1
|
Yan S, Sui M, Tian H, Fu J, Li Y, Chen J, Zeng L, Ding X. Transcriptomic Analysis Revealed an Important Role of Peroxisome-Proliferator-Activated Receptor Alpha Signaling in Src Homology Region 2 Domain-Containing Phosphatase-1 Insufficiency Leading to the Development of Renal Ischemia-Reperfusion Injury. Front Med (Lausanne) 2022; 9:847512. [PMID: 35646989 PMCID: PMC9134314 DOI: 10.3389/fmed.2022.847512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 04/06/2022] [Indexed: 12/02/2022] Open
Abstract
In kidney transplantation, the donor kidney inevitably undergoes ischemia-reperfusion injury (IRI). It is of great importance to study the pathogenesis of IRI and find effective measures to attenuate acute injury of renal tubules after ischemia-reperfusion. Our previous study found that Src homology region 2 domain-containing phosphatase-1 (SHP-1) insufficiency aggravates renal IRI. In this study, we systematically analyzed differences in the expression profiles of SHP-1 (encoded by Ptpn6)-insufficient mice and wild-type mice by RNA-seq. We found that a total of 161 genes showed at least a twofold change, with a false discovery rate <0.05 in Ptpn6 +/mev mice after IRI and 42 genes showing more than a fourfold change. Of the eight genes encoding proteins with immunoreceptor tyrosine-based inhibitory motifs (ITIMs) that bind to Ptpn6, three were upregulated, and five were downregulated. We found that for the differentially expressed genes (DEGs) with a fold change >2, the most significantly enriched Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways were the cell division pathway and peroxisome-proliferator activated receptor PPARα signaling pathways. Furthermore, the downregulated genes of the PPARα signaling pathway were mainly related to fatty acid absorption and degradation. Using an agonist of the PPARα signaling pathway, fenofibrate, we found that renal IRI was significantly attenuated in Ptpn6 +/mev mice. In summary, our results show that insufficiency of SHP-1 inhibits the expression of genes in the PPARα signaling pathway, thereby leading to increased reactive oxygen species (ROS) and exacerbating the renal IRI. The PPARα signaling agonist fenofibrate partially attenuates renal IRI induced by SHP-1 insufficiency.
Collapse
Affiliation(s)
- Sijia Yan
- State Key Laboratory of Oncogenes and Related Genes, Institute for Personalized Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Mingxing Sui
- Department of Organ Transplantation, Changhai Hospital, Navy Medical University, Shanghai, China
| | - Hongzhe Tian
- Department of Urology Surgery-General Hospital of Central Theater Command of PLA, Wuhan, China
| | - Jiazhao Fu
- Department of Organ Transplantation, Changhai Hospital, Navy Medical University, Shanghai, China
| | - Yanfeng Li
- Department of Organ Transplantation, Changhai Hospital, Navy Medical University, Shanghai, China
| | - Jing Chen
- Department of Laboratory and Diagnosis, Changhai Hospital, Navy Medical University, Shanghai, China
| | - Li Zeng
- Department of Organ Transplantation, Changhai Hospital, Navy Medical University, Shanghai, China
| | - Xianting Ding
- State Key Laboratory of Oncogenes and Related Genes, Institute for Personalized Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
2
|
Young KA, Biggins L, Sharpe HJ. Protein tyrosine phosphatases in cell adhesion. Biochem J 2021; 478:1061-1083. [PMID: 33710332 PMCID: PMC7959691 DOI: 10.1042/bcj20200511] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 02/10/2021] [Accepted: 02/12/2021] [Indexed: 02/07/2023]
Abstract
Adhesive structures between cells and with the surrounding matrix are essential for the development of multicellular organisms. In addition to providing mechanical integrity, they are key signalling centres providing feedback on the extracellular environment to the cell interior, and vice versa. During development, mitosis and repair, cell adhesions must undergo extensive remodelling. Post-translational modifications of proteins within these complexes serve as switches for activity. Tyrosine phosphorylation is an important modification in cell adhesion that is dynamically regulated by the protein tyrosine phosphatases (PTPs) and protein tyrosine kinases. Several PTPs are implicated in the assembly and maintenance of cell adhesions, however, their signalling functions remain poorly defined. The PTPs can act by directly dephosphorylating adhesive complex components or function as scaffolds. In this review, we will focus on human PTPs and discuss their individual roles in major adhesion complexes, as well as Hippo signalling. We have collated PTP interactome and cell adhesome datasets, which reveal extensive connections between PTPs and cell adhesions that are relatively unexplored. Finally, we reflect on the dysregulation of PTPs and cell adhesions in disease.
Collapse
Affiliation(s)
- Katherine A. Young
- Signalling Programme, Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, U.K
| | - Laura Biggins
- Bioinformatics, Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, U.K
| | - Hayley J. Sharpe
- Signalling Programme, Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, U.K
| |
Collapse
|
3
|
Hong JY, Oh IH, McCrea PD. Phosphorylation and isoform use in p120-catenin during development and tumorigenesis. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1863:102-14. [PMID: 26477567 DOI: 10.1016/j.bbamcr.2015.10.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2015] [Revised: 10/12/2015] [Accepted: 10/13/2015] [Indexed: 12/12/2022]
Abstract
P120-catenin is essential to vertebrate development, modulating cadherin and small-GTPase functions, and growing evidence points also to roles in the nucleus. A complexity in addressing p120-catenin's functions is its many isoforms, including optional splicing events, alternative points of translational initiation, and secondary modifications. In this review, we focus upon how choices in the initiation of protein translation, or the earlier splicing of the RNA transcript, relates to primary sequences that harbor established or putative regulatory phosphorylation sites. While certain p120 phosphorylation events arise via known kinases/phosphatases and have defined outcomes, in most cases the functional consequences are still to be established. In this review, we provide examples of p120-isoforms as they relate to phosphorylation events, and thereby to isoform dependent protein-protein associations and downstream functions. We also provide a view of upstream pathways that determine p120's phosphorylation state, and that have an impact upon development and disease. Because other members of the p120 subfamily undergo similar processing and phosphorylation, as well as related catenins of the plakophilin subfamily, what is learned regarding p120 will by extension have wide relevance in vertebrates.
Collapse
Affiliation(s)
- Ji Yeon Hong
- Division of Cardiology, Department of Medicine, Severance Biomedical Science Institute, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-752, Republic of Korea.
| | - Il-Hoan Oh
- The Catholic University of Korea, Catholic High Performance Cell Therapy Center, 505 Banpo-dong, Seocho-Ku, Seoul 137-701, Republic of Korea
| | - Pierre D McCrea
- Department of Genetics, University of Texas MD Anderson Cancer Center, University of Texas Graduate School of Biomedical Science, Houston, TX 77030, USA.
| |
Collapse
|
4
|
Pelissier-Rota MA, Chartier NT, Jacquier-Sarlin MR. Dynamic Regulation of Adherens Junctions: Implication in Cell Differentiation and Tumor Development. INTERCELLULAR COMMUNICATION IN CANCER 2015:53-149. [DOI: 10.1007/978-94-017-7380-5_4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
5
|
Schackmann RCJ, Tenhagen M, van de Ven RAH, Derksen PWB. p120-catenin in cancer - mechanisms, models and opportunities for intervention. J Cell Sci 2014; 126:3515-25. [PMID: 23950111 DOI: 10.1242/jcs.134411] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The epithelial adherens junction is an E-cadherin-based complex that controls tissue integrity and is stabilized at the plasma membrane by p120-catenin (p120, also known as CTNND1). Mutational and epigenetic inactivation of E-cadherin has been strongly implicated in the development and progression of cancer. In this setting, p120 translocates to the cytosol where it exerts oncogenic properties through aberrant regulation of Rho GTPases, growth factor receptor signaling and derepression of Kaiso (also known as ZBTB33) target genes. In contrast, indirect inactivation of the adherens junction through conditional knockout of p120 in mice was recently linked to tumor formation, indicating that p120 can also function as a tumor suppressor. Supporting these opposing functions are findings in human cancer, which show that either loss or cytoplasmic localization of p120 is a common feature in the progression of several types of carcinoma. Underlying this dual biological phenomenon might be the context-dependent regulation of Rho GTPases in the cytosol and the derepression of Kaiso target genes. Here, we discuss past and present findings that implicate p120 in the regulation of cancer progression and highlight opportunities for clinical intervention.
Collapse
Affiliation(s)
- Ron C J Schackmann
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | | | | |
Collapse
|
6
|
Sun Z, Parrish AR, Hill MA, Meininger GA. N-cadherin, A Vascular Smooth Muscle Cell-Cell Adhesion Molecule: Function and Signaling for Vasomotor Control. Microcirculation 2014; 21:208-18. [DOI: 10.1111/micc.12123] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 02/05/2014] [Indexed: 12/22/2022]
Affiliation(s)
- Zhe Sun
- Dalton Cardiovascular Research Center; University of Missouri; Columbia Missouri USA
| | - Alan R. Parrish
- Department of Medical Pharmacology and Physiology; University of Missouri; Columbia Missouri USA
| | - Michael A. Hill
- Dalton Cardiovascular Research Center; University of Missouri; Columbia Missouri USA
- Department of Medical Pharmacology and Physiology; University of Missouri; Columbia Missouri USA
| | - Gerald A. Meininger
- Dalton Cardiovascular Research Center; University of Missouri; Columbia Missouri USA
- Department of Medical Pharmacology and Physiology; University of Missouri; Columbia Missouri USA
| |
Collapse
|
7
|
Mittal M, Siddiqui MR, Tran K, Reddy SP, Malik AB. Reactive oxygen species in inflammation and tissue injury. Antioxid Redox Signal 2014; 20:1126-67. [PMID: 23991888 PMCID: PMC3929010 DOI: 10.1089/ars.2012.5149] [Citation(s) in RCA: 3131] [Impact Index Per Article: 284.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Abstract Reactive oxygen species (ROS) are key signaling molecules that play an important role in the progression of inflammatory disorders. An enhanced ROS generation by polymorphonuclear neutrophils (PMNs) at the site of inflammation causes endothelial dysfunction and tissue injury. The vascular endothelium plays an important role in passage of macromolecules and inflammatory cells from the blood to tissue. Under the inflammatory conditions, oxidative stress produced by PMNs leads to the opening of inter-endothelial junctions and promotes the migration of inflammatory cells across the endothelial barrier. The migrated inflammatory cells not only help in the clearance of pathogens and foreign particles but also lead to tissue injury. The current review compiles the past and current research in the area of inflammation with particular emphasis on oxidative stress-mediated signaling mechanisms that are involved in inflammation and tissue injury.
