cesta Incani U, Del Curatolo A, Inzerilli N, Nuzzo CMA, Vaccaro V, Vari S, Cognetti F, Ciuffreda L. PTEN: Multiple Functions in Human Malignant Tumors. Front Oncol 2015; 5:24. [PMID: 25763354 PMCID: PMC4329810 DOI: 10.3389/fonc.2015.00024] [Citation(s) in RCA: 349] [Impact Index Per Article: 34.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 01/22/2015] [Indexed: 12/16/2022] Open
Abstract
PTEN is the most important negative regulator of the PI3K signaling pathway. In addition to its canonical, PI3K inhibition-dependent functions, PTEN can also function as a tumor suppressor in a PI3K-independent manner. Indeed, the PTEN network regulates a broad spectrum of biological functions, modulating the flow of information from membrane-bound growth factor receptors to nuclear transcription factors, occurring in concert with other tumor suppressors and oncogenic signaling pathways. PTEN acts through its lipid and protein phosphatase activity and other non-enzymatic mechanisms. Studies conducted over the past 10 years have expanded our understanding of the biological role of PTEN, showing that in addition to its ability to regulate proliferation and cell survival, it also plays an intriguing role in regulating genomic stability, cell migration, stem cell self-renewal, and tumor microenvironment. Changes in PTEN protein levels, location, and enzymatic activity through various molecular mechanisms can generate a continuum of functional PTEN levels in inherited syndromes, sporadic cancers, and other diseases. PTEN activity can indeed, be modulated by mutations, epigenetic silencing, transcriptional repression, aberrant protein localization, and post-translational modifications. This review will discuss our current understanding of the biological role of PTEN, how PTEN expression and activity are regulated, and the consequences of PTEN dysregulation in human malignant tumors.
Collapse
Affiliation(s)
- Michele Milella
- Division of Medical Oncology A, Regina Elena National Cancer Institute , Rome , Italy
| | - Italia Falcone
- Division of Medical Oncology A, Regina Elena National Cancer Institute , Rome , Italy
| | - Fabiana Conciatori
- Division of Medical Oncology A, Regina Elena National Cancer Institute , Rome , Italy
| | - Ursula Cesta Incani
- Division of Medical Oncology A, Regina Elena National Cancer Institute , Rome , Italy
| | - Anais Del Curatolo
- Division of Medical Oncology A, Regina Elena National Cancer Institute , Rome , Italy
| | - Nicola Inzerilli
- Division of Medical Oncology A, Regina Elena National Cancer Institute , Rome , Italy
| | - Carmen M A Nuzzo
- Division of Medical Oncology A, Regina Elena National Cancer Institute , Rome , Italy
| | - Vanja Vaccaro
- Division of Medical Oncology A, Regina Elena National Cancer Institute , Rome , Italy
| | - Sabrina Vari
- Division of Medical Oncology A, Regina Elena National Cancer Institute , Rome , Italy
| | - Francesco Cognetti
- Division of Medical Oncology A, Regina Elena National Cancer Institute , Rome , Italy
| | - Ludovica Ciuffreda
- Division of Medical Oncology A, Regina Elena National Cancer Institute , Rome , Italy
| |
Collapse
|
40
|
Shao C, Ahmad N, Hodges K, Kuang S, Ratliff T, Liu X. Inhibition of polo-like kinase 1 (Plk1) enhances the antineoplastic activity of metformin in prostate cancer. J Biol Chem 2015; 290:2024-33. [PMID: 25505174 PMCID: PMC4303657 DOI: 10.1074/jbc.m114.596817] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Revised: 12/08/2014] [Indexed: 01/21/2023] Open
Abstract
The widely used anti-diabetic drug metformin has been shown to exert strong antineoplastic actions in numerous tumor types, including prostate cancer (PCa). In this study, we show that BI2536, a specific Plk1 inhibitor, acted synergistically with metformin in inhibiting PCa cell proliferation. Furthermore, we also provide evidence that Plk1 inhibition makes PCa cells carrying WT p53 much more sensitive to low-dose metformin treatment. Mechanistically, we found that co-treatment with BI2536 and metformin induced p53-dependent apoptosis and further activated the p53/Redd-1 pathway. Moreover, we also show that BI2536 treatment inhibited metformin-induced glycolysis and glutamine anaplerosis, both of which are survival responses of cells against mitochondrial poisons. Finally, we confirmed the cell-based observations using both cultured cell-derived and patient-derived xenograft studies. Collectively, our findings support another promising therapeutic strategy by combining two well tolerated drugs against PCa proliferation and the progression of androgen-dependent PCa to the castration-resistant stage.
