1
|
Interregional Coevolution Analysis Revealing Functional and Structural Interrelatedness between Different Genomic Regions in Human Mastadenovirus D. J Virol 2015; 89:6209-17. [PMID: 25833048 DOI: 10.1128/jvi.00515-15] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 03/25/2015] [Indexed: 01/22/2023] Open
Abstract
UNLABELLED Human mastadenovirus D (HAdV-D) is exceptionally rich in type among the seven human adenovirus species. This feature is attributed to frequent intertypic recombination events that have reshuffled orthologous genomic regions between different HAdV-D types. However, this trend appears to be paradoxical, as it has been demonstrated that the replacement of some of the interacting proteins for a specific function with other orthologues causes malfunction, indicating that intertypic recombination events may be deleterious. In order to understand why the paradoxical trend has been possible in HAdV-D evolution, we conducted an interregional coevolution analysis between different genomic regions of 45 different HAdV-D types and found that ca. 70% of the genome has coevolved, even though these are fragmented into several pieces via short intertypic recombination hot spot regions. Since it is statistically and biologically unlikely that all of the coevolving fragments have synchronously recombined between different genomes, it is probable that these regions have stayed in their original genomes during evolution as a platform for frequent intertypic recombination events in limited regions. It is also unlikely that the same genomic regions have remained almost untouched during frequent recombination events, independently, in all different types, by chance. In addition, the coevolving regions contain the coding regions of physically interacting proteins for important functions. Therefore, the coevolution of these regions should be attributed at least in part to natural selection due to common biological constraints operating on all types, including protein-protein interactions for essential functions. Our results predict additional unknown protein interactions. IMPORTANCE Human mastadenovirus D, an exceptionally type-rich human adenovirus species and causative agent of different diseases in a wide variety of tissues, including that of ocular region and digestive tract, as well as an opportunistic infection in immunocompromised patients, is known to have highly diverged through frequent intertypic recombination events; however, it has also been demonstrated that the replacement of a component protein of a multiprotein system with a homologous protein causes malfunction. The present study solved this apparent paradox by looking at which genomic parts have coevolved using a newly developed method. The results revealed that intertypic recombination events have occurred in limited genomic regions and been avoided in the genomic regions encoding proteins that physically interact for a given function. This approach detects purifying selection against recombination events causing the replacement of partial components of multiprotein systems and therefore predicts physical and functional interactions between different proteins and/or genomic elements.
Collapse
|
2
|
Impact of the adenoviral E4 Orf3 protein on the activity and posttranslational modification of p53. J Virol 2015; 89:3209-20. [PMID: 25568206 DOI: 10.1128/jvi.03072-14] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
UNLABELLED Our previous studies have established that the p53 populations that accumulate in normal human cells exposed to etoposide or infected by an E1B 55-kDa protein-null mutant of human adenovirus type 5 carry a large number of posttranslational modifications at numerous residues (C. J. DeHart, J. S. Chahal, S. J. Flint, and D. H. Perlman, Mol Cell Proteomics 13:1-17, 2014, http://dx.doi.org/10.1074/mcp.M113.030254). In the absence of this E1B protein, the p53 transcriptional program is not induced, and it has been reported that the viral E4 Orf3 protein inactivates p53 (C. Soria, F. E. Estermann, K. C. Espantman, and C. C. O'Shea, Nature 466:1076-1081, 2010, http://dx.doi.org/10.1038/nature09307). As the latter protein disrupts nuclear Pml bodies, sites at which p53 is modified, we used mass spectrometry to catalogue the posttranscriptional modifications of the p53 population that accumulates when neither the E1B 55-kDa nor the E4 Orf3 protein is made in infected cells. Eighty-five residues carrying 163 modifications were identified. The overall patterns of posttranslational modification of this population and p53 present in cells infected by an E1B 55-kDa-null mutant were similar. The efficiencies with which the two forms of p53 bound to a consensus DNA recognition sequence could not be distinguished and were lower than that of transcriptionally active p53. The absence of the E4 Orf3 protein increased expression of several p53-responsive genes when the E1B protein was also absent from infected cells. However, expression of these genes did not attain the levels observed when p53 was activated in response to etoposide treatment and remained lower than those measured in mock-infected cells. IMPORTANCE The tumor suppressor p53, a master regulator of cellular responses to stress, is inactivated and destroyed in cells infected by species C human adenoviruses, such as type 5. It is targeted for proteasomal degradation by the action of a virus-specific E3 ubiquitin ligase that contains the viral E1B 55-kDa and E4 Orf6 proteins, while the E4 Orf3 protein has been reported to block its ability to stimulate expression of p53-dependent genes. The comparisons reported here of the posttranslational modifications and activities of p53 populations that accumulate in infected normal human cells in the absence of both mechanisms of inactivation or of only the E3 ligase revealed little impact of the E4 Orf3 protein. These observations indicate that E4 Orf3-dependent disruption of Pml bodies does not have a major effect on the pattern of p53 posttranslational modifications in adenovirus-infected cells. Furthermore, they suggest that one or more additional viral proteins contribute to blocking p53 activation and the consequences that are deleterious for viral reproduction, such as apoptosis or cell cycle arrest.
Collapse
|
3
|
Timely synthesis of the adenovirus type 5 E1B 55-kilodalton protein is required for efficient genome replication in normal human cells. J Virol 2012; 86:3064-72. [PMID: 22278242 DOI: 10.1128/jvi.06764-11] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Previous studies have indicated that the adenovirus type 5 E1B 55-kDa protein facilitates viral DNA synthesis in normal human foreskin fibroblasts (HFFs) but not in primary epithelial cells. To investigate this apparent difference further, viral DNA accumulation was examined in primary human fibroblasts and epithelial cells infected by the mutant AdEasyE1Δ2347, which carries the Hr6 frameshift mutation that prevents production of the E1B 55-kDa protein, in an E1-containing derivative of AdEasy. Impaired viral DNA synthesis was observed in normal HFFs but not in normal human bronchial epithelial cells infected by this mutant. However, acceleration of progression through the early phase, which is significantly slower in HFFs than in epithelial cells, eliminated the dependence of efficient viral DNA synthesis in HFFs on the E1B 55-kDa protein. These observations suggest that timely synthesis of the E1B 55-kDa protein protects normal cells against a host defense that inhibits adenoviral genome replication. One such defense is mediated by the Mre11-Rad50-Nbs1 complex. Nevertheless, examination of the localization of Mre11 and viral proteins by immunofluorescence suggested that this complex is inactivated similarly in AdEasyE1Δ2347 mutant-infected and AdEasyE1-infected HFFs.
