1
|
Yang Z, Yuan Y, Niu Y, Zuo D, Liu W, Li K, Shi Y, Qiu Z, Li K, Lin Z, Zhong C, Huang Z, He W, Guan X, Yuan Y, Zeng W, Qiu J, Li B. Regulatory factor X1 promotes sorafenib-induced ferroptosis in hepatocellular carcinoma by transcriptional regulation of BECN1. Cell Oncol (Dordr) 2025; 48:505-522. [PMID: 39652303 PMCID: PMC11996997 DOI: 10.1007/s13402-024-01017-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/19/2024] [Indexed: 04/15/2025] Open
Abstract
BACKGROUND Sorafenib is a commonly used first-line kinase-targeted drug for advanced hepatocellular carcinoma (HCC) patients suffering from limited efficacy. Emerging evidence indicates that sorafenib exerts anti-cancer activity through the induction of ferroptosis in HCC cells, but the underlying mechanism is still unclear. METHODS The whole transcriptome sequencing and bioinformatics analysis were used to screen for target genes. The expression and subcellular localization of regulatory factor X1 (RFX1) were determined through immunohistochemistry, immunofluorescence, PCR and western blot analyses. The impact of RFX1 on HCC cell growth was assessed using CCK8, colony formation assays, cell death assays, and animal experiments. Glutathione measurement, iron assay and lipid peroxidation detection assays were performed to investigate ferroptosis of HCC cells. The regulatory mechanism of RFX1 in HCC was investigated by sgRFX1, co-IP, ChIP and luciferase experiments. Immunohistochemical and survival analyses were performed to examine the prognostic significance of RFX1 in HCC. RESULTS In this study, we found that RFX1 promote ferroptosis in HCC cells. Further, we showed that sorafenib induces cell death through RFX1-mediated ferroptosis in HCC cells. The enhancing effect of RFX1 on HCC cell ferroptosis is largely dependent on inhibition of cystine/glutamate antiporter (system Xc-) activity through the BECN-SLC7A11 axis, where RFX1 directly binds to the promoter region of BECN1 and upregulates BECN1 expression. In addition, a STAT3-RFX1-BECN1 signalling loop was found to promote RFX1 expression in HCC cells. CONCLUSIONS Our study reveals a novel mechanism underlying sorafenib-induced HCC cell death.
Collapse
Affiliation(s)
- Zhiwen Yang
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
- Department of Anesthesiology, Sun Yat-Sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, PR China
| | - Yichuan Yuan
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
- Department of Liver Surgery, Sun Yat-Sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, PR China
| | - Yi Niu
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
- Department of Liver Surgery, Sun Yat-Sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, PR China
| | - Dinglan Zuo
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Wenwu Liu
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
- Department of Liver Surgery, Sun Yat-Sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, PR China
| | - Kai Li
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
- Department of Liver Surgery, Sun Yat-Sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, PR China
| | - Yunxing Shi
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
- Department of Liver Surgery, Sun Yat-Sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, PR China
| | - Zhiyu Qiu
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
- Department of Liver Surgery, Sun Yat-Sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, PR China
| | - Keren Li
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
- Department of Liver Surgery, Sun Yat-Sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, PR China
| | - Zhu Lin
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
- Department of Liver Surgery, Sun Yat-Sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, PR China
| | - Chengrui Zhong
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
- Department of Liver Surgery, Sun Yat-Sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, PR China
| | - Zhenkun Huang
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
- Department of Liver Surgery, Sun Yat-Sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, PR China
| | - Wei He
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
- Department of Liver Surgery, Sun Yat-Sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, PR China
| | - Xinyuan Guan
- Department of Clinical Oncology, State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong, China
| | - Yunfei Yuan
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
- Department of Liver Surgery, Sun Yat-Sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, PR China
| | - Weian Zeng
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China.
- Department of Anesthesiology, Sun Yat-Sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, PR China.
| | - Jiliang Qiu
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China.
- Department of Liver Surgery, Sun Yat-Sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, PR China.
| | - Binkui Li
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China.
- Department of Liver Surgery, Sun Yat-Sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, PR China.
| |
Collapse
|
2
|
Issac J, Raveendran PS, Kunnummal M, Angelin M, Ravindran S, Basu B, Das AV. RXR agonist, Bexarotene, effectively reduces drug resistance via regulation of RFX1 in embryonic carcinoma cells. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2023; 1870:119510. [PMID: 37301270 DOI: 10.1016/j.bbamcr.2023.119510] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 05/16/2023] [Accepted: 06/02/2023] [Indexed: 06/12/2023]
Abstract
Aberrant expression of multidrug resistance (MDR) proteins is one of the features of cancer stem cells (CSCs) that make them escape chemotherapy. A well-orchestrated regulation of multiple MDRs by different transcription factors in cancer cells confers this drug resistance. An in silico analysis of the major MDR genes revealed a possible regulation by RFX1 and Nrf2. Previous reports also noted that Nrf2 is a positive regulator of MDR genes in NT2 cells. But we, for the first time, report that Regulatory factor X1 (RFX1), a pleiotropic transcription factor, negatively regulates the major MDR genes, Abcg2, Abcb1, Abcc1, and Abcc2, in NT2 cells. The levels of RFX1 in undifferentiated NT2 cells were found to be very low, which significantly increased upon RA-induced differentiation. Ectopic expression of RFX1 reduced the levels of transcripts corresponding to MDRs and stemness-associated genes. Interestingly, Bexarotene, an RXR agonist that acts as an inhibitor of Nrf2-ARE signaling, could increase the transcription of RFX1. Further analysis revealed that the RFX1 promoter has binding sites for RXRα, and upon Bexarotene exposure RXRα could bind and activate the RFX1 promoter. Bexarotene, alone or in combination with Cisplatin, could inhibit many cancer/CSC-associated properties in NT2 cells. Also, it significantly reduced the expression of drug resistance proteins and made the cells sensitive towards Cisplatin. Our study proves that RFX1 could be a potent molecule to target MDRs, and Bexarotene can induce RXRα-mediated RFX1 expression, therefore, would be a better chemo-assisting drug during therapy.
Collapse
Affiliation(s)
- Joby Issac
- Cancer Research Program-12, Rajiv Gandhi Centre for Biotechnology (DBT-RGCB), Thycaud. P.O. Thiruvananthapuram-14, Kerala, India
| | - Pooja S Raveendran
- Cancer Research Program-12, Rajiv Gandhi Centre for Biotechnology (DBT-RGCB), Thycaud. P.O. Thiruvananthapuram-14, Kerala, India; Manipal Academy of Higher Education, Tiger Circle Road, Madhav Nagar, Manipal, Karnataka 576104, India
| | - Midhunaraj Kunnummal
- Cancer Research Program-12, Rajiv Gandhi Centre for Biotechnology (DBT-RGCB), Thycaud. P.O. Thiruvananthapuram-14, Kerala, India; Manipal Academy of Higher Education, Tiger Circle Road, Madhav Nagar, Manipal, Karnataka 576104, India
| | - Mary Angelin
- Cancer Research Program-12, Rajiv Gandhi Centre for Biotechnology (DBT-RGCB), Thycaud. P.O. Thiruvananthapuram-14, Kerala, India
| | - Swathy Ravindran
- Cancer Research Program-12, Rajiv Gandhi Centre for Biotechnology (DBT-RGCB), Thycaud. P.O. Thiruvananthapuram-14, Kerala, India
| | - Budhaditya Basu
- Neuro Stem Cell Biology Laboratory, Neurobiology Division, Rajiv Gandhi Centre for Biotechnology (DBT-RGCB), Thiruvananthapuram, Kerala 695 014, India; Regional Centre for Biotechnology (DBT-RCB), Faridabad, Haryana 121001, India
| | - Ani V Das
- Cancer Research Program-12, Rajiv Gandhi Centre for Biotechnology (DBT-RGCB), Thycaud. P.O. Thiruvananthapuram-14, Kerala, India; Manipal Academy of Higher Education, Tiger Circle Road, Madhav Nagar, Manipal, Karnataka 576104, India.
| |
Collapse
|
3
|
Genomic and Epigenomic Features of Glioblastoma Multiforme and its Biomarkers. JOURNAL OF ONCOLOGY 2022; 2022:4022960. [PMID: 36185622 PMCID: PMC9519330 DOI: 10.1155/2022/4022960] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/14/2022] [Accepted: 09/10/2022] [Indexed: 11/22/2022]
Abstract
Glioblastoma multiforme is a serious and life-threatening tumor of central nervous system, characterized by aggressive behavior, poor prognosis, and low survival rate. Despite of the availability of aggressive antitumor therapeutic regimen for glioblastoma (radiotherapy followed by chemotherapeutic dose), recovery rate, and patients' survival ratio is attributed to the lack of selectivity of therapeutic drugs and less advancement in cancer therapeutics over last decade. Moreover, tools employed in conventional diagnosis of glioblastoma are more invasive and painful, making the process excruciating for the patients. These challenges urge for the need of novel biomarkers for diagnosis, prognosis, and prediction purpose with less invasiveness and more patient compliance. This article will explore the genetic biomarkers isocitrate dehydrogenase mutation, MGMT mutations, and EGFR that can be deployed as an analytical tool in diagnosis of disease and prognosis of a therapeutic course. The review also highlights the importance of employing novel microRNAs as prognostic biomarkers. Recent clinical advancements to treat GBM and to prevent relapse of the disease are also discussed in this article in the hope of finding a robust and effective method to treat GBM.
