1
|
Li H, Yang Y, Yang F, Bao X, Pan C, Lin W, Lai L, Lin W, Lin R. Determination of blood biochemical indices and research of egg quality-related candidate gene CDH5 in Putian black duck. Gene 2025; 937:149142. [PMID: 39643146 DOI: 10.1016/j.gene.2024.149142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 11/25/2024] [Accepted: 12/03/2024] [Indexed: 12/09/2024]
Abstract
Improving egg quality and enhancing production efficiency are essential goals in poultry breeding. CDH5 encodes a cadherin involved in Ca2+ transport in endothelial cells. The role of CDH5 in regulating duck egg quality and its mechanisms affecting Ca2+ concentrations in duck uterine epithelial cells remains unclear. This study evaluated egg quality traits of the Putian black duck and conducted an association analysis with blood biochemical indices and single nucleotide polymorphisms in CDH5. Additionally, we constructed a CDH5 overexpression vector and synthesized specific siRNAs for transfection into Putian black duck uterine epithelial cells to assess Ca2+ concentrations. Our results revealed a significant association between egg quality and five novel SNPs in CDH5, along with various blood biochemical indices. Further experiments demonstrated that CDH5 overexpression and knockdown reduced Ca2+ concentrations in the uterine epithelial cells of Putian black ducks.
Collapse
Affiliation(s)
- Huihuang Li
- College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350000, China
| | - Yue Yang
- College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350000, China
| | - Fan Yang
- College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350000, China
| | - Xinguo Bao
- College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350000, China
| | - Chengfu Pan
- College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350000, China
| | - Weilong Lin
- College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350000, China
| | - Lianjie Lai
- College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350000, China
| | - Weimin Lin
- College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350000, China
| | - Ruiyi Lin
- College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350000, China.
| |
Collapse
|
2
|
Hernández-Vega AM, García-Villegas R, Rosenbaum T. Roles for TRPV4 in disease: A discussion of possible mechanisms. Cell Calcium 2024; 124:102972. [PMID: 39609180 DOI: 10.1016/j.ceca.2024.102972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 11/20/2024] [Accepted: 11/21/2024] [Indexed: 11/30/2024]
Abstract
The transient receptor potential vanilloid 4 (TRPV4) ion channel is a ubiquitously expressed Ca2+-permeable ion channel that controls intracellular calcium ([Ca2+]i) homeostasis in various types of cells. The physiological roles for TRPV4 are tissue specific and the mechanisms behind this specificity remain mostly unclarified. It is noteworthy that mutations in the TRPV4 channel have been associated to a broad spectrum of congenital diseases, with most of these mutations mainly resulting in gain-of-function. Mutations have been identified in human patients showing a variety of phenotypes and symptoms, mostly related to skeletal and neuromuscular disorders. Since TRPV4 is so widely expressed throughout the body, it comes as no surprise that the literature is growing in evidence linking this protein to malfunction in systems other than the skeletal and neuromuscular. In this review, we summarize the expression patterns of TRPV4 in several tissues and highlight findings of recent studies that address critical structural and functional features of this channel, particularly focusing on its interactions and signaling pathways related to Ca2+ entry. Moreover, we discuss the roles of TRPV4 mutations in some diseases and pinpoint some of the mechanisms underlying pathological states where TRPV4's malfunction is prominent.
Collapse
Affiliation(s)
- Ana M Hernández-Vega
- Departamento de Neurociencia Cognitiva, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México, 04510, Mexico
| | - Refugio García-Villegas
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av. Instituto Politécnico Nacional 2508, Ciudad de México, 07360, México
| | - Tamara Rosenbaum
- Departamento de Neurociencia Cognitiva, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México, 04510, Mexico.
| |
Collapse
|
3
|
Sánchez-Hernández R, Benítez-Angeles M, Hernández-Vega AM, Rosenbaum T. Recent advances on the structure and the function relationships of the TRPV4 ion channel. Channels (Austin) 2024; 18:2313323. [PMID: 38354101 PMCID: PMC10868539 DOI: 10.1080/19336950.2024.2313323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 01/18/2024] [Indexed: 02/16/2024] Open
Abstract
The members of the superfamily of Transient Receptor Potential (TRP) ion channels are physiologically important molecules that have been studied for many years and are still being intensively researched. Among the vanilloid TRP subfamily, the TRPV4 ion channel is an interesting protein due to its involvement in several essential physiological processes and in the development of various diseases. As in other proteins, changes in its function that lead to the development of pathological states, have been closely associated with modification of its regulation by different molecules, but also by the appearance of mutations which affect the structure and gating of the channel. In the last few years, some structures for the TRPV4 channel have been solved. Due to the importance of this protein in physiology, here we discuss the recent progress in determining the structure of the TRPV4 channel, which has been achieved in three species of animals (Xenopus tropicalis, Mus musculus, and Homo sapiens), highlighting conserved features as well as key differences among them and emphasizing the binding sites for some ligands that play crucial roles in its regulation.
Collapse
Affiliation(s)
- Raúl Sánchez-Hernández
- Departamento de Neurociencia Cognitiva, División Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico, Mexico
| | - Miguel Benítez-Angeles
- Departamento de Neurociencia Cognitiva, División Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico, Mexico
| | - Ana M. Hernández-Vega
- Departamento de Neurociencia Cognitiva, División Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico, Mexico
| | - Tamara Rosenbaum
- Departamento de Neurociencia Cognitiva, División Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico, Mexico
| |
Collapse
|
4
|
do Nascimento THO, Pereira-Figueiredo D, Veroneze L, Nascimento AA, De Logu F, Nassini R, Campello-Costa P, Faria-Melibeu ADC, Souza Monteiro de Araújo D, Calaza KC. Functions of TRPs in retinal tissue in physiological and pathological conditions. Front Mol Neurosci 2024; 17:1459083. [PMID: 39386050 PMCID: PMC11461470 DOI: 10.3389/fnmol.2024.1459083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 08/27/2024] [Indexed: 10/12/2024] Open
Abstract
The Transient Receptor Potential (TRP) constitutes a family of channels subdivided into seven subfamilies: Ankyrin (TRPA), Canonical (TRPC), Melastatin (TRPM), Mucolipin (TRPML), no-mechano-potential C (TRPN), Polycystic (TRPP), and Vanilloid (TRPV). Although they are structurally similar to one another, the peculiarities of each subfamily are key to the response to stimuli and the signaling pathway that each one triggers. TRPs are non-selective cation channels, most of which are permeable to Ca2+, which is a well-established second messenger that modulates several intracellular signaling pathways and is involved in physiological and pathological conditions in various cell types. TRPs depolarize excitable cells by increasing the influx of Ca2+, Na+, and other cations. Most TRP families are activated by temperature variations, membrane stretching, or chemical agents and, therefore, are defined as polymodal channels. All TPRs are expressed, at some level, in the central nervous system (CNS) and ocular-related structures, such as the retina and optic nerve (ON), except the TRPP in the ON. TRPC, TRPM, TRPV, and TRPML are found in the retinal pigmented cells, whereas only TRPA1 and TRPM are detected in the uvea. Accordingly, several studies have focused on the search to unravel the role of TRPs in physiological and pathological conditions related to the eyes. Thus, this review aims to shed light on endogenous and exogenous modulators, triggered cell signaling pathways, and localization and roles of each subfamily of TRP channels in physiological and pathological conditions in the retina, optic nerve, and retinal pigmented epithelium of vertebrates.
Collapse
Affiliation(s)
- Thaianne Hanah Oliveira do Nascimento
- Laboratory Neurobiology of the Retina, Department of Neurobiology and Program of Biomedical Sciences, Biology Institute, Fluminense Federal University Niterói, Rio de Janeiro, Brazil
| | - Danniel Pereira-Figueiredo
- Laboratory Neurobiology of the Retina, Department of Neurobiology and Program of Neurosciences, Biology Institute, Fluminense Federal University, Rio de Janeiro, Brazil
| | - Louise Veroneze
- Laboratory Neurobiology of the Retina, Department of Neurobiology and Program of Neurosciences, Biology Institute, Fluminense Federal University, Rio de Janeiro, Brazil
| | - Amanda Alves Nascimento
- Laboratory Neurobiology of the Retina, Department of Neurobiology and Program of Neurosciences, Biology Institute, Fluminense Federal University, Rio de Janeiro, Brazil
| | - Francesco De Logu
- Department of Health Sciences, Clinical Pharmacology and Oncology Section, University of Florence, Florence, Italy
| | - Romina Nassini
- Department of Health Sciences, Clinical Pharmacology and Oncology Section, University of Florence, Florence, Italy
| | - Paula Campello-Costa
- Laboratory of Neuroplasticity, Program of Neurosciences, Department of Neurobiology, Biology Institute, Niteroi, Brazil
| | - Adriana da Cunha Faria-Melibeu
- Laboratory of Neurobiology of Development, Program of Neurosciences, Department of Neurobiology, Biology Institute, Niteroi, Brazil
| | | | - Karin Costa Calaza
- Laboratory Neurobiology of the Retina, Department of Neurobiology and Program of Biomedical Sciences, Biology Institute, Fluminense Federal University Niterói, Rio de Janeiro, Brazil
- Laboratory Neurobiology of the Retina, Department of Neurobiology and Program of Neurosciences, Biology Institute, Fluminense Federal University, Rio de Janeiro, Brazil
| |
Collapse
|
5
|
Fabbri R, Scidà A, Saracino E, Conte G, Kovtun A, Candini A, Kirdajova D, Spennato D, Marchetti V, Lazzarini C, Konstantoulaki A, Dambruoso P, Caprini M, Muccini M, Ursino M, Anderova M, Treossi E, Zamboni R, Palermo V, Benfenati V. Graphene oxide electrodes enable electrical stimulation of distinct calcium signalling in brain astrocytes. NATURE NANOTECHNOLOGY 2024; 19:1344-1353. [PMID: 38987650 PMCID: PMC11405283 DOI: 10.1038/s41565-024-01711-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 05/31/2024] [Indexed: 07/12/2024]
Abstract
Astrocytes are responsible for maintaining homoeostasis and cognitive functions through calcium signalling, a process that is altered in brain diseases. Current bioelectronic tools are designed to study neurons and are not suitable for controlling calcium signals in astrocytes. Here, we show that electrical stimulation of astrocytes using electrodes coated with graphene oxide and reduced graphene oxide induces respectively a slow response to calcium, mediated by external calcium influx, and a sharp one, exclusively due to calcium release from intracellular stores. Our results suggest that the different conductivities of the substrate influence the electric field at the cell-electrolyte or cell-material interfaces, favouring different signalling events in vitro and ex vivo. Patch-clamp, voltage-sensitive dye and calcium imaging data support the proposed model. In summary, we provide evidence of a simple tool to selectively control distinct calcium signals in brain astrocytes for straightforward investigations in neuroscience and bioelectronic medicine.
Collapse
Affiliation(s)
- Roberta Fabbri
- Consiglio Nazionale delle Ricerche, Istituto per la Sintesi Organica e la Fotoreattività, Bologna, Italy
| | - Alessandra Scidà
- Consiglio Nazionale delle Ricerche, Istituto per la Sintesi Organica e la Fotoreattività, Bologna, Italy
| | - Emanuela Saracino
- Consiglio Nazionale delle Ricerche, Istituto per la Sintesi Organica e la Fotoreattività, Bologna, Italy
| | - Giorgia Conte
- Consiglio Nazionale delle Ricerche, Istituto per la Sintesi Organica e la Fotoreattività, Bologna, Italy
| | - Alessandro Kovtun
- Consiglio Nazionale delle Ricerche, Istituto per la Sintesi Organica e la Fotoreattività, Bologna, Italy
| | - Andrea Candini
- Consiglio Nazionale delle Ricerche, Istituto per la Sintesi Organica e la Fotoreattività, Bologna, Italy
| | - Denisa Kirdajova
- Department of Cellular Neurophysiology, Institute of Experimental Medicine, CAS, Prague, Czech Republic
| | - Diletta Spennato
- Consiglio Nazionale delle Ricerche, Istituto per la Sintesi Organica e la Fotoreattività, Bologna, Italy
| | - Valeria Marchetti
- Department of Cellular Neurophysiology, Institute of Experimental Medicine, CAS, Prague, Czech Republic
- Second Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Chiara Lazzarini
- Consiglio Nazionale delle Ricerche, Istituto per la Sintesi Organica e la Fotoreattività, Bologna, Italy
| | - Aikaterini Konstantoulaki
- Consiglio Nazionale delle Ricerche, Istituto per la Sintesi Organica e la Fotoreattività, Bologna, Italy
| | - Paolo Dambruoso
- Consiglio Nazionale delle Ricerche, Istituto per la Sintesi Organica e la Fotoreattività, Bologna, Italy
| | - Marco Caprini
- Department of Pharmacy and Biotechnology (FaBit), University of Bologna, Bologna, Italy
| | - Michele Muccini
- Consiglio Nazionale delle Ricerche, Istituto per lo Studio dei Materiali Nanostrutturati, Bologna, Italy
| | - Mauro Ursino
- Dipartimento di Ingegneria dell'Energia Elettrica e dell'Informazione 'Guglielmo Marconi', University of Bologna, Cesena, Italy
| | - Miroslava Anderova
- Department of Cellular Neurophysiology, Institute of Experimental Medicine, CAS, Prague, Czech Republic
| | - Emanuele Treossi
- Consiglio Nazionale delle Ricerche, Istituto per la Sintesi Organica e la Fotoreattività, Bologna, Italy.
| | - Roberto Zamboni
- Consiglio Nazionale delle Ricerche, Istituto per la Sintesi Organica e la Fotoreattività, Bologna, Italy
| | - Vincenzo Palermo
- Consiglio Nazionale delle Ricerche, Istituto per la Sintesi Organica e la Fotoreattività, Bologna, Italy.
| | - Valentina Benfenati
- Consiglio Nazionale delle Ricerche, Istituto per la Sintesi Organica e la Fotoreattività, Bologna, Italy.
| |
Collapse
|
6
|
López-González I, Oseguera-López I, Castillo R, Darszon A. Influence of extracellular ATP on mammalian sperm physiology. Reprod Fertil Dev 2024; 36:RD23227. [PMID: 38870344 DOI: 10.1071/rd23227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 05/23/2024] [Indexed: 06/15/2024] Open
Abstract
In addition to its central role in cellular metabolism, adenosine 5'-triphosphate (ATP) is an important extracellular signalling molecule involved in various physiological processes. In reproduction, extracellular ATP participates in both autocrine and paracrine paths regulating gametogenesis, gamete maturation and fertilisation. This review focusses on how extracellular ATP modulates sperm physiology with emphasis on the mammalian acrosome reaction. The presence of extracellular ATP in the reproductive tract is primarily determined by the ion channels and transporters that influence its movement within the cells comprising the tract. The main targets of extracellular ATP in spermatozoa are its own transporters, particularly species-specific sperm purinergic receptors. We also discuss notable phenotypes from knock-out mouse models and human Mendelian inheritance related to ATP release mechanisms, along with immunological, proteomic, and functional observations regarding sperm purinergic receptors and their involvement in sperm signalling.
