1
|
Navarro P, Castillo J, Jones J, García A, Caturla N. Skin Photoprotection and Anti-Aging Benefits of a Combination of Rosemary and Grapefruit Extracts: Evidence from In Vitro Models and Human Study. Int J Mol Sci 2025; 26:4001. [PMID: 40362239 PMCID: PMC12071866 DOI: 10.3390/ijms26094001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 04/14/2025] [Accepted: 04/19/2025] [Indexed: 05/15/2025] Open
Abstract
Skin exposure to ultraviolet radiation (UVR) causes oxidative stress, inflammation, and collagen degradation and can trigger erythema. While topical formulas protect the skin from UV damage, there is growing evidence that certain botanical ingredients taken orally may have an added benefit. This study evaluated the photoprotective, anti-photoaging, and anti-erythema efficacy of a combination of rosemary and grapefruit extract (Nutroxsun®). Radical oxygen species (ROS) generation and interleukin production were determined in UV-irradiated keratinocytes (HaCaT). Also, collagen and elastin secretion and metalloproteinase (MMP-1 and MMP-3) content were assessed in UV-irradiated fibroblasts (NHDFs). Furthermore, a placebo-controlled, randomized, crossover study was conducted in 20 subjects (phototypes I to III) receiving two doses, 100 and 200 mg, of the ingredient. Skin redness (a* value, CIELab) after exposure to one minimal erythemal dose of UVR was assessed. As a result, the botanical blend significantly attenuated the UVR-induced reductions of procollagen I and elastin and lowered MMP-1 and MMP-3 protein secretion. Also, a reduction in ROS and proinflammatory interleukins (IL-1, IL-8, and IL-6) was observed. Finally, the botanical blend, at both doses, significantly reduced UV-induced erythema reaction from the first day of intake and accelerated recovery. These findings reinforce the potential of this ingredient as an effective dietary solution to protect the skin against UV-induced damage.
Collapse
Affiliation(s)
- Pau Navarro
- Research and Development Department, Monteloeder SL, Miguel Servet 16, 03203 Elche, Spain; (P.N.); (J.J.); (A.G.)
| | - Julián Castillo
- Food Technology & Nutritional Department, Universidad Católica San Antonio de Murcia (UCAM), Campus de los Jerónimos, Carretera Guadalupe, 30107 Murcia, Spain;
| | - Jonathan Jones
- Research and Development Department, Monteloeder SL, Miguel Servet 16, 03203 Elche, Spain; (P.N.); (J.J.); (A.G.)
| | - Adrián García
- Research and Development Department, Monteloeder SL, Miguel Servet 16, 03203 Elche, Spain; (P.N.); (J.J.); (A.G.)
| | - Nuria Caturla
- Research and Development Department, Monteloeder SL, Miguel Servet 16, 03203 Elche, Spain; (P.N.); (J.J.); (A.G.)
| |
Collapse
|
2
|
Gkikoudi A, Manda G, Beinke C, Giesen U, Al-Qaaod A, Dragnea EM, Dobre M, Neagoe IV, Sangsuwan T, Haghdoost S, Vasilopoulos SN, Triantopoulou S, Georgakopoulou A, Tremi I, Koutsoudaki PN, Havaki S, Gorgoulis VG, Kokkoris M, Krasniqi F, Terzoudi GI, Georgakilas AG. Synergistic Effects of UVB and Ionizing Radiation on Human Non-Malignant Cells: Implications for Ozone Depletion and Secondary Cosmic Radiation Exposure. Biomolecules 2025; 15:536. [PMID: 40305266 PMCID: PMC12024869 DOI: 10.3390/biom15040536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 03/20/2025] [Accepted: 03/28/2025] [Indexed: 05/02/2025] Open
Abstract
The ozone layer in the Earth's atmosphere filters solar radiation and limits the unwanted effects on humans. A depletion of this ozone shield would permit hazardous levels of UV solar radiation, especially in the UVB range, to bombard Earth's surface, resulting in potentially significant effects on human health. The concern for these adverse effects intensifies if we consider that the UVB solar radiation is combined with secondary cosmic radiation (SCR) components, such as protons and muons, as well as terrestrial gamma rays. This research aims to delve into the intricate interplay between cosmic and solar radiation on earth at the cellular level, focusing on their synergistic effects on human cell biology. Through a multidisciplinary approach integrating radiobiology and physics, we aim to explore key aspects of biological responses, including cell viability, DNA damage, stress gene expression, and finally, genomic instability. To assess the impact of the combined exposure, normal i.e., non-malignant human cells (skin fibroblasts, keratinocytes, monocytes, and lymphocytes) were exposed to high-energy protons or gamma rays in combination with UVB. Cellular molecular and cytogenetic biomarkers of radiation exposure, such as DNA damage (γH2AΧ histone protein and dicentric chromosomes), as well as the expression pattern of various stress genes, were analyzed. In parallel, the MTS reduction and lactate dehydrogenase assays were used as indicators of cell viability, proliferation, and cytotoxicity. Results reveal remaining DNA damage for the co-exposed samples compared to samples exposed to only one type of radiation in all types of cells, accompanied by increased genomic instability and distinct stress gene expression patterns detected at 24-48 h post-exposure. Understanding the impact of combined radiation exposures is crucial for assessing the health risks posed to humans if the ozone layer is partially depleted, with structural and functional damages inflicted by combined cosmic and UVB exposure.
Collapse
Affiliation(s)
- Angeliki Gkikoudi
- DNA Damage Laboratory, Physics Department, School of Applied Mathematical and Physical Sciences, National Technical University of Athens (NTUA), Zografou Campus, 15780 Athens, Greece; (A.G.); (S.N.V.); (A.G.); (I.T.)
- Laboratory of Health Physics, Radiobiology & Cytogenetics, Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety, National Centre for Scientific Research “Demokritos”, 15341 Agia Paraskevi, Greece; (S.T.); (G.I.T.)
| | - Gina Manda
- Radiobiology Laboratory, “Victor Babeș” National Institute of Pathology, 99-101 Splaiul Independentei, 050096 Bucharest, Romania; (G.M.); (E.-M.D.); (M.D.); (I.V.N.)
| | - Christina Beinke
- Bundeswehr Institute of Radiobiology, University of Ulm, Neuherbergstraβe 11, 80937 Munich, Germany;
| | - Ulrich Giesen
- Physikalisch-Technische Bundesanstalt (PTB), Bundesallee 100, 38116 Braunschweig, Germany (A.A.-Q.); (F.K.)
| | - Amer Al-Qaaod
- Physikalisch-Technische Bundesanstalt (PTB), Bundesallee 100, 38116 Braunschweig, Germany (A.A.-Q.); (F.K.)
| | - Elena-Mihaela Dragnea
- Radiobiology Laboratory, “Victor Babeș” National Institute of Pathology, 99-101 Splaiul Independentei, 050096 Bucharest, Romania; (G.M.); (E.-M.D.); (M.D.); (I.V.N.)
| | - Maria Dobre
- Radiobiology Laboratory, “Victor Babeș” National Institute of Pathology, 99-101 Splaiul Independentei, 050096 Bucharest, Romania; (G.M.); (E.-M.D.); (M.D.); (I.V.N.)
| | - Ionela Victoria Neagoe
- Radiobiology Laboratory, “Victor Babeș” National Institute of Pathology, 99-101 Splaiul Independentei, 050096 Bucharest, Romania; (G.M.); (E.-M.D.); (M.D.); (I.V.N.)
| | - Traimate Sangsuwan
- ABTE/ToxEMAC Laboratory, University of Caen Normandy, F-14050 Caen, France; (T.S.); (S.H.)
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE-10691 Stockholm, Sweden
| | - Siamak Haghdoost
- ABTE/ToxEMAC Laboratory, University of Caen Normandy, F-14050 Caen, France; (T.S.); (S.H.)
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE-10691 Stockholm, Sweden
| | - Spyridon N. Vasilopoulos
- DNA Damage Laboratory, Physics Department, School of Applied Mathematical and Physical Sciences, National Technical University of Athens (NTUA), Zografou Campus, 15780 Athens, Greece; (A.G.); (S.N.V.); (A.G.); (I.T.)
| | - Sotiria Triantopoulou
- Laboratory of Health Physics, Radiobiology & Cytogenetics, Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety, National Centre for Scientific Research “Demokritos”, 15341 Agia Paraskevi, Greece; (S.T.); (G.I.T.)
| | - Anna Georgakopoulou
- DNA Damage Laboratory, Physics Department, School of Applied Mathematical and Physical Sciences, National Technical University of Athens (NTUA), Zografou Campus, 15780 Athens, Greece; (A.G.); (S.N.V.); (A.G.); (I.T.)
| | - Ioanna Tremi
- DNA Damage Laboratory, Physics Department, School of Applied Mathematical and Physical Sciences, National Technical University of Athens (NTUA), Zografou Campus, 15780 Athens, Greece; (A.G.); (S.N.V.); (A.G.); (I.T.)
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (P.N.K.); (S.H.); (V.G.G.)
| | - Paraskevi N. Koutsoudaki
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (P.N.K.); (S.H.); (V.G.G.)
| | - Sophia Havaki
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (P.N.K.); (S.H.); (V.G.G.)
| | - Vassilis G. Gorgoulis
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (P.N.K.); (S.H.); (V.G.G.)
- Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece
- Ninewells Hospital and Medical School, University of Dundee, Dundee DD2 1SG, UK
- Faculty Institute for Cancer Sciences, Manchester Academic Health Sciences Centre, University of Manchester, Manchester M20 4GJ, UK
- Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7YH, UK
| | - Michael Kokkoris
- Group of Nuclear Physics, Physics Department, School of Applied Mathematical and Physical Sciences, National Technical University of Athens (NTUA), 15780 Zografou, Greece;
| | - Faton Krasniqi
- Physikalisch-Technische Bundesanstalt (PTB), Bundesallee 100, 38116 Braunschweig, Germany (A.A.-Q.); (F.K.)
| | - Georgia I. Terzoudi
- Laboratory of Health Physics, Radiobiology & Cytogenetics, Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety, National Centre for Scientific Research “Demokritos”, 15341 Agia Paraskevi, Greece; (S.T.); (G.I.T.)
| | - Alexandros G. Georgakilas
- DNA Damage Laboratory, Physics Department, School of Applied Mathematical and Physical Sciences, National Technical University of Athens (NTUA), Zografou Campus, 15780 Athens, Greece; (A.G.); (S.N.V.); (A.G.); (I.T.)
| |
Collapse
|
3
|
Lundsgaard NU, Franklin CE, Cramp RL. Older Amphibian Larvae Are More Sensitive to Ultraviolet Radiation and Experience More Sublethal Carryover Effects Post-Metamorphosis. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2025; 343:197-210. [PMID: 39526562 DOI: 10.1002/jez.2882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 10/20/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024]
Abstract
Elevated ultraviolet radiation (UVR) is postulated as one of multiple, interrelated environmental stressors driving amphibian population declines globally. However, key knowledge gaps remain in elucidating the link between elevated UVR and amphibian declines in a changing climate, including whether timing and irradiance of UVR exposure in early life dictates the onset of detrimental carryover effects post-metamorphosis. In this study, striped marsh frog larvae (Limnodynastes peronii) were exposed to UVR at one of two different irradiances for up to 7 days, either as hatchlings (Gosner stage 23) or as older larvae (Gosner stage 25-28). These animals were then reared to metamorphosis in the absence of UVR to examine independent and interactive carryover effects throughout development. Older larvae were more sensitive to UVR than hatchlings, with 53.1% and 15.6% mortality in larvae exposed to high and low irradiance respectively, compared with no mortality of hatchlings in either irradiance treatment. Irradiance and timing of UVR exposure had interactive effects on larval body length, causing stunted growth patterns and a lack of compensatory growth following UVR exposure, particularly in animals exposed to high irradiance UVR later in development. Timing of UVR exposure also determined the severity of carryover effects into metamorphosis, including delayed metamorphosis and the first published account (to our knowledge) of latent UVR-induced depigmentation in an amphibian. These findings highlight how acute changes to the larval UVR exposure regime can impact on amphibian health later in life, with implications for our understanding of the effects of climate change on UVR-related amphibian declines.
Collapse
Affiliation(s)
- Niclas U Lundsgaard
- School of the Environment, The University of Queensland, St Lucia, Queensland, Australia
- Water Planning Ecology, Queensland Department of Environment, Science and Innovation, Dutton Park, Queensland, Australia
| | - Craig E Franklin
- School of the Environment, The University of Queensland, St Lucia, Queensland, Australia
| | - Rebecca L Cramp
- School of the Environment, The University of Queensland, St Lucia, Queensland, Australia
| |
Collapse
|
4
|
Zhou J, Luo W, He W, Huang X, Song S, Mao L, Peng H, Xu J. Impact of Ultraviolet Radiation on Growth, Development and Antioxidant Enzymes of Tuta absoluta (Meyrick). INSECTS 2025; 16:109. [PMID: 40003739 PMCID: PMC11855792 DOI: 10.3390/insects16020109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/19/2025] [Accepted: 01/20/2025] [Indexed: 02/27/2025]
Abstract
Ultraviolet radiation serves as a significant abiotic stressor for numerous organisms, particularly impacting insects in various ways. Tuta absoluta, a highly destructive pest infesting of the Solanaceae species, was investigated to elucidate its growth, development, and enzymatic defense mechanisms of insects in response to UV exposure. This study investigates the effects of three types of UV radiation on the lifespan, egg laying behavior, and antioxidant enzyme activities of T. absoluta. Our study revealed a significant reduction in the lifespan of T. absoluta upon exposure to both UV-A and UV-B radiation, whereas extended exposure to UV-C radiation for 120 min and 180 min resulted in a decline in its egg laying capacity. Exposure to all three types of radiation (UV-A, UV-B, and UV-C) led to an irreversible decrease in catalase (CAT) enzyme activity. Upon exposure to UV-A, there was a gradual increase in peroxidase (POD) enzyme activity; however, at 120 min post-exposure, a subsequent decrease was observed. A notable elevation in superoxide dismutase (SOD) activity was observed following exposures of both 60 min and 120 min durations under the rays of UV-A. These findings provide valuable insights into understanding the effects of UV exposure on T. absoluta as well as its potential application as a control measure, warranting further investigation.
Collapse
Affiliation(s)
- Junhui Zhou
- Laboratory of Integrated Pest Management on Crops in Northwestern Oasis, Ministry of Agriculture and Rural Affairs, Xinjiang Key Laboratory of Agricultural Biosafety, Institute of Plant Protection, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China; (J.Z.); (W.L.); (W.H.); (X.H.); (S.S.)
| | - Wenfang Luo
- Laboratory of Integrated Pest Management on Crops in Northwestern Oasis, Ministry of Agriculture and Rural Affairs, Xinjiang Key Laboratory of Agricultural Biosafety, Institute of Plant Protection, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China; (J.Z.); (W.L.); (W.H.); (X.H.); (S.S.)
| | - Wei He
- Laboratory of Integrated Pest Management on Crops in Northwestern Oasis, Ministry of Agriculture and Rural Affairs, Xinjiang Key Laboratory of Agricultural Biosafety, Institute of Plant Protection, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China; (J.Z.); (W.L.); (W.H.); (X.H.); (S.S.)
| | - Xin Huang
- Laboratory of Integrated Pest Management on Crops in Northwestern Oasis, Ministry of Agriculture and Rural Affairs, Xinjiang Key Laboratory of Agricultural Biosafety, Institute of Plant Protection, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China; (J.Z.); (W.L.); (W.H.); (X.H.); (S.S.)
| | - Suqin Song
- Laboratory of Integrated Pest Management on Crops in Northwestern Oasis, Ministry of Agriculture and Rural Affairs, Xinjiang Key Laboratory of Agricultural Biosafety, Institute of Plant Protection, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China; (J.Z.); (W.L.); (W.H.); (X.H.); (S.S.)
| | - Liang Mao
- Tulufan Agricultural Technology Extension Center, Tulufan 838000, China;
| | - Huan Peng
- Laboratory of Integrated Pest Management on Crops in Northwestern Oasis, Ministry of Agriculture and Rural Affairs, Xinjiang Key Laboratory of Agricultural Biosafety, Institute of Plant Protection, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China; (J.Z.); (W.L.); (W.H.); (X.H.); (S.S.)
| | - Jianjun Xu
- Tulufan Agricultural Technology Extension Center, Tulufan 838000, China;
| |
Collapse
|
5
|
Ahuja K, Raju S, Dahiya S, Motiani RK. ROS and calcium signaling are critical determinant of skin pigmentation. Cell Calcium 2025; 125:102987. [PMID: 39708588 PMCID: PMC7617625 DOI: 10.1016/j.ceca.2024.102987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 12/12/2024] [Accepted: 12/13/2024] [Indexed: 12/23/2024]
Abstract
Pigmentation is a protective phenomenon that shields skin cells from UV-induced DNA damage. Perturbations in pigmentation pathways predispose to skin cancers and lead to pigmentary disorders. These ailments impart psychological trauma and severely affect the patients' quality of life. Emerging literature suggests that reactive oxygen species (ROS) and calcium (Ca2+) signaling modules regulate physiological pigmentation. Further, pigmentary disorders are associated with dysregulated ROS homeostasis and changes in Ca2+ dynamics. Here, we systemically review the literature that demonstrates key role of ROS and Ca2+ signaling in pigmentation and pigmentary disorders. Further, we discuss recent studies, which have revealed that organelle-specific Ca2+ transport mechanisms are critical determinant of pigmentation. Importantly, we deliberate upon the possibility of clinical management of pigmentary disorders by therapeutically targeting ROS generation and cellular Ca2+ handling toolkit. Finally, we highlight the key outstanding questions in the field that demand critical and timely attention. Although an important role of ROS and Ca2+ signaling in regulating skin pigmentation has emerged, the underlying molecular mechanisms remain poorly understood. In future, it would be vital to investigate in detail the signaling cascades that connect perturbed ROS homeostasis and Ca2+ signaling to human pigmentary disorders.