Collapse
|
4
|
Miller DL, Rickards B, Mashiba M, Huang W, Flint SJ. The adenoviral E1B 55-kilodalton protein controls expression of immune response genes but not p53-dependent transcription. J Virol 2009; 83:3591-603. [PMID: 19211769 PMCID: PMC2663238 DOI: 10.1128/jvi.02269-08] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2008] [Accepted: 01/30/2009] [Indexed: 01/20/2023] Open
Abstract
The human adenovirus type 5 (Ad5) E1B 55-kDa protein modulates several cellular processes, including activation of the tumor suppressor p53. Binding of the E1B protein to the activation domain of p53 inhibits p53-dependent transcription. This activity has been correlated with the transforming activity of the E1B protein, but its contribution to viral replication is not well understood. To address this issue, we used microarray hybridization methods to examine cellular gene expression in normal human fibroblasts (HFFs) infected by Ad5, the E1B 55-kDa-protein-null mutant Hr6, or a mutant carrying substitutions that impair repression of p53-dependent transcription. Comparison of the changes in cellular gene expression observed in these and our previous experiments (D. L. Miller et al., Genome Biol. 8:R58, 2007) by significance analysis of microarrays indicated excellent reproducibility. Furthermore, we again observed that Ad5 infection led to efficient reversal of the p53-dependent transcriptional program. As this same response was also induced in cells infected by the two mutants, we conclude that the E1B 55-kDa protein is not necessary to block activation of p53 in Ad5-infected cells. However, groups of cellular genes that were altered in expression specifically in the absence of the E1B protein were identified by consensus k-means clustering of the hybridization data. Statistical analysis of the enrichment of genes associated with specific functions in these clusters established that the E1B 55-kDa protein is necessary for repression of genes encoding proteins that mediate antiviral and immune defenses.
Collapse
Affiliation(s)
- Daniel L Miller
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544-1014, USA
| | | | | | | | | |
Collapse
|
5
|
Jayaram S, Ketner G, Adachi N, Hanakahi LA. Loss of DNA ligase IV prevents recognition of DNA by double-strand break repair proteins XRCC4 and XLF. Nucleic Acids Res 2008; 36:5773-86. [PMID: 18782835 PMCID: PMC2566893 DOI: 10.1093/nar/gkn552] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The repair of DNA double-strand breaks by nonhomologous end-joining (NHEJ) is essential for maintenance of genomic integrity and cell viability. Central to the molecular mechanism of NHEJ is DNA ligase IV/XRCC4/XLF complex, which rejoins the DNA. During adenovirus (Ad5) infection, ligase IV is targeted for degradation in a process that requires expression of the viral E1B 55k and E4 34k proteins while XRCC4 and XLF protein levels remain unchanged. We show that in Ad5-infected cells, loss of ligase IV is accompanied by loss of DNA binding by XRCC4. Expression of E1B 55k and E4 34k was sufficient to cause loss of ligase IV and loss of XRCC4 DNA binding. Using ligase IV mutant human cell lines, we determined that the absence of ligase IV, and not expression of viral proteins, coincided with inhibition of DNA binding by XRCC4. In ligase IV mutant human cell lines, DNA binding by XLF was also inhibited. Expression of both wild-type and adenylation-mutant ligase IV in ligase IV-deficient cells restored DNA binding by XRCC4. These data suggest that the intrinsic DNA-binding activities of XRCC4 and XLF may be subject to regulation and are down regulated in human cells that lack ligase IV.
Collapse
Affiliation(s)
- Sumithra Jayaram
- Department of Biochemistry and Molecular Biology, Department of Molecular Microbiology and Immunology, Johns Hopkins University, Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | | | | | | |
Collapse
|
6
|
Blanchette P, Kindsmüller K, Groitl P, Dallaire F, Speiseder T, Branton PE, Dobner T. Control of mRNA export by adenovirus E4orf6 and E1B55K proteins during productive infection requires E4orf6 ubiquitin ligase activity. J Virol 2008; 82:2642-51. [PMID: 18184699 PMCID: PMC2258987 DOI: 10.1128/jvi.02309-07] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2007] [Accepted: 12/28/2007] [Indexed: 01/12/2023] Open
Abstract
During the adenovirus infectious cycle, the early proteins E4orf6 and E1B55K are known to perform several functions. These include nuclear export of late viral mRNAs, a block of nuclear export of the bulk of cellular mRNAs, and the ubiquitin-mediated degradation of selected proteins, including p53 and Mre11. Degradation of these proteins occurs via a cellular E3 ubiquitin ligase complex that is assembled through interactions between elongins B and C and BC boxes present in E4orf6 to form a cullin 5-based ligase complex. E1B55K, which has been known for some time to associate with the E4orf6 protein, is thought to bind to specific substrate proteins to bring them to the complex for ubiquitination. Earlier studies with E4orf6 mutants indicated that the interaction between the E4orf6 and E1B55K proteins is optimal only when E4orf6 is able to form the ligase complex. These and other observations suggested that most if not all of the functions ascribed to E4orf6 and E1B55K during infection, including the control of mRNA export, are achieved through the degradation of specific substrates by the E4orf6 ubiquitin ligase activity. We have tested this hypothesis through the generation of a virus mutant in which the E4orf6 product is unable to form a ligase complex and indeed have found that this mutant behaves identically to an E4orf6(-) virus in production of late viral proteins, growth, and export of the late viral L5 mRNA.
Collapse
Affiliation(s)
- Paola Blanchette
- Heinrich-Pette-Institute for Experimental Virology and Immunology, Martinistr. 52, 20251 Hamburg, Germany
| | | | | | | | | | | | | |
Collapse
|
7
|
Baker A, Rohleder KJ, Hanakahi LA, Ketner G. Adenovirus E4 34k and E1b 55k oncoproteins target host DNA ligase IV for proteasomal degradation. J Virol 2007; 81:7034-40. [PMID: 17459921 PMCID: PMC1933317 DOI: 10.1128/jvi.00029-07] [Citation(s) in RCA: 143] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Cells infected by adenovirus E4 mutants accumulate end-to-end concatemers of the viral genome that are assembled from unit-length viral DNAs by nonhomologous end joining (NHEJ). Genome concatenation can be prevented by expression either of E4 11k (product of E4orf3) or of the complex of E4 34k (product of E4orf6) and E1b 55k. Both E4 11k and the E4 34k/E1b 55k complex prevent concatenation at least in part by inactivation of the host protein Mre11: E4 11k sequesters Mre11 in aggresomes, while the E4 34k/E1b 55k complex participates in a virus-specific E3 ubiquitin ligase that mediates ubiquitination and proteasomal degradation. The E4 34k/E1b 55k complex, but not E4 11k, also inhibits NHEJ activity on internal breaks in the viral genome and on V(D)J recombination substrate plasmids, suggesting that it may interfere with NHEJ independently of its effect on Mre11. We show here that DNA ligase IV, which performs the joining step of NHEJ, is degraded as a consequence of adenovirus infection. Degradation is dependent upon E4 34k and E1b 55k, functional proteasomes, and the activity of cellular cullin 5, a component of the adenoviral ubiquitin ligase. DNA ligase IV also interacts physically with E1b 55k. The data demonstrate that DNA ligase IV, like Mre11, is a substrate for the adenovirus-specific E3 ubiquitin ligase; identify an additional viral approach to prevention of genome concatenation; and provide a mechanism for the general inhibition of NHEJ by adenoviruses.