Collapse
Affiliation(s)
- I López-González
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad # 2001, Col. Chamilpa, Cuernavaca, Morelos CP 62210, México
| | - I Oseguera-López
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad # 2001, Col. Chamilpa, Cuernavaca, Morelos CP 62210, México
| | - R Castillo
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad # 2001, Col. Chamilpa, Cuernavaca, Morelos CP 62210, México
| | - A Darszon
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad # 2001, Col. Chamilpa, Cuernavaca, Morelos CP 62210, México
| |
Collapse
|
7
|
Jiang D, Guo R, Dai R, Knoedler S, Tao J, Machens HG, Rinkevich Y. The Multifaceted Functions of TRPV4 and Calcium Oscillations in Tissue Repair. Int J Mol Sci 2024; 25:1179. [PMID: 38256251 PMCID: PMC10816018 DOI: 10.3390/ijms25021179] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/09/2024] [Accepted: 01/16/2024] [Indexed: 01/24/2024] Open
Abstract
The transient receptor potential vanilloid 4 (TRPV4) specifically functions as a mechanosensitive ion channel and is responsible for conveying changes in physical stimuli such as mechanical stress, osmotic pressure, and temperature. TRPV4 enables the entry of cation ions, particularly calcium ions, into the cell. Activation of TRPV4 channels initiates calcium oscillations, which trigger intracellular signaling pathways involved in a plethora of cellular processes, including tissue repair. Widely expressed throughout the body, TRPV4 can be activated by a wide array of physicochemical stimuli, thus contributing to sensory and physiological functions in multiple organs. This review focuses on how TRPV4 senses environmental cues and thereby initiates and maintains calcium oscillations, critical for responses to organ injury, tissue repair, and fibrosis. We provide a summary of TRPV4-induced calcium oscillations in distinct organ systems, along with the upstream and downstream signaling pathways involved. In addition, we delineate current animal and disease models supporting TRPV4 research and shed light on potential therapeutic targets for modulating TRPV4-induced calcium oscillation to promote tissue repair while reducing tissue fibrosis.
Collapse
Affiliation(s)
- Dongsheng Jiang
- Institute of Regenerative Biology and Medicine, Helmholtz Center Munich, 81377 Munich, Germany; (R.G.); (R.D.); (S.K.)
| | - Ruiji Guo
- Institute of Regenerative Biology and Medicine, Helmholtz Center Munich, 81377 Munich, Germany; (R.G.); (R.D.); (S.K.)
- Department of Plastic and Hand Surgery, Klinikum Rechts der Isar, School of Medicine, Technical University of Munich, 81675 Munich, Germany;
| | - Ruoxuan Dai
- Institute of Regenerative Biology and Medicine, Helmholtz Center Munich, 81377 Munich, Germany; (R.G.); (R.D.); (S.K.)
| | - Samuel Knoedler
- Institute of Regenerative Biology and Medicine, Helmholtz Center Munich, 81377 Munich, Germany; (R.G.); (R.D.); (S.K.)
- Department of Plastic and Hand Surgery, Klinikum Rechts der Isar, School of Medicine, Technical University of Munich, 81675 Munich, Germany;
- Division of Plastic Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02152, USA
| | - Jin Tao
- Department of Physiology and Neurobiology and Centre for Ion Channelopathy, Medical College of Soochow University, Suzhou 215123, China;
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Soochow University, Suzhou 215123, China
| | - Hans-Günther Machens
- Department of Plastic and Hand Surgery, Klinikum Rechts der Isar, School of Medicine, Technical University of Munich, 81675 Munich, Germany;
| | - Yuval Rinkevich
- Institute of Regenerative Biology and Medicine, Helmholtz Center Munich, 81377 Munich, Germany; (R.G.); (R.D.); (S.K.)
| |
Collapse
|
8
|
Sayedyahossein S, Thines L, Sacks DB. Ca 2+ signaling and the Hippo pathway: Intersections in cellular regulation. Cell Signal 2023; 110:110846. [PMID: 37549859 PMCID: PMC10529277 DOI: 10.1016/j.cellsig.2023.110846] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/02/2023] [Accepted: 08/04/2023] [Indexed: 08/09/2023]
Abstract
The Hippo signaling pathway is a master regulator of organ size and tissue homeostasis. Hippo integrates a broad range of cellular signals to regulate numerous processes, such as cell proliferation, differentiation, migration and mechanosensation. Ca2+ is a fundamental second messenger that modulates signaling cascades involved in diverse cellular functions, some of which are also regulated by the Hippo pathway. Studies published over the last five years indicate that Ca2+ can influence core Hippo pathway components. Nevertheless, comprehensive understanding of the crosstalk between Ca2+ signaling and the Hippo pathway, and possible mechanisms through which Ca2+ regulates Hippo, remain to be elucidated. In this review, we summarize the multiple intersections between Ca2+ and the Hippo pathway and address the biological consequences.
Collapse
Affiliation(s)
- Samar Sayedyahossein
- Department of Laboratory Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Louise Thines
- Department of Laboratory Medicine, National Institutes of Health, Bethesda, MD, USA
| | - David B Sacks
- Department of Laboratory Medicine, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
9
|
Luo Z, Zhan Z, Qin X, Pan W, Liang M, Li C, Weng S, He J, Guo C. Interaction of Teleost Fish TRPV4 with DEAD Box RNA Helicase 1 Regulates Iridovirus Replication. J Virol 2023; 97:e0049523. [PMID: 37289063 PMCID: PMC10308943 DOI: 10.1128/jvi.00495-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 05/18/2023] [Indexed: 06/09/2023] Open
Abstract
Viral diseases are a significant risk to the aquaculture industry. Transient receptor potential vanilloid 4 (TRPV4) has been reported to be involved in regulating viral activity in mammals, but its regulatory effect on viruses in teleost fish remains unknown. Here, the role of the TRPV4-DEAD box RNA helicase 1 (DDX1) axis in viral infection was investigated in mandarin fish (Siniperca chuatsi). Our results showed that TRPV4 activation mediates Ca2+ influx and facilitates infectious spleen and kidney necrosis virus (ISKNV) replication, whereas this promotion was nearly eliminated by an M709D mutation in TRPV4, a channel Ca2+ permeability mutant. The concentration of cellular Ca2+ increased during ISKNV infection, and Ca2+ was critical for viral replication. TRPV4 interacted with DDX1, and the interaction was mediated primarily by the N-terminal domain (NTD) of TRPV4 and the C-terminal domain (CTD) of DDX1. This interaction was attenuated by TRPV4 activation, thereby enhancing ISKNV replication. DDX1 could bind to viral mRNAs and facilitate ISKNV replication, which required the ATPase/helicase activity of DDX1. Furthermore, the TRPV4-DDX1 axis was verified to regulate herpes simplex virus 1 replication in mammalian cells. These results suggested that the TRPV4-DDX1 axis plays an important role in viral replication. Our work provides a novel molecular mechanism for host involvement in viral regulation, which would be of benefit for new insights into the prevention and control of aquaculture diseases. IMPORTANCE In 2020, global aquaculture production reached a record of 122.6 million tons, with a total value of $281.5 billion. Meanwhile, frequent outbreaks of viral diseases have occurred in aquaculture, and about 10% of farmed aquatic animal production has been lost to infectious diseases, resulting in more than $10 billion in economic losses every year. Therefore, an understanding of the potential molecular mechanism of how aquatic organisms respond to and regulate viral replication is of great significance. Our study suggested that TRPV4 enables Ca2+ influx and interactions with DDX1 to collectively promote ISKNV replication, providing novel insights into the roles of the TRPV4-DDX1 axis in regulating the proviral effect of DDX1. This advances our understanding of viral disease outbreaks and would be of benefit for studies on preventing aquatic viral diseases.
Collapse
Affiliation(s)
- Zhiyong Luo
- State Key Laboratory for Biocontrol, School of Marine Sciences, Sun Yat-sen University, Guangzhou, People’s Republic of China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-sen University, Guangzhou, People’s Republic of China
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-sen University, Guangzhou, People’s Republic of China
- Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Marine Sciences, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Zhipeng Zhan
- State Key Laboratory for Biocontrol, School of Marine Sciences, Sun Yat-sen University, Guangzhou, People’s Republic of China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-sen University, Guangzhou, People’s Republic of China
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-sen University, Guangzhou, People’s Republic of China
- Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Marine Sciences, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Xiaowei Qin
- State Key Laboratory for Biocontrol, School of Marine Sciences, Sun Yat-sen University, Guangzhou, People’s Republic of China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-sen University, Guangzhou, People’s Republic of China
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-sen University, Guangzhou, People’s Republic of China
- Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Marine Sciences, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Weiqiang Pan
- State Key Laboratory for Biocontrol, School of Marine Sciences, Sun Yat-sen University, Guangzhou, People’s Republic of China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-sen University, Guangzhou, People’s Republic of China
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-sen University, Guangzhou, People’s Republic of China
- Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Marine Sciences, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Mincong Liang
- State Key Laboratory for Biocontrol, School of Marine Sciences, Sun Yat-sen University, Guangzhou, People’s Republic of China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-sen University, Guangzhou, People’s Republic of China
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-sen University, Guangzhou, People’s Republic of China
- Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Marine Sciences, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Chuanrui Li
- State Key Laboratory for Biocontrol, School of Marine Sciences, Sun Yat-sen University, Guangzhou, People’s Republic of China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-sen University, Guangzhou, People’s Republic of China
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-sen University, Guangzhou, People’s Republic of China
- Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Marine Sciences, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Shaoping Weng
- State Key Laboratory for Biocontrol, School of Marine Sciences, Sun Yat-sen University, Guangzhou, People’s Republic of China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-sen University, Guangzhou, People’s Republic of China
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-sen University, Guangzhou, People’s Republic of China
- Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Marine Sciences, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Jianguo He
- State Key Laboratory for Biocontrol, School of Marine Sciences, Sun Yat-sen University, Guangzhou, People’s Republic of China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-sen University, Guangzhou, People’s Republic of China
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-sen University, Guangzhou, People’s Republic of China
- Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Marine Sciences, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Changjun Guo
- State Key Laboratory for Biocontrol, School of Marine Sciences, Sun Yat-sen University, Guangzhou, People’s Republic of China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-sen University, Guangzhou, People’s Republic of China
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-sen University, Guangzhou, People’s Republic of China
- Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Marine Sciences, Sun Yat-sen University, Guangzhou, People’s Republic of China
| |
Collapse
|
10
|
Tureckova J, Hermanova Z, Marchetti V, Anderova M. Astrocytic TRPV4 Channels and Their Role in Brain Ischemia. Int J Mol Sci 2023; 24:ijms24087101. [PMID: 37108263 PMCID: PMC10138480 DOI: 10.3390/ijms24087101] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/06/2023] [Accepted: 04/08/2023] [Indexed: 04/29/2023] Open
Abstract
Transient receptor potential cation channels subfamily V member 4 (TRPV4) are non-selective cation channels expressed in different cell types of the central nervous system. These channels can be activated by diverse physical and chemical stimuli, including heat and mechanical stress. In astrocytes, they are involved in the modulation of neuronal excitability, control of blood flow, and brain edema formation. All these processes are significantly impaired in cerebral ischemia due to insufficient blood supply to the tissue, resulting in energy depletion, ionic disbalance, and excitotoxicity. The polymodal cation channel TRPV4, which mediates Ca2+ influx into the cell because of activation by various stimuli, is one of the potential therapeutic targets in the treatment of cerebral ischemia. However, its expression and function vary significantly between brain cell types, and therefore, the effect of its modulation in healthy tissue and pathology needs to be carefully studied and evaluated. In this review, we provide a summary of available information on TRPV4 channels and their expression in healthy and injured neural cells, with a particular focus on their role in ischemic brain injury.
Collapse
Affiliation(s)
- Jana Tureckova
- Institute of Experimental Medicine, Czech Academy of Sciences, 1083 Videnska, 142 20 Prague, Czech Republic
| | - Zuzana Hermanova
- Institute of Experimental Medicine, Czech Academy of Sciences, 1083 Videnska, 142 20 Prague, Czech Republic
- Second Faculty of Medicine, Charles University, 84 V Uvalu, 150 06 Prague, Czech Republic
| | - Valeria Marchetti
- Institute of Experimental Medicine, Czech Academy of Sciences, 1083 Videnska, 142 20 Prague, Czech Republic
- Second Faculty of Medicine, Charles University, 84 V Uvalu, 150 06 Prague, Czech Republic
| | - Miroslava Anderova
- Institute of Experimental Medicine, Czech Academy of Sciences, 1083 Videnska, 142 20 Prague, Czech Republic
- Second Faculty of Medicine, Charles University, 84 V Uvalu, 150 06 Prague, Czech Republic
| |
Collapse
|
11
|
Mackrill JJ. Non-inositol 1,4,5-trisphosphate (IP3) receptor IP3-binding proteins. BIOCHIMICA ET BIOPHYSICA ACTA (BBA) - MOLECULAR CELL RESEARCH 2023; 1870:119470. [PMID: 37011730 DOI: 10.1016/j.bbamcr.2023.119470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/23/2023] [Accepted: 03/23/2023] [Indexed: 04/03/2023]
Abstract
Conventionally, myo-D-inositol 1, 4,5-trisphosphate (IP3) is thought to exert its second messenger effects through the gating of IP3R Ca2+ release channels, located in Ca2+-storage organelles like the endoplasmic reticulum. However, there is considerable indirect evidence to support the concept that IP3 might interact with other, non-IP3R proteins within cells. To explore this possibility further, the Protein Data Bank was searched using the term "IP3". This resulted in the retrieval of 203 protein structures, the majority of which were members of the IP3R/ryanodine receptor superfamily of channels. Only 49 of these structures were complexed with IP3. These were inspected for their ability to interact with the carbon-1 phosphate of IP3, since this is the least accessible phosphate group of its precursor, phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2). This reduced the number of structures retrieved to 35, of which 9 were IP3Rs. The remaining 26 structures represent a diverse range of proteins, including inositol-lipid metabolizing enzymes, signal transducers, PH domain containing proteins, cytoskeletal anchor proteins, the TRPV4 ion channel, a retroviral Gag protein and fibroblast growth factor 2. Such proteins may impact on IP3 signalling and its effects on cell-biology. This represents an area open for exploration in the field of IP3 signalling.
Collapse
Affiliation(s)
- John James Mackrill
- Department of Physiology, University College Cork, Western Gateway Building, Western Road, Cork T12 XF62, Ireland.
| |
Collapse
|
12
|
Križaj D, Cordeiro S, Strauß O. Retinal TRP channels: Cell-type-specific regulators of retinal homeostasis and multimodal integration. Prog Retin Eye Res 2023; 92:101114. [PMID: 36163161 PMCID: PMC9897210 DOI: 10.1016/j.preteyeres.2022.101114] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 08/03/2022] [Accepted: 08/08/2022] [Indexed: 02/05/2023]
Abstract
Transient receptor potential (TRP) channels are a widely expressed family of 28 evolutionarily conserved cationic ion channels that operate as primary detectors of chemical and physical stimuli and secondary effectors of metabotropic and ionotropic receptors. In vertebrates, the channels are grouped into six related families: TRPC, TRPV, TRPM, TRPA, TRPML, and TRPP. As sensory transducers, TRP channels are ubiquitously expressed across the body and the CNS, mediating critical functions in mechanosensation, nociception, chemosensing, thermosensing, and phototransduction. This article surveys current knowledge about the expression and function of the TRP family in vertebrate retinas, which, while dedicated to transduction and transmission of visual information, are highly susceptible to non-visual stimuli. Every retinal cell expresses multiple TRP subunits, with recent evidence establishing their critical roles in paradigmatic aspects of vertebrate vision that include TRPM1-dependent transduction of ON bipolar signaling, TRPC6/7-mediated ganglion cell phototransduction, TRP/TRPL phototransduction in Drosophila and TRPV4-dependent osmoregulation, mechanotransduction, and regulation of inner and outer blood-retina barriers. TRP channels tune light-dependent and independent functions of retinal circuits by modulating the intracellular concentration of the 2nd messenger calcium, with emerging evidence implicating specific subunits in the pathogenesis of debilitating diseases such as glaucoma, ocular trauma, diabetic retinopathy, and ischemia. Elucidation of TRP channel involvement in retinal biology will yield rewards in terms of fundamental understanding of vertebrate vision and therapeutic targeting to treat diseases caused by channel dysfunction or over-activation.
