1
|
Kim HN, Gasmi-Seabrook GMC, Uchida A, Gebregiworgis T, Marshall CB, Ikura M. Switch II Pocket Inhibitor Allosterically Freezes KRAS G12D Nucleotide-binding Site and Arrests the GTPase Cycle. J Mol Biol 2025; 437:169162. [PMID: 40268231 DOI: 10.1016/j.jmb.2025.169162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 04/14/2025] [Accepted: 04/15/2025] [Indexed: 04/25/2025]
Abstract
KRAS is frequently mutated in multiple cancers, with the most common mutation being G12D. The recently developed KRASG12D inhibitor MRTX1133 binds a cryptic allosteric pocket near switch II (SII-P), similar to covalent G12C inhibitors, with remarkable picoM non-covalent affinity. Despite its advancement to clinical trials, some aspects of the molecular mechanisms-of-action remain unclear, indicating a need to uncover the mechanisms underlying MRTX1133 efficacy and potential acquired resistance, thus we characterized the biochemical and biophysical outcomes of MRTX1133 binding KRAS. Hydrogen/deuterium exchange experiments showed that MRTX1133 binding to the induced SII-P reduces the overall conformational plasticity of KRASG12D. This extends well beyond SII-P, with the nucleotide-binding regions (P-loop and G-3/4/5-box motifs) particularly exhibiting stabilization. This conformational rigidification by MRTX1133 is coupled with complete arrest of the GTPase cycle: When the compound engages KRASG12D-GDP, both intrinsic and GEF-mediated nucleotide exchange are blocked while engagement of KRASG12D-GTP blocks both intrinsic and GAP-mediated hydrolysis. MRTX1133 attenuates the interaction between activated KRASG12D and the RAS-binding domain of the effector BRAF. The binding site in Switch I remains flexible, which enables binding, albeit with ∼10-fold lower affinity, and remarkably, this interaction with BRAF reverses the compound's blockage of intrinsic GTP hydrolysis. Unlike KRASWT, GDP-loaded KRASG12D surprisingly maintains a low-affinity interaction with BRAF-RBD, but MRTX1133 can circumvent this mutant-specific abnormal interaction. Taken together, MRTX1133 allosterically 'freezes' the KRASG12D nucleotide-binding site conformation, arresting the canonical GTPase cycle of this oncogenic mutant. This provides a framework for understanding the mechanisms-of-action of SII-P-directed inhibitors and how tumours may acquire resistance.
Collapse
Affiliation(s)
- Ha-Neul Kim
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario M5G 1L7, Canada
| | | | - Arisa Uchida
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario M5G 1L7, Canada
| | - Teklab Gebregiworgis
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario M5G 1L7, Canada
| | - Christopher B Marshall
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario M5G 1L7, Canada.
| | - Mitsuhiko Ikura
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario M5G 1L7, Canada; Department of Medical Biophysics, University of Toronto, 610 University Avenue, Toronto, Ontario M5G 2M9, Canada.
| |
Collapse
|
2
|
He X, Wang QX, Wei D, Lin Y, Zhang X, Wu Y, Qian X, Lin Z, Xiao B, Wu Q, Wang Z, Zhou F, Wei Z, Wang J, Gong R, Zhang R, Zhang Q, Ding K, Gao S, Kang T. Lysosomal EGFR acts as a Rheb-GEF independent of its kinase activity to activate mTORC1. Cell Res 2025:10.1038/s41422-025-01110-x. [PMID: 40259053 DOI: 10.1038/s41422-025-01110-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 03/19/2025] [Indexed: 04/23/2025] Open
Abstract
Oncogenic mutations in EGFR often result in EGF-independent constitutive activation and aberrant trafficking and are associated with several human malignancies, including non-small cell lung cancer. A major consequence of EGFR mutations is the activation of the mechanistic target of rapamycin complex 1 (mTORC1), which requires EGFR kinase activity and downstream PI3K/AKT signaling, resulting in increased cell proliferation. However, recent studies have elucidated kinase-independent roles of EGFR in cell survival and cancer progression. Here, we report a cis mTORC1 activation function of EGFR that is independent of its kinase activity. Our results reveal that lysosomal localization of EGFR is critical to mTORC1 activation, where EGFR physically binds Rheb, acting as a guanine exchange factor (GEF) for Rheb, with its Glu804 serving as a potential glutamic finger. Genetic knock-in of EGFR-E804K in cells reduces the level of GTP-bound Rheb, and significantly suppresses mTORC1 activation, cell proliferation and tumor growth. Different tyrosine kinase inhibitors exhibit distinct effects on EGFR-induced mTORC1 activation, with afatinib, which additionally blocks EGFR's GEF activity, causing a much greater suppression of mTORC1 activation and cell growth, and erlotinib, which targets only kinase activity, resulting in only a slight decrease. Moreover, a novel small molecule, BIEGi-1, was designed to target both the Rheb-GEF and kinase activities of EGFR, and shows a strong inhibitory effect on the viability of cells harboring EGFR mutants. These findings unveil a fundamental event in cell growth and suggest a promising strategy against cancers with EGFR mutations.
Collapse
Affiliation(s)
- Xiaobo He
- Sun Yat-sen University Cancer Center, Guangdong Provincial Clinical Research Center for Cancer, State Key Laboratory of Oncology in South China, Guangzhou, Guangdong, China
| | - Qiu-Xia Wang
- Sun Yat-sen University Cancer Center, Guangdong Provincial Clinical Research Center for Cancer, State Key Laboratory of Oncology in South China, Guangzhou, Guangdong, China
| | - Denghui Wei
- Sun Yat-sen University Cancer Center, Guangdong Provincial Clinical Research Center for Cancer, State Key Laboratory of Oncology in South China, Guangzhou, Guangdong, China.
| | - Yujie Lin
- Sun Yat-sen University Cancer Center, Guangdong Provincial Clinical Research Center for Cancer, State Key Laboratory of Oncology in South China, Guangzhou, Guangdong, China
| | - Xia Zhang
- Sun Yat-sen University Cancer Center, Guangdong Provincial Clinical Research Center for Cancer, State Key Laboratory of Oncology in South China, Guangzhou, Guangdong, China
| | - Yuanzhong Wu
- Sun Yat-sen University Cancer Center, Guangdong Provincial Clinical Research Center for Cancer, State Key Laboratory of Oncology in South China, Guangzhou, Guangdong, China
| | - Xuexia Qian
- Department of Pathology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Zhihao Lin
- Department of Pathology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Beibei Xiao
- Sun Yat-sen University Cancer Center, Guangdong Provincial Clinical Research Center for Cancer, State Key Laboratory of Oncology in South China, Guangzhou, Guangdong, China
| | - Qinxue Wu
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Zhen Wang
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Fengtao Zhou
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development, Ministry of Education (MoE) of People's Republic of China, College of Pharmacy, Jinan University, Guangzhou, Guangdong, China
| | - Zhihao Wei
- Sun Yat-sen University Cancer Center, Guangdong Provincial Clinical Research Center for Cancer, State Key Laboratory of Oncology in South China, Guangzhou, Guangdong, China
- Department of Oncology Radiotherapy, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Jingxuan Wang
- Sun Yat-sen University Cancer Center, Guangdong Provincial Clinical Research Center for Cancer, State Key Laboratory of Oncology in South China, Guangzhou, Guangdong, China
| | - Run Gong
- Sun Yat-sen University Cancer Center, Guangdong Provincial Clinical Research Center for Cancer, State Key Laboratory of Oncology in South China, Guangzhou, Guangdong, China
| | - Ruhua Zhang
- Sun Yat-sen University Cancer Center, Guangdong Provincial Clinical Research Center for Cancer, State Key Laboratory of Oncology in South China, Guangzhou, Guangdong, China
| | - Qingling Zhang
- Department of Pathology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China.
| | - Ke Ding
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China.
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development, Ministry of Education (MoE) of People's Republic of China, College of Pharmacy, Jinan University, Guangzhou, Guangdong, China.
| | - Song Gao
- Sun Yat-sen University Cancer Center, Guangdong Provincial Clinical Research Center for Cancer, State Key Laboratory of Oncology in South China, Guangzhou, Guangdong, China.
- Integrated Traditional Chinese and Western Medicine Research Center, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China.
| | - Tiebang Kang
- Sun Yat-sen University Cancer Center, Guangdong Provincial Clinical Research Center for Cancer, State Key Laboratory of Oncology in South China, Guangzhou, Guangdong, China.
| |
Collapse
|
3
|
Ma L, Lin Y. Orthogonal RNA replication enables directed evolution and Darwinian adaptation in mammalian cells. Nat Chem Biol 2025; 21:451-463. [PMID: 39753704 DOI: 10.1038/s41589-024-01783-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 10/31/2024] [Indexed: 01/31/2025]
Abstract
Directed evolution in mammalian cells offers a powerful approach for advancing synthetic biology applications. However, existing mammalian-based directed evolution methods face substantial bottlenecks, including host genome interference, small library size and uncontrolled mutagenesis. Here we engineered an orthogonal alphaviral RNA replication system to evolve RNA-based devices, enabling RNA replicase-assisted continuous evolution (REPLACE) in proliferating mammalian cells. This system generates a large, continuously diversified library of replicative RNAs through replicase-limited mode of replication and inducible mutagenesis. Using REPLACE, we engineered fluorescent proteins and transcription factors. Notably, cells equipped with REPLACE can undergo Darwinian adaptation, allowing them to evolve in response to both cell-extrinsic and cell-intrinsic challenges. Collectively, this work establishes a powerful platform for advancing mammalian synthetic biology and cell engineering applications through directed evolution.
Collapse
Affiliation(s)
- Liang Ma
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
- The MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, China
| | - Yihan Lin
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China.
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China.
- The MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, China.
- Chengdu Academy for Advanced Interdisciplinary Biotechnologies, Peking University, Chengdu, China.
| |
Collapse
|
4
|
Purohit A, Cheng X. Absolute and Relative Binding Free Energy Calculations of Nucleotides to Multiple Protein Classes. J Chem Theory Comput 2025; 21:2067-2078. [PMID: 39699110 PMCID: PMC11859759 DOI: 10.1021/acs.jctc.4c01440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2024]
Abstract
Polyphosphate nucleotides, such as ATP, ADP, GTP, and GDP, play a crucial role in modulating protein functions through binding and/or catalytically activating proteins (enzymes). However, accurately calculating the binding free energies for these charged and flexible ligands poses challenges due to slow conformational relaxation and the limitations of force fields. In this study, we examine the accuracy and reliability of alchemical free energy simulations with fixed-charge force fields for the binding of four nucleotides to nine proteins of various classes, including kinases, ATPases, and GTPases. Our results indicate that the alchemical simulations effectively reproduce experimental binding free energies for all proteins that do not undergo significant conformational changes between their triphosphate nucleotide-bound and diphosphate nucleotide-bound states, with 87.5% (7 out of 8) of the absolute binding free energy results for 4 proteins within ±2 kcal/mol of experimental values and 88.9% (8 out of 9) of the relative binding free energy results for 9 proteins within ±3 kcal/mol of experimental values. However, our calculations show significant inaccuracies when divalent ions are included, suggesting that nonpolarizable force fields may not accurately capture interactions involving these ions. Additionally, the presence of highly charged and flexible ligands necessitates extensive conformational sampling to account for the long relaxation times associated with long-range electrostatic interactions. The simulation strategy presented here, along with its demonstrated accuracy across multiple protein classes, will be valuable for predicting the binding of nucleotides or their analogs to protein targets.
Collapse
Affiliation(s)
- Apoorva Purohit
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, and Translational Data Analytics Institute, The Ohio State University, Columbus, OH 43210, USA
| | - Xiaolin Cheng
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, and Translational Data Analytics Institute, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
5
|
Lin Y, Ramelot TA, Senyuz S, Gursoy A, Jang H, Nussinov R, Keskin O, Zheng Y. Tumor-derived RHOA mutants interact with effectors in the GDP-bound state. Nat Commun 2024; 15:7176. [PMID: 39169042 PMCID: PMC11339415 DOI: 10.1038/s41467-024-51445-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 08/07/2024] [Indexed: 08/23/2024] Open
Abstract
RHOA mutations are found at diverse residues in various cancer types, implying mutation- and cell-specific mechanisms of tumorigenesis. Here, we focus on the underlying mechanisms of two gain-of-function RHOA mutations, A161P and A161V, identified in adult T-cell leukemia/lymphoma. We find that RHOAA161P and RHOAA161V are both fast-cycling mutants with increased guanine nucleotide dissociation/association rates compared with RHOAWT and show reduced GTP-hydrolysis activity. Crystal structures reveal an altered nucleotide association in RHOAA161P and an open nucleotide pocket in RHOAA161V. Both mutations perturb the dynamic properties of RHOA switch regions and shift the conformational landscape important for RHOA activity, as shown by 31P NMR and molecular dynamics simulations. Interestingly, RHOAA161P and RHOAA161V can interact with effectors in the GDP-bound state. 1H-15N HSQC NMR spectra support the existence of an active population in RHOAA161V-GDP. The distinct interaction mechanisms resulting from the mutations likely favor an RHOAWT-like "ON" conformation, endowing GDP-bound state effector binding activity.
Collapse
Affiliation(s)
- Yuan Lin
- Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
| | - Theresa A Ramelot
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Simge Senyuz
- Computational Sciences and Engineering, Koc University, Rumelifeneri Yolu, Istanbul, Turkey
| | - Attila Gursoy
- Department of Computer Engineering, Koc Univeristy, Rumelifeneri Yolu, Istanbul, Turkey
| | - Hyunbum Jang
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Cancer Innovation Laboratory, National Cancer Institute, Frederick, MD, USA
| | - Ruth Nussinov
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Cancer Innovation Laboratory, National Cancer Institute, Frederick, MD, USA
| | - Ozlem Keskin
- Department of Chemical and Biological Engineering, Koc Univeristy, Rumelifeneri Yolu, Istanbul, Turkey
| | - Yi Zheng
- Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
| |
Collapse
|
6
|
Khayachi A, Abuzgaya M, Liu Y, Jiao C, Dejgaard K, Schorova L, Kamesh A, He Q, Cousineau Y, Pietrantonio A, Farhangdoost N, Castonguay CE, Chaumette B, Alda M, Rouleau GA, Milnerwood AJ. Akt and AMPK activators rescue hyperexcitability in neurons from patients with bipolar disorder. EBioMedicine 2024; 104:105161. [PMID: 38772282 PMCID: PMC11134542 DOI: 10.1016/j.ebiom.2024.105161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 04/30/2024] [Accepted: 05/06/2024] [Indexed: 05/23/2024] Open
Abstract
BACKGROUND Bipolar disorder (BD) is a multifactorial psychiatric illness affecting ∼1% of the global adult population. Lithium (Li), is the most effective mood stabilizer for BD but works only for a subset of patients and its mechanism of action remains largely elusive. METHODS In the present study, we used iPSC-derived neurons from patients with BD who are responsive (LR) or not (LNR) to lithium. Combined electrophysiology, calcium imaging, biochemistry, transcriptomics, and phosphoproteomics were employed to provide mechanistic insights into neuronal hyperactivity in BD, investigate Li's mode of action, and identify alternative treatment strategies. FINDINGS We show a selective rescue of the neuronal hyperactivity phenotype by Li in LR neurons, correlated with changes to Na+ conductance. Whole transcriptome sequencing in BD neurons revealed altered gene expression pathways related to glutamate transmission, alterations in cell signalling and ion transport/channel activity. We found altered Akt signalling as a potential therapeutic effect of Li in LR neurons from patients with BD, and that Akt activation mimics Li effect in LR neurons. Furthermore, the increased neural network activity observed in both LR & LNR neurons from patients with BD were reversed by AMP-activated protein kinase (AMPK) activation. INTERPRETATION These results suggest potential for new treatment strategies in BD, such as Akt activators in LR cases, and the use of AMPK activators for LNR patients with BD. FUNDING Supported by funding from ERA PerMed, Bell Brain Canada Mental Research Program and Brain & Behavior Research Foundation.