Collapse
Affiliation(s)
- Chen Shao
- From the Departments of Biochemistry and
| | - Nihal Ahmad
- the Department of Dermatology, University of Wisconsin, Madison, Wisconsin 53706, and
| | - Kurt Hodges
- the Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | | | - Tim Ratliff
- the Purdue Center for Cancer Research, Purdue University, West Lafayette, Indiana 47907
| | - Xiaoqi Liu
- From the Departments of Biochemistry and the Purdue Center for Cancer Research, Purdue University, West Lafayette, Indiana 47907,
| |
Collapse
|
41
|
Zhang Z, Chen L, Wang H, Ahmad N, Liu X. Inhibition of Plk1 represses androgen signaling pathway in castration-resistant prostate cancer. Cell Cycle 2015; 14:2142-8. [PMID: 25927139 PMCID: PMC4612397 DOI: 10.1080/15384101.2015.1041689] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 04/01/2015] [Accepted: 04/11/2015] [Indexed: 12/17/2022] Open
Abstract
Prostate cancer (PCa) is the second leading cause of cancer-related death in males in the United States. Majority of prostate cancers are originally androgen-dependent and sensitive to androgen-deprivation therapy (ADT), however, most of them eventually relapse and progress into incurable castration-resistant prostate cancer (CRPC). Of note, the activity of androgen receptor (AR) is still required in CRPC stage. The mitotic kinase polo-like kinase 1 (Plk1) is significantly elevated in PCa and its expression correlates with tumor grade. In this study, we assess the effects of Plk1 on AR signaling in both androgen-dependent and androgen-independent PCa cells. We demonstrate that the expression level of Plk1 correlated with tumorigenicity and that inhibition of Plk1 caused reduction of AR expression and AR activity. Furthermore, Plk1 inhibitor BI2536 down-regulated SREBP-dependent expression of enzymes involved in androgen biosynthesis. Of interest, Plk1 level was also reduced when AR activity was inhibited by the antagonist MDV3100. Finally, we show that BI2536 treatment significantly inhibited tumor growth in LNCaP CRPC xenografts. Overall, our data support the concept that Plk1 inhibitor such as BI2536 prevents AR signaling pathway and might have therapeutic potential for CRPC patients.
Collapse
Affiliation(s)
- Zhe Zhang
- State Key Laboratory for Agrobiotechnology and Department of Microbiology; China Agricultural University; Beijing, China
- Department of Biochemistry; Purdue University; West Lafayette, IN USA
| | - Long Chen
- Department of Biochemistry; Purdue University; West Lafayette, IN USA
| | - Hexiang Wang
- State Key Laboratory for Agrobiotechnology and Department of Microbiology; China Agricultural University; Beijing, China
| | - Nihal Ahmad
- Department of Dermatology; University of Wisconsin; Madison, WI USA
| | - Xiaoqi Liu
- Department of Biochemistry; Purdue University; West Lafayette, IN USA
| |
Collapse
|
42
|
Zhang Z, Hou X, Shao C, Li J, Cheng JX, Kuang S, Ahmad N, Ratliff T, Liu X. Plk1 inhibition enhances the efficacy of androgen signaling blockade in castration-resistant prostate cancer. Cancer Res 2014; 74:6635-47. [PMID: 25252916 PMCID: PMC4233180 DOI: 10.1158/0008-5472.can-14-1916] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Prostate cancer is thought to be driven by oxidative stress, lipid metabolism, androgen receptor (AR) signaling, and activation of the PI3K-AKT-mTOR pathway, but it is uncertain how they may become coordinated during progression to castration-resistant disease that remains incurable. The mitotic kinase polo-like kinase 1 (Plk1) is elevated in prostate cancer, where its expression is linked to tumor grade. Notably, Plk1 signaling and lipid metabolism were identified recently as two of the top five most upregulated pathways in a mouse xenograft model of human prostate cancer. Herein, we show that oxidative stress activates both the PI3K-AKT-mTOR pathway and AR signaling in a Plk1-dependent manner in prostate cells. Inhibition of the PI3K-AKT-mTOR pathway prevented oxidative stress-induced activation of AR signaling. Plk1 modulation also affected cholesteryl ester accumulation in prostate cancer via the SREBP pathway. Finally, Plk1 inhibition enhanced cellular responses to androgen signaling inhibitors (ASI) and overcame ASI resistance in both cultured prostate cancer cells and patient-derived tumor xenografts. Given that activation of AR signaling and the PI3K-AKT-mTOR pathway is sufficient to elevate SREBP-dependent expression of key lipid biosynthesis enzymes in castration-resistant prostate cancer (CRPC), our findings argued that Plk1 activation was responsible for coordinating and driving these processes to promote and sustain the development of this advanced stage of disease. Overall, our results offer a strong mechanistic rationale to evaluate Plk1 inhibitors in combination drug trials to enhance the efficacy of ASIs in CRPC.