Collapse
Affiliation(s)
- Kriti Ahuja
- Laboratory of Calciomics and Systemic Pathophysiology (LCSP), Regional Centre for Biotechnology (RCB), Faridabad-121001, Delhi-NCR, India
| | - Sharon Raju
- Laboratory of Calciomics and Systemic Pathophysiology (LCSP), Regional Centre for Biotechnology (RCB), Faridabad-121001, Delhi-NCR, India
| | - Sakshi Dahiya
- Laboratory of Calciomics and Systemic Pathophysiology (LCSP), Regional Centre for Biotechnology (RCB), Faridabad-121001, Delhi-NCR, India
| | - Rajender K Motiani
- Laboratory of Calciomics and Systemic Pathophysiology (LCSP), Regional Centre for Biotechnology (RCB), Faridabad-121001, Delhi-NCR, India.
| |
Collapse
|
6
|
Yoon JH, Kim DO, Lee S, Lee BH, Kim ES, Son YK, Kopalli SR, Lee JH, Ju Y, Lee J, Cho JY. Anti-apoptotic, anti-inflammatory, and anti-melanogenic effects of the ethanol extract of Picrasma quassioides (D. Don) Benn. JOURNAL OF ETHNOPHARMACOLOGY 2024; 332:118374. [PMID: 38789093 DOI: 10.1016/j.jep.2024.118374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/16/2024] [Accepted: 05/20/2024] [Indexed: 05/26/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Picrasma quassioides (D. Don) Benn is a vascular plant belonging to the genus Picrasma of Simaroubaceae family and grows in Korea, China, India, Taiwan, and Japan. Picrasma quassioides extract has been reported to have anti-inflammatory, anti-bacterial, and anti-cancer properties. Moreover, this plant has been also traditionally used to alleviate symptoms of eczema, atopic dermatitis, psoriasis, scabies, and boils in skin. AIM OF THE STUDY The Pq-EE has been reported in Chinese pharmacopoeia for its pharmacological effects on skin. However, the detailed mechanism on alleviating skin conditions is not understood. Hence, we investigated the skin improvement potential of Pq-EE against skin damage. MATERIALS AND METHODS We used the human keratinocyte cell line (HaCaT) and mouse melanoma cell line (B16F10) to study the effects of Pq-EE on the epidermis. Additionally, in vitro antioxidant assays were performed using a solution that included either metal ions or free radicals. RESULTS In colorimetric antioxidant assays, Pq-EE inhibited free radicals in a dose-dependent manner. The Pq-EE did not affect cell viability and promoted cell survival under UVB exposure conditions in the MTT assay. The Pq-EE downregulated the mRNA levels of apoptotic factors. Moreover, MMP1 and inflammatory cytokine iNOS mRNA levels decreased with Pq-EE treatment. With regard to protein levels, caspases and cleaved caspases were more powerfully inhibited by Pq-EE than UVB-irritated conditions. p53 and Bax also decreased with Pq-EE treatment. The melanin contents and secretion were decreased at nontoxic concentrations of Pq-EE. The pigmentation pathway genes also were inhibited by treatment with Pq-EE. CONCLUSIONS In summary, we suggest the cell protective potential of Pq-EE against UVB and ROS, indicating its use in UV-protective cosmeceutical materials.
Collapse
Affiliation(s)
- Ji Hye Yoon
- Department of Interdisciplinary Program in Biocosmetics, Sungkyunkwan University, Suwon, 16419, South Korea.
| | - Dong-Ock Kim
- Department of Interdisciplinary Program in Biocosmetics, Sungkyunkwan University, Suwon, 16419, South Korea.
| | - Seungki Lee
- National Institute of Biological Resources, Environmental Research Complex, Incheon, 22689, South Korea.
| | - Byong-Hee Lee
- National Institute of Biological Resources, Environmental Research Complex, Incheon, 22689, South Korea.
| | - Eun Sil Kim
- National Institute of Biological Resources, Environmental Research Complex, Incheon, 22689, South Korea.
| | - Youn Kyoung Son
- National Institute of Biological Resources, Environmental Research Complex, Incheon, 22689, South Korea.
| | - Spandana Rajendra Kopalli
- Department of Bioscience and Biotechnology, Sejong University, Gwangjin-gu, Seoul, 05006, South Korea.
| | - Ji Heun Lee
- PharmacoBio Inc, Jungwon-gu, Seongnam, 13219, South Korea.
| | - Youngwoon Ju
- PharmacoBio Inc, Jungwon-gu, Seongnam, 13219, South Korea.
| | - Jongsung Lee
- Department of Interdisciplinary Program in Biocosmetics, Sungkyunkwan University, Suwon, 16419, South Korea; Department of Integrative Biotechnology, Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon, 16419, South Korea.
| | - Jae Youl Cho
- Department of Interdisciplinary Program in Biocosmetics, Sungkyunkwan University, Suwon, 16419, South Korea; Department of Integrative Biotechnology, Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon, 16419, South Korea.
| |
Collapse
|
7
|
Manosalva C, Bahamonde C, Soto F, Leal V, Ojeda C, Cortés C, Alarcón P, Burgos RA. Linoleic Acid Induces Metabolic Reprogramming and Inhibits Oxidative and Inflammatory Effects in Keratinocytes Exposed to UVB Radiation. Int J Mol Sci 2024; 25:10385. [PMID: 39408715 PMCID: PMC11476445 DOI: 10.3390/ijms251910385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/20/2024] [Accepted: 09/24/2024] [Indexed: 10/20/2024] Open
Abstract
Linoleic acid (LA), the primary ω-6 polyunsaturated fatty acid (PUFA) found in the epidermis, plays a crucial role in preserving the integrity of the skin's water permeability barrier. Additionally, vegetable oils rich in LA have been shown to notably mitigate ultraviolet (UV) radiation-induced effects, including the production of reactive oxygen species (ROS), cellular damage, and skin photoaging. These beneficial effects are primarily ascribed to the LA in these oils. Nonetheless, the precise mechanisms through which LA confers protection against damage induced by exposure to UVB radiation remain unclear. This study aimed to examine whether LA can restore redox and metabolic equilibria and to assess its influence on the inflammatory response triggered by UVB radiation in keratinocytes. Flow cytometry analysis unveiled the capacity of LA to diminish UVB-induced ROS levels in HaCaT cells. GC/MS-based metabolomics highlighted significant metabolic changes, especially in carbohydrate, amino acid, and glutathione (GSH) metabolism, with LA restoring depleted GSH levels post-UVB exposure. LA also upregulated PI3K/Akt-dependent GCLC and GSS expression while downregulating COX-2 expression. These results suggest that LA induces metabolic reprogramming, protecting against UVB-induced oxidative damage by enhancing GSH biosynthesis via PI3K/Akt signaling. Moreover, it suppresses UVB-induced COX-2 expression in HaCaT cells, making LA treatment a promising strategy against UVB-induced oxidative and inflammatory damage.
Collapse
Affiliation(s)
- Carolina Manosalva
- Institute of Pharmacy, Faculty of Sciences, Universidad Austral de Chile, Valdivia 5090000, Chile
| | - Claudio Bahamonde
- Institute of Pharmacy, Faculty of Sciences, Universidad Austral de Chile, Valdivia 5090000, Chile
| | - Franco Soto
- Institute of Pharmacy, Faculty of Sciences, Universidad Austral de Chile, Valdivia 5090000, Chile
| | - Vicente Leal
- Institute of Pharmacy, Faculty of Sciences, Universidad Austral de Chile, Valdivia 5090000, Chile
| | - César Ojeda
- Institute of Pharmacy, Faculty of Sciences, Universidad Austral de Chile, Valdivia 5090000, Chile
| | - Carmen Cortés
- Institute of Pharmacy, Faculty of Sciences, Universidad Austral de Chile, Valdivia 5090000, Chile
| | - Pablo Alarcón
- Laboratory of Inflammation Pharmacology and Immunometabolism, Institute of Pharmacology and Morphophysiology, Faculty of Veterinary Sciences, Universidad Austral de Chile, Valdivia 5090000, Chile (R.A.B.)
| | - Rafael A. Burgos
- Laboratory of Inflammation Pharmacology and Immunometabolism, Institute of Pharmacology and Morphophysiology, Faculty of Veterinary Sciences, Universidad Austral de Chile, Valdivia 5090000, Chile (R.A.B.)
| |
Collapse
|
8
|
Nobeyama Y. Rosacea in East Asian populations: Clinical manifestations and pathophysiological perspectives for accurate diagnosis. J Dermatol 2024; 51:1143-1156. [PMID: 39126257 DOI: 10.1111/1346-8138.17411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/13/2024] [Accepted: 07/21/2024] [Indexed: 08/12/2024]
Abstract
Rosacea is a chronic inflammatory disorder primarily affecting the facial skin, prominently involving the cheeks, nose, chin, forehead, and periorbital area. Cutaneous manifestations encompass persistent facial erythema, phymas, papules, pustules, telangiectasia, and flushing. The pathogenesis of rosacea is associated with various exacerbating or triggering factors, including microbial infestation, temperature fluctuations, sunlight exposure, physical exertion, emotional stress, consumption of hot beverages and spicy foods, and exposure to airborne pollen. These environmental factors interact with genetic predispositions in the development of rosacea. The roles of the lipophilic microbiome, ultraviolet radiation, nociceptive responses, and vascular alterations have been proposed as significant factors in the pathogenesis. These insights contribute to understanding the anatomical specificity of facial involvement and the progressive nature of rosacea. East Asian skin, predominantly classified as Fitzpatrick skin phototypes III to IV, is characterized by relatively diminished skin barrier function and increased sensitivity to irritants. Airborne pollen exposure may particularly act as a trigger in East Asian individuals, possibly mediated through toll-like receptors. The lack of specificity in objective clinical and histopathological findings leads to diagnostic challenges for individuals with colored skin, including East Asians, particularly when erythema is the sole objective manifestation. An alternative diagnostic scheme may thus be necessary. A diagnostic approach emphasizing vascular manifestations and nociceptive symptoms potentially holds promise for individuals with darker skin tones. More research focusing on potential variations in skin physiology across different racial groups is essential to establish more effective diagnostic schemes applicable to both dark and light skin colors.
Collapse
Affiliation(s)
- Yoshimasa Nobeyama
- Department of Dermatology, The Jikei University School of Medicine, Tokyo, Japan
| |
Collapse
|
9
|
Grosu (Dumitrescu) C, Jîjie AR, Manea HC, Moacă EA, Iftode A, Minda D, Chioibaş R, Dehelean CA, Vlad CS. New Insights Concerning Phytophotodermatitis Induced by Phototoxic Plants. Life (Basel) 2024; 14:1019. [PMID: 39202761 PMCID: PMC11355232 DOI: 10.3390/life14081019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 08/11/2024] [Accepted: 08/14/2024] [Indexed: 09/03/2024] Open
Abstract
The present review explores the underlying mechanisms of phytophotodermatitis, a non-immunologic skin reaction triggered by certain plants followed by exposure to ultraviolet radiation emitted by sunlight. Recent research has advanced our understanding of the pathophysiology of phytophotodermatitis, highlighting the interaction between plant-derived photosensitizing compounds (e.g., furanocoumarins and psoralens) and ultraviolet light leading to skin damage (e.g., erythema, fluid blisters, edema, and hyperpigmentation), identifying these compounds as key contributors to the phototoxic reactions causing phytophotodermatitis. Progress in understanding the molecular pathways involved in the skin's response to these compounds has opened avenues for identifying potential therapeutic targets suitable for the management and prevention of this condition. The review emphasizes the importance of identifying the most common phototoxic plant families (e.g., Apiaceae, Rutaceae, and Moraceae) and plant species (e.g., Heracleum mantegazzianum, Ruta graveolens, Ficus carica, and Pastinaca sativa), as well as the specific phytochemical compounds responsible for inducing phytophototoxicity (e.g., limes containing furocoumarin have been linked to lime-induced photodermatitis), underscoring the significance of recognizing the dangerous plant sources. Moreover, the most used approaches and tests for accurate diagnosis such as patch testing, Wood's lamp examination, or skin biopsy are presented. Additionally, preventive measures such as adequate clothing (e.g., long-sleeved garments and gloves) and treatment strategies based on the current knowledge of phytophotodermatitis including topical and systemic therapies are discussed. Overall, the review consolidates recent findings in the field, covering a diverse array of phototoxic compounds in plants, the mechanisms by which they trigger skin reactions, and the implications for clinical management. By synthesizing these insights, we provide a comprehensive understanding of phytophotodermatitis, providing valuable information for both healthcare professionals and researchers working to address this condition.
Collapse
Affiliation(s)
- Cristina Grosu (Dumitrescu)
- Department of Toxicology, Drug Industry, Management and Legislation, Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania; (C.G.); (A.-R.J.); (E.-A.M.); (A.I.); (C.-A.D.)
| | - Alex-Robert Jîjie
- Department of Toxicology, Drug Industry, Management and Legislation, Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania; (C.G.); (A.-R.J.); (E.-A.M.); (A.I.); (C.-A.D.)
| | - Horaţiu Cristian Manea
- University Clinic Clinical Skills, Department I Nursing, Faculty of Nursing, “Victor Babes” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania
- Timisoara Municipal Emergency Clinical Hospital, 5 Take Ionescu Bv., 300062 Timisoara, Romania
| | - Elena-Alina Moacă
- Department of Toxicology, Drug Industry, Management and Legislation, Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania; (C.G.); (A.-R.J.); (E.-A.M.); (A.I.); (C.-A.D.)
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babeș” University of Medicine and Pharmacy, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania
| | - Andrada Iftode
- Department of Toxicology, Drug Industry, Management and Legislation, Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania; (C.G.); (A.-R.J.); (E.-A.M.); (A.I.); (C.-A.D.)
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babeș” University of Medicine and Pharmacy, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania
| | - Daliana Minda
- Department of Pharmacognosy, “Victor Babes” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania;
- Research and Processing Center for Medical and Aromatic Plants (Plant-Med), “Victor Babeş” University of Medicine and Pharmacy, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania
| | - Raul Chioibaş
- Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania;
- CBS Medcom Hospital, 12th Popa Sapca Street, 300047 Timisoara, Romania
| | - Cristina-Adriana Dehelean
- Department of Toxicology, Drug Industry, Management and Legislation, Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania; (C.G.); (A.-R.J.); (E.-A.M.); (A.I.); (C.-A.D.)
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babeș” University of Medicine and Pharmacy, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania
| | - Cristian Sebastian Vlad
- Department of Biochemistry and Pharmacology, Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania;
| |
Collapse
|
10
|
Wen XY, Yang N, Gao Y, Ma WN, Fu Y, Geng RF, Zhang YL. PRDX1 exerts a photoprotection effect by inhibiting oxidative stress and regulating MAPK signaling on retinal pigment epithelium. BMC Ophthalmol 2024; 24:237. [PMID: 38844903 PMCID: PMC11155104 DOI: 10.1186/s12886-024-03489-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 05/20/2024] [Indexed: 06/10/2024] Open
Abstract
BACKGROUND The purpose of this study was to investigate the photoprotection effect of peroxiredoxin 1 (PRDX1) protein in ultraviolet B (UVB) irradiation-induced damage of retinal pigment epithelium (RPE) and its possible molecular mechanism. METHODS ARPE-19 cell viability and apoptosis were assessed by MTT assay and flow cytometry, respectively. Real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR) was used to detect the PRDX1 expression. The corresponding kits were employed to measure the levels or activities of lactate dehydrogenase (LDH), 8-hydroxy-2-deoxyguanosine (8-OHdG), reactive oxygen species (ROS), malondialdehyde (MDA), glutathione peroxidase (GSH-Px), superoxide dismutase (SOD). Western blotting was applied to examine PRDX1 expression and mitogen-activated protein kinase (MAPK) signaling pathway-related proteins. RESULTS After exposure to 20 mJ/cm2 intensity of UVB irradiation for 24 h, ARPE-19 cells viability was decreased, the leakage degree of LDH and 8-OHdG were increased, and cell apoptosis was elevated. The expression of PRDX1 was significantly down-regulated in UVB-induced ARPE-19 cells. The low expression of PRDX1 was involved in high irradiation intensity. Overexpression of PRDX1 increased cell activity, decreased cell apoptosis, and LDH as well as 8-OHdG leakage in UVB-induced ARPE-19 cells. In addition to alleviating UVB-induced cell damage, PRDX1 overexpression also inhibited UVB-induced oxidative stress (down-regulation of ROS and MDA levels, up-regulation of GSH-Px and SOD activities) and the activation of MAPK signaling pathway in ARPE-19 cells. CONCLUSION PRDX1 exerts a photoprotection effect on RPE by attenuating UVB-induced cell damage and inhibiting oxidative stress, which can be attributed to the inhibition of MAPK signaling pathway activation.
Collapse
Affiliation(s)
- Xiao-Ying Wen
- Department of Ophthalmology, Baoding NO.1 Central Hospital, Baoding, Hebei, China
| | - Na Yang
- Department of Ophthalmology, Baoding NO.1 Central Hospital, Baoding, Hebei, China
| | - Yang Gao
- Department of Ophthalmology, Baoding NO.1 Central Hospital, Baoding, Hebei, China
| | - Wei-Na Ma
- Department of Ophthalmology, Baoding NO.1 Central Hospital, Baoding, Hebei, China
| | - Yan Fu
- Department of Ophthalmology, Baoding NO.1 Central Hospital, Baoding, Hebei, China
| | - Ren-Fei Geng
- Department of Ophthalmology, Baoding NO.1 Central Hospital, Baoding, Hebei, China
| | - Yue-Ling Zhang
- Department of Ophthalmology, Baoding NO.1 Central Hospital, Baoding, Hebei, China.
| |
Collapse
|
11
|
Fan S, Lopez Llorens L, Perona Martinez FP, Schirhagl R. Quantum Sensing of Free Radical Generation in Mitochondria of Human Keratinocytes during UVB Exposure. ACS Sens 2024; 9:2440-2446. [PMID: 38743437 PMCID: PMC11129351 DOI: 10.1021/acssensors.4c00118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/23/2024] [Accepted: 04/25/2024] [Indexed: 05/16/2024]
Abstract
Ultraviolet (UV) radiation is known to cause skin issues, such as dryness, aging, and even cancer. Among UV rays, UVB stands out for its ability to trigger problems within cells, including mitochondrial dysfunction, oxidative stress, and DNA damage. Free radicals are implicated in these cellular responses, but they are challenging to measure due to their short lifetime and limited diffusion range. In our study, we used a quantum sensing technique (T1 relaxometry) involving fluorescent nanodiamonds (FNDs) that change their optical properties in response to magnetic noise. This allowed us to monitor the free radical presence in real time. To measure radicals near mitochondria, we coated FNDs with antibodies, targeting mitochondrial protein voltage-dependent anion channel 2 (anti-VDAC2). Our findings revealed a dynamic rise in radical levels on the mitochondrial membrane as cells were exposed to UVB (3 J/cm2), with a significant increase observed after 17 min.