Collapse
Affiliation(s)
- Manish Mittal
- 1 Department of Pharmacology, Center for Lung and Vascular Biology, University of Illinois College of Medicine, Chicago, Illinois
| | | | | | | | | |
Collapse
|
8
|
Peglion F, Etienne-Manneville S. p120catenin alteration in cancer and its role in tumour invasion. Philos Trans R Soc Lond B Biol Sci 2013; 368:20130015. [PMID: 24062585 DOI: 10.1098/rstb.2013.0015] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Since its discovery in 1989 as a substrate of the Src oncogene, p120catenin has been revealed as an important player in cancer initiation and tumour dissemination. p120catenin regulates a wide range of cellular processes such as cell-cell adhesion, cell polarity and cell proliferation and plays a pivotal role in morphogenesis, inflammation and innate immunity. The pleiotropic effects of p120catenin rely on its interactions with numerous partners such as classical cadherins at the plasma membrane, Rho-GTPases and microtubules in the cytosol and transcriptional modulators in the nucleus. Alterations of p120catenin in cancer not only concern its expression level but also its intracellular localization and can lead to both pro-invasive and anti-invasive effects. This review focuses on the p120catenin-mediated pathways involved in cell migration and invasion and discusses the potential consequences of major cancer-related p120catenin alterations with respect to tumour spread.
Collapse
Affiliation(s)
- Florent Peglion
- Cell Polarity, Migration and Cancer Unit, Institut Pasteur - CNRS URA 2582, , 25 rue du Dr Roux, 75724 Paris cedex 15, France
| | | |
Collapse
|
9
|
Regulation of adherens junction dynamics by phosphorylation switches. JOURNAL OF SIGNAL TRANSDUCTION 2012; 2012:125295. [PMID: 22848810 PMCID: PMC3403498 DOI: 10.1155/2012/125295] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Revised: 05/21/2012] [Accepted: 05/22/2012] [Indexed: 12/15/2022]
Abstract
Adherens junctions connect the actin cytoskeleton of neighboring cells through transmembrane cadherin receptors and a network of adaptor proteins. The interactions between these adaptors and cadherin as well as the activity of actin regulators localized to adherens junctions are tightly controlled to facilitate cell junction assembly or disassembly in response to changes in external or internal forces and/or signaling. Phosphorylation of tyrosine, serine, or threonine residues acts as a switch on the majority of adherens junction proteins, turning "on" or "off" their interactions with other proteins and/or their enzymatic activity. Here, we provide an overview of the kinases and phosphatases regulating phosphorylation of adherens junction proteins and bring examples of phosphorylation events leading to the assembly or disassembly of adherens junctions, highlighting the important role of phosphorylation switches in regulating their dynamics.
Collapse
|
10
|
Kim WK, Jung H, Kim EY, Kim DH, Cho YS, Park BC, Park SG, Ko Y, Bae KH, Lee SC. RPTPμ tyrosine phosphatase promotes adipogenic differentiation via modulation of p120 catenin phosphorylation. Mol Biol Cell 2011; 22:4883-91. [PMID: 21998202 PMCID: PMC3237630 DOI: 10.1091/mbc.e11-03-0175] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Adipocyte differentiation can be regulated by the combined activity of protein tyrosine kinases (PTKs) and protein tyrosine phosphatases (PTPs). In particular, PTPs act as key regulators in differentiation-associated signaling pathways. We recently found that receptor-type PTPμ (RPTPμ) expression is markedly increased during the adipogenic differentiation of 3T3-L1 preadipocytes and mesenchymal stem cells. Here, we investigate the functional roles of RPTPμ and the mechanism of its involvement in the regulation of signal transduction during adipogenesis of 3T3-L1 cells. Depletion of endogenous RPTPμ by RNA interference significantly inhibited adipogenic differentiation, whereas RPTPμ overexpression led to an increase in adipogenic differentiation. Ectopic expression of p120 catenin suppressed adipocyte differentiation, and the decrease in adipogenesis by p120 catenin was recovered by introducing RPTPμ. Moreover, RPTPμ induced a decrease in the cytoplasmic p120 catenin expression by reducing its tyrosine phosphorylation level, consequently leading to enhanced translocation of Glut-4 to the plasma membrane. On the basis of these results, we propose that RPTPμ acts as a positive regulator of adipogenesis by modulating the cytoplasmic p120 catenin level. Our data conclusively demonstrate that differentiation into adipocytes is controlled by RPTPμ, supporting the utility of RPTPμ and p120 catenin as novel target proteins for the treatment of obesity.
Collapse
Affiliation(s)
- Won Kon Kim
- Medical Proteomics Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-806, Republic of Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
O’Donnell JJ, Zhuge Y, Holian O, Cheng F, Thomas LL, Forsyth CB, Lum H. Loss of p120 catenin upregulates transcription of pro-inflammatory adhesion molecules in human endothelial cells. Microvasc Res 2011; 82:105-12. [PMID: 21554891 PMCID: PMC3149739 DOI: 10.1016/j.mvr.2011.04.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2011] [Accepted: 04/23/2011] [Indexed: 12/23/2022]
Abstract
P120 catenin (p120ctn) is an adherens junction protein recognized to regulate barrier function, but emerging evidence indicates that p120ctn may also exert control on other cellular functions such as transcriptional suppression of genes. We investigated the hypothesis that loss of p120ctn in human endothelial cells activates transcription of pro-inflammatory adhesion molecules. For study, siRNA targeted to p120ctn was transfected into brain microvascular (HBMECs) or pulmonary artery endothelial cells (HPAECs) for 24-120h, which depleted 50-80% of endogenous p120ctn. This loss of p120ctn resulted in increased promoter reporter activity of transcription factors, NFκB, AP-1, and Kaiso, as well as of target genes, MMP-1 and ICAM-1. Real-time RT-PCR analysis indicated that the mRNA for ICAM-1, VCAM-1, and E- and P-selectins were all upregulated during the period of 24-120h of p120ctn depletion, although the time-course and extent of the expression profiles differed. The upregulated mRNA of adhesion molecules corresponded with increased PMN adhesion to the EC surface and elevated ICAM-1 protein expression. We further explored the role of ERK1/2 as a potential signaling mechanism responsible for regulation of transcriptional activities by p120ctn. Results indicated that loss of p120ctn increased phosphorylated ERK1/2, and a MEK1 inhibitor (PD98059) prevented NFκB nuclear translocation. This implicates ERK1/2 in signaling the NFκB activation induced by p120ctn loss. The findings provide strong evidence that deficiency in p120ctn expression in endothelial cells is a potent stimulus for transcriptional upregulation of multiple adhesion molecules. We conclude that p120ctn functions to suppress transcription, which is an important and novel regulation in vascular endothelium.
Collapse
Affiliation(s)
| | - Yan Zhuge
- Department of Pharmacology, Rush University Medical Center, Chicago, IL
| | - Oksana Holian
- Department of Pharmacology, Rush University Medical Center, Chicago, IL
| | - Feng Cheng
- Center for Laboratory Medicine, Fuzhou General Hospital, Fujian, China
| | - Larry L. Thomas
- Department of Immunology/Microbiology, Rush University Medical Center, Chicago, IL
| | | | - Hazel Lum
- Department of Pharmacology, Rush University Medical Center, Chicago, IL
| |
Collapse
|
12
|
Niessen CM, Leckband D, Yap AS. Tissue organization by cadherin adhesion molecules: dynamic molecular and cellular mechanisms of morphogenetic regulation. Physiol Rev 2011; 91:691-731. [PMID: 21527735 DOI: 10.1152/physrev.00004.2010] [Citation(s) in RCA: 287] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
This review addresses the cellular and molecular mechanisms of cadherin-based tissue morphogenesis. Tissue physiology is profoundly influenced by the distinctive organizations of cells in organs and tissues. In metazoa, adhesion receptors of the classical cadherin family play important roles in establishing and maintaining such tissue organization. Indeed, it is apparent that cadherins participate in a range of morphogenetic events that range from support of tissue integrity to dynamic cellular rearrangements. A comprehensive understanding of cadherin-based morphogenesis must then define the molecular and cellular mechanisms that support these distinct cadherin biologies. Here we focus on four key mechanistic elements: the molecular basis for adhesion through cadherin ectodomains, the regulation of cadherin expression at the cell surface, cooperation between cadherins and the actin cytoskeleton, and regulation by cell signaling. We discuss current progress and outline issues for further research in these fields.
Collapse
Affiliation(s)
- Carien M Niessen
- Department of Dermatology, Center for Molecular Medicine, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany.
| | | | | |
Collapse
|
13
|
Ren L, Chen X, Luechapanichkul R, Selner NG, Meyer TM, Wavreille AS, Chan R, Iorio C, Zhou X, Neel BG, Pei D. Substrate specificity of protein tyrosine phosphatases 1B, RPTPα, SHP-1, and SHP-2. Biochemistry 2011; 50:2339-56. [PMID: 21291263 PMCID: PMC3074353 DOI: 10.1021/bi1014453] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
We determined the substrate specificities of the protein tyrosine phosphatases (PTPs) PTP1B, RPTPα, SHP-1, and SHP-2 by on-bead screening of combinatorial peptide libraries and solution-phase kinetic analysis of individually synthesized phosphotyrosyl (pY) peptides. These PTPs exhibit different levels of sequence specificity and catalytic efficiency. The catalytic domain of RPTPα has very weak sequence specificity and is approximately 2 orders of magnitude less active than the other three PTPs. The PTP1B catalytic domain has modest preference for acidic residues on both sides of pY, is highly active toward multiply phosphorylated peptides, but disfavors basic residues at any position, a Gly at the pY-1 position, or a Pro at the pY+1 position. By contrast, SHP-1 and SHP-2 share similar but much narrower substrate specificities, with a strong preference for acidic and aromatic hydrophobic amino acids on both sides of the pY residue. An efficient SHP-1/2 substrate generally contains two or more acidic residues on the N-terminal side and one or more acidic residues on the C-terminal side of pY but no basic residues. Subtle differences exist between SHP-1 and SHP-2 in that SHP-1 has a stronger preference for acidic residues at the pY-1 and pY+1 positions and the two SHPs prefer acidic residues at different positions N-terminal to pY. A survey of the known protein substrates of PTP1B, SHP-1, and SHP-2 shows an excellent agreement between the in vivo dephosphorylation pattern and the in vitro specificity profiles derived from library screening. These results suggest that different PTPs have distinct sequence specificity profiles and the intrinsic activity/specificity of the PTP domain is an important determinant of the enzyme's in vivo substrate specificity.