Collapse
Affiliation(s)
- Zhe Zhang
- Department of Biochemistry, Purdue University, West Lafayette, Indiana. State Key Laboratory for Agrobiotechnology and Department of Microbiology, China Agricultural University, Beijing, China
| | - Xianzeng Hou
- Department of Biochemistry, Purdue University, West Lafayette, Indiana. Department of Neurosurgery, Qianfoshan Hospital affiliated to Shandong University, Jinan, China
| | - Chen Shao
- Department of Biochemistry, Purdue University, West Lafayette, Indiana
| | - Junjie Li
- Department of Biomedical Engineering, Purdue University, West Lafayette, Indiana
| | - Ji-Xin Cheng
- Department of Biomedical Engineering, Purdue University, West Lafayette, Indiana
| | - Shihuan Kuang
- Department of Animal Sciences, Purdue University, West Lafayette, Indiana
| | - Nihal Ahmad
- Department of Dermatology, University of Wisconsin, Madison, Wisconsin
| | - Timothy Ratliff
- Purdue Center for Cancer Research, Purdue University, West Lafayette, Indiana
| | - Xiaoqi Liu
- Department of Biochemistry, Purdue University, West Lafayette, Indiana. Purdue Center for Cancer Research, Purdue University, West Lafayette, Indiana.
| |
Collapse
|
43
|
Cholewa B, Pellitteri-Hahn MC, Scarlett CO, Ahmad N. Large-scale label-free comparative proteomics analysis of polo-like kinase 1 inhibition via the small-molecule inhibitor BI 6727 (Volasertib) in BRAF(V600E) mutant melanoma cells. J Proteome Res 2014; 13:5041-50. [PMID: 24884503 PMCID: PMC4227549 DOI: 10.1021/pr5002516] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Indexed: 12/11/2022]
Abstract
Polo-like kinase 1 (Plk1) is a serine/threonine kinase that plays a key role during the cell cycle by regulating mitotic entry, progression, and exit. Plk1 is overexpressed in a variety of human cancers and is essential to sustained oncogenic proliferation, thus making Plk1 an attractive therapeutic target. However, the clinical efficacy of Plk1 inhibition has not emulated the preclinical success, stressing an urgent need for a better understanding of Plk1 signaling. This study addresses that need by utilizing a quantitative proteomics strategy to compare the proteome of BRAF(V600E) mutant melanoma cells following treatment with the Plk1-specific inhibitor BI 6727. Employing label-free nano-LC-MS/MS technology on a Q-exactive followed by SIEVE processing, we identified more than 20 proteins of interest, many of which have not been previously associated with Plk1 signaling. Here we report the down-regulation of multiple metabolic proteins with an associated decrease in cellular metabolism, as assessed by lactate and NAD levels. Furthermore, we have also identified the down-regulation of multiple proteasomal subunits, resulting in a significant decrease in 20S proteasome activity. Additionally, we have identified a novel association between Plk1 and p53 through heterogeneous ribonucleoprotein C1/C2 (hnRNPC), thus providing valuable insight into Plk1's role in cancer cell survival.