Collapse
Affiliation(s)
- David Križaj
- Departments of Ophthalmology, Neurobiology, and Bioengineering, University of Utah, Salt Lake City, USA
| | - Soenke Cordeiro
- Institute of Physiology, Faculty of Medicine, Christian-Albrechts-University Kiel, Germany
| | - Olaf Strauß
- Experimental Ophthalmology, Department of Ophthalmology, Charité - Universitätsmedizin Berlin, a Corporate Member of Freie Universität, Humboldt-University, The Berlin Institute of Health, Berlin, Germany.
| |
Collapse
|
13
|
Yang H, Tenorio Lopes L, Barioni NO, Roeske J, Incognito AV, Baker J, Raj SR, Wilson RJA. The molecular makeup of peripheral and central baroreceptors: stretching a role for Transient Receptor Potential (TRP), Epithelial Sodium Channel (ENaC), Acid Sensing Ion Channel (ASIC), and Piezo channels. Cardiovasc Res 2022; 118:3052-3070. [PMID: 34734981 DOI: 10.1093/cvr/cvab334] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 09/27/2021] [Accepted: 10/29/2021] [Indexed: 12/16/2022] Open
Abstract
The autonomic nervous system maintains homeostasis of cardiovascular, respiratory, gastrointestinal, urinary, immune, and thermoregulatory function. Homeostasis involves a variety of feedback mechanisms involving peripheral afferents, many of which contain molecular receptors sensitive to mechanical deformation, termed mechanosensors. Here, we focus on the molecular identity of mechanosensors involved in the baroreflex control of the cardiovascular system. Located within the walls of the aortic arch and carotid sinuses, and/or astrocytes in the brain, these mechanosensors are essential for the rapid moment-to-moment feedback regulation of blood pressure (BP). Growing evidence suggests that these mechanosensors form a co-existing system of peripheral and central baroreflexes. Despite the importance of these molecules in cardiovascular disease and decades of research, their precise molecular identity remains elusive. The uncertainty surrounding the identity of these mechanosensors presents a major challenge in understanding basic baroreceptor function and has hindered the development of novel therapeutic targets for conditions with known arterial baroreflex impairments. Therefore, the purpose of this review is to (i) provide a brief overview of arterial and central baroreflex control of BP, (ii) review classes of ion channels currently proposed as the baroreflex mechanosensor, namely Transient Receptor Potential (TRP), Epithelial Sodium Channel (ENaC), Acid Sensing Ion Channel (ASIC), and Piezo, along with additional molecular candidates that serve mechanotransduction in other organ systems, and (iii) summarize the potential clinical implications of impaired baroreceptor function in the pathophysiology of cardiovascular disease.
Collapse
Affiliation(s)
- Hannah Yang
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, 3330 Hospital Dr. N.W., Calgary, AB T2N4N1, Canada.,Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Dr. N.W., Calgary, AB T2N4N1, Canada.,Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Dr. N.W., Calgary, AB T2N4N1, Canada
| | - Luana Tenorio Lopes
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, 3330 Hospital Dr. N.W., Calgary, AB T2N4N1, Canada.,Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Dr. N.W., Calgary, AB T2N4N1, Canada.,Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Dr. N.W., Calgary, AB T2N4N1, Canada
| | - Nicole O Barioni
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, 3330 Hospital Dr. N.W., Calgary, AB T2N4N1, Canada.,Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Dr. N.W., Calgary, AB T2N4N1, Canada.,Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Dr. N.W., Calgary, AB T2N4N1, Canada
| | - Jamie Roeske
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, 3330 Hospital Dr. N.W., Calgary, AB T2N4N1, Canada.,Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Dr. N.W., Calgary, AB T2N4N1, Canada.,Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Dr. N.W., Calgary, AB T2N4N1, Canada
| | - Anthony V Incognito
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, 3330 Hospital Dr. N.W., Calgary, AB T2N4N1, Canada.,Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Dr. N.W., Calgary, AB T2N4N1, Canada.,Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Dr. N.W., Calgary, AB T2N4N1, Canada
| | - Jacquie Baker
- Department of Cardiac Sciences, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Dr. N.W., Calgary, AB T2N4N1, Canada
| | - Satish R Raj
- Department of Cardiac Sciences, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Dr. N.W., Calgary, AB T2N4N1, Canada
| | - Richard J A Wilson
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, 3330 Hospital Dr. N.W., Calgary, AB T2N4N1, Canada.,Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Dr. N.W., Calgary, AB T2N4N1, Canada.,Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Dr. N.W., Calgary, AB T2N4N1, Canada
| |
Collapse
|
14
|
MAS-related G protein-coupled receptors X (MRGPRX): Orphan GPCRs with potential as targets for future drugs. Pharmacol Ther 2022; 238:108259. [DOI: 10.1016/j.pharmthera.2022.108259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/30/2022] [Accepted: 08/01/2022] [Indexed: 11/20/2022]
|
15
|
Fan L, Sun D, Yang J, Shi X, Shen F, Chen K, Yang J. Association Between Serum Sodium and Long-Term Mortality in Critically Ill Patients with Comorbid Chronic Obstructive Pulmonary Disease: Analysis from the MIMIC-IV Database. Int J Chron Obstruct Pulmon Dis 2022; 17:1143-1155. [PMID: 35586119 PMCID: PMC9112792 DOI: 10.2147/copd.s353741] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 04/30/2022] [Indexed: 11/23/2022] Open
Affiliation(s)
- Liming Fan
- The First Clinical College, Zhejiang Chinese Medical University, Hangzhou, People’s Republic of China
| | - Deyang Sun
- The First Clinical College, Zhejiang Chinese Medical University, Hangzhou, People’s Republic of China
| | - Jia Yang
- The First Clinical College, Zhejiang Chinese Medical University, Hangzhou, People’s Republic of China
| | - Xiawei Shi
- The First Clinical College, Zhejiang Chinese Medical University, Hangzhou, People’s Republic of China
| | - Fenglin Shen
- The First Clinical College, Zhejiang Chinese Medical University, Hangzhou, People’s Republic of China
| | - Ke Chen
- The First Clinical College, Zhejiang Chinese Medical University, Hangzhou, People’s Republic of China
| | - Junchao Yang
- The First Clinical College, Zhejiang Chinese Medical University, Hangzhou, People’s Republic of China
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, People’s Republic of China
- Correspondence: Junchao Yang, Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Zhejiang Chinese Medical University, 54 Youdian Road, Shangcheng District, Hangzhou City, Zhejiang Province, People’s Republic of China, Tel +86-13858036093, Email
| |
Collapse
|
16
|
Yarishkin O, Phuong TTT, Vazquez-Chona F, Bertrand J, van Battenburg-Sherwood J, Redmon SN, Rudzitis CN, Lakk M, Baumann JM, Freichel M, Hwang EM, Overby D, Križaj D. Emergent Temporal Signaling in Human Trabecular Meshwork Cells: Role of TRPV4-TRPM4 Interactions. Front Immunol 2022; 13:805076. [PMID: 35432302 PMCID: PMC9008486 DOI: 10.3389/fimmu.2022.805076] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 03/02/2022] [Indexed: 11/26/2022] Open
Abstract
Trabecular meshwork (TM) cells are phagocytic cells that employ mechanotransduction to actively regulate intraocular pressure. Similar to macrophages, they express scavenger receptors and participate in antigen presentation within the immunosuppressive milieu of the anterior eye. Changes in pressure deform and compress the TM, altering their control of aqueous humor outflow but it is not known whether transducer activation shapes temporal signaling. The present study combines electrophysiology, histochemistry and functional imaging with gene silencing and heterologous expression to gain insight into Ca2+ signaling downstream from TRPV4 (Transient Receptor Potential Vanilloid 4), a stretch-activated polymodal cation channel. Human TM cells respond to the TRPV4 agonist GSK1016790A with fluctuations in intracellular Ca2+ concentration ([Ca2+]i) and an increase in [Na+]i. [Ca2+]i oscillations coincided with monovalent cation current that was suppressed by BAPTA, Ruthenium Red and the TRPM4 (Transient Receptor Potential Melastatin 4) channel inhibitor 9-phenanthrol. TM cells expressed TRPM4 mRNA, protein at the expected 130-150 kDa and showed punctate TRPM4 immunoreactivity at the membrane surface. Genetic silencing of TRPM4 antagonized TRPV4-evoked oscillatory signaling whereas TRPV4 and TRPM4 co-expression in HEK-293 cells reconstituted the oscillations. Membrane potential recordings suggested that TRPM4-dependent oscillations require release of Ca2+ from internal stores. 9-phenanthrol did not affect the outflow facility in mouse eyes and eyes from animals lacking TRPM4 had normal intraocular pressure. Collectively, our results show that TRPV4 activity initiates dynamic calcium signaling in TM cells by stimulating TRPM4 channels and intracellular Ca2+ release. It is possible that TRPV4-TRPM4 interactions downstream from the tensile and compressive impact of intraocular pressure contribute to homeostatic regulation and pathological remodeling within the conventional outflow pathway.
Collapse
Affiliation(s)
- Oleg Yarishkin
- Department of Ophthalmology and Visual Sciences, University of Utah School of Medicine, Salt Lake City, United States
| | - Tam T T Phuong
- Department of Ophthalmology and Visual Sciences, University of Utah School of Medicine, Salt Lake City, United States
| | - Felix Vazquez-Chona
- Department of Ophthalmology and Visual Sciences, University of Utah School of Medicine, Salt Lake City, United States
| | - Jacques Bertrand
- Department of Bioengineering, Imperial College London, London, United Kingdom
| | | | - Sarah N Redmon
- Department of Ophthalmology and Visual Sciences, University of Utah School of Medicine, Salt Lake City, United States
| | - Christopher N Rudzitis
- Department of Ophthalmology and Visual Sciences, University of Utah School of Medicine, Salt Lake City, United States.,Interdepartmental Program in Neuroscience, University of Utah, Salt Lake City, United States
| | - Monika Lakk
- Department of Ophthalmology and Visual Sciences, University of Utah School of Medicine, Salt Lake City, United States
| | - Jackson M Baumann
- Department of Ophthalmology and Visual Sciences, University of Utah School of Medicine, Salt Lake City, United States.,Department of Bioengineering, University of Utah, Salt Lake City, United States
| | - Marc Freichel
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany
| | - Eun-Mi Hwang
- Center for Functional Connectomics, Korea Institute of Science and Technology (KIST), Seoul, South Korea
| | - Darryl Overby
- Department of Bioengineering, Imperial College London, London, United Kingdom
| | - David Križaj
- Department of Ophthalmology and Visual Sciences, University of Utah School of Medicine, Salt Lake City, United States.,Interdepartmental Program in Neuroscience, University of Utah, Salt Lake City, United States.,Department of Bioengineering, University of Utah, Salt Lake City, United States.,Department of Neurobiology, University of Utah, Salt Lake City, United States
| |
Collapse
|
17
|
Donau J, Luo H, Virta I, Skupin A, Pushina M, Loeffler J, Haertel FV, Das A, Kurth T, Gerlach M, Lindemann D, Reinach PS, Mergler S, Valtink M. TRPV4 Stimulation Level Regulates Ca2+-Dependent Control of Human Corneal Endothelial Cell Viability and Survival. MEMBRANES 2022; 12:membranes12030281. [PMID: 35323756 PMCID: PMC8952823 DOI: 10.3390/membranes12030281] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/18/2022] [Accepted: 02/24/2022] [Indexed: 02/04/2023]
Abstract
The functional contribution of transient receptor potential vanilloid 4 (TRPV4) expression in maintaining human corneal endothelial cells (HCEC) homeostasis is unclear. Accordingly, we determined the effects of TRPV4 gene and protein overexpression on responses modulating the viability and survival of HCEC. Q-PCR, Western blot, FACS analyses and fluorescence single-cell calcium imaging confirmed TRPV4 gene and protein overexpression in lentivirally transduced 12V4 cells derived from their parent HCEC-12 line. Although TRPV4 overexpression did not alter the baseline transendothelial electrical resistance (TEER), its cellular capacitance (Ccl) was larger than that in its parent. Scanning electron microscopy revealed that only the 12V4 cells developed densely packed villus-like protrusions. Stimulation of TRPV4 activity with GSK1016790A (GSK101, 10 µmol/L) induced larger Ca2+ transients in the 12V4 cells than those in the parental HCEC-12. One to ten nmol/L GSK101 decreased 12V4 viability, increased cell death rates and reduced the TEER, whereas 1 µmol/L GSK101 was required to induce similar effects in the HCEC-12. However, the TRPV4 channel blocker RN1734 (1 to 30 µmol/L) failed to alter HCEC-12 and 12V4 morphology, cell viability and metabolic activity. Taken together, TRPV4 overexpression altered both the HCEC morphology and markedly lowered the GSK101 dosages required to stimulate its channel activity.
Collapse
Affiliation(s)
- Jennifer Donau
- Institute of Anatomy, Faculty of Medicine, TU Dresden, 01307 Dresden, Germany; (J.D.); (A.S.); (M.P.); (J.L.)
- Institute of Medical Microbiology and Virology, Faculty of Medicine, TU Dresden, 01307 Dresden, Germany;
| | - Huan Luo
- Klinik für Augenheilkunde, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 13353 Berlin, Germany; (H.L.); (I.V.)
| | - Iiris Virta
- Klinik für Augenheilkunde, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 13353 Berlin, Germany; (H.L.); (I.V.)
| | - Annett Skupin
- Institute of Anatomy, Faculty of Medicine, TU Dresden, 01307 Dresden, Germany; (J.D.); (A.S.); (M.P.); (J.L.)
- Institute of Medical Microbiology and Virology, Faculty of Medicine, TU Dresden, 01307 Dresden, Germany;
| | - Margarita Pushina
- Institute of Anatomy, Faculty of Medicine, TU Dresden, 01307 Dresden, Germany; (J.D.); (A.S.); (M.P.); (J.L.)
| | - Jana Loeffler
- Institute of Anatomy, Faculty of Medicine, TU Dresden, 01307 Dresden, Germany; (J.D.); (A.S.); (M.P.); (J.L.)
| | - Frauke V. Haertel
- Institute of Physiology, Faculty of Medicine, University Giessen, 35392 Giessen, Germany;
- Institute of Physiology, Faculty of Medicine, TU Dresden, 01307 Dresden, Germany;
| | - Anupam Das
- Institute of Physiology, Faculty of Medicine, TU Dresden, 01307 Dresden, Germany;
| | - Thomas Kurth
- Center for Molecular and Cellular Bioengineering (CMCB), Technology Platform, TU Dresden, 01307 Dresden, Germany;
| | - Michael Gerlach
- Core Facility Cellular Imaging, Faculty of Medicine, TU Dresden, 01307 Dresden, Germany;
| | - Dirk Lindemann
- Institute of Medical Microbiology and Virology, Faculty of Medicine, TU Dresden, 01307 Dresden, Germany;
| | - Peter S. Reinach
- School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou 325027, China;
| | - Stefan Mergler
- Klinik für Augenheilkunde, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 13353 Berlin, Germany; (H.L.); (I.V.)
- Correspondence: (S.M.); (M.V.)
| | - Monika Valtink
- Institute of Anatomy, Faculty of Medicine, TU Dresden, 01307 Dresden, Germany; (J.D.); (A.S.); (M.P.); (J.L.)