Collapse
Affiliation(s)
- Amy Baker
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe Street, Baltimore, MD 21205, USA
| | | | | | | |
Collapse
|
8
|
Cheng CY, Blanchette P, Branton PE. The adenovirus E4orf6 E3 ubiquitin ligase complex assembles in a novel fashion. Virology 2007; 364:36-44. [PMID: 17367836 DOI: 10.1016/j.virol.2007.02.012] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2006] [Revised: 12/06/2006] [Accepted: 02/12/2007] [Indexed: 11/29/2022]
Abstract
The human adenovirus E4orf6 and E1B55K proteins are part of an E3 ubiquitin ligase complex that degrades p53, Mre11 and probably other cellular polypeptides. Our group has demonstrated previously that this complex contains Cul5, Rbx1 and Elongin B and C and is formed through interactions of these cellular proteins with E4orf6. Although this E4orf6 complex is similar in many ways to the cellular SCF and VBC E3 ligase complexes, our previous work indicated that unlike all known Cullin-containing complexes, E4orf6 contains two functional BC-box motifs that permit interactions with Elongin B and C. Here we show that a third BC-box exists that also appears to be fully functional. In addition, we attempted to identify a region in E4orf6 responsible for the specific selection of Cul5, which we show herein by knocking down Cul5 protein levels, is essential for p53 degradation. One sequence within E4orf6 shares limited homology with the 'Cul5 box motif', a recently identified sequence found to be responsible for selection of Cul5 in some cellular Cullin-containing E3 ligase complexes; however, genetic analysis indicated that this motif is not involved in Cullin binding or p53 degradation. Thus E4orf6 appears to utilize a different mechanism for Cul5 selection, and, both in terms of interactions with Elongin B and C and with Cul5, assembles the E3 ligase complex in a highly novel fashion.
Collapse
Affiliation(s)
- Chi Ying Cheng
- Department of Biochemistry, McGill University, McIntyre Medical Building, 3655 Promenade Sir William Osler, Montreal, Quebec, Canada H3G 1Y6
| | | | | |
Collapse
|
9
|
Luo K, Ehrlich E, Xiao Z, Zhang W, Ketner G, Yu XF. Adenovirus E4orf6 assembles with Cullin5‐ElonginB‐ElonginC E3 ubiquitin ligase through an HIV/SIV Vif‐like BC‐box to regulate p53. FASEB J 2007; 21:1742-50. [PMID: 17351129 DOI: 10.1096/fj.06-7241com] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The adenovirus protein E4orf6 targets p53 for polyubiquitination and proteasomal degradation and is known to form a complex with the Cul5-ElonginB-ElonginC E3 ubiquitin ligase. However, whether Cul5 is directly responsible for the E4orf6-mediated degradation of p53 remains unclear. By using a dominant-negative mutant of Cul5 and silencing Cul5 expression through RNA interference, we have now demonstrated that E4orf6-mediated p53 degradation requires Cul5. Furthermore, we have identified a lentiviral Vif-like BC-box motif in E4orf6 that is highly conserved among adenoviruses from multiple species. More importantly, we have shown that this Vif-like BC-box is essential for the recruitment of Cul5-ElonginB-ElonginC E3 ubiquitin ligase by E4orf6 and is also required for E4orf6-mediated p53 degradation. E4orf6 selectively recruited Cul5 despite the lack of either a Cul5-box, which is used by cellular substrate receptors to recruit Cul5, or a newly identified HCCH zinc-binding motif, which is used by primate lentiviral Vif to recruit Cul5. Therefore, adenovirus E4orf6 molecules represent a novel family of viral BC-box proteins the cellular ancestor of which is as yet unknown.
Collapse
Affiliation(s)
- Kun Luo
- Department of Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe St., Baltimore, MD 21205, USA
| | | | | | | | | | | |
Collapse
|
10
|
Xiao Z, Ehrlich E, Luo K, Xiong Y, Yu XF. Zinc chelation inhibits HIV Vif activity and liberates antiviral function of the cytidine deaminase APOBEC3G. FASEB J 2006; 21:217-22. [PMID: 17135358 DOI: 10.1096/fj.06-6773com] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
APOBEC3 proteins are cellular antiviral proteins that are targeted for proteasomal degradation by primate lentiviral Vif proteins. Vif acts as a substrate receptor for the Cullin5 (Cul5) E3 ubiquitin ligase, specifically interacting with Cul5 through a novel H-(x5)-C-(x17-18)-C-(x3-5)-H zinc binding motif. Using the membrane-permeable zinc chelator, N,N,N',N'-tetrakis-(2-pyridylmethyl) ethylenediamine (TPEN), we demonstrated a requirement for zinc for Vif function in vivo. Treatment with TPEN at an IC50 of 1.79 microM inhibits Cul5 recruitment and APOBEC3G (A3G) degradation. Zinc chelation prevented Vif function in infectivity assays, allowing the virus to become sensitive to the antiviral activity of A3G. Zinc chelation had no effect on cellular Cul5-SOCS3 E3 ligase assembly, suggesting that zinc-dependent E3 ligase assembly may be unique to HIV-1 Vif, representing a new target for novel drug design.