Collapse
Affiliation(s)
- Anouar Khayachi
- Montreal Neurological Institute, Department of Neurology & Neurosurgery, McGill University, Montréal, Quebec, Canada.
| | - Malak Abuzgaya
- Montreal Neurological Institute, Department of Neurology & Neurosurgery, McGill University, Montréal, Quebec, Canada
| | - Yumin Liu
- Montreal Neurological Institute, Department of Neurology & Neurosurgery, McGill University, Montréal, Quebec, Canada
| | - Chuan Jiao
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Paris, France
| | - Kurt Dejgaard
- McIntyre Institute, Department of Biochemistry, McGill University, Montréal, Quebec, Canada
| | - Lenka Schorova
- McGill University Health Center Research Institute, Montréal, Quebec, Canada
| | - Anusha Kamesh
- Montreal Neurological Institute, Department of Neurology & Neurosurgery, McGill University, Montréal, Quebec, Canada
| | - Qin He
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Paris, France
| | - Yuting Cousineau
- Montreal Neurological Institute, Department of Neurology & Neurosurgery, McGill University, Montréal, Quebec, Canada
| | - Alessia Pietrantonio
- Montreal Neurological Institute, Department of Neurology & Neurosurgery, McGill University, Montréal, Quebec, Canada
| | - Nargess Farhangdoost
- Montreal Neurological Institute, Department of Neurology & Neurosurgery, McGill University, Montréal, Quebec, Canada
| | - Charles-Etienne Castonguay
- Montreal Neurological Institute, Department of Neurology & Neurosurgery, McGill University, Montréal, Quebec, Canada
| | - Boris Chaumette
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Paris, France; GHU-Paris Psychiatrie et Neurosciences, Hôpital Sainte Anne, Paris, France; Department of Psychiatry, McGill University, Montréal, Quebec, Canada
| | - Martin Alda
- Department of Psychiatry, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Guy A Rouleau
- Montreal Neurological Institute, Department of Neurology & Neurosurgery, McGill University, Montréal, Quebec, Canada; Department of Human Genetics, McGill University, Montréal, Quebec, Canada.
| | - Austen J Milnerwood
- Montreal Neurological Institute, Department of Neurology & Neurosurgery, McGill University, Montréal, Quebec, Canada.
| |
Collapse
|
7
|
Parise A, Magistrato A. Assessing the mechanism of fast-cycling cancer-associated mutations of Rac1 small Rho GTPase. Protein Sci 2024; 33:e4939. [PMID: 38501467 PMCID: PMC10949326 DOI: 10.1002/pro.4939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 01/23/2024] [Accepted: 02/08/2024] [Indexed: 03/20/2024]
Abstract
Rho-GTPases proteins function as molecular switches alternating from an active to an inactive state upon Guanosine triphosphate (GTP) binding and hydrolysis to Guanosine diphosphate (GDP). Among them, Rac subfamily regulates cell dynamics, being overexpressed in distinct cancer types. Notably, these proteins are object of frequent cancer-associated mutations at Pro29 (P29S, P29L, and P29Q). To assess the impact of these mutations on Rac1 structure and function, we performed extensive all-atom molecular dynamics simulations on wild-type (wt) and oncogenic isoforms of this protein in GDP- and GTP-bound states. Our results unprecedentedly elucidate that P29Q/S-induced structural and dynamical perturbations of Rac1 core domain weaken the binding of the catalytic site Mg2+ ion, and reduce the GDP residence time within protein, enhancing the GDP/GTP exchange rate and Rac1 activity. This broadens our knowledge of the role of cancer-associated mutations on small GTPases mechanism supplying valuable information for future drug discovery efforts targeting specific Rac1 isoforms.
Collapse
Affiliation(s)
- Angela Parise
- Consiglio Nazionale delle ricerche (CNR)‐IOM c/o International School for Advanced Studies (SISSA/ISAS)TriesteItaly
| | - Alessandra Magistrato
- Consiglio Nazionale delle ricerche (CNR)‐IOM c/o International School for Advanced Studies (SISSA/ISAS)TriesteItaly
| |
Collapse
|
8
|
Saini M, Upadhyay N, Dhiman K, Manjhi SK, Kattuparambil AA, Ghoshal A, Arya R, Dey SK, Sharma A, Aduri R, Thelma BK, Ashish F, Kundu S. ARL15, a GTPase implicated in rheumatoid arthritis, potentially repositions its truncated N-terminus as a function of guanine nucleotide binding. Int J Biol Macromol 2024; 254:127898. [PMID: 37939768 DOI: 10.1016/j.ijbiomac.2023.127898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 10/21/2023] [Accepted: 11/03/2023] [Indexed: 11/10/2023]
Abstract
The ADP ribosylation factor like protein 15 (ARL15) gene encodes for an uncharacterized GTPase associated with rheumatoid arthritis (RA) and other metabolic disorders. Investigation of the structural and functional attributes of ARL15 is important to position the protein as a potential drug target. Using spectroscopy, we demonstrated that ARL15 exhibits properties inherent of GTPases. The Km and Vmax of the enzyme were calculated to be 100 μM and 1.47 μmole/min/μL, respectively. The equilibrium dissociation constant (Kd) of GTP binding with ARL15 was estimated to be about eight-fold higher than that of GDP. Small Angle X-ray Scattering (SAXS) data indicated that in solution, the apo state of monomeric ARL15 adopts a shape characterized by a globe of maximum linear dimension (Dmax) of 6.1 nm, and upon binding to GTP or GDP, the vector distribution profile changes to peak-n-tail shoulder with Dmax extended to 7.6 and 7.7 nm, respectively. Structure restoration using a sequence-based template and experimental SAXS data provided the first visual insight revealing that the folded N-terminal in the unbound state of the protein may toggle open upon binding to guanine nucleotides. The conformational dynamics observed in the N-terminal region offer a scope to develop drugs that target this unique GTPase, potentially providing treatments for a range of metabolic disorders.
Collapse
Affiliation(s)
- Manisha Saini
- Department of Biochemistry, University of Delhi South Campus, New Delhi 110021, India
| | - Neelam Upadhyay
- Department of Biochemistry, University of Delhi South Campus, New Delhi 110021, India
| | - Kanika Dhiman
- CSIR-Institute of Microbial Technology, Chandigarh 160036, India
| | - Satish Kumar Manjhi
- Department of Biological Sciences, Birla Institute of Technology and Science, K K Birla Goa Campus, Goa 403726, India
| | - Aman Achutan Kattuparambil
- Department of Biological Sciences, Birla Institute of Technology and Science, K K Birla Goa Campus, Goa 403726, India
| | - Antara Ghoshal
- Department of Biochemistry, University of Delhi South Campus, New Delhi 110021, India
| | - Richa Arya
- Department of Biochemistry, University of Delhi South Campus, New Delhi 110021, India
| | - Sanjay Kumar Dey
- Department of Biochemistry, University of Delhi South Campus, New Delhi 110021, India
| | - Aditya Sharma
- Department of Genetics, University of Delhi South Campus, New Delhi 110021, India
| | - Raviprasad Aduri
- Department of Biological Sciences, Birla Institute of Technology and Science, K K Birla Goa Campus, Goa 403726, India
| | - B K Thelma
- Department of Genetics, University of Delhi South Campus, New Delhi 110021, India
| | - Fnu Ashish
- CSIR-Institute of Microbial Technology, Chandigarh 160036, India
| | - Suman Kundu
- Department of Biochemistry, University of Delhi South Campus, New Delhi 110021, India; Department of Biological Sciences, Birla Institute of Technology and Science, K K Birla Goa Campus, Goa 403726, India.
| |
Collapse
|
9
|
Chen C, Yi R, Igisu M, Sakaguchi C, Afrin R, Potiszil C, Kunihiro T, Kobayashi K, Nakamura E, Ueno Y, Antunes A, Wang A, Chandru K, Hao J, Jia TZ. Spectroscopic and Biophysical Methods to Determine Differential Salt-Uptake by Primitive Membraneless Polyester Microdroplets. SMALL METHODS 2023; 7:e2300119. [PMID: 37203261 DOI: 10.1002/smtd.202300119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 04/23/2023] [Indexed: 05/20/2023]
Abstract
α-Hydroxy acids are prebiotic monomers that undergo dehydration synthesis to form polyester gels, which assemble into membraneless microdroplets upon aqueous rehydration. These microdroplets are proposed as protocells that can segregate and compartmentalize primitive molecules/reactions. Different primitive aqueous environments with a variety of salts could have hosted chemistries that formed polyester microdroplets. These salts could be essential cofactors of compartmentalized prebiotic reactions or even directly affect protocell structure. However, fully understanding polyester-salt interactions remains elusive, partially due to technical challenges of quantitative measurements in condensed phases. Here, spectroscopic and biophysical methods are applied to analyze salt uptake by polyester microdroplets. Inductively coupled plasma mass spectrometry is applied to measure the cation concentration within polyester microdroplets after addition of chloride salts. Combined with methods to determine the effects of salt uptake on droplet turbidity, size, surface potential and internal water distribution, it was observed that polyester microdroplets can selectively partition salt cations, leading to differential microdroplet coalescence due to ionic screening effects reducing electrostatic repulsion forces between microdroplets. Through applying existing techniques to novel analyses related to primitive compartment chemistry and biophysics, this study suggests that even minor differences in analyte uptake can lead to significant protocellular structural change.
Collapse
Affiliation(s)
- Chen Chen
- Earth-Life Science Institute, Tokyo Institute of Technology, Meguro-ku, Tokyo, 152-8550, Japan
| | - Ruiqin Yi
- Earth-Life Science Institute, Tokyo Institute of Technology, Meguro-ku, Tokyo, 152-8550, Japan
| | - Motoko Igisu
- Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-star), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Kanagawa, 237-0061, Japan
| | - Chie Sakaguchi
- The Pheasant Memorial Laboratory for Geochemistry and Cosmochemistry, Institute for Planetary Materials, Okayama University, Misasa, Tottori, 682-0193, Japan
| | - Rehana Afrin
- Earth-Life Science Institute, Tokyo Institute of Technology, Meguro-ku, Tokyo, 152-8550, Japan
| | - Christian Potiszil
- The Pheasant Memorial Laboratory for Geochemistry and Cosmochemistry, Institute for Planetary Materials, Okayama University, Misasa, Tottori, 682-0193, Japan
| | - Tak Kunihiro
- The Pheasant Memorial Laboratory for Geochemistry and Cosmochemistry, Institute for Planetary Materials, Okayama University, Misasa, Tottori, 682-0193, Japan
| | - Katsura Kobayashi
- The Pheasant Memorial Laboratory for Geochemistry and Cosmochemistry, Institute for Planetary Materials, Okayama University, Misasa, Tottori, 682-0193, Japan
| | - Eizo Nakamura
- The Pheasant Memorial Laboratory for Geochemistry and Cosmochemistry, Institute for Planetary Materials, Okayama University, Misasa, Tottori, 682-0193, Japan
| | - Yuichiro Ueno
- Earth-Life Science Institute, Tokyo Institute of Technology, Meguro-ku, Tokyo, 152-8550, Japan
- Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-star), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Kanagawa, 237-0061, Japan
- Department of Earth and Planetary Sciences, Tokyo Institute of Technology, Meguro-ku, Tokyo, 152-8551, Japan
| | - André Antunes
- State Key Laboratory of Lunar and Planetary Sciences, Macau University of Science and Technology (MUST), Taipa, Macau, SAR, China
- Blue Marble Space Institute of Science, Seattle, WA, 98104, USA
| | - Anna Wang
- School of Chemistry, UNSW Sydney, Sydney, NSW, 2052, Australia
- Australian Centre for Astrobiology, UNSW Sydney, Sydney, NSW, 2052, Australia
- RNA Institute, UNSW Sydney, Sydney, NSW, 2052, Australia
- ARC Centre of Excellence for Synthetic Biology, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - Kuhan Chandru
- Space Science Center (ANGKASA), Institute of Climate Change, National University of Malaysia, Selangor, 43650, Malaysia
| | - Jihua Hao
- Blue Marble Space Institute of Science, Seattle, WA, 98104, USA
- Deep Space Exploration Laboratory/CAS Laboratory of Crust-Mantle Materials and Environments, University of Science and Technology of China, Hefei, 230026, China
| | - Tony Z Jia
- Earth-Life Science Institute, Tokyo Institute of Technology, Meguro-ku, Tokyo, 152-8550, Japan
- Blue Marble Space Institute of Science, Seattle, WA, 98104, USA
| |
Collapse
|
10
|
Ibrahim YH, Pantelios S, Mutvei AP. An affinity tool for the isolation of endogenous active mTORC1 from various cellular sources. J Biol Chem 2023; 299:104644. [PMID: 36965617 PMCID: PMC10164890 DOI: 10.1016/j.jbc.2023.104644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 03/02/2023] [Accepted: 03/13/2023] [Indexed: 03/27/2023] Open
Abstract
The mechanistic target of rapamycin complex 1 (mTORC1) is a central regulator of mammalian cell growth that is dysregulated in a number of human diseases, including metabolic syndromes, aging and cancer. Structural, biochemical and pharmacological studies that have increased our understanding of how mTORC1 executes growth control often relied upon purified mTORC1 protein. However, current immunoaffinity-based purification methods are expensive, inefficient, and do not necessarily isolate endogenous mTORC1, hampering their overall utility in research. Here we present a simple tool to isolate endogenous mTORC1 from various cellular sources. By recombinantly expressing and isolating mTORC1-binding Rag GTPases from E. Coli and using them as affinity probes, we demonstrate that mTORC1 can be isolated from mouse, bovine and human sources. Our results indicate that mTORC1 isolated by this relatively inexpensive method is catalytically active and amenable to scaling. Collectively, this tool may be utilized to isolate mTORC1 from various cellular sources, organs, and disease contexts, aiding mTORC1-related research.