Collapse
|
4
|
Issac J, Raveendran PS, Das AV. RFX1: a promising therapeutic arsenal against cancer. Cancer Cell Int 2021; 21:253. [PMID: 33964962 PMCID: PMC8106159 DOI: 10.1186/s12935-021-01952-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 04/26/2021] [Indexed: 02/08/2023] Open
Abstract
Regulatory factor X1 (RFX1) is an evolutionary conserved transcriptional factor that influences a wide range of cellular processes such as cell cycle, cell proliferation, differentiation, and apoptosis, by regulating a number of target genes that are involved in such processes. On a closer look, these target genes also play a key role in tumorigenesis and associated events. Such observations paved the way for further studies evaluating the role of RFX1 in cancer. These studies were indispensable due to the failure of conventional chemotherapeutic drugs to target key cellular hallmarks such as cancer stemness, cellular plasticity, enhanced drug efflux, de-regulated DNA repair machinery, and altered pathways evading apoptosis. In this review, we compile significant evidence for the tumor-suppressive activities of RFX1 while also analyzing its oncogenic potential in some cancers. RFX1 induction decreased cellular proliferation, modulated the immune system, induced apoptosis, reduced chemoresistance, and sensitized cancer stem cells for chemotherapy. Thus, our review discusses the pleiotropic function of RFX1 in multitudinous gene regulations, decisive protein–protein interactions, and also its role in regulating key cell signaling events in cancer. Elucidation of these regulatory mechanisms can be further utilized for RFX1 targeted therapy.
Collapse
Affiliation(s)
- Joby Issac
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Thycaud.P.O, Thiruvananthapuram, 695014, Kerala, India
| | - Pooja S Raveendran
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Thycaud.P.O, Thiruvananthapuram, 695014, Kerala, India
| | - Ani V Das
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Thycaud.P.O, Thiruvananthapuram, 695014, Kerala, India.
| |
Collapse
|
5
|
Ye F, Wang Y, He Q, Wang Z, Ma E, Zhu S, Yu H, Yin H, Zhao X, Li D, Xu H, Li H, Zhu Q. Screening of immune biomarkers in different breeds of chickens infected with J subgroup of avian leukemia virus by proteomic. Virulence 2020; 11:1158-1176. [PMID: 32799626 PMCID: PMC7549955 DOI: 10.1080/21505594.2020.1809323] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 08/05/2020] [Accepted: 08/08/2020] [Indexed: 12/25/2022] Open
Abstract
Avian leucosis (AL) is a disease characterized by tumors and is caused by the avian leukosis virus (ALV). Because of the high variability of viruses and complex pathogenic mechanisms, screening and breeding J subgroup of ALV (ALV-J) resistant avian breeds is one of the strategies for prevention and treatment of AL, thus screening of significant immune markers is needed to promote the development of disease-resistant breeds. In this study, data-independent acquisition (DIA) technology was used to detect the DEPs of three breeds of chicken according to different comparison to investigate the potential markers. Results showed special DEPs for spleen development of each breed were detected, such as PCNT, DDB2, and ZNF62. These DEPs were involved in intestinal immune network used in production of IgA signaling pathways and related to immune response which can be used as potential markers for spleen development in different breeds. The DEPs such as RAB44 and TPN involved in viral myocarditis, transcriptional misregulation in cancer, and tuberculosis can be used as potential markers of spleen immune response after ALV-J infection in chickens. Pair-wise analysis was performed for the three breeds after the infection of ALV-J. The proteins such as RFX1, TAF10, and VH1 were differently expressed between three breeds. These DEPs involved in antigen processing and expression, acute myelogenous leukemia, and viral carcinogenesis can be used as potential immune markers after ALV-J infection of different genetic backgrounds. The screening of potential markers at protein level provides a strong theoretical research basis for disease resistance breeding in poultry.
Collapse
Affiliation(s)
- Fei Ye
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, China
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, Foshan University, Guangdong, China
| | - Yan Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, China
| | - Qijian He
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, China
| | - Zhaoshuo Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, China
| | - Enyue Ma
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, China
| | - Shiliang Zhu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, China
| | - Heling Yu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, China
| | - Huadong Yin
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, China
| | - Xiaoling Zhao
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, China
| | - Diyan Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, China
| | - Hengyong Xu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, China
| | - Hua Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, China
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, Foshan University, Guangdong, China
| | - Qing Zhu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, China
| |
Collapse
|
6
|
Dunbar F, Xu H, Ryu D, Ghosh S, Shi H, George V. Detection of Differentially Methylated Regions Using Bayes Factor for Ordinal Group Responses. Genes (Basel) 2019; 10:genes10090721. [PMID: 31533352 PMCID: PMC6770971 DOI: 10.3390/genes10090721] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 09/11/2019] [Accepted: 09/15/2019] [Indexed: 11/16/2022] Open
Abstract
Researchers in genomics are increasingly interested in epigenetic factors such as DNA methylation, because they play an important role in regulating gene expression without changes in the DNA sequence. There have been significant advances in developing statistical methods to detect differentially methylated regions (DMRs) associated with binary disease status. Most of these methods are being developed for detecting differential methylation rates between cases and controls. We consider multiple severity levels of disease, and develop a Bayesian statistical method to detect the region with increasing (or decreasing) methylation rates as the disease severity increases. Patients are classified into more than two groups, based on the disease severity (e.g., stages of cancer), and DMRs are detected by using moving windows along the genome. Within each window, the Bayes factor is calculated to test the hypothesis of monotonic increase in methylation rates corresponding to severity of the disease versus no difference. A mixed-effect model is used to incorporate the correlation of methylation rates of nearby CpG sites in the region. Results from extensive simulation indicate that our proposed method is statistically valid and reasonably powerful. We demonstrate our approach on a bisulfite sequencing dataset from a chronic lymphocytic leukemia (CLL) study.
Collapse
Affiliation(s)
- Fengjiao Dunbar
- Genomics Research Center, AbbVie, North Chicago, IL 60064, USA.
| | - Hongyan Xu
- Department of Population Health Sciences, Augusta University, Augusta, GA 30912, USA.
| | - Duchwan Ryu
- Department of Statistics and Actuarial Science, Northern Illinois University, DeKalb, IL 60178, USA.
| | - Santu Ghosh
- Department of Population Health Sciences, Augusta University, Augusta, GA 30912, USA.
| | - Huidong Shi
- Georgia Cancer Center, Augusta University, Augusta, GA 30912, USA.
| | - Varghese George
- Department of Population Health Sciences, Augusta University, Augusta, GA 30912, USA.
| |
Collapse
|
7
|
Julien L, Chassagne J, Peccate C, Lorain S, Piétri-Rouxel F, Danos O, Benkhelifa-Ziyyat S. RFX1 and RFX3 Transcription Factors Interact with the D Sequence of Adeno-Associated Virus Inverted Terminal Repeat and Regulate AAV Transduction. Sci Rep 2018; 8:210. [PMID: 29317724 PMCID: PMC5760533 DOI: 10.1038/s41598-017-18604-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 12/13/2017] [Indexed: 12/31/2022] Open
Abstract
Adeno-associated virus (AAV) transduction efficiency depends on the way in which cellular proteins process viral genomes in the nucleus. In this study, we have investigated the binding of nuclear proteins to the double stranded D (dsD) sequence of the AAV inverted terminal repeat (ITRs) by electromobility shift assay. We present here several lines of evidence that transcription factors belonging to the RFX protein family bind specifically and selectively to AAV2 and AAV1 dsD sequences. Using supershift experiments, we characterize complexes containing RFX1 homodimers and RFX1/RFX3 heterodimers. Following transduction of HEK-293 cells, the AAV genome can be pulled-down by RFX1 and RFX3 antibodies. Moreover, our data suggest that RFX proteins which interact with transcriptional enhancers of several mammalian DNA viruses, can act as regulators of AAV mediated transgene expression.