- Equality and Diversity Unit, Faculty of Medicine, TU Dresden, 01307 Dresden, Germany
- Correspondence: (S.M.); (M.V.)
| |
Collapse
|
18
|
TRPV4-dependent signaling mechanisms in systemic and pulmonary vasculature. CURRENT TOPICS IN MEMBRANES 2022; 89:1-41. [DOI: 10.1016/bs.ctm.2022.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
19
|
Chen M, Li X. Role of TRPV4 channel in vasodilation and neovascularization. Microcirculation 2021; 28:e12703. [PMID: 33971061 DOI: 10.1111/micc.12703] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 05/02/2021] [Indexed: 12/12/2022]
Abstract
The transient receptor potential vanilloid type 4 (TRPV4) channel, a Ca2+ -permeable nonselective cation channel, is widely distributed in the circulatory system, particularly in vascular endothelial cells (ECs) and smooth muscle cells (SMCs). The TRPV4 channel is activated by various endogenous and exogenous stimuli, including shear stress, low intravascular pressure, and arachidonic acid. TRPV4 has a role in mediating vascular tone and arterial blood pressure. The activation of the TRPV4 channel induces Ca2+ influx, thereby resulting in endothelium-dependent hyperpolarization and SMC relaxation through SKCa and IKCa activation on ECs or through BKCa activation on SMCs. Ca2+ binds to calmodulin, which leads to the production of nitric oxide, causing vasodilation. Furthermore, the TRPV4 channel plays an important role in angiogenesis and arteriogenesis and is critical for tumor angiogenesis and growth, since it promotes or inhibits the development of various types of cancer. The TRPV4 channel is involved in the active growth of collateral arteries induced by flow shear stress, which makes it a promising therapeutic target in the occlusion or stenosis of the main arteries. In this review, we explore the role and the potential mechanism of action of the TRPV4 channel in the regulation of vascular tone and in the induction of neovascularization to provide a reference for future research.
Collapse
Affiliation(s)
- Miao Chen
- Department of Hand and Foot Surgery, The First Hospital of Jilin University, Changchun, China
| | - Xiucun Li
- Department of Hand and Foot Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Department of Anatomy and Histoembryology, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
20
|
Vellino S, Oddou C, Rivier P, Boyault C, Hiriart-Bryant E, Kraut A, Martin R, Coute Y, Knölker HJ, Valverde MA, Albigès-Rizo C, Destaing O. Cross-talk between the calcium channel TRPV4 and reactive oxygen species interlocks adhesive and degradative functions of invadosomes. J Cell Biol 2021; 220:211651. [PMID: 33399853 PMCID: PMC7788461 DOI: 10.1083/jcb.201910079] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 07/23/2020] [Accepted: 11/13/2020] [Indexed: 02/06/2023] Open
Abstract
Invadosomes support cell invasion by coupling both acto-adhesive and extracellular matrix degradative functions, which are apparently antagonistic. β1-integrin dynamics regulate this coupling, but the actual sensing mechanism and effectors involved have not yet been elucidated. Using genetic and reverse genetic approaches combined with biochemical and imaging techniques, we now show that the calcium channel TRPV4 colocalizes with β1-integrins at the invadosome periphery and regulates its activation and the coupling of acto-adhesive and degradative functions. TRPV4-mediated regulation of podosome function depends on its ability to sense reactive oxygen species (ROS) in invadosomes' microenvironment and involves activation of the ROS/calcium-sensitive kinase Ask1 and binding of the motor MYO1C. Furthermore, disease-associated TRPV4 gain-of-function mutations that modulate ECM degradation are also implicated in the ROS response, which provides new perspectives in our understanding of the pathophysiology of TRPV4 channelopathies.
Collapse
Affiliation(s)
- Sanela Vellino
- Dynamique des systèmes d'adhérence, Institut for Advanced Biosciences, Centre de Recherche University Grenoble Alpes/INSERM U1209/Centre National de la Recherche Scientifique Unité mixte de recherche 5309, La Tronche, France
| | - Christiane Oddou
- Dynamique des systèmes d'adhérence, Institut for Advanced Biosciences, Centre de Recherche University Grenoble Alpes/INSERM U1209/Centre National de la Recherche Scientifique Unité mixte de recherche 5309, La Tronche, France
| | - Paul Rivier
- Dynamique des systèmes d'adhérence, Institut for Advanced Biosciences, Centre de Recherche University Grenoble Alpes/INSERM U1209/Centre National de la Recherche Scientifique Unité mixte de recherche 5309, La Tronche, France
| | - Cyril Boyault
- Dynamique des systèmes d'adhérence, Institut for Advanced Biosciences, Centre de Recherche University Grenoble Alpes/INSERM U1209/Centre National de la Recherche Scientifique Unité mixte de recherche 5309, La Tronche, France
| | - Edwige Hiriart-Bryant
- Dynamique des systèmes d'adhérence, Institut for Advanced Biosciences, Centre de Recherche University Grenoble Alpes/INSERM U1209/Centre National de la Recherche Scientifique Unité mixte de recherche 5309, La Tronche, France
| | - Alexandra Kraut
- Laboratoire EDyP, Institute of Biosciences and Biotechnologies of Grenoble-Biologie à Grande Echelle, Commissariat à l'Énergie Atomique Grenoble, Grenoble, France
| | - René Martin
- Faculty of Chemistry, Technische Universität Dresden, Dresden, Germany
| | - Yohann Coute
- Laboratoire EDyP, Institute of Biosciences and Biotechnologies of Grenoble-Biologie à Grande Echelle, Commissariat à l'Énergie Atomique Grenoble, Grenoble, France
| | | | - Miguel A. Valverde
- Laboratory of Molecular Physiology, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Corinne Albigès-Rizo
- Dynamique des systèmes d'adhérence, Institut for Advanced Biosciences, Centre de Recherche University Grenoble Alpes/INSERM U1209/Centre National de la Recherche Scientifique Unité mixte de recherche 5309, La Tronche, France
| | - Olivier Destaing
- Dynamique des systèmes d'adhérence, Institut for Advanced Biosciences, Centre de Recherche University Grenoble Alpes/INSERM U1209/Centre National de la Recherche Scientifique Unité mixte de recherche 5309, La Tronche, France,Correspondence to Olivier Destaing:
| |
Collapse
|
21
|
Ji C, McCulloch CA. TRPV4 integrates matrix mechanosensing with Ca 2+ signaling to regulate extracellular matrix remodeling. FEBS J 2020; 288:5867-5887. [PMID: 33300268 DOI: 10.1111/febs.15665] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 11/23/2020] [Indexed: 12/23/2022]
Abstract
In healthy connective tissues, mechanosensors trigger the generation of Ca2+ signals, which enable cells to maintain the structure of the fibrillar collagen matrix through actomyosin contractile forces. Transient receptor potential vanilloid type 4 (TRPV4) is a mechanosensitive Ca2+ -permeable channel that, when expressed in cell-matrix adhesions of the plasma membrane, regulates extracellular matrix (ECM) remodeling. In high prevalence disorders such as fibrosis and tumor metastasis, dysregulated matrix remodeling is associated with disruptions of Ca2+ homeostasis and TRPV4 function. Here, we consider that ECM polymers transmit cell-activating mechanical signals to TRPV4 in cell adhesions. When activated, TRPV4 regulates fibrillar collagen remodeling, thereby altering the mechanical properties of the ECM. In this review, we integrate functionally connected processes of matrix remodeling to highlight how TRPV4 in cell adhesions and matrix mechanics are reciprocally regulated through Ca2+ signaling.
Collapse
Affiliation(s)
- Chenfan Ji
- Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, ON, Canada
| | | |
Collapse
|
22
|
Espadas-Álvarez H, Martínez-Rendón J, Larre I, Matamoros-Volante A, Romero-García T, Rosenbaum T, Rueda A, García-Villegas R. TRPV4 activity regulates nuclear Ca 2+ and transcriptional functions of β-catenin in a renal epithelial cell model. J Cell Physiol 2020; 236:3599-3614. [PMID: 33044004 DOI: 10.1002/jcp.30096] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 09/23/2020] [Accepted: 09/24/2020] [Indexed: 11/11/2022]
Abstract
TRPV4 is a nonselective cationic channel responsive to several physical and chemical stimuli. Defects in TRPV4 channel function result in human diseases, such as skeletal dysplasias, arthropathies, and peripheral neuropathies. Nonetheless, little is known about the role of TRPV4 in other cellular functions, such as nuclear Ca2+ homeostasis or Ca2+ -regulated transcription. Here, we confirmed the presence of the full-length TRPV4 channel in the nuclei of nonpolarized Madin-Darby canine kidney cells. Confocal Ca2+ imaging showed that activation of the channel increases cytoplasmic and nuclear Ca2+ leading to translocation of TRPV4 out of the nucleus together with β-catenin, a transcriptional regulator in the Wnt signaling pathway fundamental in embryogenesis, organogenesis, and cellular homeostasis. TRPV4 inhibits β-catenin transcriptional activity through a direct interaction dependent upon channel activity. This interaction also occurs in undifferentiated osteoblastoma and neuroblastoma cell models. Our results suggest a mechanism in which TRPV4 may regulate differentiation in several cellular contexts.
Collapse
Affiliation(s)
- Heidi Espadas-Álvarez
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, México
| | - Jacqueline Martínez-Rendón
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, México
| | - Isabel Larre
- Marshall Institute for Interdisciplinary Research and Department of Clinical and Translational Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, USA
| | | | - Tatiana Romero-García
- Departamento de Bioquímica, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, México
| | - Tamara Rosenbaum
- Departamento de Neurociencia Cognitiva, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Angélica Rueda
- Departamento de Bioquímica, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, México
| | - Refugio García-Villegas
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, México
| |
Collapse
|
23
|
Channels that Cooperate with TRPV4 in the Brain. J Mol Neurosci 2020; 70:1812-1820. [PMID: 32524421 DOI: 10.1007/s12031-020-01574-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Accepted: 04/27/2020] [Indexed: 12/26/2022]
Abstract
Transient receptor potential vanilloid 4 (TRPV4) is a nonselective Ca2+-permeable cation channel that is a member of the TRP channel family. It is clear that TRPV4 channels are broadly expressed in the brain. As they are expressed on the plasma membrane, they interact with other channels and play a crucial role in nervous system activity. Under some pathological conditions, TRPV4 channels are upregulated and sensitized via cellular signaling pathways, and this can cause nervous system diseases. In this review, we focus on receptors that cooperate with TRPV4, including large-conductance Ca2+-activated K+(BKca) channels, N-methyl-D-aspartate receptors (NMDARs), α-amino-3-hydroxy-5-methyl-4-isoxazole-propionate receptors (AMPARs), inositol 1,4,5-trisphosphate receptors (IP3Rs), ryanodine receptors (RyRs), aquaporin 4 (AQP4), and other potential cooperative receptors in the brain. The data demonstrate how these channels work together to cause nervous system diseases under pathological conditions. The aim of this review was to discuss the receptors and signaling pathways related to TRPV4 based on recent data on the important physiological functions of TRPV4 channels to provide new clues for future studies and prospective therapeutic targets for related brain diseases.
Collapse
|
24
|
Borrachero-Conejo AI, Adams WR, Saracino E, Mola MG, Wang M, Posati T, Formaggio F, De Bellis M, Frigeri A, Caprini M, Hutchinson MR, Muccini M, Zamboni R, Nicchia GP, Mahadevan-Jansen A, Benfenati V. Stimulation of water and calcium dynamics in astrocytes with pulsed infrared light. FASEB J 2020; 34:6539-6553. [PMID: 32202681 DOI: 10.1096/fj.201903049r] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 02/25/2020] [Accepted: 03/06/2020] [Indexed: 06/14/2024]
Abstract
Astrocytes are non-neuronal cells that govern the homeostatic regulation of the brain through ions and water transport, and Ca2+ -mediated signaling. As they are tightly integrated into neural networks, label-free tools that can modulate cell function are needed to evaluate the role of astrocytes in brain physiology and dysfunction. Using live-cell fluorescence imaging, pharmacology, electrophysiology, and genetic manipulation, we show that pulsed infrared light can modulate astrocyte function through changes in intracellular Ca2+ and water dynamics, providing unique mechanistic insight into the effect of pulsed infrared laser light on astroglial cells. Water transport is activated and, IP3 R, TRPA1, TRPV4, and Aquaporin-4 are all involved in shaping the dynamics of infrared pulse-evoked intracellular calcium signal. These results demonstrate that astrocyte function can be modulated with infrared light. We expect that targeted control over calcium dynamics and water transport will help to study the crucial role of astrocytes in edema, ischemia, glioma progression, stroke, and epilepsy.
Collapse
Affiliation(s)
- Ana I Borrachero-Conejo
- Istituto per lo Studio dei Materiali Nanostrutturati, Consiglio Nazionale delle Ricerche, Bologna, Italy
| | - Wilson R Adams
- Department Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Biophotonics Center, Vanderbilt University, Nashville, TN, USA
| | - Emanuela Saracino
- Istituto per la Sintesi Organica e la Fotoreattività, Consiglio Nazionale delle Ricerche, Bologna, Italy
| | - Maria Grazia Mola
- Department of Bioscience, Biotechnology and Biopharmaceutics and Centre of Excellence in Comparative Genomics, University of Bari Aldo Moro, Bari, Italy
| | - Manqing Wang
- Vanderbilt Biophotonics Center, Vanderbilt University, Nashville, TN, USA
- Bioengineering College, Chongqing University, Chongqing, China
| | - Tamara Posati
- Istituto per la Sintesi Organica e la Fotoreattività, Consiglio Nazionale delle Ricerche, Bologna, Italy
| | - Francesco Formaggio
- Dipartimento di Farmacia e Biotecnologie, University of Bologna, Bologna, Italy
| | - Manuela De Bellis
- Department of Bioscience, Biotechnology and Biopharmaceutics and Centre of Excellence in Comparative Genomics, University of Bari Aldo Moro, Bari, Italy
| | - Antonio Frigeri
- Department of Basic Medical Sciences, Neuroscience and Sense Organs, School of Medicine, University of Bari Aldo Moro, Bari, Italy
- Department of Neuroscience, Albert Einstein College of Medicine, Yeshiva University, New York, NY, USA
| | - Marco Caprini
- Istituto per lo Studio dei Materiali Nanostrutturati, Consiglio Nazionale delle Ricerche, Bologna, Italy
- Dipartimento di Farmacia e Biotecnologie, University of Bologna, Bologna, Italy
| | - Mark R Hutchinson
- Australian Research Council Centre of Excellence for Nanoscale BioPhotonics, Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - Michele Muccini
- Istituto per lo Studio dei Materiali Nanostrutturati, Consiglio Nazionale delle Ricerche, Bologna, Italy
| | - Roberto Zamboni
- Istituto per la Sintesi Organica e la Fotoreattività, Consiglio Nazionale delle Ricerche, Bologna, Italy
| | - Grazia Paola Nicchia
- Istituto per la Sintesi Organica e la Fotoreattività, Consiglio Nazionale delle Ricerche, Bologna, Italy
- Department of Bioscience, Biotechnology and Biopharmaceutics and Centre of Excellence in Comparative Genomics, University of Bari Aldo Moro, Bari, Italy
- Department of Neuroscience, Albert Einstein College of Medicine, Yeshiva University, New York, NY, USA
| | - Anita Mahadevan-Jansen
- Department Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Biophotonics Center, Vanderbilt University, Nashville, TN, USA
- Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Valentina Benfenati
- Istituto per la Sintesi Organica e la Fotoreattività, Consiglio Nazionale delle Ricerche, Bologna, Italy
| |
Collapse
|
25
|
Roberts MWG, Sui G, Wu R, Rong W, Wildman S, Montgomery B, Ali A, Langley S, Ruggieri MR, Wu C. TRPV4 receptor as a functional sensory molecule in bladder urothelium: Stretch-independent, tissue-specific actions and pathological implications. FASEB J 2020; 34:263-286. [PMID: 31914645 PMCID: PMC6973053 DOI: 10.1096/fj.201900961rr] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 09/26/2019] [Accepted: 09/30/2019] [Indexed: 12/02/2022]
Abstract
The newly recognized sensory role of bladder urothelium has generated intense interest in identifying its novel sensory molecules. Sensory receptor TRPV4 may serve such function. However, specific and physiologically relevant tissue actions of TRPV4, stretch-independent responses, and underlying mechanisms are unknown and its role in human conditions has not been examined. Here we showed TRPV4 expression in guinea-pig urothelium, suburothelium, and bladder smooth muscle, with urothelial predominance. Selective TRPV4 activation without stretch evoked significant ATP release-key urothelial sensory process, from live mucosa tissue, full-thickness bladder but not smooth muscle, and sustained muscle contractions. ATP release was mediated by Ca2+-dependent, pannexin/connexin-conductive pathway involving protein tyrosine kinase, but independent from vesicular transport and chloride channels. TRPV4 activation generated greater Ca2+ rise than purinergic activation in urothelial cells. There was intrinsic TRPV4 activity without exogeneous stimulus, causing ATP release. TRPV4 contributed to 50% stretch-induced ATP release. TRPV4 activation also triggered superoxide release. TRPV4 expression was increased with aging. Human bladder mucosa presented similarities to guinea pigs. Overactive bladders exhibited greater TRPV4-induced ATP release with age dependence. These data provide the first evidence in humans for the key functional role of TRPV4 in urothelium with specific mechanisms and identify TRPV4 up-regulation in aging and overactive bladders.