Collapse
Affiliation(s)
- Zuoxiang Xiao
- Department of Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe St., Baltimore, MD 21205, USA
| | | | | | | | | |
Collapse
|
11
|
Mehle A, Thomas ER, Rajendran KS, Gabuzda D. A zinc-binding region in Vif binds Cul5 and determines cullin selection. J Biol Chem 2006; 281:17259-17265. [PMID: 16636053 DOI: 10.1074/jbc.m602413200] [Citation(s) in RCA: 150] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Human immunodeficiency virus-1 (HIV-1) Vif overcomes the anti-viral activity of APOBEC3G by targeting it for ubiquitination via a Cullin 5-ElonginB-ElonginC (Cul5-EloBC) E3 ligase. Vif associates with Cul5-EloBC through a BC-box motif that binds EloC, but the mechanism by which Vif selectively recruits Cul5 is poorly understood. Here we report that a region of Vif (residues 100-142) upstream of the BC-box binds selectively to Cul5 in the absence of EloC. This region contains a zinc coordination site HX5CX17-18CX3-5H (HCCH), with His/Cys residues at positions 108, 114, 133, and 139 coordinating one zinc ion. The HCCH zinc coordination site, which is conserved among primate lentivirus Vif proteins, does not correspond to any known class of zinc-binding motif. Mutations of His/Cys residues in the HCCH motif impair zinc coordination, Cul5 binding, and APOBEC3G degradation. Mutations of conserved hydrophobic residues (Ile-120, Ala-123, and Leu-124) located between the two Cys residues in the HCCH motif disrupt binding of the zinc-coordinating region to Cul5 and inhibit APOBEC3G degradation. The Vif binding site maps to the first cullin repeat in the N terminus of Cul5. These data suggest that the zinc-binding region in Vif is a novel cullin interaction domain that mediates selective binding to Cul5. We propose that the HCCH zinc-binding motif facilitates Vif-Cul5 binding by playing a structural role in positioning hydrophobic residues for direct contact with Cul5.
Collapse
Affiliation(s)
- Andrew Mehle
- Department of Cancer Immunology and AIDS, Dana Farber Cancer Institute, Boston, Massachusetts 02115; Departments of Pathology, Harvard Medical School, Boston, Massachusetts 02115
| | - Elaine R Thomas
- Department of Cancer Immunology and AIDS, Dana Farber Cancer Institute, Boston, Massachusetts 02115; Departments of Pathology, Harvard Medical School, Boston, Massachusetts 02115
| | - Kottampatty S Rajendran
- Department of Cancer Immunology and AIDS, Dana Farber Cancer Institute, Boston, Massachusetts 02115; Departments of Pathology, Harvard Medical School, Boston, Massachusetts 02115
| | - Dana Gabuzda
- Department of Cancer Immunology and AIDS, Dana Farber Cancer Institute, Boston, Massachusetts 02115; Departments of Neurology, Harvard Medical School, Boston, Massachusetts 02115.
| |
Collapse
|
12
|
Xiao Z, Ehrlich E, Yu Y, Luo K, Wang T, Tian C, Yu XF. Assembly of HIV-1 Vif-Cul5 E3 ubiquitin ligase through a novel zinc-binding domain-stabilized hydrophobic interface in Vif. Virology 2006; 349:290-9. [PMID: 16530799 DOI: 10.1016/j.virol.2006.02.002] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2005] [Revised: 01/02/2006] [Accepted: 02/02/2006] [Indexed: 02/08/2023]
Abstract
APOBEC3G (A3G) and related cytidine deaminases are potent inhibitors of retroviruses. HIV-1 Vif hijacks the cellular Cul5-E3 ubiquitin ligase to degrade APOBEC3 proteins and render them ineffective against these viruses. Here, we report that HIV-1 Vif is a novel zinc-binding protein containing an H-x(5)-C-x(17-18)-C-x(3-5)-H motif that is distinct from other recognized classes of zinc fingers. Zinc-binding stabilized a conserved hydrophobic interface within the HCCH motif that is critical for Vif-Cul5 E3 assembly and Vif function. An N-terminal region in the first Cullin repeat of Cul5, which is dispensable for adaptor ElonginC binding, was required for interaction with Vif. This region is the most divergent sequence between Cul2 and Cul5, a factor that may contribute to the selection of Cul5 and not Cul2 by Vif. This is the first example of a zinc-binding substrate receptor responsible for the assembly of a Cullin-RING ligase, representing a new target for antiviral development.
Collapse
Affiliation(s)
- Zuoxiang Xiao
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | | | | | | | | | | | | |
Collapse
|
13
|
Weitzman MD, Ornelles DA. Inactivating intracellular antiviral responses during adenovirus infection. Oncogene 2005; 24:7686-96. [PMID: 16299529 DOI: 10.1038/sj.onc.1209063] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
DNA viruses promote cell cycle progression, stimulate unscheduled DNA synthesis, and present the cell with an extraordinary amount of exogenous DNA. These insults elicit vigorous responses mediated by cellular factors that govern cellular homeostasis. To ensure productive infection, adenovirus has developed means to inactivate these intracellular antiviral responses. Among the challenges to the host cell is the viral DNA genome, which is viewed as DNA damage and elicits a cellular response to inhibit replication. Adenovirus therefore encodes proteins that dismantle the cellular DNA damage machinery. Studying virus-host interactions has yielded insights into the molecular functioning of fundamental cellular mechanisms. In addition, it has suggested ways that viral cytotoxicity can be exploited to offer a selective means of restricted growth in tumor cells as a therapy against cancer. In this review, we discuss aspects of the intracellular response that are unique to adenovirus infection and how adenoviral proteins produced from the early region E4 act to neutralize antiviral defenses, with a particular focus on DNA damage signaling.
Collapse
Affiliation(s)
- Matthew D Weitzman
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA.
| | | |
Collapse
|
14
|
Liu Y, Shevchenko A, Shevchenko A, Berk AJ. Adenovirus exploits the cellular aggresome response to accelerate inactivation of the MRN complex. J Virol 2005; 79:14004-16. [PMID: 16254336 PMCID: PMC1280221 DOI: 10.1128/jvi.79.22.14004-14016.2005] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2005] [Accepted: 08/18/2005] [Indexed: 12/26/2022] Open
Abstract
Results reported here indicate that adenovirus 5 exploits the cellular aggresome response to accelerate inactivation of MRE11-RAD50-NBS1 (MRN) complexes that otherwise inhibit viral DNA replication and packaging. Aggresomes are cytoplasmic inclusion bodies, observed in many degenerative diseases, that are formed from aggregated proteins by dynein-dependent retrograde transport on microtubules to the microtubule organizing center. Viral E1B-55K protein forms aggresomes that sequester p53 and MRN in transformed cells and in cells transfected with an E1B-55K expression vector. During adenovirus infection, the viral protein E4orf3 associates with MRN in promyelocytic leukemia protein nuclear bodies before MRN is bound by E1B-55K. Either E4orf3 or E4orf6 is required in addition to E1B-55K for E1B-55K aggresome formation and MRE11 export to aggresomes in adenovirus-infected cells. Aggresome formation contributes to the protection of viral DNA from MRN activity by sequestering MRN in the cytoplasm and greatly accelerating its degradation by proteosomes following its ubiquitination by the E1B-55K/E4orf6/elongin BC/Cullin5/Rbx1 ubiquitin ligase. Our results show that aggresomes significantly accelerate protein degradation by the ubiquitin-proteosome system. The observation that a normal cellular protein is inactivated when sequestered into an aggresome through association with an aggresome-inducing protein has implications for the potential cytotoxicity of aggresome-like inclusion bodies in degenerative diseases.
