1
|
Beckwith SL, Nomberg EJ, Newman AC, Taylor JV, Guerrero RC, Garfinkel DJ. An interchangeable prion-like domain is required for Ty1 retrotransposition. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.27.530227. [PMID: 36909481 PMCID: PMC10002725 DOI: 10.1101/2023.02.27.530227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
Retrotransposons and retroviruses shape genome evolution and can negatively impact genome function. Saccharomyces cerevisiae and its close relatives harbor several families of LTR-retrotransposons, the most abundant being Ty1 in several laboratory strains. The cytosolic foci that nucleate Ty1 virus-like particle (VLP) assembly are not well-understood. These foci, termed retrosomes or T-bodies, contain Ty1 Gag and likely Gag-Pol and the Ty1 mRNA destined for reverse transcription. Here, we report a novel intrinsically disordered N-terminal pr ion-like d omain (PrLD) within Gag that is required for transposition. This domain contains amino-acid composition similar to known yeast prions and is sufficient to nucleate prionogenesis in an established cell-based prion reporter system. Deleting the Ty1 PrLD results in dramatic VLP assembly and retrotransposition defects but does not affect Gag protein level. Ty1 Gag chimeras in which the PrLD is replaced with other sequences, including yeast and mammalian prionogenic domains, display a range of retrotransposition phenotypes from wildtype to null. We examine these chimeras throughout the Ty1 replication cycle and find that some support retrosome formation, VLP assembly, and retrotransposition, including the yeast Sup35 prion and the mouse PrP prion. Our interchangeable Ty1 system provides a useful, genetically tractable in vivo platform for studying PrLDs, complete with a suite of robust and sensitive assays, and host modulators developed to study Ty1 retromobility. Our work invites study into the prevalence of PrLDs in additional mobile elements. Significance Retrovirus-like retrotransposons help shape the genome evolution of their hosts and replicate within cytoplasmic particles. How their building blocks associate and assemble within the cell is poorly understood. Here, we report a novel pr ion-like d omain (PrLD) in the budding yeast retrotransposon Ty1 Gag protein that builds virus-like particles. The PrLD has similar sequence properties to prions and disordered protein domains that can drive the formation of assemblies that range from liquid to solid. We demonstrate that the Ty1 PrLD can function as a prion and that certain prion sequences can replace the PrLD and support Ty1 transposition. This interchangeable system is an effective platform to study additional disordered sequences in living cells.
Collapse
Affiliation(s)
- Sean L. Beckwith
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, 30602, USA
| | - Emily J. Nomberg
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, 30602, USA
| | - Abigail C. Newman
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, 30602, USA
| | - Jeannette V. Taylor
- Robert P. Apkarian Integrated Electron Microscopy Core at Emory University, Atlanta, GA, 30322, USA
| | - Ricardo C. Guerrero
- Robert P. Apkarian Integrated Electron Microscopy Core at Emory University, Atlanta, GA, 30322, USA
| | - David J. Garfinkel
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, 30602, USA
| |
Collapse
|
2
|
Zawadzka M, Andrzejewska-Romanowska A, Gumna J, Garfinkel DJ, Pachulska-Wieczorek K. Cell Compartment-Specific Folding of Ty1 Long Terminal Repeat Retrotransposon RNA Genome. Viruses 2022; 14:2007. [PMID: 36146813 PMCID: PMC9503155 DOI: 10.3390/v14092007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/01/2022] [Accepted: 09/08/2022] [Indexed: 11/16/2022] Open
Abstract
The structural transitions RNAs undergo during trafficking are not well understood. Here, we used the well-developed yeast Ty1 retrotransposon to provide the first structural model of genome (g) RNA in the nucleus from a retrovirus-like transposon. Through a detailed comparison of nuclear Ty1 gRNA structure with those established in the cytoplasm, virus-like particles (VLPs), and those synthesized in vitro, we detected Ty1 gRNA structural alterations that occur during retrotransposition. Full-length Ty1 gRNA serves as the mRNA for Gag and Gag-Pol proteins and as the genome that is reverse transcribed within VLPs. We show that about 60% of base pairs predicted for the nuclear Ty1 gRNA appear in the cytoplasm, and active translation does not account for such structural differences. Most of the shared base pairs are represented by short-range interactions, whereas the long-distance pairings seem unique for each compartment. Highly structured motifs tend to be preserved after nuclear export of Ty1 gRNA. In addition, our study highlights the important role of Ty1 Gag in mediating critical RNA-RNA interactions required for retrotransposition.
Collapse
Affiliation(s)
- Małgorzata Zawadzka
- Department of Structure and Function of Retrotransposons, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
| | - Angelika Andrzejewska-Romanowska
- Department of Structure and Function of Retrotransposons, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
| | - Julita Gumna
- Department of Structure and Function of Retrotransposons, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
| | - David J. Garfinkel
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - Katarzyna Pachulska-Wieczorek
- Department of Structure and Function of Retrotransposons, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
| |
Collapse
|
3
|
Structure of a Ty1 restriction factor reveals the molecular basis of transposition copy number control. Nat Commun 2021; 12:5590. [PMID: 34552077 PMCID: PMC8458377 DOI: 10.1038/s41467-021-25849-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 09/06/2021] [Indexed: 11/30/2022] Open
Abstract
Excessive replication of Saccharomyces cerevisiae Ty1 retrotransposons is regulated by Copy Number Control, a process requiring the p22/p18 protein produced from a sub-genomic transcript initiated within Ty1 GAG. In retrotransposition, Gag performs the capsid functions required for replication and re-integration. To minimize genomic damage, p22/p18 interrupts virus-like particle function by interaction with Gag. Here, we present structural, biophysical and genetic analyses of p18m, a minimal fragment of Gag that restricts transposition. The 2.8 Å crystal structure of p18m reveals an all α-helical protein related to mammalian and insect ARC proteins. p18m retains the capacity to dimerise in solution and the crystal structures reveal two exclusive dimer interfaces. We probe our findings through biophysical analysis of interface mutants as well as Ty1 transposition and p18m restriction in vivo. Our data provide insight into Ty1 Gag structure and suggest how p22/p18 might function in restriction through a blocking-of-assembly mechanism. In Saccharomyces cerevisiae, unchecked proliferation of Ty1 retrotransposons is controlled by the process of copy number control (CNC), which requires the p22/p18 protein, translated from an internal transcript within the Ty1 GAG gene. Here, the authors present the 2.8 Å crystal structure of a minimal p18 from Ty1-Gag that is able to restrict Ty1 transposition and identify two dimer interfaces in p18, whose roles were probed by mutagenesis both in vitro and in vivo. As p22/p18 contains only one of two conserved domains required for retroelement Gag assembly, they propose that p22/p18-Gag interactions block the Ty1 virus-like particle assembly pathway, resulting in defective particles incapable of supporting retrotransposition.
Collapse
|
4
|
Gumna J, Andrzejewska-Romanowska A, Garfinkel DJ, Pachulska-Wieczorek K. RNA Binding Properties of the Ty1 LTR-Retrotransposon Gag Protein. Int J Mol Sci 2021; 22:ijms22169103. [PMID: 34445809 PMCID: PMC8396678 DOI: 10.3390/ijms22169103] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 08/21/2021] [Accepted: 08/22/2021] [Indexed: 11/16/2022] Open
Abstract
A universal feature of retroelement propagation is the formation of distinct nucleoprotein complexes mediated by the Gag capsid protein. The Ty1 retrotransposon Gag protein from Saccharomyces cerevisiae lacks sequence homology with retroviral Gag, but is functionally related. In addition to capsid assembly functions, Ty1 Gag promotes Ty1 RNA dimerization and cyclization and initiation of reverse transcription. Direct interactions between Gag and retrotransposon genomic RNA (gRNA) are needed for Ty1 replication, and mutations in the RNA-binding domain disrupt nucleation of retrosomes and assembly of functional virus-like particles (VLPs). Unlike retroviral Gag, the specificity of Ty1 Gag-RNA interactions remain poorly understood. Here we use microscale thermophoresis (MST) and electrophoretic mobility shift assays (EMSA) to analyze interactions of immature and mature Ty1 Gag with RNAs. The salt-dependent experiments showed that Ty1 Gag binds with high and similar affinity to different RNAs. However, we observed a preferential interaction between Ty1 Gag and Ty1 RNA containing a packaging signal (Psi) in RNA competition analyses. We also uncover a relationship between Ty1 RNA structure and Gag binding involving the pseudoknot present on Ty1 gRNA. In all likelihood, the differences in Gag binding affinity detected in vitro only partially explain selective Ty1 RNA packaging into VLPs in vivo.
Collapse
Affiliation(s)
- Julita Gumna
- Department of Structure and Function of Retrotransposons, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland; (J.G.); (A.A.-R.)
| | - Angelika Andrzejewska-Romanowska
- Department of Structure and Function of Retrotransposons, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland; (J.G.); (A.A.-R.)
| | - David J. Garfinkel
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA;
| | - Katarzyna Pachulska-Wieczorek
- Department of Structure and Function of Retrotransposons, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland; (J.G.); (A.A.-R.)
- Correspondence: ; Tel.: +48-61-852-85-03; Fax: +48-61-852-05-32
| |
Collapse
|
5
|
Gumna J, Purzycka KJ, Ahn HW, Garfinkel DJ, Pachulska-Wieczorek K. Retroviral-like determinants and functions required for dimerization of Ty1 retrotransposon RNA. RNA Biol 2019; 16:1749-1763. [PMID: 31469343 PMCID: PMC6844567 DOI: 10.1080/15476286.2019.1657370] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
During replication of long terminal repeat (LTR)-retrotransposons, their proteins and genome (g) RNA assemble into virus-like particles (VLPs) that are not infectious but functionally related to retroviral virions. Both virions and VLPs contain gRNA in a dimeric form, but contrary to retroviruses, little is known about how gRNA dimerization and packaging occurs in LTR-retrotransposons. The LTR-retrotransposon Ty1 from Saccharomyces cerevisiae is an informative model for studying LTR-retrotransposon and retrovirus replication. Using structural, mutational and functional analyses, we explored dimerization of Ty1 genomic RNA. We provide direct evidence that interactions of self-complementary PAL1 and PAL2 palindromic sequences localized within the 5′UTR are essential for Ty1 gRNA dimer formation. Mutations disrupting PAL1-PAL2 complementarity restricted RNA dimerization in vitro and Ty1 mobility in vivo. Although dimer formation and mobility of these mutants was inhibited, our work suggests that Ty1 RNA can dimerize via alternative contact points. In contrast to previous studies, we cannot confirm a role for PAL3, tRNAiMet as well as recently proposed initial kissing-loop interactions in dimer formation. Our data also supports the critical role of Ty1 Gag in RNA dimerization. Mature Ty1 Gag binds in the proximity of sequences involved in RNA dimerization and tRNAiMet annealing, but the 5′ pseudoknot in Ty1 RNA may constitute a preferred Gag-binding site. Taken together, these results expand our understanding of genome dimerization and packaging strategies utilized by LTR-retroelements.