Collapse
Affiliation(s)
| | - Guiping Sui
- Guy's and St Thomas Hospitals NHS TrustLondonUK
| | - Rui Wu
- University Hospitals Coventry and Warwickshire NHS TrustCoventryUK
| | - Weifang Rong
- Department of PhysiologyShanghai Jiaotong University School of MedicineShanghaiChina
| | | | | | | | | | | | - Changhao Wu
- School of Biosciences and MedicineUniversity of SurreyGuildfordUK
| |
Collapse
|
26
|
Pethő Z, Najder K, Bulk E, Schwab A. Mechanosensitive ion channels push cancer progression. Cell Calcium 2019; 80:79-90. [PMID: 30991298 DOI: 10.1016/j.ceca.2019.03.007] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 03/26/2019] [Accepted: 03/26/2019] [Indexed: 02/07/2023]
Abstract
In many cases, the mechanical properties of a tumor are different from those of the host tissue. Mechanical cues regulate cancer development by affecting both tumor cells and their microenvironment, by altering cell migration, proliferation, extracellular matrix remodeling and metastatic spread. Cancer cells sense mechanical stimuli such as tissue stiffness, shear stress, tissue pressure of the extracellular space (outside-in mechanosensation). These mechanical cues are transduced into a cellular response (e. g. cell migration and proliferation; inside-in mechanotransduction) or to a response affecting the microenvironment (e. g. inducing a fibrosis or building up growth-induced pressure; inside-out mechanotransduction). These processes heavily rely on mechanosensitive membrane proteins, prominently ion channels. Mechanosensitive ion channels are involved in the Ca2+-signaling of the tumor and stroma cells, both directly, by mediating Ca2+ influx (e. g. Piezo and TRP channels), or indirectly, by maintaining the electrochemical gradient necessary for Ca2+ influx (e. g. K2P, KCa channels). This review aims to discuss the diverse roles of mechanosenstive ion channels in cancer progression, especially those involved in Ca2+-signaling, by pinpointing their functional relevance in tumor pathophysiology.
Collapse
Affiliation(s)
- Zoltán Pethő
- Institut für Physiologie II, Robert-Koch-Str. 27b, 48149 Münster, Germany.
| | - Karolina Najder
- Institut für Physiologie II, Robert-Koch-Str. 27b, 48149 Münster, Germany
| | - Etmar Bulk
- Institut für Physiologie II, Robert-Koch-Str. 27b, 48149 Münster, Germany
| | - Albrecht Schwab
- Institut für Physiologie II, Robert-Koch-Str. 27b, 48149 Münster, Germany
| |
Collapse
|
27
|
Hines SL, Richter JE, Mohammad AN, Mahim J, Atwal PS, Caulfield TR. Protein informatics combined with multiple data sources enriches the clinical characterization of novel TRPV4 variant causing an intermediate skeletal dysplasia. Mol Genet Genomic Med 2019; 7:e566. [PMID: 30693671 PMCID: PMC6418443 DOI: 10.1002/mgg3.566] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Revised: 11/02/2018] [Accepted: 12/02/2018] [Indexed: 01/19/2023] Open
Abstract
Background Transient receptor potential cation channel subfamily V member 4 (TRPV4) is an ion channel permeable to Ca2+ that is sensitive to physical, hormonal, and chemical stimuli. This protein is expressed in many cell types, including osteoclasts, chondrocytes, and sensory neurons. As such, pathogenic variants of this gene are associated with skeletal dysplasias and neuromuscular disorders. Pathogenesis of these phenotypes is not yet completely understood, but it is known that genotype–phenotype correlations for TRPV4 pathogenic variants often are not present. Methods Newly characterized, suspected pathogenic variant in TRPV4 was analyzed using protein informatics and personalized protein‐level molecular studies, genomic exome analysis, and clinical study. Results This statement is demonstrated in the family of our proband, a 47‐year‐old female having the novel c.2401A>G (p.K801E) variant of TRPV4. We discuss the common symptoms between the proband, her father, and her daughter, and compare her phenotype to known TRPV4‐associated skeletal dysplasias. Conclusions Protein informatics and molecular modeling are used to confirm the pathogenicity of the unique TRPV4 variant found in this family. Multiple data were combined in a comprehensive manner to give complete overall perspective on the patient disease and prognosis.
Collapse
Affiliation(s)
- Stephanie L Hines
- Department of Clinical Genomics, Mayo Clinic, Jacksonville, Florida.,Department of General Internal Medicine, Mayo Clinic, Jacksonville, Florida.,Center for Individualized Medicine, Mayo Clinic, Jacksonville, Florida
| | - John E Richter
- Department of Clinical Genomics, Mayo Clinic, Jacksonville, Florida
| | - Ahmed N Mohammad
- Department of Clinical Genomics, Mayo Clinic, Jacksonville, Florida
| | - Jain Mahim
- Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, Maryland
| | | | - Thomas R Caulfield
- Center for Individualized Medicine, Mayo Clinic, Jacksonville, Florida.,Department of Neuroscience, Mayo Clinic, Jacksonville, Florida.,Mayo Graduate School, Neurobiology of Disease, Mayo Clinic, Jacksonville, Florida
| |
Collapse
|
28
|
TRPV4 channels stimulate Ca 2+-induced Ca 2+ release in mouse neurons and trigger endoplasmic reticulum stress after intracerebral hemorrhage. Brain Res Bull 2018; 146:143-152. [PMID: 30508606 DOI: 10.1016/j.brainresbull.2018.11.024] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Revised: 10/24/2018] [Accepted: 11/29/2018] [Indexed: 01/30/2023]
Abstract
Individuals with intracerebral hemorrhage (ICH) suffer varying degrees of neurological dysfunction as a result of neuronal apoptosis, and thus, maintenance of neuronal survival may be crucial to prevent ICH brain injury. Here, we report that the expression of transient receptor potential vanilloid 4 (TRPV4) was upregulated in mouse neurons after ICH. The selective TRPV4 agonist GSK1016790 A aggravated neuronal death whereas the TRPV4 antagonist HC-067047 promoted neuronal survival after ICH. We found that GSK1016790 A triggered Ca2+ signals that were amplified and propagated by Ca2+-induced Ca2+ release (CICR) from the endoplasmic reticulum (ER) in the neurons. ICH recruited inositol triphosphate receptors (IP3Rs) into the TRPV4 protein complex, which positively regulated the activity of TRPV4 channels. Excessive activation of TRPV4 channels destroyed Ca2+ homeostasis and induced ER unfolded protein response (UPR). Blocking TRPV4 receptors decreased UPR, inhibited the PERK-CHOP-Bcl-2 signaling pathway and increased neuron survival. Overall, these results suggested that overactivation of TRPV4 channels after ICH ledto the destruction of Ca2+ homeostasis, which in turn caused UPR and neural apoptosis. Inhibition of TRPV4 channels is a promising therapy to promote neurons recover, and to ameliorate disability after ICH.
Collapse
|
29
|
Jung C, Fernández-Dueñas V, Plata C, Garcia-Elias A, Ciruela F, Fernández-Fernández JM, Valverde MA. Functional coupling of GABA A/B receptors and the channel TRPV4 mediates rapid progesterone signaling in the oviduct. Sci Signal 2018; 11:11/543/eaam6558. [PMID: 30108184 DOI: 10.1126/scisignal.aam6558] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The molecular mechanism by which progesterone (P4) modulates the transport of ova and embryos along the oviduct is not fully resolved. We report a rapid response to P4 and agonists of γ-aminobutyric acid receptors A and B (GABAA/B) in the mouse oviduct that was characterized by oscillatory Ca2+ signals and increased ciliary beat frequency (CBF). Pharmacological manipulation, genetic ablation, and siRNA-mediated knockdown in oviductal cells, as well as overexpression experiments in HEK 293T cells, confirmed the participation of the cationic channel TRPV4, different subunits of GABAA (α1 to α3, β2, and β3), and GABAB1 in P4-induced responses. TRPV4-mediated Ca2+ entry in close proximity to the inositol trisphosphate receptor was required to initiate and maintain Ca2+ oscillations after P4 binding to GABAA and transactivation of Gi/o protein-coupled GABAB receptors. Coimmunoprecipitation experiments and imaging of native tissue and HEK 293T cells demonstrated the close association of GABAA and GABAB1 receptors and the activation of Gi/o proteins in response to P4 and GABA receptor agonists, confirming a molecular mechanism in which P4 and GABAergic agonists cooperatively stimulate cilial beating.
Collapse
Affiliation(s)
- Carole Jung
- Laboratory of Molecular Physiology, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona 08003, Spain
| | - Victor Fernández-Dueñas
- Unitat de Farmacologia, Departament Patologia i Terapèutica Experimental, Facultat de Medicina, Institut d'Investigació Biomédica de Bellvitge-Universitat de Barcelona, Barcelona 08907, Spain.,Institut de Neurociències, Universitat de Barcelona, Barcelona 08907, Spain
| | - Cristina Plata
- Laboratory of Molecular Physiology, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona 08003, Spain
| | - Anna Garcia-Elias
- Laboratory of Molecular Physiology, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona 08003, Spain
| | - Francisco Ciruela
- Unitat de Farmacologia, Departament Patologia i Terapèutica Experimental, Facultat de Medicina, Institut d'Investigació Biomédica de Bellvitge-Universitat de Barcelona, Barcelona 08907, Spain.,Institut de Neurociències, Universitat de Barcelona, Barcelona 08907, Spain
| | - José M Fernández-Fernández
- Laboratory of Molecular Physiology, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona 08003, Spain
| | - Miguel A Valverde
- Laboratory of Molecular Physiology, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona 08003, Spain.
| |
Collapse
|
30
|
Boehmerle W, Huehnchen P, Lee SLL, Harms C, Endres M. TRPV4 inhibition prevents paclitaxel-induced neurotoxicity in preclinical models. Exp Neurol 2018; 306:64-75. [DOI: 10.1016/j.expneurol.2018.04.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 04/17/2018] [Accepted: 04/27/2018] [Indexed: 12/15/2022]
|
31
|
He D, Pan Q, Chen Z, Sun C, Zhang P, Mao A, Zhu Y, Li H, Lu C, Xie M, Zhou Y, Shen D, Tang C, Yang Z, Jin J, Yao X, Nilius B, Ma X. Treatment of hypertension by increasing impaired endothelial TRPV4-KCa2.3 interaction. EMBO Mol Med 2018; 9:1491-1503. [PMID: 28899928 PMCID: PMC5666316 DOI: 10.15252/emmm.201707725] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The currently available antihypertensive agents have undesirable adverse effects due to systemically altering target activity including receptors, channels, and enzymes. These effects, such as loss of potassium ions induced by diuretics, bronchospasm by beta‐blockers, constipation by Ca2+ channel blockers, and dry cough by ACEI, lead to non‐compliance with therapies (Moser, 1990). Here, based on new hypertension mechanisms, we explored a new antihypertensive approach. We report that transient receptor potential vanilloid 4 (TRPV4) interacts with Ca2+‐activated potassium channel 3 (KCa2.3) in endothelial cells (ECs) from small resistance arteries of normotensive humans, while ECs from hypertensive patients show a reduced interaction between TRPV4 and KCa2.3. Murine hypertension models, induced by high‐salt diet, N(G)‐nitro‐l‐arginine intake, or angiotensin II delivery, showed decreased TRPV4‐KCa2.3 interaction in ECs. Perturbation of the TRPV4‐KCa2.3 interaction in mouse ECs by overexpressing full‐length KCa2.3 or defective KCa2.3 had hypotensive or hypertensive effects, respectively. Next, we developed a small‐molecule drug, JNc‐440, which showed affinity for both TRPV4 and KCa2.3. JNc‐440 significantly strengthened the TRPV4‐KCa2.3 interaction in ECs, enhanced vasodilation, and exerted antihypertensive effects in mice. Importantly, JNc‐440 specifically targeted the impaired TRPV4‐KCa2.3 interaction in ECs but did not systemically activate TRPV4 and KCa2.3. Together, our data highlight the importance of impaired endothelial TRPV4‐KCa2.3 coupling in the progression of hypertension and suggest a novel approach for antihypertensive drug development.
Collapse
Affiliation(s)
- Dongxu He
- School of Medicine, Jiangnan University, Wuxi, China.,National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, China
| | - Qiongxi Pan
- School of Medicine, Jiangnan University, Wuxi, China.,National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, China
| | - Zhen Chen
- School of Medicine, Jiangnan University, Wuxi, China.,National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, China
| | - Chunyuan Sun
- School of Medicine, Jiangnan University, Wuxi, China.,National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, China
| | - Peng Zhang
- School of Medicine, Jiangnan University, Wuxi, China.,National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, China
| | - Aiqin Mao
- School of Medicine, Jiangnan University, Wuxi, China.,National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, China
| | - Yaodan Zhu
- School of Medicine, Jiangnan University, Wuxi, China.,National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, China
| | - Hongjuan Li
- School of Medicine, Jiangnan University, Wuxi, China.,National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, China
| | - Chunxiao Lu
- School of Medicine, Jiangnan University, Wuxi, China.,National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, China
| | - Mingxu Xie
- School of Medicine, Jiangnan University, Wuxi, China.,National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, China
| | - Yin Zhou
- School of Medicine, Jiangnan University, Wuxi, China.,National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, China
| | - Daoming Shen
- School of Medicine, Jiangnan University, Wuxi, China.,National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, China
| | - Chunlei Tang
- School of Medicine, Jiangnan University, Wuxi, China.,National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, China
| | - Zhenyu Yang
- Heart Centre, Wuxi People's Hospital, Wuxi, China
| | - Jian Jin
- School of Medicine, Jiangnan University, Wuxi, China.,National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, China
| | - Xiaoqiang Yao
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Bernd Nilius
- Department Cell Mol Medicine Laboratory Ion Channel Research Campus Gasthuisberg, KU Leuven, Leuven, Belgium
| | - Xin Ma
- School of Medicine, Jiangnan University, Wuxi, China .,National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, China
| |
Collapse
|
32
|
Ca 2+ Regulation of TRP Ion Channels. Int J Mol Sci 2018; 19:ijms19041256. [PMID: 29690581 PMCID: PMC5979445 DOI: 10.3390/ijms19041256] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 04/16/2018] [Accepted: 04/17/2018] [Indexed: 12/20/2022] Open
Abstract
Ca2+ signaling influences nearly every aspect of cellular life. Transient receptor potential (TRP) ion channels have emerged as cellular sensors for thermal, chemical and mechanical stimuli and are major contributors to Ca2+ signaling, playing an important role in diverse physiological and pathological processes. Notably, TRP ion channels are also one of the major downstream targets of Ca2+ signaling initiated either from TRP channels themselves or from various other sources, such as G-protein coupled receptors, giving rise to feedback regulation. TRP channels therefore function like integrators of Ca2+ signaling. A growing body of research has demonstrated different modes of Ca2+-dependent regulation of TRP ion channels and the underlying mechanisms. However, the precise actions of Ca2+ in the modulation of TRP ion channels remain elusive. Advances in Ca2+ regulation of TRP channels are critical to our understanding of the diversified functions of TRP channels and complex Ca2+ signaling.