Collapse
Affiliation(s)
- Laura Julien
- Sorbonne Universités UPMC Univ Paris 06, Inserm, Institut de Myologie, Centre de Recherche en Myologie (CRM), GH Pitié Salpêtrière, 105 bd de l'Hôpital, Paris, 13, France
| | - Julie Chassagne
- Sorbonne Universités UPMC Univ Paris 06, Inserm, Institut de Myologie, Centre de Recherche en Myologie (CRM), GH Pitié Salpêtrière, 105 bd de l'Hôpital, Paris, 13, France
| | - Cécile Peccate
- Sorbonne Universités UPMC Univ Paris 06, Inserm, Institut de Myologie, Centre de Recherche en Myologie (CRM), GH Pitié Salpêtrière, 105 bd de l'Hôpital, Paris, 13, France
| | - Stéphanie Lorain
- Sorbonne Universités UPMC Univ Paris 06, Inserm, Institut de Myologie, Centre de Recherche en Myologie (CRM), GH Pitié Salpêtrière, 105 bd de l'Hôpital, Paris, 13, France
| | - France Piétri-Rouxel
- Sorbonne Universités UPMC Univ Paris 06, Inserm, Institut de Myologie, Centre de Recherche en Myologie (CRM), GH Pitié Salpêtrière, 105 bd de l'Hôpital, Paris, 13, France
| | - Olivier Danos
- REGENXBIO, 9600 Blackwell Rd, Rockville, MD, 20850, USA
| | - Sofia Benkhelifa-Ziyyat
- Sorbonne Universités UPMC Univ Paris 06, Inserm, Institut de Myologie, Centre de Recherche en Myologie (CRM), GH Pitié Salpêtrière, 105 bd de l'Hôpital, Paris, 13, France.
| |
Collapse
|
8
|
Shibata M, Kanda M, Shimizu D, Tanaka H, Umeda S, Hayashi M, Inaishi T, Miyajima N, Adachi Y, Takano Y, Nakanishi K, Takeuchi D, Noda S, Kodera Y, Kikumori T. Expression of regulatory factor X1 can predict the prognosis of breast cancer. Oncol Lett 2017; 13:4334-4340. [PMID: 28599435 DOI: 10.3892/ol.2017.6005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Accepted: 03/14/2017] [Indexed: 12/11/2022] Open
Abstract
Breast cancer (BC) is the most common malignancy among women. Identifying novel biomarkers to predict prognosis accurately is important in managing this disease. The regulatory factor X1 (RFX1) gene is a member of the regulatory factor X gene family. Its protein reportedly downregulates the proto-oncogene c-myc, but its role in BC has been unclear. In this study, expression and methylation status of RFX1 were determined in BC cell lines. We then evaluated RFX1 mRNA expression levels with regard to clinicopathological factors including postoperative prognosis in 167 patients with BC. Expression of RFX1 was heterogeneous among cell lines, and we found no DNA methylation at the RFX1 promoter region. Patients were categorized into groups with high or low RFX1 expression, based on ratio of RFX1 mRNA expression in BC and adjacent non-cancerous tissues. The high RFX1 group was significantly associated with low T factor (P=0.028), earlier disease stage (P=0.015), positive expression of estrogen receptor (P=0.005) and progesterone receptor (P=0.011), negative expression of human epidermal growth factor receptor 2 (P=0.001). The high RFX1 group experienced more favorable disease-free survival (P=0.007) and overall survival (P=0.013). In multivariate analysis, RFX1 expression was an independent prognostic factor for disease-free survival. Our findings indicate that RFX1 may serve as a prognostic marker for BC.
Collapse
Affiliation(s)
- Masahiro Shibata
- Department of Breast and Endocrine Surgery (Surgery II), Nagoya University Graduate School of Medicine, Showa-ku, Nagoya 466-8550, Japan
| | - Mitsuro Kanda
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Showa-ku, Nagoya 466-8550, Japan
| | - Dai Shimizu
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Showa-ku, Nagoya 466-8550, Japan
| | - Haruyoshi Tanaka
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Showa-ku, Nagoya 466-8550, Japan
| | - Shinichi Umeda
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Showa-ku, Nagoya 466-8550, Japan
| | - Masamichi Hayashi
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Showa-ku, Nagoya 466-8550, Japan
| | - Takahiro Inaishi
- Department of Breast and Endocrine Surgery (Surgery II), Nagoya University Graduate School of Medicine, Showa-ku, Nagoya 466-8550, Japan
| | - Noriyuki Miyajima
- Department of Breast and Endocrine Surgery (Surgery II), Nagoya University Graduate School of Medicine, Showa-ku, Nagoya 466-8550, Japan
| | - Yayoi Adachi
- Department of Breast and Endocrine Surgery (Surgery II), Nagoya University Graduate School of Medicine, Showa-ku, Nagoya 466-8550, Japan
| | - Yuko Takano
- Department of Breast and Endocrine Surgery (Surgery II), Nagoya University Graduate School of Medicine, Showa-ku, Nagoya 466-8550, Japan
| | - Kenichi Nakanishi
- Department of Breast and Endocrine Surgery (Surgery II), Nagoya University Graduate School of Medicine, Showa-ku, Nagoya 466-8550, Japan
| | - Dai Takeuchi
- Department of Breast and Endocrine Surgery (Surgery II), Nagoya University Graduate School of Medicine, Showa-ku, Nagoya 466-8550, Japan
| | - Sumiyo Noda
- Department of Breast and Endocrine Surgery (Surgery II), Nagoya University Graduate School of Medicine, Showa-ku, Nagoya 466-8550, Japan
| | - Yasuhiro Kodera
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Showa-ku, Nagoya 466-8550, Japan
| | - Toyone Kikumori
- Department of Breast and Endocrine Surgery (Surgery II), Nagoya University Graduate School of Medicine, Showa-ku, Nagoya 466-8550, Japan
| |
Collapse
|
9
|
The role of CD44 in glioblastoma multiforme. J Clin Neurosci 2016; 34:1-5. [PMID: 27578526 DOI: 10.1016/j.jocn.2016.05.012] [Citation(s) in RCA: 107] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2016] [Accepted: 05/08/2016] [Indexed: 02/07/2023]
Abstract
A transmembrane molecule with several isoforms, CD44 is overexpressed in many tumors and promotes tumor formation through interactions with the tumor microenvironment. CD44 has been implicated in malignant processes including cell motility, tumor growth, and angiogenesis. The role of CD44 has been examined in many cancer types. This paper provides, to our knowledge, the first focused review of the role of CD44 in glioblastoma multiforme (GBM), the most common and fatal of primary brain cancers. We summarize research that describes how CD44 promotes GBM aggressiveness by increasing tumor cell invasion, proliferation and resistance to standard chemoradiation therapy. Effects of CD44 inhibition in GBM are also explored. Clinical trials investigating CD44 targeting in CD44-positive solid tumors are underway, and the evidence presented here suggests that CD44 inhibition in GBM may be a promising therapy.
Collapse
|
10
|
Su JC, Chiang HC, Tseng PH, Tai WT, Hsu CY, Li YS, Huang JW, Ko CH, Lin MW, Chu PY, Liu CY, Chen KF, Shiau CW. RFX-1-dependent activation of SHP-1 inhibits STAT3 signaling in hepatocellular carcinoma cells. Carcinogenesis 2014; 35:2807-2814. [DOI: 10.1093/carcin/bgu210] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023] Open
|
11
|
Obatoclax analog SC-2001 inhibits STAT3 phosphorylation through enhancing SHP-1 expression and induces apoptosis in human breast cancer cells. Breast Cancer Res Treat 2014; 146:71-84. [PMID: 24903225 DOI: 10.1007/s10549-014-3000-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Accepted: 05/13/2014] [Indexed: 10/25/2022]
Abstract
Interfering oncogenic STAT3 signaling is a promising anti-cancer strategy. We examined the efficacy and drug mechanism of an obatoclax analog SC-2001, a novel STAT3 inhibitor, in human breast cancer cells. Human breast cancer cell lines were used for in vitro studies. Apoptosis was examined by both flow cytometry and western blot. Signaling pathways were assessed by western blot. In vivo efficacy of SC-2001 was tested in xenograft nude mice. SC-2001 inhibited cell growth and induced apoptosis in association with downregulation of p-STAT3 (Tyr 705) in breast cancer cells. STAT3-regulated proteins, including Mcl-1, survivin, and cyclin D1, were repressed by SC-2001. Over-expression of STAT3 in MDA-MB-468 cells protected cells from SC-2001-induced apoptosis. Moreover, SC-2001 enhanced the expression of protein tyrosine phosphatase SHP-1, a negative regulator of STAT3. Furthermore, the enhanced SHP-1 expression, in conjunction with increased SHP-1 phosphatase activity, was mediated by upregulated transcription by RFX-1. Chromatin immunoprecipitation assay revealed that SC-2001 increased the binding capacity of RFX-1 to the SHP-1 promoter. Knockdown of either RFX-1 or SHP-1 reduced SC-2001-induced apoptosis, whereas ectopic expression of RFX-1 increased SHP-1 expression and enhanced the apoptotic effect of SC-2001. Importantly, SC-2001 suppressed tumor growth in association with enhanced RFX-1 and SHP-1 expression and p-STAT3 downregulation in MDA-MB-468 xenograft tumors. SC-2001 induced apoptosis in breast cancer cells, an effect that was mediated by RFX-1 upregulated SHP-1 expression and SHP-1-dependent STAT3 inactivation. Our study indicates targeting STAT3 signaling pathway may be a useful approach for the development of targeted agents for anti-breast cancer.