Collapse
Affiliation(s)
- Siyu Fan
- Department of Biomaterials & Biomedical Technology, University Medical Center Groningen, University Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Lluna Lopez Llorens
- Department of Biomaterials & Biomedical Technology, University Medical Center Groningen, University Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Felipe P Perona Martinez
- Department of Biomaterials & Biomedical Technology, University Medical Center Groningen, University Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Romana Schirhagl
- Department of Biomaterials & Biomedical Technology, University Medical Center Groningen, University Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| |
Collapse
|
12
|
Sutopo NC, Rahmawati L, Huang L, Kry M, Chhang P, Lee S, Lee BH, Cho JY. Anti-inflammatory, Antioxidative, and Moisturizing Effects of Oxyceros horridus Lour. Ethanol Extract in Human Keratinocytes via the p38 Signaling Pathway. Chem Biodivers 2024; 21:e202301791. [PMID: 38415391 DOI: 10.1002/cbdv.202301791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 02/22/2024] [Accepted: 02/27/2024] [Indexed: 02/29/2024]
Abstract
Skin is the largest and outermost organ in the human body; it serves as a vital defense mechanism against various external threats. Therefore, it is crucial to maintain its health through protection against harmful substances and adequate moisture levels. This study investigates the anti-inflammatory, antioxidant, and moisturizing properties of Oxyceros horridus Lour. (Oh-EE) in human keratinocytes. Oh-EE demonstrates potent antioxidant activity and effectively protects against oxidative stress induced by external stimuli such as UVB radiation and H2O2. Additionally, it exhibits significant anti-inflammatory effects proven by its ability to downregulate the expression of pro-inflammatory cytokines, namely COX-2 and IL-6. The study also explores the involvement of the AP-1 pathway, highlighting the ability of Oh-EE to suppress the expression of p38 and its upstream regulator, MKK3/6, under UVB-induced conditions. Interestingly, Oh-EE can activate the AP-1 pathway in the absence of external triggers. Furthermore, Oh-EE enhances skin moisture by upregulating the expression of key genes involved in skin hydration, namely HAS3 and FLG. These findings underscore the potential of Oh-EE as a versatile ingredient in skincare formulations, providing a range of skin benefits. Further research is warranted to comprehensively understand the underlying mechanisms through which Oh-EE exerts its effects.
Collapse
Affiliation(s)
| | - Laily Rahmawati
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Lei Huang
- Department of Biocosmetics, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Masphal Kry
- Forestry Administration, Ministry of Agriculture Forestry and Fisheries, #40 Norodom Blvd, Daun Penh, Phnom Penh, Cambodia
| | - Phourin Chhang
- Forestry Administration, Ministry of Agriculture Forestry and Fisheries, #40 Norodom Blvd, Daun Penh, Phnom Penh, Cambodia
| | - Sarah Lee
- Strategic Planning Division, National Institute of Biological Resources, Incheon, 22689, Republic of Korea
| | - Byoung-Hee Lee
- Biological Resources Assessment Division, National Institute of Biological Resources, Incheon, 22689, Republic of Korea
| | - Jae Youl Cho
- Department of Biocosmetics, Sungkyunkwan University, Suwon, 16419, Republic of Korea
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| |
Collapse
|
13
|
Patrignoni L, Hurtier A, Orlacchio R, Joushomme A, Poulletier de Gannes F, Lévêque P, Arnaud-Cormos D, Revzani HR, Mahfouf W, Garenne A, Percherancier Y, Lagroye I. Evaluation of mitochondrial stress following ultraviolet radiation and 5G radiofrequency field exposure in human skin cells. Bioelectromagnetics 2024; 45:110-129. [PMID: 38115173 DOI: 10.1002/bem.22495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/14/2023] [Accepted: 11/20/2023] [Indexed: 12/21/2023]
Abstract
Whether human cells are impacted by environmental electromagnetic fields (EMF) is still a matter of debate. With the deployment of the fifth generation (5G) of mobile communication technologies, the carrier frequency is increasing and the human skin becomes the main biological target. Here, we evaluated the impact of 5G-modulated 3.5 GHz radiofrequency (RF) EMF on mitochondrial stress in human fibroblasts and keratinocytes that were exposed for 24 h at specific absorption rate of 0.25, 1, and 4 W/kg. We assessed cell viability, mitochondrial reactive oxygen species (ROS) production, and membrane polarization. Knowing that human skin is the main target of environmental ultraviolet (UV), using the same read-out, we investigated whether subsequent exposure to 5G signal could alter the capacity of UV-B to damage skin cells. We found a statistically significant reduction in mitochondrial ROS concentration in fibroblasts exposed to 5G signal at 1 W/kg. On the contrary, the RF exposure slightly but statistically significantly enhanced the effects of UV-B radiation specifically in keratinocytes at 0.25 and 1 W/kg. No effect was found on mitochondrial membrane potential or apoptosis in any cell types or exposure conditions suggesting that the type and amplitude of the observed effects are very punctual.
Collapse
Affiliation(s)
- Lorenza Patrignoni
- Paris Sciences et Lettres Research University-École Pratique des Hautes Études (EPHE), IMS laboratory - SANE team, Paris, France
| | - Annabelle Hurtier
- Univ. Bordeaux, CNRS, IMS laboratory / UMR 5218, SANE Team, Talence, France
| | - Rosa Orlacchio
- Paris Sciences et Lettres Research University-École Pratique des Hautes Études (EPHE), IMS laboratory - SANE team, Paris, France
| | | | | | - Philippe Lévêque
- Univ. Limoges, CNRS, XLIM / UMR 7252, RF-ELITE team, Limoges, France
| | | | | | - Walid Mahfouf
- Univ. Bordeaux, Inserm, BRIC / UMR 1312, TRIO2 team, Bordeaux, France
| | - André Garenne
- Univ. Bordeaux, CNRS, IMS laboratory / UMR 5218, SANE Team, Talence, France
| | - Yann Percherancier
- Univ. Bordeaux, CNRS, IMS laboratory / UMR 5218, SANE Team, Talence, France
| | - Isabelle Lagroye
- Paris Sciences et Lettres Research University-École Pratique des Hautes Études (EPHE), IMS laboratory - SANE team, Paris, France
| |
Collapse
|
14
|
Tang X, Yang T, Yu D, Xiong H, Zhang S. Current insights and future perspectives of ultraviolet radiation (UV) exposure: Friends and foes to the skin and beyond the skin. ENVIRONMENT INTERNATIONAL 2024; 185:108535. [PMID: 38428192 DOI: 10.1016/j.envint.2024.108535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/25/2024] [Accepted: 02/25/2024] [Indexed: 03/03/2024]
Abstract
Ultraviolet (UV) radiation is ubiquitous in the environment, which has been classified as an established human carcinogen. As the largest and outermost organ of the body, direct exposure of skin to sunlight or UV radiation can result in sunburn, inflammation, photo-immunosuppression, photoaging and even skin cancers. To date, there are tactics to protect the skin by preventing UV radiation and reducing the amount of UV radiation to the skin. Nevertheless, deciphering the essential regulatory mechanisms may pave the way for therapeutic interventions against UV-induced skin disorders. Additionally, UV light is considered beneficial for specific skin-related conditions in medical UV therapy. Recent evidence indicates that the biological effects of UV exposure extend beyond the skin and include the treatment of inflammatory diseases, solid tumors and certain abnormal behaviors. This review mainly focuses on the effects of UV on the skin. Moreover, novel findings of the biological effects of UV in other organs and systems are also summarized. Nevertheless, the mechanisms through which UV affects the human organism remain to be fully elucidated to achieve a more comprehensive understanding of its biological effects.
Collapse
Affiliation(s)
- Xiaoyou Tang
- Medical College of Tibet University, Lasa 850000, China; Laboratory of Radiation Medicine, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Tingyi Yang
- Laboratory of Radiation Medicine, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Daojiang Yu
- Laboratory of Radiation Medicine, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China; The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu 610051, China
| | - Hai Xiong
- Medical College of Tibet University, Lasa 850000, China; West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China.
| | - Shuyu Zhang
- Medical College of Tibet University, Lasa 850000, China; Laboratory of Radiation Medicine, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China; The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu 610051, China; NHC Key Laboratory of Nuclear Technology Medical Transformation (Mianyang Central Hospital), Mianyang 621099, China.
| |
Collapse
|
15
|
Huang L, Kim JH, You L, Park SH, Zhang J, Shin CY, Sutopo NC, Byun HW, Omaliss K, Masphal K, Son J, Kim GR, Lee BH, Kim JH, Lee J, Cho JY. Anti-oxidative, anti-apoptotic, and anti-inflammatory activities of Connarus semidecandrus Jack ethanol extract in UVB-irradiated human keratinocytes. JOURNAL OF ETHNOPHARMACOLOGY 2024; 321:117574. [PMID: 38097025 DOI: 10.1016/j.jep.2023.117574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 12/07/2023] [Accepted: 12/08/2023] [Indexed: 12/19/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Connarus semidecandrus Jack (Family: connaraceae) is a medicinal plant known for its wide distribution throughout Southeast Asia. Renowned for its diverse therapeutic properties, it has been traditionally used for treating fever, skin irritation, and colic. AIM OF THE STUDY Numerous individuals suffer from skin issues, including wrinkles, hyperpigmentation, and inflammation, due to environmental factors. Although many drugs are available to treat skin problems, chemical drugs have many shortcomings and side effects. Therefore, natural products are attractive potential medicines for alleviating skin troubles. We recently showed that Connarus semidecandrus Jack ethanol extract (Cs-EE) has anti-alopecia potential. This paper aims to explore the potential skin-protective effects and underlying molecular mechanisms of Connarus semidecandrus Jack in UVB-induced human keratinocytes (HaCaT). MATERIALS AND METHODS Before utilization, Cs-EE was dissolved in dimethyl sulfoxide (DMSO) and was preserved at a temperature of -20 °C. The phytochemical constituents of Cs-EE were detected by gas chromatography-mass spectrometry analysis (GC-MS). Sequentially, HaCaT cells were exposed to varying concentrations of Cs-EE prior to ultraviolet B (UVB) irradiation. Evaluations of cellular responses in HaCaT cells, including assessments of cell viability, deoxyribonucleic acid (DNA) damage, and gene and protein expressions, were carried out. To explore the specific signaling pathway involved, we conducted a luciferase assay in addition to validating these pathways using Western blot analysis. RESULTS Nitric oxide (NO) and intracellular reactive oxygen species were decreased. Melanin production through the activation of melanocytes by α-melanocyte-stimulating hormone (MSH) was also inhibited by Cs-EE. Furthermore, the mRNA expression levels of key factors such as cyclooxygenase-2 (COX-2), tumor necrosis factor-α (TNF-α), interleukin 6 (IL-6), MMP-1, MMP-3, and MMP-9 exhibited a remarkable decrease. In addition, the phosphorylation of TAK1 within the signaling cascade exhibited a decline, and the activities of the transcription factor AP-1 were decreased according to a luciferase reporter assay. CONCLUSIONS Taken together, these findings suggest that the anti-inflammatory, anti-aging, and anti-apoptotic effects of Cs-EE indicate the compound's potential usefulness as a natural component in pharmaceutical and cosmetic products.
Collapse
Affiliation(s)
- Lei Huang
- Department of Biocosmetics, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| | - Ji Hye Kim
- Department of Integrative Biotechnology and Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| | - Long You
- Department of Integrative Biotechnology and Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| | - Sang Hee Park
- Department of Biocosmetics, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| | - Jianmei Zhang
- Department of Integrative Biotechnology and Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| | - Chae Yun Shin
- Department of Biocosmetics, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| | | | - Hye-Woo Byun
- Biodiversity Research and Cooperation Division, National Institute of Biological Resources, Incheon, 22689, Republic of Korea.
| | - Keo Omaliss
- Forestry Administration, Ministry of Agriculture Forestry and Fisheries, #40 Norodom Blvd, Daun Penh, Phnom Penh, 12205, Cambodia.
| | - Kry Masphal
- Forestry Administration, Ministry of Agriculture Forestry and Fisheries, #40 Norodom Blvd, Daun Penh, Phnom Penh, 12205, Cambodia.
| | - Jino Son
- Biological and Genetic Resources Assessment Division, National Institute of Biological Resources, Incheon, 22689, Republic of Korea.
| | - Ga Ryun Kim
- Biological and Genetic Resources Assessment Division, National Institute of Biological Resources, Incheon, 22689, Republic of Korea.
| | - Byoung-Hee Lee
- Biological and Genetic Resources Assessment Division, National Institute of Biological Resources, Incheon, 22689, Republic of Korea.
| | - Jong-Hoon Kim
- Department of Veterinary Physiology College of Medicine, Chonbuk National University, Iksan, 54596, Republic of Korea.
| | - Jongsung Lee
- Department of Biocosmetics, Sungkyunkwan University, Suwon, 16419, Republic of Korea; Department of Integrative Biotechnology and Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| | - Jae Youl Cho
- Department of Biocosmetics, Sungkyunkwan University, Suwon, 16419, Republic of Korea; Department of Integrative Biotechnology and Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| |
Collapse
|
16
|
Kwon TU, Kwon YJ, Baek HS, Park H, Lee H, Chun YJ. Unraveling the molecular mechanisms of cell migration impairment and apoptosis associated with steroid sulfatase deficiency: Implications for X-linked ichthyosis. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167004. [PMID: 38182070 DOI: 10.1016/j.bbadis.2023.167004] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 12/08/2023] [Accepted: 12/21/2023] [Indexed: 01/07/2024]
Abstract
Steroid sulfatase (STS) deficiency is responsible for X-linked ichthyosis (XLI), a genetic disorder characterized by rough and dry skin caused by excessive keratinization. The impaired keratinization process leads to reduced cell mobility and increased apoptosis, which can cause an excessive buildup of the stratum corneum. In this study, we investigated the mechanisms underlying XLI and found that STS deficiency reduces cell mobility and increases apoptosis in human keratinocyte HaCaT cells. To explore these mechanisms further, RNA-sequencing was conducted on skin tissues from STS transgenic and knockout mice. Our RNA-seq results revealed that STS deficiency plays a critical role in regulating multiple signaling pathways associated with cell mobility and apoptosis, such as Wnt/β signaling and the Hippo signaling pathway. Knockdown of the STS gene using shRNA in HaCaT cells led to an upregulation of E-cadherin expression and suppression of key factors involved in epithelial-mesenchymal transition (EMT), such as N-cadherin and vimentin. Inhibition of EMT involved the Hippo signaling pathway and reduction of HIF-1α. Interestingly, inhibiting STS with shRNA increased mitochondrial respiration levels, as demonstrated by the extracellular flux oxygen consumption rate. Additionally, we observed a significant increase in ROS production in partial STS knockout cells compared to control cells. Our study demonstrated that the excessive generation of ROS caused by STS deficiency induces the expression of Bax and Bak, leading to the release of cytochrome c and subsequent cell death. Consequently, STS deficiency impairs cell mobility and promotes apoptosis, offering insights into the pathophysiological processes and potential therapeutic targets for XLI.
Collapse
Affiliation(s)
- Tae-Uk Kwon
- College of Pharmacy and Center for Metareceptome Research, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Yeo-Jung Kwon
- College of Pharmacy and Center for Metareceptome Research, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Hyoung-Seok Baek
- College of Pharmacy and Center for Metareceptome Research, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Hyemin Park
- College of Pharmacy and Center for Metareceptome Research, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Hyein Lee
- College of Pharmacy and Center for Metareceptome Research, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Young-Jin Chun
- College of Pharmacy and Center for Metareceptome Research, Chung-Ang University, Seoul 06974, Republic of Korea.
| |
Collapse
|
17
|
Fusco A, Savio V, Perfetto B, Donniacuo M, Shadrina E, Donnarumma G, Baroni A. Q-switched Nd:YAG laser protects human keratinocytes from oxidative stress and inflammation via AhR-Nrf2 pathway. Lasers Med Sci 2023; 39:7. [PMID: 38097851 DOI: 10.1007/s10103-023-03953-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 12/05/2023] [Indexed: 12/18/2023]
Abstract
In recent years, some treatments for esthetic and pathologic skin conditions have increasingly been based on the use of non-ablative neodymium-doped yttrium aluminum garnet (Nd:YAG) laser due to its greater penetration ability than other types of lasers, few contraindications, minimal side effects, no damage for epidermidis and the rapid recovery of the treated patients. The skin is frequently exposed to many stressors such as radiation, toxic substances, metabolites, foods, mechanical insults, and allergen exposition that cause oxidative damage and have a decisive influence on the aging process. The imbalance between reactive oxygen species, reactive nitrogen species, and the malfunctioning of the antioxidant defense system promotes the establishment of an excessive inflammatory process, which can induce various diseases including cancer and neurodegenerative disorders. The present study investigated the cytoprotective function of Q-switched Nd:YAG laser against stress aging and cell injury in HaCaT cells. We evaluated the effect of the laser on antioxidant defenses, inflammation, metalloproteinases' expression, and the AhR-Nrf2 pathway. Q-switched Nd:YAG is able to upregulate the AhR pathway and the expression of IL-6 and TGF-β, which are involved in wound repair process, and to downregulate the expression of MMP-2 and 9, so preventing the collagen degradation. Q-switched Nd:YAG can stimulate the cellular antioxidant defenses by activating the AhR-Nrf2 system.