Collapse
|
33
|
Barrett JN, Rincon S, Singh J, Matthewman C, Pasos J, Barrett EF, Rajguru SM. Pulsed infrared releases Ca 2+ from the endoplasmic reticulum of cultured spiral ganglion neurons. J Neurophysiol 2018; 120:509-524. [PMID: 29668377 DOI: 10.1152/jn.00740.2017] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Inner ear spiral ganglion neurons were cultured from day 4 postnatal mice and loaded with a fluorescent Ca2+ indicator (fluo-4, -5F, or -5N). Pulses of infrared radiation (IR; 1,863 nm, 200 µs, 200-250 Hz for 2-5 s, delivered via an optical fiber) produced a rapid, transient temperature increase of 6-12°C (above a baseline of 24-30°C). These IR pulse trains evoked transient increases in both nuclear and cytosolic Ca2+ concentration ([Ca2+]) of 0.20-1.4 µM, with a simultaneous reduction of [Ca2+] in regions containing endoplasmic reticulum (ER). IR-induced increases in cytosolic [Ca2+] continued in medium containing no added Ca2+ (±Ca2+ buffers) and low [Na+], indicating that the [Ca2+] increase was mediated by release from intracellular stores. Consistent with this hypothesis, the IR-induced [Ca2+] response was prolonged and eventually blocked by inhibition of ER Ca2+-ATPase with cyclopiazonic acid, and was also inhibited by a high concentration of ryanodine and by inhibitors of inositol (1,4,5)-trisphosphate (IP3)-mediated Ca2+ release (xestospongin C and 2-aminoethoxydiphenyl borate). The thermal sensitivity of the response suggested involvement of warmth-sensitive transient receptor potential (TRP) channels. The IR-induced [Ca2+] increase was inhibited by TRPV4 inhibitors (HC-067047 and GSK-2193874), and immunostaining of spiral ganglion cultures demonstrated the presence of TRPV4 and TRPM2 that colocalized with ER marker GRP78. These results suggest that the temperature sensitivity of IR-induced [Ca2+] elevations is conferred by TRP channels on ER membranes, which facilitate Ca2+ efflux into the cytosol and thereby contribute to Ca2+-induced Ca2+-release via IP3 and ryanodine receptors. NEW & NOTEWORTHY Infrared radiation-induced photothermal effects release Ca2+ from the endoplasmic reticulum of primary spiral ganglion neurons. This Ca2+ release is mediated by activation of transient receptor potential (TRPV4) channels and involves amplification by Ca2+-induced Ca2+-release. The neurons immunostained for warmth-sensitive channels, TRPV4 and TRPM2, which colocalize with endoplasmic reticulum. Pulsed infrared radiation provides a novel experimental tool for releasing intracellular Ca2+, studying Ca2+ regulatory mechanisms, and influencing neuronal excitability.
Collapse
Affiliation(s)
- John N Barrett
- Department of Physiology and Biophysics, University of Miami , Miami, Florida.,Neuroscience Program, University of Miami , Miami, Florida
| | - Samantha Rincon
- Department of Biomedical Engineering, University of Miami , Miami, Florida
| | - Jayanti Singh
- Department of Otolaryngology, University of Miami , Miami, Florida
| | | | - Julio Pasos
- Department of Otolaryngology, University of Miami , Miami, Florida
| | - Ellen F Barrett
- Department of Physiology and Biophysics, University of Miami , Miami, Florida.,Neuroscience Program, University of Miami , Miami, Florida
| | - Suhrud M Rajguru
- Department of Biomedical Engineering, University of Miami , Miami, Florida.,Department of Otolaryngology, University of Miami , Miami, Florida
| |
Collapse
|
34
|
Kumar H, Lee SH, Kim KT, Zeng X, Han I. TRPV4: a Sensor for Homeostasis and Pathological Events in the CNS. Mol Neurobiol 2018; 55:8695-8708. [PMID: 29582401 DOI: 10.1007/s12035-018-0998-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Accepted: 03/07/2018] [Indexed: 01/22/2023]
Abstract
Transient receptor potential vanilloid type 4 (TRPV4) was originally described as a calcium-permeable nonselective cation channel. TRPV4 is now recognized as a polymodal ionotropic receptor: it is a broadly expressed, nonselective cation channel (permeable to calcium, potassium, magnesium, and sodium) that plays an important role in a multitude of physiological processes. TRPV4 is involved in maintaining homeostasis, serves as an osmosensor and thermosensor, can be activated directly by endogenous or exogenous chemical stimuli, and can be activated or sensitized indirectly via intracellular signaling pathways. Additionally, TRPV4 is upregulated in a variety of pathological conditions. In this review, we focus on the role of TRPV4 in mediating homeostasis and pathological events in the central nervous system (CNS). This review is composed of three parts. Section 1 describes the role of TRPV4 in maintaining homeostatic processes, including the volume of body water, ionic concentrations, volume, and the temperature. Section 2 describes the effects of activation and inhibition of TRPV4 in the CNS. Section 3 focuses on the role of TRPV4 during pathological events in CNS.
Collapse
Affiliation(s)
- Hemant Kumar
- Department of Neurosurgery, CHA University, CHA Bundang Medical Center, Seongnam-si, Gyeonggi-do, 13496, Republic of Korea
| | - Soo-Hong Lee
- Department of Biomedical Science, CHA University, Seongnam-si, Gyeonggi-do, Republic of Korea
| | - Kyoung-Tae Kim
- Department of Neurosurgery, Kyungpook National University Hospital, 130, Dongdeok-ro, Jung-gu, Daegu, 41944, Republic of Korea
| | - Xiang Zeng
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China.
| | - Inbo Han
- Department of Neurosurgery, CHA University, CHA Bundang Medical Center, Seongnam-si, Gyeonggi-do, 13496, Republic of Korea.
| |
Collapse
|
35
|
Derouiche S, Takayama Y, Murakami M, Tominaga M. TRPV4 heats up ANO1‐dependent exocrine gland fluid secretion. FASEB J 2018; 32:1841-1854. [DOI: 10.1096/fj.201700954r] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Sandra Derouiche
- Division of Cell SignalingOkazaki Institute for Integrative BioscienceNational Institute for Physiological SciencesOkazakiJapan
| | - Yasunori Takayama
- Division of Cell SignalingOkazaki Institute for Integrative BioscienceNational Institute for Physiological SciencesOkazakiJapan
- Department of Physiological SciencesThe Graduate University for Advanced Studies (SOKENDAI)OkazakiJapan
| | - Masataka Murakami
- Department of Physiological SciencesThe Graduate University for Advanced Studies (SOKENDAI)OkazakiJapan
- National Institute for Physiological SciencesOkazakiJapan
| | - Makoto Tominaga
- Division of Cell SignalingOkazaki Institute for Integrative BioscienceNational Institute for Physiological SciencesOkazakiJapan
- Department of Physiological SciencesThe Graduate University for Advanced Studies (SOKENDAI)OkazakiJapan
- Institute for Environmental and Gender‐Specific MedicineJuntendo UniversityUrayasuJapan
| |
Collapse
|
36
|
Hong K, Cope EL, DeLalio LJ, Marziano C, Isakson BE, Sonkusare SK. TRPV4 (Transient Receptor Potential Vanilloid 4) Channel-Dependent Negative Feedback Mechanism Regulates G q Protein-Coupled Receptor-Induced Vasoconstriction. Arterioscler Thromb Vasc Biol 2018; 38:542-554. [PMID: 29301784 DOI: 10.1161/atvbaha.117.310038] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 12/18/2017] [Indexed: 12/16/2022]
Abstract
OBJECTIVE Several physiological stimuli activate smooth muscle cell (SMC) GqPCRs (Gq protein-coupled receptors) to cause vasoconstriction. As a protective mechanism against excessive vasoconstriction, SMC GqPCR stimulation invokes endothelial cell vasodilatory signaling. Whether Ca2+ influx in endothelial cells contributes to the regulation of GqPCR-induced vasoconstriction remains unknown. Ca2+ influx through TRPV4 (transient receptor potential vanilloid 4) channels is a key regulator of endothelium-dependent vasodilation. We hypothesized that SMC GqPCR stimulation engages endothelial TRPV4 channels to limit vasoconstriction. APPROACH AND RESULTS Using high-speed confocal microscopy to record unitary Ca2+ influx events through TRPV4 channels (TRPV4 sparklets), we report that activation of SMC α1ARs (alpha1-adrenergic receptors) with phenylephrine or thromboxane A2 receptors with U46619 stimulated TRPV4 sparklets in the native endothelium from mesenteric arteries. Activation of endothelial TRPV4 channels did not require an increase in Ca2+ as indicated by the lack of effect of L-type Ca2+ channel activator or chelator of intracellular Ca2+ EGTA-AM. However, gap junction communication between SMCs and endothelial cells was required for phenylephrine activation or U46619 activation of endothelial TRPV4 channels. Lowering inositol 1,4,5-trisphosphate levels with phospholipase C inhibitor or lithium chloride suppressed phenylephrine activation of endothelial TRPV4 sparklets. Moreover, uncaging inositol 1,4,5-trisphosphate profoundly increased TRPV4 sparklet activity. In pressurized arteries, phenylephrine-induced vasoconstriction was followed by a slow, TRPV4-dependent vasodilation, reflecting activation of negative regulatory mechanism. Consistent with these data, phenylephrine induced a significantly higher increase in blood pressure in TRPV4-/- mice. CONCLUSIONS These results demonstrate that SMC GqPCR stimulation triggers inositol 1,4,5-trisphosphate-dependent activation of endothelial TRPV4 channels to limit vasoconstriction.
Collapse
Affiliation(s)
- Kwangseok Hong
- From the Robert M. Berne Cardiovascular Research Center (K.H., E.L.C., L.J.D., C.M., B.E.I., S.K.S.), Department of Molecular Physiology and Biological Physics (C.M., B.E.I., S.K.S.), and Department of Pharmacology (L.J.D., S.K.S), University of Virginia-School of Medicine, Charlottesville
| | - Eric L Cope
- From the Robert M. Berne Cardiovascular Research Center (K.H., E.L.C., L.J.D., C.M., B.E.I., S.K.S.), Department of Molecular Physiology and Biological Physics (C.M., B.E.I., S.K.S.), and Department of Pharmacology (L.J.D., S.K.S), University of Virginia-School of Medicine, Charlottesville
| | - Leon J DeLalio
- From the Robert M. Berne Cardiovascular Research Center (K.H., E.L.C., L.J.D., C.M., B.E.I., S.K.S.), Department of Molecular Physiology and Biological Physics (C.M., B.E.I., S.K.S.), and Department of Pharmacology (L.J.D., S.K.S), University of Virginia-School of Medicine, Charlottesville
| | - Corina Marziano
- From the Robert M. Berne Cardiovascular Research Center (K.H., E.L.C., L.J.D., C.M., B.E.I., S.K.S.), Department of Molecular Physiology and Biological Physics (C.M., B.E.I., S.K.S.), and Department of Pharmacology (L.J.D., S.K.S), University of Virginia-School of Medicine, Charlottesville
| | - Brant E Isakson
- From the Robert M. Berne Cardiovascular Research Center (K.H., E.L.C., L.J.D., C.M., B.E.I., S.K.S.), Department of Molecular Physiology and Biological Physics (C.M., B.E.I., S.K.S.), and Department of Pharmacology (L.J.D., S.K.S), University of Virginia-School of Medicine, Charlottesville
| | - Swapnil K Sonkusare
- From the Robert M. Berne Cardiovascular Research Center (K.H., E.L.C., L.J.D., C.M., B.E.I., S.K.S.), Department of Molecular Physiology and Biological Physics (C.M., B.E.I., S.K.S.), and Department of Pharmacology (L.J.D., S.K.S), University of Virginia-School of Medicine, Charlottesville.
| |
Collapse
|
37
|
Darby WG, Grace MS, Simpson KJ, Woodman OL, McIntyre P. A Functional Kinase Short Interfering Ribonucleic Acid Screen Using Protease-Activated Receptor 2-Dependent Opening of Transient Receptor Potential Vanilloid-4. Assay Drug Dev Technol 2017; 16:15-26. [PMID: 29148820 DOI: 10.1089/adt.2017.799] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Protease-activated receptor 2 (PAR2) is a proinflammatory G-protein coupled receptor (GPCR) that is activated by inflammatory proteases, and its activation initiates signaling pathways that modulate the nonselective cation channel transient receptor potential vanilloid-4 (TRPV4). PAR2-dependent opening of TRPV4 has been attributed to kinase activation, but the identity of the responsible enzymes is unknown. Deciphering the signaling pathways involved in the PAR2-dependent opening of TRPV4 may yield new targets for pain treatment. This study has identified specific kinases that are involved in opening TRPV4, using a selective screen of short interfering ribonucleic acid (siRNA) SMARTpools, which individually targeted all human kinases, in human embryonic kidney 293 (HEK293) cells that stably express inducible TRPV4. This screen is unique because it uses a real-time assay measuring intracellular calcium with Fura-2AM dye. From the primary screen, subsequent confirmation screen, and on-target messenger ribonucleic acid expression analysis, we identified two kinases as crucial to the PAR2-dependent opening of TRPV4 in HEK293 cells, mitogen-activated protein kinase 13 and with no lysine kinase 4. In conclusion, this study describes a powerful new application of siRNA knockdown to identity signaling molecules that are responsible for the PAR2-dependent opening of TRPV4, which will help elucidate this signaling process.
Collapse
Affiliation(s)
- William G Darby
- 1 School of Health and Biomedical Sciences, RMIT University , Bundoora, Australia
| | - Megan S Grace
- 1 School of Health and Biomedical Sciences, RMIT University , Bundoora, Australia .,2 Baker IDI , Melbourne, Australia
| | - Kaylene J Simpson
- 3 Victorian Centre for Functional Genomics, Peter MacCallum Cancer Centre , Melbourne, Australia .,4 Sir Peter MacCallum Department of Oncology, University of Melbourne , Parkville, Australia
| | - Owen L Woodman
- 1 School of Health and Biomedical Sciences, RMIT University , Bundoora, Australia
| | - Peter McIntyre
- 1 School of Health and Biomedical Sciences, RMIT University , Bundoora, Australia
| |
Collapse
|
38
|
Abstract
The transient receptor potential vanilloid 4 (TRPV4) is a highly Ca2+-permeable non-selective cation channel in TRPV family. Accumulating evidence hints that TRPV4 play a significant role in a wide diversity of pathologic changes. Fibrosis is a kind of chronic disease which was characterized by the formation of excessive accumulation of extracellular matrix (ECM) components in tissues and organs. In recent years, a growing body of studies showed that TRPV4 acted as a crucial regulator in the progression of fibrosis including myocardial fibrosis, cystic fibrosis, pulmonary fibrosis, hepatic fibrosis and pancreatic fibrosis, suggesting TRPV4 may be a potential therapeutic vehicle in fibrotic diseases. However, the mechanisms by which TRPV4 regulates fibrosis are still undefined. In this review, firstly, we intend to sum up the collective knowledge of TRPV4. Then we provided the latent mechanism between TRPV4 and fibrosis. We also elaborated the distinct signaling pathways focus on TRPV4 with fibrosis. Finally, we discussed its potential as a novel therapeutic target for fibrosis.