Collapse
Affiliation(s)
- Lige Ren
- Department of Chemistry, The Ohio State University, 100 West 18 Avenue, Columbus, OH 43210
- College of Chemistry and Molecular Science, Wuhan University, Wuhan 430072, People’s Republic of China
| | - Xianwen Chen
- Department of Chemistry, The Ohio State University, 100 West 18 Avenue, Columbus, OH 43210
| | | | - Nicholas G. Selner
- Department of Chemistry, The Ohio State University, 100 West 18 Avenue, Columbus, OH 43210
| | - Tiffany M. Meyer
- Ohio State Biochemistry Program, The Ohio State University, 100 West 18 Avenue, Columbus, OH 43210
| | - Anne-Sophie Wavreille
- Department of Chemistry, The Ohio State University, 100 West 18 Avenue, Columbus, OH 43210
| | - Richard Chan
- Ontario Cancer Institute, Campbell Family Cancer Research Institute, and Department of Medical Biophysics, University of Toronto, 610 University Avenue, Room 7-504, Toronto, ON M5G 2M9, Canada
| | - Caterina Iorio
- Ontario Cancer Institute, Campbell Family Cancer Research Institute, and Department of Medical Biophysics, University of Toronto, 610 University Avenue, Room 7-504, Toronto, ON M5G 2M9, Canada
| | - Xiang Zhou
- College of Chemistry and Molecular Science, Wuhan University, Wuhan 430072, People’s Republic of China
| | - Benjamin G. Neel
- Ontario Cancer Institute, Campbell Family Cancer Research Institute, and Department of Medical Biophysics, University of Toronto, 610 University Avenue, Room 7-504, Toronto, ON M5G 2M9, Canada
| | - Dehua Pei
- Department of Chemistry, The Ohio State University, 100 West 18 Avenue, Columbus, OH 43210
- Ohio State Biochemistry Program, The Ohio State University, 100 West 18 Avenue, Columbus, OH 43210
| |
Collapse
|
14
|
Ardawatia VV, Masià-Balagué M, Krakstad BF, Johansson BB, Kreitzburg KM, Spriet E, Lewis AE, Meigs TE, Aragay AM. Gα12 binds to the N-terminal regulatory domain of p120ctn, and downregulates p120ctn tyrosine phosphorylation induced by Src family kinases via a RhoA independent mechanism. Exp Cell Res 2011; 317:293-306. [DOI: 10.1016/j.yexcr.2010.10.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2010] [Revised: 10/18/2010] [Accepted: 10/18/2010] [Indexed: 01/23/2023]
|
15
|
Herron CR, Lowery AM, Hollister PR, Reynolds AB, Vincent PA. p120 regulates endothelial permeability independently of its NH2 terminus and Rho binding. Am J Physiol Heart Circ Physiol 2010; 300:H36-48. [PMID: 20971762 DOI: 10.1152/ajpheart.00812.2010] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The association of p120-catenin (p120) with the juxtamembrane domain (JMD) of vascular endothelial (VE)-cadherin is required to maintain VE-cadherin levels and transendothelial resistance (TEER) of endothelial cell monolayers. To distinguish whether decreased TEER was due to a loss of p120 and not to the decrease in VE-cadherin, we established a system in which p120 was depleted by short hairpin RNA delivered by lentivirus and VE-cadherin was restored via expression of VE-cadherin fused to green fluorescent protein (GFP). Loss of p120 resulted in decreased TEER, which was associated with decreased expression of VE-cadherin, β-catenin, plakoglobin, and α-catenin. Decreased TEER was rescued by restoration of p120 but not by the expression of VE-cadherin-GFP, despite localization of VE-cadherin-GFP at cell-cell borders. Expression of VE-cadherin-GFP restored levels of β-catenin and α-catenin but not plakoglobin, indicating that p120 may be important for recruitment of plakoglobin to the VE-cadherin complex. To evaluate the role of p120 interaction with Rho GTPase in regulating endothelial permeability, we expressed a recombinant form of p120, lacking the NH(2) terminus and containing alanine substitutions, that eliminates binding of Rho to p120. Expression of this isoform restored expression of the adherens junction complex and rescued permeability as measured by TEER. These results demonstrate that p120 is required for maintaining VE-cadherin expression and TEER independently of its NH(2) terminus and its role in regulating Rho.
Collapse
Affiliation(s)
- Crystal R Herron
- Center for Cardiovascular Sciences, Albany Medical College, Albany, New York, USA
| | | | | | | | | |
Collapse
|
16
|
Simoneau M, Boulanger J, Coulombe G, Renaud MA, Duchesne C, Rivard N. Activation of Cdk2 stimulates proteasome-dependent truncation of tyrosine phosphatase SHP-1 in human proliferating intestinal epithelial cells. J Biol Chem 2008; 283:25544-25556. [PMID: 18617527 DOI: 10.1074/jbc.m804177200] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
SHP-1 is expressed in the nuclei of intestinal epithelial cells (IECs). Increased SHP-1 expression and phosphatase activity coincide with cell cycle arrest and differentiation in these cells. Suspecting the tumor-suppressive properties of SHP-1, a yeast two-hybrid screen of an IEC cDNA library was conducted using the full-length SHP-1 as bait. Characterization of many positive clones revealed sequences identical to a segment of the Cdk2 cDNA sequence. Interaction between SHP-1 and Cdk2 was confirmed by co-immunoprecipitations whereby co-precipitated Cdk2 phosphorylated SHP-1 protein. Inhibition of Cdk2 (roscovitine) or proteasome (MG132) was associated with an enhanced nuclear punctuate distribution of SHP-1. Double labeling localization studies with signature proteins of subnuclear domains revealed a co-localization between the splicing factor SC35 and SHP-1 in bright nucleoplasmic foci. Using Western blot analyses with the anti-SHP-1 antibody recognizing the C terminus, a lower molecular mass species of 45 kDa was observed in addition to the full-length 64-65-kDa SHP-1 protein. Treatment with MG132 led to an increase in expression of the full-length SHP-1 protein while concomitantly leading to a decrease in the levels of the lower mass 45-kDa molecular species. Further Western blots revealed that the 45-kDa protein corresponds to the C-terminal portion of SHP-1 generated from proteasome activity. Mutational analysis of Tyr(208) and Ser(591) (a Cdk2 phosphorylation site) residues on SHP-1 abolished the expression of the amino-truncated 45-kDa SHP-1 protein. In conclusion, our results indicate that Cdk2-associated complexes, by targeting SHP-1 for proteolysis, counteract the ability of SHP-1 to block cell cycle progression of IECs.
Collapse
Affiliation(s)
- Mélanie Simoneau
- Département d'Anatomie et Biologie Cellulaire, Faculté de Médecine et des Sciences de la Santé, Universitéde Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada
| | - Jim Boulanger
- Département d'Anatomie et Biologie Cellulaire, Faculté de Médecine et des Sciences de la Santé, Universitéde Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada
| | - Geneviève Coulombe
- Département d'Anatomie et Biologie Cellulaire, Faculté de Médecine et des Sciences de la Santé, Universitéde Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada
| | - Marc-André Renaud
- Département d'Anatomie et Biologie Cellulaire, Faculté de Médecine et des Sciences de la Santé, Universitéde Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada
| | - Cathia Duchesne
- Département d'Anatomie et Biologie Cellulaire, Faculté de Médecine et des Sciences de la Santé, Universitéde Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada
| | - Nathalie Rivard
- Département d'Anatomie et Biologie Cellulaire, Faculté de Médecine et des Sciences de la Santé, Universitéde Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada.
| |
Collapse
|
17
|
Mruk DD, Silvestrini B, Cheng CY. Anchoring junctions as drug targets: role in contraceptive development. Pharmacol Rev 2008; 60:146-80. [PMID: 18483144 PMCID: PMC3023124 DOI: 10.1124/pr.107.07105] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
In multicellular organisms, cell-cell interactions are mediated in part by cell junctions, which underlie tissue architecture. Throughout spermatogenesis, for instance, preleptotene leptotene spermatocytes residing in the basal compartment of the seminiferous epithelium must traverse the blood-testis barrier to enter the adluminal compartment for continued development. At the same time, germ cells must also remain attached to Sertoli cells, and numerous studies have reported extensive restructuring at the Sertoli-Sertoli and Sertoli-germ cell interface during germ cell movement across the seminiferous epithelium. Furthermore, the proteins and signaling cascades that regulate adhesion between testicular cells have been largely delineated. These findings have unveiled a number of potential "druggable" targets that can be used to induce premature release of germ cells from the seminiferous epithelium, resulting in transient infertility. Herein, we discuss a novel approach with the aim of developing a nonhormonal male contraceptive for future human use, one that involves perturbing adhesion between Sertoli and germ cells in the testis.
Collapse
Affiliation(s)
- Dolores D Mruk
- Population Council, Center for Biomedical Research, The Mary M Wohlford Laboratory for Male Contraceptive Research, 1230 York Avenue, New York, NY 10065, USA.
| | | | | |
Collapse
|
18
|
Weibrecht I, Böhmer SA, Dagnell M, Kappert K, Ostman A, Böhmer FD. Oxidation sensitivity of the catalytic cysteine of the protein-tyrosine phosphatases SHP-1 and SHP-2. Free Radic Biol Med 2007; 43:100-10. [PMID: 17561098 DOI: 10.1016/j.freeradbiomed.2007.03.021] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2006] [Revised: 03/15/2007] [Accepted: 03/29/2007] [Indexed: 12/31/2022]
Abstract
Reversible oxidation of the catalytic cysteine of protein-tyrosine phosphatases (PTPs) has emerged as a putative mechanism of activity regulation by physiological cell stimulation with growth factors, and by cell treatments with adverse agents such as UV irradiation. We compared SHP-1 and SHP-2, two structurally related cytoplasmic protein-tyrosine phosphatases with different cellular functions and cell-specific expression patterns, for their intrinsic susceptibility to oxidation by H(2)O(2). The extent of oxidation was monitored by detecting the modification of the PTP catalytic cysteine by three different methods, including a modified in-gel PTP assay, alkylation with a biotinylated iodoacetic acid derivative, and an antibody against oxidized PTPs. Dose-response curves for oxidation of the catalytic domains of SHP-1 and SHP-2 were similar. SHP-1 and -2 require relatively high H(2)O(2) concentrations for oxidation (half-maximal oxidation at 0.1-0.5 mM). For SHP-1, the SH2 domains had a significant protective function with respect to oxidation. In EOL-1 cells, SHP oxidation by exogenous H(2)O(2) in general and SHP-2 oxidation in particular was strongly diminished compared to HEK293 cells, at least partially related to a generally lower oxidant sensitivity of the EOL-1 cells. The data suggest that the differential cell functions of SHP-1 and SHP-2 are not related to differences in oxidation sensitivity. The modulating effects of SH2 domains for oxidation of these PTPs are in support of an enhanced oxidation susceptibility of activated SHPs.
