1
|
Osmulski ME, Yu Y, Kuang A, Josefson JL, Hivert MF, Scholtens DM, Lowe WL. Subtypes of Gestational Diabetes Mellitus Are Differentially Associated With Newborn and Childhood Metabolic Outcomes. Diabetes Care 2025; 48:390-399. [PMID: 39787502 PMCID: PMC11870284 DOI: 10.2337/dc24-1735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 11/22/2024] [Indexed: 01/12/2025]
Abstract
OBJECTIVE Subtypes of gestational diabetes mellitus (GDM) based on insulin sensitivity and secretion have been described. We addressed the hypothesis that GDM subtypes are differentially associated with newborn and child anthropometric and glycemic outcomes. RESEARCH DESIGN AND METHODS Newborn and child (age 11-14 years) outcomes were examined in 7,970 and 4,160 mother-offspring dyads, respectively, who participated in the Hyperglycemia and Adverse Pregnancy Outcome (HAPO) study and HAPO Follow-Up Study. GDM was classified as insulin-deficient GDM (insulin secretion <25th percentile with preserved insulin sensitivity), insulin-resistant GDM (insulin sensitivity <25th percentile with preserved insulin secretion), or mixed-defect GDM (both <25th percentile). Regression models for newborn and child outcomes included adjustment for field center, maternal BMI, and other pregnancy covariates. Child models also included adjustment for child age, sex, and family history of diabetes. RESULTS Compared with mothers with normal glucose tolerance, all three GDM subtypes were associated with birth weight and sum of skinfolds >90th percentile. Insulin-resistant and mixed-defect GDM were associated with higher risk of cord C-peptide levels >90th percentile. Insulin-resistant GDM was associated with higher risk of neonatal hypoglycemia. Insulin-resistant GDM was associated with higher risk of neonatal hypoglycemia and childhood obesity (odds ratio [OR] 1.53, 95% CI 1.127-2.08). The risk of childhood impaired glucose tolerance was higher with insulin-resistant GDM (OR 2.21, 95% CI 1.50-3.25) and mixed-defect GDM (OR 3.01, 95% CI 1.47-6.19). CONCLUSIONS GDM subtypes are differentially associated with newborn and childhood outcomes. Better characterizing individuals with GDM could help identify at-risk offspring to offer targeted, preventative interventions early in life.
Collapse
Affiliation(s)
- Meredith E. Osmulski
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Yuanzhi Yu
- Department of Preventive Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Alan Kuang
- Department of Preventive Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Jami L. Josefson
- Division of Endocrinology, Department of Pediatrics, Feinberg School of Medicine, Ann & Robert H. Lurie Children's Hospital of Chicago, Northwestern University, Chicago, IL
| | - Marie-France Hivert
- Department of Medicine, Massachusetts General Hospital, Boston, MA
- Department of Population Medicine, Harvard Pilgrim Health Care Institute, Harvard Medical School, Boston, MA
- Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Denise M. Scholtens
- Department of Preventive Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - William L. Lowe
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL
| |
Collapse
|
2
|
Hu Z, Yang J, Zhang S, Li M, Zuo C, Mao C, Zhang Z, Tang M, Shi C, Xu Y. AAV mediated carboxyl terminus of Hsp70 interacting protein overexpression mitigates the cognitive and pathological phenotypes of APP/PS1 mice. Neural Regen Res 2025; 20:253-264. [PMID: 38767490 PMCID: PMC11246129 DOI: 10.4103/nrr.nrr-d-23-01277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/27/2023] [Accepted: 01/02/2024] [Indexed: 05/22/2024] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202501000-00033/figure1/v/2024-05-14T021156Z/r/image-tiff The E3 ubiquitin ligase, carboxyl terminus of heat shock protein 70 (Hsp70) interacting protein (CHIP), also functions as a co-chaperone and plays a crucial role in the protein quality control system. In this study, we aimed to investigate the neuroprotective effect of overexpressed CHIP on Alzheimer's disease. We used an adeno-associated virus vector that can cross the blood-brain barrier to mediate CHIP overexpression in APP/PS1 mouse brain. CHIP overexpression significantly ameliorated the performance of APP/PS1 mice in the Morris water maze and nest building tests, reduced amyloid-β plaques, and decreased the expression of both amyloid-β and phosphorylated tau. CHIP also