Collapse
|
12
|
Feng C, Zhang Y, Yin J, Li J, Abounader R, Zuo Z. Regulatory factor X1 is a new tumor suppressive transcription factor that acts via direct downregulation of CD44 in glioblastoma. Neuro Oncol 2014; 16:1078-85. [PMID: 24526308 DOI: 10.1093/neuonc/nou010] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND The biological functions of regulatory factor (RF)X1, a transcription factor, are not known. Since the RFX1 gene is often epigenetically silenced and clusters of differentiation (CD)44 proteins that regulate cancer cell biology are increased in human glioblastomas, we designed this study to determine whether RFX1 could regulate CD44 expression in glioblastoma. METHODS Regulatory factor X1 was overexpressed in 4 human glioblastoma cell lines. CD44 expression and cell proliferation, apoptosis, and invasion were assayed under in vitro conditions. In vivo growth of human glioblastoma xenografts was determined in mice. The expression of RFX1 and CD44 in human glioblastoma tissues was quantified. RESULTS A putative RFX1 binding sequence existed in the first exon of the human CD44 gene. The transcription activity of the DNA fragment containing this putative sequence was decreased in cells overexpressing RFX1. Regulatory factor X1 bound to the CD44 gene in glioblastoma cells. It reduced CD44 expression and activated Akt and extracellular signal-regulated kinase, signaling molecules downstream of CD44 to regulate cell proliferation and survival. Overexpression of RFX1 inhibited the survival, proliferation, and transwell invasion of glioblastoma cells and in vivo growth of human glioblastoma xenografts. CD44 overexpression reversed RFX1 effects on cell proliferation. Finally, CD44 protein levels were inversely correlated with RFX1 protein levels in human glioblastoma tissues. CONCLUSIONS These results suggest that RFX1 directly regulates CD44 expression. This mechanism may contribute to RFX1's effects on proliferation, survival, and invasion of glioblastoma cells. Our results provide initial evidence that RFX1 may be an important target/regulator of the malignancy of glioblastoma.
Collapse
Affiliation(s)
- Chenzhuo Feng
- Department of Anesthesiology, University of Virginia, Charlottesville, VA, USA (C.F., J.Y., J.L., Z.Z.); Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA, USA (Y.Z., R.A.); Department of Neurosurgery, Xinqiao Hospital, Third Military Medical University, Chongqing, China (J.Y.); Department of Anesthesiology, Fourth Affiliated Hospital, Harbin Medical University, Harbin, China (J.L.)
| | - Ying Zhang
- Department of Anesthesiology, University of Virginia, Charlottesville, VA, USA (C.F., J.Y., J.L., Z.Z.); Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA, USA (Y.Z., R.A.); Department of Neurosurgery, Xinqiao Hospital, Third Military Medical University, Chongqing, China (J.Y.); Department of Anesthesiology, Fourth Affiliated Hospital, Harbin Medical University, Harbin, China (J.L.)
| | - Jinbo Yin
- Department of Anesthesiology, University of Virginia, Charlottesville, VA, USA (C.F., J.Y., J.L., Z.Z.); Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA, USA (Y.Z., R.A.); Department of Neurosurgery, Xinqiao Hospital, Third Military Medical University, Chongqing, China (J.Y.); Department of Anesthesiology, Fourth Affiliated Hospital, Harbin Medical University, Harbin, China (J.L.)
| | - Jun Li
- Department of Anesthesiology, University of Virginia, Charlottesville, VA, USA (C.F., J.Y., J.L., Z.Z.); Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA, USA (Y.Z., R.A.); Department of Neurosurgery, Xinqiao Hospital, Third Military Medical University, Chongqing, China (J.Y.); Department of Anesthesiology, Fourth Affiliated Hospital, Harbin Medical University, Harbin, China (J.L.)
| | - Roger Abounader
- Department of Anesthesiology, University of Virginia, Charlottesville, VA, USA (C.F., J.Y., J.L., Z.Z.); Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA, USA (Y.Z., R.A.); Department of Neurosurgery, Xinqiao Hospital, Third Military Medical University, Chongqing, China (J.Y.); Department of Anesthesiology, Fourth Affiliated Hospital, Harbin Medical University, Harbin, China (J.L.)
| | - Zhiyi Zuo
- Department of Anesthesiology, University of Virginia, Charlottesville, VA, USA (C.F., J.Y., J.L., Z.Z.); Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA, USA (Y.Z., R.A.); Department of Neurosurgery, Xinqiao Hospital, Third Military Medical University, Chongqing, China (J.Y.); Department of Anesthesiology, Fourth Affiliated Hospital, Harbin Medical University, Harbin, China (J.L.)
| |
Collapse
|
13
|
Jiang J, Zhang N, Shiba H, Li L, Wang Z. Spermatogenesis associated 4 promotes Sertoli cell proliferation modulated negatively by regulatory factor X1. PLoS One 2013; 8:e75933. [PMID: 24146794 PMCID: PMC3795713 DOI: 10.1371/journal.pone.0075933] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Accepted: 08/22/2013] [Indexed: 02/07/2023] Open
Abstract
Spermatogenesis associated 4 (Spata4), a testis-specific and CpG island associated gene, is involved in regulating cell proliferation, differentiation and apoptosis. To obtain insight into the role of Spata4 in cell cycling control, we characterized the promoter region of Spata4 and investigated its transcriptional regulation mechanism. The Spata4 promoter is unidirectional transcribed and possesses multiple transcription start sites. Moreover, we present evidence that regulatory factor X1 (RFX1) could bind the typical 14-bp cis-elements of Spata4 promoter, modulate transcriptional activity and endogenous expression of Spata4, and further regulate the proliferation of Sertoli cells. Overexpression of RFX1 was shown to down-regulate both the promoter activity and mRNA expression of Spata4, whereas knockdown of RFX1 demonstrated the opposite effects. Our studies provide insight into Spata4 gene regulation and imply the potential role of RFX1 in growth of Sertoli cells. RFX1 may have negative effect on cell proliferation of Sertoli cells via modulating Spata4 expression levels by binding the conserved 14-bp cis-elements of Spata4 promoter.
Collapse
Affiliation(s)
- Junjun Jiang
- MOE Key Laboratory of Protein Sciences, Department of Pharmacology, School of Medicine, Tsinghua University, Beijing, China
| | - Nannan Zhang
- MOE Key Laboratory of Protein Sciences, Department of Pharmacology, School of Medicine, Tsinghua University, Beijing, China
| | - Hiroshi Shiba
- MOE Key Laboratory of Protein Sciences, Department of Pharmacology, School of Medicine, Tsinghua University, Beijing, China
- Department of Bioinformatics, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Tokyo, Japan
| | - Liyuan Li
- MOE Key Laboratory of Protein Sciences, Department of Pharmacology, School of Medicine, Tsinghua University, Beijing, China
| | - Zhao Wang
- MOE Key Laboratory of Protein Sciences, Department of Pharmacology, School of Medicine, Tsinghua University, Beijing, China
- * E-mail:
| |
Collapse
|
14
|
Hsu YC, Kao CY, Chung YF, Chen MS, Chiu IM. Ciliogenic RFX transcription factors regulate FGF1 gene promoter. J Cell Biochem 2012; 113:2511-22. [PMID: 22415835 DOI: 10.1002/jcb.24127] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Fibroblast growth factor 1 (FGF1) has been shown to regulate cell proliferation, cell division, and neurogenesis. Human FGF1 gene 1B promoter (-540 to +31)-driven green fluorescence (F1BGFP) was shown to recapitulate endogenous FGF1 gene expression. It can also be used to isolate neural stem/progenitor cells (NSPCs) and glioblastoma stem cells (GBM-SCs) from developing mouse brains and human glioblastoma tissues, respectively. However, the regulatory mechanisms of FGF-1B promoter and F1BGFP(+) cells are not clear. In this study, we present several lines of evidence to show the roles of ciliogenic RFX transcription factors in the regulation of FGF-1B gene promoter and F1BGFP(+) cells: (i) RFX1, RFX2, and RFX3 transcription factors could directly bind the 18-bp cis-element (-484 to -467), and contribute to the regulation of FGF1 promoter and neurosphere formation. (ii) We demonstrated RFX2/RFX3 complex could only be detected in the nuclear extract of FGF-1B positive cells, but not in FGF-1B negative cells. (iii) Protein kinase C inhibitors, staurosporine and rottlerin, could decrease the percentage of F1BGFP(+) cells and their neurosphere formation efficiency through reducing the RFX2/3 complex. (iv) RNA interference knockdown of RFX2 could significantly reduce the percentage of F1BGFP(+) cells and their neurosphere formation efficiency whereas overexpression of RFX2 resulted in the opposite effects. Taken together, this study suggests ciliogenic RFX transcription factors regulate FGF-1B promoter activity and the maintenance of F1BGFP(+) NSPCs and GBM-SCs.