Collapse
Affiliation(s)
- Irene Weibrecht
- Department of Genetics and Pathology, Rudbeck Laboratory, University of Uppsala, SE-75185 Uppsala, Sweden
| | | | | | | | | | | |
Collapse
|
19
|
Ezaki T, Guo RJ, Li H, Reynolds AB, Lynch JP. The homeodomain transcription factors Cdx1 and Cdx2 induce E-cadherin adhesion activity by reducing beta- and p120-catenin tyrosine phosphorylation. Am J Physiol Gastrointest Liver Physiol 2007; 293:G54-65. [PMID: 17463179 DOI: 10.1152/ajpgi.00533.2006] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The homeodomain transcription factors Cdx1 and Cdx2 are regulators of intestine-specific gene expression. They also regulate intestinal cell differentiation and proliferation; however, these effects are poorly understood. Previously, we have shown that expression of Cdx1 or Cdx2 in human Colo 205 cells induces a mature colonocyte morphology characterized by the induction of a polarized, columnar shape with apical microvilli and strong cell-cell adhesion. To elucidate the mechanism underlying this phenomenon, we investigated the adherens junction complex. Cdx1 or Cdx2 expression reduced Colo 205 cell migration and invasion in vitro, suggesting a physiologically significant change in cadherin function. However, Cdx expression did not significantly effect E-cadherin, alpha-, beta-, or gamma-catenin, or p120-catenin protein levels. Additionally, no alteration in their intracellular distribution was observed. Cdx expression did not alter the coprecipitation of beta-catenin with E-cadherin; however, it did reduce p120-catenin-E-cadherin coprecipitation. Tyrosine phosphorylation of beta- and p120-catenin is known to disrupt E-cadherin-mediated cell adhesion and is associated with robust p120-catenin/E-cadherin interactions. We specifically investigated beta- and p120-catenin for tyrosine phosphorylation and found that it was significantly diminished by Cdx1 or Cdx2 expression. We restored beta- and p120-catenin tyrosine phosphorylation in Cdx2-expressing cells by knocking down the expression of protein tyrosine phosphatase 1B and noted a significant decline in cell-cell adhesion. We conclude that Cdx expression in Colo 205 cells induces E-cadherin-dependent cell-cell adhesion by reducing beta- and p120-catenin tyrosine phosphorylation. Ascertaining the mechanism for this novel Cdx effect may improve our understanding of the regulation of cell-cell adhesion in the colonic epithelium.
Collapse
Affiliation(s)
- Toshihiko Ezaki
- Division of Gastroenterology/650 CRB, Department of Medicine, University of Pennsylvania, 415 Curie Blvd., Philadelphia, PA 19104, USA
| | | | | | | | | |
Collapse
|
20
|
McLachlan RW, Yap AS. Not so simple: the complexity of phosphotyrosine signaling at cadherin adhesive contacts. J Mol Med (Berl) 2007; 85:545-54. [PMID: 17429596 DOI: 10.1007/s00109-007-0198-x] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2007] [Revised: 03/19/2007] [Accepted: 03/21/2007] [Indexed: 12/18/2022]
Abstract
Cadherin cell-cell adhesion critically determines tissue organization and integrity in many organs of the body. Cadherin function influences patterning and morphogenesis while cadherin dysfunction contributes to disease, notably tumor invasion and metastasis. Cell signaling events are intimately linked with cadherin function; it is increasingly apparent that not only do cellular signals regulate cadherin function, but cadherins can also, in turn, modulate cell signaling itself. In this review, we discuss the complex interrelationship between phosphotyrosine-based cell signaling and cadherin adhesion. We focus on the interplay of events that occur at the cell surface and address three issues: the diverse mechanisms that activate phosphotyrosine signaling at cadherin cell-cell contacts, the functional impact of such signaling for cadherin adhesion, and the emerging capacity for cadherins to regulate growth factor signaling.
Collapse
Affiliation(s)
- Robert W McLachlan
- Division of Molecular Cell Biology, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, Queensland, 4072, Australia
| | | |
Collapse
|
21
|
Madhavan R, Zhao XT, Reynolds AB, Peng HB. Involvement of p120 catenin in myopodial assembly and nerve-muscle synapse formation. ACTA ACUST UNITED AC 2007; 66:1511-27. [PMID: 17031840 DOI: 10.1002/neu.20320] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
At developing neuromuscular junctions (NMJs), muscles initially contact motor axons by microprocesses, or myopodia, which are induced by nerves and nerve-secreted agrin, but it is unclear how myopodia are assembled and how they influence synaptic differentiation at the NMJ. Here, we report that treatment of cultured muscle cells with agrin transiently depleted p120 catenin (p120ctn) from cadherin junctions in situ, and increased the tyrosine phosphorylation and decreased the cadherin-association of p120ctn in cell extracts. Whereas ectopic expression of wild-type p120ctn in muscle generated myopodia in the absence of agrin, expression of a specific dominant-negative mutant form of p120ctn, which blocks filopodial assembly in nonmuscle cells, suppressed nerve- and agrin-induction of myopodia. Significantly, approaching neurites triggered reduced acetylcholine receptor (AChR) clustering along the edges of muscle cells expressing mutant p120ctn than of control cells, although the ability of the mutant cells to cluster AChRs was itself normal. Our results indicate a novel role of p120ctn in agrin-induced myopodial assembly and suggest that myopodia increase muscle-nerve contacts and muscle's access to neural agrin to promote NMJ formation.
Collapse
Affiliation(s)
- Raghavan Madhavan
- Department of Biology, Hong Kong University of Science and Technology, Kowloon, Hong Kong
| | | | | | | |
Collapse
|
22
|
Castaño J, Solanas G, Casagolda D, Raurell I, Villagrasa P, Bustelo XR, García de Herreros A, Duñach M. Specific phosphorylation of p120-catenin regulatory domain differently modulates its binding to RhoA. Mol Cell Biol 2006; 27:1745-57. [PMID: 17194753 PMCID: PMC1820477 DOI: 10.1128/mcb.01974-06] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
p120-catenin is an adherens junction-associated protein that controls E-cadherin function and stability. p120-catenin also binds intracellular proteins, such as the small GTPase RhoA. In this paper, we identify the p120-catenin N-terminal regulatory domain as the docking site for RhoA. Moreover, we demonstrate that the binding of RhoA to p120-catenin is tightly controlled by the Src family-dependent phosphorylation of p120-catenin on tyrosine residues. The phosphorylation induced by Src and Fyn tyrosine kinases on p120-catenin induces opposite effects on RhoA binding. Fyn, by phosphorylating a residue located in the regulatory domain of p120-catenin (Tyr112), inhibits the interaction of this protein with RhoA. By contrast, the phosphorylation of Tyr217 and Tyr228 by Src promotes a better affinity of p120-catenin towards RhoA. In agreement with these biochemical data, results obtained in cell lines support the important role of these phosphorylation sites in the regulation of RhoA activity by p120-catenin. Taken together, these observations uncover a new regulatory mechanism acting on p120-catenin that contributes to the fine-tuned regulation of the RhoA pathways during specific signaling events.
Collapse
Affiliation(s)
- Julio Castaño
- Unitat de Biofísica, Departament Bioquímica i Biologia Molecular, Facultat de Medicina, Universitat Autònoma de Barcelona, E-08193 Bellaterra, Spain.
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Ohno H, Uemura K, Shintani-Ishida K, Nakamura M, Inomata M, Yoshida KI. Ischemia promotes calpain-mediated degradation of p120-catenin in SH-SY5Y cells. Biochem Biophys Res Commun 2006; 353:547-52. [PMID: 17196166 DOI: 10.1016/j.bbrc.2006.12.061] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2006] [Accepted: 12/05/2006] [Indexed: 12/26/2022]
Abstract
p120-catenin contributes to the cadherin-mediated adhesion and aggregation of cells. mu-Calpain was activated and p120-catenin was degraded after 36 h of ischemia in differentiated SH-SY5Y cells. Calpain inhibitors Cbz-Val-Phe-H (MDL28170, 20 microM) and N-acetyl-leucyl-leucyl-norleucinal (ALLN, 20 microM) increased the levels of dephosphorylated p120-catenin, aggregation, and cell survival as detected by reduced LDH release in ischemic cells. However, a proteasome inhibitor lactacystin had no such effects. This is the first report of the calpain-mediated degradation of p120-catenin and an association between the level of dephosphorylated p120-catenin and cell aggregation in ischemic neuronal cells.
Collapse
Affiliation(s)
- Hiroshi Ohno
- Department of Forensic Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | | | | | | | | | | |
Collapse
|
24
|
McCrea PD, Park JI. Developmental functions of the P120-catenin sub-family. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2006; 1773:17-33. [PMID: 16942809 DOI: 10.1016/j.bbamcr.2006.06.009] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2006] [Revised: 06/21/2006] [Accepted: 06/26/2006] [Indexed: 01/11/2023]
Abstract
For more than a decade, cell, developmental and cancer investigators have brought about a wide interest in the biology of catenin proteins, an attraction being their varied functions within differing cellular compartments. While the diversity of catenin localizations and roles has been intriguing, it has also posed a challenge to the clear interpretation of loss- or gain-of-function developmental phenotypes. The most deeply studied member of the larger catenin family is beta-catenin, whose contributions span areas including cell adhesion and intracellular signaling/ transcriptional control. More recently, attention has been directed towards p120-catenin, which in conjunction with the p120-catenin sub-family members ARVCF- and delta-catenins, are the subjects of this review. Although the requirement for vertebrate versus invertebrate p120-catenin are at variance, vertebrate p120-catenin sub-family members may each inter-link cadherin, cytoskeletal and gene regulatory functions in embryogenesis and disease.