Collapse
Affiliation(s)
| | - Spyridon Pantelios
- Department of Immunology, Pathology and Genetics, Uppsala University, Uppsala, Sweden
| | - Anders P Mutvei
- Department of Immunology, Pathology and Genetics, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
11
|
Grupp B, Gronemeyer T. A biochemical view on the septins, a less known component of the cytoskeleton. Biol Chem 2023; 404:1-13. [PMID: 36423333 DOI: 10.1515/hsz-2022-0263] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 10/30/2022] [Indexed: 11/25/2022]
Abstract
The septins are a conserved family of guanine nucleotide binding proteins, often named the fourth component of the cytoskeleton. They self-assemble into non-polar filaments and further into higher ordered structures. Properly assembled septin structures are required for a wide range of indispensable intracellular processes such as cytokinesis, vesicular transport, polarity establishment and cellular adhesion. Septins belong structurally to the P-Loop NTPases. However, unlike the small GTPases like Ras, septins do not mediate signals to effectors through GTP binding and hydrolysis. The role of nucleotide binding and subsequent GTP hydrolysis by the septins is rather controversially debated. We compile here the structural features from the existing septin crystal- and cryo-EM structures regarding protofilament formation, inter-subunit interface architecture and nucleotide binding and hydrolysis. These findings are supplemented with a summary of available biochemical studies providing information regarding nucleotide binding and hydrolysis of fungal and mammalian septins.
Collapse
Affiliation(s)
- Benjamin Grupp
- Institute of Molecular Genetics and Cell Biology, Ulm University, James Franck Ring N27, 89081 Ulm, Germany
| | - Thomas Gronemeyer
- Institute of Molecular Genetics and Cell Biology, Ulm University, James Franck Ring N27, 89081 Ulm, Germany
| |
Collapse
|
12
|
Wolff DW, Bianchi-Smiraglia A, Nikiforov MA. Compartmentalization and regulation of GTP in control of cellular phenotypes. Trends Mol Med 2022; 28:758-769. [PMID: 35718686 PMCID: PMC9420775 DOI: 10.1016/j.molmed.2022.05.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/26/2022] [Accepted: 05/27/2022] [Indexed: 10/18/2022]
Abstract
Genetic or pharmacological inhibition of enzymes involved in GTP biosynthesis has substantial biological effects, underlining the need to better understand the function of GTP levels in regulation of cellular processes and the significance of targeting GTP biosynthesis enzymes for therapeutic intervention. Our current understanding of spatiotemporal regulation of GTP metabolism and its role in physiological and pathological cellular processes is far from complete. Novel methodologies such as genetically encoded sensors of free GTP offered insights into intracellular distribution and function of GTP molecules. In the current Review, we provide analysis of recent discoveries in the field of GTP metabolism and evaluate the key enzymes as molecular targets.
Collapse
Affiliation(s)
- David W Wolff
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC 27708, USA.
| | - Anna Bianchi-Smiraglia
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14203, USA
| | - Mikhail A Nikiforov
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC 27708, USA; Department of Pathology, Duke University School of Medicine, Durham, NC 27710, USA.
| |
Collapse
|
13
|
Kopra K, Valtonen S, Mahran R, Kapp JN, Hassan N, Gillette W, Dennis B, Li L, Westover KD, Plückthun A, Härmä H. Thermal Shift Assay for Small GTPase Stability Screening: Evaluation and Suitability. Int J Mol Sci 2022; 23:7095. [PMID: 35806100 PMCID: PMC9266822 DOI: 10.3390/ijms23137095] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/21/2022] [Accepted: 06/22/2022] [Indexed: 02/01/2023] Open
Abstract
Thermal unfolding methods are commonly used as a predictive technique by tracking the protein's physical properties. Inherent protein thermal stability and unfolding profiles of biotherapeutics can help to screen or study potential drugs and to find stabilizing or destabilizing conditions. Differential scanning calorimetry (DSC) is a 'Gold Standard' for thermal stability assays (TSA), but there are also a multitude of other methodologies, such as differential scanning fluorimetry (DSF). The use of an external probe increases the assay throughput, making it more suitable for screening studies, but the current methodologies suffer from relatively low sensitivity. While DSF is an effective tool for screening, interpretation and comparison of the results is often complicated. To overcome these challenges, we compared three thermal stability probes in small GTPase stability studies: SYPRO Orange, 8-anilino-1-naphthalenesulfonic acid (ANS), and the Protein-Probe. We studied mainly KRAS, as a proof of principle to obtain biochemical knowledge through TSA profiles. We showed that the Protein-Probe can work at lower concentration than the other dyes, and its sensitivity enables effective studies with non-covalent and covalent drugs at the nanomolar level. Using examples, we describe the parameters, which must be taken into account when characterizing the effect of drug candidates, of both small molecules and Designed Ankyrin Repeat Proteins.
Collapse
Affiliation(s)
- Kari Kopra
- Department of Chemistry, University of Turku, Henrikinkatu 2, 20500 Turku, Finland; (S.V.); (R.M.); (N.H.); (H.H.)
| | - Salla Valtonen
- Department of Chemistry, University of Turku, Henrikinkatu 2, 20500 Turku, Finland; (S.V.); (R.M.); (N.H.); (H.H.)
| | - Randa Mahran
- Department of Chemistry, University of Turku, Henrikinkatu 2, 20500 Turku, Finland; (S.V.); (R.M.); (N.H.); (H.H.)
| | - Jonas N. Kapp
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland; (J.N.K.); (A.P.)
| | - Nazia Hassan
- Department of Chemistry, University of Turku, Henrikinkatu 2, 20500 Turku, Finland; (S.V.); (R.M.); (N.H.); (H.H.)
| | - William Gillette
- Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, 8560 Progress Dr., Frederick, MD 21702, USA;
| | - Bryce Dennis
- Departments of Biochemistry and Radiation Oncology, University of Texas Southwestern Medical Center at Dallas, 5323 Harry Hines Blvd, L4.270, Dallas, TX 75390, USA; (B.D.); (L.L.); (K.D.W.)
| | - Lianbo Li
- Departments of Biochemistry and Radiation Oncology, University of Texas Southwestern Medical Center at Dallas, 5323 Harry Hines Blvd, L4.270, Dallas, TX 75390, USA; (B.D.); (L.L.); (K.D.W.)
| | - Kenneth D. Westover
- Departments of Biochemistry and Radiation Oncology, University of Texas Southwestern Medical Center at Dallas, 5323 Harry Hines Blvd, L4.270, Dallas, TX 75390, USA; (B.D.); (L.L.); (K.D.W.)
| | - Andreas Plückthun
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland; (J.N.K.); (A.P.)
| | - Harri Härmä
- Department of Chemistry, University of Turku, Henrikinkatu 2, 20500 Turku, Finland; (S.V.); (R.M.); (N.H.); (H.H.)
| |
Collapse
|
14
|
Wolff DW, Deng Z, Bianchi-Smiraglia A, Foley CE, Han Z, Wang X, Shen S, Rosenberg MM, Moparthy S, Yun DH, Chen J, Baker BK, Roll MV, Magiera AJ, Li J, Hurley E, Feltri ML, Cox AO, Lee J, Furdui CM, Liu L, Bshara W, LaConte LE, Kandel ES, Pasquale EB, Qu J, Hedstrom L, Nikiforov MA. Phosphorylation of guanosine monophosphate reductase triggers a GTP-dependent switch from pro- to anti-oncogenic function of EPHA4. Cell Chem Biol 2022; 29:970-984.e6. [PMID: 35148834 PMCID: PMC9620470 DOI: 10.1016/j.chembiol.2022.01.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 11/19/2021] [Accepted: 01/11/2022] [Indexed: 12/11/2022]
Abstract
Signal transduction pathways post-translationally regulating nucleotide metabolism remain largely unknown. Guanosine monophosphate reductase (GMPR) is a nucleotide metabolism enzyme that decreases GTP pools by converting GMP to IMP. We observed that phosphorylation of GMPR at Tyr267 is critical for its activity and found that this phosphorylation by ephrin receptor tyrosine kinase EPHA4 decreases GTP pools in cell protrusions and levels of GTP-bound RAC1. EPHs possess oncogenic and tumor-suppressor activities, although the mechanisms underlying switches between these two modes are poorly understood. We demonstrated that GMPR plays a key role in EPHA4-mediated RAC1 suppression. This supersedes GMPR-independent activation of RAC1 by EPHA4, resulting in a negative overall effect on melanoma cell invasion and tumorigenicity. Accordingly, EPHA4 levels increase during melanoma progression and inversely correlate with GMPR levels in individual melanoma tumors. Therefore, phosphorylation of GMPR at Tyr267 is a metabolic signal transduction switch controlling GTP biosynthesis and transformed phenotypes.
Collapse
Affiliation(s)
- David W. Wolff
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC 27708, USA,Department of Cancer Biology, Wake Forest School of Medicine, Winston Salem, NC 27157, USA
| | - Zhiyong Deng
- Department of Cancer Biology, Wake Forest School of Medicine, Winston Salem, NC 27157, USA
| | - Anna Bianchi-Smiraglia
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14203, USA
| | - Colleen E. Foley
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14203, USA
| | - Zhannan Han
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC 27708, USA,Department of Cancer Biology, Wake Forest School of Medicine, Winston Salem, NC 27157, USA
| | - Xingyou Wang
- Department of Chemistry, Brandeis University, Waltham, MA 02453, USA
| | - Shichen Shen
- Department of Pharmaceutical Sciences, University at Buffalo, Buffalo, NY 14214, USA
| | | | - Sudha Moparthy
- Department of Cancer Biology, Wake Forest School of Medicine, Winston Salem, NC 27157, USA
| | - Dong Hyun Yun
- Department of Cancer Biology, Wake Forest School of Medicine, Winston Salem, NC 27157, USA
| | - Jialin Chen
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC 27708, USA,Department of Cancer Biology, Wake Forest School of Medicine, Winston Salem, NC 27157, USA
| | - Brian K. Baker
- Department of Cancer Biology, Wake Forest School of Medicine, Winston Salem, NC 27157, USA
| | - Matthew V. Roll
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC 27708, USA,Department of Cancer Biology, Wake Forest School of Medicine, Winston Salem, NC 27157, USA
| | - Andrew J. Magiera
- Department of Cancer Biology, Wake Forest School of Medicine, Winston Salem, NC 27157, USA
| | - Jun Li
- Department of Pharmaceutical Sciences, University at Buffalo, Buffalo, NY 14214, USA
| | - Edward Hurley
- Department of Biochemistry and Neurology, Hunter James Kelly Research Institute, University at Buffalo, Buffalo NY, USA
| | - Maria Laura Feltri
- Department of Biochemistry and Neurology, Hunter James Kelly Research Institute, University at Buffalo, Buffalo NY, USA
| | - Anderson O. Cox
- Department of Internal Medicine, Section of Molecular Medicine, Wake Forest School of Medicine, Winston-Salem NC, USA
| | - Jingyun Lee
- Department of Internal Medicine, Section of Molecular Medicine, Wake Forest School of Medicine, Winston-Salem NC, USA
| | - Cristina M. Furdui
- Department of Internal Medicine, Section of Molecular Medicine, Wake Forest School of Medicine, Winston-Salem NC, USA
| | - Liang Liu
- Department of Cancer Biology, Wake Forest School of Medicine, Winston Salem, NC 27157, USA
| | - Wiam Bshara
- Department of Pathology, Roswell Park Comprehensive Cancer Center, Buffalo NY 14203, USA
| | - Leslie E.W. LaConte
- Fralin Biomedical Research Institute at Virginia Tech Carilion School of Medicine, Roanoke, VA 24016, USA
| | - Eugene S. Kandel
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14203, USA
| | - Elena B. Pasquale
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Jun Qu
- Department of Chemistry, Brandeis University, Waltham, MA 02453, USA
| | - Lizbeth Hedstrom
- Department of Chemistry, Brandeis University, Waltham, MA 02453, USA,Department of Biology, Brandeis University, Waltham, MA 02453, USA
| | - Mikhail A. Nikiforov
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC 27708, USA,Department of Cancer Biology, Wake Forest School of Medicine, Winston Salem, NC 27157, USA,Department of Pathology, Duke University School of Medicine, Durham, NC 27710, USA,Corresponding author and lead contact: Mikhail A. Nikiforov,
| |
Collapse
|
15
|
Teng X, Chen S, Wang Q, Chen Z, Wang X, Huang N, Zheng S. Structural insights into G protein activation by D1 dopamine receptor. SCIENCE ADVANCES 2022; 8:eabo4158. [PMID: 35687690 PMCID: PMC9187227 DOI: 10.1126/sciadv.abo4158] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 04/28/2022] [Indexed: 06/15/2023]
Abstract
G protein-coupled receptors (GPCRs) comprise the largest family of membrane receptors and are the most important drug targets. An agonist-bound GPCR engages heterotrimeric G proteins and triggers the exchange of guanosine diphosphate (GDP) with guanosine triphosphate (GTP) to promote G protein activation. A complete understanding of molecular mechanisms of G protein activation has been hindered by a lack of structural information of GPCR-G protein complex in nucleotide-bound states. Here, we report the cryo-EM structures of the D1 dopamine receptor and mini-Gs complex in the nucleotide-free and nucleotide-bound states. These structures reveal major conformational changes in Gα such as structural rearrangements of the carboxyl- and amino-terminal α helices that account for the release of GDP and the GTP-dependent dissociation of Gα from Gβγ subunits. As validated by biochemical and cellular signaling studies, our structures shed light into the molecular basis of the entire signaling events of GPCR-mediated G protein activation.
Collapse
Affiliation(s)
- Xiao Teng
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China
- National Institute of Biological Sciences, Beijing, China
| | - Sijia Chen
- National Institute of Biological Sciences, Beijing, China
- Graduate School of Peking Union Medical College, Beijing, China
| | - Qing Wang
- National Institute of Biological Sciences, Beijing, China
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Zhao Chen
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China
- National Institute of Biological Sciences, Beijing, China
| | - Xiaoying Wang
- National Institute of Biological Sciences, Beijing, China
| | - Niu Huang
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China
- National Institute of Biological Sciences, Beijing, China
| | - Sanduo Zheng
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China
- National Institute of Biological Sciences, Beijing, China
- Graduate School of Peking Union Medical College, Beijing, China
| |
Collapse
|
16
|
Boyd RJ, Olson TL, Zook JD, Stein D, Aceves M, Lin WH, Craciunescu FM, Hansen DT, Anastasiadis PZ, Singharoy A, Fromme P. Characterization and computational simulation of human Syx, a RhoGEF implicated in glioblastoma. FASEB J 2022; 36:e22378. [PMID: 35639414 PMCID: PMC9262375 DOI: 10.1096/fj.202101808rr] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 05/10/2022] [Accepted: 05/13/2022] [Indexed: 12/04/2022]
Abstract
Structural discovery of guanine nucleotide exchange factor (GEF) protein complexes is likely to become increasingly relevant with the development of new therapeutics targeting small GTPases and development of new classes of small molecules that inhibit protein‐protein interactions. Syx (also known as PLEKHG5 in humans) is a RhoA GEF implicated in the pathology of glioblastoma (GBM). Here we investigated protein expression and purification of ten different human Syx constructs and performed biophysical characterizations and computational studies that provide insights into why expression of this protein was previously intractable. We show that human Syx can be expressed and isolated and Syx is folded as observed by circular dichroism (CD) spectroscopy and actively binds to RhoA as determined by co‐elution during size exclusion chromatography (SEC). This characterization may provide critical insights into the expression and purification of other recalcitrant members of the large class of oncogenic—Diffuse B‐cell lymphoma (Dbl) homology GEF proteins. In addition, we performed detailed homology modeling and molecular dynamics simulations on the surface of a physiologically realistic membrane. These simulations reveal novel insights into GEF activity and allosteric modulation by the plekstrin homology (PH) domain. These newly revealed interactions between the GEF PH domain and the membrane embedded region of RhoA support previously unexplained experimental findings regarding the allosteric effects of the PH domain from numerous activity studies of Dbl homology GEF proteins. This work establishes new hypotheses for structural interactivity and allosteric signal modulation in Dbl homology RhoGEFs.