Collapse
|
39
|
Gentil BJ, O'Ferrall E, Chalk C, Santana LF, Durham HD, Massie R. A New Mutation in FIG4 Causes a Severe Form of CMT4J Involving TRPV4 in the Pathogenic Cascade. J Neuropathol Exp Neurol 2017; 76:789-799. [PMID: 28859335 DOI: 10.1093/jnen/nlx062] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Mutations in FIG4, coding for a phosphoinositol(3,5) bisphosphate 5' phosphatase and involved in vesicular trafficking and fusion, have been shown causing a recessive form of Charcot-Marie-Tooth (CMT). We have identified a novel intronic mutation in the FIG4 in a wheel-chair bound patient presenting with a severe form of CMT4J and provide a longitudinal study. Investigations indicated a demyelinating sensorimotor polyneuropathy with diffuse active denervation and severe axonal loss. Genetic testing revealed that the patient is heterozygous for 2 FIG4 mutations, p.I41T and a T > G transversion at IVS17-10, the latter predicted to cause a splicing defect. FIG4 was severely diminished in patient's fibroblasts indicating loss-of-function. Consistent with FIG4's function in phosphoinositol homeostasis and vesicular trafficking, fibroblasts contained multiple large vacuoles and vesicular organelles were abnormally dispersed. FIG4 deficiency has implications for turnover of membrane proteins. The transient receptor cation channel, TRPV4, accumulated at the plasma membrane of patient's fibroblasts due to slow turnover. Knocking down Fig4 in murine cultured motor neurons resulted in vacuolation and cell death. Inhibiting TRPV4 activity significantly preserved viability, although not correcting vesicular trafficking. In conclusion, we demonstrate a new FIG4 intronic mutation and, importantly, a functional interaction between FIG4 and TRPV4.
Collapse
Affiliation(s)
- Benoit J Gentil
- Department of Neurology and Neurosurgery & Montreal Neurological Institute, McGill University, Quebec, Canada; and Department of Physiology & Biophysics and Howard Hughes Medical Institute, Department of Pharmacology, University of Washington, Seattle, Washington
| | - Erin O'Ferrall
- Department of Neurology and Neurosurgery & Montreal Neurological Institute, McGill University, Quebec, Canada; and Department of Physiology & Biophysics and Howard Hughes Medical Institute, Department of Pharmacology, University of Washington, Seattle, Washington
| | - Colin Chalk
- Department of Neurology and Neurosurgery & Montreal Neurological Institute, McGill University, Quebec, Canada; and Department of Physiology & Biophysics and Howard Hughes Medical Institute, Department of Pharmacology, University of Washington, Seattle, Washington
| | - Luis F Santana
- Department of Neurology and Neurosurgery & Montreal Neurological Institute, McGill University, Quebec, Canada; and Department of Physiology & Biophysics and Howard Hughes Medical Institute, Department of Pharmacology, University of Washington, Seattle, Washington
| | - Heather D Durham
- Department of Neurology and Neurosurgery & Montreal Neurological Institute, McGill University, Quebec, Canada; and Department of Physiology & Biophysics and Howard Hughes Medical Institute, Department of Pharmacology, University of Washington, Seattle, Washington
| | - Rami Massie
- Department of Neurology and Neurosurgery & Montreal Neurological Institute, McGill University, Quebec, Canada; and Department of Physiology & Biophysics and Howard Hughes Medical Institute, Department of Pharmacology, University of Washington, Seattle, Washington
| |
Collapse
|
40
|
White JPM, Cibelli M, Urban L, Nilius B, McGeown JG, Nagy I. TRPV4: Molecular Conductor of a Diverse Orchestra. Physiol Rev 2017; 96:911-73. [PMID: 27252279 DOI: 10.1152/physrev.00016.2015] [Citation(s) in RCA: 287] [Impact Index Per Article: 35.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Transient receptor potential vanilloid type 4 (TRPV4) is a calcium-permeable nonselective cation channel, originally described in 2000 by research teams led by Schultz (Nat Cell Biol 2: 695-702, 2000) and Liedtke (Cell 103: 525-535, 2000). TRPV4 is now recognized as being a polymodal ionotropic receptor that is activated by a disparate array of stimuli, ranging from hypotonicity to heat and acidic pH. Importantly, this ion channel is constitutively expressed and capable of spontaneous activity in the absence of agonist stimulation, which suggests that it serves important physiological functions, as does its widespread dissemination throughout the body and its capacity to interact with other proteins. Not surprisingly, therefore, it has emerged more recently that TRPV4 fulfills a great number of important physiological roles and that various disease states are attributable to the absence, or abnormal functioning, of this ion channel. Here, we review the known characteristics of this ion channel's structure, localization and function, including its activators, and examine its functional importance in health and disease.
Collapse
Affiliation(s)
- John P M White
- Anaesthetics, Pain Medicine and Intensive Care Section, Department of Surgery and Cancer, Imperial College London, London, United Kingdom; Department of Anaesthetics, The Queen Elizabeth Hospital, Birmingham, United Kingdom; Academic Department of Anaesthesia and Intensive Care Medicine, School of Clinical and Experimental Medicine, University of Birmingham, Birmingham, United Kingdom; Preclinical Secondary Pharmacology, Preclinical Safety, Novartis Institute for Biomedical Research, Cambridge, Massachusetts; Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven, Campus Gasthuisberg, Leuven, Belgium; and School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, Belfast, United Kingdom
| | - Mario Cibelli
- Anaesthetics, Pain Medicine and Intensive Care Section, Department of Surgery and Cancer, Imperial College London, London, United Kingdom; Department of Anaesthetics, The Queen Elizabeth Hospital, Birmingham, United Kingdom; Academic Department of Anaesthesia and Intensive Care Medicine, School of Clinical and Experimental Medicine, University of Birmingham, Birmingham, United Kingdom; Preclinical Secondary Pharmacology, Preclinical Safety, Novartis Institute for Biomedical Research, Cambridge, Massachusetts; Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven, Campus Gasthuisberg, Leuven, Belgium; and School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, Belfast, United Kingdom
| | - Laszlo Urban
- Anaesthetics, Pain Medicine and Intensive Care Section, Department of Surgery and Cancer, Imperial College London, London, United Kingdom; Department of Anaesthetics, The Queen Elizabeth Hospital, Birmingham, United Kingdom; Academic Department of Anaesthesia and Intensive Care Medicine, School of Clinical and Experimental Medicine, University of Birmingham, Birmingham, United Kingdom; Preclinical Secondary Pharmacology, Preclinical Safety, Novartis Institute for Biomedical Research, Cambridge, Massachusetts; Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven, Campus Gasthuisberg, Leuven, Belgium; and School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, Belfast, United Kingdom
| | - Bernd Nilius
- Anaesthetics, Pain Medicine and Intensive Care Section, Department of Surgery and Cancer, Imperial College London, London, United Kingdom; Department of Anaesthetics, The Queen Elizabeth Hospital, Birmingham, United Kingdom; Academic Department of Anaesthesia and Intensive Care Medicine, School of Clinical and Experimental Medicine, University of Birmingham, Birmingham, United Kingdom; Preclinical Secondary Pharmacology, Preclinical Safety, Novartis Institute for Biomedical Research, Cambridge, Massachusetts; Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven, Campus Gasthuisberg, Leuven, Belgium; and School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, Belfast, United Kingdom
| | - J Graham McGeown
- Anaesthetics, Pain Medicine and Intensive Care Section, Department of Surgery and Cancer, Imperial College London, London, United Kingdom; Department of Anaesthetics, The Queen Elizabeth Hospital, Birmingham, United Kingdom; Academic Department of Anaesthesia and Intensive Care Medicine, School of Clinical and Experimental Medicine, University of Birmingham, Birmingham, United Kingdom; Preclinical Secondary Pharmacology, Preclinical Safety, Novartis Institute for Biomedical Research, Cambridge, Massachusetts; Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven, Campus Gasthuisberg, Leuven, Belgium; and School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, Belfast, United Kingdom
| | - Istvan Nagy
- Anaesthetics, Pain Medicine and Intensive Care Section, Department of Surgery and Cancer, Imperial College London, London, United Kingdom; Department of Anaesthetics, The Queen Elizabeth Hospital, Birmingham, United Kingdom; Academic Department of Anaesthesia and Intensive Care Medicine, School of Clinical and Experimental Medicine, University of Birmingham, Birmingham, United Kingdom; Preclinical Secondary Pharmacology, Preclinical Safety, Novartis Institute for Biomedical Research, Cambridge, Massachusetts; Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven, Campus Gasthuisberg, Leuven, Belgium; and School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, Belfast, United Kingdom
| |
Collapse
|
41
|
Bihari S, Prakash S, Peake SL, Bailey M, Pilcher D, Bersten A. ICU mortality is increased with high admission serum osmolarity in all patients other than those admitted with pulmonary diseases and hypoxia. Respirology 2017; 22:1165-1170. [PMID: 28417586 DOI: 10.1111/resp.13055] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 02/02/2017] [Accepted: 02/20/2017] [Indexed: 02/03/2023]
Abstract
BACKGROUND AND OBJECTIVE High serum osmolarity has been shown to be lung protective. There is lack of clinical studies evaluating the impact on outcomes such as mortality. We aimed to examine the effect of serum osmolarity on intensive care unit (ICU) mortality in critically ill patients METHODS: Data from January 2000 to December 2012 was accessed using the Australian and New Zealand Intensive Care Society (ANZICS) Clinical Outcomes and Resource Evaluation (CORE) database. A total of 509 180 patients were included. Serum osmolarity was calculated from data during the first 24 h of ICU admission. Predefined subgroups (Acute Physiology and Chronic Health Evaluation (APACHE) III diagnostic codes), including patients with acute pulmonary diagnoses, were examined. The effect of serum osmolarity on ICU mortality was assessed with analysis adjusted for illness severity (serum sodium, glucose and urea component removed) and year of admission. Results are presented as OR (95% CI) referenced against a serum osmolarity of 290-295 mmol/L. RESULTS The ICU mortality was elevated at each extremes of serum osmolarity (U-shaped relationship). A similar relationship was found in various subgroups, with the exception of patients with pulmonary diagnoses in whom ICU mortality was not influenced by high serum osmolarity and was different from other non-pulmonary subgroups (P < 0.01). Any adverse associations with high serum osmolarity in pulmonary patients were confined to patients with a PaO2 /FiO2 ratio > 200. CONCLUSION High admission serum osmolarity was not associated with increased odds for ICU death in pulmonary patients, unlike other subgroup of patients, and could be a potential area for future interventional therapy.
Collapse
Affiliation(s)
- Shailesh Bihari
- Department of Critical Care Medicine, Flinders University, Adelaide, South Australia, Australia.,Department of Intensive Care Medicine, Flinders Medical Centre, Adelaide, South Australia, Australia
| | - Shivesh Prakash
- Department of Critical Care Medicine, Flinders University, Adelaide, South Australia, Australia.,Department of Intensive Care Medicine, Flinders Medical Centre, Adelaide, South Australia, Australia
| | - Sandra L Peake
- School of Medicine, University of Adelaide, Adelaide, South Australia, Australia.,ANZIC Research Centre, Monash University, Melbourne, Victoria, Australia.,Department of Intensive Care Medicine, The Queen Elizabeth Hospital, Adelaide, South Australia, Australia
| | - Michael Bailey
- Australian and New Zealand Intensive Care Research Centre, Melbourne, Victoria, Australia.,Department of Epidemiology and Preventive medicine, Monash University, Melbourne, Victoria, Australia
| | - David Pilcher
- ANZIC Research Centre, Monash University, Melbourne, Victoria, Australia.,Department of Epidemiology and Preventive medicine, Monash University, Melbourne, Victoria, Australia.,Department of Intensive Care Medicine, The Alfred Hospital, Melbourne, Victoria, Australia.,Australia New Zealand Intensive Care Society (ANZICS) Clinical Outcomes and Resource Evaluation (CORE) Centre, Melbourne, Victoria, Australia
| | - Andrew Bersten
- Department of Critical Care Medicine, Flinders University, Adelaide, South Australia, Australia.,Department of Intensive Care Medicine, Flinders Medical Centre, Adelaide, South Australia, Australia
| |
Collapse
|
42
|
Grace MS, Bonvini SJ, Belvisi MG, McIntyre P. Modulation of the TRPV4 ion channel as a therapeutic target for disease. Pharmacol Ther 2017; 177:9-22. [PMID: 28202366 DOI: 10.1016/j.pharmthera.2017.02.019] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Transient Receptor Potential Vanilloid 4 (TRPV4) is a broadly expressed, polymodally gated ion channel that plays an important role in many physiological and pathophysiological processes. TRPV4 knockout mice and several synthetic pharmacological compounds that selectively target TRPV4 are now available, which has allowed detailed investigation in to the therapeutic potential of this ion channel. Results from animal studies suggest that TRPV4 antagonism has therapeutic potential in oedema, pain, gastrointestinal disorders, and lung diseases such as cough, bronchoconstriction, pulmonary hypertension, and acute lung injury. A lack of observed side-effects in vivo has prompted a first-in-human trial for a TRPV4 antagonist in healthy participants and stable heart failure patients. If successful, this would open up an exciting new area of research for a multitude of TRPV4-related pathologies. This review will discuss the known roles of TRPV4 in disease, and highlight the possible implications of targeting this important cation channel for therapy.