Collapse
Affiliation(s)
- Pierre D McCrea
- Department of Biochemistry and Molecular Biology, Program in Genes and Development, University of Texas MD Anderson Cancer Center, University of Texas Graduate School of Biomedical Science, Houston TX 77030, USA.
| | | |
Collapse
|
25
|
Alemà S, Salvatore AM. p120 catenin and phosphorylation: Mechanisms and traits of an unresolved issue. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2006; 1773:47-58. [PMID: 16904204 DOI: 10.1016/j.bbamcr.2006.06.001] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2006] [Revised: 06/02/2006] [Accepted: 06/06/2006] [Indexed: 01/11/2023]
Abstract
p120 catenin is a scaffold protein that interacts with cadherin cytoplasmic domain and acts as a crucial component of the signalling that regulates the cycle of adherens junction formation and disassembly. Here, we review the nature of stimuli that modulate p120ctn function and are translated as serine/threonine and tyrosine phosphorylation events at this multisite substrate for a variety of protein kinases. We also highlight recent findings that tentatively link phosphorylation of p120ctn to its role as a signal integrator capable to influence the state of the cadherin adhesive bond, the cytoskeleton and cell motility.
Collapse
Affiliation(s)
- Stefano Alemà
- Istituto di Biologia Cellulare, CNR, 00016 Monterotondo, Italy
| | | |
Collapse
|
26
|
Abstract
The microvascular endothelial cell monolayer localized at the critical interface between the blood and vessel wall has the vital functions of regulating tissue fluid balance and supplying the essential nutrients needed for the survival of the organism. The endothelial cell is an exquisite “sensor” that responds to diverse signals generated in the blood, subendothelium, and interacting cells. The endothelial cell is able to dynamically regulate its paracellular and transcellular pathways for transport of plasma proteins, solutes, and liquid. The semipermeable characteristic of the endothelium (which distinguishes it from the epithelium) is crucial for establishing the transendothelial protein gradient (the colloid osmotic gradient) required for tissue fluid homeostasis. Interendothelial junctions comprise a complex array of proteins in series with the extracellular matrix constituents and serve to limit the transport of albumin and other plasma proteins by the paracellular pathway. This pathway is highly regulated by the activation of specific extrinsic and intrinsic signaling pathways. Recent evidence has also highlighted the importance of the heretofore enigmatic transcellular pathway in mediating albumin transport via transcytosis. Caveolae, the vesicular carriers filled with receptor-bound and unbound free solutes, have been shown to shuttle between the vascular and extravascular spaces depositing their contents outside the cell. This review summarizes and analyzes the recent data from genetic, physiological, cellular, and morphological studies that have addressed the signaling mechanisms involved in the regulation of both the paracellular and transcellular transport pathways.
Collapse
Affiliation(s)
- Dolly Mehta
- Center of Lung and Vascular Biology, Dept. of Pharmacology (M/C 868), University of Illinois, 835 S. Wolcott Avenue, Chicago, IL 60612, USA
| | | |
Collapse
|
27
|
Lilien J, Balsamo J. The regulation of cadherin-mediated adhesion by tyrosine phosphorylation/dephosphorylation of beta-catenin. Curr Opin Cell Biol 2005; 17:459-65. [PMID: 16099633 DOI: 10.1016/j.ceb.2005.08.009] [Citation(s) in RCA: 351] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2005] [Accepted: 08/03/2005] [Indexed: 11/18/2022]
Abstract
The formation of stable cell-cell adhesions by type I cadherins depends on the association of their cytoplasmic domain with beta-catenin, and of beta-catenin with alpha-catenin. The binding of beta-catenin to these partners is regulated by phosphorylation of at least three critical tyrosine residues. Each of these residues is targeted by one or more specific kinases: Y142 by Fyn, Fer and cMet; Y489 by Abl; and Y654 by Src and the epidermal growth factor receptor. Developmental and physiological signals have been identified that initiate the specific phosphorylation and dephosphorylation of these residues, regulating cadherin function during neurite outgrowth, permeability of airway epithelium and synapse remodeling, and possibly initiating epithelial cell migration during development and metastasis.
Collapse
Affiliation(s)
- Jack Lilien
- Department of Biological Sciences, University of Iowa, Iowa City, Iowa 52242, USA.
| | | |
Collapse
|
28
|
Schmidt-Arras DE, Böhmer A, Markova B, Choudhary C, Serve H, Böhmer FD. Tyrosine phosphorylation regulates maturation of receptor tyrosine kinases. Mol Cell Biol 2005; 25:3690-703. [PMID: 15831474 PMCID: PMC1084288 DOI: 10.1128/mcb.25.9.3690-3703.2005] [Citation(s) in RCA: 128] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Constitutive activation of receptor tyrosine kinases (RTKs) is a frequent event in human cancer cells. Activating mutations in Fms-like tyrosine kinase 3 (FLT-3), notably, internal tandem duplications in the juxtamembrane domain (FLT-3 ITD), have been causally linked to acute myeloid leukemia. As we describe here, FLT-3 ITD exists predominantly in an immature, underglycosylated 130-kDa form, whereas wild-type FLT-3 is expressed predominantly as a mature, complex glycosylated 150-kDa molecule. Endogenous FLT-3 ITD, but little wild-type FLT-3, is detectable in the endoplasmic reticulum (ER) compartment. Conversely, cell surface expression of FLT-3 ITD is less efficient than that of wild-type FLT-3. Inhibition of FLT-3 ITD kinase by small molecules, inactivating point mutations, or coexpression with the protein-tyrosine phosphatases (PTPs) SHP-1, PTP1B, and PTP-PEST but not RPTPalpha promotes complex glycosylation and surface localization. However, PTP coexpression has no effect on the maturation of a surface glycoprotein of vesicular stomatitis virus. The maturation of wild-type FLT-3 is impaired by general PTP inhibition or by suppression of endogenous PTP1B. Enhanced complex formation of FLT-3 ITD with the ER-resident chaperone calnexin indicates that its retention in the ER is related to inefficient folding. The regulation of RTK maturation by tyrosine phosphorylation was observed with other RTKs as well, defines a possible role for ER-resident PTPs, and may be related to the altered signaling quality of constitutively active, transforming RTK mutants.
Collapse
Affiliation(s)
- Dirk-E Schmidt-Arras
- Institute of Molecular Cell Biology, Medical Faculty, Friedrich Schiller University, Drackendorfer Strasse 1, D-07747 Jena, Germany
| | | | | | | | | | | |
Collapse
|
29
|
Scully C, Bagan JV, Black M, Carrozzo M, Eisen D, Escudier M, Farthing P, Kuffer R, Lo Muzio L, Mignogna M, Porter SR. Number 1Epithelial biology. Oral Dis 2005; 11:58-71. [PMID: 15752078 DOI: 10.1111/j.1601-0825.2004.01078.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The oral mucous membrane has features similar to skin but also differs in several ways. This paper reviews the aspects of epithelial biology necessary for an understanding of the vesiculoerosive disorders.
Collapse
Affiliation(s)
- C Scully
- Eastman Dental Institute, University College London, 256 Grays Inn Road, London WC1X, UK.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Roccato E, Miranda C, Raho G, Pagliardini S, Pierotti MA, Greco A. Analysis of SHP-1-mediated Down-regulation of the TRK-T3 Oncoprotein Identifies Trk-fused Gene (TFG) as a Novel SHP-1-interacting Protein. J Biol Chem 2005; 280:3382-9. [PMID: 15557341 DOI: 10.1074/jbc.m407522200] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
SHP-1 is a cytoplasmic SH2 domain containing protein-tyrosine phosphatase (PTP) involved in the negative regulation of multiple signaling pathways in hematopoietic, nervous, and epithelial cells. The thyroid TRK-T3 oncogene consists of the NTRK1 tyrosine kinase domain fused in-frame with sequences of the TFG (TRK-fused gene), encoding a protein of unknown function. TFG contains a coiled-coil domain responsible for TRK-T3 oligomerization. In addition, recent analysis of the sequences outside of the coiled-coil domain suggested possible interactions with other proteins. Based on the presence of a putative SHP-1 SH2-binding site within the TFG sequences, we have investigated the role of the SHP-1 phosphatase in TRK-T3 oncoprotein signaling. In this study we show that SHP-1 interacts with and down-regulates TRK-T3. We provide evidence that SHP-1 SH2 and catalytic domains, respectively, associate with the TFG- and NTRK1-derived portions of TRK-T3. Our data contribute to the definition of cellular mechanisms involved in thyroid tumorigenesis. Moreover, it reveals TFG as a novel protein able to modulate SHP-1 activity.
Collapse
Affiliation(s)
- Emanuela Roccato
- Department of Experimental Oncology Operative Unit Molecular Mechanisms of Cancer Growth and Progression, Istituto Nazionale Tumori, Via G. Venezian, 1 20133 Milan, Italy
| | | | | | | | | | | |
Collapse
|
31
|
He D, Song X, Liu L, Burk DH, Zhou GW. EGF-stimulation activates the nuclear localization signal of SHP-1. J Cell Biochem 2005; 94:944-53. [PMID: 15578567 DOI: 10.1002/jcb.20307] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Protein tyrosine phosphatase SHP-1 plays a critical role in the regulation of a variety of intracellular signaling pathways. SHP-1 is predominantly expressed in the cells of hematopoietic origin, and is recognized as a negative regulator of lymphocyte development and activation. SHP-1 consists of two Src homology 2 (SH2) domains and one protein tyrosine phosphatase (PTP) domain followed by a highly basic C-terminal tail containing tyrosyl phosphorylation sites. It is unclear how the C-terminal tail regulates SHP-1 function. We report the examination of the subcellular localization of a variety of truncated or mutated SHP-1 proteins fused with enhanced green fluorescent protein (EGFP) protein at either the N-terminal or the C-terminal end in different cell lines. Our data demonstrate that a nuclear localization signal (NLS) is located in the C-terminal tail of SHP-1 and the signal is primarily defined by three amino-acid residues (KRK) at the C-terminus. This signal is generally blocked in the native protein and can be exposed by fusing EGFP at the appropriate position or by domain truncation. We have also revealed that this NLS of SHP-1 is triggered by epidermal growth factor (EGF) stimulation and mediates translocation of SHP-1 from the cytosol to the nucleus in COS7 cell lines. These results not only demonstrate the importance of the C-terminal tail of SHP-1 in the regulation of nuclear localization, but also provide insights into its role in SHP-1-involved signal transduction pathways.
Collapse
Affiliation(s)
- Dandan He
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | | | | | | | | |
Collapse
|
32
|
Reynolds AB, Roczniak-Ferguson A. Emerging roles for p120-catenin in cell adhesion and cancer. Oncogene 2004; 23:7947-56. [PMID: 15489912 DOI: 10.1038/sj.onc.1208161] [Citation(s) in RCA: 212] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Although originally identified as a Src substrate, p120-catenin (p120) is now known to regulate cell-cell adhesion through its interaction with the cytoplasmic tail of classical and type II cadherins. New evidence indicates that p120 regulates cadherin turnover at the cell surface, thereby controlling the amount of cadherin available for cell-cell adhesion. This function is necessary but not sufficient to promote strong adhesion, which is further controlled by signals acting on the amino-terminal p120 regulatory domain. p120 also modulates the activities of RhoA, Rac, and Cdc42, suggesting that along with other Src substrates, p120 regulates actin dynamics. Thus, p120 is a master regulator of cadherin abundance and activity, and likely participates in regulating the balance between adhesive and motile cellular phenotypes. This review summarizes recent progress in understanding mechanisms of p120 action, and discusses new implications with respect to roles for p120 in disease and cancer.