Collapse
Affiliation(s)
- Brian
D. Cholewa
- Department of Dermatology, Molecular and Environmental Toxicology
Center, and School of Pharmacy, University of Wisconsin, 1300 University Avenue, Madison, Wisconsin 53706, United States
| | - Molly C. Pellitteri-Hahn
- Department of Dermatology, Molecular and Environmental Toxicology
Center, and School of Pharmacy, University of Wisconsin, 1300 University Avenue, Madison, Wisconsin 53706, United States
| | - Cameron O. Scarlett
- Department of Dermatology, Molecular and Environmental Toxicology
Center, and School of Pharmacy, University of Wisconsin, 1300 University Avenue, Madison, Wisconsin 53706, United States
| | - Nihal Ahmad
- Department of Dermatology, Molecular and Environmental Toxicology
Center, and School of Pharmacy, University of Wisconsin, 1300 University Avenue, Madison, Wisconsin 53706, United States
- William
S. Middleton Memorial VA Hospital, 2500 Overlook Terrace, Madison, Wisconsin 53705, United States
| |
Collapse
|
44
|
Kappler CS, Guest ST, Irish JC, Garrett-Mayer E, Kratche Z, Wilson RC, Ethier SP. Oncogenic signaling in amphiregulin and EGFR-expressing PTEN-null human breast cancer. Mol Oncol 2014; 9:527-43. [PMID: 25454348 PMCID: PMC4304881 DOI: 10.1016/j.molonc.2014.10.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Revised: 10/15/2014] [Accepted: 10/17/2014] [Indexed: 12/31/2022] Open
Abstract
A subset of triple negative breast cancer (TNBC) is characterized by overexpression of the epidermal growth factor receptor (EGFR) and loss of PTEN, and patients with these determinants have a poor prognosis. We used cell line models of EGFR‐positive/PTEN null TNBC to elucidate the signaling networks that drive the malignant features of these cells and cause resistance to EGFR inhibitors. In these cells, amphiregulin (AREG)‐mediated activation of EGFR results in up‐regulation of fibronectin (FN1), which is known to be a mediator of invasive capacity via interaction with integrin β1. EGFR activity in this PTEN null background also results in Wnt/beta‐catenin signaling and activation of NF‐κB. In addition, AKT is constitutively phosphorylated in these cells and is resistant to gefitinib. Expression profiling demonstrated that AREG‐activated EGFR regulates gene expression differently than EGF‐activated EGFR, and functional analysis via genome‐scale shRNA screening identified a set of genes, including PLK1 and BIRC5, that are essential for survival of SUM‐149 cells, but are uncoupled from EGFR signaling. Thus, our results demonstrate that in cells with constitutive EGFR activation and PTEN loss, critical survival genes are uncoupled from regulation by EGFR, which likely mediates resistance to EGFR inhibitors. Activation of EGFR by AREG alters signaling and gene expression compared to EGF. Activation of EGFR by AREG reduces mTORC1 pathway expression and phosphorylation. EGF‐positive, PTEN‐null TNBC cells are poised for Wnt/beta‐catenin signaling. Wnt/beta‐catenin activity occurs in a subset of cells and is enhanced in mammospheres. Regulation of growth/survival genes is uncoupled from EGFR in PTEN‐null TNBC cells.
Collapse
Affiliation(s)
- Christiana S Kappler
- Department of Pathology and Laboratory Medicine, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA.