Collapse
Affiliation(s)
- Yue Liu
- Molecular Biology Institute and Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, California 90095-1570, USA
| | | | | | | |
Collapse
|
15
|
Sirena D, Ruzsics Z, Schaffner W, Greber UF, Hemmi S. The nucleotide sequence and a first generation gene transfer vector of species B human adenovirus serotype 3. Virology 2005; 343:283-98. [PMID: 16169033 PMCID: PMC7172737 DOI: 10.1016/j.virol.2005.08.024] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2005] [Revised: 08/09/2005] [Accepted: 08/18/2005] [Indexed: 12/11/2022]
Abstract
Human adenovirus (Ad) serotype 3 causes respiratory infections. It is considered highly virulent, accounting for about 13% of all Ad isolates. We report here the complete Ad3 DNA sequence of 35,343 base pairs (GenBank accession DQ086466). Ad3 shares 96.43% nucleotide identity with Ad7, another virulent subspecies B1 serotype, and 82.56 and 62.75% identity with the less virulent species B2 Ad11 and species C Ad5, respectively. The genomic organization of Ad3 is similar to the other human Ads comprising five early transcription units, E1A, E1B, E2, E3, and E4, two delayed early units IX and IVa2, and the major late unit, in total 39 putative and 7 hypothetical open reading frames. A recombinant E1-deleted Ad3 was generated on a bacterial artificial chromosome. This prototypic virus efficiently transduced CD46-positive rodent and human cells. Our results will help in clarifying the biology and pathology of adenoviruses and enhance therapeutic applications of viral vectors in clinical settings.
Collapse
Affiliation(s)
- Dominique Sirena
- Institute of Molecular Biology, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | - Zsolt Ruzsics
- Max von Pettenkofer Institute, Gene Centre of LMU Munich, Feodor-Lynen-Strasse 25, 81377 Munich, Germany
| | - Walter Schaffner
- Institute of Molecular Biology, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | - Urs F. Greber
- Institute of Zoology, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | - Silvio Hemmi
- Institute of Molecular Biology, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
- Corresponding author. Fax: +41 44 635 6811.
| |
Collapse
|
16
|
Blanchette P, Cheng CY, Yan Q, Ketner G, Ornelles DA, Dobner T, Conaway RC, Conaway JW, Branton PE. Both BC-box motifs of adenovirus protein E4orf6 are required to efficiently assemble an E3 ligase complex that degrades p53. Mol Cell Biol 2004; 24:9619-29. [PMID: 15485928 PMCID: PMC522240 DOI: 10.1128/mcb.24.21.9619-9629.2004] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2004] [Revised: 06/15/2004] [Accepted: 07/22/2004] [Indexed: 11/20/2022] Open
Abstract
Small DNA tumor viruses typically encode proteins that either inactivate or degrade p53. Human adenoviruses encode products, including E4orf6 and E1B55K, that do both. Each independently binds to p53 and inhibits its ability to activate gene expression; however, in combination they induce p53 degradation by the ubiquitin pathway. We have shown previously that p53 degradation relies on interactions of E4orf6 with the cellular proteins Cul5, Rbx1, and elongins B and C to form an E3 ligase similar to the SCF and VBC complexes. Here we show that, like other elongin BC-interacting proteins, including elongin A, von Hippel-Lindau protein, and Muf1, the interaction of E4orf6 is mediated by the BC-box motif; however, E4orf6 uniquely utilizes two BC-box motifs for degradation of p53 and another target, Mre11. In addition, our data suggest that the interaction of E1B55K with E4orf6 depends on the ability of E4orf6 to form the E3 ligase complex and that such complex formation may be required for all E4orf6-E1B55K functions.
Collapse
Affiliation(s)
- Paola Blanchette
- McGill University, McIntyre Medical Building, 3655 Promenade Sir William Osler, Montreal, Quebec, Canada H3G 1Y6
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Abstract
The last 40 years of molecular biological investigations into human adenoviruses have contributed enormously to our understanding of the basic principles of normal and malignant cell growth. Much of this knowledge stems from analyses of their productive infection cycle in permissive host cells. Also, initial observations concerning the carcinogenic potential of human adenoviruses subsequently revealed decisive insights into the molecular mechanisms of the origins of cancer, and established adenoviruses as a model system for explaining virus-mediated transformation processes. Today it is well established that cell transformation by human adenoviruses is a multistep process involving several gene products encoded in early transcription units 1A (E1A) and 1B (E1B). Moreover, a large body of evidence now indicates that alternative or additional mechanisms are engaged in adenovirus-mediated oncogenic transformation involving gene products encoded in early region 4 (E4) as well as epigenetic changes resulting from viral DNA integration. In particular, detailed studies on the tumorigenic potential of subgroup D adenovirus type 9 (Ad9) E4 have now revealed a new pathway that points to a novel, general mechanism of virus-mediated oncogenesis. In this chapter, we summarize the current state of knowledge about the oncogenes and oncogene products of human adenoviruses, focusing particularly on recent findings concerning the transforming and oncogenic properties of viral proteins encoded in the E1B and E4 transcription units.
Collapse
Affiliation(s)
- C Endter
- Institut für Medizinische Mikrobiologie und Hygiene, Universität Regensburg, Landshuterstr. 22, 93047 Regensburg, Germany
| | | |
Collapse
|
18
|
Corbin-Lickfett KA, Bridge E. Adenovirus E4-34kDa requires active proteasomes to promote late gene expression. Virology 2003; 315:234-44. [PMID: 14592775 DOI: 10.1016/s0042-6822(03)00527-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
A complex of the Adenovirus (Ad) early region 1b 55-kDa protein (E1b-55kDa) and the early region 4 ORF6 34-kDa protein (E4-34kDa) promotes viral late RNA accumulation in the cytoplasm while inhibiting the transport of most newly synthesized cellular mRNA. The E4 ORF3 11-kDa protein (E4-11kDa) functionally compensates for at least some of the activities of this complex. We find that the same large central region of E4-34kDa that is required for proteasome-mediated degradation of p53 (J. Virol. 75, (2001) 699-709) is also required to promote viral late gene expression in a complementation assay. E4-34kDa does not promote late gene expression in complementation assays performed in the presence of proteasome inhibitors. A proteasome inhibitor also dramatically reduced late gene expression by a virus that lacks the E4-11kDa gene and therefore relies on E4-34kDa for late gene expression. Our results suggest that E4-34kDa activity in promoting late gene expression depends on the proteasome.