Collapse
Affiliation(s)
- Yi-Chao Hsu
- Division of Regenerative Medicine, Institute of Cellular and System Medicine, National Health Research Institutes, Miaoli, Taiwan
| | | | | | | | | |
Collapse
|
15
|
Feng C, Zuo Z. Regulatory factor X1-induced down-regulation of transforming growth factor β2 transcription in human neuroblastoma cells. J Biol Chem 2012; 287:22730-9. [PMID: 22582395 DOI: 10.1074/jbc.m111.338590] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Regulatory factor X (RFX) proteins are transcription factors. Seven mammalian RFX proteins have been identified. RFX1 is the prototype RFX. However, its biological functions are not known. Here, RFX1 overexpression reduced fetal bovine serum-stimulated proliferation of SH-SY5Y cells, a human neuroblastoma cell line. This inhibition is associated with decreased transforming growth factor β2 (TGFβ2) and phospho-extracellular signal-regulated kinase (ERK). Exogenous TGFβ2 increased cell proliferation and phospho-ERK in cells overexpressing RFX1. An anti-TGFβ2 antibody and PD98059, an ERK activation inhibitor, inhibited SH-SY5Y cell proliferation. TGFβ2 promoter activity was decreased in cells overexpressing RFX1. Chromosome immunoprecipitation assay showed that RFX1 bound the TGFβ2 promoter. RFX1 down-regulation increased TGFβ2 in SH-SY5Y and HCN-1A cells, a normal human neuronal cell line. More importantly, TGFβ2 concentrations were negatively correlated with RFX1 levels in human medulloblastoma tissues with a R(2) of 0.464. These results suggest that RFX1 reduces cell proliferation through inhibiting the TGFβ2-ERK signaling pathway. RFX1 blocks TGFβ2 expression through its direct action on TGFβ2 transcription. This effect also appears in human brain tumor tissues. Because TGFβ is known to be involved in cancer development, our results provide initial evidence to suggest that RFX1 may play an important role in human tumor biology.
Collapse
Affiliation(s)
- Chenzhuo Feng
- Department of Anesthesiology, School of Medicine, University of Virginia, Charlottesville, Virginia 22908, USA
| | | |
Collapse
|
16
|
Study of FoxA pioneer factor at silent genes reveals Rfx-repressed enhancer at Cdx2 and a potential indicator of esophageal adenocarcinoma development. PLoS Genet 2011; 7:e1002277. [PMID: 21935353 PMCID: PMC3174211 DOI: 10.1371/journal.pgen.1002277] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2011] [Accepted: 07/20/2011] [Indexed: 12/11/2022] Open
Abstract
Understanding how silent genes can be competent for activation provides insight into development as well as cellular reprogramming and pathogenesis. We performed genomic location analysis of the pioneer transcription factor FoxA in the adult mouse liver and found that about one-third of the FoxA bound sites are near silent genes, including genes without detectable RNA polymerase II. Virtually all of the FoxA-bound silent sites are within conserved sequences, suggesting possible function. Such sites are enriched in motifs for transcriptional repressors, including for Rfx1 and type II nuclear hormone receptors. We found one such target site at a cryptic “shadow” enhancer 7 kilobases (kb) downstream of the Cdx2 gene, where Rfx1 restricts transcriptional activation by FoxA. The Cdx2 shadow enhancer exhibits a subset of regulatory properties of the upstream Cdx2 promoter region. While Cdx2 is ectopically induced in the early metaplastic condition of Barrett's esophagus, its expression is not necessarily present in progressive Barrett's with dysplasia or adenocarcinoma. By contrast, we find that Rfx1 expression in the esophageal epithelium becomes gradually extinguished during progression to cancer, i.e, expression of Rfx1 decreased markedly in dysplasia and adenocarcinoma. We propose that this decreased expression of Rfx1 could be an indicator of progression from Barrett's esophagus to adenocarcinoma and that similar analyses of other transcription factors bound to silent genes can reveal unanticipated regulatory insights into oncogenic progression and cellular reprogramming. FoxA transcriptional regulatory proteins are “pioneer factors” that engage silent genes, helping to endow the competence for activation. About a third of the DNA sites we found to be occupied by FoxA in the adult liver are at genes that are silent. Analysis of transcription factor binding motifs near the FoxA sites at silent genes revealed a co-occurrence of motifs for the transcriptional repressors Rfx1 and type II nuclear hormone receptors (NHR-II). Further analysis of one such region downstream of the Cdx2 gene shows that it is a cryptic enhancer, in that it functions poorly unless Rfx1 or NHR-II binding is prevented, in which case FoxA1 promotes enhancer activity. Cdx2 encodes a transcription factor that promotes intestinal differentiation; ectopic expression of Cdx2 in the esophagus can help promote metaplasia and cancer. By screening numerous staged samples of human tissues, we show that Rfx1 expression is extinguished during the progression to esophageal adenocarcinoma and thus may serve as a marker of cancer progression. These studies exemplify how the analysis of pioneer factors bound to silent genes can reveal a basis for the competence of cells to deregulate gene expression and undergo transitions to cancer.
Collapse
|
17
|
Epigenetics and SLE: RFX1 downregulation causes CD11a and CD70 overexpression by altering epigenetic modifications in lupus CD4+ T cells. J Autoimmun 2010; 35:58-69. [DOI: 10.1016/j.jaut.2010.02.002] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2009] [Revised: 02/01/2010] [Accepted: 02/04/2010] [Indexed: 10/19/2022]
|
18
|
Hsu YC, Liao WC, Kao CY, Chiu IM. Regulation of FGF1 gene promoter through transcription factor RFX1. J Biol Chem 2010; 285:13885-95. [PMID: 20189986 PMCID: PMC2859551 DOI: 10.1074/jbc.m109.081463] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2009] [Revised: 01/20/2010] [Indexed: 12/11/2022] Open
Abstract
Fibroblast growth factor 1 (FGF1) has been suggested to have an important role in cell growth, proliferation, and neurogenesis. Human FGF1 gene 1B promoter (-540 to +31)-driven green fluorescence (F1BGFP) has been shown to monitor endogenous FGF1 expression. F1BGFP could also be used to isolate neural stem/progenitor cells from embryonic, neonatal, and adult mouse brains or to isolate glioblastoma stem cells (GBM-SCs) from human glioblastoma tissues. Here, we present evidence that transcription factor RFX1 could bind the 18-bp cis-elements (-484 to -467) of the F1B promoter, modulate F1BGFP expression and endogenous FGF1 expression, and further regulate the maintenance of GBM-SCs. These observations were substantiated by using yeast one-hybrid assay, electrophoretic mobility shift assay, chromatin immunoprecipitation assay, gain- and loss-of-function assays, and neurosphere assays. Overexpression of RFX1 was shown to down-regulate FGF-1B mRNA expression and neurosphere formation in human glioblastoma cells, whereas RNA interference knockdown of RFX1 demonstrated the opposite effects. Our findings provide insight into FGF1 gene regulation and suggest that the roles of FGF1 and RFX1 in the maintenance of GBM-SCs. RFX1 may negatively regulate the self-renewal of GBM-SCs through modulating FGF-1B and FGF1 expression levels by binding the 18-bp cis-elements of the F1B promoter.
Collapse
Affiliation(s)
- Yi-Chao Hsu
- From the Division of Regenerative Medicine, Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan, Miaoli County 35053, Taiwan
| | - Wei-Chih Liao
- From the Division of Regenerative Medicine, Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan, Miaoli County 35053, Taiwan
- the Graduate Program of Biotechnology in Medicine, Institute of Biotechnology, and Department of Life Sciences, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Chien-Yu Kao
- From the Division of Regenerative Medicine, Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan, Miaoli County 35053, Taiwan
- the Graduate Program of Biotechnology in Medicine, Institute of Biotechnology, and Department of Life Sciences, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Ing-Ming Chiu
- From the Division of Regenerative Medicine, Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan, Miaoli County 35053, Taiwan
- the Graduate Program of Biotechnology in Medicine, Institute of Biotechnology, and Department of Life Sciences, National Tsing Hua University, Hsinchu 30013, Taiwan
- the Department of Internal Medicine and Comprehensive Cancer Center, Ohio State University, Columbus, Ohio 43210, and
- the Department of Life Sciences, National Chung Hsing University, Taichung 250, Taiwan
| |
Collapse
|
19
|
Enenstein J, Milbauer L, Domingo E, Wells A, Roney M, Kiley J, Wei P, Hebbel RP. Proinflammatory phenotype with imbalance of KLF2 and RelA: risk of childhood stroke with sickle cell anemia. Am J Hematol 2010; 85:18-23. [PMID: 19957349 DOI: 10.1002/ajh.21558] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Altered inflammation signaling within the cerebral vasculature may be an important risk factor for stroke in children with sickle cell anemia (SCA). This study examines how differential expression of NFkappaB/p65 (RelA), KLF2, and other transcription factors may act as switches in inflammation signaling leading to observed differences between non-SCA (NS) African Americans and African Americans with SCA who are either at risk (AR) or not at risk (NAR) of childhood stroke based on occurrence of Circle of Willis disease. Clover/Transfac analysis was used to identify overrepresented transcription factor binding motifs on genes associated with inflammation. Transcription factor binding motifs for the NFkappaB family and RFX1 were overrepresented on inflammation signaling gene set analysis. Variations in protein expression were determined by flow cytometry of blood outgrowth endothelial cells (BOECs) from NS, AR, and NAR donors and Western blots of protein extracts from both unstimulated and TNFalpha/IL1beta-stimulated BOECs. BOECs from patients with SCA had more cytoplasmic-derived RelA compared with NS BOECs. Sickle BOECs also had heightened responses to inflammatory stimuli compared with NS BOECs, as shown by increased nuclear RelA, and intracellular adhesion molecule (ICAM) response to TNFalpha/IL1beta stimulation. Multiple control points in RelA signaling were associated with risk of childhood stroke. The ratio of proinflammatory factor RelA to anti-inflammatory factor KLF2 was greater in BOECs from AR donors than NS donors. Group risk of childhood stroke with SCA was greatest among individuals who exhibited increased expression of proinflammatory transcription factors and decreased expression of transcription factors that suppress inflammation.