Collapse
Affiliation(s)
- Alessandra Fusco
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, NA, 80138, Italy.
| | - Vittoria Savio
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, NA, 80138, Italy
| | - Brunella Perfetto
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, NA, 80138, Italy
| | - Maria Donniacuo
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, NA, 80138, Italy
| | - Elena Shadrina
- Department of Dermatology, University of Milan, Milan, Italy
| | - Giovanna Donnarumma
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, NA, 80138, Italy
| | - Adone Baroni
- Department of Mental Health and Physics and Preventive Medicine, Unit of Dermatology, University of Campania "Luigi Vanvitelli", Naples, NA, 80100, Italy
| |
Collapse
|
18
|
Elkoshi N, Parikh S, Malcov-Brog H, Parikh R, Manich P, Netti F, Maliah A, Elkoshi H, Haj M, Rippin I, Frand J, Perluk T, Haiat-Factor R, Golan T, Regev-Rudzki N, Kiper E, Brenner R, Gonen P, Dror I, Levi H, Hameiri O, Cohen-Gulkar M, Eldar-Finkelman H, Ast G, Nizri E, Ziv Y, Elkon R, Khaled M, Ebenstein Y, Shiloh Y, Levy C. Ataxia Telangiectasia Mutated Signaling Delays Skin Pigmentation upon UV Exposure by Mediating MITF Function toward DNA Repair Mode. J Invest Dermatol 2023; 143:2494-2506.e4. [PMID: 37236596 DOI: 10.1016/j.jid.2023.03.1686] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 02/24/2023] [Accepted: 03/02/2023] [Indexed: 05/28/2023]
Abstract
Skin pigmentation is paused after sun exposure; however, the mechanism behind this pausing is unknown. In this study, we found that the UVB-induced DNA repair system, led by the ataxia telangiectasia mutated (ATM) protein kinase, represses MITF transcriptional activity of pigmentation genes while placing MITF in DNA repair mode, thus directly inhibiting pigment production. Phosphoproteomics analysis revealed ATM to be the most significantly enriched pathway among all UVB-induced DNA repair systems. ATM inhibition in mouse or human skin, either genetically or chemically, induces pigmentation. Upon UVB exposure, MITF transcriptional activation is blocked owing to ATM-dependent phosphorylation of MITF on S414, which modifies MITF activity and interactome toward DNA repair, including binding to TRIM28 and RBBP4. Accordingly, MITF genome occupancy is enriched in sites of high DNA damage that are likely repaired. This suggests that ATM harnesses the pigmentation key activator for the necessary rapid, efficient DNA repair, thus optimizing the chances of the cell surviving. Data are available from ProteomeXchange with the identifier PXD041121.
Collapse
Affiliation(s)
- Nadav Elkoshi
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Shivang Parikh
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Hagar Malcov-Brog
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Roma Parikh
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Paulee Manich
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Francesca Netti
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Avishai Maliah
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Hana Elkoshi
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Majd Haj
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ido Rippin
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Jacob Frand
- Department of Plastic and Reconstructive Surgery, Edith Wolfson Medical Center, Holon, Israel
| | - Tomer Perluk
- Department of Plastic and Reconstructive Surgery, Edith Wolfson Medical Center, Holon, Israel
| | - Rivi Haiat-Factor
- Department of Plastic and Reconstructive Surgery, Edith Wolfson Medical Center, Holon, Israel
| | - Tamar Golan
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Neta Regev-Rudzki
- Department of Biomolecular Sciences, Faculty of Biochemistry, Weizmann Institute of Science, Rehovot, Israel
| | - Edo Kiper
- Department of Biomolecular Sciences, Faculty of Biochemistry, Weizmann Institute of Science, Rehovot, Israel
| | - Ronen Brenner
- Institute of Oncology, Edith Wolfson Medical Center, Holon, Israel
| | - Pinchas Gonen
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Iris Dror
- Department of Biological Chemistry, University of California Loss Angeles School of Medicine, Los Angeles, California, USA
| | - Hagai Levi
- The Blavatnik School of Computer Science, Tel Aviv University, Tel Aviv, Israel
| | - Ofir Hameiri
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Mazal Cohen-Gulkar
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Hagit Eldar-Finkelman
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Gil Ast
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Eran Nizri
- Department of Dermatology, Tel Aviv Sourasky Medical Center Ichilov, Tel Aviv, Israel; Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Yael Ziv
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Rani Elkon
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Mehdi Khaled
- INSERM 1186, Gustave Roussy, Université Paris-Saclay, Villejuif, France
| | - Yuval Ebenstein
- School of Chemistry, Center for Nanoscience and Nanotechnology, Center for Light-Matter Interaction, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Yosef Shiloh
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Carmit Levy
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
19
|
Sawicki K, Matysiak-Kucharek M, Kruszewski M, Wojtyła-Buciora P, Kapka-Skrzypczak L. Influence of chlorpyrifos exposure on UVB irradiation induced toxicity in human skin cells. J Occup Med Toxicol 2023; 18:23. [PMID: 37803377 PMCID: PMC10559529 DOI: 10.1186/s12995-023-00391-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 09/29/2023] [Indexed: 10/08/2023] Open
Abstract
BACKGROUND Although chlorpyrifos (CPS) has been banned in many developed countries, it still remains one of the best-selling pesticides in the world. Widespread environmental and occupational exposure to CPS pose a serious risk to human health. Another environmental factor that can adversely affect human health is ultraviolet radiation B (UVB, 280-315 nm wave length). Here we attempt determine if exposure to CPS can modify toxic effects of UVB. Such situation might be a common phenomenon in agriculture workers, where exposure to both factors takes place. METHODS Two skin cell lines; namely human immortalized keratinocytes HaCaT and BJ human fibroblasts were used in this study. Cytotoxicity was investigated using a cell membrane damage detection assay (LDH Cytotoxicity Assay), a DNA damage detection assay (Comet Assay), an apoptosis induction detection assay (Apo-ONE Homogeneous Caspase-3/7 Assay) and a cell reactive oxygen species detection assay (ROS-Glo H2O2 assay). Cytokine IL-6 production was also measured in cells using an ELISA IL-6 Assay. RESULTS Pre-incubation of skin cells with CPS significantly increased UVB-induced toxicity at the highest UVB doses (15 and 20 mJ/cm2). Also pre-exposure of BJ cells to CPS significantly increased the level of DNA damage, except for 20 mJ/cm2 UVB. In contrast, pre-exposure of HaCaT cells, to CPS prior to UVB radiation did not cause any significant changes. A decrease in caspase 3/7 activity was observed in HaCaT cells pre-exposed to 250 µM CPS and 5 mJ/cm2 UVB. Meanwhile, no statistically significant changes were observed in fibroblasts. In HaCaT cells, pre-exposure to CPS resulted in a statistically significant increase in ROS production. Also, in BJ cells, similar results were obtained except for 20 mJ/cm2. Interestingly, CPS seems to inhibited IL-6 production in HaCaT and BJ cells exposed to UVB (in the case of HaCaT cells for all UVB doses, while for BJ cells only at 15 and 20 mJ/cm2). CONCLUSIONS In conclusion, the present study indicates that CPS may contribute to the increased UVB-induced toxicity in skin cells, which was likely due to the induction of ROS formation along with the generation of DNA damage. However, further studies are required to gain better understanding of the mechanisms involved.
Collapse
Affiliation(s)
- Krzysztof Sawicki
- Department of Molecular Biology and Translational Research, Institute of Rural Health, Jaczewskiego 2, Lublin, 20-090, Poland.
| | - Magdalena Matysiak-Kucharek
- Department of Molecular Biology and Translational Research, Institute of Rural Health, Jaczewskiego 2, Lublin, 20-090, Poland
| | - Marcin Kruszewski
- Department of Molecular Biology and Translational Research, Institute of Rural Health, Jaczewskiego 2, Lublin, 20-090, Poland
- Institute of Nuclear Chemistry and Technology, Centre for Radiobiology and Biological Dosimetry, Warsaw, Poland
| | | | - Lucyna Kapka-Skrzypczak
- Department of Molecular Biology and Translational Research, Institute of Rural Health, Jaczewskiego 2, Lublin, 20-090, Poland.
- World Institute for Family Health, Calisia University, Kalisz, Poland.
| |
Collapse
|
20
|
Lin M, Bao C, Chen L, Geng S, Wang H, Xiao Z, Gong T, Ji C, Cheng B. Tremella fuciformis polysaccharides alleviates UV-provoked skin cell damage via regulation of thioredoxin interacting protein and thioredoxin reductase 2. Photochem Photobiol Sci 2023; 22:2285-2296. [PMID: 37458972 DOI: 10.1007/s43630-023-00450-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 06/11/2023] [Indexed: 09/21/2023]
Abstract
INTRODUCTION Skin is exposed to a wide range of environmental risk factors including ultraviolet (UV) and all kinds of pollutants. Excessive UV exposure contributes to many disorders, such as photoaging, skin inflammation, and carcinogenesis. Previous studies have shown that Tremella fuciformis polysaccharides (TFPS) have protective effects on oxidative stress in cells, but the specific protective mechanism has not been clarified. METHODS To determine the effects of TFPS on UV-irritated human skin, we conducted a variety of studies, including Cell Counting Kit-8 (CCK-8), trypan blue, Western blot, apoptosis assays, reactive oxygen species (ROS) detection in primary skin keratinocytes, and chronic UV-irradiated mouse model. RESULTS We first determined that TFPS protects human skin keratinocytes against UV radiation-induced apoptosis and ROS production. Moreover, TFPS regulates thioredoxin interacting protein (TXNIP) and thioredoxin reductase 2 (TXNRD2) levels in primary skin keratinocytes for photoprotection. Last, we found that topical TFPS treatment could alleviate the UV-induced skin damage in chronic UV-irradiated mouse model. CONCLUSION Collectively, our work indicates the beneficial role of TFPS in UV-induced skin cell damage and provides a novel therapeutic reagent to prevent or alleviate the progress of photoaging and other UV-provoked skin diseases.
Collapse
Affiliation(s)
- Mengting Lin
- Department of Dermatology, The First Affiliated Hospital of Fujian Medical University, 20 Chazhong Road, Fuzhou, Fujian, 350000, China
- Fujian Dermatology and Venereology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Key Laboratory of Skin Cancer of Fujian Higher Education Institutions, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350000, China
| | - Chengbei Bao
- Department of Dermatology, The First Affiliated Hospital of Fujian Medical University, 20 Chazhong Road, Fuzhou, Fujian, 350000, China
- Fujian Dermatology and Venereology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Key Laboratory of Skin Cancer of Fujian Higher Education Institutions, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350000, China
| | - Lihong Chen
- Department of Dermatology, The First Affiliated Hospital of Fujian Medical University, 20 Chazhong Road, Fuzhou, Fujian, 350000, China
- Fujian Dermatology and Venereology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Key Laboratory of Skin Cancer of Fujian Higher Education Institutions, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350000, China
| | - Shiling Geng
- Department of Dermatology, The First Affiliated Hospital of Fujian Medical University, 20 Chazhong Road, Fuzhou, Fujian, 350000, China
- Fujian Dermatology and Venereology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Key Laboratory of Skin Cancer of Fujian Higher Education Institutions, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350000, China
| | - Haiqing Wang
- Department of Dermatology, The First Affiliated Hospital of Fujian Medical University, 20 Chazhong Road, Fuzhou, Fujian, 350000, China
- Fujian Dermatology and Venereology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Key Laboratory of Skin Cancer of Fujian Higher Education Institutions, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350000, China
| | - Zhixun Xiao
- Department of Dermatology, The First Affiliated Hospital of Fujian Medical University, 20 Chazhong Road, Fuzhou, Fujian, 350000, China
- Fujian Dermatology and Venereology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Key Laboratory of Skin Cancer of Fujian Higher Education Institutions, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350000, China
| | - Ting Gong
- Central Laboratory, The First Affiliated Hospital of Fujian Medical University, 20 Chazhong Road, Fuzhou, Fujian, 350000, China
| | - Chao Ji
- Department of Dermatology, The First Affiliated Hospital of Fujian Medical University, 20 Chazhong Road, Fuzhou, Fujian, 350000, China.
- Fujian Dermatology and Venereology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China.
- Key Laboratory of Skin Cancer of Fujian Higher Education Institutions, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350000, China.
| | - Bo Cheng
- Department of Dermatology, The First Affiliated Hospital of Fujian Medical University, 20 Chazhong Road, Fuzhou, Fujian, 350000, China.
- Fujian Dermatology and Venereology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China.
- Key Laboratory of Skin Cancer of Fujian Higher Education Institutions, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350000, China.
| |
Collapse
|
21
|
Naikoo SH, Rashid H, Gupta R, Sharma RR, Kumar S, Ahmad R, Gudup S, Singh PP, Abdullah ST. A Novel Molecule 3-(1'-Methyltetrahydropyridinyl)-2,4-6-Trihydroxy Acetophenone Alleviates Ultraviolet-B-Induced Photoaging in Human Dermal Fibroblasts and BALB/c Mice. Photochem Photobiol 2023; 99:1343-1351. [PMID: 36691736 DOI: 10.1111/php.13784] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 01/20/2023] [Indexed: 01/25/2023]
Abstract
Ultraviolet radiation (UVR) is the major exogenous agent that disturbs tissue homeostasis and hastens the onset of age-related phenotypes (photoaging). Exposure to UV-B radiation promotes apoptosis in human skin cells via induction of Reactive Oxygen Species (ROS)-mediated Endoplasmic Reticulum (ER) stress by activating the PERK-eIF2α-CHOP pathway, which plays a major role in exacerbating skin photoaging. Alleviating the production of ROS and boosting the antioxidant capacity of cells is the foremost therapeutic strategy to avert the repercussions of ultraviolet radiation exposure. In this study, we investigated the role of 3-(1'-methyltetrahydropyridinyl)-2,4-6-trihydroxy acetophenone (IIIM-8) in thwarting the UV-B-induced photoaging. We observed that IIIM-8 ameliorates UV-B-induced oxidative stress, ER stress, Loss of Mitochondrial membrane potential, MAPK activation and Inflammation in irradiated skin cells. Ultraviolet radiation-related damage to fibroblasts within the dermis leads to collagen degradation-the hallmark of photoaging. IIIM-8 substantially restored the synthesis of collagen and prevented its degradation via the downregulation of matrix metalloproteinases. Topical application of IIIM-8 prevented BALB/c mice skin from UV-B-induced leukocyte infiltration, epidermal thickening and disruption of Extracellular matrix components. Implying that IIIM-8 has a strong photoprotective property and has potential to be developed as a topical therapeutic/cosmeceutical agent against UV-B-induced photoaging.
Collapse
Affiliation(s)
- Shahid H Naikoo
- Pharmacology Division, Council Of Scientific and Industrial Research-Indian Institute of Integrative Medicine, Jammu, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Haroon Rashid
- Sher-e-Kashmir Institute of Medical Sciences, Srinagar, India
| | - Ragni Gupta
- Pharmacology Division, Council Of Scientific and Industrial Research-Indian Institute of Integrative Medicine, Jammu, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Raghu Rai Sharma
- Pharmacology Division, Council Of Scientific and Industrial Research-Indian Institute of Integrative Medicine, Jammu, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Sanjay Kumar
- Natural Product and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu, India
| | - Riyaz Ahmad
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
- Natural Product and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu, India
| | - Satish Gudup
- Natural Product and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu, India
| | - Parvinder P Singh
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
- Natural Product and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu, India
| | - Sheikh Tasduq Abdullah
- Pharmacology Division, Council Of Scientific and Industrial Research-Indian Institute of Integrative Medicine, Jammu, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
22
|
Holtkamp CE, Warmus D, Bonowicz K, Gagat M, Linowiecka K, Wolnicka-Glubisz A, Reiter RJ, Böhm M, Slominski AT, Steinbrink K, Kleszczyński K. Ultraviolet Radiation-Induced Mitochondrial Disturbances Are Attenuated by Metabolites of Melatonin in Human Epidermal Keratinocytes. Metabolites 2023; 13:861. [PMID: 37512568 PMCID: PMC10383625 DOI: 10.3390/metabo13070861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/18/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
Melatonin (N-acetyl-5-methoxytryptamine) is recognized as an effective antioxidant produced by the pineal gland, brain and peripheral organs, which also has anti-inflammatory, immunomodulatory, and anti-tumour capacities. Melatonin has been reported as a substance that counteracts ultraviolet radiation B (UVB)-induced intracellular disturbances. Nevertheless, the mechanistic actions of related molecules including its kynurenic derivatives (N1-acetyl-N2-formyl-5-methoxykynurenine (AFMK)), its indolic derivatives (6-hydroxymelatonin (6(OH)MEL) and 5-methoxytryptamine (5-MT)) and its precursor N-acetylserotonin (NAS) are only poorly understood. Herein, we treated human epidermal keratinocytes with UVB and assessed the protective effect of the studied substances in terms of the maintenance of mitochondrial function or their radical scavenging capacity. Our results show that UVB caused the significant elevation of catalase (CAT) and superoxide dismutase (Mn-SOD), the dissipation of mitochondrial transmembrane potential (mtΔΨ), a reduction in ATP synthesis, and the enhanced release of cytochrome c into cytosol, leading subsequently to UVB-mediated activation of the caspases and apoptosis (appearance of sub-G1 population). Our findings, combined with data reported so far, indicate the counteracting and beneficial actions of melatonin and its molecular derivatives against these deleterious changes within mitochondria. Therefore, they define a path to the development of novel strategies delaying mitochondrial aging and promoting the well-being of human skin.
Collapse
Affiliation(s)
- Chantal E. Holtkamp
- Department of Dermatology, University of Münster, Von-Esmarch-Str. 58, 48149 Münster, Germany; (C.E.H.); (M.B.); (K.S.)
| | - Dawid Warmus
- Department of Biophysics and Cancer Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland; (D.W.); (A.W.-G.)
| | - Klaudia Bonowicz
- Department of Histology and Embryology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-092 Bydgoszcz, Poland; (K.B.); (M.G.)
| | - Maciej Gagat
- Department of Histology and Embryology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-092 Bydgoszcz, Poland; (K.B.); (M.G.)
| | - Kinga Linowiecka
- Department of Human Biology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Lwowska 1, 87-100 Toruń, Poland;
- Phillip Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL 33125, USA
| | - Agnieszka Wolnicka-Glubisz
- Department of Biophysics and Cancer Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland; (D.W.); (A.W.-G.)
| | - Russel J. Reiter
- Department of Cell Systems and Anatomy, UT Health, Long School of Medicine, San Antonio, TX 78229, USA;
| | - Markus Böhm
- Department of Dermatology, University of Münster, Von-Esmarch-Str. 58, 48149 Münster, Germany; (C.E.H.); (M.B.); (K.S.)
| | - Andrzej T. Slominski
- Department of Dermatology, Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
- Pathology and Laboratory Medicine Service, VA Medical Center, Birmingham, AL 35294, USA
| | - Kerstin Steinbrink
- Department of Dermatology, University of Münster, Von-Esmarch-Str. 58, 48149 Münster, Germany; (C.E.H.); (M.B.); (K.S.)
| | - Konrad Kleszczyński
- Department of Dermatology, University of Münster, Von-Esmarch-Str. 58, 48149 Münster, Germany; (C.E.H.); (M.B.); (K.S.)
| |
Collapse
|
23
|
Lundsgaard NU, Hird C, Doody KA, Franklin CE, Cramp RL. Carryover effects from environmental change in early life: An overlooked driver of the amphibian extinction crisis? GLOBAL CHANGE BIOLOGY 2023; 29:3857-3868. [PMID: 37310166 DOI: 10.1111/gcb.16726] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 03/27/2023] [Indexed: 06/14/2023]
Abstract
Ecological carryover effects, or delayed effects of the environment on an organism's phenotype, are central predictors of individual fitness and a key issue in conservation biology. Climate change imposes increasingly variable environmental conditions that may be challenging to early life-history stages in animals with complex life histories, leading to detrimental physiological and fitness effects in later life. Yet, the latent nature of carryover effects, combined with the long temporal scales over which they can manifest, means that this phenomenon remains understudied and is often overlooked in short-term studies limited to single life-history stages. Herein, we review evidence for the physiological carryover effects induced by elevated ultraviolet radiation (UVR; 280-400 nm) as a potential contributor to recent amphibian population declines. UVR exposure causes a suite of molecular, cellular and physiological consequences known to underpin carryover effects in other taxa, but there is a lack of research linking embryonic and larval UVR exposures to fitness consequences post-metamorphosis in amphibians. We propose that the key impacts of UVR on disease-related amphibian declines are facilitated through carryover effects that bridge embryonic and larval UVR exposure with potential increased disease susceptibility post-metamorphosis. We conclude by identifying a practical direction for the study of ecological carryover effects in amphibians that could guide future ecological research in the broader field of conservation physiology. Only by addressing carryover effects can many of the mechanistic links between environmental change and population declines be elucidated.