Collapse
|
19
|
Chastain-Moore AM, Roberts T, Trott DA, Newbold RF, Ornelles DA. An activity associated with human chromosome 21 permits nuclear colocalization of the adenovirus E1B-55K and E4orf6 proteins and promotes viral late gene expression. J Virol 2003; 77:8087-98. [PMID: 12829847 PMCID: PMC161949 DOI: 10.1128/jvi.77.14.8087-8098.2003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The adenovirus E1B-55K and E4orf6 proteins cooperate during virus infection while performing several tasks that contribute to a productive infection, including the selective nucleocytoplasmic transport of late viral mRNA. Previous studies have shown that the E4orf6 protein retains the E1B-55K protein in the nucleus of human and monkey cells, but not in those of rodents, suggesting that primate-specific cellular factors contribute to the E4orf6-mediated retention of the E1B-55K protein in the nucleus. In an effort to identify these proposed primate-specific cellular factors, the interaction of the E1B-55K and E4orf6 proteins was studied in a panel of stable human-rodent monochromosomal somatic cell hybrids. Analysis of this panel of cell lines has demonstrated the existence of an activity associated with human chromosome 21 that permits the E1B-55K and E4orf6 proteins to colocalize in the nucleus of a rodent cell. Additional hybrid cells bearing portions of human chromosome 21 were used to map this activity to a 10-megabase-pair segment of the chromosome, extending from 21q22.12 to a region near the q terminus. Strikingly, this region also facilitates the expression of adenovirus late genes in a rodent cell background while having little impact on the expression of early viral genes.
Collapse
Affiliation(s)
- Amy M Chastain-Moore
- Department of Microbiology and Immunology, Wake Forest University School of Medicine, Wake Forest University, Winston-Salem, NC 27157-1064, USA
| | | | | | | | | |
Collapse
|
20
|
Flint SJ, Gonzalez RA. Regulation of mRNA production by the adenoviral E1B 55-kDa and E4 Orf6 proteins. Curr Top Microbiol Immunol 2003; 272:287-330. [PMID: 12747554 DOI: 10.1007/978-3-662-05597-7_10] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
The E1B 55-kDa and E4 Orf6 proteins of human subgroup C adenoviruses both counter host cell defenses mediated by the cellular p53 protein and regulate viral late gene expression. A complex containing the two proteins has been implicated in induction of selective export of viral late mRNAs from the nucleus to the cytoplasm, with concomitant inhibition of export of the majority of newly synthesized cellular mRNAs. The molecular mechanisms by which these viral proteins subvert cellular pathways of nuclear export are not yet clear. Here, we review recent efforts to identify molecular and biochemical functions of the E1B 55-kDa and E4 Orf6 proteins required for regulation of mRNA export, the several difficulties and discrepancies that have been encountered in studies of these viral proteins, and evidence indicating that the reorganization of the infected cell nucleus and production of viral late mRNA at specific intra-nuclear sites are important determinants of selective mRNA export in infected cells. In our view, it is not yet possible to propose a coherent molecular model for regulation of mRNA export by the E1B 55-kDa and E4 Orf6 proteins. However, it should now be possible to address specific questions about the roles of potentially relevant properties of these viral proteins.
Collapse
Affiliation(s)
- S J Flint
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08844, USA.
| | | |
Collapse
|
21
|
Harada JN, Shevchenko A, Shevchenko A, Pallas DC, Berk AJ. Analysis of the adenovirus E1B-55K-anchored proteome reveals its link to ubiquitination machinery. J Virol 2002; 76:9194-206. [PMID: 12186903 PMCID: PMC136464 DOI: 10.1128/jvi.76.18.9194-9206.2002] [Citation(s) in RCA: 174] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2002] [Accepted: 06/12/2002] [Indexed: 12/26/2022] Open
Abstract
During the early phase of infection, the E1B-55K protein of adenovirus type 5 (Ad5) counters the E1A-induced stabilization of p53, whereas in the late phase, E1B-55K modulates the preferential nucleocytoplasmic transport and translation of the late viral mRNAs. The mechanism(s) by which E1B-55K performs these functions has not yet been clearly elucidated. In this study, we have taken a proteomics-based approach to identify and characterize novel E1B-55K-associated proteins. A multiprotein E1B-55K-containing complex was immunopurified from Ad5-infected HeLa cells and found to contain E4-orf6, as well as several cellular factors previously implicated in the ubiquitin-proteasome-mediated destruction of proteins, including Cullin-5, Rbx1/ROC1/Hrt1, and Elongins B and C. We further demonstrate that a complex containing these as well as other proteins is capable of directing the polyubiquitination of p53 in vitro. These ubiquitin ligase components were found in a high-molecular-mass complex of 800 to 900 kDa. We propose that these newly identified binding partners (Cullin-5, Elongins B and C, and Rbx1) complex with E1B-55K and E4-orf6 during Ad infection to form part of an E3 ubiquitin ligase that targets specific protein substrates for degradation. We further suggest that E1B-55K functions as the principal substrate recognition component of this SCF-type ubiquitin ligase, whereas E4-orf6 may serve to nucleate the assembly of the complex. Lastly, we describe the identification and characterization of two novel E1B-55K interacting factors, importin-alpha 1 and pp32, that may also participate in the functions previously ascribed to E1B-55K and E4-orf6.
Collapse
Affiliation(s)
- Josephine N Harada
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, California 90095-1570, USA
| | | | | | | | | |
Collapse
|
22
|
Orlando JS, Ornelles DA. E4orf6 variants with separate abilities to augment adenovirus replication and direct nuclear localization of the E1B 55-kilodalton protein. J Virol 2002; 76:1475-87. [PMID: 11773420 PMCID: PMC135776 DOI: 10.1128/jvi.76.3.1475-1487.2002] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The E4orf6 protein of group C adenovirus is an oncoprotein that, in association with the E1B 55-kDa protein and by E1B-independent means, promotes virus replication. An arginine-faced amphipathic alpha-helix in the E4orf6 protein is required for the E4orf6 protein to direct nuclear localization of the E1B 55-kDa protein and to enhance replication of an E4 deletion virus. In this study, E4orf6 protein variants containing arginine substitutions in the amphipathic alpha-helix were analyzed. Two of the six arginine residues within the alpha-helix, arginine-241 and arginine-243, were critical for directing nuclear localization of the E1B 55-kDa protein. The four remaining arginine residues appear to provide a net positive charge for the E4orf6 protein to direct nuclear localization of the E1B 55-kDa protein. The molecular determinants of the arginine-faced amphipathic alpha-helix that were required for the functional interaction between the E4orf6 and E1B 55-kDa proteins seen in the transfected cell differed from those required to support a productive infection. Several E4orf6 protein variants with arginine-to-glutamic acid substitutions that failed to direct nuclear localization of the E1B 55-kDa protein restored replication of an E4 deletion virus. Additionally, a variant containing an arginine-to-alanine substitution at position 243 that directed nuclear localization of the E1B 55-kDa protein failed to enhance virus replication. These results indicate that the ability of the E4orf6 protein to relocalize the E1B 55-kDa protein to the nucleus can be separated from the ability of the E4orf6 protein to support a productive infection.