Collapse
Affiliation(s)
- Julita Gumna
- Department of Structure and Function of Retrotransposons, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Katarzyna J Purzycka
- Department of Structure and Function of Retrotransposons, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Hyo Won Ahn
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, USA
| | - David J Garfinkel
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, USA
| | - Katarzyna Pachulska-Wieczorek
- Department of Structure and Function of Retrotransposons, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| |
Collapse
|
6
|
Gamache ER, Doh JH, Ritz J, Laederach A, Bellaousov S, Mathews DH, Curcio MJ. Structure-Function Model for Kissing Loop Interactions That Initiate Dimerization of Ty1 RNA. Viruses 2017; 9:E93. [PMID: 28445416 PMCID: PMC5454406 DOI: 10.3390/v9050093] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 04/20/2017] [Accepted: 04/21/2017] [Indexed: 12/25/2022] Open
Abstract
The genomic RNA of the retrotransposon Ty1 is packaged as a dimer into virus-like particles. The 5' terminus of Ty1 RNA harbors cis-acting sequences required for translation initiation, packaging and initiation of reverse transcription (TIPIRT). To identify RNA motifs involved in dimerization and packaging, a structural model of the TIPIRT domain in vitro was developed from single-nucleotide resolution RNA structural data. In general agreement with previous models, the first 326 nucleotides of Ty1 RNA form a pseudoknot with a 7-bp stem (S1), a 1-nucleotide interhelical loop and an 8-bp stem (S2) that delineate two long, structured loops. Nucleotide substitutions that disrupt either pseudoknot stem greatly reduced helper-Ty1-mediated retrotransposition of a mini-Ty1, but only mutations in S2 destabilized mini-Ty1 RNA in cis and helper-Ty1 RNA in trans. Nested in different loops of the pseudoknot are two hairpins with complementary 7-nucleotide motifs at their apices. Nucleotide substitutions in either motif also reduced retrotransposition and destabilized mini- and helper-Ty1 RNA. Compensatory mutations that restore base-pairing in the S2 stem or between the hairpins rescued retrotransposition and RNA stability in cis and trans. These data inform a model whereby a Ty1 RNA kissing complex with two intermolecular kissing-loop interactions initiates dimerization and packaging.
Collapse
Affiliation(s)
- Eric R Gamache
- Laboratory of Molecular Genetics, Wadsworth Center, New York State Department of Health, Albany, NY 12201, USA.
| | - Jung H Doh
- Laboratory of Molecular Genetics, Wadsworth Center, New York State Department of Health, Albany, NY 12201, USA.
| | - Justin Ritz
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA.
| | - Alain Laederach
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA.
| | - Stanislav Bellaousov
- Department of Biochemistry and Biophysics and Center for RNA Biology, University of Rochester Medical Center, Rochester, NY 14642, USA.
| | - David H Mathews
- Department of Biochemistry and Biophysics and Center for RNA Biology, University of Rochester Medical Center, Rochester, NY 14642, USA.
| | - M Joan Curcio
- Laboratory of Molecular Genetics, Wadsworth Center, New York State Department of Health, Albany, NY 12201, USA.
- Department of Biomedical Sciences, University at Albany-SUNY, Albany, NY 12201, USA.
| |
Collapse
|
7
|
Reverse Transcription in the Saccharomyces cerevisiae Long-Terminal Repeat Retrotransposon Ty3. Viruses 2017; 9:v9030044. [PMID: 28294975 PMCID: PMC5371799 DOI: 10.3390/v9030044] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 03/03/2017] [Accepted: 03/07/2017] [Indexed: 12/11/2022] Open
Abstract
Converting the single-stranded retroviral RNA into integration-competent double-stranded DNA is achieved through a multi-step process mediated by the virus-coded reverse transcriptase (RT). With the exception that it is restricted to an intracellular life cycle, replication of the Saccharomyces cerevisiae long terminal repeat (LTR)-retrotransposon Ty3 genome is guided by equivalent events that, while generally similar, show many unique and subtle differences relative to the retroviral counterparts. Until only recently, our knowledge of RT structure and function was guided by a vast body of literature on the human immunodeficiency virus (HIV) enzyme. Although the recently-solved structure of Ty3 RT in the presence of an RNA/DNA hybrid adds little in terms of novelty to the mechanistic basis underlying DNA polymerase and ribonuclease H activity, it highlights quite remarkable topological differences between retroviral and LTR-retrotransposon RTs. The theme of overall similarity but distinct differences extends to the priming mechanisms used by Ty3 RT to initiate (−) and (+) strand DNA synthesis. The unique structural organization of the retrotransposon enzyme and interaction with its nucleic acid substrates, with emphasis on polypurine tract (PPT)-primed initiation of (+) strand synthesis, is the subject of this review.
Collapse
|
8
|
Determinants of Genomic RNA Encapsidation in the Saccharomyces cerevisiae Long Terminal Repeat Retrotransposons Ty1 and Ty3. Viruses 2016; 8:v8070193. [PMID: 27428991 PMCID: PMC4974528 DOI: 10.3390/v8070193] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 06/21/2016] [Accepted: 06/28/2016] [Indexed: 12/12/2022] Open
Abstract
Long-terminal repeat (LTR) retrotransposons are transposable genetic elements that replicate intracellularly, and can be considered progenitors of retroviruses. Ty1 and Ty3 are the most extensively characterized LTR retrotransposons whose RNA genomes provide the template for both protein translation and genomic RNA that is packaged into virus-like particles (VLPs) and reverse transcribed. Genomic RNAs are not divided into separate pools of translated and packaged RNAs, therefore their trafficking and packaging into VLPs requires an equilibrium between competing events. In this review, we focus on Ty1 and Ty3 genomic RNA trafficking and packaging as essential steps of retrotransposon propagation. We summarize the existing knowledge on genomic RNA sequences and structures essential to these processes, the role of Gag proteins in repression of genomic RNA translation, delivery to VLP assembly sites, and encapsidation.
Collapse
|
9
|
Tucker JM, Garfinkel DJ. Ty1 escapes restriction by the self-encoded factor p22 through mutations in capsid. Mob Genet Elements 2016; 6:e1154639. [PMID: 27141327 DOI: 10.1080/2159256x.2016.1154639] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 02/04/2016] [Accepted: 02/11/2016] [Indexed: 12/26/2022] Open
Abstract
Ty1 is a long terminal repeat (LTR) retrotransposon belonging to the Ty1/copia family and is present in up to 32 full-length copies in Saccharomyces. Like retroviruses, Ty1 contains GAG and POL genes, LTRs, and replicates via an RNA intermediate within a virus-like particle (VLP). Although Ty1 retrotransposition is not infectious, uncontrolled replication can lead to detrimental effects on the host genome, including insertional mutagenesis and chromosomal rearrangements. Ty1 copy number control (CNC) limits replication and is mediated through a self-encoded protein called p22. p22 is translated from a subgenomic Ty1 RNA and encodes an amino-truncated version of the Gag protein. We highlight a recent study identifying Ty1 Gag, which comprises the VLP capsid and provides nucleic acid chaperone functions, as a direct target of p22-mediated inhibition. CNC-resistant (CNCR) mutations map within predicted helical domains of Gag, including those in the Ty1/copia pfam domain Retrotran_gag_2 (formerly UBN2) and a central region we refer to as the CNCR domain. CNCR Gag forms VLPs that exclude p22, thus restoring Ty1 replication. We discuss possible mechanisms for p22 inclusion in Ty1 VLPs and compare Ty1 CNC with retroviral restriction factors targeting capsid (CA).
Collapse
Affiliation(s)
- Jessica M Tucker
- Department of Biochemistry & Molecular Biology, University of Georgia , Athens, GA, USA
| | - David J Garfinkel
- Department of Biochemistry & Molecular Biology, University of Georgia , Athens, GA, USA
| |
Collapse
|
10
|
Pachulska-Wieczorek K, Błaszczyk L, Gumna J, Nishida Y, Saha A, Biesiada M, Garfinkel DJ, Purzycka KJ. Characterizing the functions of Ty1 Gag and the Gag-derived restriction factor p22/p18. Mob Genet Elements 2016; 6:e1154637. [PMID: 27141325 DOI: 10.1080/2159256x.2016.1154637] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 02/05/2016] [Accepted: 02/11/2016] [Indexed: 10/22/2022] Open
Abstract
The long terminal repeat (LTR) and non-LTR retrotransposons comprise approximately half of the human genome, and we are only beginning to understand their influence on genome function and evolution. The LTR retrotransposon Ty1 is the most abundant mobile genetic element in the S. cerevisiae reference genome. Ty1 replicates via an RNA intermediate and shares several important structural and functional characteristics with retroviruses. However, unlike retroviruses Ty1 retrotransposition is not infectious. Retrotransposons integrations can cause mutations and genome instability. Despite the fact that S. cerevisiae lacks eukaryotic defense mechanisms such as RNAi, they maintain a relatively low copy number of the Ty1 retrotransposon in their genomes. A novel restriction factor derived from the C-terminal half of Gag (p22/p18) and encoded by internally initiated transcript inhibits retrotransposition in a dose-dependent manner. Therefore, Ty1 evolved a specific GAG organization and expression strategy to produce products both essential and antagonistic for retrotransposon movement. In this commentary we discuss our recent research aimed at defining steps of Ty1 replication influenced by p22/p18 with particular emphasis on the nucleic acid chaperone functions carried out by Gag and the restriction factor.
Collapse
Affiliation(s)
- Katarzyna Pachulska-Wieczorek
- Department of Structural Chemistry and Biology of Nucleic Acids, Institute of Bioorganic Chemistry, Polish Academy of Sciences , Poznan, Poland
| | - Leszek Błaszczyk
- Institute of Computing Science, Poznan University of Technology , Poznan, Poland
| | - Julita Gumna
- Department of Structural Chemistry and Biology of Nucleic Acids, Institute of Bioorganic Chemistry, Polish Academy of Sciences , Poznan, Poland
| | - Yuri Nishida
- Department of Biochemistry and Molecular Biology, University of Georgia , Athens, GA, USA
| | - Agniva Saha
- Department of Biochemistry and Molecular Biology, University of Georgia , Athens, GA, USA
| | - Marcin Biesiada
- Department of Structural Chemistry and Biology of Nucleic Acids, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland; Institute of Computing Science, Poznan University of Technology, Poznan, Poland
| | - David J Garfinkel
- Department of Biochemistry and Molecular Biology, University of Georgia , Athens, GA, USA
| | - Katarzyna J Purzycka
- Department of Structural Chemistry and Biology of Nucleic Acids, Institute of Bioorganic Chemistry, Polish Academy of Sciences , Poznan, Poland
| |
Collapse
|
11
|
Garfinkel DJ, Tucker JM, Saha A, Nishida Y, Pachulska-Wieczorek K, Błaszczyk L, Purzycka KJ. A self-encoded capsid derivative restricts Ty1 retrotransposition in Saccharomyces. Curr Genet 2015; 62:321-9. [PMID: 26650614 DOI: 10.1007/s00294-015-0550-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 11/24/2015] [Indexed: 11/27/2022]
Abstract
Retrotransposons and retroviral insertions have molded the genomes of many eukaryotes. Since retroelements transpose via an RNA intermediate, the additive nature of the replication cycle can result in massive increases in copy number if left unchecked. Host organisms have countered with several defense systems, including domestication of retroelement genes that now act as restriction factors to minimize propagation. We discovered a novel truncated form of the Saccharomyces Ty1 retrotransposon capsid protein, dubbed p22 that inhibits virus-like particle (VLP) assembly and function. The p22 restriction factor expands the repertoire of defense proteins targeting the capsid and highlights a novel host-parasite strategy. Instead of inhibiting all transposition by domesticating the restriction gene as a distinct locus, Ty1 and budding yeast may have coevolved a relationship that allows high levels of transposition when Ty1 copy numbers are low and progressively less transposition as copy numbers rise. Here, we offer a perspective on p22 restriction, including its mode of expression, effect on VLP functions, interactions with its target, properties as a nucleic acid chaperone, similarities to other restriction factors, and future directions.