Collapse
Affiliation(s)
- Niclas U Lundsgaard
- School of Biological Sciences, The University of Queensland, St Lucia, Australia
| | - Coen Hird
- School of Biological Sciences, The University of Queensland, St Lucia, Australia
| | - Kathleen A Doody
- School of Biological Sciences, The University of Queensland, St Lucia, Australia
| | - Craig E Franklin
- School of Biological Sciences, The University of Queensland, St Lucia, Australia
| | - Rebecca L Cramp
- School of Biological Sciences, The University of Queensland, St Lucia, Australia
| |
Collapse
|
24
|
Chen Z, Zhang Y, Wu X, Chen L, Li X, Wang G. UV-B radiation increased the sensitivity of Tibetan soil cyanobacterium Loriellopsis cavernicola to the herbicide glyphosate. CHEMOSPHERE 2023:139141. [PMID: 37285984 DOI: 10.1016/j.chemosphere.2023.139141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/30/2023] [Accepted: 06/03/2023] [Indexed: 06/09/2023]
Abstract
The high concentrations of herbicide and UV-B radiation are two stresses for Tibetan soil microorganisms, but there is limited information about the combined effects of herbicide and UV-B radiation on their levels of stress. In this study, the Tibetan soil cyanobacterium Loriellopsis cavernicola was used to investigate the combined inhibitory effect of the herbicide glyphosate and UV-B radiation on the cyanobacterial photosynthetic electron transport through an analysis of the photosynthetic activity, photosynthetic pigments, chlorophyll fluorescence and antioxidant system activity. The results demonstrated that treatment with herbicide or UV-B radiation and the combination of both stresses caused a decrease in the photosynthetic activity, interfered with the photosynthetic electron transport, and caused the accumulation of oxygen radicals and the degradation of photosynthetic pigments. In contrast, the combined treatment of glyphosate and UV-B radiation had a synergistic effect, i.e., the sensitivity of cyanobacteria to glyphosate increased in the presence of UV-B radiation, which caused the photosynthesis of cyanobacteria to have a greater impact. Since cyanobacteria are the primary producers of soil ecosystems, a high intensity of UV-B radiation in the plateau areas could enhance the inhibition of glyphosate on cyanobacteria, which could affect the ecological health and sustainable development of plateau soils.
Collapse
Affiliation(s)
- Zixu Chen
- Institute of Hydrobiology, Chinese of Sciences Academy, Wuhan, 430072, China; School of Resource & Environmental Science, Wuhan University, Wuhan, 430072, China
| | - Yixiao Zhang
- Institute of Hydrobiology, Chinese of Sciences Academy, Wuhan, 430072, China; School of Science, Tibet University, Lasha, 850000, China
| | - Xinguo Wu
- School of Resource & Environmental Science, Wuhan University, Wuhan, 430072, China
| | - Lanzhou Chen
- School of Resource & Environmental Science, Wuhan University, Wuhan, 430072, China
| | - Xiaoyan Li
- Institute of Hydrobiology, Chinese of Sciences Academy, Wuhan, 430072, China.
| | - Gaohong Wang
- Institute of Hydrobiology, Chinese of Sciences Academy, Wuhan, 430072, China; School of Science, Tibet University, Lasha, 850000, China.
| |
Collapse
|
25
|
Pajović JD, Dojčilović RJ, Kaščáková S, Réfrégiers M, Božanić DK, Djoković V. Enhanced resonance energy transfer in gold nanoparticles bifunctionalized by tryptophan and riboflavin and its application in fluorescence bioimaging. Colloids Surf B Biointerfaces 2023; 227:113340. [PMID: 37201446 DOI: 10.1016/j.colsurfb.2023.113340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 05/03/2023] [Accepted: 05/09/2023] [Indexed: 05/20/2023]
Abstract
Gold nanoparticles were functionalized by amino acid tryptophan and vitamin riboflavin - a resonance energy transfer (RET) pair of biomolecules. The presence of the gold nanoparticles resulted in 65% increase in RET efficiency. Because of enhanced RET efficiency, the photobleaching dynamics of the fluorescent molecules at the surface of the nanoparticles is different from that of molecules in solution. The observed effect was used for detection of the functionalized nanoparticles within biological material rich with autofluorescent species. Synchrotron radiation deep-ultraviolet fluorescence microscopy is used to study the photobleaching dynamics of the fluorescence centers within human hepatocellular carcinoma Huh7.5.1 cells incubated with the nanoparticles. The fluorescent centers were classified according to their photobleaching dynamics, which enabled the discrimination of the cell areas where the accumulation of the nanoparticles takes place, even though the particles were smaller than the spatial resolution of the images.
Collapse
Affiliation(s)
- Jelena D Pajović
- DISCO Beamline, Synchrotron SOLEIL, BP 48, Gif sur Yvette 91192, France; University of Belgrade, Faculty of Physics, Studentski trg 12, Belgrade 11001, Serbia.
| | - Radovan J Dojčilović
- University of Belgrade, "VINČA" Institute of Nuclear Sciences - National Institute of the Republic of Serbia, Center of Excellence for Photoconversion, PO Box 522, Belgrade 11001, Serbia; Department of Experimental and Health Sciences, Pompeu Fabra University, Carrer del Dr. Aiguader 88, Barcelona 08003, Spain
| | - Slávka Kaščáková
- Inserm, Unité 1193, Villejuif F-94800, France; University Paris-Sud XI, UMR-S1193, Villejuif F-94800, France
| | - Matthieu Réfrégiers
- DISCO Beamline, Synchrotron SOLEIL, BP 48, Gif sur Yvette 91192, France; Centre de Biophysique Moléculaire, CNRS UPR4301, Rue Charles Sadron, Orléans 45071, France
| | - Dušan K Božanić
- University of Belgrade, "VINČA" Institute of Nuclear Sciences - National Institute of the Republic of Serbia, Center of Excellence for Photoconversion, PO Box 522, Belgrade 11001, Serbia.
| | - Vladimir Djoković
- University of Belgrade, "VINČA" Institute of Nuclear Sciences - National Institute of the Republic of Serbia, Center of Excellence for Photoconversion, PO Box 522, Belgrade 11001, Serbia.
| |
Collapse
|
26
|
Sukhonthasilakun S, Mahakunakorn P, Naladta A, Nuankaew K, Nualkaew S, Yenjai C, Nualkaew N. Anti-inflammatory effects of Derris scandens extract on narrowband-ultraviolet B exposed HaCaT human keratinocytes. J Ayurveda Integr Med 2023; 14:100693. [PMID: 36868047 PMCID: PMC9996209 DOI: 10.1016/j.jaim.2023.100693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 05/21/2022] [Accepted: 02/01/2023] [Indexed: 03/05/2023] Open
Abstract
Narrowband-ultraviolet B (NB-UVB) has been used to treat skin diseases such as psoriasis. Chronic use of NB-UVB might cause skin inflammation and lead to skin cancer. In Thailand, Derris Scandens (Roxb.) Benth. is used as an alternative medicine to nonsteroidal anti-inflammatory drugs (NSAIDs) for low back pain and osteoarthritis. Therefore, this study aimed to evaluate the potential anti-inflammatory effect of Derris scandens extract (DSE) on pre- and post exposed NB-UVB human keratinocytes (HaCaT). The results indicated that DSE could not protect HaCaT from cell morphology changes or DNA fragmentation and could not recover cell proliferation ability from the NB-UVB effects. DSE treatment reduced the expression of genes related to inflammation, collagen degradation, and carcinogenesis, such as IL-1α, IL-1β, IL-6, iNOS, COX-2, MMP-1, MMP-9, and Bax. These results indicated the potential use of DSE as a topical preparation against NB-UVB-induced inflammation, anti-aging, and prevention of skin cancer from phototherapy.
Collapse
Affiliation(s)
- Sumrit Sukhonthasilakun
- Division of Pharmacognosy and Toxicology, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Pramote Mahakunakorn
- Division of Pharmacognosy and Toxicology, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Alisa Naladta
- Department of Biochemistry, Faculty of Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Katesaraporn Nuankaew
- Division of Pharmacognosy and Toxicology, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Somsak Nualkaew
- Pharmaceutical Chemistry and Natural Product Research Unit, Faculty of Pharmacy, Mahasarakham University, Mahasarakham, 44150, Thailand
| | - Chavi Yenjai
- Natural Products Research Unit, Center of Excellence for Innovation in Chemistry, Department of Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Natsajee Nualkaew
- Division of Pharmacognosy and Toxicology, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand.
| |
Collapse
|
27
|
Balkrishna A, Tomar M, Bhattacharya K, Varshney A. Withania somnifera-derived carbon dots protect human epidermal cells against UVB-induced cell death and support growth factor-mediated wound healing. NANOSCALE ADVANCES 2023; 5:1331-1344. [PMID: 36866265 PMCID: PMC9972854 DOI: 10.1039/d2na00545j] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 11/27/2022] [Indexed: 06/18/2023]
Abstract
Solar radiation comprising UVA and UVB regions is considered a skin-damaging factor inducing inflammation, oxidative stress, hyperpigmentation, and photo-aging. Photoluminescent carbon dots (CDs) were synthesized from the root extract of a Withania somnifera (L.) Dunal plant and urea, using a one-step microwave method. These Withania somnifera CDs (wsCDs) were 14.4 ± 0.18 d nm in diameter and presented photoluminescence. UV absorbance showed the presence of π-π* (C[double bond, length as m-dash]C) and n-π* (C[double bond, length as m-dash]O) transition regions in wsCDs. FTIR analysis indicated the presence of nitrogen and carboxylic functional groups on the surface of wsCDs. HPLC analysis of wsCDs showed the presence of withanoside IV, withanoside V, and withanolide A. The wsCDs were found to be biocompatible in human skin epidermal (A431) cells and hindered UVB irradiation-induced loss of metabolic activity and oxidative stress. The wsCDs supported rapid dermal wound healing through augmented TGF-β1 and EGF gene expression levels in A431 cells. Finally, wsCDs were found to be biodegradable through a myeloperoxidase-catalyzed peroxidation reaction. The study concluded that under in vitro conditions, Withania somnifera root extract-derived biocompatible carbon dots provided photo-protection against UVB-stimulated epidermal cell damage and supported rapid wound healing.
Collapse
Affiliation(s)
- Acharya Balkrishna
- Drug Discovery and Development Division, Patanjali Research Institute Haridwar India
- Department of Allied and Applied Sciences, University of Patanjali Haridwar India
- Patanjali Yog Peeth (UK) Trust 40 Lambhill Street, Kinning Park UK
| | - Meenu Tomar
- Drug Discovery and Development Division, Patanjali Research Institute Haridwar India
| | - Kunal Bhattacharya
- Drug Discovery and Development Division, Patanjali Research Institute Haridwar India
| | - Anurag Varshney
- Drug Discovery and Development Division, Patanjali Research Institute Haridwar India
- Department of Allied and Applied Sciences, University of Patanjali Haridwar India
- Special Centre for Systems Medicine, Jawahar Lal Nehru University New Delhi India
| |
Collapse
|
28
|
Sutter J, Bruggeman PJ, Wigdahl B, Krebs FC, Miller V. Manipulation of Oxidative Stress Responses by Non-Thermal Plasma to Treat Herpes Simplex Virus Type 1 Infection and Disease. Int J Mol Sci 2023; 24:4673. [PMID: 36902102 PMCID: PMC10003306 DOI: 10.3390/ijms24054673] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/16/2023] [Accepted: 02/24/2023] [Indexed: 03/04/2023] Open
Abstract
Herpes simplex virus type 1 (HSV-1) is a contagious pathogen with a large global footprint, due to its ability to cause lifelong infection in patients. Current antiviral therapies are effective in limiting viral replication in the epithelial cells to alleviate clinical symptoms, but ineffective in eliminating latent viral reservoirs in neurons. Much of HSV-1 pathogenesis is dependent on its ability to manipulate oxidative stress responses to craft a cellular environment that favors HSV-1 replication. However, to maintain redox homeostasis and to promote antiviral immune responses, the infected cell can upregulate reactive oxygen and nitrogen species (RONS) while having a tight control on antioxidant concentrations to prevent cellular damage. Non-thermal plasma (NTP), which we propose as a potential therapy alternative directed against HSV-1 infection, is a means to deliver RONS that affect redox homeostasis in the infected cell. This review emphasizes how NTP can be an effective therapy for HSV-1 infections through the direct antiviral activity of RONS and via immunomodulatory changes in the infected cells that will stimulate anti-HSV-1 adaptive immune responses. Overall, NTP application can control HSV-1 replication and address the challenges of latency by decreasing the size of the viral reservoir in the nervous system.
Collapse
Affiliation(s)
- Julia Sutter
- Center for Molecular Virology and Gene Therapy, Institute for Molecular Medicine and Infectious Disease, Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19129, USA
| | - Peter J. Bruggeman
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Brian Wigdahl
- Center for Molecular Virology and Gene Therapy, Institute for Molecular Medicine and Infectious Disease, Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19129, USA
| | - Fred C. Krebs
- Center for Molecular Virology and Gene Therapy, Institute for Molecular Medicine and Infectious Disease, Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19129, USA
| | - Vandana Miller
- Center for Molecular Virology and Gene Therapy, Institute for Molecular Medicine and Infectious Disease, Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19129, USA
| |
Collapse
|
29
|
Papaemmanouil CD, Peña-García J, Banegas-Luna AJ, Kostagianni AD, Gerothanassis IP, Pérez-Sánchez H, Tzakos AG. ANTIAGE-DB: A Database and Server for the Prediction of Anti-Aging Compounds Targeting Elastase, Hyaluronidase, and Tyrosinase. Antioxidants (Basel) 2022; 11:antiox11112268. [PMID: 36421454 PMCID: PMC9686885 DOI: 10.3390/antiox11112268] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/03/2022] [Accepted: 11/09/2022] [Indexed: 11/18/2022] Open
Abstract
Natural products bear a multivariate biochemical profile with antioxidant, anti-inflammatory, antibacterial, and antitumoral properties. Along with their natural sources, they have been widely used both as anti-aging and anti-melanogenic agents due to their effective contribution in the elimination of reactive oxygen species (ROS) caused by oxidative stress. Their anti-aging activity is mainly related to their capacity of inhibiting enzymes like Human Neutrophil Elastase (HNE), Hyaluronidase (Hyal) and Tyrosinase (Tyr). Herein, we accumulated literature information (covering the period 1965–2020) on the inhibitory activity of natural products and their natural sources towards these enzymes. To navigate this information, we developed a database and server termed ANTIAGE-DB that allows the prediction of the anti-aging potential of target compounds. The server operates in two axes. First a comparison of compounds by shape similarity can be performed against our curated database of natural products whose inhibitory potential has been established in the literature. In addition, inverse virtual screening can be performed for a chosen molecule against the three targeted enzymes. The server is open access, and a detailed report with the prediction results is emailed to the user. ANTIAGE-DB could enable researchers to explore the chemical space of natural based products, but is not limited to, as anti-aging compounds and can predict their anti-aging potential. ANTIAGE-DB is accessed online.
Collapse
Affiliation(s)
- Christina D. Papaemmanouil
- Department of Chemistry, Section of Organic Chemistry and Biochemistry, University of Ioannina, 45110 Ioannina, Greece
| | - Jorge Peña-García
- Structural Bioinformatics and High Performance Computing Research Group (BIO-HPC), Computer Engineering Department, Universidad Católica de Murcia (UCAM), 30107 Guadalupe, Spain
| | - Antonio Jesús Banegas-Luna
- Structural Bioinformatics and High Performance Computing Research Group (BIO-HPC), Computer Engineering Department, Universidad Católica de Murcia (UCAM), 30107 Guadalupe, Spain
| | - Androniki D. Kostagianni
- Department of Chemistry, Section of Organic Chemistry and Biochemistry, University of Ioannina, 45110 Ioannina, Greece
| | - Ioannis P. Gerothanassis
- Department of Chemistry, Section of Organic Chemistry and Biochemistry, University of Ioannina, 45110 Ioannina, Greece
| | - Horacio Pérez-Sánchez
- Structural Bioinformatics and High Performance Computing Research Group (BIO-HPC), Computer Engineering Department, Universidad Católica de Murcia (UCAM), 30107 Guadalupe, Spain
- Correspondence: (H.P.-S.); (A.G.T.)
| | - Andreas G. Tzakos
- Department of Chemistry, Section of Organic Chemistry and Biochemistry, University of Ioannina, 45110 Ioannina, Greece
- Institute of Materials Science and Computing, University Research Center of Ioannina (URCI), 45110 Ioannina, Greece
- Correspondence: (H.P.-S.); (A.G.T.)
| |
Collapse
|
30
|
Hansberg W. Monofunctional Heme-Catalases. Antioxidants (Basel) 2022; 11:2173. [PMID: 36358546 PMCID: PMC9687031 DOI: 10.3390/antiox11112173] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/15/2022] [Accepted: 10/17/2022] [Indexed: 09/17/2023] Open
Abstract
The review focuses on four issues that are critical for the understanding of monofunctional catalases. How hydrogen peroxide (H2O2) reaches the active site and outcompetes water molecules to be able to function at a very high rate is one of the issues examined. Part of the answer is a gate valve system that is instrumental to drive out solvent molecules from the final section of the main channel. A second issue relates to how the enzyme deals with an unproductive reactive compound I (Cpd I) intermediate. Peroxidatic two and one electron donors and the transfer of electrons to the active site from NADPH and other compounds are reviewed. The new ascribed catalase reactions are revised, indicating possible measurement pitfalls. A third issue concerns the heme b to heme d oxidation, why this reaction occurs only in some large-size subunit catalases (LSCs), and the possible role of singlet oxygen in this and other modifications. The formation of a covalent bond between the proximal tyrosine with the vicinal residue is analyzed. The last issue refers to the origin and function of the additional C-terminal domain (TD) of LSCs. The TD has a molecular chaperone activity that is traced to a gene fusion between a Hsp31-type chaperone and a small-size subunit catalase (SSC).