Collapse
Affiliation(s)
- Judy Enenstein
- Vascular Biology Center and Division of Hematology-Oncology-Transplantation, Department of Medicine, University of Minnesota Medical School, 420 Delaware Street SE, Minneapolis, MN 55455, USA.
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Uncoupling between Ig somatic hypermutation and oncogene mutation in mouse lymphoma. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2009; 1793:418-26. [DOI: 10.1016/j.bbamcr.2008.10.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2008] [Revised: 10/21/2008] [Accepted: 10/21/2008] [Indexed: 01/08/2023]
|
21
|
|
22
|
Wang KR, Nemoto T, Yokota Y. RFX1 mediates the serum-induced immediate early response of Id2 gene expression. J Biol Chem 2007; 282:26167-77. [PMID: 17630394 DOI: 10.1074/jbc.m703448200] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Id2, a negative regulator of basic helix-loop-helix transcription factors, is involved in regulating cell differentiation and proliferation. To obtain insight into the role of Id2 in cell cycle control, we investigated the mechanisms underlying the immediate early response of Id2 expression to serum stimulation in NIH3T3 cells. Luciferase reporter analysis with deletion and point mutants demonstrated the serum response element of Id2 (Id2-SRE) to be a consensus binding site for RFX1 (regulatory factor for X-box 1) present 3.0 kb upstream of the transcription initiation site of Id2. Gel shift and chromatin immunoprecipitation assays confirmed the binding of RFX1 to Id2-SRE in vitro and in vivo, respectively. In both assays, RFX1 binding was observed not only in serum-stimulated cells, but also in serum-starved cells. Knockdown of RFX1 by RNA interference disturbed the immediate early response of Id2 expression in cells and abrogated the Id2-SRE-mediated induction of luciferase activity by serum. These alterations were rescued by the introduction of RNA interference-resistant RFX1 into cells. On the other hand, in the Id2-SRE-mediated reporter assay, RFX1 with an N-terminal deletion abrogated the serum response, whereas RFX1 with a C-terminal deletion enhanced the reporter activity in serum-starved cells. Furthermore, HDAC1 was recruited to Id2-SRE in serum-starved cells. These results demonstrate that RFX1 mediates the immediate early response of the Id2 gene by serum stimulation and suggest that the function of RFX1 is regulated intramolecularly in its suppression in growth-arrested cells. Our results unveil a novel transcriptional control of immediate early gene expression.
Collapse
Affiliation(s)
- Kui-Rong Wang
- Division of Molecular Genetics, Department of Biochemistry and Bioinformative Sciences, University of Fukui, Fukui, Japan
| | | | | |
Collapse
|
23
|
Lubelsky Y, Reuven N, Shaul Y. Autorepression of rfx1 gene expression: functional conservation from yeast to humans in response to DNA replication arrest. Mol Cell Biol 2005; 25:10665-73. [PMID: 16287876 PMCID: PMC1291218 DOI: 10.1128/mcb.25.23.10665-10673.2005] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The yeast Saccharomyces cerevisiae Crt1 transcription repressor is an effector of the DNA damage and replication checkpoint pathway. Crt1 binds and represses genes encoding ribonucleotide reductase (RNR) and its own promoter, establishing a negative-feedback pathway. The role of Rfx1, the mammalian Crt1 homologue, remained uncertain. In this study we investigated the possibility that Rfx1 plays a similar function in animal cells. We show here that, like Crt1, Rfx1 binds and represses its own promoter. Furthermore, Rfx1 binding to its promoter is reduced upon induction of a DNA replication block by hydroxyurea, which led to a release of repression. Significantly, like Crt1, Rfx1 binds and represses the RNR-R2 gene. Upon blocking replication and UV treatment, expression of both Rfx1 and RNR-R2 is induced; however, unlike the results seen with the RNR-R2 gene, the derepression of the RFX1 gene is only partially blocked by inhibiting Chk1, the DNA checkpoint kinase. This report provides evidence for a common mechanism for Crt1 and Rfx1 expression and for the conservation of their mode of action in response to a DNA replication block. We suggest that Rfx1 plays a role in the DNA damage response by down-regulating a subset of genes whose expression is increased in response to replication blocking and UV-induced DNA damage.
Collapse
Affiliation(s)
- Yoav Lubelsky
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | |
Collapse
|
24
|
Ohashi Y, Ueda M, Kawase T, Kawakami Y, Toda M. Identification of an epigenetically silenced gene, RFX1, in human glioma cells using restriction landmark genomic scanning. Oncogene 2004; 23:7772-9. [PMID: 15334059 DOI: 10.1038/sj.onc.1208058] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
To identify the CpG islands differentially methylated in human glioma, we performed restriction landmark genomic scanning with a CpG methylation-sensitive enzyme. We found 12 spots, the intensity of which was entirely lost or decreased in both the human glioma tissues examined as compared with that in matched normal lymphocytes, indicating aberrant methylation of these CpG islands in gliomas. The expression of RFX1, one of the genes associated with the methylated CpG islands, was frequently decreased in human glioma cell lines and tissues. We also demonstrated that the isolated CpG island located in the seventh intron of the RFX1 gene had enhancer activity and was hypermethylated in all of the glioma tissues and cell lines analysed, but not in normal brains or lymphocytes. Treatment of glioma cells with a demethylating agent, 5-azacytidine, resulted in the expression of RFX1, indicating that the silencing of the RFX1 gene may be attributable to its methylation. RFX1 has been implicated in transcriptional downregulation of the proto-oncogene c-myc. By expression of the RFX1 gene, the cellular proliferative activity of glioma cells was suppressed. Taken together, these results suggest that the RFX1 gene may be epigenetically silenced in human gliomas and involved in glioma tumorigenesis.
Collapse
Affiliation(s)
- Yohei Ohashi
- Neuro-immunology Research Group, Keio University, School of Medicine, Tokyo, Japan
| | | | | | | | | |
Collapse
|
25
|
Tamura T, Kong HJ, Tunyaplin C, Tsujimura H, Calame K, Ozato K. ICSBP/IRF-8 inhibits mitogenic activity of p210 Bcr/Abl in differentiating myeloid progenitor cells. Blood 2003; 102:4547-54. [PMID: 12933588 DOI: 10.1182/blood-2003-01-0291] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Interferon consensus sequence binding protein/interferon regulatory factor 8 (ICSBP/IRF-8) is a transcription factor that controls myeloid cell development. ICSBP-/- mice develop a chronic myelogenous leukemia (CML)-like syndrome. Several observations on patients and mouse models have implicated ICSBP in the pathogenesis of CML. In this paper, we investigated whether ICSBP modulates the growth-promoting activity of Bcr/Abl, the causal oncoprotein for CML. When transformed with p210 Bcr/Abl, ICSBP-/- myeloid progenitor cells lost growth factor dependence and grew in the absence of granulocyte-macrophage colony-stimulating factor. When ICSBP was ectopically expressed, Bcr/Abl-transformed cells underwent complete growth arrest and differentiated into mature, functional macrophages without inhibiting the kinase activity of Bcr/Abl. Providing a mechanistic basis for the growth arrest, ICSBP markedly repressed c-Myc messenger RNA (mRNA)-expression, a downstream target of Bcr/Abl. A further analysis with the ICSBP/estrogen receptor chimera showed that ICSBP repression of c-Myc is indirect and is mediated by another gene(s). We identified Blimp-1 and METS/PE1, potent c-Myc repressors, as direct targets of ICSBP activated in these cells. Consistent with this, ectopic Blimp-1 repressed c-Myc expression and inhibited cell growth. These results indicate that ICSBP inhibits growth of Bcr/Abl-transformed myeloid progenitor cells by activating several genes that interfere with the c-Myc pathway.