| | - Stephen T Guest
- Department of Pathology and Laboratory Medicine, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Jonathan C Irish
- Department of Pathology and Laboratory Medicine, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Elizabeth Garrett-Mayer
- Department of Public Health Science, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Zachary Kratche
- Department of Pathology and Laboratory Medicine, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Robert C Wilson
- Department of Pathology and Laboratory Medicine, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Stephen P Ethier
- Department of Pathology and Laboratory Medicine, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA
| |
Collapse
|
45
|
Xu W, Yang Z, Zhou SF, Lu N. Posttranslational regulation of phosphatase and tensin homolog (PTEN) and its functional impact on cancer behaviors. DRUG DESIGN DEVELOPMENT AND THERAPY 2014; 8:1745-51. [PMID: 25336918 PMCID: PMC4199979 DOI: 10.2147/dddt.s71061] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The incidence of cancer is increasing worldwide, but the biochemical mechanisms for the occurrence of cancer is not fully understood, and there is no cure for advanced tumors. Defects of posttranslational modifications of proteins are linked to a number of important diseases, such as cancer. This review will update our knowledge on the critical role of posttranscriptional regulation of phosphatase and tensin homolog (PTEN) and its activities and the functional impact on cancer behaviors. PTEN is a tumor suppressor gene that occupies a key position in regulating cell growth, proliferation, apoptosis, mobility, signal transduction, and other crucial cellular processes. The activity and function of PTEN are regulated by coordinated epigenetic, transcriptional, posttranscriptional, and posttranslational modifications. In particular, PTEN is subject to phosphorylation, ubiquitylation, somoylation, acetylation, and active site oxidation. Posttranslational modifications of PTEN can dynamically change its activity and function. Deficiency in the posttranslational regulation of PTEN leads to abnormal cell proliferation, apoptosis, migration, and adhesion, which are associated with cancer initiation, progression, and metastasis. With increasing information on how PTEN is regulated by multiple mechanisms and networked proteins, its exact role in cancer initiation, growth, and metastasis will be revealed. PTEN and its functionally related proteins may represent useful targets for the discovery of new anticancer drugs, and gene therapy and the therapeutic potentials should be fully explored.
Collapse
Affiliation(s)
- Wenting Xu
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Zhen Yang
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Shu-Feng Zhou
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL, USA
| | - Nonghua Lu
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People's Republic of China
| |
Collapse
|
46
|
Craig SN, Wyatt MD, McInnes C. Current assessment of polo-like kinases as anti-tumor drug targets. Expert Opin Drug Discov 2014; 9:773-89. [PMID: 24819909 DOI: 10.1517/17460441.2014.918100] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
INTRODUCTION Polo-like kinase (PLK)1 is the most studied of the PLK family and is a serine/threonine kinase that plays pivotal roles in many aspects of mitosis and hence its deregulation is prevalent in various malignant tumor types. AREAS COVERED In this review, the authors discuss the relevancy of PLK1 and other PLK members as oncology targets in light of known roles of these kinases and the observed phenotypic consequence of downregulating their activity, depending on how they are targeted. Furthermore, they also discuss the pathways mutated in cancer that have been shown to enhance sensitivity toward PLK1 inhibitors in the context of tumor types that possess these molecular defects. They also summarize preclinical and clinical investigations that have been undertaken for both ATP and non-ATP competitive inhibitors. EXPERT OPINION PLKs 2, 3 and 5 are primarily linked with tumor suppressor functions and as PLK1 is the most validated anticancer drug target, selective inhibitors for its activities are most likely to result in effective therapeutics with reduced side effects. In this regard, the polo box domain can be targeted to generate selective inhibitors of PLK1 while preventing inhibition of kinases outside of this family. Recent studies confirming the synthetic lethality of other molecular defects with PLK1 can be exploited to obtain tumor selective apoptosis in p53, KRAS and PTEN mutant cancers.