Collapse
Affiliation(s)
- David J Garfinkel
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, 30602, USA.
| | - Jessica M Tucker
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, 30602, USA
| | - Agniva Saha
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, 30602, USA
| | - Yuri Nishida
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, 30602, USA
| | - Katarzyna Pachulska-Wieczorek
- Department of Structural Chemistry and Biology of Nucleic Acids, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Leszek Błaszczyk
- Institute of Computing Science, Poznan University of Technology, Poznan, Poland
| | - Katarzyna J Purzycka
- Department of Structural Chemistry and Biology of Nucleic Acids, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| |
Collapse
|
12
|
The Ty1 Retrotransposon Restriction Factor p22 Targets Gag. PLoS Genet 2015; 11:e1005571. [PMID: 26451601 PMCID: PMC4599808 DOI: 10.1371/journal.pgen.1005571] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 09/15/2015] [Indexed: 01/09/2023] Open
Abstract
A novel form of copy number control (CNC) helps maintain a low number of Ty1 retrovirus-like transposons in the Saccharomyces genome. Ty1 produces an alternative transcript that encodes p22, a trans-dominant negative inhibitor of Ty1 retrotransposition whose sequence is identical to the C-terminal half of Gag. The level of p22 increases with copy number and inhibits normal Ty1 virus-like particle (VLP) assembly and maturation through interactions with full length Gag. A forward genetic screen for CNC-resistant (CNCR) mutations in Ty1 identified missense mutations in GAG that restore retrotransposition in the presence of p22. Some of these mutations map within a predicted UBN2 domain found throughout the Ty1/copia family of long terminal repeat retrotransposons, and others cluster within a central region of Gag that is referred to as the CNCR domain. We generated multiple alignments of yeast Ty1-like Gag proteins and found that some Gag proteins, including those of the related Ty2 elements, contain non-Ty1 residues at multiple CNCR sites. Interestingly, the Ty2-917 element is resistant to p22 and does not undergo a Ty1-like form of CNC. Substitutions conferring CNCR map within predicted helices in Ty1 Gag that overlap with conserved sequence in Ty1/copia, suggesting that p22 disturbs a central function of the capsid during VLP assembly. When hydrophobic residues within predicted helices in Gag are mutated, Gag level remains unaffected in most cases yet VLP assembly and maturation is abnormal. Gag CNCR mutations do not alter binding to p22 as determined by co-immunoprecipitation analyses, but instead, exclude p22 from Ty1 VLPs. These findings suggest that the CNCR alleles enhance retrotransposition in the presence of p22 by allowing productive Gag-Gag interactions during VLP assembly. Our work also expands the strategies used by retroviruses for developing resistance to Gag-like restriction factors to now include retrotransposons. The presence of transposable elements in the eukaryotic genome threatens genomic stability and normal gene function, thus various defense mechanisms exist to silence element expression and target integration to benign locations in the genome. Even though the budding yeast Saccharomyces lacks many of the defense systems present in other eukaryotes, including RNAi, DNA methylation, and APOBEC3 proteins, they maintain low numbers of mobile elements in their genome. In the case of the Saccharomyces retrotransposon Ty1, a system called copy number control (CNC) helps determine the number of elements in the genome. Recently, we demonstrated that the mechanism of CNC relies on a trans-acting protein inhibitor of Ty1 expressed from the element itself. This protein inhibitor, called p22, impacts the replication of Ty1 as its copy number increases. To identify a molecular target of p22, mutagenized Ty1 was subjected to a forward genetic screen for CNC-resistance. Mutations in specific domains of Gag, including the UBN2 Gag motif and a novel region we have named the CNCR domain, confer CNCR by preventing the incorporation of p22 into assembling virus-like particles (VLPs), which restores maturation and completion of the Ty1 life cycle. The mechanism of Ty1 inhibition by p22 is conceptually similar to Gag-like restriction factors in mammals since they inhibit normal particle function. In particular, resistance to p22 and the enJS56A1 restriction factor of sheep involves exclusion of the restriction factor during particle assembly, although Ty1 CNCR achieves this in a way that is distinct from the Jaagsiekte retrovirus escape mutants. Our work introduces an intriguing variation on resistance mechanisms to retroviral restriction factors.
Collapse
|
13
|
Nishida Y, Pachulska-Wieczorek K, Błaszczyk L, Saha A, Gumna J, Garfinkel DJ, Purzycka KJ. Ty1 retrovirus-like element Gag contains overlapping restriction factor and nucleic acid chaperone functions. Nucleic Acids Res 2015; 43:7414-31. [PMID: 26160887 PMCID: PMC4551931 DOI: 10.1093/nar/gkv695] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 06/26/2015] [Indexed: 12/13/2022] Open
Abstract
Ty1 Gag comprises the capsid of virus-like particles and provides nucleic acid chaperone (NAC) functions during retrotransposition in budding yeast. A subgenomic Ty1 mRNA encodes a truncated Gag protein (p22) that is cleaved by Ty1 protease to form p18. p22/p18 strongly inhibits transposition and can be considered an element-encoded restriction factor. Here, we show that only p22 and its short derivatives restrict Ty1 mobility whereas other regions of GAG inhibit mobility weakly if at all. Mutational analyses suggest that p22/p18 is synthesized from either of two closely spaced AUG codons. Interestingly, AUG1p18 and AUG2p18 proteins display different properties, even though both contain a region crucial for RNA binding and NAC activity. AUG1p18 shows highly reduced NAC activity but specific binding to Ty1 RNA, whereas AUG2p18 shows the converse behavior. p22/p18 affects RNA encapsidation and a mutant derivative defective for RNA binding inhibits the RNA chaperone activity of the C-terminal region (CTR) of Gag-p45. Moreover, affinity pulldowns show that p18 and the CTR interact. These results support the idea that one aspect of Ty1 restriction involves inhibition of Gag-p45 NAC functions by p22/p18-Gag interactions.
Collapse
Affiliation(s)
- Yuri Nishida
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - Katarzyna Pachulska-Wieczorek
- Department of Structural Chemistry and Biology of Nucleic Acids, Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Poland
| | - Leszek Błaszczyk
- Institute of Computing Science, Poznan University of Technology, 60-965 Poznan, Poland
| | - Agniva Saha
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - Julita Gumna
- Department of Structural Chemistry and Biology of Nucleic Acids, Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Poland
| | - David J Garfinkel
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - Katarzyna J Purzycka
- Department of Structural Chemistry and Biology of Nucleic Acids, Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Poland
| |
Collapse
|
14
|
Zlotnick A, Venkatakrishnan B, Tan Z, Lewellyn E, Turner W, Francis S. Core protein: A pleiotropic keystone in the HBV lifecycle. Antiviral Res 2015; 121:82-93. [PMID: 26129969 DOI: 10.1016/j.antiviral.2015.06.020] [Citation(s) in RCA: 198] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 06/22/2015] [Accepted: 06/26/2015] [Indexed: 12/21/2022]
Abstract
Hepatitis B Virus (HBV) is a small virus whose genome has only four open reading frames. We argue that the simplicity of the virion correlates with a complexity of functions for viral proteins. We focus on the HBV core protein (Cp), a small (183 residue) protein that self-assembles to form the viral capsid. However, its functions are a little more complicated than that. In an infected cell Cp modulates almost every step of the viral lifecycle. Cp is bound to nuclear viral DNA and affects its epigenetics. Cp correlates with RNA specificity. Cp assembles specifically on a reverse transcriptase-viral RNA complex or, apparently, nothing at all. Indeed Cp has been one of the model systems for investigation of virus self-assembly. Cp participates in regulation of reverse transcription. Cp signals completion of reverse transcription to support virus secretion. Cp carries both nuclear localization signals and HBV surface antigen (HBsAg) binding sites; both of these functions appear to be regulated by contents of the capsid. Cp can be targeted by antivirals - while self-assembly is the most accessible of Cp activities, we argue that it makes sense to engage the broader spectrum of Cp function. This article forms part of a symposium in Antiviral Research on "From the discovery of the Australia antigen to the development of new curative therapies for hepatitis B: an unfinished story."
Collapse
Affiliation(s)
- Adam Zlotnick
- Molecular & Cellular Biology, Indiana University, Bloomington, IN, United States.
| | | | - Zhenning Tan
- Assembly BioSciences, Bloomington, IN, United States; Assembly BioSciences, San Francisco, CA, United States
| | - Eric Lewellyn
- Assembly BioSciences, Bloomington, IN, United States; Assembly BioSciences, San Francisco, CA, United States
| | - William Turner
- Assembly BioSciences, Bloomington, IN, United States; Assembly BioSciences, San Francisco, CA, United States
| | - Samson Francis
- Molecular & Cellular Biology, Indiana University, Bloomington, IN, United States; Assembly BioSciences, Bloomington, IN, United States; Assembly BioSciences, San Francisco, CA, United States
| |
Collapse
|
15
|
Abstract
Long-terminal repeat (LTR)-retrotransposons generate a copy of their DNA (cDNA) by reverse transcription of their RNA genome in cytoplasmic nucleocapsids. They are widespread in the eukaryotic kingdom and are the evolutionary progenitors of retroviruses [1]. The Ty1 element of the budding yeast Saccharomyces cerevisiae was the first LTR-retrotransposon demonstrated to mobilize through an RNA intermediate, and not surprisingly, is the best studied. The depth of our knowledge of Ty1 biology stems not only from the predominance of active Ty1 elements in the S. cerevisiae genome but also the ease and breadth of genomic, biochemical and cell biology approaches available to study cellular processes in yeast. This review describes the basic structure of Ty1 and its gene products, the replication cycle, the rapidly expanding compendium of host co-factors known to influence retrotransposition and the nature of Ty1's elaborate symbiosis with its host. Our goal is to illuminate the value of Ty1 as a paradigm to explore the biology of LTR-retrotransposons in multicellular organisms, where the low frequency of retrotransposition events presents a formidable barrier to investigations of retrotransposon biology.
Collapse
|
16
|
Saha A, Mitchell JA, Nishida Y, Hildreth JE, Ariberre JA, Gilbert WV, Garfinkel DJ. A trans-dominant form of Gag restricts Ty1 retrotransposition and mediates copy number control. J Virol 2015; 89:3922-38. [PMID: 25609815 PMCID: PMC4403431 DOI: 10.1128/jvi.03060-14] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 01/15/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Saccharomyces cerevisiae and Saccharomyces paradoxus lack the conserved RNA interference pathway and utilize a novel form of copy number control (CNC) to inhibit Ty1 retrotransposition. Although noncoding transcripts have been implicated in CNC, here we present evidence that a truncated form of the Gag capsid protein (p22) or its processed form (p18) is necessary and sufficient for CNC and likely encoded by Ty1 internal transcripts. Coexpression of p22/p18 and Ty1 decreases mobility more than 30,000-fold. p22/p18 cofractionates with Ty1 virus-like particles (VLPs) and affects VLP yield, protein composition, and morphology. Although p22/p18 and Gag colocalize in the cytoplasm, p22/p18 disrupts sites used for VLP assembly. Glutathione S-transferase (GST) affinity pulldowns also suggest that p18 and Gag interact. Therefore, this intrinsic Gag-like restriction factor confers CNC by interfering with VLP assembly and function and expands the strategies used to limit retroelement propagation. IMPORTANCE Retrotransposons dominate the chromosomal landscape in many eukaryotes, can cause mutations by insertion or genome rearrangement, and are evolutionarily related to retroviruses such as HIV. Thus, understanding factors that limit transposition and retroviral replication is fundamentally important. The present work describes a retrotransposon-encoded restriction protein derived from the capsid gene of the yeast Ty1 element that disrupts virus-like particle assembly in a dose-dependent manner. This form of copy number control acts as a molecular rheostat, allowing high levels of retrotransposition when few Ty1 elements are present and inhibiting transposition as copy number increases. Thus, yeast and Ty1 have coevolved a form of copy number control that is beneficial to both "host and parasite." To our knowledge, this is the first Gag-like retrotransposon restriction factor described in the literature and expands the ways in which restriction proteins modulate retroelement replication.