Collapse
Affiliation(s)
- Wilhelm Hansberg
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México (UNAM), Mexico City 04510, Mexico
| |
Collapse
|
31
|
Anti-skin aging activity of eggshell membrane administration and its underlying mechanism. Mol Cell Toxicol 2022. [DOI: 10.1007/s13273-022-00291-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Abstract
Background
There is active research on developing materials for improving skin function. Eggshell membrane (ESM) is one such raw material that is consumed as a functional food to support skin health. However, studies on the mechanism of improvement of skin function on ingestion of ESM are still lacking.
Objectives
To explore this mechanism of action, we conducted an ultraviolet (UV) irradiation study on a SKH-1 hairless mouse model. Feeding ESM was found to improve skin moisture and reduce wrinkles during 12 weeks of UVB irradiation.
Results
Oral administration of ESM restored moisture in the dorsal skin tissue of mice. In addition, oral ingestion of ESM also reversed the increased transepidermal water loss and reduction of mRNA expression of hyaluronic synthases induced by UVB irradiation. Furthermore, UVB irradiation-induced collagen degradation was inhibited, and the expression of the collagenase MMP was reduced in the ESM intake group compared to the control. These results confirmed that oral ingestion of the ESM has an anti-wrinkle effect. In addition, the mRNA expression of the antioxidant enzyme SOD1, which was reduced on UVB irradiation, was restored on ingestion of the ESM. Restoring the expression of antioxidant enzymes is a key strategy for improving skin function of the ESM.
Conclusion
Taken together, the findings from our study reveal the potential of ESM as a nutricosmetic material with anti-wrinkle and skin moisturizing properties.
Collapse
|
32
|
Sun G, Dang Y, Lin Y, Zeng W, Wu Z, Zhang X, Dong D, Wu B. Scutellaria baicalensis Georgi regulates REV-ERBα/BMAL1 to protect against skin aging in mice. Front Pharmacol 2022; 13:991917. [PMID: 36249807 PMCID: PMC9561880 DOI: 10.3389/fphar.2022.991917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 09/12/2022] [Indexed: 11/13/2022] Open
Abstract
Scutellaria baicalensis Georgi (SBG) is a traditional Chinese medicine widely used to treat disorders such as hypertension, dysentery and hemorrhaging. Here, we aimed to assess the pharmacological effects of SBG on skin aging and to investigate the underlying mechanisms. Mice with skin aging were established by treatment with D-galactose and ultraviolet-B. SBG (topical application) showed a protective effect on skin aging in mice, as evidenced by less formation of skin wrinkles, higher levels of SOD (superoxide dismutase) and HYP (hydroxyproline) as well as a lower level of MDA (malondialdehyde). In the meantime, skin MMP-1 and p53 expression were lower, epidermis was thinner and collagen amount was higher in SBG-treated mice. Anti-skin aging effects of SBG were also confirmed in NIH3T3 and HaCaT cells, as well as in mouse primary dermal fibroblasts and human primary epidermal keratinocytes. Furthermore, we found that loss of Rev-erbα (a known repressor of Bmal1) up-regulated skin BMAL1 (a clock component and a known anti-aging factor) and ameliorated skin aging in mice. Moreover, SBG dose-dependently increased the expression of BMAL1 in the skin of aged mice and in senescent NIT3H3 cells. In addition, based on a combination of Gal4 chimeric, luciferase reporter and expression assays, SBG was identified as an antagonist of REV-ERBα and thus an inducer of BMAL1 expression. In conclusion, SBG antagonizes REV-ERBα to up-regulate BMAL1 and to protect against skin aging in mice.
Collapse
Affiliation(s)
- Guanghui Sun
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Yongkang Dang
- Institute of Molecular Rhythm and Metabolism, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yanke Lin
- Institute of Molecular Rhythm and Metabolism, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wanying Zeng
- Institute of Molecular Rhythm and Metabolism, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zongjian Wu
- Institute of Molecular Rhythm and Metabolism, Guangzhou University of Chinese Medicine, Guangzhou, China
| | | | - Dong Dong
- School of Medicine, Jinan University, Guangzhou, China
- *Correspondence: Dong Dong, ; Baojian Wu,
| | - Baojian Wu
- Institute of Molecular Rhythm and Metabolism, Guangzhou University of Chinese Medicine, Guangzhou, China
- *Correspondence: Dong Dong, ; Baojian Wu,
| |
Collapse
|
33
|
Physiological and Molecular Response Modifications by Ultraviolet-C Radiation in Plutella xylostella and Its Compatibility with Cordyceps fumosorosea. Int J Mol Sci 2022; 23:ijms23179800. [PMID: 36077199 PMCID: PMC9456147 DOI: 10.3390/ijms23179800] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/19/2022] [Accepted: 08/24/2022] [Indexed: 11/21/2022] Open
Abstract
Ultraviolet-C (UV-C) radiation significantly impacts living organisms. UV-C radiation can also be used as a pest management tool. Therefore, this study was designed to investigate the effect of UV-C radiation on the physiology and gene expression level of Plutella xylostella, a destructive vegetable pest. Results showed that, after exposure to UV-C radiation for 3, 6, 12, and 24 h, the activity of SOD (superoxide dismutase) and CAT (catalase) of P. xylostella increased, while the activity of PPO (polyphenol oxidase), POD (peroxidase), AChE (acetylcholinesterase), CarE (carboxylesterase), and ACP (acid phosphatase) decreased with increased exposure time. Correlation coefficient analyses indicated that the activity of CAT correlated positively, while PPO and CarE correlated negatively, with exposure time. Gene regulation analysis via qRT-PCR confirmed a significant increase in regulation in CAT, CarE, and PPO-related genes. We also investigated the effect of UV-C exposure on the virulence of Cordyceps fumosorosea against P. xylostella. Here, results indicated that when the fungal treatment was applied to larvae before UV-C radiation, the virulence of C. fumosorosea was significantly reduced. However, this decline in virulence of C. fumosorosea due to UV-C exposure remained only for one generation, and no effect was observed on secondary infection. On the other hand, when larvae were exposed to UV-C radiation before fungal application, the mortality rate significantly increased as the exposure time to UV-C radiation increased. From the current study, it could be concluded that UV-C exposure suppressed the immunity to P. xylostella, which later enhanced the virulence of entomopathogenic fungi. Moreover, the study also suggested that UV irradiation is an effective pest management tool that could be incorporated into pest management strategies, which could help reduce pesticide application, be economically beneficial for the farmer, and be environmentally safe.
Collapse
|
34
|
Lundsgaard NU, Cramp RL, Franklin CE. Early exposure to UV radiation causes telomere shortening and poorer condition later in life. J Exp Biol 2022; 225:276293. [PMID: 35950364 PMCID: PMC9482364 DOI: 10.1242/jeb.243924] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 08/04/2022] [Indexed: 11/22/2022]
Abstract
Determining the contribution of elevated ultraviolet-B radiation (UVBR; 280–315 nm) to amphibian population declines is being hindered by a lack of knowledge about how different acute UVBR exposure regimes during early life-history stages might affect post-metamorphic stages via long-term carryover effects. We acutely exposed tadpoles of the Australian green tree frog (Litoria caerulea) to a combination of different UVBR irradiances and doses in a multi-factorial laboratory experiment, and then reared them to metamorphosis in the absence of UVBR to assess carryover effects in subsequent juvenile frogs. Dose and irradiance of acute UVBR exposure influenced carryover effects into metamorphosis in somewhat opposing manners. Higher doses of UVBR exposure in larvae yielded improved rates of metamorphosis. However, exposure at a high irradiance resulted in frogs metamorphosing smaller in size and in poorer condition than frogs exposed to low and medium irradiance UVBR as larvae. We also demonstrate some of the first empirical evidence of UVBR-induced telomere shortening in vivo, which is one possible mechanism for life-history trade-offs impacting condition post-metamorphosis. These findings contribute to our understanding of how acute UVBR exposure regimes in early life affect later life-history stages, which has implications for how this stressor may shape population dynamics. Summary: Ultraviolet radiation exposure in amphibian larvae generates detrimental carryover effects on body condition and relative telomere length post-metamorphosis, a mechanism that may influence amphibian population dynamics.
Collapse
Affiliation(s)
- Niclas U Lundsgaard
- School of Biological Sciences, The University of Queensland, Brisbane, 4072, Australia
| | - Rebecca L Cramp
- School of Biological Sciences, The University of Queensland, Brisbane, 4072, Australia
| | - Craig E Franklin
- School of Biological Sciences, The University of Queensland, Brisbane, 4072, Australia
| |
Collapse
|
35
|
Kahremany S, Hofmann L, Gruzman A, Dinkova-Kostova AT, Cohen G. NRF2 in dermatological disorders: Pharmacological activation for protection against cutaneous photodamage and photodermatosis. Free Radic Biol Med 2022; 188:262-276. [PMID: 35753587 PMCID: PMC9350913 DOI: 10.1016/j.freeradbiomed.2022.06.238] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/16/2022] [Accepted: 06/21/2022] [Indexed: 01/27/2023]
Abstract
The skin barrier and its endogenous protective mechanisms cope daily with exogenous stressors, of which ultraviolet radiation (UVR) poses an imminent danger. Although the skin is able to reduce the potential damage, there is a need for comprehensive strategies for protection. This is particularly important when developing pharmacological approaches to protect against photocarcinogenesis. Activation of NRF2 has the potential to provide comprehensive and long-lasting protection due to the upregulation of numerous cytoprotective downstream effector proteins that can counteract the damaging effects of UVR. This is also applicable to photodermatosis conditions that exacerbate the damage caused by UVR. This review describes the alterations caused by UVR in normal skin and photosensitive disorders, and provides evidence to support the development of NRF2 activators as pharmacological treatments. Key natural and synthetic activators with photoprotective properties are summarized. Lastly, the gap in knowledge in research associated with photodermatosis conditions is highlighted.
Collapse
Affiliation(s)
- Shirin Kahremany
- Department of Chemistry, Faculty of Exact Sciences, Bar-Ilan University, Ramat-Gan, 5290002, Israel; The Skin Research Institute, The Dead Sea and Arava Science Center, Masada, 86910, Israel
| | - Lukas Hofmann
- Department of Chemistry, Faculty of Exact Sciences, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - Arie Gruzman
- Department of Chemistry, Faculty of Exact Sciences, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - Albena T Dinkova-Kostova
- Jacqui Wood Cancer Centre, Division of Cellular Medicine, School of Medicine, University of Dundee, Dundee, UK; Department of Pharmacology and Molecular Sciences and Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Guy Cohen
- The Skin Research Institute, The Dead Sea and Arava Science Center, Masada, 86910, Israel; Ben-Gurion University of the Negev, Eilat Campus, Eilat, 8855630, Israel.
| |
Collapse
|
36
|
Yuksel Egrilmez M, Kocturk S, Aktan S, Oktay G, Resmi H, Simsek Keskin H, Guner Akdogan G, Ozkan S. Melatonin Prevents UVB-Induced Skin Photoaging by Inhibiting Oxidative Damage and MMP Expression through JNK/AP-1 Signaling Pathway in Human Dermal Fibroblasts. LIFE (BASEL, SWITZERLAND) 2022; 12:life12070950. [PMID: 35888040 PMCID: PMC9322074 DOI: 10.3390/life12070950] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/17/2022] [Accepted: 06/18/2022] [Indexed: 11/30/2022]
Abstract
Exposure to ultraviolet (UV) irradiation causes damage to the skin and induces photoaging. UV irradiation stimulates production of reactive oxygen/nitrogen species, which results in activation of epidermal growth factor receptor (EGFR) and mitogen-activated protein kinases (MAPK) in fibroblasts. MAPKs are responsible for activation of activator protein-1 (AP-1), which subsequently upregulates expression of matrix metalloproteinases (MMPs). Melatonin is a potent free radical scavenger which is known to have photoprotective effects. The aim of this study is to investigate the underlying molecular mechanisms for the photoprotective effects of melatonin in UVB-irradiated primary human dermal fibroblasts (HDFs) in terms of EGFR activation, oxidative/nitrosative damage, JNK/AP-1 activation, MMP activities, and the levels of tissue inhibitors of metalloproteinase-1 (TIMP-1) and type I procollagen (PIP-C). In this study, HDFs were pretreated with 1 μM of melatonin and then irradiated with 0.1 J/cm2 of UVB. Changes in the molecules were analyzed at different time points. Melatonin inhibited UVB-induced oxidative/nitrosative stress damage by reducing malondialdehyde, the ratio of oxidized/reduced glutathione, and nitrotyrosine. Melatonin downregulated UV-induced activation of EGFR and the JNK/AP-1 signaling pathway. UVB-induced activities of MMP-1 and MMP-3 were decreased and levels of TIMP-1 and PIP-C were increased by melatonin. These findings suggest that melatonin can protect against the adverse effects of UVB radiation by inhibiting MMP-1 and MMP-3 activity and increasing TIMP-1 and PIP-C levels, probably through the suppression of oxidative/nitrosative damage, EGFR, and JNK/AP-1 activation in HDFs.
Collapse
Affiliation(s)
- Mehtap Yuksel Egrilmez
- Department of Molecular Medicine, Institute of Health Sciences, Dokuz Eylul University, Izmir 35340, Turkey
- Correspondence:
| | - Semra Kocturk
- Department of Biochemistry, Faculty of Medicine, Dokuz Eylul University, Izmir 35340, Turkey; (S.K.); (G.O.); (H.R.); (G.G.A.)
| | - Sebnem Aktan
- Department of Dermatological and Venereal Disease, Faculty of Medicine, Dokuz Eylul University, Izmir 35340, Turkey; (S.A.); (S.O.)
| | - Gulgun Oktay
- Department of Biochemistry, Faculty of Medicine, Dokuz Eylul University, Izmir 35340, Turkey; (S.K.); (G.O.); (H.R.); (G.G.A.)
| | - Halil Resmi
- Department of Biochemistry, Faculty of Medicine, Dokuz Eylul University, Izmir 35340, Turkey; (S.K.); (G.O.); (H.R.); (G.G.A.)
| | - Hatice Simsek Keskin
- Department of Public Health, Faculty of Medicine, Dokuz Eylul University, Izmir 35340, Turkey;
| | - Gul Guner Akdogan
- Department of Biochemistry, Faculty of Medicine, Dokuz Eylul University, Izmir 35340, Turkey; (S.K.); (G.O.); (H.R.); (G.G.A.)
- Faculty of Medicine, Izmir University of Economics, Izmir 35330, Turkey
| | - Sebnem Ozkan
- Department of Dermatological and Venereal Disease, Faculty of Medicine, Dokuz Eylul University, Izmir 35340, Turkey; (S.A.); (S.O.)
| |
Collapse
|
37
|
Luo CW, Chen SP, Chiang CY, Wu WJ, Chen CJ, Chen WY, Kuan YH. Association between Ultraviolet B Exposure Levels and Depression in Taiwanese Adults: A Nested Case-Control Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:6846. [PMID: 35682430 PMCID: PMC9180491 DOI: 10.3390/ijerph19116846] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 05/19/2022] [Accepted: 05/30/2022] [Indexed: 02/06/2023]
Abstract
Depression is a common mental disorder that affects more than 264 million people worldwide. Anxiety, diabetes, Alzheimer's disease, myocardial infarction, and cancer, among other disorders, are known to increase the risk of depression. Exposure to ultraviolet B (UVB) can cause human serotonin levels to increase. The vitamin D pathway is one mechanism through which ultraviolet light absorbed through the skin can affect mood; however, UVB exposure is known to increase the risk of cancer. In this study, we explored the effects of prolonged exposure to UVB on depression. Data were retrieved from the Taiwan National Health Insurance Research Database for 2008 to 2013. Each patient with depression was matched 1:4 with a comparison patient by sex and age (±5 years); thus, the study included 23,579 patients with depression and 94,316 healthy controls for comparison. The patients had been exposed to UVB for at least 1 year to observe the cumulative effect of UVB exposure. Based on the World Health Organization UV index, we divided the observation period data into five UV levels: low, moderate, high, very high, and extreme. A multivariate Poisson regression model was used to assess the risk of depression according to UVB exposure level, adjusting for sex, age, income, urbanization level, month, and comorbidities. The results revealed that the incidence rate ratio (IRR) for patients with depression was 0.889 for moderate levels (95% CI 0.835-0.947), 1.134 for high levels (95% CI: 1.022-1.260), 1.711 for very high levels (95% CI: 1.505-1.945), and 2.785 for extreme levels (95% CI: 2.439-3.180) when compared to low levels. Moderate levels of UVB lowered the risk of depression, while high levels of UVB gradually increased the risk. We propose that UVB at normal concentrations can effectively improve depression. However, exposure to high concentrations of UVB damage DNA results in physical diseases such as skin cancer, which increase the risk of depression.
Collapse
Affiliation(s)
- Ci-Wen Luo
- Institute of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan; (C.-W.L.); (W.-J.W.)
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
| | - Shih-Pin Chen
- Department of Internal Medicine, School of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan;
- Department of Internal Medicine, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
| | - Chen-Yu Chiang
- Department of Veterinary Medicine, National Chung Hsing University, Taichung 40227, Taiwan; (C.-Y.C.); (W.-Y.C.)
| | - Wen-Jun Wu
- Institute of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan; (C.-W.L.); (W.-J.W.)