alleviated the concentration of microglia and astrocytes around plaques. In APP/PS1 mice of a younger age, CHIP overexpression promoted an increase in ADAM10 expression and inhibited β-site APP cleaving enzyme 1, insulin degrading enzyme, and neprilysin expression. Levels of HSP70 and HSP40, which have functional relevance to CHIP, were also increased. Single nuclei transcriptome sequencing in the hippocampus of CHIP overexpressed mice showed that the lysosomal pathway and oligodendrocyte-related biological processes were up-regulated, which may also reflect a potential mechanism for the neuroprotective effect of CHIP. Our research shows that CHIP effectively reduces the behavior and pathological manifestations of APP/PS1 mice. Indeed, overexpression of CHIP could be a beneficial approach for the treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Zhengwei Hu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan Province, China
- Academy of Medical Sciences of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Jing Yang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan Province, China
- NHC Key Laboratory of Prevention and treatment of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan Province, China
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan Province, China
- Institute of Neuroscience, Zhengzhou University, Zhengzhou, Henan Province, China
| | - Shuo Zhang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan Province, China
- Academy of Medical Sciences of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Mengjie Li
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan Province, China
| | - Chunyan Zuo
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan Province, China
| | - Chengyuan Mao
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan Province, China
- NHC Key Laboratory of Prevention and treatment of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan Province, China
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan Province, China
- Institute of Neuroscience, Zhengzhou University, Zhengzhou, Henan Province, China
| | - Zhongxian Zhang
- Sino-British Research Centre for Molecular Oncology, National Centre for International Research in Cell and Gene Therapy, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, China
| | - Mibo Tang
- Department of Gerontology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan Province, China
| | - Changhe Shi
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan Province, China
- NHC Key Laboratory of Prevention and treatment of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan Province, China
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan Province, China
- Institute of Neuroscience, Zhengzhou University, Zhengzhou, Henan Province, China
| | - Yuming Xu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan Province, China
- NHC Key Laboratory of Prevention and treatment of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan Province, China
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan Province, China
- Institute of Neuroscience, Zhengzhou University, Zhengzhou, Henan Province, China
| |
Collapse
|
3
|
Lowe WL, Kuang A, Hayes MG, Hivert MF, Scholtens DM. Genetics of glucose homeostasis in pregnancy and postpartum. Diabetologia 2024; 67:2726-2739. [PMID: 39180581 DOI: 10.1007/s00125-024-06256-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 07/02/2024] [Indexed: 08/26/2024]
Abstract
AIMS/HYPOTHESIS Pregnancy is accompanied by maternal metabolic adaptations to ensure fetal growth and development, including insulin resistance, which occurs primarily during the second and third trimesters of pregnancy, and a decrease in fasting blood sugar levels over the course of pregnancy. Glucose-related traits are regulated by genetic and environmental factors and modulated by physiological variations throughout the life course. We addressed the hypothesis that there are both overlaps and differences between genetic variants associated with glycaemia-related traits during and outside of pregnancy. METHODS Genome-wide SNP data were used to identify genetic variations associated with glycaemia-related traits measured during an OGTT performed at ~28 weeks' gestation in 8067 participants in the Hyperglycaemia and Adverse Pregnancy Outcome (HAPO) Study. Associations outside of pregnancy were determined in 3977 individuals