Collapse
Affiliation(s)
- Agniva Saha
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA
| | - Jessica A Mitchell
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA
| | - Yuri Nishida
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA
| | - Jonathan E Hildreth
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA
| | - Joshua A Ariberre
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Wendy V Gilbert
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - David J Garfinkel
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
17
|
Purzycka KJ, Garfinkel DJ, Boeke JD, Le Grice SFJ. Influence of RNA structural elements on Ty1 retrotransposition. Mob Genet Elements 2014; 3:e25060. [PMID: 23914314 PMCID: PMC3681743 DOI: 10.4161/mge.25060] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Accepted: 05/16/2013] [Indexed: 11/25/2022] Open
Abstract
The long-terminal repeat (LTR)-retrotransposon Ty1 is a mobile genetic element that replicates through an RNA intermediate. Retroelement genomic transcripts contain internal structures fundamental to gene expression and propagation. In addition, long non-coding antisense RNAs overlap the 5′-terminal region of the genomic RNA and confer post-translational copy number control. Although LTR- retrotransposons are functionally related to retroviruses, little is known about the structural determinants required for genomic RNA packaging or reverse transcription. This commentary summarizes two recent papers that provide the first snapshot of genomic RNA structures from the retrotransposon Ty1 involved in transposition. We combined structural approaches with functional and genetic assays to determine if antisense RNAs anneal with the genomic RNA. Analysis of various steps in the Ty1 life cycle showed that a novel RNA pseudoknot contributes to retrotransposon function. Comparing different RNA states provides additional information about regions potentially involved in Ty1 RNA dimerization or packaging.
Collapse
Affiliation(s)
- Katarzyna J Purzycka
- RNA Structure and Function Laboratory; Institute of Bioorganic Chemistry; Polish Academy of Sciences; Poznań, Poland ; HIV Drug Resistance Program; National Cancer Institute; Frederick, MD USA
| | | | | | | |
Collapse
|
18
|
Monot C, Kuciak M, Viollet S, Mir AA, Gabus C, Darlix JL, Cristofari G. The specificity and flexibility of l1 reverse transcription priming at imperfect T-tracts. PLoS Genet 2013; 9:e1003499. [PMID: 23675310 PMCID: PMC3649969 DOI: 10.1371/journal.pgen.1003499] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Accepted: 03/22/2013] [Indexed: 01/18/2023] Open
Abstract
L1 retrotransposons have a prominent role in reshaping mammalian genomes. To replicate, the L1 ribonucleoprotein particle (RNP) first uses its endonuclease (EN) to nick the genomic DNA. The newly generated DNA end is subsequently used as a primer to initiate reverse transcription within the L1 RNA poly(A) tail, a process known as target-primed reverse transcription (TPRT). Prior studies demonstrated that most L1 insertions occur into sequences related to the L1 EN consensus sequence (degenerate 5′-TTTT/A-3′ sites) and frequently preceded by imperfect T-tracts. However, it is currently unclear whether—and to which degree—the liberated 3′-hydroxyl extremity on the genomic DNA needs to be accessible and complementary to the poly(A) tail of the L1 RNA for efficient priming of reverse transcription. Here, we employed a direct assay for the initiation of L1 reverse transcription to define the molecular rules that guide this process. First, efficient priming is detected with as few as 4 matching nucleotides at the primer 3′ end. Second, L1 RNP can tolerate terminal mismatches if they are compensated within the 10 last bases of the primer by an increased number of matching nucleotides. All terminal mismatches are not equally detrimental to DNA extension, a C being extended at higher levels than an A or a G. Third, efficient priming in the context of duplex DNA requires a 3′ overhang. This suggests the possible existence of additional DNA processing steps, which generate a single-stranded 3′ end to allow L1 reverse transcription. Based on these data we propose that the specificity of L1 reverse transcription initiation contributes, together with the specificity of the initial EN cleavage, to the distribution of new L1 insertions within the human genome. Jumping genes are DNA sequences present in the genome of most living organisms. They contribute to genome dynamics and occasionally result in hereditary genetic diseases or cancer. L1 elements are the only autonomously active jumping genes in the human genome. They replicate through an RNA–mediated copy-and-paste mechanism by cleaving the host genome and then using this new DNA end as a primer to reverse transcribe its own RNA, generating a new L1 DNA copy. The molecular determinants that influence L1 target site choice are not fully understood. Here we present a quantitative assay to measure the influence of DNA target site sequence and structure on the reverse transcription step. By testing more than 65 potential DNA primers, we observe that not all sites are equally extended by the L1 machinery, and we define the rules guiding this process. In particular, we highlight the importance of partial sequence complementarity between the target site and the L1 RNA extremity, but also the high level of flexibility of this process, since detrimental terminal mismatches can be compensated by an increasing number of interacting nucleotides. We propose that this mechanism contributes to the distribution of new L1 insertions within the human genome.
Collapse
Affiliation(s)
- Clément Monot
- INSERM, U1081, Institute for Research on Cancer and Aging, Nice (IRCAN), Nice, France
- CNRS, UMR 7284, Institute for Research on Cancer and Aging, Nice (IRCAN), Nice, France
- University of Nice-Sophia-Antipolis, Faculty of Medicine, Nice, France
| | - Monika Kuciak
- INSERM, U1081, Institute for Research on Cancer and Aging, Nice (IRCAN), Nice, France
- CNRS, UMR 7284, Institute for Research on Cancer and Aging, Nice (IRCAN), Nice, France
- University of Nice-Sophia-Antipolis, Faculty of Medicine, Nice, France
| | - Sébastien Viollet
- INSERM, U1081, Institute for Research on Cancer and Aging, Nice (IRCAN), Nice, France
- CNRS, UMR 7284, Institute for Research on Cancer and Aging, Nice (IRCAN), Nice, France
- University of Nice-Sophia-Antipolis, Faculty of Medicine, Nice, France
| | - Ashfaq Ali Mir
- INSERM, U1081, Institute for Research on Cancer and Aging, Nice (IRCAN), Nice, France
- CNRS, UMR 7284, Institute for Research on Cancer and Aging, Nice (IRCAN), Nice, France
- University of Nice-Sophia-Antipolis, Faculty of Medicine, Nice, France
| | - Caroline Gabus
- Ecole Normale Supérieure de Lyon, Human Virology Department, INSERM U758, Lyon, France
| | - Jean-Luc Darlix
- Ecole Normale Supérieure de Lyon, Human Virology Department, INSERM U758, Lyon, France
| | - Gaël Cristofari
- INSERM, U1081, Institute for Research on Cancer and Aging, Nice (IRCAN), Nice, France
- CNRS, UMR 7284, Institute for Research on Cancer and Aging, Nice (IRCAN), Nice, France
- University of Nice-Sophia-Antipolis, Faculty of Medicine, Nice, France
- * E-mail:
| |
Collapse
|
19
|
Huang Q, Purzycka KJ, Lusvarghi S, Li D, LeGrice SF, Boeke JD. Retrotransposon Ty1 RNA contains a 5'-terminal long-range pseudoknot required for efficient reverse transcription. RNA (NEW YORK, N.Y.) 2013; 19:320-32. [PMID: 23329695 PMCID: PMC3677243 DOI: 10.1261/rna.035535.112] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Accepted: 11/26/2012] [Indexed: 05/04/2023]
Abstract
Ty1 retrotransposon RNA has the potential to fold into a variety of distinct structures, mutation of which affects retrotransposition frequencies. We show here that one potential functional structure is located at the 5' end of the genome and can assume a pseudoknot conformation. Chemoenzymatic probing of wild-type and mutant mini-Ty1 RNAs supports the existence of such a structure, while molecular genetic analyses show that mutations disrupting pseudoknot formation interfere with retrotransposition, indicating that it provides a critical biological function. These defects are enhanced at higher temperatures. When these mutants are combined with compensatory changes, retrotransposition is restored, consistent with pseudoknot architecture. Analyses of mutants suggest a defect in Ty1 reverse transcription. Collectively, our data allow modeling of a three-dimensional structure for this novel critical cis-acting signal of the Ty1 genome.
Collapse
Affiliation(s)
- Qing Huang
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
- The High Throughput Biology Center, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Katarzyna J. Purzycka
- National Cancer Institute, Frederick, Maryland 21702, USA
- Laboratory of Structural Chemistry of Nucleic Acids, Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznań, Poland
| | | | - Donghui Li
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
- The High Throughput Biology Center, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | - Jef D. Boeke
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
- The High Throughput Biology Center, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| |
Collapse
|
20
|
Checkley MA, Mitchell JA, Eizenstat LD, Lockett SJ, Garfinkel DJ. Ty1 gag enhances the stability and nuclear export of Ty1 mRNA. Traffic 2013; 14:57-69. [PMID: 22998189 PMCID: PMC3548082 DOI: 10.1111/tra.12013] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Revised: 09/19/2012] [Accepted: 09/21/2012] [Indexed: 11/28/2022]
Abstract
Retrotransposon and retroviral RNA delivery to particle assembly sites is essential for their replication. mRNA and Gag from the Ty1 retrotransposon colocalize in cytoplasmic foci, which are required for transposition and may be the sites for virus-like particle (VLP) assembly. To determine which Ty1 components are required to form mRNA/Gag foci, localization studies were performed in a Ty1-less strain expressing galactose-inducible Ty1 plasmids (pGTy1) containing mutations in GAG or POL. Ty1 mRNA/Gag foci remained unaltered in mutants defective in Ty1 protease (PR) or deleted for POL. However, Ty1 mRNA containing a frameshift mutation (Ty1fs) that prevents the synthesis of all proteins accumulated in the nucleus. Ty1fs RNA showed a decrease in stability that was mediated by the cytoplasmic exosome, nonsense-mediated decay (NMD) and the processing body. Localization of Ty1fs RNA remained unchanged in an nmd2Δ mutant. When Gag and Ty1fs mRNA were expressed independently, Gag provided in trans increased Ty1fs RNA level and restored localization of Ty1fs RNA in cytoplasmic foci. Endogenously expressed Gag also localized to the nuclear periphery independent of RNA export. These results suggest that Gag is required for Ty1 mRNA stability, efficient nuclear export and localization into cytoplasmic foci.