Collapse
Affiliation(s)
- Albert B Reynolds
- Department of Cancer Biology, Vanderbilt University, 771PRB, 2220 Pierce Ave, Nashville, TN 37232-6840, USA.
| | | |
Collapse
|
33
|
Brunton VG, MacPherson IRJ, Frame MC. Cell adhesion receptors, tyrosine kinases and actin modulators: a complex three-way circuitry. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2004; 1692:121-44. [PMID: 15246683 DOI: 10.1016/j.bbamcr.2004.04.010] [Citation(s) in RCA: 137] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2004] [Accepted: 04/19/2004] [Indexed: 12/31/2022]
Abstract
The interaction of cells with surrounding matrix and neighbouring cells governs many aspects of cell behaviour. Aside from transmitting signals from the external environment, adhesion receptors also receive signals from the cell interior. Here we review the interrelationship between adhesion receptors, tyrosine kinases (both growth factor receptor and non-receptor) and modulators of the actin cytoskeletal network. Deregulation of many aspects of these signalling pathways in cancer highlights the need for a better understanding of the complexities involved.
Collapse
Affiliation(s)
- V G Brunton
- The Beatson Institute for Cancer Research, Cancer Research UK Beatson Laboratories, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1BD.
| | | | | |
Collapse
|
34
|
Seidel B, Braeg S, Adler G, Wedlich D, Menke A. E- and N-cadherin differ with respect to their associated p120ctn isoforms and their ability to suppress invasive growth in pancreatic cancer cells. Oncogene 2004; 23:5532-42. [PMID: 15107817 DOI: 10.1038/sj.onc.1207718] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2003] [Revised: 03/02/2004] [Accepted: 03/09/2004] [Indexed: 01/11/2023]
Abstract
E-cadherin functions as suppressor of invasion in epithelial cells and its loss is described in many invasive carcinomas. In some tumours, the disappearance of E-cadherin has been correlated with upregulation of other classical cadherins, such as N- or P-cadherin. To analyse the different cellular functions of cadherin molecules, we stably expressed E-cadherin or N-cadherin in the E- and N-cadherin-deficient pancreatic tumour cell line MIA PaCa-2. Only E-cadherin was able to induce a mesenchymal-epithelial transition and suppressed invasion of MIA PaCa-2 cells. Furthermore, only re-expression of E-cadherin resulted in an upregulation of alpha- and beta-catenin mRNAs and protein concentrations. Ectopically expressed N-cadherin failed to assemble cadherin/catenin adhesion complexes and failed to inhibit invasion. Analysis of p120(ctn), which was associated with both cadherins, demonstrated that E-cadherin was linked to a shorter isoform of p120(ctn). In contrast, N-cadherin was associated with the long, 120 kDa p120(ctn) isoforms. In addition, p120(ctn) connected with N-cadherin was phosphorylated at tyrosine residues, whereas the isoform linked to E-cadherin was not phosphorylated. Thus, the differences between E- and N-cadherin in recruiting different phosphorylated isoforms of p120(ctn) to the membrane might be responsible for the inability of N-cadherin to replace E-cadherin as suppressor of invasion in pancreatic carcinoma cells.
Collapse
Affiliation(s)
- Bjoern Seidel
- Department of Internal Medicine I, University of Ulm, D-89081 Ulm, Germany
| | | | | | | | | |
Collapse
|
35
|
Neznanov N, Neznanova L, Kondratov RV, O'Rourke DM, Ullrich A, Gudkov AV. The ability of protein tyrosine phosphatase SHP-1 to suppress NFkappaB can be inhibited by dominant negative mutant of SIRPalpha. DNA Cell Biol 2004; 23:175-82. [PMID: 15068587 DOI: 10.1089/104454904322964779] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In contrast with hematopoietic cells and fibroblasts, which express mainly one form of protein tyrosine phosphatase (PTP) SHP-1 or SHP-2, epithelial cells like A431, HeLa, and 293 express both forms of PTP. These two PTP regulate NFkappaB activity differently; SHP-1 inhibits and SHP-2 stimulates NFkappaB activation. In epithelial cells the process of NFkappaB activation depends on the combination of two PTP activities. The activity of PTP SHP-1 dominates in this tandem according to our data. The signal regulatory protein (SIRPalpha) is the adapter and the substrate of PTP SHP-1 and SHP-2. We investigated the role of SIRPalpha and its dominant negative mutant in PTP activities in 293 cells. The overexpression of wild-type SIRPalpha suppresses the activities of both PTP, but has a stronger effect on PTP SHP-2, especially when this protein is overexpressed in 293 cells. In contrast with wild-type SIRPalpha, its dominant negative mutant acts predominantly against PTP SHP-1, and can be detected in the complex with PTP SHP-1. The expression of dominant negative mutant of SIRPalpha has an effect similar to the expression of dominant negative PTP SHP-1 in the process of NFkappaB activation.
Collapse
Affiliation(s)
- Nickolay Neznanov
- Department of Virology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio 44195, USA.
| | | | | | | | | | | |
Collapse
|
36
|
Chauvet N, Privat A, Prieto M. Differential expression of p120 catenin in glial cells of the adult rat brain. J Comp Neurol 2004; 479:15-29. [PMID: 15389614 DOI: 10.1002/cne.20301] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
p120 catenin (p120ctn) is involved in the regulation of cadherin-mediated adhesion and the dynamic organization of the actin cytoskeleton by modulating RhoGTPase activity. We have previously described the distribution of p120ctn during rat brain development and provided substantial evidence for the potential involvement of p120ctn in morphogenetic events and plasticity in the central nervous system. Here, we analyzed the cellular and ultrastructural distribution of p120ctn in glial cells of the adult rat forebrain. The highest intensity of immunostaining for p120ctn was found in cells of the choroid plexus and ependyma and was mainly restricted to the plasma membrane. However, p120ctn was almost absent from astrocytes. In contrast, in tanycytes, a particular glial cell exhibiting remarkable morphological plasticity, p120ctn, was localized at the plasma membrane and also in the cytoplasm. We show that a large subpopulation of oligodendrocytes expressed multiple isoforms, whereas other neural cells predominantly expressed isoform 1, and that p120ctn immunoreactivity was distributed through the cytoplasm and at certain portions of the plasma membrane. Finally, p120ctn was expressed by a small population of cortical NG2-expressing cells, whereas it was expressed by a large population of these cells in the white matter. However, in both regions, proliferating NG2-positive cells consistently expressed p120ctn. The expression of p120ctn by cells of the oligodendrocyte lineage suggests that p120ctn may participate in oligodendrogenesis and myelination. Moreover, the expression of p120ctn by various cell types and its differential subcellular distribution strongly suggest that p120ctn may serve multiple functions in the central nervous system.
Collapse
Affiliation(s)
- Norbert Chauvet
- Institut National de la Santé et de la Recherche Médicale U583, Institut des Neurosciences de Montpellier, 34095 Montpellier, France.
| | | | | |
Collapse
|
37
|
Frank C, Burkhardt C, Imhof D, Ringel J, Zschörnig O, Wieligmann K, Zacharias M, Böhmer FD. Effective dephosphorylation of Src substrates by SHP-1. J Biol Chem 2003; 279:11375-83. [PMID: 14699166 DOI: 10.1074/jbc.m309096200] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The protein-tyrosine phosphatase SHP-1 is a negative regulator of multiple signal transduction pathways. We observed that SHP-1 effectively antagonized Src-dependent phosphorylations in HEK293 cells. This occurred by dephosphorylation of Src substrates, because Src activity was unaffected in the presence of SHP-1. One reason for efficient dephosphorylation was activation of SHP-1 by Src. Recombinant SHP-1 had elevated activity subsequent to phosphorylation by Src in vitro, and SHP-1 variants with mutated phosphorylation sites in the C terminus, SHP-1 Y538F, and SHP-1 Y538F,Y566F were less active toward Src-generated phosphoproteins in intact cells. A second reason for efficient dephosphorylation is the substrate selectivity of SHP-1. Pull-down experiments with different GST-SHP-1 fusion proteins revealed efficient interaction of Src-generated phosphoproteins with the SHP-1 catalytic domain rather than with the SH2 domains. Phosphopeptides that correspond to good Src substrates were efficiently dephosphorylated by SHP-1 in vitro. Phosphorylated "optimal Src substrate" AEEEIpYGEFEA (where pY is phosphotyrosine) and a phosphopeptide corresponding to a recently identified Src phosphorylation site in p120 catenin, DDLDpY(296)GMMSD, were excellent SHP-1 substrates. Docking of these phosphopeptides into the catalytic domain of SHP-1 by molecular modeling was consistent with the biochemical data and explains the efficient interaction. Acidic residues N-terminal of the phosphotyrosine seem to be of major importance for efficient substrate interaction. Residues C-terminal of the phosphotyrosine probably contribute to the substrate selectivity of SHP-1. We propose that activation of SHP-1 by Src and complementary substrate specificities of SHP-1 and Src may lead to very transient Src signals in the presence of SHP-1.
Collapse
Affiliation(s)
- Carsten Frank
- Institute of Molecular Cell Biology, Medical Faculty, Faculty of Biology and Pharmacy, Friedrich Schiller University, D-07747 Jena, Germany
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Miranda KC, Joseph SR, Yap AS, Teasdale RD, Stow JL. Contextual binding of p120ctn to E-cadherin at the basolateral plasma membrane in polarized epithelia. J Biol Chem 2003; 278:43480-8. [PMID: 12923199 DOI: 10.1074/jbc.m305525200] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
E-cadherin-catenin complexes mediate cell-cell adhesion on the basolateral membrane of epithelial cells. The cytoplasmic tail of E-cadherin supports multiple protein interactions, including binding of beta-catenin at the C terminus and of p120ctn to the juxtamembrane domain. The temporal assembly and polarized trafficking of the complex or its individual components to the basolateral membrane are not fully understood. In Madin-Darby canine kidney cells at steady state and after treatment with cycloheximide or temperature blocks, E-cadherin and beta-catenin localized to the Golgi complex, but p120ctn was found only at the basolateral plasma membrane. We previously identified a dileucine sorting motif (Leu586-Leu587, termed S1) in the juxtamembrane domain of E-cadherin and now show that it is required to target full-length E-cadherin to the basolateral membrane. Removal of S1 resulted in missorting of E-cadherin mutants (EcadDeltaS1) to the apical membrane; beta-catenin was simultaneously missorted and appeared at the apical membrane. p120ctn was not mistargeted with EcadDeltaS1, but could be recruited to the E-cadherin-catenin complex only at the basolateral membrane. These findings help define the temporal assembly and sorting of the E-cadherin-catenin complex and show that membrane recruitment of p120ctn in polarized cells is contextual and confined to the basolateral membrane.