who also participated in the HAPO Follow-Up Study at 11-14 years postpartum. A Bayesian classification algorithm was used to determine whether SNPs associated with fasting and 2 h glucose and fasting C-peptide during pregnancy had a pregnancy-predominant effect vs a similar effect during pregnancy and postpartum. RESULTS SNPs in six loci (GCKR, G6PC2, GCK, PPP1R3B, PCSK1 and MTNR1B) were significantly associated with fasting glucose during pregnancy, while SNPs in CDKAL1 and MTNR1B were associated with 1 h glucose and SNPs in MTNR1B and HKDC1 were associated with 2 h glucose. Variants in CDKAL1 and MTNR1B were associated with insulin secretion during pregnancy. Variants in multiple loci were associated with fasting C-peptide during pregnancy, including GCKR, IQSEC1, PPP1R3B, IGF1 and BACE2. GCKR and BACE2 were associated with 1 h C-peptide and GCKR, IQSEC1 and BACE2 with insulin sensitivity during pregnancy. The associations of MTNR1B with 2 h glucose, BACE2 with fasting and 1 h C-peptide and insulin sensitivity, and IQSEC1 with fasting C-peptide and insulin sensitivity that we identified during pregnancy have not been previously reported in non-pregnancy cohorts. The Bayesian classification algorithm demonstrated that the magnitude of effect of the lead SNP was greater during pregnancy compared with 11-14 years postpartum in PCSK1 and PPP1R3B with fasting glucose, in three loci, including MTNR1B, with 2 h glucose, and in six loci, including IGF1, with fasting C-peptide. CONCLUSIONS/INTERPRETATION Our findings support the hypothesis that there are both overlaps and differences between the genetic architecture of glycaemia-related traits during and outside of pregnancy. Genetic variants at several loci, including PCSK1, PPP1R3B, MTNR1B and IGF1, appear to influence glycaemic regulation in a unique fashion during pregnancy. Future studies in larger cohorts will be needed to replicate the present findings, fully characterise the genetics of maternal glycaemia during pregnancy and determine similarities to and differences from the non-gravid state.
Collapse
Affiliation(s)
- William L Lowe
- Department of Medicine, Northwestern University Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
| | - Alan Kuang
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - M Geoffrey Hayes
- Department of Medicine, Northwestern University Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Marie-France Hivert
- Diabetes Unit, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Division of Chronic Disease Research Across the Lifecourse, Department of Population Medicine, Harvard Pilgrim Health Care Institute, Harvard Medical School, Boston, MA, USA
- Department of Medicine, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
- Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC, Canada
| | - Denise M Scholtens
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| |
Collapse
|
4
|
Peng L, Zhang Z, Li Q, Song Z, Yan C, Ling H. Unveiling the multifaceted pathogenesis and therapeutic drugs of Alzheimer's disease: A comprehensive review. Heliyon 2024; 10:e39217. [PMID: 39629139 PMCID: PMC11612466 DOI: 10.1016/j.heliyon.2024.e39217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 08/02/2024] [Accepted: 10/09/2024] [Indexed: 12/07/2024] Open
Abstract
Alzheimer's disease (AD) is a severe neurodegenerative disorder characterized by the accumulation of β-amyloid (Aβ) plaques and tau phosphorylation-induced neurofibrillary tangles. This review comprehensively summarizes AD pathogenesis and related factors, drawing on a wealth of authoritative reports and research findings. Specifically, we delve into the intricate mechanisms underlying AD pathology, including Aβ deposition, tau protein phosphorylation, cholinergic dysfunction, neuroinflammation, mitochondrial oxidative stress, ferroptosis, imbalance in the gut microbiota, and microRNA dysregulation. We also explored the effects of these factors on the brain, including synaptic damage and cognitive impairment. Moreover, our review highlights the associations between the pathogenesis of AD and inflammatory cytokines in the peripheral blood and cerebrospinal fluid, dysbiosis of the gut microbiota, and changes in microRNA expression. Overall, we provided a systematic and illustrative overview of the pathogenesis and therapeutic drugs for AD, offering help in the prevention and treatment of this condition.