Collapse
Affiliation(s)
- Mary Ann Checkley
- Gene Regulation and Chromosome Biology Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD 21702
| | - Jessica A. Mitchell
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602
| | - Linda D. Eizenstat
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602
| | | | - David J. Garfinkel
- Gene Regulation and Chromosome Biology Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD 21702
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602
| |
Collapse
|
21
|
Purzycka KJ, Legiewicz M, Matsuda E, Eizentstat LD, Lusvarghi S, Saha A, Le Grice SFJ, Garfinkel DJ. Exploring Ty1 retrotransposon RNA structure within virus-like particles. Nucleic Acids Res 2012; 41:463-73. [PMID: 23093595 PMCID: PMC3592414 DOI: 10.1093/nar/gks983] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Ty1, a long terminal repeat retrotransposon of Saccharomyces, is structurally and functionally related to retroviruses. However, a differentiating aspect between these retroelements is the diversity of the replication strategies used by long terminal repeat retrotransposons. To understand the structural organization of cis-acting elements present on Ty1 genomic RNA from the GAG region that control reverse transcription, we applied chemoenzymatic probing to RNA/tRNA complexes assembled in vitro and to the RNA in virus-like particles. By comparing different RNA states, our analyses provide a comprehensive structure of the primer-binding site, a novel pseudoknot adjacent to the primer-binding sites, three regions containing palindromic sequences that may be involved in RNA dimerization or packaging and candidate protein interaction sites. In addition, we determined the impact of a novel form of transposon control based on Ty1 antisense transcripts that associate with virus-like particles. Our results support the idea that antisense RNAs inhibit retrotransposition by targeting Ty1 protein function rather than annealing with the RNA genome.
Collapse
Affiliation(s)
- Katarzyna J Purzycka
- RT Biochemistry Section, HIV Drug Resistance Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Clemens K, Bilanchone V, Beliakova-Bethell N, Larsen LSZ, Nguyen K, Sandmeyer S. Sequence requirements for localization and packaging of Ty3 retroelement RNA. Virus Res 2012; 171:319-31. [PMID: 23073180 DOI: 10.1016/j.virusres.2012.10.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2012] [Revised: 10/06/2012] [Accepted: 10/08/2012] [Indexed: 12/22/2022]
Abstract
Retroviruses and retrotransposons package genomic RNA into virus-like particles (VLPs) in a poorly understood process. Expression of the budding yeast retrotransposon Ty3 results in the formation of cytoplasmic Ty3 VLP assembly foci comprised of Ty3 RNA and proteins, and cellular factors associated with RNA processing body (PB) components, which modulate translation and effect nonsense-mediated decay (NMD). A series of Ty3 RNA variants were tested to understand the effects of read-through translation via programmed frameshifting on RNA localization and packaging into VLPs, and to identify the roles of coding and non-coding sequences in those processes. These experiments showed that a low level of read-through translation of the downstream open reading frame (as opposed to no translation or translation without frameshifting) is important for localization of full-length Ty3 RNA to foci. Ty3 RNA variants associated with PB components via independent determinants in the native Ty3 untranslated regions (UTRs) and in GAG3-POL3 sequences flanked by UTRs adapted from non-Ty3 transcripts. However, despite localization, RNAs containing GAG3-POL3 but lacking Ty3 UTRs were not packaged efficiently. Surprisingly, sequences within Ty3 UTRs, which bind the initiator tRNA(Met) proposed to provide the dimerization interface, were not required for packaging of full-length Ty3 RNA into VLPs. In summary, our results demonstrate that Gag3 is sufficient and required for localization and packaging of RNAs containing Ty3 UTRs and support a role for POL3 sequences, translation of which is attenuated by programmed frameshifting, in both localization and packaging of the Ty3 full-length gRNA.
Collapse
Affiliation(s)
- Kristina Clemens
- Department of Biological Chemistry, University of California, Irvine, CA 92697, USA
| | | | | | | | | | | |
Collapse
|
23
|
The arginine clusters of the carboxy-terminal domain of the core protein of hepatitis B virus make pleiotropic contributions to genome replication. J Virol 2010; 85:1298-309. [PMID: 21084467 DOI: 10.1128/jvi.01957-10] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The carboxy-terminal domain (CTD) of the core protein of hepatitis B virus is not necessary for capsid assembly. However, the CTD does contribute to encapsidation of pregenomic RNA (pgRNA). The contribution of the CTD to DNA synthesis is less clear. This is the case because some mutations within the CTD increase the proportion of spliced RNA to pgRNA that are encapsidated and reverse transcribed. The CTD contains four clusters of consecutive arginine residues. The contributions of the individual arginine clusters to genome replication are unknown. We analyzed core protein variants in which the individual arginine clusters were substituted with either alanine or lysine residues. We developed assays to analyze these variants at specific steps throughout genome replication. We used a replication template that was not spliced in order to study the replication of only pgRNA. We found that alanine substitutions caused defects at both early and late steps in genome replication. Lysine substitutions also caused defects, but primarily during later steps. These findings demonstrate that the CTD contributes to DNA synthesis pleiotropically and that preserving the charge within the CTD is not sufficient to preserve function.
Collapse
|
24
|
Martin SL. Nucleic acid chaperone properties of ORF1p from the non-LTR retrotransposon, LINE-1. RNA Biol 2010; 7:706-11. [PMID: 21045547 DOI: 10.4161/rna.7.6.13766] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Long interspersed element-1 (LINE-1, or L1) is a non-long terminal repeat (LTR) retrotransposon that has amplified to hundreds of thousands of copies in mammalian evolution. A small number of the individual copies of L1 are active retrotransposons which are presently replicating in most species, including humans and mice. L1 retrotransposition begins with transcription of an active element and ends with a newly inserted cDNA copy, a process which requires the two element-encoded proteins to act in cis on the L1 RNA. The ORF1 protein (ORF1p) is a high-affinity, non-sequence-specific RNA binding protein with nucleic acid chaperone activity, whereas the ORF2 protein (ORF2p) supplies the enzymatic activities for cDNA synthesis. This article reviews the nucleic acid chaperone properties of ORF1p in the context of L1 retrotransposition.
Collapse
Affiliation(s)
- Sandra L Martin
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, CO, USA.
| |
Collapse
|
25
|
Abstract
Long terminal repeat (LTR) retrotransposons are not only the ancient predecessors of retroviruses, but they constitute significant fractions of the genomes of many eukaryotic species. Studies of their structure and function are motivated by opportunities to gain insight into common functions of retroviruses and retrotransposons, diverse mechanisms of intracellular genomic mobility, and host factors that diminish or enhance retrotransposition. This review focuses on the nucleocapsid (NC) protein of a Saccharomyces cerevisiae LTR retrotransposon, the metavirus, Ty3. Retrovirus NC promotes genomic (g)RNA dimerization and packaging, tRNA primer annealing, reverse transcription strand transfers, and host protein interactions with gRNA. Studies of Ty3 NC have revealed key roles for Ty3 NC in formation of retroelement assembly sites (retrosomes), and in chaperoning primer tRNA to both dimerize and circularize Ty3 gRNA. We speculate that Ty3 NC, together with P-body and stress-granule proteins, plays a role in transitioning Ty3 RNA from translation template to gRNA, and that interactions between the acidic spacer domain of Ty3 Gag3 and the adjacent basic NC domain control condensation of the virus-like particle.
Collapse
Affiliation(s)
- Suzanne B Sandmeyer
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, CA USA.
| | | |
Collapse
|
26
|
Checkley MA, Nagashima K, Lockett SJ, Nyswaner KM, Garfinkel DJ. P-body components are required for Ty1 retrotransposition during assembly of retrotransposition-competent virus-like particles. Mol Cell Biol 2010; 30:382-98. [PMID: 19901074 PMCID: PMC2798465 DOI: 10.1128/mcb.00251-09] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2009] [Revised: 04/20/2009] [Accepted: 10/29/2009] [Indexed: 01/24/2023] Open
Abstract
Ty1 is a retrovirus-like retrotransposon whose replication is influenced by diverse cellular processes in Saccharomyces cerevisiae. We have identified cytoplasmic P-body components encoded by DHH1, KEM1, LSM1, and PAT1 as cofactors that posttranscriptionally enhance Ty1 retrotransposition. Using fluorescent in situ hybridization and immunofluorescence microscopy, we found that Ty1 mRNA and Gag colocalize to discrete cytoplasmic foci in wild-type cells. These foci, which are distinct from P-bodies, do not form in P-body component mutants or under conditions suboptimal for retrotransposition. Our immunoelectron microscopy (IEM) data suggest that mRNA/Gag foci are sites where virus-like particles (VLPs) cluster. Overexpression of Ty1 leads to a large increase in retrotransposition in wild-type cells, which allows VLPs to be detected by IEM. However, retrotransposition is still reduced in P-body component mutants under these conditions. Moreover, the percentage of Ty1 mRNA/Gag foci and VLP clusters and levels of integrase and reverse transcriptase are reduced in these mutants. Ty1 antisense RNAs, which have been reported to inhibit Ty1 transposition, are more abundant in the kem1Delta mutant and colocalize with Ty1 mRNA in the cytoplasm. Therefore, Kem1p may prevent the aggregation of Ty1 antisense and mRNAs. Overall, our results suggest that P-body components enhance the formation of retrotransposition-competent Ty1 VLPs.
Collapse
Affiliation(s)
- Mary Ann Checkley
- Gene Regulation and Chromosome Biology Laboratory, Center for Cancer Research National Cancer Institute, Frederick, Maryland 21702-1201, Advanced Technology Program, SAIC—Frederick, Inc., NCI—Frederick, Frederick, Maryland 21702-1201
| | - Kunio Nagashima
- Gene Regulation and Chromosome Biology Laboratory, Center for Cancer Research National Cancer Institute, Frederick, Maryland 21702-1201, Advanced Technology Program, SAIC—Frederick, Inc., NCI—Frederick, Frederick, Maryland 21702-1201
| | - Stephen J. Lockett
- Gene Regulation and Chromosome Biology Laboratory, Center for Cancer Research National Cancer Institute, Frederick, Maryland 21702-1201, Advanced Technology Program, SAIC—Frederick, Inc., NCI—Frederick, Frederick, Maryland 21702-1201
| | - Katherine M. Nyswaner
- Gene Regulation and Chromosome Biology Laboratory, Center for Cancer Research National Cancer Institute, Frederick, Maryland 21702-1201, Advanced Technology Program, SAIC—Frederick, Inc., NCI—Frederick, Frederick, Maryland 21702-1201
| | - David J. Garfinkel
- Gene Regulation and Chromosome Biology Laboratory, Center for Cancer Research National Cancer Institute, Frederick, Maryland 21702-1201, Advanced Technology Program, SAIC—Frederick, Inc., NCI—Frederick, Frederick, Maryland 21702-1201
| |
Collapse
|
27
|
Nucleic-acid-binding properties of the C2-L1Tc nucleic acid chaperone encoded by L1Tc retrotransposon. Biochem J 2009; 424:479-90. [PMID: 19751212 PMCID: PMC2805920 DOI: 10.1042/bj20090766] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
It has been reported previously that the C2-L1Tc protein located in the Trypanosoma cruzi LINE (long interspersed nuclear element) L1Tc 3′ terminal end has NAC (nucleic acid chaperone) activity, an essential activity for retrotransposition of LINE-1. The C2-L1Tc protein contains two cysteine motifs of a C2H2 type, similar to those present in TFIIIA (transcription factor IIIA). The cysteine motifs are flanked by positively charged amino acid regions. The results of the present study show that the C2-L1Tc recombinant protein has at least a 16-fold higher affinity for single-stranded than for double-stranded nucleic acids, and that it exhibits a clear preference for RNA binding over DNA. The C2-L1Tc binding profile (to RNA and DNA) corresponds to a non-co-operative-binding model. The zinc fingers present in C2-L1Tc have a different binding affinity to nucleic acid molecules and also different NAC activity. The RRR and RRRKEK [NLS (nuclear localization sequence)] sequences, as well as the C2H2 zinc finger located immediately downstream of these basic stretches are the main motifs responsible for the strong affinity of C2-L1Tc to RNA. These domains also contribute to bind single- and double-stranded DNA and have a duplex-stabilizing effect. However, the peptide containing the zinc finger situated towards the C-terminal end of C2-L1Tc protein has a slight destabilization effect on a mismatched DNA duplex and shows a strong preference for single-stranded nucleic acids, such as C2-L1Tc. These results provide further insight into the essential properties of the C2-L1Tc protein as a NAC.