Collapse
MESH Headings
- Animals
- Benzamides
- Cell Differentiation/drug effects
- Cell Division
- Cell Transformation, Neoplastic
- Cells, Cultured/cytology
- Enzyme Inhibitors/pharmacology
- Estradiol/pharmacology
- Fusion Proteins, bcr-abl/antagonists & inhibitors
- Gene Expression Regulation
- Genes, myc
- Imatinib Mesylate
- Interferon Regulatory Factors
- Macrophages/cytology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Myeloid Cells/cytology
- Myeloid Cells/drug effects
- Piperazines/pharmacology
- Positive Regulatory Domain I-Binding Factor 1
- Pyrimidines/pharmacology
- RNA, Messenger/biosynthesis
- Receptors, Estrogen/drug effects
- Receptors, Estrogen/genetics
- Recombinant Fusion Proteins/physiology
- Repressor Proteins/biosynthesis
- Repressor Proteins/genetics
- Repressor Proteins/physiology
- Transcription Factors/biosynthesis
- Transcription Factors/genetics
- Transcription, Genetic
Collapse
Affiliation(s)
- Tomohiko Tamura
- Bldg 6, Rm 2A01, Laboratory of Molecular Growth Regulation, National Institute of Child Health and Human Development, National Institutes of Health, 6 Center Dr MSC 2753, Bethesda, MD 20892-2753, USA
| | | | | | | | | | | |
Collapse
|
26
|
Park SW, Wei LN. Regulation of c-myc gene by nitric oxide via inactivating NF-kappa B complex in P19 mouse embryonal carcinoma cells. J Biol Chem 2003; 278:29776-82. [PMID: 12783888 DOI: 10.1074/jbc.m303306200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Nitric oxide (NO) may regulate gene expression by directly modifying redox state-sensitive residues of transcription factors. Here we show that the NO donor, sodium nitroprusside (SNP), rapidly represses c-myc gene transcription in a protein synthesis-independent manner in P19 embryonal carcinoma cells by inactivation of NF-kappa B. SNP treatment reduces the DNA binding ability of the constitutively active NF-kappa B heterodimer, p65/p50, and its consequent transactivation of the c-myc promoter. Repression can be blocked by the peroxynitrite scavenger, deferoxamine, but not by dithiothreitol, which triggers reduction of S-nitrosylated residues. In HEK293 cells, where tumor necrosis factor-alpha can activate NF-kappa B, SNP likewise suppresses the binding of the active NF-kappa B complex, restoring the binding of the repressive p50/p50 homodimer complex. This effect of SNP in HEK293 cells is also blocked by deferoxamine. Chromatin immunoprecipitation analysis of SNP-treated P19 cells reveals reduced association of p65, but not of p50, with the promoter region of the endogenous c-myc gene. SNP-induced p65 dissociation was associated with the recruitment of histone deacetylase 1 and 2 to the endogenous c-myc gene promoter and the subsequent deacetylation of its chromatin histone. This study is the first to demonstrate that NO modulates the transcriptional activity of the c-myc gene promoter by dissociating the active form of NF-kappa B and replacing it with a repressive NF-kappa B complex, correlated with the recruitment of gene-silencing histone deacetylases. In light of findings that NF-kappa B stimulates Myc oncoprotein expression in cancers, our findings suggest that NO should be investigated as a prospective therapeutic cancer agent.
Collapse
Affiliation(s)
- Sung Wook Park
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota 55455, USA
| | | |
Collapse
|
27
|
Cooper A, Johannsen E, Maruo S, Cahir-McFarland E, Illanes D, Davidson D, Kieff E. EBNA3A association with RBP-Jkappa down-regulates c-myc and Epstein-Barr virus-transformed lymphoblast growth. J Virol 2003; 77:999-1010. [PMID: 12502816 PMCID: PMC140836 DOI: 10.1128/jvi.77.2.999-1010.2003] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Epstein-Barr virus nuclear antigen protein 3A (EBNA3A) is one of four EBNAs (EBNA-2, EBNALP, EBNA3A, and EBNA3C) through the cellular DNA sequence-specific transcription factor RBP-Jkappa/CBF-1/CSL and are essential for conversion of primary B lymphocytes to lymphoblastoid cell lines (LCLs). In the present study, we investigated the effects of EBNA3A on EBNA2 activation of transcription in the IB4 LCL by conditionally overexpressing EBNA3A three- to fivefold. EBNA3A overexpression increased EBNA3A association with RBP-Jkappa, did not change EBNA3C association with RBP-Jkappa or EBNA or LMP1 expression, decreased EBNA2 association with RBP-Jkappa, decreased c-myc expression, and caused G(0)/G(1) growth arrest with prolonged viability. Expression of the fusion protein MycERTM in cells with conditional EBNA3A overexpression restored cell cycle progression and caused apoptosis. In contrast, MycER in the same cells without EBNA3A overexpression enhanced cell proliferation and did not increase apoptosis. These data indicate that EBNA3A overexpression inhibits protection from c-myc-induced apoptosis. In assays of EBNA2- and RBP-Jkappa-dependent transcription, EBNA3A amino acids 1 to 386 were sufficient for repression equivalent to that by wild-type EBNA3A, amino acids 1 to 124 were unimportant, amino acids 1 to 277 were insufficient, and a triple alanine substitution within the EBNA3A core RBP-Jkappa binding domain was a null mutation. In reverse genetic experiments with IB4 LCLs, the effects of conditional EBNA3A overexpression on c-myc expression and proliferation did not require amino acids 524 to 944 but did require amino acids 278 to 524 as well as wild-type sequence in the core RBP-Jkappa binding domain. The dependence of EBNA3A effects on the core RBP-Jkappa interaction domain and on the more C-terminal amino acids (amino acids 278 to 524) required for efficient RBP-Jkappa association strongly implicates RBP-Jkappa in c-myc promoter regulation.
Collapse
Affiliation(s)
- Andrew Cooper
- Virology Program and Department of Medicine, Channing Laboratory, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | |
Collapse
|
28
|
Santoni-Rugiu E, Duro D, Farkas T, Mathiasen IS, Jäättelä M, Bartek J, Lukas J. E2F activity is essential for survival of Myc-overexpressing human cancer cells. Oncogene 2002; 21:6498-509. [PMID: 12226753 DOI: 10.1038/sj.onc.1205828] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2002] [Revised: 06/18/2002] [Accepted: 06/28/2002] [Indexed: 12/22/2022]
Abstract
Effective cell cycle completion requires both Myc and E2F activities. However, whether these two activities interact to regulate cell survival remains to be tested. Here we have analysed survival of inducible c-Myc-overexpressing cell lines derived from U2OS human osteosarcoma cells, which carry wild-type pRb and p53 and are deficient for p16 and ARF expression. Induced U2OS-Myc cells neither underwent apoptosis spontaneously nor upon reconstitution of the ARF-p53 axis and/or serum-starvation. However, they died massively when concomitantly exposed to inhibitors of E2F activity, including a constitutively active pRb (RbDeltacdk) mutant, p16, a stable p27 (p27T187A) mutant, a dominant-negative (dn) CDK2, or dnDP-1. Similar apoptotic effect was observed upon down-modulation of endogenous E2Fs through overexpression of E2F binding site oligonucleotides in U2OS-Myc cells, upon expression of RbDeltacdk or dnDP-1 in the Myc-amplified HL-60 (ARF-; p53-) human leukemia cells, and upon co-transfection of Myc and RbDeltacdk in SAOS-2 (ARF+; p53-) human osteosarcoma cells but not in human primary fibroblasts. Consistent with these results, a dnp53 mutant did not abrogate the Myc-induced apoptotic phenotype, which instead strictly depended on caspase-3-like proteases and on Myc transcriptional activity. Our data indicate that in contrast to normal cells, Myc-overexpressing human cancer cells need E2F activity for their survival, regardless of their ARF and p53 status, a notion that may have important implications for antineoplastic treatment strategies.
Collapse
Affiliation(s)
- Eric Santoni-Rugiu
- Department of Cell Cycle and Cancer, Institute of Cancer Biology, Danish Cancer Society, 2100 Copenhagen E., Denmark.
| | | | | | | | | | | | | |
Collapse
|
29
|
Hoffman B, Amanullah A, Shafarenko M, Liebermann DA. The proto-oncogene c-myc in hematopoietic development and leukemogenesis. Oncogene 2002; 21:3414-21. [PMID: 12032779 DOI: 10.1038/sj.onc.1205400] [Citation(s) in RCA: 180] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The proto-oncogene c-myc has been shown to play a pivotal role in cell cycle regulation, metabolism, apoptosis, differentiation, cell adhesion, and tumorigenesis, and participates in regulating hematopoietic homeostasis. It is a transcription regulator that is part of an extensive network of interacting factors. Most probably, different biological responses are elicited by different overlapping subsets of c-Myc target genes, both induced and suppressed. Results obtained from studies employing mouse models are consistent with the need for at least one, and possibly two, mutations in addition to deregulated c-myc for malignant tumor formation. Repression of c-myc is required for terminal differentiation of many cell types, including hematopoietic cells. It has been shown that deregulated expression of c-myc in both M1 myeloid leukemic cells and normal myeloid cells derived from murine bone marrow, not only blocked terminal differentiation and its associated growth arrest, but also induced apoptosis, which is dependent on the Fas/CD95 pathway. There is evidence to suggest that the CD95/Fas death receptor pathway is an integral part of the apoptotic response associated with the end of the normal terminal myeloid differentiation program, and that deregulated c-myc expression can activate this signaling pathway prematurely. The ability of egr-1 to promote terminal myeloid differentiation when co-expressed with c-myc, and of c-fos to partially abrogate the block imparted by deregulated c-myc on myeloid differentiation, make these two genes candidate tumor suppressors. Several different transcription factors have been implicated in the down-regulation of c-myc expression during differentiation, including C/EBPalpha, CTCF, BLIMP-1, and RFX1. Alterations in the expression and/or function of these transcription factors, or of the c-Myc and Max interacting proteins, such as MM-1 and Mxi1, can influence the neoplastic process. Understanding how c-Myc controls cellular phenotypes, including the leukemic phenotype, should provide novel tools for designing drugs to promote differentiation and/or apoptosis of leukemic cells.