Collapse
Affiliation(s)
- Kevin C Miranda
- Institute for Molecular Bioscience, School of Molecular and Microbial Sciences, University of Quensland, Brisbane, 4072 Queensland, Australia
| | | | | | | | | |
Collapse
|
39
|
Konstantoulaki M, Kouklis P, Malik AB. Protein kinase C modifications of VE-cadherin, p120, and beta-catenin contribute to endothelial barrier dysregulation induced by thrombin. Am J Physiol Lung Cell Mol Physiol 2003; 285:L434-42. [PMID: 12740216 DOI: 10.1152/ajplung.00075.2003] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The adherens junction is a multiprotein complex consisting of the transmembrane vascular endothelial cadherin (VEC) and cytoplasmic catenins (p120, beta-catenin, plakoglobin, alpha-catenin) responsible for the maintenance of endothelial barrier function. Junctional disassembly and modifications in cadherin/catenin complex lead to increased paracellular permeability of the endothelial barrier. However, the mechanisms of junctional disassembly remain unclear. In this study, we used the proinflammatory mediator thrombin to compromise the barrier function and test the hypothesis that phosphorylation-induced alterations of VEC, beta-catenin, and p120 regulate junction disassembly and mediate the increased endothelial permeability response. The study showed that thrombin induced dephosphorylation of VEC, which is coupled to disassembly of cell-cell contacts, but VEC remained in aggregates at the plasma membrane. The cytoplasmic catenins dissociated from the VEC cytoplasmic domain in thin membrane projections formed in interendothelial gaps. We also showed that thrombin induced dephosphorylation of beta-catenin and phosphorylation of p120. Thrombin-induced interendothelial gap formation and increased endothelial permeability were blocked by protein kinase C inhibition using chelerythrine and Gö-6976 but not by LY-379196. Chelerythrine also prevented thrombin-induced phosphorylation changes of the cadherin/catenin complex. Thus the present study links posttranslational modifications of VEC, beta-catenin, and p120 to the mechanism of thrombin-induced increase in endothelial permeability.
Collapse
|
40
|
Abstract
Maintenance of epithelial tissues needs the stroma. When the epithelium changes, the stroma inevitably follows. In cancer, changes in the stroma drive invasion and metastasis, the hallmarks of malignancy. Stromal changes at the invasion front include the appearance of myofibroblasts, cells sharing characteristics with fibroblasts and smooth muscle cells. The main precursors of myofibroblasts are fibroblasts. The transdifferentiation of fibroblasts into myofibroblasts is modulated by cancer cell-derived cytokines, such as transforming growth factor-beta (TGF-beta). TGF-beta causes cancer progression through paracrine and autocrine effects. Paracrine effects of TGF-beta implicate stimulation of angiogenesis, escape from immunosurveillance and recruitment of myofibroblasts. Autocrine effects of TGF-beta in cancer cells with a functional TGF-beta receptor complex may be caused by a convergence between TGF-beta signalling and beta-catenin or activating Ras mutations. Experimental and clinical observations indicate that myofibroblasts produce pro-invasive signals. Such signals may also be implicated in cancer pain. N-Cadherin and its soluble form act as invasion-promoters. N-Cadherin is expressed in invasive cancer cells and in host cells such as myofibroblasts, neurons, smooth muscle cells, and endothelial cells. N-Cadherin-dependent heterotypic contacts may promote matrix invasion, perineural invasion, muscular invasion, and transendothelial migration; the extracellular, the juxtamembrane and the beta-catenin binding domain of N-cadherin are implicated in positive invasion signalling pathways. A better understanding of stromal contributions to cancer progression will likely increase our awareness of the importance of the combinatorial signals that support and promote growth, dedifferentiation, invasion, and ectopic survival and eventually result in the identification of new therapeutics targeting the stroma.
Collapse
Affiliation(s)
- Olivier De Wever
- Laboratory of Experimental Cancerology, Department of Radiotherapy and Nuclear Medicine, Ghent University Hospital, De Pintelaan 185, B-9000 Ghent, Belgium
| | | |
Collapse
|
41
|
Duchesne C, Charland S, Asselin C, Nahmias C, Rivard N. Negative regulation of beta-catenin signaling by tyrosine phosphatase SHP-1 in intestinal epithelial cells. J Biol Chem 2003; 278:14274-83. [PMID: 12571228 DOI: 10.1074/jbc.m300425200] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Protein-tyrosine phosphatase SHP-1 is expressed at high levels in hematopoietic cells and at moderate levels in many other cell types including epithelial cells. Although SHP-1 has been shown to be a negative regulator of multiple signaling pathways in hematopoietic cells, very little is known about the biological role of SHP-1 in epithelial cells. In order to elucidate the mechanism(s) responsible for the loss of proliferative potential once committed intestinal epithelial cells begin to differentiate, the role and regulation of SHP-1 were analyzed in both intact epithelium as well as in well established intestinal cell models recapitulating the crypt-villus axis in vitro. Results show that SHP-1 was expressed in the nuclei of all intestinal epithelial cell models as well as in epithelial cells of intact human fetal jejunum and colon. Expression and phosphatase activity levels of SHP-1 were much more elevated in confluent growth-arrested intestinal epithelial cells and in differentiated enterocytes as well. Overexpression of SHP-1 in intestinal epithelial crypt cells significantly inhibited dhfr, c-myc, and cyclin D1 gene expression but did not interfere with c-fos gene expression. In contrast, a mutated inactive form of SHP-1 had no effect on these genes. SHP-1 expression significantly decreased beta-catenin/TCF-dependent transcription in intestinal epithelial crypt cells. Immunoprecipitation experiments revealed that beta-catenin is one of the main binding partners and a substrate for SHP-1. Taken together, our results indicate that SHP-1 may be involved in the regulation of beta-catenin transcriptional function and in the negative control of intestinal epithelial cell proliferation.
Collapse
Affiliation(s)
- Cathia Duchesne
- Département d'Anatomie et Biologie Cellulaire, Faculté de Médecine, Université de Sherbrooke, Québec J1H 5N4, Canada
| | | | | | | | | |
Collapse
|
42
|
Abstract
Invasion causes cancer malignancy. We review recent data about cellular and molecular mechanisms of invasion, focusing on cross-talk between the invaders and the host. Cancer disturbs these cellular activities that maintain multicellular organisms, namely, growth, differentiation, apoptosis, and tissue integrity. Multiple alterations in the genome of cancer cells underlie tumor development. These genetic alterations occur in varying orders; many of them concomitantly influence invasion as well as the other cancer-related cellular activities. Examples discussed are genes encoding elements of the cadherin/catenin complex, the nonreceptor tyrosine kinase Src, the receptor tyrosine kinases c-Met and FGFR, the small GTPase Ras, and the dual phosphatase PTEN. In microorganisms, invasion genes belong to the class of virulence genes. There are numerous clinical and experimental observations showing that invasion results from the cross-talk between cancer cells and host cells, comprising myofibroblasts, endothelial cells, and leukocytes, all of which are themselves invasive. In bone metastases, host osteoclasts serve as targets for therapy. The molecular analysis of invasion-associated cellular activities, namely, homotypic and heterotypic cell-cell adhesion, cell-matrix interactions and ectopic survival, migration, and proteolysis, reveal branching signal transduction pathways with extensive networks between individual pathways. Cellular responses to invasion-stimulatory molecules such as scatter factor, chemokines, leptin, trefoil factors, and bile acids or inhibitory factors such as platelet activating factor and thrombin depend on activation of trimeric G proteins, phosphoinositide 3-kinase, and the Rac and Rho family of small GTPases. The role of proteolysis in invasion is not limited to breakdown of extracellular matrix but also causes cleavage of proinvasive fragments from cell surface glycoproteins.
Collapse
Affiliation(s)
- Marc Mareel
- Laboratory of Experimental Cancerology, Department of Radiotherapy and Nuclear Medicine, Ghent University Hospital, Belgium.
| | | |
Collapse
|
43
|
Symons JR, LeVea CM, Mooney RA. Expression of the leucocyte common antigen-related (LAR) tyrosine phosphatase is regulated by cell density through functional E-cadherin complexes. Biochem J 2002; 365:513-9. [PMID: 12095414 PMCID: PMC1222702 DOI: 10.1042/bj20020381] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The leucocyte common antigen-related phosphatase (LAR) has been implicated in receptor tyrosine kinase signalling pathways while also displaying cell-density-dependency and localization to adherens junctions. Whereas physiological substrates for LAR have not been identified unequivocally, beta-catenin associates with LAR and is a substrate in vitro. With the implication that LAR may play a role in regulating E-cadherin-dependent cell-cell communication and contact inhibition, the relationship of LAR with E-cadherin was investigated. LAR expression increased with cell density in the human breast cancer cell line MCF-7 and in Ln 3 cells derived from the 13762NF rat mammary adenocarcinoma. LAR protein levels decreased rapidly when cells were replated at a low density after attaining high expression of LAR at high cell density. COS-7 cells displayed comparable density-dependent regulation of LAR expression when transiently expressing exogenous LAR under the control of a constitutively active promoter, indicating that the regulation of expression is not at the level of gene regulation. Disrupting homophilic E-cadherin complexes by chelating extracellular calcium caused a marked decrease in LAR protein levels. Similarly, blocking E-cadherin interactions with saturating amounts of E-cadherin antibody (HECD-1) also led to a rapid and pronounced loss of cellular LAR. In contrast, mimicking cell-surface E-cadherin engagement by plating cells at low density on to dishes coated with HECD-1 resulted in a 2-fold increase in LAR expression compared with controls. These results suggest that density-dependent regulation of LAR expression is mediated by functional E-cadherin and may play a role in density-dependent contact inhibition by regulating tyrosine phosphorylation in E-cadherin complexes.