Collapse
|
28
|
Manetti ME, Rossi M, Nakabashi M, Grandbastien MA, Van Sluys MA. The Tnt1 family member Retrosol copy number and structure disclose retrotransposon diversification in different Solanum species. Mol Genet Genomics 2008; 281:261-71. [PMID: 19093134 DOI: 10.1007/s00438-008-0408-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2008] [Accepted: 11/25/2008] [Indexed: 10/21/2022]
Abstract
Eukaryotic genome expansion/retraction caused by LTR-retrotransposon activity is dependent on the expression of full length copies to trigger efficient transposition and recombination-driven events. The Tnt1 family of retrotransposons has served as a model to evaluate the diversity among closely related elements within Solanaceae species and found that members of the family vary mainly in their U3 region of the long terminal repeats (LTRs). Recovery of a full length genomic copy of Retrosol was performed through a PCR-based approach from wild potato, Solanum oplocense. Further characterization focusing on both LTR sequences of the amplified copy allowed estimating an approximate insertion time at 2 million years ago thus supporting the occurrence of transposition cycles after genus divergence. Copy number of Tnt1-like elements in Solanum species were determined through genomic quantitative PCR whereby results sustain that Retrosol in Solanum species is a low copy number retrotransposon (1-4 copies) while Retrolyc1 has an intermediate copy number (38 copies) in S. peruvianum. Comparative analysis of retrotransposon content revealed no correlation between genome size or ploidy level and Retrosol copy number. The tetraploid cultivated potato with a cellular genome size of 1,715 Mbp harbours similar copy number per monoploid genome than other diploid Solanum species (613-884 Mbp). Conversely, S. peruvianum genome (1,125 Mbp) has a higher copy number. These results point towards a lineage specific dynamic flux regarding the history of amplification/activity of Tnt1-like elements in the genome of Solanum species.
Collapse
Affiliation(s)
- M E Manetti
- GaTE Lab, Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, IBUSP, Rua do Matão, 277, São Paulo, SP, 05508-090, Brazil
| | | | | | | | | |
Collapse
|
29
|
Nucleocapsid protein function in early infection processes. Virus Res 2008; 134:39-63. [PMID: 18279991 DOI: 10.1016/j.virusres.2007.12.006] [Citation(s) in RCA: 124] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2007] [Revised: 12/13/2007] [Accepted: 12/13/2007] [Indexed: 01/15/2023]
Abstract
The role of nucleocapsid protein (NC) in the early steps of retroviral replication appears largely that of a facilitator for reverse transcription and integration. Using a wide variety of cell-free assay systems, the properties of mature NC proteins (e.g. HIV-1 p7(NC) or MLV p10(NC)) as nucleic acid chaperones have been extensively investigated. The effect of NC on tRNA annealing, reverse transcription initiation, minus-strand-transfer, processivity of reverse transcription, plus-strand-transfer, strand-displacement synthesis, 3' processing of viral DNA by integrase, and integrase-mediated strand-transfer has been determined by a large number of laboratories. Interestingly, these reactions can all be accomplished to varying degrees in the absence of NC; some are facilitated by both viral and non-viral proteins and peptides that may or may not be involved in vivo. What is one to conclude from the observation that NC is not strictly required for these necessary reactions to occur? NC likely enhances the efficiency of each of these steps, thereby vastly improving the productivity of infection. In other words, one of the major roles of NC is to enhance the effectiveness of early infection, thereby increasing the probability of productive replication and ultimately of retrovirus survival.
Collapse
|
30
|
Pratico ED, Silverman SK. Ty1 reverse transcriptase does not read through the proposed 2',5'-branched retrotransposition intermediate in vitro. RNA (NEW YORK, N.Y.) 2007; 13:1528-36. [PMID: 17652136 PMCID: PMC1950764 DOI: 10.1261/rna.629607] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
2',5'-branched RNA was recently proposed as a key Ty1 retrotransposition intermediate, for which cleavage by lariat debranching enzyme (Dbr1p) enables reverse transcription to continue synthesizing the complete Ty1 cDNA. Because dbr1 cells can produce substantial Ty1 cDNA despite lacking Dbr1p, the obligatory intermediacy of branched RNA would require that Ty1 reverse transcriptase (RT) can read through the proposed branch site with considerable efficiency. Here we have used deoxyribozyme-synthesized 2',5'-branched RNA corresponding exactly to the proposed Ty1 branch site for a direct test of this read-through ability. Using an in vitro assay that incorporates all components known to be required for Ty1 cDNA synthesis (including the TyA chaperone protein), Ty1 RT can elongate up to the branch site. Strand transfer from the 2'-arm to the 3'-arm of the branch is observed when the Ty1 RT is RNase H+ (i.e., wild-type) but not when the Ty1 RT is RNase H-. When elongating from either the 2'-arm or the 3'-arm, Ty1 RT reads through the branch site with <or=0.3% efficiency. This is at least 60-fold lower than would be necessary to explain in vivo Ty1 cDNA synthesis in dbr1 cells, because others have reported 18% cDNA synthesis relative to wild-type cells. Our finding that Ty1 RT cannot efficiently read through the proposed Ty1 branch site is inconsistent with the hypothesis that branched RNA is an obligatory Ty1 retrotransposition intermediate. This suggests that Dbr1p acts as other than a 2',5'-phosphodiesterase during Ty1 retrotransposition.
Collapse
Affiliation(s)
- Elizabeth D Pratico
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | | |
Collapse
|
31
|
Gabus C, Ivanyi-Nagy R, Depollier J, Bucheton A, Pelisson A, Darlix JL. Characterization of a nucleocapsid-like region and of two distinct primer tRNALys,2 binding sites in the endogenous retrovirus Gypsy. Nucleic Acids Res 2006; 34:5764-77. [PMID: 17040893 PMCID: PMC1635307 DOI: 10.1093/nar/gkl722] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Mobile LTR-retroelements comprising retroviruses and LTR-retrotransposons form a large part of eukaryotic genomes. Their mode of replication and abundance favour the notion that they are major actors in eukaryote evolution. The Gypsy retroelement can spread in the germ line of the fruit fly Drosophila melanogaster via both env-independent and env-dependent processes. Thus, Gypsy is both an active retrotransposon and an infectious retrovirus resembling the gammaretrovirus MuLV. However, unlike gammaretroviruses, the Gypsy Gag structural precursor is not processed into Matrix, Capsid and Nucleocapsid (NC) proteins. In contrast, it has features in common with Gag of the ancient yeast TY1 retroelement. These characteristics of Gypsy make it a very interesting model to study replication of a retroelement at the frontier between ancient retrotransposons and retroviruses. We investigated Gypsy replication using an in vitro model system and transfection of insect cells. Results show that an unstructured domain of Gypsy Gag has all the properties of a retroviral NC. This NC-like peptide forms ribonucleoparticle-like complexes upon binding Gypsy RNA and directs the annealing of primer tRNALys,2 to two distinct primer binding sites (PBS) at the genome 5′ and 3′ ends. Only the 5′ PBS is indispensable for cDNA synthesis in vitro and in Drosophila cells.
Collapse
Affiliation(s)
| | | | - Julien Depollier
- Institut de Génétique Humaine141, rue de la Cardonille, 34396 MONTPELLIER Cedex 5, France
| | - Alain Bucheton
- Institut de Génétique Humaine141, rue de la Cardonille, 34396 MONTPELLIER Cedex 5, France
| | - Alain Pelisson
- Institut de Génétique Humaine141, rue de la Cardonille, 34396 MONTPELLIER Cedex 5, France
| | - Jean-Luc Darlix
- To whom correspondence should be addressed. Tel: +33 4 72 72 81 69; Fax: +33 4 72 72 87 77;
| |
Collapse
|
32
|
Affiliation(s)
- Bryan R Cullen
- Department of Molecular Genetics and Microbiology, Box 3025, Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
33
|
Heras SR, López MC, García-Pérez JL, Martin SL, Thomas MC. The L1Tc C-terminal domain from Trypanosoma cruzi non-long terminal repeat retrotransposon codes for a protein that bears two C2H2 zinc finger motifs and is endowed with nucleic acid chaperone activity. Mol Cell Biol 2005; 25:9209-20. [PMID: 16227574 PMCID: PMC1265797 DOI: 10.1128/mcb.25.21.9209-9220.2005] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
L1Tc, a non-long terminal repeat retrotransposon from Trypanosoma cruzi, is a 4.9-kb actively transcribed element which contains a single open reading frame coding for the machinery necessary for its autonomous retrotransposition. In this paper, we analyze the protein encoded by the L1Tc 3' region, termed C2-L1Tc, which contains two zinc finger motifs similar to those present in the TFIIIA transcription factor family. C2-L1Tc binds nucleic acids with different affinities, such that RNA > tRNA > single-stranded DNA > double-stranded DNA, without any evidence for sequence specificity. C2-L1Tc also exhibits nucleic acid chaperone activity on different DNA templates that may participate in the mechanism of retrotransposition of the element. C2-L1Tc promotes annealing of complementary oligonucleotides, prevents melting of perfect DNA duplexes, and facilitates the strand exchange between DNAs to form the most stable duplex DNA in competitive displacement assays. Mapping of regions of C2-L1Tc using specific peptides showed that nucleic acid chaperone activity required a short basic sequence accompanied by a zinc finger motif or by another basic region such as RRR. Thus, a short basic polypeptide containing the two C(2)H(2) motifs promotes formation of the most stable duplex DNA at a concentration only three times higher than that required for C2-L1Tc.
Collapse
Affiliation(s)
- Sara R Heras
- Departamento de Biología Molecular, Instituto de Parasitología y Biomedicina López Neyra, CSIC, Avda del Conocimiento s/n, 18100 Granada, Spain
| | | | | | | | | |
Collapse
|
34
|
Wilhelm FX, Wilhelm M, Gabriel A. Reverse transcriptase and integrase of the Saccharomyces cerevisiae Ty1 element. Cytogenet Genome Res 2005; 110:269-87. [PMID: 16093680 DOI: 10.1159/000084960] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2003] [Accepted: 02/02/2004] [Indexed: 11/19/2022] Open
Abstract
Integrase (IN) and reverse transcriptase (RT) play a central role in transposition of retroelements. The mechanism of integration by IN and the steps of the replication process mediated by RT are briefly described here. Recently, active recombinant forms of Ty1 IN and RT have been obtained. This has allowed a more detailed understanding of their biochemical and structural properties and has made possible combined in vitro and in vivo analyses of their functions. A focus of this review is to discuss some of the results obtained thus far with these two recombinant proteins and to propose future directions.