Collapse
Affiliation(s)
- Joseph S Orlando
- Department of Microbiology and Immunology, School of Medicine, Wake Forest University, Winston-Salem, North Carolina 27157-1064, USA
| | | |
Collapse
|
23
|
Degenhardt YY, Silverstein S. Interaction of zyxin, a focal adhesion protein, with the e6 protein from human papillomavirus type 6 results in its nuclear translocation. J Virol 2001; 75:11791-802. [PMID: 11689660 PMCID: PMC114765 DOI: 10.1128/jvi.75.23.11791-11802.2001] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2001] [Accepted: 09/05/2001] [Indexed: 11/20/2022] Open
Abstract
Zyxin, a focal adhesion molecule, interacts specifically with the E6 protein from human papillomavirus (HPV) type 6 in a yeast two-hybrid screen of a cDNA library prepared from human keratinocytes. Zyxin does not interact significantly with E6 proteins from HPV types 11, 16, or 18. The interaction was confirmed by in vitro and in vivo analyses and it requires the LIM domains (Lin-11, Isl-1, and Mec-3 [G. Freyd, S. K. Kim, and H. R. Horvitz, Nature 344:876-879, 1990]) found at the carboxyl terminus of zyxin. Cotransfection of E6 from HPV ((6)E6) and zyxin results in the accumulation of zyxin in the nucleus where it can function as a transcriptional activator. (6)E6 can also mobilize endogenous zyxin to the nucleus.
Collapse
Affiliation(s)
- Y Y Degenhardt
- Department of Pharmacology, College of Physicians and Surgeons, Columbia University, New York, New York 10032, USA
| | | |
Collapse
|
24
|
Abstract
Previous investigations into potential transforming activities of adenovirus (Ad) early genes were largely overshadowed by the more obvious roles of E1A and E1B products. One exception was an Ad9 E4 protein (ORF1) shown to enhance transformation of cultured cells and promote mammary tumors in female rats. Recently, significant advances in understanding Ad E4 gene products at the molecular level have revealed that these proteins possess an unexpectedly diverse collection of functions, which not only orchestrate many viral processes, but overlap with oncogenic transformation of primary mammalian cells. Operating through a complex network of protein interactions with key viral and cellular regulatory components, Ad E4 products are apparently involved in transcription, apoptosis, cell cycle control, DNA repair, cell signaling, posttranslational modifications and the integrity of nuclear multiprotein complexes known as PML oncogenic domains (PODs). Some of these functions directly relate to known transforming and oncogenic processes, or implicate mechanisms such as modulating the function and subcellular localization of cellular PDZ domain-containing proteins, POD reorganization, targeted proteolytic degradation, inhibition of DNA double-strand break repair and 'hit-and-run' mutagenesis. Here, we summarize the recent data and discuss how E4 gene product interactions may contribute to viral oncogenesis.
Collapse
Affiliation(s)
- B Täuber
- Institut für Medizinische Mikrobiologie und Hygiene, Universität Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany
| | | |
Collapse
|
25
|
Baxi MK, Robertson J, Babiuk LA, Tikoo SK. Mutational analysis of early region 4 of bovine adenovirus type 3. Virology 2001; 290:153-63. [PMID: 11883000 DOI: 10.1006/viro.2001.1176] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The primary objective of characterizing bovine adenovirus type 3 (BAV3) in greater detail is to develop it as a vector for gene therapy and vaccination of humans and animals. A series of BAV3 early region 4 (E4) deletion-mutant viruses, containing deletions in individual E4 open reading frames (Orf) or combinations of Orfs, were generated by transfecting primary fetal bovine retinal cells with E4-modified genomic DNA. Each of these mutants was further analyzed for growth kinetics, viral DNA accumulation, and early-late protein synthesis. Mutant viruses carrying deletions in Orf1, Orf2, Orf3, or Orf4 showed growth characteristics similar to those of the E3-deleted BAV3 (BAV302). DNA accumulation and early/late protein synthesis were also indistinguishable from those of BAV302. However, mutant viruses carrying a deletion in Orf5, Orfs 1-3 (BAV429), or Orfs 3-5 (BAV430) were modestly compromised in their ability to grow in bovine cells and express early/late proteins. E4 mutants containing larger deletions, Orfs 1-3 (BAV429) and Orfs 3-5 (BAV430), were further tested in a cotton rat model. Both mutants replicated as efficiently as BAV3 or BAV302 in the lungs of cotton rats. BAV3-specific IgA and IgG responses were detected in serum and at the mucosal surfaces in cotton rats inoculated with mutant viruses. In vitro and in vivo characterization of these E4 mutants suggests that none of the individual E4 Orfs are essential for viral replication. Moreover, successful deletion of a 1.5-kb fragment in the BAV3 E4 region increased the available insertion capacity of replication-competent BAV3 vector (E3-E4 deleted) to approximately 4.5 kb and that of replication-defective BAV3 vector (E1a-E3-E4 deleted) to approximately 5.0 kb. This is extremely useful for the construction of BAV3 vectors that express multiple genes and/or regulatory elements for gene therapy and vaccination.
Collapse
Affiliation(s)
- M K Baxi
- Virology Group, Veterinary Infectious Diseases Organization, University of Saskatchewan, Saskatoon, Saskatchewan, Canada S7N 5E3
| | | | | | | |
Collapse
|
26
|
Abstract
Over the past few years there have been a number of interesting advances in our understanding of the functions encoded by the adenovirus early transcription unit 4 (Ad E4). A large body of recent data demonstrates that E4 proteins encompass an unexpectedly diverse collection of functions required for efficient viral replication. E4 gene products operate through a complex network of protein interactions with key viral and cellular regulatory components involved in transcription, apoptosis, cell cycle control and DNA repair, as well as host cell factors that regulate cell signaling, posttranslational modifications and the integrity of nuclear multiprotein complexes known as nuclear bodies (NBs) or PML oncogenic domains (PODs). As understood at present, some of the lytic functions overlap with roles in oncogenic transformation of primary mammalian cells. These observations, together with findings that E4 proteins substantially affect cell toxicity and the immune response of the host have profound implications for the development of Ad vectors for gene therapy. In this article we will summarize recent findings regarding the diverse functions of E4 gene products in the context of earlier work. We will emphasize the interaction of E4 proteins with cellular and viral interaction partners, the role of these interactions for lytic virus growth and how these interactions may contribute to viral oncogenesis. Finally, we will discuss their role in Ad vector and adeno-associated virus infections.