Collapse
Affiliation(s)
- Megan S Grace
- Baker Heart and Diabetes Institute, Melbourne, Australia; School of Health and Biomedical Sciences, RMIT University, Bundoora, Melbourne, Australia; Department of Physiology, School of Medicine, Nursing and Health Sciences, Monash University, Melbourne, Australia.
| | - Sara J Bonvini
- Respiratory Pharmacology, National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, UK
| | - Maria G Belvisi
- Respiratory Pharmacology, National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, UK
| | - Peter McIntyre
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Melbourne, Australia
| |
Collapse
|
43
|
Darby WG, Grace MS, Baratchi S, McIntyre P. Modulation of TRPV4 by diverse mechanisms. Int J Biochem Cell Biol 2016; 78:217-228. [PMID: 27425399 DOI: 10.1016/j.biocel.2016.07.012] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 07/11/2016] [Accepted: 07/13/2016] [Indexed: 01/25/2023]
Abstract
Transient receptor potential ion channels (TRP) are a superfamily of non-selective ion channels which are opened in response to a diverse range of stimuli. The TRP vanilloid 4 (TRPV4) ion channel is opened in response to heat, mechanical stimuli, hypo-osmolarity and arachidonic acid metabolites. However, recently TRPV4 has been identified as an ion channel that is modulated by, and opened by intracellular signalling cascades from other receptors and signalling pathways. Although TRPV4 knockout mice show relatively mild phenotypes, some mutations in TRPV4 cause severe developmental abnormalities, such as the skeletal dyplasia and arthropathy. Regulated TRPV4 function is also essential for healthy cardiovascular system function as a potent agonist compromises endothelial cell function, leading to vascular collapse. A better understanding of the signalling mechanisms that modulate TRPV4 function is necessary to understand its physiological roles. Post translational modification of TRPV4 by kinases and other signalling molecules can modulate TRPV4 opening in response to stimuli such as mechanical and hyposmolarity and there is an emerging area of research implicating TRPV4 as a transducer of these signals as opposed to a direct sensor of the stimuli. Due to its wide expression profile, TRPV4 is implicated in multiple pathophysiological states. TRPV4 contributes to the sensation of pain due to hypo-osmotic stimuli and inflammatory mechanical hyperalsgesia, where TRPV4 sensitizaton by intracellular signalling leads to pain behaviors in mice. In the vasculature, TRPV4 is a regulator of vessel tone and is implicated in hypertension and diabetes due to endothelial dysfunction. TRPV4 is a key regulator of epithelial and endothelial barrier function and signalling to and opening of TRPV4 can disrupt these critical protective barriers. In respiratory function, TRPV4 is involved in cystic fibrosis, cilary beat frequency, bronchoconstriction, chronic obstructive pulmonary disease, pulmonary hypertension, acute lung injury, acute respiratory distress syndrome and cough.In this review we highlight how modulation of TRPV4 opening is a vital signalling component in a range of tissues and why understanding of TRPV4 regulation in the body may lead to novel therapeutic approaches to treating a range of disease states.
Collapse
Affiliation(s)
- W G Darby
- School of Health and Biomedical Sciences, RMIT University, Melbourne, Australia
| | - M S Grace
- School of Health and Biomedical Sciences, RMIT University, Melbourne, Australia; Baker IDI, Melbourne, Australia
| | - S Baratchi
- School of Health and Biomedical Sciences, RMIT University, Melbourne, Australia
| | - P McIntyre
- School of Health and Biomedical Sciences, RMIT University, Melbourne, Australia.
| |
Collapse
|
44
|
Filosa JA, Morrison HW, Iddings JA, Du W, Kim KJ. Beyond neurovascular coupling, role of astrocytes in the regulation of vascular tone. Neuroscience 2016; 323:96-109. [PMID: 25843438 PMCID: PMC4592693 DOI: 10.1016/j.neuroscience.2015.03.064] [Citation(s) in RCA: 147] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Revised: 03/24/2015] [Accepted: 03/27/2015] [Indexed: 12/22/2022]
Abstract
The brain possesses two intricate mechanisms that fulfill its continuous metabolic needs: cerebral autoregulation, which ensures constant cerebral blood flow over a wide range of arterial pressures and functional hyperemia, which ensures rapid delivery of oxygen and glucose to active neurons. Over the past decade, a number of important studies have identified astrocytes as key intermediaries in neurovascular coupling (NVC), the mechanism by which active neurons signal blood vessels to change their diameter. Activity-dependent increases in astrocytic Ca(2+) activity are thought to contribute to the release of vasoactive substances that facilitate arteriole vasodilation. A number of vasoactive signals have been identified and their role on vessel caliber assessed both in vitro and in vivo. In this review, we discuss mechanisms implicating astrocytes in NVC-mediated vascular responses, limitations encountered as a result of the challenges in maintaining all the constituents of the neurovascular unit intact and deliberate current controversial findings disputing a main role for astrocytes in NVC. Finally, we briefly discuss the potential role of pericytes and microglia in NVC-mediated processes.
Collapse
Affiliation(s)
- J A Filosa
- Georgia Regents University, 1120 15th Street, Augusta, GA 30912, United States.
| | - H W Morrison
- University of Arizona, 1305 N. Martin Avenue, P.O. Box 210203, Tucson, AZ 85721, United States
| | - J A Iddings
- Georgia Regents University, 1120 15th Street, Augusta, GA 30912, United States
| | - W Du
- Georgia Regents University, 1120 15th Street, Augusta, GA 30912, United States
| | - K J Kim
- Georgia Regents University, 1120 15th Street, Augusta, GA 30912, United States
| |
Collapse
|
45
|
Bihari S, Dixon DL, Lawrence MD, Bersten AD. Induced hypernatraemia is protective in acute lung injury. Respir Physiol Neurobiol 2016; 227:56-67. [PMID: 26956742 DOI: 10.1016/j.resp.2016.03.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2016] [Revised: 03/01/2016] [Accepted: 03/01/2016] [Indexed: 10/22/2022]
Abstract
BACKGROUND Sucrose induced hyperosmolarity is lung protective but the safety of administering hyperosmolar sucrose in patients is unknown. Hypertonic saline is commonly used to produce hyperosmolarity aimed at reducing intra cranial pressure in patients with intracranial pathology. Therefore we studied the protective effects of 20% saline in a lipopolysaccharide lung injury rat model. 20% saline was also compared with other commonly used fluids. METHODS Following lipopolysaccharide-induced acute lung injury, male Sprague Dawley rats received either 20% hypertonic saline, 0.9% saline, 4% albumin, 20% albumin, 5% glucose or 20% albumin with 5% glucose, i.v. During 2h of non-injurious mechanical ventilation parameters of acute lung injury were assessed. RESULTS Hypertonic saline resulted in hypernatraemia (160 (1) mmol/l, mean (SD)) maintained through 2h of ventilation, and in amelioration of lung oedema, myeloperoxidase, bronchoalveolar cell infiltrate, total soluble protein and inflammatory cytokines, and lung histological injury score, compared with positive control and all other fluids (p ≤ 0.001). Lung physiology was maintained (conserved PaO2, elastance), associated with preservation of alveolar surfactant (p ≤ 0.0001). CONCLUSION Independent of fluid or sodium load, induced hypernatraemia is lung protective in lipopolysaccharide-induced acute lung injury.
Collapse
Affiliation(s)
- Shailesh Bihari
- Dept of Critical Care Medicine, Flinders University, Adelaide, Australia; Intensive and Critical Care Unit, Flinders Medical Centre, Adelaide, Australia.
| | - Dani-Louise Dixon
- Dept of Critical Care Medicine, Flinders University, Adelaide, Australia; Intensive and Critical Care Unit, Flinders Medical Centre, Adelaide, Australia.
| | - Mark D Lawrence
- Dept of Critical Care Medicine, Flinders University, Adelaide, Australia.
| | - Andrew D Bersten
- Dept of Critical Care Medicine, Flinders University, Adelaide, Australia; Intensive and Critical Care Unit, Flinders Medical Centre, Adelaide, Australia.
| |
Collapse
|
46
|
Yin J, Michalick L, Tang C, Tabuchi A, Goldenberg N, Dan Q, Awwad K, Wang L, Erfinanda L, Nouailles G, Witzenrath M, Vogelzang A, Lv L, Lee WL, Zhang H, Rotstein O, Kapus A, Szaszi K, Fleming I, Liedtke WB, Kuppe H, Kuebler WM. Role of Transient Receptor Potential Vanilloid 4 in Neutrophil Activation and Acute Lung Injury. Am J Respir Cell Mol Biol 2016; 54:370-383. [DOI: 10.1165/rcmb.2014-0225oc] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023] Open
Affiliation(s)
- Jun Yin
- Department of Cardiothoracic Surgery, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, China
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, Ontario, Canada
| | - Laura Michalick
- Institute of Physiology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Christine Tang
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, Ontario, Canada
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Arata Tabuchi
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, Ontario, Canada
| | - Neil Goldenberg
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, Ontario, Canada
| | - Qinghong Dan
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, Ontario, Canada
| | - Khader Awwad
- Institute for Vascular Signaling, Center for Molecular Medicine, Goethe University Frankfurt, Frankfurt, Germany
| | - Liming Wang
- Department of Cardiothoracic Surgery, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, China
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, Ontario, Canada
| | - Lasti Erfinanda
- Institute of Physiology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Geraldine Nouailles
- Department of Infectious Diseases and Pulmonary Medicine, Charité–Universitätsmedizin Berlin, Berlin, Germany
| | - Martin Witzenrath
- Department of Infectious Diseases and Pulmonary Medicine, Charité–Universitätsmedizin Berlin, Berlin, Germany
| | - Alexis Vogelzang
- Department of Immunology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Lu Lv
- Department of Cardiothoracic Surgery, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, China
| | - Warren L. Lee
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, Ontario, Canada
| | - Haibo Zhang
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, Ontario, Canada
| | - Ori Rotstein
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, Ontario, Canada
- Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Andras Kapus
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, Ontario, Canada
- Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Katalin Szaszi
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, Ontario, Canada
- Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Ingrid Fleming
- Institute for Vascular Signaling, Center for Molecular Medicine, Goethe University Frankfurt, Frankfurt, Germany
| | - Wolfgang B. Liedtke
- Department of Medicine/Division of Neurology, Duke Clinics for Pain and Palliative Care, Duke University Medical Center, Durham, North Carolina; and
| | | | - Wolfgang M. Kuebler
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, Ontario, Canada
- Institute of Physiology, Charité Universitätsmedizin Berlin, Berlin, Germany
- Department of Surgery, University of Toronto, Toronto, Ontario, Canada
- German Heart Institute Berlin, Berlin, Germany
| |
Collapse
|
47
|
Mamenko M, Zaika O, Boukelmoune N, O'Neil RG, Pochynyuk O. Deciphering physiological role of the mechanosensitive TRPV4 channel in the distal nephron. Am J Physiol Renal Physiol 2015; 308:F275-F286. [PMID: 25503733 PMCID: PMC4329491 DOI: 10.1152/ajprenal.00485.2014] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 12/08/2014] [Indexed: 12/14/2022] Open
Abstract
Long-standing experimental evidence suggests that epithelial cells in the renal tubule are able to sense osmotic and pressure gradients caused by alterations in ultrafiltrate flow by elevating intracellular Ca(2+) concentration. These responses are viewed as critical regulators of a variety of processes ranging from transport of water and solutes to cellular growth and differentiation. A loss in the ability to sense mechanical stimuli has been implicated in numerous pathologies associated with systemic imbalance of electrolytes and to the development of polycystic kidney disease. The molecular mechanisms conferring mechanosensitive properties to epithelial tubular cells involve activation of transient receptor potential (TRP) channels, such as TRPV4, allowing direct Ca(2+) influx to increase intracellular Ca(2+) concentration. In this review, we critically analyze the current evidence about signaling determinants of TRPV4 activation by luminal flow in the distal nephron and discuss how dysfunction of this mechanism contributes to the progression of polycystic kidney disease. We also review the physiological relevance of TRPV4-based mechanosensitivity in controlling flow-dependent K(+) secretion in the distal renal tubule.
Collapse
Affiliation(s)
- M Mamenko
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center, Houston, Texas
| | - O Zaika
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center, Houston, Texas
| | - N Boukelmoune
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center, Houston, Texas
| | - R G O'Neil
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center, Houston, Texas
| | - O Pochynyuk
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center, Houston, Texas
| |
Collapse
|
48
|
Bihari S, Peake SL, Bailey M, Pilcher D, Prakash S, Bersten A. Admission high serum sodium is not associated with increased intensive care unit mortality risk in respiratory patients. J Crit Care 2014; 29:948-54. [PMID: 25041993 DOI: 10.1016/j.jcrc.2014.06.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Revised: 04/14/2014] [Accepted: 06/12/2014] [Indexed: 11/20/2022]
Abstract
BACKGROUND Because increased serum osmolarity may be lung protective, we hypothesized that increased mortality associated with increased serum sodium would be ameliorated in critically ill patients with an acute respiratory diagnosis. METHODS Data collected within the first 24 hours of intensive care unit (ICU) admission were accessed using ANZICS CORE database. From January 2000 to December 2010, 436,209 patients were assessed. Predefined subgroups including patients with acute respiratory diagnoses were examined. The effect of serum sodium on ICU mortality was assessed with analysis adjusted for illness severity and year of admission. Results are presented as odds ratio (95% confidence interval) referenced against a serum sodium range of 135 to 144.9 mmol/L. RESULTS Overall ICU mortality was increased at each extreme of dysnatremia (U-shaped relationship). A similar trend was found in various subgroups, with the exception of patients with respiratory diagnoses where ICU mortality was not influenced by high serum sodium (odds ratio, 1.3 [0.7-1.2]) and was different from other patient groups (P<.01). Any adverse associations with hypernatremia in respiratory patients were confined to those with arterial pressure of oxygen (PaO2)/fraction of inspired oxygen (Fio2) ratios of greater than 200. CONCLUSION High admission serum sodium is associated with increased odds for ICU death, except in respiratory patients.
Collapse
Affiliation(s)
- Shailesh Bihari
- Department of Critical Care Medicine, Flinders University, Bedford Park, South Australia, Australia; Department of Intensive Care Medicine, Flinders Medical Centre, Bedford Park, South Australia, Australia.
| | - Sandra L Peake
- School of Medicine, University of Adelaide, Adelaide, South Australia, Australia; ANZIC Research Centre, Monash University, Melbourne, Australia; Department of Intensive Care Medicine, The Queen Elizabeth Hospital, Adelaide, Australia.
| | - Michael Bailey
- Australian and New Zealand Intensive Care Research Centre, Department of Epidemiology & Preventive Medicine, Monash University, Melbourne, Australia.
| | - David Pilcher
- ANZIC Research Centre, Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, Australia; The Alfred Hospital, Melbourne, Australia; Australia New Zealand Intensive Care Society (ANZICS), Clinical Outcomes and Resource Evaluation (CORE) Centre, Melbourne, Australia.
| | - Shivesh Prakash
- Department of Intensive Care Medicine, Flinders Medical Centre, Bedford Park, South Australia, Australia.
| | - Andrew Bersten
- Department of Critical Care Medicine, Flinders University, Bedford Park, South Australia, Australia; Department of Intensive Care Medicine, Flinders Medical Centre, Bedford Park, South Australia, Australia.
| |
Collapse
|
49
|
Gu Y, Gu C. Physiological and pathological functions of mechanosensitive ion channels. Mol Neurobiol 2014; 50:339-47. [PMID: 24532247 DOI: 10.1007/s12035-014-8654-4] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Accepted: 01/23/2014] [Indexed: 12/11/2022]
Abstract
Rapid sensation of mechanical stimuli is often mediated by mechanosensitve ion channels. Their opening results from conformational changes induced by mechanical forces. It leads to membrane permeation of selected ions and thereby to electrical signaling. Newly identified mechanosensitive ion channels are emerging at an astonishing rate, including some that are traditionally assigned for completely different functions. In this review, we first provide a brief overview of ion channels that are known to play a role in mechanosensation. Next, we focus on three representative ones, including the transient receptor potential channel V4 (TRPV4), Kv1.1 voltage-gated potassium (Kv) channel, and Piezo channels. Their structures, biophysical properties, expression and targeting patterns, and physiological functions are highlighted. The potential role of their mechanosensation in related diseases is further discussed. In sum, mechanosensation appears to be achieved in a variety of ways by different proteins and plays a fundamental role in the function of various organs under normal and abnormal conditions.
Collapse
Affiliation(s)
- Yuanzheng Gu
- Department of Neuroscience, Ohio State University, 182 Rightmire Hall, 1060 Carmack Road, Columbus, OH, USA
| | | |
Collapse
|
50
|
Abstract
The widely distributed TRPV4 cationic channel participates in the transduction of both physical (osmotic, mechanical, and heat) and chemical (endogenous, plant-derived, and synthetic ligands) stimuli. In this chapter we will review TRPV4 expression, biophysics, structure, regulation, and interacting partners as well as physiological and pathological insights obtained in TRPV4 animal models and human genetic studies.
Collapse
|