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
| | - Chun-Jung Chen
- Department of Education and Research, Taichung Veterans General Hospital, Taichung 40705, Taiwan;
| | - Wen-Ying Chen
- Department of Veterinary Medicine, National Chung Hsing University, Taichung 40227, Taiwan; (C.-Y.C.); (W.-Y.C.)
| | - Yu-Hsiang Kuan
- Department of Pharmacology, School of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan
- Department of Pharmacy, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
| |
Collapse
|
38
|
Jelly Fig (Ficus awkeotsang Makino) Exhibits Antioxidative and Anti-Inflammatory Activities by Regulating Reactive Oxygen Species Production via NFκB Signaling Pathway. Antioxidants (Basel) 2022; 11:antiox11050981. [PMID: 35624846 PMCID: PMC9138086 DOI: 10.3390/antiox11050981] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/10/2022] [Accepted: 05/13/2022] [Indexed: 11/17/2022] Open
Abstract
Antioxidant and anti-inflammatory activities of Ficus awkeotsang Makino extract (FAE) on Hs68 fibroblasts and BALB/c nude-mouse models are evaluated in this study. FAE was found to be non-toxic and showed high levels of DPPH, H2O2, and hydroxyl radical scavenging abilities; a ferrous chelating capacity; as well as ferric-reducing antioxidant capability. The antioxidant activity of FAE was strongly associated with polyphenolic content (flavonoids at 10.3 mg QE g−1 and total phenol at 107.6 mg GAE g−1). The anti-inflammatory activity of FAE and the underlying molecular mechanisms were also investigated. The a* value of the mouse dorsal skin after treatment with FAE at 1.5 mg/mL in addition to chronic UVB exposure was found to decrease by 19.2% during a ten-week period. The anti-inflammatory effect of FAE was evidenced by the decreased accumulation of inflammatory cells and skin thickness. Expression levels of UVB-induced inflammatory proteins, including ROS, NF-κB, iNOS, COX-2, and IL-6, were significantly reduced upon FAE treatment in vitro and in vivo. Collectively, our results suggest that the inhibition of ROS and UVB-induced activation of the NF-κB downstream signaling pathway by FAE, indicating considerable potential as a versatile adjuvant against free radical damage in pharmaceutical applications.
Collapse
|
39
|
Frommeyer TC, Gilbert MM, Brittain GV, Wu T, Nguyen TQ, Rohan CA, Travers JB. UVB-Induced Microvesicle Particle Release and Its Effects on the Cutaneous Microenvironment. Front Immunol 2022; 13:880850. [PMID: 35603177 PMCID: PMC9120817 DOI: 10.3389/fimmu.2022.880850] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 04/04/2022] [Indexed: 12/14/2022] Open
Abstract
Ultraviolet B radiation (UVB) has profound effects on human skin that results in a broad spectrum of immunological local and systemic responses and is the major cause of skin carcinogenesis. One important area of study in photobiology is how UVB is translated into effector signals. As the skin is exposed to UVB light, subcellular microvesicle particles (MVP), a subtype of bioactive extracellular vesicles, are released causing a variety of local and systemic immunological effects. In this review, we highlight keratinocyte MVP release in keratinocytes in response to UVB. Specifically, Platelet-activating factor receptor agonists generated by UVB result in MVP released from keratinocytes. The downstream effects of MVP release include the ability of these subcellular particles to transport agents including the glycerophosphocholine-derived lipid mediator Platelet-activating factor (PAF). Moreover, even though UVB is only absorbed in the epidermis, it appears that PAF release from MVPs also mediates systemic immunosuppression and enhances tumor growth and metastasis. Tumor cells expressing PAF receptors can use this mechanism to evade chemotherapy responses, leading to treatment resistance for advanced cancers such as melanoma. Furthermore, novel pharmacological agents provide greater insight into the UVB-induced immune response pathway and a potential target for pharmacological intervention. This review outlines the need to more clearly elucidate the mechanism linking UVB-irradiation with the cutaneous immune response and its pathological manifestations. An improved understanding of this process can result in new insights and treatment strategies for UVB-related disorders from carcinogenesis to photosensitivity.
Collapse
Affiliation(s)
- Timothy C. Frommeyer
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine at Wright State University, Dayton, OH, United States
| | - Michael M. Gilbert
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine at Wright State University, Dayton, OH, United States
| | - Garrett V. Brittain
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine at Wright State University, Dayton, OH, United States
| | - Tongfan Wu
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine at Wright State University, Dayton, OH, United States
| | - Trang Q. Nguyen
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine at Wright State University, Dayton, OH, United States
| | - Craig A. Rohan
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine at Wright State University, Dayton, OH, United States
- Department of Dermatology, Boonshoft School of Medicine at Wright State University, Dayton, OH, United States
- Department of Medicine, Dayton Veterans Administration Medical Center, Dayton, OH, United States
| | - Jeffrey B. Travers
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine at Wright State University, Dayton, OH, United States
- Department of Dermatology, Boonshoft School of Medicine at Wright State University, Dayton, OH, United States
- Department of Medicine, Dayton Veterans Administration Medical Center, Dayton, OH, United States
- *Correspondence: Jeffrey B. Travers,
| |
Collapse
|
40
|
Brinkmann V, Romeo M, Larigot L, Hemmers A, Tschage L, Kleinjohann J, Schiavi A, Steinwachs S, Esser C, Menzel R, Giani Tagliabue S, Bonati L, Cox F, Ale-Agha N, Jakobs P, Altschmied J, Haendeler J, Coumoul X, Ventura N. Aryl Hydrocarbon Receptor-Dependent and -Independent Pathways Mediate Curcumin Anti-Aging Effects. Antioxidants (Basel) 2022; 11:613. [PMID: 35453298 PMCID: PMC9024831 DOI: 10.3390/antiox11040613] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/18/2022] [Accepted: 03/19/2022] [Indexed: 02/04/2023] Open
Abstract
The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor whose activity can be modulated by polyphenols, such as curcumin. AhR and curcumin have evolutionarily conserved effects on aging. Here, we investigated whether and how the AhR mediates the anti-aging effects of curcumin across species. Using a combination of in vivo, in vitro, and in silico analyses, we demonstrated that curcumin has AhR-dependent or -independent effects in a context-specific manner. We found that in Caenorhabditis elegans, AhR mediates curcumin-induced lifespan extension, most likely through a ligand-independent inhibitory mechanism related to its antioxidant activity. Curcumin also showed AhR-independent anti-aging activities, such as protection against aggregation-prone proteins and oxidative stress in C. elegans and promotion of the migratory capacity of human primary endothelial cells. These AhR-independent effects are largely mediated by the Nrf2/SKN-1 pathway.
Collapse
Affiliation(s)
- Vanessa Brinkmann
- Institute of Clinical Chemistry and Laboratory Diagnostic, Medical Faculty, Heinrich Heine University Düsseldorf, Moorenstr 5, 40225 Düsseldorf, Germany; (V.B.); (M.R.); (A.S.); (F.C.); (N.A.-A.); (P.J.); (J.A.); (J.H.)
- IUF—Leibniz Research Institute for Environmental Medicine, Auf’m Hennekamp 50, 40225 Düsseldorf, Germany; (A.H.); (L.T.); (J.K.); (S.S.); (C.E.)
| | - Margherita Romeo
- Institute of Clinical Chemistry and Laboratory Diagnostic, Medical Faculty, Heinrich Heine University Düsseldorf, Moorenstr 5, 40225 Düsseldorf, Germany; (V.B.); (M.R.); (A.S.); (F.C.); (N.A.-A.); (P.J.); (J.A.); (J.H.)
- IUF—Leibniz Research Institute for Environmental Medicine, Auf’m Hennekamp 50, 40225 Düsseldorf, Germany; (A.H.); (L.T.); (J.K.); (S.S.); (C.E.)
| | - Lucie Larigot
- Faculté des Sciences Fondamentales et Biomédicales, Université de Paris, 45 Rue des Saints-Pères, F-75006 Paris, France; (L.L.); (X.C.)
| | - Anne Hemmers
- IUF—Leibniz Research Institute for Environmental Medicine, Auf’m Hennekamp 50, 40225 Düsseldorf, Germany; (A.H.); (L.T.); (J.K.); (S.S.); (C.E.)
| | - Lisa Tschage
- IUF—Leibniz Research Institute for Environmental Medicine, Auf’m Hennekamp 50, 40225 Düsseldorf, Germany; (A.H.); (L.T.); (J.K.); (S.S.); (C.E.)
| | - Jennifer Kleinjohann
- IUF—Leibniz Research Institute for Environmental Medicine, Auf’m Hennekamp 50, 40225 Düsseldorf, Germany; (A.H.); (L.T.); (J.K.); (S.S.); (C.E.)
| | - Alfonso Schiavi
- Institute of Clinical Chemistry and Laboratory Diagnostic, Medical Faculty, Heinrich Heine University Düsseldorf, Moorenstr 5, 40225 Düsseldorf, Germany; (V.B.); (M.R.); (A.S.); (F.C.); (N.A.-A.); (P.J.); (J.A.); (J.H.)
- IUF—Leibniz Research Institute for Environmental Medicine, Auf’m Hennekamp 50, 40225 Düsseldorf, Germany; (A.H.); (L.T.); (J.K.); (S.S.); (C.E.)
| | - Swantje Steinwachs
- IUF—Leibniz Research Institute for Environmental Medicine, Auf’m Hennekamp 50, 40225 Düsseldorf, Germany; (A.H.); (L.T.); (J.K.); (S.S.); (C.E.)
| | - Charlotte Esser
- IUF—Leibniz Research Institute for Environmental Medicine, Auf’m Hennekamp 50, 40225 Düsseldorf, Germany; (A.H.); (L.T.); (J.K.); (S.S.); (C.E.)
| | - Ralph Menzel
- Institute of Biology, Humboldt-University Berlin, Philippstr. 13, 10115 Berlin, Germany;
| | - Sara Giani Tagliabue
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza 1, 20126 Milano, Italy; (S.G.T.); (L.B.)
| | - Laura Bonati
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza 1, 20126 Milano, Italy; (S.G.T.); (L.B.)
| | - Fiona Cox
- Institute of Clinical Chemistry and Laboratory Diagnostic, Medical Faculty, Heinrich Heine University Düsseldorf, Moorenstr 5, 40225 Düsseldorf, Germany; (V.B.); (M.R.); (A.S.); (F.C.); (N.A.-A.); (P.J.); (J.A.); (J.H.)
- Institute of Clinical Pharmacology and Pharmacology, Medical Faculty, University Hospital and Heinrich Heine University Düsseldorf, Moorenstr 5, 40225 Düsseldorf, Germany
| | - Niloofar Ale-Agha
- Institute of Clinical Chemistry and Laboratory Diagnostic, Medical Faculty, Heinrich Heine University Düsseldorf, Moorenstr 5, 40225 Düsseldorf, Germany; (V.B.); (M.R.); (A.S.); (F.C.); (N.A.-A.); (P.J.); (J.A.); (J.H.)
| | - Philipp Jakobs
- Institute of Clinical Chemistry and Laboratory Diagnostic, Medical Faculty, Heinrich Heine University Düsseldorf, Moorenstr 5, 40225 Düsseldorf, Germany; (V.B.); (M.R.); (A.S.); (F.C.); (N.A.-A.); (P.J.); (J.A.); (J.H.)
| | - Joachim Altschmied
- Institute of Clinical Chemistry and Laboratory Diagnostic, Medical Faculty, Heinrich Heine University Düsseldorf, Moorenstr 5, 40225 Düsseldorf, Germany; (V.B.); (M.R.); (A.S.); (F.C.); (N.A.-A.); (P.J.); (J.A.); (J.H.)
- IUF—Leibniz Research Institute for Environmental Medicine, Auf’m Hennekamp 50, 40225 Düsseldorf, Germany; (A.H.); (L.T.); (J.K.); (S.S.); (C.E.)
| | - Judith Haendeler
- Institute of Clinical Chemistry and Laboratory Diagnostic, Medical Faculty, Heinrich Heine University Düsseldorf, Moorenstr 5, 40225 Düsseldorf, Germany; (V.B.); (M.R.); (A.S.); (F.C.); (N.A.-A.); (P.J.); (J.A.); (J.H.)
| | - Xavier Coumoul
- Faculté des Sciences Fondamentales et Biomédicales, Université de Paris, 45 Rue des Saints-Pères, F-75006 Paris, France; (L.L.); (X.C.)
| | - Natascia Ventura
- Institute of Clinical Chemistry and Laboratory Diagnostic, Medical Faculty, Heinrich Heine University Düsseldorf, Moorenstr 5, 40225 Düsseldorf, Germany; (V.B.); (M.R.); (A.S.); (F.C.); (N.A.-A.); (P.J.); (J.A.); (J.H.)
- IUF—Leibniz Research Institute for Environmental Medicine, Auf’m Hennekamp 50, 40225 Düsseldorf, Germany; (A.H.); (L.T.); (J.K.); (S.S.); (C.E.)
| |
Collapse
|
41
|
Yang C, Rybchyn MS, De Silva WGM, Matthews J, Holland AJA, Conigrave AD, Mason RS. UV-induced DNA Damage in Skin is Reduced by CaSR Inhibition. Photochem Photobiol 2022; 98:1157-1166. [PMID: 35288938 PMCID: PMC9540002 DOI: 10.1111/php.13615] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 02/02/2022] [Indexed: 11/30/2022]
Abstract
The epidermis maintains a cellular calcium gradient that supports keratinocyte differentiation from its basal layers (low) to outer layers (high) leading to the development of the stratum corneum, which resists penetration of UV radiation. The calcium‐sensing receptor (CaSR) expressed in keratinocytes responds to the calcium gradient with signals that promote differentiation. In this study, we investigated whether the CaSR is involved more directly in protection from UV damage in studies of human keratinocytes in primary culture and in mouse skin studied in vivo. siRNA‐directed reductions in CaSR protein levels in human keratinocytes significantly reduced UV‐induced direct cyclobutane pyrimidine dimers (CPD) by ~80% and oxidative DNA damage (8‐OHdG) by ~65% compared with control transfected cells. Similarly, in untransfected cells, the CaSR negative modulator, NPS‐2143 (500 nm), reduced UV‐induced CPD and 8‐OHdG by ~70%. NPS‐2143 also enhanced DNA repair and reduced reactive oxygen species (ROS) by ~35% in UV‐exposed keratinocytes, consistent with reduced DNA damage after UV exposure. Topical application of NPS‐2143 also protected hairless Skh:hr1 mice from UV‐induced CPD, oxidative DNA damage and inflammation, similar to the reductions observed in response to the well‐known photoprotection agent 1,25(OH)2D3 (calcitriol). Thus, negative modulators of the CaSR offer a new approach to reducing UV‐induced skin damage.
Collapse
Affiliation(s)
- Chen Yang
- Department of Physiology and Bosch Institute, School of Medical Sciences, University of Sydney, New South Wales, 2006, Australia
| | - Mark Stephen Rybchyn
- School of Chemical Engineering, University of New South Wales, Sydney, NSW, 2033, Australia
| | | | - Jim Matthews
- Sydney Informatics Hub, University of Sydney, New South Wales, Australia
| | - Andrew J A Holland
- Douglas Cohen Department of Paediatric Surgery, The University of Sydney School of Medicine, The Children's Hospital at Westmead Clinical School, Faculty of Medicine and Health, Sydney, New South Wales, Australia
| | - Arthur David Conigrave
- School of Life and Environmental Sciences, Charles Perkins Centre (D17), University of Sydney, New South Wales, 2006, Australia
| | - Rebecca Sara Mason
- Department of Physiology and Bosch Institute, School of Medical Sciences, University of Sydney, New South Wales, 2006, Australia.,School of Life and Environmental Sciences, Charles Perkins Centre (D17), University of Sydney, New South Wales, 2006, Australia
| |
Collapse
|
42
|
McGlone CL, Christian L, Schmeusser B, Liu L, Chalfant CE, Stephensen DJ, Sherwin CM, Rapp CM, Sattouf Z, Rohan CA, Morris C, Chen Y, Travers JB. Evidence for Systemic Reactive Oxygen Species in UVB-mediated Microvesicle Formation. Photochem Photobiol 2022; 98:242-247. [PMID: 34324712 PMCID: PMC8799769 DOI: 10.1111/php.13494] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 01/03/2023]
Abstract
Recent studies have implicated subcellular microvesicle particles (MVP) in the ability of ultraviolet B radiation to exert both local and systemic effects. Indeed, UVB generates MVP (UVB-MVP) in human skin and systemically following phototherapy. The current studies were designed to test the hypothesis that the ability of UVB to generate MVP was dependent upon reactive oxygen species (ROS). To that end, we tested urine samples from subjects undergoing UVB phototherapy for the presence of isoprostanes as well as the oxidized guanosine derivative 8OHdG. We also conducted a clinical study in which volar forearms of subjects were treated with localized UVB and erythema/MVP measured. The same cohort was then treated with 7 days of vitamin C (2 g day-1 ) and vitamin E (1000 IU day-1 ), and UVB-induced MVPs tested on the contralateral forearm. Urine specimens from subjects undergoing phototherapy were found to have increased levels of isoprostanes and 8OHdG, with maximal levels noted 8-16 h post-treatment. Treatment with antioxidant vitamins resulted in diminished UVB-generated skin MVP to baseline levels. These studies suggest that whole-body UVB generates a systemic pro-oxidative response, and that antioxidants can attenuate localized skin UVB-MVPs.