Collapse
Affiliation(s)
- Ryan J Boyd
- Biodesign Center for Applied Structural Discovery, Arizona State University, Tempe, Arizona, USA
| | - Tien L Olson
- Biodesign Center for Applied Structural Discovery, Arizona State University, Tempe, Arizona, USA
| | - James D Zook
- Biodesign Center for Applied Structural Discovery, Arizona State University, Tempe, Arizona, USA
| | - Derek Stein
- Biodesign Center for Applied Structural Discovery, Arizona State University, Tempe, Arizona, USA
| | - Manuel Aceves
- Biodesign Center for Applied Structural Discovery, Arizona State University, Tempe, Arizona, USA
| | - Wan-Hsin Lin
- Department of Cancer Biology, Mayo Clinic, Jacksonville, Florida, USA
| | - Felicia M Craciunescu
- Biodesign Center for Applied Structural Discovery, Arizona State University, Tempe, Arizona, USA
| | - Debra T Hansen
- Biodesign Center for Applied Structural Discovery, Arizona State University, Tempe, Arizona, USA.,Center for Innovations in Medicine, Arizona State University, Tempe, Arizona, USA
| | | | - Abhishek Singharoy
- Biodesign Center for Applied Structural Discovery, Arizona State University, Tempe, Arizona, USA
| | - Petra Fromme
- Biodesign Center for Applied Structural Discovery, Arizona State University, Tempe, Arizona, USA
| |
Collapse
|
17
|
Regulation of local GTP availability controls RAC1 activity and cell invasion. Nat Commun 2021; 12:6091. [PMID: 34667203 PMCID: PMC8526568 DOI: 10.1038/s41467-021-26324-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 09/27/2021] [Indexed: 12/04/2022] Open
Abstract
Physiological changes in GTP levels in live cells have never been considered a regulatory step of RAC1 activation because intracellular GTP concentration (determined by chromatography or mass spectrometry) was shown to be substantially higher than the in vitro RAC1 GTP dissociation constant (RAC1-GTP Kd). Here, by combining genetically encoded GTP biosensors and a RAC1 activity biosensor, we demonstrated that GTP levels fluctuating around RAC1-GTP Kd correlated with changes in RAC1 activity in live cells. Furthermore, RAC1 co-localized in protrusions of invading cells with several guanylate metabolism enzymes, including rate-limiting inosine monophosphate dehydrogenase 2 (IMPDH2), which was partially due to direct RAC1-IMPDH2 interaction. Substitution of endogenous IMPDH2 with IMPDH2 mutants incapable of binding RAC1 did not affect total intracellular GTP levels but suppressed RAC1 activity. Targeting IMPDH2 away from the plasma membrane did not alter total intracellular GTP pools but decreased GTP levels in cell protrusions, RAC1 activity, and cell invasion. These data provide a mechanism of regulation of RAC1 activity by local GTP pools in live cells. Changes in intracellular GTP levels are not considered as a regulatory event in RAC1 activation in live cells since total GTP levels are substantially higher than the RAC1 GTP dissociation constant determined in vitro. Here, the authors demonstrate that the availability of free GTP in live cells controls the activity of RAC1 and cell invasion.
Collapse
|
18
|
Giubilaro J, Schuetz DA, Stepniewski TM, Namkung Y, Khoury E, Lara-Márquez M, Campbell S, Beautrait A, Armando S, Radresa O, Duchaine J, Lamarche-Vane N, Claing A, Selent J, Bouvier M, Marinier A, Laporte SA. Discovery of a dual Ras and ARF6 inhibitor from a GPCR endocytosis screen. Nat Commun 2021; 12:4688. [PMID: 34344896 PMCID: PMC8333425 DOI: 10.1038/s41467-021-24968-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 07/17/2021] [Indexed: 12/15/2022] Open
Abstract
Internalization and intracellular trafficking of G protein-coupled receptors (GPCRs) play pivotal roles in cell responsiveness. Dysregulation in receptor trafficking can lead to aberrant signaling and cell behavior. Here, using an endosomal BRET-based assay in a high-throughput screen with the prototypical GPCR angiotensin II type 1 receptor (AT1R), we sought to identify receptor trafficking inhibitors from a library of ~115,000 small molecules. We identified a novel dual Ras and ARF6 inhibitor, which we named Rasarfin, that blocks agonist-mediated internalization of AT1R and other GPCRs. Rasarfin also potently inhibits agonist-induced ERK1/2 signaling by GPCRs, and MAPK and Akt signaling by EGFR, as well as prevents cancer cell proliferation. In silico modeling and in vitro studies reveal a unique binding modality of Rasarfin within the SOS-binding domain of Ras. Our findings unveil a class of dual small G protein inhibitors for receptor trafficking and signaling, useful for the inhibition of oncogenic cellular responses. While Ras is a promising target for cancer therapy, development of inhibitors targeting Ras signaling has proven challenging. Here, the authors report the discovery of Rasarfin, a small molecule from a phenotypic screen on G protein-coupled receptor (GPCR) endocytosis that acts as a dual Ras and ARF6 inhibitor.
Collapse
Affiliation(s)
- Jenna Giubilaro
- Department of Pharmacology and Therapeutics, McGill University, Montréal, QC, Canada.,Research Institute of the McGill University Health Center (RI-MUHC), Montreal, QC, Canada
| | - Doris A Schuetz
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montréal, QC, Canada
| | - Tomasz M Stepniewski
- Research Programme on Biomedical Informatics (GRIB), Department of Experimental and Health Sciences of Pompeu, Fabra University (UPF)-Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain.,InterAx Biotech AG, Villigen, Switzerland
| | - Yoon Namkung
- Research Institute of the McGill University Health Center (RI-MUHC), Montreal, QC, Canada.,Department of Medicine, Research Institute of the McGill University Health Center (RI-MUHC), McGill University, Montréal, QC, Canada
| | - Etienne Khoury
- Department of Medicine, Research Institute of the McGill University Health Center (RI-MUHC), McGill University, Montréal, QC, Canada
| | - Mónica Lara-Márquez
- Research Institute of the McGill University Health Center (RI-MUHC), Montreal, QC, Canada.,Department of Anatomy and Cell Biology, McGill University, Montréal, QC, Canada
| | - Shirley Campbell
- Department of Pharmacology and Physiology, Université de Montréal, Montréal, QC, Canada
| | - Alexandre Beautrait
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montréal, QC, Canada.,Schrödinger, Inc., New York, NY, United States
| | - Sylvain Armando
- Department of Medicine, Research Institute of the McGill University Health Center (RI-MUHC), McGill University, Montréal, QC, Canada
| | - Olivier Radresa
- Department of Medicine, Research Institute of the McGill University Health Center (RI-MUHC), McGill University, Montréal, QC, Canada
| | - Jean Duchaine
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montréal, QC, Canada
| | - Nathalie Lamarche-Vane
- Research Institute of the McGill University Health Center (RI-MUHC), Montreal, QC, Canada.,Department of Anatomy and Cell Biology, McGill University, Montréal, QC, Canada
| | - Audrey Claing
- Department of Pharmacology and Physiology, Université de Montréal, Montréal, QC, Canada
| | - Jana Selent
- Research Programme on Biomedical Informatics (GRIB), Department of Experimental and Health Sciences of Pompeu, Fabra University (UPF)-Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
| | - Michel Bouvier
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montréal, QC, Canada.,Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, QC, Canada
| | - Anne Marinier
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montréal, QC, Canada
| | - Stéphane A Laporte
- Department of Pharmacology and Therapeutics, McGill University, Montréal, QC, Canada. .,Research Institute of the McGill University Health Center (RI-MUHC), Montreal, QC, Canada. .,Department of Medicine, Research Institute of the McGill University Health Center (RI-MUHC), McGill University, Montréal, QC, Canada.
| |
Collapse
|
19
|
Huang M, Wang Y. GLOBAL AND TARGETED PROFILING OF GTP-BINDING PROTEINS IN BIOLOGICAL SAMPLES BY MASS SPECTROMETRY. MASS SPECTROMETRY REVIEWS 2021; 40:215-235. [PMID: 32519381 PMCID: PMC7725852 DOI: 10.1002/mas.21637] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 05/04/2020] [Accepted: 05/15/2020] [Indexed: 05/05/2023]
Abstract
GTP-binding proteins are among the most important enzyme families that are involved in a plethora of biological processes. However, owing to the enormous diversity of the nucleotide-binding protein family, comprehensive analyses of the expression level, structure, activity, and regulatory mechanisms of GTP-binding proteins remain challenging with the use of conventional approaches. The many advances in mass spectrometry (MS) instrumentation and data acquisition methods, together with a variety of enrichment approaches in sample preparation, render MS a powerful tool for the comprehensive characterizations of the activities and expression levels of various GTP-binding proteins. We review herein the recent developments in the application of MS-based techniques, together with general and widely used affinity enrichment approaches, for the proteome-wide and targeted capture, identification, and quantification of GTP-binding proteins. The working principles, advantages, and limitations of various strategies for profiling the expression level, activity, posttranslational modifications, and interactome of GTP-binding proteins are discussed. It can be envisaged that future applications of MS-based proteomics will lead to a better understanding about the roles of GTP-binding proteins in different biological processes and human diseases. © 2020 John Wiley & Sons Ltd. Mass Spec Rev.
Collapse
Affiliation(s)
- Ming Huang
- Environmental Toxicology Graduate Program, University of California Riverside, Riverside, CA 92521, USA
| | - Yinsheng Wang
- Environmental Toxicology Graduate Program, University of California Riverside, Riverside, CA 92521, USA
- Department of Chemistry, University of California Riverside, Riverside, CA 92521, USA
- Correspondence author: Yinsheng Wang. Telephone: (951)827-2700;
| |
Collapse
|
20
|
Senyuz S, Jang H, Nussinov R, Keskin O, Gursoy A. Mechanistic Differences of Activation of Rac1 P29S and Rac1 A159V. J Phys Chem B 2021; 125:3790-3802. [PMID: 33848152 PMCID: PMC8154616 DOI: 10.1021/acs.jpcb.1c00883] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/31/2021] [Indexed: 12/26/2022]
Abstract
Rac1 is a small GTPase that plays key roles in actin reorganization, cell motility, and cell survival/growth as well as in various cancer types and neurodegenerative diseases. Similar to other Ras superfamily GTPases, Rac1 switches between active GTP-bound and inactive GDP-bound states. Switch I and II regions open and close during GDP/GTP exchange. P29S and A159V (paralogous to K-RasA146) mutations are the two most common somatic mutations of Rac1. Rac1P29S is a known hotspot for melanoma, whereas Rac1A159V most commonly occurs in head and neck cancer. To investigate how these substitutions induce the Rac1 dynamics, we used atomistic molecular dynamics simulations on the wild-type Rac1 and two mutant systems (P29S and A159V) in the GTP bound state, and on the wild-type Rac1 and P29S mutated system in the GDP bound state. Here, we show that P29S and A159V mutations activate Rac1 with different mechanisms. In Rac1P29S-GTP, the substitution increases the flexibility of Switch I based on RMSF and dihedral angle calculations and leads to an open conformation. We propose that the open Switch I conformation is one of the underlying reasons for rapid GDP/GTP exchange of Rac1P29S. On the other hand, in Rac1A159V-GTP, some of the contacts of the guanosine ring of GTP with Rac1 are temporarily lost, enabling the guanosine ring to move toward Switch I and subsequently close the switch. Rac1A159V-GTP adopts a Ras state 2 like conformation, where both switch regions are in closed conformation and Thr35 forms a hydrogen bond with the nucleotide.
Collapse
Affiliation(s)
- Simge Senyuz
- Computational
Science and Engineering, Koc University, Rumelifeneri Yolu, 34450 Sariyer, Istanbul, Turkey
| | - Hyunbum Jang
- Computational
Structural Biology Section, Frederick National Laboratory for Cancer
Research in the Laboratory of Cancer Immunometabolism, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Ruth Nussinov
- Computational
Structural Biology Section, Frederick National Laboratory for Cancer
Research in the Laboratory of Cancer Immunometabolism, National Cancer Institute, Frederick, Maryland 21702, United States
- Department
of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Ozlem Keskin
- Chemical
and Biological Engineering, Koc University, Rumelifeneri Yolu, 34450 Sariyer, Istanbul, Turkey
| | - Attila Gursoy
- Computer
Engineering, Koc University, Rumelifeneri Yolu, 34450 Sariyer, Istanbul, Turkey
| |
Collapse
|
21
|
Engineering subtilisin proteases that specifically degrade active RAS. Commun Biol 2021; 4:299. [PMID: 33674772 PMCID: PMC7935941 DOI: 10.1038/s42003-021-01818-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 02/10/2021] [Indexed: 12/18/2022] Open
Abstract
We describe the design, kinetic properties, and structures of engineered subtilisin proteases that degrade the active form of RAS by cleaving a conserved sequence in switch 2. RAS is a signaling protein that, when mutated, drives a third of human cancers. To generate high specificity for the RAS target sequence, the active site was modified to be dependent on a cofactor (imidazole or nitrite) and protease sub-sites were engineered to create a linkage between substrate and cofactor binding. Selective proteolysis of active RAS arises from a 2-step process wherein sub-site interactions promote productive binding of the cofactor, enabling cleavage. Proteases engineered in this way specifically cleave active RAS in vitro, deplete the level of RAS in a bacterial reporter system, and also degrade RAS in human cell culture. Although these proteases target active RAS, the underlying design principles are fundamental and will be adaptable to many target proteins.