Collapse
Affiliation(s)
- B Täuber
- Institut für Medizinische Mikrobiologie und Hygiene, Universität Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany
| | | |
Collapse
|
27
|
Brown LM, Gonzalez RA, Novotny J, Flint SJ. Structure of the adenovirus E4 Orf6 protein predicted by fold recognition and comparative protein modeling. Proteins 2001; 44:97-109. [PMID: 11391772 DOI: 10.1002/prot.1076] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
To facilitate investigation of the molecular and biochemical functions of the adenovirus E4 Orf6 protein, we sought to derive three-dimensional structural information using computational methods, particularly threading and comparative protein modeling. The amino acid sequence of the protein was used for secondary structure and hidden Markov model (HMM) analyses, and for fold recognition by the ProCeryon program. Six alternative models were generated from the top-scoring folds identified by threading. These models were examined by 3D-1D analysis and evaluated in the light of available experimental evidence. The final model of the E4 protein derived from these and additional threading calculations was a chimera, with the tertiary structure of its C-terminal 226 residues derived from a TIM barrel template and a mainly alpha-nonbundle topology for its poorly conserved N-terminal 68 residues. To assess the accuracy of this model, additional threading calculations were performed with E4 Orf6 sequences altered as in previous experimental studies. The proposed structural model is consistent with the reported secondary structure of a functionally important C-terminal sequence and can account for the properties of proteins carrying alterations in functionally important sequences or of those that disrupt an unusual zinc-coordination motif.
Collapse
Affiliation(s)
- L M Brown
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA
| | | | | | | |
Collapse
|
28
|
Degenhardt YY, Silverstein SJ. Gps2, a protein partner for human papillomavirus E6 proteins. J Virol 2001; 75:151-60. [PMID: 11119584 PMCID: PMC113908 DOI: 10.1128/jvi.75.1.151-160.2001] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2000] [Accepted: 10/10/2000] [Indexed: 01/01/2023] Open
Abstract
We have used the yeast two-hybrid system to screen a cDNA library prepared from normal human epidermal keratinocytes and identified protein partners for human papilloma virus (HPV) E6 proteins. A clone that encoded Gps2 interacted with E6 proteins from HPVs of high and low oncogenic risk. The specificity of these reactions was verified and the regions of E6 that were required for interaction were mapped. Steady-state and pulse-chase analyses of cells cotransfected with DNAs expressing E6 from either HPV6 or HPV18 and Gps2 demonstrated that the E6 proteins induced the degradation of Gps2 in vivo but not in vitro. Gps2 exhibited transcriptional activation activity, and high-risk E6 suppressed this activity.
Collapse
Affiliation(s)
- Y Y Degenhardt
- Departments of Pharmacology, Columbia University, New York, New York 10032, USA
| | | |
Collapse
|
29
|
Querido E, Morrison MR, Chu-Pham-Dang H, Thirlwell SW, Boivin D, Branton PE, Morisson MR. Identification of three functions of the adenovirus e4orf6 protein that mediate p53 degradation by the E4orf6-E1B55K complex. J Virol 2001; 75:699-709. [PMID: 11134283 PMCID: PMC113966 DOI: 10.1128/jvi.75.2.699-709.2001] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Complexes containing adenovirus E4orf6 and E1B55K proteins play critical roles in productive infection. Both proteins interact directly with the cellular tumor suppressor p53, and in combination they promote its rapid degradation. To examine the mechanism of this process, degradation of exogenously expressed p53 was analyzed in p53-null human cells infected with adenovirus vectors encoding E4orf6 and/or E1B55K. Coexpression of E4orf6 and E1B55K greatly reduced both the level and the half-life of wild-type p53. No effect was observed with the p53-related p73 proteins, which did not appear to interact with E4orf6 or E1B55K. Mutant forms of p53 were not degraded if they could not efficiently bind E1B55K, suggesting that direct interaction between p53 and E1B55K may be required. Degradation of p53 was independent of both MDM2 and p19ARF, regulators of p53 stability in mammalian cells, but required an extended region of E4orf6 from residues 44 to 274, which appeared to possess three separate biological functions. First, residues 39 to 107 were necessary to interact with E1B55K. Second, an overlapping region from about residues 44 to 218 corresponded to the ability of E4orf6 to form complexes with cellular proteins of 19 and 14 kDa. Third, the nuclear retention signal/amphipathic arginine-rich alpha-helical region from residues 239 to 253 was required. Interestingly, neither the E4orf6 nuclear localization signal nor the nuclear export signal was essential. These results suggested that if nuclear-cytoplasmic shuttling is involved in this process, it must involve another export signal. Degradation was significantly blocked by the 26S proteasome inhibitor MG132, but unlike the HPV E6 protein, E4orf6 and E1B55K were unable to induce p53 degradation in vitro in reticulocyte lysates. Thus, this study implies that the E4orf6-E1B55K complex may direct p53 for degradation by a novel mechanism.
Collapse
Affiliation(s)
- E Querido
- Departments of Biochemistry, McGill University, Montreal, Quebec, Canada H3G 1Y6
| | | | | | | | | | | | | |
Collapse
|
30
|
Affiliation(s)
- W C Russell
- Biomolecular Sciences Building, School of Biology, University of St Andrews, North Haugh, St Andrews, Fife KY16 9ST, UK1
| |
Collapse
|
31
|
Querido E, Chu-Pham-Dang H, Branton PE. Identification and elimination of an aberrant splice product from cDNAs encoding the human adenovirus type 5 E4orf6 protein. Virology 2000; 275:263-6. [PMID: 10998326 DOI: 10.1006/viro.2000.0516] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Growing awareness of the central role of the E4orf6 protein in regulating the infectious cycle of human adenoviruses has led to greatly intensified efforts to define its functions and mechanisms of action. Many workers employ cDNAs to generate plasmid or viral vectors to express E4orf6 in the absence of other viral products. In addition to the normal 34-kDa product, such vectors consistently produce a polypeptide of about 8 kDa. In the present report we show that this protein is produced by an aberrant mRNA utilizing the 5' splice donor site used normally by the virus to produce the E4orf6/7 product, which shares 58 residues with E4orf6. This amino terminal coding sequence is linked to a 3' sequence via a novel splice acceptor site in an alternative reading frame of the E4orf6 cDNA. The 5' donor site was altered by PCR-directed mutagenesis to yield a construct that produces high levels of E4orf6 in the absence of the 8-kDa polypeptide. This construct should eliminate some of the problems encountered previously using the wild-type E4orf6 coding sequence.
Collapse
Affiliation(s)
- E Querido
- Department of Biochemistry, McGill University, Montreal, Quebec, H3G 1Y6, Canada
| | | | | |
Collapse
|