Collapse
Affiliation(s)
- Liting Peng
- Department of Physiology, Hengyang Medical School, University of South China, Hengyang, 421000, Hunan, China
| | - Zhiming Zhang
- Department of Anesthesiology, The First People's Hospital of Chenzhou, The Chenzhou Affiliated Hospital, Hengyang Medical School, University of South China, Chenzhou, 423000, Hunan, China
| | - Qi Li
- Department of Physiology, Hengyang Medical School, University of South China, Hengyang, 421000, Hunan, China
| | - Zhenjiang Song
- Department of Physiology, Hengyang Medical School, University of South China, Hengyang, 421000, Hunan, China
| | - Canqun Yan
- The Health Management Center, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Hongyan Ling
- Department of Physiology, Hengyang Medical School, University of South China, Hengyang, 421000, Hunan, China
| |
Collapse
|
5
|
Zondagh LS, Malan SF, Joubert J. Edaravone N-benzyl pyridinium derivatives: BACE-1 inhibition, kinetics and in silico binding pose determination. Eur J Pharm Sci 2024; 201:106869. [PMID: 39102997 DOI: 10.1016/j.ejps.2024.106869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/08/2024] [Accepted: 08/02/2024] [Indexed: 08/07/2024]
Abstract
BACE-1 plays a pivotal role in the production of β-amyloid (Aβ) peptides, implicated in Alzheimer's Disease (AD) pathology. We previously described edaravone N-benzyl pyridinium derivatives (EBPDs) that exhibited multifunctional activity against multiple AD targets. In this study we explored the EBPDs BACE-1 inhibitory activity to potentially enhance the compounds therapeutic profile. The EBPDs exhibited moderate BACE-1 inhibitory activity (IC50 = 44.10 µM - 123.70 µM) and obtained IC50 values between 2.0 and 5.8-fold greater than resveratrol, a known BACE-1 inhibitor (IC50 = 253.20 µM), in this assay. Compound 3 was the most potent inhibitor with an IC50 of 44.10 µM and a Ki of 19.96 µM and a mixed-type mode of inhibition that favored binding in a competitive manner. Molecular docking identified crucial interactions with BACE-1 active site residues, supported by 100 ns MD simulations. The study highlighted the EBPDs therapeutic potential as BACE-1 inhibitors and multifunctional anti-AD therapeutic agents.
Collapse
Affiliation(s)
- L S Zondagh
- Pharmaceutical Chemistry, School of Pharmacy, University of the Western Cape, Cape Town, Western Cape 7535, South Africa
| | - S F Malan
- Pharmaceutical Chemistry, School of Pharmacy, University of the Western Cape, Cape Town, Western Cape 7535, South Africa
| | - J Joubert
- Pharmaceutical Chemistry, School of Pharmacy, University of the Western Cape, Cape Town, Western Cape 7535, South Africa.
| |
Collapse
|
6
|
Paul DC, Bhattacharjee M. Revisiting the significance of natural protease inhibitors: A comprehensive review. Int J Biol Macromol 2024; 280:135899. [PMID: 39317291 DOI: 10.1016/j.ijbiomac.2024.135899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 08/09/2024] [Accepted: 09/20/2024] [Indexed: 09/26/2024]
Abstract
Protease inhibitors (PIs) function as a natural adversary to proteolytic enzymes. They can diminish or inhibit the catalytic properties of proteases, which are crucial for various tasks in the physiology and metabolism of cellular forms. Protease Inhibitors are low molecular weight (5-25 kDa) stable proteins. Plants are a fair source of PIs, so foods containing PIs remarkably influence human health. PIs are usually present in storage tissues of the plant, although they are present in other aerial parts as well. In plants, protease inhibitors participate in vital functions such as maintaining physiological homeostasis, mobilization of storage proteins, defense systems, apoptosis, and other processes. In recent years, plant-derived PIs have shown promising results in treating various diseases including inflammatory conditions, osteoporosis, cardiovascular issues, and brain disorders. The primary goal of this review is to provide a comprehensive understanding of the characteristics, applications, and challenges associated with natural protease inhibitors in plants, which draws insights from an extensive examination of 80+ research papers with a focus on their potential in agriculture and medicine. By synthesizing findings from an extensive literature review, this work aims to guide future research directions and innovations in leveraging plant-based PIs for sustainable agricultural practices and advanced therapeutic interventions.