Collapse
Affiliation(s)
- F-X Wilhelm
- Institut de Biologie Moleculaire et Cellulaire, Strasbourg, France.
| | | | | |
Collapse
|
35
|
Abstract
RNA is structurally very flexible, which provides the basis for its functional diversity. An RNA molecule can often adopt different conformations, which enables the regulation of its function through folding. Proteins help RNAs reach their functionally active conformation by increasing their structural stability or by chaperoning the folding process. Large, dynamic RNA-protein complexes, such as the ribosome or the spliceosome, require numerous proteins that coordinate conformational switches of the RNA components during assembly and during their respective activities.
Collapse
Affiliation(s)
- Renée Schroeder
- Max F. Perutz Laboratories, Department of Microbiology and Genetics, University of Vienna, Austria.
| | | | | |
Collapse
|
36
|
Abstract
Foamy viruses (FVs) or spumaviruses were described for the first time in the early 1950s in cell cultures derived from monkey kidneys. Later, FVs were isolated in several mammal species such as cats, cattle and horses. Highly prevalent in non-human primates they are not naturally present in humans, although several cases of simian-to-human transmissions have been described. Interestingly, the replication strategy of FVs differs in many aspects from that of other retroviruses, presenting features that are closely related to pararetroviruses, exemplified by the hepatitis B virus (HBV), but also characteristics that are closely related to yeast retrotransposons. These characteristics led to the creation of a distinct viral subfamily by the International Committee on Virus Taxonomy in 2002; the Spumaretrovirinae.
Collapse
Affiliation(s)
- Olivier Delelis
- CNRS UPR9051, Hôpital Saint-Louis, Centre Hayem, 1 Avenue Claude Vellefaux, 75475 Paris Cedex 10, Paris, France
| | | | | |
Collapse
|
37
|
Paillart JC, Shehu-Xhilaga M, Marquet R, Mak J. Dimerization of retroviral RNA genomes: an inseparable pair. Nat Rev Microbiol 2004; 2:461-72. [PMID: 15152202 DOI: 10.1038/nrmicro903] [Citation(s) in RCA: 232] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Jean-Christophe Paillart
- UPR 9002 du CNRS affiliée à l'Université Louis Pasteur, Institut de Biologie Moléculaire et Cellulaire, 67084 Strasbourg Cedex, France
| | | | | | | |
Collapse
|
38
|
Cristofari G, Ivanyi-Nagy R, Gabus C, Boulant S, Lavergne JP, Penin F, Darlix JL. The hepatitis C virus Core protein is a potent nucleic acid chaperone that directs dimerization of the viral (+) strand RNA in vitro. Nucleic Acids Res 2004; 32:2623-31. [PMID: 15141033 PMCID: PMC419467 DOI: 10.1093/nar/gkh579] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The hepatitis C virus (HCV) is an important human pathogen causing chronic hepatitis, liver cirrhosis and hepatocellular carcinoma. HCV is an enveloped virus with a positive-sense, single-stranded RNA genome encoding a single polyprotein that is processed to generate viral proteins. Several hundred molecules of the structural Core protein are thought to coat the genome in the viral particle, as do nucleocapsid (NC) protein molecules in Retroviruses, another class of enveloped viruses containing a positive-sense RNA genome. Retroviral NC proteins also possess nucleic acid chaperone properties that play critical roles in the structural remodelling of the genome during retrovirus replication. This analogy between HCV Core and retroviral NC proteins prompted us to investigate the putative nucleic acid chaperoning properties of the HCV Core protein. Here we report that Core protein chaperones the annealing of complementary DNA and RNA sequences and the formation of the most stable duplex by strand exchange. These results show that the HCV Core is a nucleic acid chaperone similar to retroviral NC proteins. We also find that the Core protein directs dimerization of HCV (+) RNA 3' untranslated region which is promoted by a conserved palindromic sequence possibly involved at several stages of virus replication.
Collapse
Affiliation(s)
- Gaël Cristofari
- LaboRetro, INSERM #412, ENS, 46, allée d'Italie, 69364 Lyon Cedex 07, France
| | | | | | | | | | | | | |
Collapse
|
39
|
Matsumoto T, Takahashi H, Fujiwara H. Targeted nuclear import of open reading frame 1 protein is required for in vivo retrotransposition of a telomere-specific non-long terminal repeat retrotransposon, SART1. Mol Cell Biol 2004; 24:105-22. [PMID: 14673147 PMCID: PMC303349 DOI: 10.1128/mcb.24.1.105-122.2004] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Non-long terminal repeat (non-LTR) retrotransposons, most of which carry two open reading frames (ORFs), are abundant mobile elements that are distributed widely among eukaryotes. ORF2 encodes enzymatic domains, such as reverse transcriptase, that are conserved in all retroelements, but the functional roles of ORF1 in vivo are little understood. We show with green fluorescent protein-ORF1 fusion proteins that the ORF1 proteins of SART1, a telomeric repeat-specific non-LTR retrotransposon in Bombyx mori, are transported into the nucleus to produce a dotted localization pattern. Nuclear localization signals N1 (RRKR) and N2 (PSKRGRG) at the N terminus and a highly basic region in the center of SART1 ORF1 are involved in nuclear import and the dotted localization pattern in the nucleus, respectively. An in vivo retrotransposition assay clarified that at least three ORF1 domains, N1/N2, the central basic domain, and CCHC zinc fingers are required for SART1 retrotransposition. The nuclear import activity of SART1 ORF1 makes it clear that the ORF1 proteins of non-LTR retrotransposons work mainly in the nucleus, in contrast to the cytoplasmic action of Gag proteins of LTR elements. The functional domains found here in SART1 ORF1 will be useful for developing a more efficient and target-specific LINE-based gene delivery vector.
Collapse
Affiliation(s)
- Takumi Matsumoto
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, University of Tokyo, Kashiwa, Chiba 277-8562, Japan
| | | | | |
Collapse
|
40
|
Wilhelm FX, Wilhelm M, Gabriel A. Extension and cleavage of the polypurine tract plus-strand primer by Ty1 reverse transcriptase. J Biol Chem 2003; 278:47678-84. [PMID: 14500728 DOI: 10.1074/jbc.m305162200] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Using hybrid RNA/DNA substrates containing the polypurine tract (PPT) plus-strand primer, we have examined the interaction between the Ty1 reverse transcriptase (RT) and the plus-strand initiation complex. We show here that, although the PPT sequence is relatively resistant to RNase H cleavage, it can be cleaved internally by the polymerase-independent RNase H activity of Ty1 RT. Alternatively, this PPT can be used to initiate plus-strand DNA synthesis. We demonstrate that cleavage at the PPT/DNA junction occurs only after at least 9 nucleotides are extended. Cleavage leaves a nick between the RNA primer and the nascent plus-strand DNA. We show that Ty1 RT has a strand displacement activity beyond a gap but that the PPT is not efficiently re-utilized in vitro for another round of DNA synthesis after a first plus-strand DNA has been synthesized and cleaved at the PPT/U3 junction.
Collapse
Affiliation(s)
- François-Xavier Wilhelm
- Institut de Biologie Moléculaire et Cellulaire, 15, rue R. Descartes, 67084 Strasbourg, France.
| | | | | |
Collapse
|
41
|
Copeland CS, Brindley PJ, Heyers O, Michael SF, Johnston DA, Williams DL, Ivens AC, Kalinna BH. Boudicca, a retrovirus-like long terminal repeat retrotransposon from the genome of the human blood fluke Schistosoma mansoni. J Virol 2003; 77:6153-66. [PMID: 12743272 PMCID: PMC154989 DOI: 10.1128/jvi.77.11.6153-6166.2003] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The genome of Schistosoma mansoni contains a proviral form of a retrovirus-like long terminal repeat (LTR) retrotransposon, designated BOUDICCA: Sequence and structural characterization of the new mobile genetic element, which was found in bacterial artificial chromosomes prepared from S. mansoni genomic DNA, revealed the presence of three putative open reading frames (ORFs) bounded by direct LTRs of 328 bp in length. ORF1 encoded a retrovirus-like major homology region and a Cys/His box motif, also present in Gag polyproteins of related retrotransposons and retroviruses. ORF2 encoded enzymatic domains and motifs characteristic of a retrovirus-like polyprotein, including aspartic protease, reverse transcriptase, RNase H, and integrase, in that order, a domain order similar to that of the gypsy/Ty3 retrotransposons. An additional ORF at the 3' end of the retrotransposon may encode an envelope protein. Phylogenetic comparison based on the reverse transcriptase domain of ORF2 confirmed that Boudicca was a gypsy-like retrotransposon and showed that it was most closely related to CsRn1 from the Oriental liver fluke Clonorchis sinensis and to kabuki from Bombyx mori. Bioinformatics approaches together with Southern hybridization analysis of genomic DNA of S. mansoni and the screening of a bacterial artificial chromosome library representing approximately 8-fold coverage of the S. mansoni genome revealed that numerous copies of Boudicca were interspersed throughout the schistosome genome. By reverse transcription-PCR, mRNA transcripts were detected in the sporocyst, cercaria, and adult developmental stages of S. mansoni, indicating that Boudicca is actively transcribed in this trematode.
Collapse
Affiliation(s)
- Claudia S Copeland
- Department of Tropical Medicine, School of Public Health and Tropical Medicine, Tulane University Health Sciences Center, New Orleans, Louisiana 70112, USA
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Abstract
A comprehensive survey of the Pseudoviridae (Ty1/copia) retroelement family was conducted using the GenBank sequence database and completed genome sequences of several model organisms. Plant genomes were the most abundant sources of Pseudoviridae, with the Arabidopsis thaliana genome having 276 distinct elements. A reverse transcriptase amino acid sequence phylogeny indicated that the Pseudoviridae comprises highly divergent members. Coding sequences for a representative subset of elements were analyzed to identify conserved domains and differences that may underlie functional divergence. With the exception of some fungal elements (e.g., Ty1), most Pseudoviridae encode Gag and Pol on a single open reading frame. In addition to the nearly ubiquitous RNA-binding motif of nucleocapsid, three new conserved domains were identified in Gag. pol-encoded aspartic protease was similar to the retroviral enzyme and could be mapped onto the HIV-1 structure. Pol was highly conserved throughout the family. The greatest divergence among Pol sequences was seen in the C-terminus of integrase (IN). We defined a large motif (GKGY) after the IN catalytic domain that is unique to the Pseudoviridae. Additionally, the extreme C-terminus of IN is rich in simple sequence motifs. A distinct lineage of Pseudoviridae in plants have envlike genes. This lineage has undergone a large expansion of Gag characterized by an alpha-helix-rich domain containing coiled-coil motifs. In several elements, this domain is flanked on both sides by RNA-binding domains. We propose that this monophyletic lineage defines a new Pseudoviridae genus, herein referred to as the AGROVIRUS:
Collapse
|
43
|
Cristofari G, Darlix JL. The ubiquitous nature of RNA chaperone proteins. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 2002; 72:223-68. [PMID: 12206453 DOI: 10.1016/s0079-6603(02)72071-0] [Citation(s) in RCA: 148] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
RNA chaperones are ubiquitous and abundant proteins found in all living organisms and viruses, where they interact with various classes of RNA. These highly diverse families of nucleic acid-binding proteins possess activities enabling rapid and faithful RNA-RNA annealing, strand transfer, and exchange and RNA ribozyme-mediated cleavage under physiological conditions. RNA chaperones appear to be critical to functions as important as maintenance of chromosome ends, DNA transcription, preRNA export, splicing and modifications, and mRNA translation and degradation. Here we review some of the properties of RNA chaperones in RNA-RNA interactions that take place during cellular processes and retrovirus replication. Examples of cellular and viral proteins are dicussed vis à vis the relationships between RNA chaperone activities in vitro and functions. In this new "genomic era" we discuss the possible use of small RNA chaperones to improve the synthesis of cDNA libraries for use in large screening reactions using DNA chips.