Collapse
Affiliation(s)
- Sandra N Craig
- University of South Carolina, South Carolina College of Pharmacy, Drug Discovery and Biomedical Sciences , Columbia, SC, 29208 , USA +1 803 576 5684 ;
| | | | | |
Collapse
|
47
|
Plk1-targeted therapies in TP53- or RAS-mutated cancer. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2014; 761:31-39. [PMID: 24630986 DOI: 10.1016/j.mrrev.2014.02.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Revised: 02/27/2014] [Accepted: 02/27/2014] [Indexed: 11/23/2022]
Abstract
Despite advances in treatment, prognosis for many types of carcinoma remains poor. Polo-like kinase 1 (Plk1) has been explored as a target for the development of anticancer drugs. As a mitotic master Ser/Thr kinase, Plk1 is involved in centrosomal maturation, microtubule nucleation, chromosomal segregation, and cytokinesis. Additional functions in interphase and in response to DNA damage have been revealed. The multiple locations of Plk1 correspond to distinct functions, mediated by phosphorylation of multiple substrates. Since it is highly expressed in several carcinomas, and expression of Plk1 is inversely correlated with the survival rate of patients in non-small cell lung, head and neck, and esophageal cancer, Plk1 is recognized as a valid prognostic marker. Connections between Plk1 and p53 or KRAS in carcinoma provide a rationale and several possible routes to the development of therapies. Tumors with both p53-deficiency and high Plk1 expression may be particularly sensitive to Plk1 inhibitors, although some controversial data exist. In KRAS-mutant cancers, on the other hand, Plk1 may be essential for tumor cell survival, but detailed studies as to whether Plk1 inhibitors are more effective in KRAS-mutant cancers must be performed in order to determine whether this is the case. Here, we present evidence for Plk1 as a prognostic marker and potentially effective target for the treatment of patients with carcinoma, to demonstrate the value of Plk1 as a target for the development of cancer treatment, especially for patients with solid tumors. In addition, the effects of Plk1 inhibition in p53- or KRAS-mutated cancer are discussed with respect to clinical implications. Structural specifics of Plk1 are presented, as well as current strategies for discovering new Plk1 inhibitors by targeting the conserved ATP binding site or polo-box domain of Plk1, in order to develop Plk1-specific anticancer drugs.
Collapse
|
48
|
Yue S, Li J, Lee SY, Lee HJ, Shao T, Song B, Cheng L, Masterson TA, Liu X, Ratliff TL, Cheng JX. Cholesteryl ester accumulation induced by PTEN loss and PI3K/AKT activation underlies human prostate cancer aggressiveness. Cell Metab 2014; 19:393-406. [PMID: 24606897 PMCID: PMC3969850 DOI: 10.1016/j.cmet.2014.01.019] [Citation(s) in RCA: 661] [Impact Index Per Article: 60.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Revised: 11/24/2013] [Accepted: 01/23/2014] [Indexed: 01/02/2023]
Abstract
Altered lipid metabolism is increasingly recognized as a signature of cancer cells. Enabled by label-free Raman spectromicroscopy, we performed quantitative analysis of lipogenesis at single-cell level in human patient cancerous tissues. Our imaging data revealed an unexpected, aberrant accumulation of esterified cholesterol in lipid droplets of high-grade prostate cancer and metastases. Biochemical study showed that such cholesteryl ester accumulation was a consequence of loss of tumor suppressor PTEN and subsequent activation of PI3K/AKT pathway in prostate cancer cells. Furthermore, we found that such accumulation arose from significantly enhanced uptake of exogenous lipoproteins and required cholesterol esterification. Depletion of cholesteryl ester storage significantly reduced cancer proliferation, impaired cancer invasion capability, and suppressed tumor growth in mouse xenograft models with negligible toxicity. These findings open opportunities for diagnosing and treating prostate cancer by targeting the altered cholesterol metabolism.
Collapse
Affiliation(s)
- Shuhua Yue
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Junjie Li
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Seung-Young Lee
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Hyeon Jeong Lee
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN 47907, USA
| | - Tian Shao
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Bing Song
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Liang Cheng
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Timothy A Masterson
- Department of Urology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Xiaoqi Liu
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA; Center for Cancer Research, Purdue University, West Lafayette, IN 47907, USA
| | - Timothy L Ratliff
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN 47907, USA; Center for Cancer Research, Purdue University, West Lafayette, IN 47907, USA
| | - Ji-Xin Cheng
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA; Center for Cancer Research, Purdue University, West Lafayette, IN 47907, USA.
| |
Collapse
|
49
|
Abstract
Polo-like kinase 1 (Plk1) is a well-established mitotic regulator with a diverse range of biologic functions continually being identified throughout the cell cycle. Preclinical evidence suggests that the molecular targeting of Plk1 could be an effective therapeutic strategy in a wide range of cancers; however, that success has yet to be translated to the clinical level. The lack of clinical success has raised the question of whether there is a true oncogenic addiction to Plk1 or if its overexpression in tumors is solely an artifact of increased cellular proliferation. In this review, we address the role of Plk1 in carcinogenesis by discussing the cell cycle and DNA damage response with respect to their associations with classic oncogenic and tumor suppressor pathways that contribute to the transcriptional regulation of Plk1. A thorough examination of the available literature suggests that Plk1 activity can be dysregulated through key transformative pathways, including both p53 and pRb. On the basis of the available literature, it may be somewhat premature to draw a definitive conclusion on the role of Plk1 in carcinogenesis. However, evidence supports the notion that oncogene dependence on Plk1 is not a late occurrence in carcinogenesis and it is likely that Plk1 plays an active role in carcinogenic transformation.