Collapse
Affiliation(s)
- Barbara Hoffman
- Fels Institute for Cancer Research and Molecular Biology, Department of Biochemistry, Temple University School of Medicine, 3307 North Broad Street, Philadelphia, Pennsylvania, PA 19140, USA.
| | | | | | | |
Collapse
|
30
|
Nawrocki AR, Goldring CE, Kostadinova RM, Frey FJ, Frey BM. In vivo footprinting of the human 11beta-hydroxysteroid dehydrogenase type 2 promoter: evidence for cell-specific regulation by Sp1 and Sp3. J Biol Chem 2002; 277:14647-56. [PMID: 11850421 DOI: 10.1074/jbc.m111549200] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
11beta-Hydroxysteroid dehydrogenase type 2 is selectively expressed in aldosterone target tissues, where it confers aldosterone selectivity for the mineralocorticoid receptor by inactivating 11beta-hydroxyglucocorticoids with a high affinity for the mineralocorticoid receptor. The present investigation aimed to elucidate the mechanisms accounting for the rigorous control of the HSD11B2 gene in humans. Using dimethyl sulfate in vivo footprinting via ligation-mediated PCR, we identified potentially important regions for HSD11B2 regulation in human cell lines: two GC-rich regions in the first exon (I and II) and two upstream elements (III and IV). The footprints suggest a correlation between the extent of in vivo protein occupancy at three of these regions (I, II, and III) and the rate of HSD11B2 transcription in cells with high (SW620), intermediate (HCD, MCF-7, and HK-2), or low HSD11B2 mRNA levels (SUT). Moreover, gel shift assays with nuclear extracts from these cell lines revealed that decreased HSD11B2 expression is related to a decreased binding activity with oligonucleotides containing the putative regulatory elements. Antibody supershifts identified the majority of the components of the binding complexes as the transcription factors Sp1 and Sp3. Finally, transient transfections with various deletion mutant reporters define positive regulatory elements that might account for basal and selective expression of 11beta-hydroxysteroid dehydrogenase type 2.
Collapse
Affiliation(s)
- Andrea R Nawrocki
- Division of Nephrology and Hypertension, Department of Internal Medicine, University Hospital of Berne, CH-3010 Berne, Switzerland.
| | | | | | | | | |
Collapse
|
31
|
Morotomi-Yano K, Yano KI, Saito H, Sun Z, Iwama A, Miki Y. Human regulatory factor X 4 (RFX4) is a testis-specific dimeric DNA-binding protein that cooperates with other human RFX members. J Biol Chem 2002; 277:836-42. [PMID: 11682486 DOI: 10.1074/jbc.m108638200] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Regulatory factor X (RFX) members are evolutionarily conserved transcription factors that share a highly conserved winged helix DNA-binding domain. Human RFX4 has been isolated from breast cancer as a partial cDNA encoding a short RFX-type DNA-binding domain fused to the estrogen receptor, but the entire structure of RFX4 has been unknown. Here, we report the molecular cloning and characterization of human RFX4. RFX4 contains evolutionarily conserved regions, including a RFX-type DNA-binding domain, a dimerization domain, and other conserved regions, and is closely related to RFX1, RFX2, and RFX3 in structure. The expression of RFX4 is restricted to testis. In vitro synthesized RFX4 protein bound to typical RFX binding sites in a sequence-dependent manner. Immunoprecipitation analyses showed that RFX4 interacts physically with RFX2, RFX3, and RFX4 itself but not with RFX1. In contrast to other mammalian RFX members that form dimers, RFX4 is revealed to have no distinct transcriptional activation domains. By using a chimeric protein of RFX1 and RFX4, the C-terminal domain of RFX4 was shown to be a possible transcriptional repression domain. Taken together, these results indicate that RFX4 is the first mammalian member of RFX family without transcriptional activation capacity and might function through selective interactions with other RFX members in transcriptional regulation.
Collapse
Affiliation(s)
- Keiko Morotomi-Yano
- Department of Molecular Diagnosis, Cancer Institute, Japanese Foundation for Cancer Research, 1-37-1 Kami-ikebukuro, Toshima-ku, Tokyo 170-8455, Japan
| | | | | | | | | | | |
Collapse
|
32
|
Bannwarth S, Talakoub L, Letourneur F, Duarte M, Purcell DF, Hiscott J, Gatignol A. Organization of the human tarbp2 gene reveals two promoters that are repressed in an astrocytic cell line. J Biol Chem 2001; 276:48803-13. [PMID: 11641396 DOI: 10.1074/jbc.m104645200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
TRBP1 and TRBP2 are isoforms of a double-stranded RNA-binding protein that differ in their N-terminal end and were each identified by binding to human immunodeficiency virus type 1 (HIV-1) trans-activation-responsive RNA. TRBP1 and TRBP2 also bind and modulate the function of the double-stranded RNA-activated protein kinase, protein kinase R. Both proteins increase long terminal repeat expression in human and murine cells, and their gene has been mapped to human chromosome 12. We have isolated and characterized the complete tarbp2 gene (5493 bp) coding for the two TRBP proteins. Two adjacent promoters initiate transcription of alternative first exons for TRBP1 and TRBP2 mRNAs that are spliced onto common downstream exons. TRBP2 transcription and translation start sites are localized within the first intron of TRBP1. TRBP promoters are TATA-less but have CCAAT boxes, a CpG island, and several potential binding sites for transcriptional factors. Promoter deletion analysis identified two regions from position -1397 to -330 for TRBP1 and from position -330 to +38 for TRBP2 that are important for promoter function. TRBP2 promoter activity was expressed at a higher level compared with TRBP1 promoter. In addition, a specific down-regulation of TRBP1 and TRBP2 promoter activity was identified in human astrocytic cell line U251MG compared with HeLa cells. This minimal TRBP promoter activity may account for minimal HIV-1 replication in astrocytes.
Collapse
Affiliation(s)
- S Bannwarth
- Molecular Oncology Group, McGill AIDS Centre, Lady Davis Institute for Medical Research, McGill University, Montreal, Quebec H3T 1E2, Canada
| | | | | | | | | | | | | |
Collapse
|
33
|
Haque MM, Hirano T, Nakamura H, Utiyama H. Granulocytic differentiation of HL-60 cells, both spontaneous and drug-induced, might require loss of extrachromosomal DNA encoding a gene(s) not c-MYC. Biochem Biophys Res Commun 2001; 288:586-91. [PMID: 11676483 DOI: 10.1006/bbrc.2001.5798] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Treatment of HL-60 cells with drugs induces granulocytic differentiation and c-MYC down-regulation that is irreversible and associated with loss of DNase I-hypersensitive sites in c-MYC promoter. The expression of these phenotypes requires a slow process that appears to accompany a loss of c-MYC copies in double minutes via micronuclei. However, the drug treatment induced c-MYC down-regulation very early, though only reversibly. Here we show that we can resolve this paradox by assuming a gene(s) in other extrachromosomal, acentromeric DNA. Treatment with drugs might induce no down-regulation of this gene, but its complete elimination via micronuclei might be necessary and sufficient for the expression of the above phenotypes. Loss of c-MYC copies is unavoidable because the exclusion of extrachromosomal DNAs via micronuclei is at random. This conclusion is based on the observation of a substantial number of c-MYC copies in certain differentiated cells, irrespective of whether the differentiation was induced with drugs or without.
Collapse
Affiliation(s)
- M M Haque
- Life Science Group, Faculty of Integrated Art and Sciences, Hiroshima University, Higashi-Hiroshima, Hiroshima, 739-8521, Japan
| | | | | | | |
Collapse
|
34
|
Katan-Khaykovich Y, Shaul Y. Nuclear import and DNA-binding activity of RFX1. Evidence for an autoinhibitory mechanism. ACTA ACUST UNITED AC 2001; 268:3108-16. [PMID: 11358531 DOI: 10.1046/j.1432-1327.2001.02211.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
RFX1 binds and regulates the enhancers of a number of viruses and cellular genes. RFX1 belongs to the evolutionarily conserved RFX protein family that shares a DNA-binding domain and a conserved C-terminal region. In RFX1 this conserved region mediates dimerization, and is followed by a unique C-terminal tail, containing a highly acidic stretch. In HL-60 cells nuclear translocation of RFX1 is regulated by protein kinase C with unknown mechanisms. By confocal fluorescence microscopy, we have identified a nonclassical nuclear localization signal (NLS) at the extreme C-terminus. The adjacent 'acidic region', which showed no independent NLS activity, potentiated the function of the NLS. Subcellular fractionation showed that the tight association of RFX1 with the nucleus is mediated by its DNA-binding domain and enhanced by the dimerization domain. In contrast, the acidic region inhibited nuclear association, by down-regulating the DNA-binding activity of RFX1. These data suggest an autoinhibitory interaction, which may regulate the function of RFX1 at the level of DNA binding. The C-terminal tail thus constitutes a composite localization domain, which on the one hand mediates nuclear import of RFX1, and on the other hand inhibits its association with the nucleus and binding to DNA. The participation of the acidic region in both activities suggests a mechanism by which the nuclear import and DNA-binding activity of RFX1 may be coordinately regulated by phosphorylation by kinases such as PKC.
Collapse
Affiliation(s)
- Y Katan-Khaykovich
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot, Israel
| | | |
Collapse
|