Collapse
|
22
|
Acuner SE, Sumbul F, Torun H, Haliloglu T. Oncogenic mutations on Rac1 affect global intrinsic dynamics underlying GTP and PAK1 binding. Biophys J 2021; 120:866-876. [PMID: 33515600 PMCID: PMC8008323 DOI: 10.1016/j.bpj.2021.01.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 12/31/2020] [Accepted: 01/08/2021] [Indexed: 12/31/2022] Open
Abstract
Rac1 is a small member of the Rho GTPase family. One of the most important downstream effectors of Rac1 is a serine/threonine kinase, p21-activated kinase 1 (PAK1). Mutational activation of PAK1 by Rac1 has oncogenic signaling effects. Here, although we focus on Rac1-PAK1 interaction by atomic-force-microscopy-based single-molecule force spectroscopy experiments, we explore the effect of active mutations on the intrinsic dynamics and binding interactions of Rac1 by Gaussian network model analysis and molecular dynamics simulations. We observe that Rac1 oncogenic mutations are at the hinges of three global modes of motion, suggesting the mechanical changes as potential markers of oncogenicity. Indeed, the dissociation of wild-type Rac1-PAK1 complex shows two distinct unbinding dynamic states that are reduced to one with constitutively active Q61L and oncogenic Y72C mutant Rac1, as revealed by single-molecule force spectroscopy experiments. Q61L and Y72C mutations change the mechanics of the Rac1-PAK1 complex by increasing the elasticity of the protein and slowing down the transition to the unbound state. On the other hand, Rac1's intrinsic dynamics reveal more flexible GTP and PAK1-binding residues on switches I and II with Q61L, Y72C, oncogenic P29S and Q61R, and negative T17N mutations. The cooperativity in the fluctuations of GTP-binding sites around the p-loop and switch I decreases in all mutants, mostly in Q61L, whereas some PAK1-binding residues display enhanced coupling with GTP-binding sites in Q61L and Y72C and within each other in P29S. The predicted binding free energies of the modeled Rac1-PAK1 complexes show that the change in the dynamic behavior likely means a more favorable PAK1 interaction. Overall, these findings suggest that the active mutations affect intrinsic functional dynamic events and alter the mechanics underlying the binding of Rac1 to GTP and upstream and downstream partners including PAK1.
Collapse
Affiliation(s)
- Saliha Ece Acuner
- Department of Chemical Engineering and Polymer Research Center, Bogazici University, Istanbul, Turkey
| | - Fidan Sumbul
- Department of Chemical Engineering and Polymer Research Center, Bogazici University, Istanbul, Turkey
| | - Hamdi Torun
- Department of Mathematics, Physics and Electrical Engineering, Northumbria University, Newcastle, United Kingdom.
| | - Turkan Haliloglu
- Department of Chemical Engineering and Polymer Research Center, Bogazici University, Istanbul, Turkey.
| |
Collapse
|
23
|
Transcriptional Regulators in Bacillus anthracis: A Potent Biothreat Agent. RECENT DEVELOPMENTS IN MICROBIAL TECHNOLOGIES 2021. [DOI: 10.1007/978-981-15-4439-2_17] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
24
|
Lim C, Berk JM, Blaise A, Bircher J, Koleske AJ, Hochstrasser M, Xiong Y. Crystal structure of a guanine nucleotide exchange factor encoded by the scrub typhus pathogen Orientia tsutsugamushi. Proc Natl Acad Sci U S A 2020; 117:30380-30390. [PMID: 33184172 PMCID: PMC7720168 DOI: 10.1073/pnas.2018163117] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Rho family GTPases regulate an array of cellular processes and are often modulated by pathogens to promote infection. Here, we identify a cryptic guanine nucleotide exchange factor (GEF) domain in the OtDUB protein encoded by the pathogenic bacterium Orientia tsutsugamushi A proteomics-based OtDUB interaction screen identified numerous potential host interactors, including the Rho GTPases Rac1 and Cdc42. We discovered a domain in OtDUB with Rac1/Cdc42 GEF activity (OtDUBGEF), with higher activity toward Rac1 in vitro. While this GEF bears no obvious sequence similarity to known GEFs, crystal structures of OtDUBGEF alone (3.0 Å) and complexed with Rac1 (1.7 Å) reveal striking convergent evolution, with a unique topology, on a V-shaped bacterial GEF fold shared with other bacterial GEF domains. Structure-guided mutational analyses identified residues critical for activity and a mechanism for nucleotide displacement. Ectopic expression of OtDUB activates Rac1 preferentially in cells, and expression of the OtDUBGEF alone alters cell morphology. Cumulatively, this work reveals a bacterial GEF within the multifunctional OtDUB that co-opts host Rac1 signaling to induce changes in cytoskeletal structure.
Collapse
Affiliation(s)
- Christopher Lim
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT 06520
| | - Jason M Berk
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT 06520
| | - Alyssa Blaise
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT 06520
| | - Josie Bircher
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT 06520
| | - Anthony J Koleske
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT 06520
| | - Mark Hochstrasser
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT 06520
| | - Yong Xiong
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT 06520
| |
Collapse
|
25
|
Génier S, Létourneau D, Gauthier E, Picard S, Boisvert M, Parent JL, Lavigne P. In-depth NMR characterization of Rab4a structure, nucleotide exchange and hydrolysis kinetics reveals an atypical GTPase profile. J Struct Biol 2020; 212:107582. [PMID: 32707235 DOI: 10.1016/j.jsb.2020.107582] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/15/2020] [Accepted: 07/17/2020] [Indexed: 10/23/2022]
Abstract
Rab4a is a small GTPase associated with endocytic compartments and a key regulator of early endosomes recycling. Gathering evidence indicates that its expression and activation are required for the development of metastases. Rab4a-intrinsic GTPase properties that control its activity, i.e. nucleotide exchange and hydrolysis rates, have not yet been thoroughly studied. The determination of these properties is of the utmost importance to understand its functions and contributions to tumorigenesis. Here, we used the constitutively active (Rab4aQ67L) and dominant negative (Rab4aS22N) mutants to characterize the thermodynamical and structural determinants of the interaction between Rab4a and GTP (GTPγS) as well as GDP. We report the first 1H, 13C, 15N backbone NMR assignments of a Rab GTPase family member with Rab4a in complex with GDP and GTPγS. We also provide a qualitative description of the extent of structural and dynamical changes caused by the Q67L and S22N mutations. Using a real-time NMR approach and the two aforementioned mutants as controls, we evaluated Rab4a intrinsic nucleotide exchange and hydrolysis rates. Compared to most small GTPases such as Ras, a rapid GTP exchange rate along with slow hydrolysis rate were observed. This suggests that, in a cellular context, Rab4a can self-activate and persist in an activated state in absence of regulatory mechanisms. This peculiar profile is uncommon among the Ras superfamily members, making Rab4a an atypical fast-cycling GTPase and may explain, at least in part, how it contributes to metastases.
Collapse
Affiliation(s)
- Samuel Génier
- Département de Médecine, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Québec, Canada; Institut de Pharmacologie de Sherbrooke, Sherbrooke, Québec, Canada
| | - Danny Létourneau
- Département de Biochimie et Génomique Fonctionnelle, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Québec, Canada; Institut de Pharmacologie de Sherbrooke, Sherbrooke, Québec, Canada
| | - Esther Gauthier
- Département de Médecine, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Québec, Canada; Institut de Pharmacologie de Sherbrooke, Sherbrooke, Québec, Canada
| | - Samuel Picard
- Département de Médecine, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Québec, Canada; Institut de Pharmacologie de Sherbrooke, Sherbrooke, Québec, Canada
| | - Marilou Boisvert
- Département de Médecine, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Québec, Canada; Institut de Pharmacologie de Sherbrooke, Sherbrooke, Québec, Canada
| | - Jean-Luc Parent
- Département de Médecine, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Québec, Canada; Institut de Pharmacologie de Sherbrooke, Sherbrooke, Québec, Canada.
| | - Pierre Lavigne
- Département de Biochimie et Génomique Fonctionnelle, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Québec, Canada; Institut de Pharmacologie de Sherbrooke, Sherbrooke, Québec, Canada.
| |
Collapse
|
26
|
Chinigò G, Fiorio Pla A, Gkika D. TRP Channels and Small GTPases Interplay in the Main Hallmarks of Metastatic Cancer. Front Pharmacol 2020; 11:581455. [PMID: 33132914 PMCID: PMC7550629 DOI: 10.3389/fphar.2020.581455] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 09/11/2020] [Indexed: 12/13/2022] Open
Abstract
Transient Receptor Potential (TRP) cations channels, as key regulators of intracellular calcium homeostasis, play a central role in the essential hallmarks of cancer. Among the multiple pathways in which TRPs may be involved, here we focus our attention on the ones involving small guanosine triphosphatases (GTPases), summarizing the main processes associated with the metastatic cascade, such as migration, invasion and tumor vascularization. In the last decade, several studies have highlighted a bidirectional interplay between TRPs and small GTPases in cancer progression: TRP channels may affect small GTPases activity via both Ca2+-dependent or Ca2+-independent pathways, and, conversely, some small GTPases may affect TRP channels activity through the regulation of their intracellular trafficking to the plasma membrane or acting directly on channel gating. In particular, we will describe the interplay between TRPC1, TRPC5, TRPC6, TRPM4, TRPM7 or TRPV4, and Rho-like GTPases in regulating cell migration, the cooperation of TRPM2 and TRPV2 with Rho GTPases in increasing cell invasiveness and finally, the crosstalk between TRPC1, TRPC6, TRPM8, TRPV4 and both Rho- and Ras-like GTPases in inducing aberrant tumor vascularization.
Collapse
Affiliation(s)
- Giorgia Chinigò
- Laboratory of Cellular and Molecular Angiogenesis, Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy.,Laboratoire de Cell Physiology, Université de Lille, Department of Life Sciences, Univ. Lille, Inserm, U1003-PHYCEL, Lille, France
| | - Alessandra Fiorio Pla
- Laboratory of Cellular and Molecular Angiogenesis, Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy.,Laboratoire de Cell Physiology, Université de Lille, Department of Life Sciences, Univ. Lille, Inserm, U1003-PHYCEL, Lille, France
| | - Dimitra Gkika
- Laboratoire de Cell Physiology, Université de Lille, Department of Life Sciences, Univ. Lille, Inserm, U1003-PHYCEL, Lille, France.,Univ. Lille, CNRS, INSERM, CHU Lille, Centre Oscar Lambret, UMR 9020-UMR 1277-Canther-Cancer Heterogeneity, Plasticity and Resistance to Therapies, Lille, France.,Institut Universitaire de France (IUF), Paris, France
| |
Collapse
|
27
|
Junglas B, Siebenaller C, Schlösser L, Hellmann N, Schneider D. GTP hydrolysis by Synechocystis IM30 does not decisively affect its membrane remodeling activity. Sci Rep 2020; 10:9793. [PMID: 32555292 PMCID: PMC7299955 DOI: 10.1038/s41598-020-66818-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 05/26/2020] [Indexed: 01/28/2023] Open
Abstract
The function of IM30 (also known as Vipp1) is linked to protection and/or remodeling of the thylakoid membrane system in chloroplasts and cyanobacteria. Recently, it has been revealed that the Arabidopsis IM30 protein exhibits GTP hydrolyzing activity in vitro, which was unexpected, as IM30 does not show any classical GTPase features. In the present study, we addressed the question, whether an apparent GTPase activity is conserved in IM30 proteins and can also be observed for IM30 of the cyanobacterium Synechocystis sp. PCC 6803. We show that Synechocystis IM30 is indeed able to bind and hydrolyze GTP followed by the release of Pi. Yet, the apparent GTPase activity of Synechocystis IM30 does not depend on Mg2+, which, together with the lack of classical GTPase features, renders IM30 an atypical GTPase. To elucidate the impact of this cryptic GTPase activity on the membrane remodeling activity of IM30, we tested whether GTP hydrolysis influences IM30 membrane binding and/or IM30-mediated membrane fusion. We show that membrane remodeling by Synechocystis IM30 is slightly affected by nucleotides. Yet, despite IM30 clearly catalyzing GTP hydrolysis, this does not seem to be vital for its membrane remodeling function.
Collapse
Affiliation(s)
- Benedikt Junglas
- Department of Chemistry, Biochemistry, Johannes Gutenberg University Mainz, 55128, Mainz, Germany
| | - Carmen Siebenaller
- Department of Chemistry, Biochemistry, Johannes Gutenberg University Mainz, 55128, Mainz, Germany
| | - Lukas Schlösser
- Department of Chemistry, Biochemistry, Johannes Gutenberg University Mainz, 55128, Mainz, Germany
| | - Nadja Hellmann
- Department of Chemistry, Biochemistry, Johannes Gutenberg University Mainz, 55128, Mainz, Germany
| | - Dirk Schneider
- Department of Chemistry, Biochemistry, Johannes Gutenberg University Mainz, 55128, Mainz, Germany.
| |
Collapse
|
28
|
Huecas S, Canosa-Valls AJ, Araújo-Bazán L, Ruiz FM, Laurents DV, Fernández-Tornero C, Andreu JM. Nucleotide-induced folding of cell division protein FtsZ from Staphylococcus aureus. FEBS J 2020; 287:4048-4067. [PMID: 31997533 DOI: 10.1111/febs.15235] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 12/12/2019] [Accepted: 01/09/2020] [Indexed: 11/29/2022]
Abstract
The essential bacterial division protein FtsZ uses GTP binding and hydrolysis to assemble into dynamic filaments that treadmill around the Z-ring, guiding septal wall synthesis and cell division. FtsZ is a structural homolog of tubulin and a target for discovering new antibiotics. Here, using FtsZ from the pathogen S. aureus (SaFtsZ), we reveal that, prior to assembly, FtsZ monomers require nucleotide binding for folding; this is possibly relevant to other mesophilic FtsZs. Apo-SaFtsZ is essentially unfolded, as assessed by nuclear magnetic resonance and circular dichroism. Binding of GTP (≥ 1 mm) dramatically shifts the equilibrium toward the active folded protein. Supportingly, SaFtsZ refolded with GDP crystallizes in a native structure. Apo-SaFtsZ also folds with 3.4 m glycerol, enabling high-affinity GTP binding (KD 20 nm determined by isothermal titration calorimetry) similar to thermophilic stable FtsZ. Other stabilizing agents that enhance nucleotide binding include ethylene glycol, trimethylamine N-oxide, and several bacterial osmolytes. High salt stabilizes SaFtsZ without bound nucleotide in an inactive twisted conformation. We identified a cavity behind the SaFtsZ-GDP nucleotide-binding pocket that harbors different small compounds, which is available for extended nucleotide-replacing inhibitors. Furthermore, we devised a competition assay to detect any inhibitors that overlap the nucleotide site of SaFtsZ, or Escherichia coli FtsZ, employing osmolyte-stabilized apo-FtsZs and the specific fluorescence anisotropy change in mant-GTP upon dissociation from the protein. This robust assay provides a basis to screening for high-affinity GTP-replacing ligands, which combined with structural studies and phenotypic profiling should facilitate development of a next generation of FtsZ-targeting antibacterial inhibitors.