Collapse
Affiliation(s)
- Cameron L. McGlone
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine at Wright State University, Dayton, OH 45435
| | - Lea Christian
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine at Wright State University, Dayton, OH 45435
| | - Benjamin Schmeusser
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine at Wright State University, Dayton, OH 45435
| | - Langni Liu
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine at Wright State University, Dayton, OH 45435
| | - Charles E. Chalfant
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, FL 33620, USA
- Research Service, James A. Haley Veterans Hospital, Tampa, FL 33612, USA
| | - Daniel J. Stephensen
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, FL 33620, USA
| | - Catherine M. Sherwin
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine at Wright State University, Dayton, OH 45435
- Department of Pediatrics, Boonshoft School of Medicine at Wright State University, Dayton, OH 45435
| | - Christine M. Rapp
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine at Wright State University, Dayton, OH 45435
| | - Zafer Sattouf
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine at Wright State University, Dayton, OH 45435
| | - Craig A. Rohan
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine at Wright State University, Dayton, OH 45435
- Department of Dermatology, Boonshoft School of Medicine at Wright State University, Dayton, OH 45435
| | - Connor Morris
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine at Wright State University, Dayton, OH 45435
| | - Yanfang Chen
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine at Wright State University, Dayton, OH 45435
| | - Jeffrey B. Travers
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine at Wright State University, Dayton, OH 45435
- Department of Dermatology, Boonshoft School of Medicine at Wright State University, Dayton, OH 45435
- The Dayton V.A. Medical Center, Dayton, OH 45428
| |
Collapse
|
43
|
Jacques C, Genies C, Bacqueville D, Tourette A, Borotra N, Chaves F, Sanches F, Gaudry AL, Bessou-Touya S, Duplan H. Ascorbic acid 2-glucoside: An ascorbic acid pro-drug with longer-term antioxidant efficacy in skin. Int J Cosmet Sci 2021; 43:691-702. [PMID: 34679221 DOI: 10.1111/ics.12745] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 10/16/2021] [Accepted: 10/19/2021] [Indexed: 01/05/2023]
Abstract
OBJECTIVE Deleterious effects of pollutants and ultraviolet radiation on the skin can be attenuated using formulations containing antioxidants. However, these have disadvantages, including chemical instability, photodegradation, poor bioavailability or biological activity. Here, two commercial formulations were evaluated: one optimized to stabilize and deliver ascorbic acid (AA) at 15% and the other containing a glucoside form of AA, namely ascorbic acid 2-glucoside (AA2G), at 1.8% and at a physiological pH. We compared the skin delivery, antioxidative effects and chemical stability of AA2G with AA in their respective formulations. METHODS Skin delivery was measured using fresh viable human skin explants, and oxidative stress was measured using a human reconstructed epidermal (RHE) model according to levels of malondialdehyde (MDA), superoxide dismutase (SOD) and catalase. RESULTS Ascorbic acid 2-glucoside was completely metabolized to AA by the skin before entering the receptor compartment. The skin contained parent and AA, indicating a reserve of AA2G was present for further metabolism. For AA2G and AA, maximum flux of AA-equivalents was at 12 h, with continued absorption over 24 h. The absolute amount in µg was higher in the skin after application of AA than after application of AA2G. This may suggest a greater antioxidative effect; however, according to all three measurements of oxidative stress, the protective effect of AA and AA2G was similar. Unlike AA, AA2G was chemically stable under storage conditions. CONCLUSION A lower concentration of AA2G is as effective as the active metabolite, AA, in terms of antioxidant effects. AA2G was chemically stable and can be applied at a lower concentration than AA, thus avoiding the need for an acidic formulation with a pH below 3.5.
Collapse
Affiliation(s)
- Carine Jacques
- Centre R&D Pierre Fabre, Applied Research Department, Pierre Fabre Dermo-cosmétique, Toulouse, France
| | - Camille Genies
- Centre R&D Pierre Fabre, Applied Research Department, Pierre Fabre Dermo-cosmétique, Toulouse, France
| | - Daniel Bacqueville
- Centre R&D Pierre Fabre, Applied Research Department, Pierre Fabre Dermo-cosmétique, Toulouse, France
| | - Amelie Tourette
- Centre R&D Pierre Fabre, Applied Research Department, Pierre Fabre Dermo-cosmétique, Toulouse, France
| | - Nathalie Borotra
- Centre R&D Pierre Fabre, Applied Research Department, Pierre Fabre Dermo-cosmétique, Toulouse, France
| | - Fernanda Chaves
- Brazilian Innovation Center, Pierre Fabre Dermo-cosmétique, Barra da Tijuca - Rio de Janeiro, Brasil
| | - Fabio Sanches
- Brazilian Innovation Center, Pierre Fabre Dermo-cosmétique, Barra da Tijuca - Rio de Janeiro, Brasil
| | - Anne L Gaudry
- Brazilian Innovation Center, Pierre Fabre Dermo-cosmétique, Barra da Tijuca - Rio de Janeiro, Brasil
| | - Sandrine Bessou-Touya
- Centre R&D Pierre Fabre, Applied Research Department, Pierre Fabre Dermo-cosmétique, Toulouse, France
| | - Hélène Duplan
- Centre R&D Pierre Fabre, Applied Research Department, Pierre Fabre Dermo-cosmétique, Toulouse, France
| |
Collapse
|
44
|
Xie C, Fan Y, Yin S, Li Y, Liu N, Liu Y, Shu L, Fu Z, Wang Y, Zhang Y, Li X, Wang Y, Sun J, Yang X. Novel amphibian-derived antioxidant peptide protects skin against ultraviolet irradiation damage. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2021; 224:112327. [PMID: 34628205 DOI: 10.1016/j.jphotobiol.2021.112327] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 09/06/2021] [Accepted: 09/28/2021] [Indexed: 10/20/2022]
Abstract
Given the adverse impact of ultraviolet irradiation on human skin, as well as currently limited interventions, the discovery of new molecules with anti-photodamage potency remains critical. In this research, we obtained a new bioactive peptide (named OS-LL11, amino acid sequence 'LLPPWLCPRNK') from Odorrana schmackeri. Results showed that OS-LL11 could directly scavenge free radicals and sustain the viability of mouse keratinocytes challenged by ultraviolet B (UVB) irradiation or hydrogen peroxide (H2O2) by decreasing the levels of lipid peroxidation, malondialdehyde, and reactive oxygen species while increasing the level of catalase, Keap-1, HO-1, GCLM, and NQO1. Interestingly, topical application of OS-LL11 protected mouse skin against UVB irradiation damage by up-regulating the levels of superoxide dismutase, glutathione, and nitric oxide, but down-regulating the levels of H2O2, IL-1α, IL-1β, IL-6, TNF-α, 8-OHdG, Bcl-2, and Bax, as well as the number of apoptotic bodies. Our research demonstrated the anti-photodamage activity of a novel amphibian-derived peptide and the potential underlying mechanisms related to its free radical scavenging ability and antioxidant, anti-inflammatory, and anti-apoptotic activities. This study provides a new molecule for the development of anti-skin photodamage drugs or cosmetics and highlights the prospects of amphibian-derived peptides in photodamaged skin intervention.
Collapse
Affiliation(s)
- Chun Xie
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, 650500, Yunnan, China
| | - Yan Fan
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, 650500, Yunnan, China
| | - Saige Yin
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, 650500, Yunnan, China
| | - Yilin Li
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, 650500, Yunnan, China
| | - Naixin Liu
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, 650500, Yunnan, China
| | - Yixiang Liu
- Key Laboratory of Chemistry in Ethnic Medicine Resource, State Ethnic Affairs Commission & Ministry of Education, School of Ethnomedicine and Ethnopharmacy, Yunnan Minzu University, Kunming, Yunnan, 650504, China
| | - Longjun Shu
- Key Laboratory of Chemistry in Ethnic Medicine Resource, State Ethnic Affairs Commission & Ministry of Education, School of Ethnomedicine and Ethnopharmacy, Yunnan Minzu University, Kunming, Yunnan, 650504, China
| | - Zhe Fu
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, 650500, Yunnan, China
| | - Yinglei Wang
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, 650500, Yunnan, China
| | - Yue Zhang
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, 650500, Yunnan, China
| | - Xiaojie Li
- Department of Biochemistry and Molecular Biology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, 650500, Yunnan, China
| | - Ying Wang
- Key Laboratory of Chemistry in Ethnic Medicine Resource, State Ethnic Affairs Commission & Ministry of Education, School of Ethnomedicine and Ethnopharmacy, Yunnan Minzu University, Kunming, Yunnan, 650504, China..
| | - Jun Sun
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, 650500, Yunnan, China..
| | - Xinwang Yang
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, 650500, Yunnan, China..
| |
Collapse
|
45
|
Shah MA, Rogoff HA. Implications of reactive oxygen species on cancer formation and its treatment. Semin Oncol 2021; 48:238-245. [PMID: 34548190 DOI: 10.1053/j.seminoncol.2021.05.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 12/17/2020] [Accepted: 05/26/2021] [Indexed: 12/23/2022]
Abstract
Elevated levels of reactive oxygen species (ROS) are a hallmark of cancer. Although increased ROS concentrations play important roles in cancer formation and progression, levels above a cytotoxic threshold cause cancer cell death. Cancer cells adapt to high concentrations of ROS via antioxidant production and reprogrammed cellular metabolism (eg, the Warburg effect). Because some widely used anticancer therapies such as radiation therapy and chemotherapy rely on ROS accumulation as a mechanism to induce cancer cell death, a cancer cell's ability to control ROS levels is a driver of treatment resistance and a critical consideration for successful cancer treatment. The necessity for cancer cells to adapt to elevated levels of ROS to survive may represent an Achilles heel for some malignancies, as therapies designed to interfere with this adaptation would be expected to kill cancer cells. In this review, we provide an overview of the implications of ROS on cancer formation and anticancer treatment strategies, with a focus on treatment-resistant disease.
Collapse
Affiliation(s)
- Manish A Shah
- Weill Cornell Medicine, New York-Presbyterian Hospital, New York, NY, USA.
| | - Harry A Rogoff
- Sumitomo Dainippon Pharma Oncology, Inc., Cambridge, MA, USA
| |
Collapse
|
46
|
Sarkar S, Porter KI, Dakup PP, Gajula RP, Koritala BSC, Hylton R, Kemp MG, Wakamatsu K, Gaddameedhi S. Circadian clock protein BMAL1 regulates melanogenesis through MITF in melanoma cells. Pigment Cell Melanoma Res 2021; 34:955-965. [PMID: 34160901 PMCID: PMC8429232 DOI: 10.1111/pcmr.12998] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 05/10/2021] [Accepted: 06/06/2021] [Indexed: 12/13/2022]
Abstract
Solar ultraviolet B radiation (UVB) is one of the leading causes of various skin conditions, including photoaging, sunburn erythema, and melanoma. As a protective response, the skin has inbuilt defense mechanisms, including DNA repair, cell cycle, apoptosis, and melanin synthesis. Though DNA repair, cell cycle, and apoptosis are clock controlled, the circadian mechanisms associated with melanin synthesis are not well understood. Using human melanocytes and melanoma cells under synchronized clock conditions, we observed that the microphthalmia-associated transcription factor (MITF), a rate-limiting protein in melanin synthesis, is expressed rhythmically with 24-hr periodicity in the presence of circadian clock protein, BMAL1. Furthermore, we demonstrated that BMAL1 binds to the promoter region of MITF and transcriptionally regulates its expression, which positively influences melanin synthesis. Finally, we report that an increase in melanin levels due to BMAL1 overexpression protects human melanoma cells from UVB. In conclusion, our studies provide novel insights into the mechanistic role of the circadian clock in melanin synthesis and protection against UVB-mediated DNA damage and genomic instability.
Collapse
Affiliation(s)
- Soumyadeep Sarkar
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA, USA
- Sleep and Performance Research Center, Washington State University, Spokane, WA 99202, USA
| | - Kenneth I. Porter
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA, USA
- Sleep and Performance Research Center, Washington State University, Spokane, WA 99202, USA
| | - Panshak P. Dakup
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA, USA
- Sleep and Performance Research Center, Washington State University, Spokane, WA 99202, USA
| | - Rajendra P. Gajula
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA, USA
- Sleep and Performance Research Center, Washington State University, Spokane, WA 99202, USA
| | - Bala S. C. Koritala
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA, USA
- Sleep and Performance Research Center, Washington State University, Spokane, WA 99202, USA
| | - Ryan Hylton
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA, USA
| | - Michael G. Kemp
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine, Wright State University, Dayton, OH, USA
| | - Kazumasa Wakamatsu
- Institute for Melanin Chemistry, Fujita Health University, Toyoake, Aichi, Japan
| | - Shobhan Gaddameedhi
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA, USA
- Sleep and Performance Research Center, Washington State University, Spokane, WA 99202, USA
| |
Collapse
|
47
|
Chen J, Liu Y, Zhao Z, Qiu J. Oxidative stress in the skin: Impact and related protection. Int J Cosmet Sci 2021; 43:495-509. [PMID: 34312881 DOI: 10.1111/ics.12728] [Citation(s) in RCA: 114] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 07/14/2021] [Accepted: 07/25/2021] [Indexed: 12/13/2022]
Abstract
Skin, our first interface to the external environment, is subjected to oxidative stress caused by a variety of factors such as solar ultraviolet, infrared and visible light, environmental pollution, including ozone and particulate matters, and psychological stress. Excessive reactive species, including reactive oxygen species and reactive nitrogen species, exacerbate skin pigmentation and aging, which further lead to skin tone unevenness, pigmentary disorder, skin roughness and wrinkles. Besides these, skin microbiota are also a very important factor ensuring the proper functions of skin. While environmental factors such as UV and pollutants impact skin microbiota compositions, skin dysbiosis results in various skin conditions. In this review, we summarize the generation of oxidative stress from exogenous and endogenous sources. We further introduce current knowledge on the possible roles of oxidative stress in skin pigmentation and aging, specifically with emphasis on oxidative stress and skin pigmentation. Meanwhile, we summarize the science and rationale of using three well-known antioxidants, namely vitamin C, resveratrol and ferulic acid, in the treatment of hyperpigmentation. Finally, we discuss the strategy for preventing oxidative stress-induced skin pigmentation and aging.
Collapse
Affiliation(s)
| | - Yang Liu
- L'Oreal Research and Innovation, Shanghai, China
| | - Zhao Zhao
- L'Oreal Research and Innovation, Shanghai, China
| | - Jie Qiu
- L'Oreal Research and Innovation, Shanghai, China
| |
Collapse
|
48
|
Phenolic Extract from Aralia nudicaulis L. Rhizomes Inhibits Cellular Oxidative Stresses. Molecules 2021; 26:molecules26154458. [PMID: 34361611 PMCID: PMC8347711 DOI: 10.3390/molecules26154458] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/14/2021] [Accepted: 07/20/2021] [Indexed: 11/18/2022] Open
Abstract
UV-B and IR-A radiation are important inducers of biological changes in skin involving ROS generation. The overloading of antioxidant defense mechanisms by ROS production could lead to photoaging and photocarcinogenesis processes. Various traditional usages are reported for Aralia nudicaulis L. extracts, including treatment of dermatological disorders. Antioxidant and anti-inflammatory properties have already been reported for other Aralia species possibly due to the presence of phenolic compounds. However, the phenolic composition and the potential activity of A. nudicaulis rhizomes extract against oxidative stress and UV/IR damages have not been investigated. The main aims of this study were to prepare a fraction enriched in phenolic compounds (FEPC) from A. nudicaulis rhizomes, to identify its major phenolic compounds and to assess its potential for protective effects against oxidative stress induced by UV-B, IR-A or inflammation. A quantitative LC-MS study of FEPC shows that chlorogenic, caffeic and protocatechuic acids are the main phenolic compounds present, with concentrations of 15.6%, 15.3% and 4.8% of the total composition, respectively. With a validated analytical method, those compounds were quantified over different stages of the growing period. As for biological potential, first this extract demonstrates antioxidant and anti-inflammatory activities. Furthermore, ROS generation induced by IR-A and UV-B were strongly inhibited by A. nudicaulis extract, suggesting that Aralia nudicaulis L. rhizome extract could protect dermal cells against oxidative stress induced by UV-B and IR-A.
Collapse
|
49
|
Lv QZ, Long JT, Gong ZF, Nong KY, Liang XM, Qin T, Huang W, Yang L. Current State of Knowledge on the Antioxidant Effects and Mechanisms of Action of Polyphenolic Compounds. Nat Prod Commun 2021; 16. [DOI: 10.1177/1934578x211027745] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024] Open
Abstract
Quality-of-life improvements have resulted in increasing attention being paid to research on antiaging and antioxidation. Polyphenols are natural antioxidants with excellent biological activities, such as antioxidation and scavenging of free radicals and antiviral activity. Abundant availability and low toxicity of polyphenols have attracted the attention of researchers. In this paper, the antioxidant activities of flavonoids, phenolic acids, stilbenes and lignan polyphenols are analyzed, the corresponding antioxidant mechanisms are investigated, and the antioxidant effects of polyphenols are systematically reviewed. Thus, an effective reference based on the recent literature is compiled for the study of the antioxidant mechanisms of polyphenols that provides a significant theoretical basis for the development of products that are components of polyphenols.
Collapse
Affiliation(s)
- Qi-zhuang Lv
- College of Biology & Pharmacy, Yulin Normal University, PR China
- Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, Yulin, PR China
| | - Jin-tao Long
- College of Biology & Pharmacy, Yulin Normal University, PR China
| | - Zi-feng Gong
- College of Biology & Pharmacy, Yulin Normal University, PR China
| | - Ke-yi Nong
- College of Biology & Pharmacy, Yulin Normal University, PR China
| | - Xiao-mei Liang
- College of Biology & Pharmacy, Yulin Normal University, PR China
| | - Ting Qin
- College of Biology & Pharmacy, Yulin Normal University, PR China
| | - Wei Huang
- College of Biology & Pharmacy, Yulin Normal University, PR China
| | - Lei Yang
- Key Laboratory of System Bio-medicine of Jiangxi Province, Jiujiang University, Jiangxi, China
| |
Collapse
|
50
|
Cui H, Zeng Y, Reddy GV, Gao F, Li Z, Zhao Z. UV radiation increases mortality and decreases the antioxidant activity in a tephritid fly. Food Energy Secur 2021. [DOI: 10.1002/fes3.297] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Affiliation(s)
- Hongying Cui
- Department of Plant Biosecurity College of Plant Protection China Agricultural University Beijing China
| | - Yiying Zeng
- Department of Plant Biosecurity College of Plant Protection China Agricultural University Beijing China
| | - Gadi V.P. Reddy
- USDA‐ARS‐Southern Insect Management Research Unit Stoneville MS USA
| | - Feng Gao
- Department of Plant Biosecurity College of Plant Protection China Agricultural University Beijing China
| | - Zhihong Li
- Department of Plant Biosecurity College of Plant Protection China Agricultural University Beijing China
| | - Zihua Zhao
- Department of Plant Biosecurity College of Plant Protection China Agricultural University Beijing China
| |
Collapse
|