Collapse
|
44
|
Cristofari G, Bampi C, Wilhelm M, Wilhelm FX, Darlix JL. A 5'-3' long-range interaction in Ty1 RNA controls its reverse transcription and retrotransposition. EMBO J 2002; 21:4368-79. [PMID: 12169639 PMCID: PMC126173 DOI: 10.1093/emboj/cdf436] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
LTR-retrotransposons are abundant components of all eukaryotic genomes and appear to be key players in their evolution. They share with retroviruses a reverse transcription step during their replication cycle. To better understand the replication of retrotransposons as well as their similarities to and differences from retroviruses, we set up an in vitro model system to examine minus-strand cDNA synthesis of the yeast Ty1 LTR-retrotransposon. Results show that the 5' and 3' ends of Ty1 genomic RNA interact through 14 nucleotide 5'-3' complementary sequences (CYC sequences). This 5'-3' base pairing results in an efficient initiation of reverse transcription in vitro. Transposition of a marked Ty1 element and Ty1 cDNA synthesis in yeast rely on the ability of the CYC sequences to base pair. This 5'-3' interaction is also supported by phylogenic analysis of all full-length Ty1 and Ty2 elements present in the Saccharomyces cerevisiae genome. These novel findings lead us to propose that circularization of the Ty1 genomic RNA controls initiation of reverse transcription and may limit reverse transcription of defective retroelements.
Collapse
Affiliation(s)
| | | | - Marcelle Wilhelm
- LaboRetro, INSERM U412, Ecole Normale Supérieure de Lyon, 46 Allée d’Italie, 69364 Lyon Cedex 07 and
Institut de Biologie Moléculaire et Cellulaire, 15, rue R. Descartes, 67084 Strasbourg, France Corresponding author e-mail:
| | - François-Xavier Wilhelm
- LaboRetro, INSERM U412, Ecole Normale Supérieure de Lyon, 46 Allée d’Italie, 69364 Lyon Cedex 07 and
Institut de Biologie Moléculaire et Cellulaire, 15, rue R. Descartes, 67084 Strasbourg, France Corresponding author e-mail:
| | - Jean-Luc Darlix
- LaboRetro, INSERM U412, Ecole Normale Supérieure de Lyon, 46 Allée d’Italie, 69364 Lyon Cedex 07 and
Institut de Biologie Moléculaire et Cellulaire, 15, rue R. Descartes, 67084 Strasbourg, France Corresponding author e-mail:
| |
Collapse
|
45
|
Abstract
Retrotransposition of the Ty1 element of Saccharomyces cerevisiae is temperature sensitive. Transposition activity of Ty1 is abolished at temperatures above 34 degrees C. In this report, we show that the major block to transposition at high temperature is the inhibition of processing of the Gag-Pol-p199 polyprotein and the concomitant reduction of reverse transcriptase (RT) activity. Expression of a Ty1 protease construct in Escherichia coli shows that protease enzymatic activity is inherently temperature sensitive. In yeast, Gag processing is only partially inhibited at high temperature, while cleavage of the Gag-Pol polyprotein is completely inhibited. Sites of proteolytic processing are differentially susceptible to cleavage during growth at high temperature. Overall levels of the Gag-Pol polyprotein are reduced at high temperature, although the efficiency of the requisite +1 frameshifting event appears to be increased. RT activity is inherently relatively temperature resistant, yet no cDNA is made at high temperature and the amount of RT activity is greatly reduced in virus-like particles formed at high temperature. Taken together, these results suggest that alterations in Ty1 proteins that occur at high temperature affect both protease activity and RT activity, such that Ty1 transposition is abolished.
Collapse
Affiliation(s)
- Joseph F Lawler
- Department of Molecular Biology and Genetics, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | | | | | |
Collapse
|
46
|
Gao X, Rowley DJ, Gai X, Voytas DF. Ty5 gag mutations increase retrotransposition and suggest a role for hydrogen bonding in the function of the nucleocapsid zinc finger. J Virol 2002; 76:3240-7. [PMID: 11884548 PMCID: PMC136051 DOI: 10.1128/jvi.76.7.3240-3247.2002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The Ty5 retrotransposon of Saccharomyces paradoxus transposes in Saccharomyces cerevisiae at frequencies 1,000-fold lower than do the native Ty1 elements. The low transposition activity of Ty5 could be due to differences in cellular environments between these yeast species or to naturally occurring mutations in Ty5. By screening of a Ty5 mutant library, two single mutants (D252N and Y68C) were each found to increase transposition approximately sixfold. When combined, transposition increased 36-fold, implying that the two mutations act independently. Neither mutation affected Ty5 protein synthesis, processing, cDNA recombination, or target site choice. However, cDNA levels in both single mutants and the double mutant were significantly higher than in the wild type. The D252N mutation resides in the zinc finger of nucleocapsid and increases the potential for hydrogen bonding with nucleic acids. We generated other mutations that increase the hydrogen bonding potential (i.e., D252R and D252K) and found that they similarly increased transposition. This suggests that hydrogen bonding within the zinc finger motif is important for cDNA production and builds upon previous studies implicating basic amino acids flanking the zinc finger as important for zinc finger function. Although NCp zinc fingers differ from the zinc finger motifs of cellular enzymes, the requirement for efficient hydrogen bonding is likely universal.
Collapse
Affiliation(s)
- Xiang Gao
- Department of Zoology and Genetics, Iowa State University, Ames, Iowa 50011, USA
| | | | | | | |
Collapse
|
47
|
Kameoka M, Morgan M, Binette M, Russell RS, Rong L, Guo X, Mouland A, Kleiman L, Liang C, Wainberg MA. The Tat protein of human immunodeficiency virus type 1 (HIV-1) can promote placement of tRNA primer onto viral RNA and suppress later DNA polymerization in HIV-1 reverse transcription. J Virol 2002; 76:3637-45. [PMID: 11907203 PMCID: PMC136076 DOI: 10.1128/jvi.76.8.3637-3645.2002] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human immunodeficiency virus type-1 Tat has been proposed to play a role in the regulation of reverse transcription. We previously demonstrated that wild-type Tat can augment viral infectivity by suppressing the reverse transcriptase (RT) reaction at late stages of the viral life cycle in order to prevent the premature synthesis of potentially deleterious viral DNA products. Here we have performed a detailed analysis of the cell-free reverse transcription reaction to elucidate the mechanism(s) whereby Tat can affect this process. Our results show that Tat can suppress nonspecific DNA elongation while moderately affecting the specific initiation stage of reverse transcription. In addition, Tat has an RNA-annealing activity and can promote the placement of tRNA onto viral RNA. This points to a functional homology between Tat and the viral nucleocapsid (NC) protein that is known to be directly involved in this process. Experiments using a series of mutant Tat proteins revealed that the cysteine-rich and core domains of Tat are responsible for suppression of DNA elongation, while each of the cysteine-rich, core, and basic domains, as well as a glutamine-rich region in the C-terminal domain, are important for the placement of tRNA onto the viral RNA genome. These results suggest that Tat can play at least two different roles in the RT reaction, i.e., suppression of DNA polymerization and placement of tRNA onto viral RNA. We believe that the first of these activities of Tat may contribute to the overall efficiency of reverse transcription of the viral genome during a new round of infection as well as to enhanced production of infectious viral particles. We hypothesize that the second activity, illustrating functional homology between Tat and NC, suggests a potential role for NC in the displacement of Tat during viral maturation.
Collapse
Affiliation(s)
- Masanori Kameoka
- McGill University AIDS Centre, Lady Davis Institute-Jewish General Hospital, Montreal, Quebec, Canada H3T 1E2
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Lawler JF, Merkulov GV, Boeke JD. A nucleocapsid functionality contained within the amino terminus of the Ty1 protease that is distinct and separable from proteolytic activity. J Virol 2002; 76:346-54. [PMID: 11739699 PMCID: PMC135695 DOI: 10.1128/jvi.76.1.346-354.2002] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Ty1 is the most successful of the five endogenous yeast retrotransposons. The life cycle of Ty1 dictates that a number of nucleocapsid (NC)-facilitated events occur although the protein(s) responsible for these events has not been identified. The positioning of the NC peptide is conserved at the carboxy terminus of the Gag protein among most long terminal repeat (LTR)-containing retroelements. An analogous region of Ty1 that simultaneously encodes part of Gag, protease (PR), and the C-terminal p4 peptide was mutagenized. Some of these mutations result in smaller-than-normal virus-like particles (VLPs). The mutants were also found to impair an NC-like functionality contained within the amino terminus of the protease that is distinct and separable from its proteolytic activity. Remarkably, these mutants have distinct defects in reverse transcription.
Collapse
Affiliation(s)
- Joseph F Lawler
- Department of Molecular Biology and Genetics, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | |
Collapse
|
49
|
Semin BV, Popenko VI, Malikova MA, Turapov OA, Stepanov AS, Ilyin Y. The polyprotein gag of retroelement gypsy can form multimeric complexes when expressed in bacterial system. DOKL BIOCHEM BIOPHYS 2001; 380:322-4. [PMID: 11727555 DOI: 10.1023/a:1012336008371] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- B V Semin
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, ul. Vavilova 32, Moscow, 117984 Russia
| | | | | | | | | | | |
Collapse
|
50
|
Gabus C, Derrington E, Leblanc P, Chnaiderman J, Dormont D, Swietnicki W, Morillas M, Surewicz WK, Marc D, Nandi P, Darlix JL. The prion protein has RNA binding and chaperoning properties characteristic of nucleocapsid protein NCP7 of HIV-1. J Biol Chem 2001; 276:19301-9. [PMID: 11278562 DOI: 10.1074/jbc.m009754200] [Citation(s) in RCA: 149] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Transmissible spongiform encephalopathies are fatal neurodegenerative diseases associated with the accumulation of a protease-resistant form of the prion protein (PrP). Although PrP is conserved in vertebrates, its function remains to be identified. In vitro PrP binds large nucleic acids causing the formation of nucleoprotein complexes resembling human immunodeficiency virus type 1 (HIV-1) nucleocapsid-RNA complexes and in vivo MuLV replication accelerates the scrapie infectious process, suggesting possible interactions between retroviruses and PrP. Retroviruses, including HIV-1 encode a major nucleic acid binding protein (NC protein) found within the virus where 2000 NC protein molecules coat the dimeric genome. NC is required in virus assembly and infection to chaperone RNA dimerization and packaging and in proviral DNA synthesis by reverse transcriptase (RT). In HIV-1, 5'-leader RNA/NC interactions appear to control these viral processes. This prompted us to compare and contrast the interactions of human and ovine PrP and HIV-1 NCp7 with HIV-1 5'-leader RNA. Results show that PrP has properties characteristic of NCp7 with respect to viral RNA dimerization and proviral DNA synthesis by RT. The NC-like properties of huPrP map to the N-terminal region of huPrP. Interestingly, PrP localizes in the membrane and cytoplasm of PrP-expressing cells. These findings suggest that PrP is a multifunctional protein possibly participating in nucleic acid metabolism.
Collapse
Affiliation(s)
- C Gabus
- LaboRetro, Unité de Virologie Humaine INSERM-Ecole Normale Superieure de Lyon (ENS) 412, ENS de Lyon, 46 Allée d'Italie, Lyon 69364, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|