Collapse
Affiliation(s)
- Sonia Huecas
- Centro de Investigaciones Biológicas Margarita Salas CSIC, Madrid, Spain
| | | | - Lidia Araújo-Bazán
- Centro de Investigaciones Biológicas Margarita Salas CSIC, Madrid, Spain
| | - Federico M Ruiz
- Centro de Investigaciones Biológicas Margarita Salas CSIC, Madrid, Spain
| | | | | | - José M Andreu
- Centro de Investigaciones Biológicas Margarita Salas CSIC, Madrid, Spain
| |
Collapse
|
29
|
Malvi P, Janostiak R, Nagarajan A, Cai G, Wajapeyee N. Loss of thymidine kinase 1 inhibits lung cancer growth and metastatic attributes by reducing GDF15 expression. PLoS Genet 2019; 15:e1008439. [PMID: 31589613 PMCID: PMC6797230 DOI: 10.1371/journal.pgen.1008439] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 10/17/2019] [Accepted: 09/19/2019] [Indexed: 12/25/2022] Open
Abstract
Metabolic alterations that are critical for cancer cell growth and metastasis are one of the key hallmarks of cancer. Here, we show that thymidine kinase 1 (TK1) is significantly overexpressed in tumor samples from lung adenocarcinoma (LUAD) patients relative to normal controls, and this TK1 overexpression is associated with significantly reduced overall survival and cancer recurrence. Genetic knockdown of TK1 with short hairpin RNAs (shRNAs) inhibits both the growth and metastatic attributes of LUAD cells in culture and in mice. We further show that transcriptional overexpression of TK1 in LUAD cells is driven, in part, by MAP kinase pathway in a transcription factor MAZ dependent manner. Using targeted and gene expression profiling-based approaches, we then show that loss of TK1 in LUAD cells results in reduced Rho GTPase activity and reduced expression of growth and differentiation factor 15 (GDF15). Furthermore, ectopic expression of GDF15 can partially rescue TK1 knockdown-induced LUAD growth and metastasis inhibition, confirming its important role as a downstream mediator of TK1 function in LUAD. Collectively, our findings demonstrate that TK1 facilitates LUAD tumor and metastatic growth and represents a target for LUAD therapy. Thymidine kinase 1 (TK1) is overexpressed and associated with poor prognosis in a number of different cancers. However, despite these data suggesting an important role for TK1 in cancer pathogenesis, no study thus far has analyzed the functional effect of TK1 inhibition on tumor growth and metastasis. In this study, we performed TK1 knockdown and found that this protein is necessary for lung adenocarcinoma (LUAD) tumor growth and metastasis. Notably, inhibition of another nucleotide kinase, deoxycytidine kinase (DCK), had no effect on LUAD tumor growth and metastatic attributes. We therefore performed experiments to determine if the TK1 mechanism of action in cancer is distinct from its previously reported role in DNA damage, DNA replication, and DNA repair. We found that TK1 can promote LUAD tumor growth and metastasis in a non-canonical manner by activating Rho GTPase activity and growth and differentiation factor 15 (GDF15) expression. Taken together, our data suggest that TK1 may represent a potential target for development of LUAD therapy, due to its critical role in maintaining lung tumor growth and metastasis.
Collapse
Affiliation(s)
- Parmanand Malvi
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Radoslav Janostiak
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Arvindhan Nagarajan
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Guoping Cai
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Narendra Wajapeyee
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- * E-mail:
| |
Collapse
|
30
|
Mills RD, Liang LY, Lio DSS, Mok YF, Mulhern TD, Cao G, Griffin M, Kenche VB, Culvenor JG, Cheng HC. The Roc-COR tandem domain of leucine-rich repeat kinase 2 forms dimers and exhibits conventional Ras-like GTPase properties. J Neurochem 2019; 147:409-428. [PMID: 30091236 DOI: 10.1111/jnc.14566] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 08/02/2018] [Accepted: 08/03/2018] [Indexed: 12/18/2022]
Abstract
The Parkinson's disease (PD)-causative leucine-rich repeat kinase 2 (LRRK2) belongs to the Roco family of G-proteins comprising a Ras-of-complex (Roc) domain followed by a C-terminal of Roc (COR) domain in tandem (called Roc-COR domain). Two prokaryotic Roc-COR domains have been characterized as 'G proteins activated by guanine nucleotide-dependent dimerization' (GADs), which require dimerization for activation of their GTPase activity and bind guanine nucleotides with relatively low affinities. Additionally, LRRK2 Roc domain in isolation binds guanine nucleotides with relatively low affinities. As such, LRRK2 GTPase domain was predicted to be a GAD. Herein, we describe the design and high-level expression of human LRRK2 Roc-COR domain (LRRK2 Roc-COR). Biochemical analyses of LRRK2 Roc-COR reveal that it forms homodimers, with the C-terminal portion of COR mediating its dimerization. Furthermore, it co-purifies and binds Mg2+ GTP/GDP at 1 : 1 stoichiometry, and it hydrolyzes GTP with Km and kcat of 22 nM and 4.70 × 10-4 min-1 , respectively. Thus, even though LRRK2 Roc-COR forms GAD-like homodimers, it exhibits conventional Ras-like GTPase properties, with high-affinity binding of Mg2+ -GTP/GDP and low intrinsic catalytic activity. The PD-causative Y1699C mutation mapped to the COR domain was previously reported to reduce the GTPase activity of full-length LRRK2. In contrast, this mutation induces no change in the GTPase activity, and only slight perturbations in the secondary structure contents of LRRK2 Roc-COR. As this mutation does not directly affect the GTPase activity of the isolated Roc-COR tandem, it is possible that the effects of this mutation on full-length LRRK2 occur via other functional domains. Open Practices Open Science: This manuscript was awarded with the Open Materials Badge. For more information see: https://cos.io/our-services/open-science-badges/.
Collapse
Affiliation(s)
- Ryan D Mills
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria, Australia.,Bio21 Institute of Molecular Science and Biotechnology, University of Melbourne, Parkville, Victoria, Australia
| | - Lung-Yu Liang
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria, Australia.,Bio21 Institute of Molecular Science and Biotechnology, University of Melbourne, Parkville, Victoria, Australia.,Cell Signaling Research Laboratories, University of Melbourne, Parkville, Victoria, Australia
| | - Daisy Sio-Seng Lio
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria, Australia.,Bio21 Institute of Molecular Science and Biotechnology, University of Melbourne, Parkville, Victoria, Australia.,Cell Signaling Research Laboratories, University of Melbourne, Parkville, Victoria, Australia
| | - Yee-Foong Mok
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria, Australia.,Bio21 Institute of Molecular Science and Biotechnology, University of Melbourne, Parkville, Victoria, Australia
| | - Terrence D Mulhern
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria, Australia.,Bio21 Institute of Molecular Science and Biotechnology, University of Melbourne, Parkville, Victoria, Australia
| | - George Cao
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria, Australia.,Bio21 Institute of Molecular Science and Biotechnology, University of Melbourne, Parkville, Victoria, Australia
| | - Michael Griffin
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria, Australia.,Bio21 Institute of Molecular Science and Biotechnology, University of Melbourne, Parkville, Victoria, Australia
| | - Vijaya B Kenche
- Bio21 Institute of Molecular Science and Biotechnology, University of Melbourne, Parkville, Victoria, Australia.,Florey Neuroscience Institute, University of Melbourne, Parkville, Victoria, Australia
| | - Janetta G Culvenor
- Department of Pathology, University of Melbourne, Parkville, Victoria, Australia
| | - Heung-Chin Cheng
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria, Australia.,Bio21 Institute of Molecular Science and Biotechnology, University of Melbourne, Parkville, Victoria, Australia.,Cell Signaling Research Laboratories, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
31
|
Toyama Y, Kontani K, Katada T, Shimada I. Decreased conformational stability in the oncogenic N92I mutant of Ras-related C3 botulinum toxin substrate 1. SCIENCE ADVANCES 2019; 5:eaax1595. [PMID: 31457101 PMCID: PMC6685717 DOI: 10.1126/sciadv.aax1595] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 06/27/2019] [Indexed: 06/10/2023]
Abstract
Ras-related C3 botulinum toxin substrate 1 (Rac1) functions as a molecular switch by cycling between an inactive guanosine diphosphate (GDP)-bound state and an active guanosine triphosphate (GTP)-bound state. An oncogenic mutant of Rac1, an N92I mutant, strongly promotes cell proliferation and subsequent oncogenic activities by facilitating the intrinsic GDP dissociation in the inactive GDP-bound state. Here, we used solution nuclear magnetic resonance spectroscopy to investigate the activation mechanism of the N92I mutant. We found that the static structure of the GDP binding site is not markedly perturbed by the mutation, but the overall conformational stability decreases in the N92I mutant, which then facilitates GDP dissociation by lowering the activation energy for the dissociation reaction. On the basis of these results, we proposed the activation mechanism of the N92I mutant, in which the decreased conformational stability plays important roles in its activation process.
Collapse
Affiliation(s)
- Yuki Toyama
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
- Japan Biological Informatics Consortium (JBiC), Aomi, Koto-ku, Tokyo 135-0064, Japan
| | - Kenji Kontani
- Department of Biochemistry, Meiji Pharmaceutical University, Kiyose, Tokyo 204-8588, Japan
| | - Toshiaki Katada
- Molecular Cell Biology Laboratory, Research Institute of Pharmaceutical Sciences, Faculty of Pharmacy, Musashino University, Tokyo 202-8585, Japan
| | - Ichio Shimada
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
32
|
Killoran RC, Smith MJ. Conformational resolution of nucleotide cycling and effector interactions for multiple small GTPases determined in parallel. J Biol Chem 2019; 294:9937-9948. [PMID: 31088913 DOI: 10.1074/jbc.ra119.008653] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 05/09/2019] [Indexed: 12/31/2022] Open
Abstract
Small GTPases alternatively bind GDP/GTP guanine nucleotides to gate signaling pathways that direct most cellular processes. Numerous GTPases are implicated in oncogenesis, particularly the three RAS isoforms HRAS, KRAS, and NRAS and the RHO family GTPase RAC1. Signaling networks comprising small GTPases are highly connected, and there is some evidence of direct biochemical cross-talk between their functional G-domains. The activation potential of a given GTPase is contingent on a codependent interaction with the nucleotide and a Mg2+ ion, which bind to individual variants with distinct affinities coordinated by residues in the GTPase nucleotide-binding pocket. Here, we utilized a selective-labeling strategy coupled with real-time NMR spectroscopy to monitor nucleotide exchange, GTP hydrolysis, and effector interactions of multiple small GTPases in a single complex system. We provide insight into nucleotide preference and the role of Mg2+ in activating both WT and oncogenic mutant enzymes. Multiplexing revealed guanine nucleotide exchange factor (GEF), GTPase-activating protein (GAP), and effector-binding specificities in mixtures of GTPases and resolved that the three related RAS isoforms are biochemically equivalent. This work establishes that direct quantitation of the nucleotide-bound conformation is required to accurately determine an activation potential for any given GTPase, as small GTPases such as RAS-like proto-oncogene A (RALA) or the G12C mutant of KRAS display fast exchange kinetics but have a high affinity for GDP. Furthermore, we propose that the G-domains of small GTPases behave autonomously in solution and that nucleotide cycling proceeds independently of protein concentration but is highly impacted by Mg2+ abundance.
Collapse
Affiliation(s)
- Ryan C Killoran
- From the Institute for Research in Immunology and Cancer and
| | - Matthew J Smith
- From the Institute for Research in Immunology and Cancer and .,Department of Pathology and Cell Biology, Faculty of Medicine, Université de Montréal, Montréal, Québec H3T 1J4, Canada
| |
Collapse
|
33
|
Sugawara R, Ueda H, Honda R. Structural and functional characterization of fast-cycling RhoF GTPase. Biochem Biophys Res Commun 2019; 513:522-527. [PMID: 30981505 DOI: 10.1016/j.bbrc.2019.04.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 04/03/2019] [Indexed: 11/18/2022]
Abstract
Ras superfamily GTPases are molecular switches that cycle between GDP-bound inactive state and GTP-bound active state to control many signaling pathways. Emerging evidence suggests that several Ras superfamily GTPases, including RhoF, do not follow the classical GDP/GTP exchange cycle; they act as constitutively active GTP-bound proteins due to their fast activities of GDP/GTP exchange (termed as 'fast-cycling' GTPases). To understand the molecular basis of the fast-cycling GTPases, we generated a GTPase active recombinant RhoF and examined its function and structure. Two point mutations in the switch I/II regions (Q77L and P45S, corresponding to Q61L and P29S of Rac1) significantly reduced the GTPase activity of RhoF, suggesting a conserved mechanism of GTP hydrolysis between RhoF and other RAS superfamily GTPases. However, in contrary to the previous evidence, RhoF represented a slow GDP/GTP exchange activity that dissociates GDP very slowly on a day-to-week time scale, in our experiment using fluorescently labeled GDP. The slow GDP dissociation was accelerated by Mg2+ chelation and canonical fast-cycling mutations, F44L (corresponding to F28L of Rac1) and P45S. NMR and dynamic light scattering data revealed a multimeric structure of RhoF that can switch between different conformations depending on the GTP/GDP-bound state. Overall, our study suggests that (1) RhoF shares a conserved mechanism of GTP hydrolysis with other RAS superfamily GTPases, but (2) RhoF adopts a unique multimeric structure. Our study also argues that (3) the emerging concept of the fast-cycling GTPases for RhoF should be validated using an alternative assay that does not rely on fluorescently labeled GDP (251 words).
Collapse
Affiliation(s)
- Ryota Sugawara
- Department of Life Science and Chemistry, Graduate School of Natural Science and Technology, Gifu University, Gifu 501-1193, Japan
| | - Hiroshi Ueda
- Department of Life Science and Chemistry, Graduate School of Natural Science and Technology, Gifu University, Gifu 501-1193, Japan; United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Gifu 501-1193, Japan.
| | - Ryo Honda
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Gifu 501-1193, Japan.
| |
Collapse
|
34
|
Nikonov O, Kravchenko O, Nevskaya N, Stolboushkina E, Garber M, Nikonov S. The third structural switch in the archaeal translation initiation factor 2 (aIF2) molecule and its possible role in the initiation of GTP hydrolysis and the removal of aIF2 from the ribosome. ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY 2019; 75:392-399. [PMID: 30988256 DOI: 10.1107/s2059798319002304] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 02/12/2019] [Indexed: 11/10/2022]
Abstract
The structure of the γ subunit of archaeal translation initiation factor 2 (aIF2) from Sulfolobus solfataricus (SsoIF2γ) was determined in complex with GDPCP (a GTP analog). Crystals were obtained in the absence of magnesium ions in the crystallization solution. They belonged to space group P1, with five molecules in the unit cell. Four of these molecules are related in pairs by a common noncrystallographic twofold symmetry axis, while the fifth has no symmetry equivalent. Analysis of the structure and its comparison with other known aIF2 γ-subunit structures in the GTP-bound state show that (i) the magnesium ion is necessary for the formation and the maintenance of the active form of SsoIF2γ and (ii) in addition to the two previously known structural switches 1 and 2, eukaryotic translation initiation factor 2 (eIF2) and aIF2 molecules have another flexible region (switch 3), the function of which may consist of initiation of the hydrolysis of GTP and the removal of e/aIF2 from the ribosome after codon-anticodon recognition.