Collapse
Affiliation(s)
- Javelle R Symons
- Department of Pathology and Laboratory Medicine, University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, Rochester, NY 14642, USA
| | | | | |
Collapse
|
44
|
Johnson KJ, Boekelheide K. Dynamic testicular adhesion junctions are immunologically unique. I. Localization of p120 catenin in rat testis. Biol Reprod 2002; 66:983-91. [PMID: 11906917 DOI: 10.1095/biolreprod66.4.983] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
In the seminiferous epithelium, morphologically diverse junctions mediate inter-Sertoli and Sertoli-germ cell adhesive contact, but the molecular composition of such junctions is not well known. At prototypical adherens junctions, proteins termed catenins bind to the intracellular domain of classic cadherins and regulate the strength of adhesion. Using a panel of monoclonal antibodies (5A7, 8D11, and 15D2), p120 catenin (p120) was localized in postnatal and adult rat testis cryosections and touch preparations by immunofluorescence. Immunoprecipitation of testis homogenates showed that at least four p120 isoforms were expressed from Postnatal Day 7 through adulthood. Both inter-Sertoli and Sertoli-germ cell junctions were p120-positive, however, individual p120 monoclonals were localized to specific junctions. The 5A7 and 8D11 antibodies colocalized with beta-catenin and plectin at inter-Sertoli and Sertoli-spermatocyte junctions. At inter-Sertoli junctions, p120 was juxtaposed to but did not colocalize with f-actin. Thus, p120 is likely a component of inter-Sertoli desmosome-like junctions. In contrast, the 15D2 monoclonal antibody specifically immunostained Sertoli-round spermatid and inter-Sertoli cell junctions in a dynamic pattern. From the time that round spermatids form to their differentiation into elongate spermatids, Sertoli-round spermatid 15D2 immunostaining cycled from a single mass to a curvilinear pattern, and finally to punctate structures scattered throughout the epithelium. This localization and stage-specific immunostaining pattern indicated that 15D2 recognized Sertoli-round spermatid desmosome-like junctions. Between Sertoli cells, 15D2 immunostained newly formed junctions (at Postnatal Days 21 through 43), but not mature junctions in the adult. From these data, we conclude that p120 is a component of most, if not all, desmosome-like junctions, and that desmosome-like junctions between different cell types contain a unique molecular composition.
Collapse
Affiliation(s)
- Kamin J Johnson
- Department of Pathology and Laboratory Medicine, Brown University, 175 Meeting Street, Providence, Rhode Island 02912, USA.
| | | |
Collapse
|
45
|
Aho S, Levänsuo L, Montonen O, Kari C, Rodeck U, Uitto J. Specific sequences in p120ctn determine subcellular distribution of its multiple isoforms involved in cellular adhesion of normal and malignant epithelial cells. J Cell Sci 2002; 115:1391-402. [PMID: 11896187 DOI: 10.1242/jcs.115.7.1391] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
P120 catenin (p120ctn) belongs to the Armadillo family of proteins, which is implicated in cell-cell adhesion and signal transduction. Owing to alternative splicing and multiple translation initiation codons, several p120ctn isoforms can be expressed from a single gene. All p120ctn isoforms share the central Armadillo repeat domain but have divergent N- and C-termini. Little is known about the biological functions of the different isoforms. In this study, we examined the distribution of various p120ctn isoforms and the consequences of their expression in cultured cells of epidermal origin. Immunohistochemical analysis and western blotting revealed that melanocytes and melanoma cells primarily express the long isoform 1A, whereas keratinocytes express shorter isoforms, especially 3A, which localize to cell-cell adhesion junctions in a calcium-dependent manner. The shortest isoform 4A, which was detected in normal keratinocytes and melanocytes, was generally lost from cells derived from squamous cell carcinomas or melanomas. The C-terminal alternatively spliced exon B was present in the p120ctn transcripts in the colon, intestine and prostate, but was lost in several tumor tissues derived from these organs. To test whether p120ctn isoforms serve in distinct biological functions, we transiently transfected the expression constructs into melanoma cells (1205-Lu) and immortalized keratinocytes (HaCaT). Indeed, distinct domains of p120ctn are responsible for its different biological functions. The prominent branching phenotype was induced equally by isoforms 1A, 2A and 3A, whereas the shortest isoform 4A,which was devoid of the N-terminal domain, completely lacked this ability. Also, the exon-B-encoded sequences, as in the isoform 1AB, were sufficient to abolish the branching phenotype as induced by the isoform 1A. The induction of the branching phenotype cosegregated with the nuclear localization of the p120ctn isoforms 1A, 2A and 3A, whereas the isoforms 4A and 1AB, which were excluded from the nucleus, did not induce the branching phenotype. The N-terminal sequences that contain seven out of eight tyrosine residues,recently characterized as potential candidates for phosphorylation by Src kinase, are required for the nuclear localization and for the formation of the branching phenotype. Finally, expression of the p120ctn isoforms, which caused the branching phenotype, was associated with cellular relocalization of E-cadherin in HaCaT cells. Collectively, we have identified sequences within the p120ctn N-terminus that are prerequisites for both nuclear localization and the p120ctn-induced branching phenotype. Loss of the cytoplasmic pool of p120ctn from tumor cells suggests an important function for such isoforms in normal cells and tissues.
Collapse
Affiliation(s)
- Sirpa Aho
- Department of Dermatology and Cutaneous Biology, Jefferson Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA.
| | | | | | | | | | | |
Collapse
|
46
|
Kim SW, Fang X, Ji H, Paulson AF, Daniel JM, Ciesiolka M, van Roy F, McCrea PD. Isolation and characterization of XKaiso, a transcriptional repressor that associates with the catenin Xp120(ctn) in Xenopus laevis. J Biol Chem 2002; 277:8202-8. [PMID: 11751886 DOI: 10.1074/jbc.m109508200] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The Armadillo family of catenin proteins function in multiple capacities including cadherin-mediated cell-cell adhesion and nuclear signaling. The newest catenin, p120(ctn), differs from the classical catenins and binds to the membrane-proximal domain of cadherins. Recently, a novel transcription factor Kaiso was found to interact with p120(ctn), suggesting that p120(ctn) also possesses a nuclear function. We isolated the Xenopus homolog of Kaiso, XKaiso, from a Xenopus stage 17 cDNA library. XKaiso contains an amino-terminal BTB/POZ domain and three carboxyl-terminal zinc fingers. The XKaiso transcript was present maternally and expressed throughout early embryonic development. XKaiso's spatial expression was defined via in situ hybridization and was found localized to the brain, eye, ear, branchial arches, and spinal cord. Co-immunoprecipitation of Xenopus p120(ctn) and XKaiso demonstrated their mutual association, whereas related experiments employing differentially epitope-tagged XKaiso constructs suggest that XKaiso additionally self-associates. Finally, reporter assays employing a chimera of XKaiso fused to the GAL4 DNA binding domain indicate that XKaiso is a transcriptional repressor. These data suggest that XKaiso functions throughout development and that its repressor functions may be most apparent in the context of neural tissues. The significance of the XKaiso-p120(ctn) interaction has yet to be determined, but it may include transducing information from cadherin-mediated cell-cell contacts to transcriptional processes within the nucleus.
Collapse
Affiliation(s)
- Si Wan Kim
- Department of Biochemistry and Molecular Biology, The University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030, USA
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Montonen O, Aho M, Uitto J, Aho S. Tissue distribution and cell type-specific expression of p120ctn isoforms. J Histochem Cytochem 2001; 49:1487-96. [PMID: 11724896 DOI: 10.1177/002215540104901202] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Cadherin-based molecular complexes play a major role in cell-cell adhesion. At the adherens junctions the intracellular domain of cadherins specifically interacts with beta-catenin and p120ctn, members of the Armadillo repeat protein family. Differential splicing and utilization of the alternative translation initiation codons lead to many p120ctn isoforms. Two major p120ctn isoforms are expressed in mouse tissues. In this study we used indirect immunofluorescence to demonstrate significant tissue specificity in expression of the p120ctn isoforms. The short isoform is abundant at cell-cell adhesion junctions in epidermis, palatal, and tongue epithelia, in the ducts of excretory glands, bronchiolar epithelium, and in mucosal epithelia of esophagus, forestomach, and small intestine. In contrast, the long isoform, containing an amino terminus highly conserved within the p120ctn subfamily, is expressed at vascular-endothelial cell junctions in blood vessels, at cell-cell junctions in the serosal epithelium lining the internal organs, in choroid plexus of brain, in the pigment epithelium of retina, and in structures such as the outer limiting membrane of retina and intercalated discs of cardiomyocytes. The tissue- and cell type-specific expression of p120ctn isoforms suggests a role for the long p120ctn isoform in cell structures responsible for stable tissue integrity, compared to the role of the short isoform in cell-cell adhesion in the external epithelia with rapid turnover.
Collapse
Affiliation(s)
- O Montonen
- Department of Dermatology and Cutaneous Biology, Jefferson Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | | | | | | |
Collapse
|
48
|
Mariner DJ, Anastasiadis P, Keilhack H, Böhmer FD, Wang J, Reynolds AB. Identification of Src phosphorylation sites in the catenin p120ctn. J Biol Chem 2001; 276:28006-13. [PMID: 11382764 DOI: 10.1074/jbc.m102443200] [Citation(s) in RCA: 117] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
p120-catenin (p120(ctn)) interacts with the cytoplasmic tail of cadherins and is thought to regulate cadherin clustering during formation of adherens junctions. Several observations suggest that p120 can both positively and negatively regulate cadherin adhesiveness depending on signals that so far remain unidentified. Although p120 tyrosine phosphorylation is a leading candidate, the role of this modification in normal and Src-transformed cells remains unknown. Here, as a first step toward pinpointing this role, we have employed two-dimensional tryptic mapping to directly identify the major sites of Src-induced p120 phosphorylation. Eight sites were identified by direct mutation of candidate tyrosines to phenylalanine and elimination of the accompanying spots on the two-dimensional maps. Identical sites were observed in vitro and in vivo, strongly suggesting that the physiologically important sites have been correctly identified. Changing all of these sites to phenylalanine resulted in a p120 mutant, p120-8F, that could not be efficiently phosphorylated by Src and failed to interact with SHP-1, a tyrosine phosphatase shown previously to interact selectively with tyrosine-phosphorylated p120 in cells stimulated with epidermal growth factor. Using selected tyrosine to phenylalanine p120 mutants as dominant negative reagents, it may now be possible to selectively block events postulated to be dependent on p120 tyrosine phosphorylation.
Collapse
Affiliation(s)
- D J Mariner
- Department of Cancer Biology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-2175, USA
| | | | | | | | | | | |
Collapse
|