Collapse
Affiliation(s)
- Brian D. Cholewa
- Department of Dermatology, University of Wisconsin, Madison, WI
- Molecular and Environmental Toxicology Center, University of Wisconsin, Madison, WI
| | - Xiaoqi Liu
- Department of Biochemistry, Purdue University, West Lafayette, IN
| | - Nihal Ahmad
- Department of Dermatology, University of Wisconsin, Madison, WI
- Molecular and Environmental Toxicology Center, University of Wisconsin, Madison, WI
- William S. Middleton Memorial VA Hospital, Madison, WI
| |
Collapse
|
50
|
Tandle AT, Kramp T, Kil WJ, Halthore A, Gehlhaus K, Shankavaram U, Tofilon PJ, Caplen NJ, Camphausen K. Inhibition of polo-like kinase 1 in glioblastoma multiforme induces mitotic catastrophe and enhances radiosensitisation. Eur J Cancer 2013; 49:3020-8. [PMID: 23790466 PMCID: PMC3755049 DOI: 10.1016/j.ejca.2013.05.013] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Accepted: 05/15/2013] [Indexed: 11/23/2022]
Abstract
Glioblastoma multiforme (GBM) is the most common primary brain tumour in the United States of America (USA) with a median survival of approximately 14 months. Low survival rates are attributable to the aggressiveness of GBM and a lack of understanding of the molecular mechanisms underlying GBM. The disruption of signalling pathways regulated either directly or indirectly by protein kinases is frequently observed in cancer cells and thus the development of inhibitors of specific kinases has become a major focus of drug discovery in oncology. To identify protein kinases required for the survival of GBM we performed a siRNA-based RNAi screen focused on the human kinome in GBM. Inhibition of the polo-like kinase 1 (PLK1) induced a reduction in the viability in two different GBM cell lines. To assess the potential of inhibiting PLK1 as a treatment strategy for GBM we examined the effects of a small molecule inhibitor of PLK1, GSK461364A, on the growth of GBM cells. PLK1 inhibition arrested cells in the mitotic phase of the cell cycle and induced cell kill by mitotic catastrophe. GBM engrafts treated with GSK461364A showed statistically significant inhibition of tumour growth. Further, exposure of different GBM cells to RNAi or GSK461364A prior to radiation resulted in an increase in their radiosensitivity with dose enhancement factor ranging from 1.40 to 1.53 with no effect on normal cells. As a measure of DNA double strand breaks, γH2AX levels were significantly higher in the combined modality as compared to the individual treatments. This study suggests that PLK1 is an important therapeutic target for GBM and can enhance radiosensitivity in GBM.
Collapse
Affiliation(s)
- Anita T. Tandle
- Radiation Oncology Branch, National Institutes of Health, Bethesda; Maryland
| | - Tamalee Kramp
- Radiation Oncology Branch, National Institutes of Health, Bethesda; Maryland
| | - Whoon J Kil
- Radiation Oncology Branch, National Institutes of Health, Bethesda; Maryland
| | - Aditya Halthore
- Radiation Oncology Branch, National Institutes of Health, Bethesda; Maryland
| | - Kristen Gehlhaus
- Genetics Branch, National Cancer Institute, National Institutes of Health, Bethesda; Maryland
| | - Uma Shankavaram
- Radiation Oncology Branch, National Institutes of Health, Bethesda; Maryland
| | - Philip J. Tofilon
- Radiation Oncology Branch, National Institutes of Health, Bethesda; Maryland
| | - Natasha J. Caplen
- Genetics Branch, National Cancer Institute, National Institutes of Health, Bethesda; Maryland
| | - Kevin Camphausen
- Radiation Oncology Branch, National Institutes of Health, Bethesda; Maryland
| |
Collapse
|