Collapse
Affiliation(s)
- Oleg Nikonov
- Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Russian Federation
| | - Olesya Kravchenko
- Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Russian Federation
| | - Natalia Nevskaya
- Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Russian Federation
| | - Elena Stolboushkina
- Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Russian Federation
| | - Maria Garber
- Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Russian Federation
| | - Stanislav Nikonov
- Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Russian Federation
| |
Collapse
|
35
|
Toyama Y, Kontani K, Katada T, Shimada I. Conformational landscape alternations promote oncogenic activities of Ras-related C3 botulinum toxin substrate 1 as revealed by NMR. SCIENCE ADVANCES 2019; 5:eaav8945. [PMID: 30891502 PMCID: PMC6415961 DOI: 10.1126/sciadv.aav8945] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 01/28/2019] [Indexed: 06/09/2023]
Abstract
Ras-related C3 botulinum toxin substrate 1 (Rac1) plays critical roles in the maintenance of cell morphology by cycling between inactive guanosine diphosphate (GDP)-bound and active guanosine triphosphate (GTP)-bound states. Rac1 P29S mutant is known to strongly promote oncogenesis by facilitating its intrinsic GDP dissociation and thereby increasing the level of the GTP-bound state. Here, we used solution nuclear magnetic resonance spectroscopy to investigate the activation mechanism of the oncogenic P29S mutant. We demonstrate that the conformational landscape is markedly altered in the mutant, and the preexisting equilibrium is shifted toward the conformation with reduced affinity for Mg2+ , a cofactor that is critical for maintaining stable GDP binding. Our results suggest that the alternation of the preexisting conformational equilibrium of proteins is one of the fundamental mechanisms underlying their oncogenic activities.
Collapse
Affiliation(s)
- Yuki Toyama
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
- Japan Biological Informatics Consortium (JBiC), Aomi, Koto-ku, Tokyo 135-0064, Japan
| | - Kenji Kontani
- Department of Biochemistry, Meiji Pharmaceutical University, Kiyose, Tokyo 204-8588, Japan
| | - Toshiaki Katada
- Molecular Cell Biology Laboratory, Research Institute of Pharmaceutical Sciences, Faculty of Pharmacy, Musashino University, Tokyo 202-8585, Japan
| | - Ichio Shimada
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
36
|
Kang N, Liu J, Zhao Y. Dissociation mechanism of GDP from Cdc42 via DOCK9 revealed by molecular dynamics simulations. Proteins 2019; 87:433-442. [PMID: 30714195 DOI: 10.1002/prot.25665] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 01/28/2019] [Accepted: 01/31/2019] [Indexed: 12/18/2022]
Abstract
Cell division control protein 42 homolog (Cdc42) influences a variety of cellular responses such as cell migration and polarity. Deregulation of Cdc42 has been associated with several human diseases and developmental disorders. Over-activation of Cdc42 through guanine nucleotide exchange factor (GEF) is a critical event for Cdc42 involved cancer metastasis. Members of DOCK family of GEF are important activators of Cdc42. However, this activation mechanism is still unknown. Molecular dynamics (MD) simulations and molecular mechanics-Poisson-Boltzmann surface area (MM-PBSA) calculations were employed to investigate the central step of the activation of Cdc42: the dissociation mechanism of GDP from Cdc42 via DOCK9. Simulation results show that Mg2+ ion has a remarkable influence on the conformational change of switch I of Cdc42 through residue Pro34 which functions as a "clasp" to control the flexibility of switch I. In the GDP dissociation process, the Mg2+ ion leave first to result in a suitable conformation of Cdc42 for following DOCK9 binding to. When DOCK9 binds to Cdc42, it changes the orientations of residues Lys16, Thr17, Cys18 and Phe28 of Cdc42 to weaken the interactions between Cdc42 and GDP to release GDP. This study first elucidates the dissociation mechanism of GDP from Cdc42 via DOCK9 and identifies the essential residues of Cdc42 in this process. These simulation results are consistent with the recent findings of biochemical and amino acid mutational studies, and the observations are beneficial to understand the activation mechanism of Cdc42 and to provide insights for designing compounds targeting on Cdc42 related cancer metastasis.
Collapse
Affiliation(s)
- Ning Kang
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Jiansheng Liu
- Department of Neurology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yaxue Zhao
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
37
|
Stiegler AL, Boggon TJ. The N-Terminal GTPase Domain of p190RhoGAP Proteins Is a PseudoGTPase. Structure 2018; 26:1451-1461.e4. [PMID: 30174148 PMCID: PMC6249675 DOI: 10.1016/j.str.2018.07.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 06/28/2018] [Accepted: 07/25/2018] [Indexed: 12/29/2022]
Abstract
The pseudoGTPases are a rapidly growing and important group of pseudoenzymes. p190RhoGAP proteins are critical regulators of Rho signaling and contain two previously identified pseudoGTPase domains. Here we report that p190RhoGAP proteins contain a third pseudoGTPase domain, termed N-GTPase. We find that GTP constitutively purifies with the N-GTPase domain, and a 2.8-Å crystal structure of p190RhoGAP-A co-purified with GTP reveals an unusual GTP-Mg2+ binding pocket. Six inserts in N-GTPase indicate perturbed catalytic activity and inability to bind to canonical GTPase activating proteins, guanine nucleotide exchange factors, and effector proteins. Biochemical analysis shows that N-GTPase does not detectably hydrolyze GTP, and exchanges nucleotide only under harsh Mg2+ chelation. Furthermore, mutational analysis shows that GTP and Mg2+ binding stabilizes the domain. Therefore, our results support that N-GTPase is a nucleotide binding, non-hydrolyzing, pseudoGTPase domain that may act as a protein-protein interaction domain. Thus, unique among known proteins, p190RhoGAPs contain three pseudoGTPase domains.
Collapse
Affiliation(s)
- Amy L Stiegler
- Department of Pharmacology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
| | - Titus J Boggon
- Department of Pharmacology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA; Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA; Yale Cancer Center, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA.
| |
Collapse
|
38
|
Sun X, Singh S, Blumer KJ, Bowman GR. Simulation of spontaneous G protein activation reveals a new intermediate driving GDP unbinding. eLife 2018; 7:e38465. [PMID: 30289386 PMCID: PMC6224197 DOI: 10.7554/elife.38465] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 10/04/2018] [Indexed: 12/12/2022] Open
Abstract
Activation of heterotrimeric G proteins is a key step in many signaling cascades. However, a complete mechanism for this process, which requires allosteric communication between binding sites that are ~30 Å apart, remains elusive. We construct an atomically detailed model of G protein activation by combining three powerful computational methods: metadynamics, Markov state models (MSMs), and CARDS analysis of correlated motions. We uncover a mechanism that is consistent with a wide variety of structural and biochemical data. Surprisingly, the rate-limiting step for GDP release correlates with tilting rather than translation of the GPCR-binding helix 5. β-Strands 1 - 3 and helix 1 emerge as hubs in the allosteric network that links conformational changes in the GPCR-binding site to disordering of the distal nucleotide-binding site and consequent GDP release. Our approach and insights provide foundations for understanding disease-implicated G protein mutants, illuminating slow events in allosteric networks, and examining unbinding processes with slow off-rates.
Collapse
Affiliation(s)
- Xianqiang Sun
- Department of Biochemistry and Molecular BiophysicsWashington University School of MedicineMissouriUnited States
| | - Sukrit Singh
- Department of Biochemistry and Molecular BiophysicsWashington University School of MedicineMissouriUnited States
| | - Kendall J Blumer
- Department of Cell Biology and PhysiologyWashington University School of MedicineMissouriUnited States
| | - Gregory R Bowman
- Department of Biochemistry and Molecular BiophysicsWashington University School of MedicineMissouriUnited States
- Center for Biological Systems EngineeringWashington University School of MedicineMissouriUnited States
| |
Collapse
|
39
|
Jennings BC, Lawton AJ, Rizk Z, Fierke CA. SmgGDS-607 Regulation of RhoA GTPase Prenylation Is Nucleotide-Dependent. Biochemistry 2018; 57:4289-4298. [PMID: 29940100 DOI: 10.1021/acs.biochem.8b00567] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Protein prenylation involves the attachment of a hydrophobic isoprenoid moiety to the C-terminus of proteins. Several small GTPases, including members of the Ras and Rho subfamilies, require prenylation for their normal and pathological functions. Recent work has suggested that SmgGDS proteins regulate the prenylation of small GTPases in vivo. Using RhoA as a representative small GTPase, we directly test this hypothesis using biochemical assays and present a mechanism describing the mode of prenylation regulation. SmgGDS-607 completely inhibits RhoA prenylation catalyzed by protein geranylgeranyltransferase I (GGTase-I) in an in vitro radiolabel incorporation assay. SmgGDS-607 inhibits prenylation by binding to and blocking access to the C-terminal tail of the small GTPase (substrate sequestration mechanism) rather than via inhibition of the prenyltransferase activity. The reactivity of GGTase-I with RhoA is unaffected by addition of nucleotides. In contrast, the affinity of SmgGDS-607 for RhoA varies with the nucleotide bound to RhoA; SmgGDS-607 has a higher affinity for RhoA-GDP compared to RhoA-GTP. Consequently, the prenylation blocking function of SmgGDS-607 is regulated by the bound nucleotide. This work provides mechanistic insight into a novel pathway for the regulation of small GTPase protein prenylation by SmgGDS-607 and demonstrates that peptides are a good mimic for full-length proteins when measuring GGTase-I activity.
Collapse
Affiliation(s)
- Benjamin C Jennings
- Department of Chemistry , University of Michigan , Ann Arbor , Michigan 48109 , United States
| | - Alexis J Lawton
- Department of Chemistry , University of Michigan , Ann Arbor , Michigan 48109 , United States
| | - Zeinab Rizk
- Department of Chemistry , University of Michigan , Ann Arbor , Michigan 48109 , United States
| | - Carol A Fierke
- Department of Chemistry , University of Michigan , Ann Arbor , Michigan 48109 , United States
| |
Collapse
|
40
|
Wong EV, Gray S, Cao W, Montpetit R, Montpetit B, De La Cruz EM. Nup159 Weakens Gle1 Binding to Dbp5 But Does Not Accelerate ADP Release. J Mol Biol 2018; 430:2080-2095. [PMID: 29782832 DOI: 10.1016/j.jmb.2018.05.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 05/03/2018] [Accepted: 05/15/2018] [Indexed: 12/17/2022]
Abstract
Dbp5, DDX19 in humans, is an essential DEAD-box protein involved in mRNA export, which has also been linked to other cellular processes, including rRNA export and translation. Dbp5 ATPase activity is regulated by several factors, including RNA, the nucleoporin proteins Nup159 and Gle1, and the endogenous small-molecule inositol hexakisphosphate (InsP6). To better understand how these factors modulate Dbp5 activity and how this modulation relates to in vivo RNA metabolism, a detailed characterization of the Dbp5 mechanochemical cycle in the presence of those regulators individually or together is necessary. In this study, we test the hypothesis that Nup159 controls the ADP-bound state of Dbp5. In addition, the contributions of Mg2+ to the kinetics and thermodynamics of ADP binding to Dbp5 were assessed. Using a solution based in vitro approach, Mg2+ was found to slow ADP and ATP release from Dbp5 and increased the overall ADP and ATP affinities, as observed with other NTPases. Furthermore, Nup159 did not accelerate ADP release, while Gle1 actually slowed ADP release independent of Mg2+. These findings are not consistent with Nup159 acting as a nucleotide exchange factor to promote ADP release and Dbp5 ATPase cycling. Instead, in the presence of Nup159, the interaction between Gle1 and ADP-bound Dbp5 was found to be reduced by ~18-fold, suggesting that Nup159 alters the Dbp5-Gle1 interaction to aid Gle1 release from Dbp5.
Collapse
Affiliation(s)
- Emily V Wong
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Shawn Gray
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Wenxiang Cao
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Rachel Montpetit
- Department of Viticulture and Enology, University of California, Davis, Davis, CA 95616, USA; Department of Food Science and Technology, University of California, Davis, Davis, CA 95616, USA
| | - Ben Montpetit
- Department of Viticulture and Enology, University of California, Davis, Davis, CA 95616, USA; Department of Food Science and Technology, University of California, Davis, Davis, CA 95616, USA.
| | - Enrique M De La Cruz
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA.
| |
Collapse
|
41
|
Kazmiruk NV, Boronovskiy SE, Nartsissov YR. Modeling the Regulation of the Activity of Glutamine Synthetase from Escherichia coli by Magnesium Ions. Biophysics (Nagoya-shi) 2018. [DOI: 10.1134/s0006350918030090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
42
|
Arnst JL, Hein AL, Taylor MA, Palermo NY, Contreras JI, Sonawane YA, Wahl AO, Ouellette MM, Natarajan A, Yan Y. Discovery and characterization of small molecule Rac1 inhibitors. Oncotarget 2018; 8:34586-34600. [PMID: 28410221 PMCID: PMC5470993 DOI: 10.18632/oncotarget.16656] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Accepted: 03/16/2017] [Indexed: 12/18/2022] Open
Abstract
Aberrant activation of Rho GTPase Rac1 has been observed in various tumor types, including pancreatic cancer. Rac1 activates multiple signaling pathways that lead to uncontrolled proliferation, invasion and metastasis. Thus, inhibition of Rac1 activity is a viable therapeutic strategy for proliferative disorders such as cancer. Here we identified small molecule inhibitors that target the nucleotide-binding site of Rac1 through in silico screening. Follow up in vitro studies demonstrated that two compounds blocked active Rac1 from binding to its effector PAK1. Fluorescence polarization studies indicate that these compounds target the nucleotide-binding site of Rac1. In cells, both compounds blocked Rac1 binding to its effector PAK1 following EGF-induced Rac1 activation in a dose-dependent manner, while showing no inhibition of the closely related Cdc42 and RhoA activity. Furthermore, functional studies indicate that both compounds reduced cell proliferation and migration in a dose-dependent manner in multiple pancreatic cancer cell lines. Additionally, the two compounds suppressed the clonogenic survival of pancreatic cancer cells, while they had no effect on the survival of normal pancreatic ductal cells. These compounds do not share the core structure of the known Rac1 inhibitors and could serve as additional lead compounds to target pancreatic cancers with high Rac1 activity.
Collapse
Affiliation(s)
- Jamie L Arnst
- Department of Radiation Oncology, University of Nebraska Medical Center Omaha, Nebraska, United States of America.,Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center Omaha, Nebraska, United States of America
| | - Ashley L Hein
- Department of Radiation Oncology, University of Nebraska Medical Center Omaha, Nebraska, United States of America
| | - Margaret A Taylor
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center Omaha, Nebraska, United States of America
| | - Nick Y Palermo
- Holland Computing Center University of Nebraska-Lincoln Omaha, Nebraska, United States of America
| | - Jacob I Contreras
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center Omaha, Nebraska, United States of America
| | - Yogesh A Sonawane
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center Omaha, Nebraska, United States of America
| | - Andrew O Wahl
- Department of Radiation Oncology, University of Nebraska Medical Center Omaha, Nebraska, United States of America
| | - Michel M Ouellette
- Department of Internal Medicine, University of Nebraska Medical Center Omaha, Nebraska, United States of America.,Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center Omaha, Nebraska, United States of America
| | - Amarnath Natarajan
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center Omaha, Nebraska, United States of America.,Department of Pharmaceutical Sciences, University of Nebraska Medical Center Omaha, Nebraska, United States of America.,Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center Omaha, Nebraska, United States of America
| | - Ying Yan
- Department of Radiation Oncology, University of Nebraska Medical Center Omaha, Nebraska, United States of America.,Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center Omaha, Nebraska, United States of America
| |
Collapse
|
43
|
McQueeney KE, Salamoun JM, Burnett JC, Barabutis N, Pekic P, Lewandowski SL, Llaneza DC, Cornelison R, Bai Y, Zhang ZY, Catravas JD, Landen CN, Wipf P, Lazo JS, Sharlow ER. Targeting ovarian cancer and endothelium with an allosteric PTP4A3 phosphatase inhibitor. Oncotarget 2018; 9:8223-8240. [PMID: 29492190 PMCID: PMC5823565 DOI: 10.18632/oncotarget.23787] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 11/25/2017] [Indexed: 12/16/2022] Open
Abstract
Overexpression of protein tyrosine phosphatase PTP4A oncoproteins is common in many human cancers and is associated with poor patient prognosis and survival. We observed elevated levels of PTP4A3 phosphatase in 79% of human ovarian tumor samples, with significant overexpression in tumor endothelium and pericytes. Furthermore, PTP4A phosphatases appear to regulate several key malignant processes, such as invasion, migration, and angiogenesis, suggesting a pivotal regulatory role in cancer and endothelial signaling pathways. While phosphatases are attractive therapeutic targets, they have been poorly investigated because of a lack of potent and selective chemical probes. In this study, we disclose that a potent, selective, reversible, and noncompetitive PTP4A inhibitor, JMS-053, markedly enhanced microvascular barrier function after exposure of endothelial cells to vascular endothelial growth factor or lipopolysaccharide. JMS-053 also blocked the concomitant increase in RhoA activation and loss of Rac1. In human ovarian cancer cells, JMS-053 impeded migration, disrupted spheroid growth, and decreased RhoA activity. Importantly, JMS-053 displayed anticancer activity in a murine xenograft model of drug resistant human ovarian cancer. These data demonstrate that PTP4A phosphatases can be targeted in both endothelial and ovarian cancer cells, and confirm that RhoA signaling cascades are regulated by the PTP4A family.
Collapse
Affiliation(s)
- Kelley E. McQueeney
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA
| | | | - James C. Burnett
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Nektarios Barabutis
- Frank Reidy Center for Bioelectrics, Old Dominion University, Norfolk, VA, USA
| | - Paula Pekic
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA
| | | | - Danielle C. Llaneza
- Department of Obstetrics and Gynecology, University of Virginia, Charlottesville, VA, USA
| | - Robert Cornelison
- Department of Obstetrics and Gynecology, University of Virginia, Charlottesville, VA, USA
| | - Yunpeng Bai
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, USA
| | - Zhong-Yin Zhang
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, USA
| | - John D. Catravas
- Frank Reidy Center for Bioelectrics, Old Dominion University, Norfolk, VA, USA
| | - Charles N. Landen
- Department of Obstetrics and Gynecology, University of Virginia, Charlottesville, VA, USA
| | - Peter Wipf
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, USA
| | - John S. Lazo
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA
| | | |
Collapse
|
44
|
Kundu A, Bose M, Roy M, Dutta S, Biswas P, Gautam P, Das AK, Ghosh AK. Molecular insights into RNA-binding properties of Escherichia coli-expressed RNA-dependent RNA polymerase of Antheraea mylitta cytoplasmic polyhedrosis virus. Arch Virol 2017; 162:2727-2736. [PMID: 28589512 DOI: 10.1007/s00705-017-3412-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Accepted: 05/15/2017] [Indexed: 11/30/2022]
Abstract
Antheraea mylitta cytoplasmic polyhedrosis virus (AmCPV) is responsible for morbidity of the Indian non-mulberry silkworm, A. mylitta. AmCPV belongs to the family Reoviridae and has 11 double-stranded (ds) RNA genome segments (S1-S11). Segment 2 (S2) encodes a 123-kDa polypeptide with RNA-dependent RNA polymerase (RdRp) activity. To examine the RNA-binding properties of the viral polymerase, the full-length RdRp and its three domains (N-terminal, polymerase and C-terminal domains) were expressed in Escherichia coli BL21 (DE3) cells with hexahistidine and trigger factor tag fused consecutively at its amino terminus, and the soluble fusion proteins were purified. The purified full-length polymerase specifically bound to the 3' untranslated region (3'-UTR) of a viral plus-sense (+) strand RNA with strong affinity regardless of the salt concentrations, but the isolated polymerase domain of the enzyme exhibited poor RNA-binding ability. Further, the RdRp recognition signals were found to be different from the cis-acting signals that promote minus-sense (-) strand RNA synthesis, because different internal regions of the 3'-UTR of the (+) strand RNA did not effectively compete out the binding of RdRp to the intact 3'-UTR of the (+) strand RNA, but all of these RNA molecules could serve as templates for (-) strand RNA synthesis by the polymerase.
Collapse
Affiliation(s)
- Anirban Kundu
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Madhuparna Bose
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Madhurima Roy
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Soumita Dutta
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Poulomi Biswas
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Pradeep Gautam
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Amit Kumar Das
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Ananta Kumar Ghosh
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India.
| |
Collapse
|
45
|
Rapali P, Mitteau R, Braun C, Massoni-Laporte A, Ünlü C, Bataille L, Arramon FS, Gygi SP, McCusker D. Scaffold-mediated gating of Cdc42 signalling flux. eLife 2017; 6. [PMID: 28304276 PMCID: PMC5386590 DOI: 10.7554/elife.25257] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 03/15/2017] [Indexed: 12/03/2022] Open
Abstract
Scaffold proteins modulate signalling pathway activity spatially and temporally. In budding yeast, the scaffold Bem1 contributes to polarity axis establishment by regulating the GTPase Cdc42. Although different models have been proposed for Bem1 function, there is little direct evidence for an underlying mechanism. Here, we find that Bem1 directly augments the guanine exchange factor (GEF) activity of Cdc24. Bem1 also increases GEF phosphorylation by the p21-activated kinase (PAK), Cla4. Phosphorylation abrogates the scaffold-dependent stimulation of GEF activity, rendering Cdc24 insensitive to additional Bem1. Thus, Bem1 stimulates GEF activity in a reversible fashion, contributing to signalling flux through Cdc42. The contribution of Bem1 to GTPase dynamics was borne-out by in vivo imaging: active Cdc42 was enriched at the cell pole in hypophosphorylated cdc24 mutants, while hyperphosphorylated cdc24 mutants that were resistant to scaffold stimulation displayed a deficit in active Cdc42 at the pole. These findings illustrate the self-regulatory properties that scaffold proteins confer on signalling pathways. DOI:http://dx.doi.org/10.7554/eLife.25257.001
Collapse
Affiliation(s)
- Péter Rapali
- University of Bordeaux, CNRS, European Institute of Chemistry and Biology, IBGC, UMR 5095, Pessac, France
| | - Romain Mitteau
- University of Bordeaux, CNRS, European Institute of Chemistry and Biology, IBGC, UMR 5095, Pessac, France
| | - Craig Braun
- Department of Cell Biology, Harvard Medical School, Boston, United States
| | - Aurèlie Massoni-Laporte
- University of Bordeaux, CNRS, European Institute of Chemistry and Biology, IBGC, UMR 5095, Pessac, France
| | - Caner Ünlü
- University of Bordeaux, CNRS, European Institute of Chemistry and Biology, IBGC, UMR 5095, Pessac, France
| | - Laure Bataille
- University of Bordeaux, CNRS, European Institute of Chemistry and Biology, IBGC, UMR 5095, Pessac, France
| | - Floriane Saint Arramon
- University of Bordeaux, CNRS, European Institute of Chemistry and Biology, IBGC, UMR 5095, Pessac, France
| | - Steven P Gygi
- Department of Cell Biology, Harvard Medical School, Boston, United States
| | - Derek McCusker
- University of Bordeaux, CNRS, European Institute of Chemistry and Biology, IBGC, UMR 5095, Pessac, France
| |
Collapse
|
46
|
Integrin-Dependent Regulation of Small GTPases: Role in Cell Migration. J Indian Inst Sci 2017. [DOI: 10.1007/s41745-016-0010-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
47
|
Harrison RA, Lu J, Carrasco M, Hunter J, Manandhar A, Gondi S, Westover KD, Engen JR. Structural Dynamics in Ras and Related Proteins upon Nucleotide Switching. J Mol Biol 2016; 428:4723-4735. [PMID: 27751724 DOI: 10.1016/j.jmb.2016.10.017] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2016] [Revised: 09/17/2016] [Accepted: 10/10/2016] [Indexed: 12/31/2022]
Abstract
Structural dynamics of Ras proteins contributes to their activity in signal transduction cascades. Directly targeting Ras proteins with small molecules may rely on the movement of a conserved structural motif, switch II. To understand Ras signaling and advance Ras-targeting strategies, experimental methods to measure Ras dynamics are required. Here, we demonstrate the utility of hydrogen-deuterium exchange (HDX) mass spectrometry (MS) to measure Ras dynamics by studying representatives from two branches of the Ras superfamily, Ras and Rho. A comparison of differential deuterium exchange between active (GMPPNP-bound) and inactive (GDP-bound) proteins revealed differences between the families, with the most notable differences occurring in the phosphate-binding loop and switch II. The P-loop exchange signature correlated with switch II dynamics observed in molecular dynamics simulations focused on measuring main-chain movement. HDX provides a means of evaluating Ras protein dynamics, which may be useful for understanding the mechanisms of Ras signaling, including activated signaling of pathologic mutants, and for targeting strategies that rely on protein dynamics.
Collapse
Affiliation(s)
- Rane A Harrison
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115, USA
| | - Jia Lu
- Departments of Biochemistry and Radiation Oncology, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Martin Carrasco
- Departments of Biochemistry and Radiation Oncology, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - John Hunter
- Departments of Biochemistry and Radiation Oncology, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Anuj Manandhar
- Departments of Biochemistry and Radiation Oncology, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Sudershan Gondi
- Departments of Biochemistry and Radiation Oncology, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Kenneth D Westover
- Departments of Biochemistry and Radiation Oncology, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| | - John R Engen
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115, USA.
| |
Collapse
|
48
|
A disappearing act performed by magnesium: the nucleotide exchange mechanism of Ran GTPase by quantum mechanics/molecular mechanics studies. Theor Chem Acc 2016. [DOI: 10.1007/s00214-016-1953-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
49
|
Santhosh R, Satheesh SN, Gurusaran M, Michael D, Sekar K, Jeyakanthan J. NIMS: a database on nucleobase compounds and their interactions in macromolecular structures. J Appl Crystallogr 2016. [DOI: 10.1107/s1600576716006208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
The intense exploration of nucleotide-binding protein structures has created a whirlwind in the field of structural biology and bioinformatics. This has led to the conception and birth of NIMS. This database is a collection of detailed data on the nucleobases, nucleosides and nucleotides, along with their analogues as well as the protein structures to which they bind. Interaction details such as the interacting residues and all associated values have been made available. As a pioneering step, the diffraction precision index for protein structures, the atomic uncertainty for each atom, and the computed errors on the interatomic distances and angles are available in the database. Apart from the above, provision has been made to visualize the three-dimensional structures of both ligands and protein–ligand structures and their interactions inJmolas well asJSmol. One of the salient features of NIMS is that it has been interfaced with a user-friendly and query-based efficient search engine. It was conceived and developed with the aim of serving a significant section of researchers working in the area of protein and nucleobase complexes. NIMS is freely available online at http://iris.physics.iisc.ernet.in/nims and it is hoped that it will prove to be an invaluable asset.
Collapse
|
50
|
Tokheim C, Bhattacharya R, Niknafs N, Gygax DM, Kim R, Ryan M, Masica DL, Karchin R. Exome-Scale Discovery of Hotspot Mutation Regions in Human Cancer Using 3D Protein Structure. Cancer Res 2016; 76:3719-31. [PMID: 27197156 DOI: 10.1158/0008-5472.can-15-3190] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 04/01/2016] [Indexed: 12/12/2022]
Abstract
The impact of somatic missense mutation on cancer etiology and progression is often difficult to interpret. One common approach for assessing the contribution of missense mutations in carcinogenesis is to identify genes mutated with statistically nonrandom frequencies. Even given the large number of sequenced cancer samples currently available, this approach remains underpowered to detect drivers, particularly in less studied cancer types. Alternative statistical and bioinformatic approaches are needed. One approach to increase power is to focus on localized regions of increased missense mutation density or hotspot regions, rather than a whole gene or protein domain. Detecting missense mutation hotspot regions in three-dimensional (3D) protein structure may also be beneficial because linear sequence alone does not fully describe the biologically relevant organization of codons. Here, we present a novel and statistically rigorous algorithm for detecting missense mutation hotspot regions in 3D protein structures. We analyzed approximately 3 × 10(5) mutations from The Cancer Genome Atlas (TCGA) and identified 216 tumor-type-specific hotspot regions. In addition to experimentally determined protein structures, we considered high-quality structural models, which increase genomic coverage from approximately 5,000 to more than 15,000 genes. We provide new evidence that 3D mutation analysis has unique advantages. It enables discovery of hotspot regions in many more genes than previously shown and increases sensitivity to hotspot regions in tumor suppressor genes (TSG). Although hotspot regions have long been known to exist in both TSGs and oncogenes, we provide the first report that they have different characteristic properties in the two types of driver genes. We show how cancer researchers can use our results to link 3D protein structure and the biologic functions of missense mutations in cancer, and to generate testable hypotheses about driver mechanisms. Our results are included in a new interactive website for visualizing protein structures with TCGA mutations and associated hotspot regions. Users can submit new sequence data, facilitating the visualization of mutations in a biologically relevant context. Cancer Res; 76(13); 3719-31. ©2016 AACR.
Collapse
Affiliation(s)
- Collin Tokheim
- Department of Biomedical Engineering and Institute for Computational Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Rohit Bhattacharya
- Department of Biomedical Engineering and Institute for Computational Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Noushin Niknafs
- Department of Biomedical Engineering and Institute for Computational Medicine, Johns Hopkins University, Baltimore, Maryland
| | | | - Rick Kim
- In Silico Solutions, Fairfax, Virginia
| | | | - David L Masica
- Department of Biomedical Engineering and Institute for Computational Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Rachel Karchin
- Department of Biomedical Engineering and Institute for Computational Medicine, Johns Hopkins University, Baltimore, Maryland. Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland.
| |
Collapse
|