Collapse
Affiliation(s)
- Dhiman Chandra Paul
- Programme of Biotechnology, Assam down town University, Panikhaiti, Gandhinagar, Guwahati, Assam 26, India
| | - Minakshi Bhattacharjee
- Programme of Biotechnology, Assam down town University, Panikhaiti, Gandhinagar, Guwahati, Assam 26, India.
| |
Collapse
|
7
|
Murray A, Muñiz-García A, Alić I, Nižetić D. It's good to know what to BACE the specificity of your inhibitors on. J Clin Invest 2024; 134:e183677. [PMID: 39145447 PMCID: PMC11324289 DOI: 10.1172/jci183677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2024] Open
Abstract
Production, aggregation, and clearance of the amyloid β peptide (Aβ) are important processes governing the initial pathogenesis of Alzheimer's disease (AD). Inhibition of β-site amyloid precursor protein (APP) cleaving enzyme (BACE1) (one of two key proteases responsible for Aβ production) as an AD-therapeutic approach so far has failed to yield a successful drug. BACE1 and its homologue BACE2 are frequently inhibited by the same inhibitors. Several genetic and cerebral organoid modeling studies suggest that BACE2 has dose-dependent AD-suppressing activity, which makes its unwanted inhibition potentially counterproductive for AD treatment. The in vivo effects of an unwanted cross inhibition of BACE2 have so far been impossible to monitor because of the lack of an easily accessible pharmacodynamic marker specific for BACE2 cleavage. In this issue of the JCI, work led by Stefan F. Lichtenthaler identifies soluble VEGFR3 (sVEGFR3) as a pharmacodynamic plasma marker for BACE2 activity not shared with BACE1.
Collapse
Affiliation(s)
- Aoife Murray
- The Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Ana Muñiz-García
- The Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Ivan Alić
- The Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
- Department of Anatomy, Histology and Embryology, Faculty of Veterinary Medicine, University of Zagreb, Zagreb, Croatia
| | - Dean Nižetić
- The Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
8
|
Dimberg J, Shamoun L, af Geijerstam K, Landerholm K, Wågsäter D. Significance of Gene Polymorphism and Gene Expression of BACE2 in Swedish Patients with Colorectal Cancer. Oncology 2024; 103:48-55. [PMID: 39217971 PMCID: PMC11731834 DOI: 10.1159/000540887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 08/08/2024] [Indexed: 09/04/2024]
Abstract
INTRODUCTION β-site amyloid precursor protein (APP) cleaving enzyme 2 (BACE2) cleaves APP which is ubiquitously expressed in a variety of cell types including cancer cells. BACE2 can process APP in several ways and appears to be involved in the pathogenesis of cancer. Our purpose was to assess the association of mRNA expression and genetic polymorphism of BACE2 in colorectal cancer (CRC) susceptibility and its association to clinicopathological factors in Swedish patients with CRC. METHODS A total of 720 CRC patients and 470 healthy controls were genotyped for BACE2 gene polymorphism rs2012050, using TaqMan single nucleotide polymorphism (SNP) assays based on polymerase chain reaction. Reverse transcription quantitative PCR was used to investigate the BACE2 gene expression in 192 CRC tissue and 181 paired normal tissue. RESULTS Assessing clinicopathological factors, we noted that carrying of T allele in C/T and C/T+T/T was significantly associated with a protective role against disseminated cancer and higher lymph node status. Moreover, individuals carrying T/T genotype were significantly more likely to have poorly differentiated cancer. Follow-up data for patients in poorly differentiated cancer and the Kaplan-Meier analysis showed that the cancer-specific survival curves differed between C/C and C/T+T/T for the BACE2 gene polymorphism and that the carriers of the genotype C/C were associated with more favorable prognosis. We found no significant differences in the genotypic frequencies between the patients and healthy controls. BACE2 mRNA level was significantly 2.2-fold upregulated in CRC tissue when compared to noncancerous tissue. A higher BACE2 mRNA level was observed in smaller tumors and in rectal cancer when compared to colon cancer. CONCLUSION In patients with CRC, our results indicate BACE2 rs2012050 as a useful potential predictor of poor differentiation, disseminated cancer and lymph node status and that the BACE2 mRNA expression is associated to tumor size and cancer location.
Collapse
Affiliation(s)
- Jan Dimberg
- Department of Clinical Diagnostics, School of Health and Welfare, Jönköping University, Jönköping, Sweden
| | - Levar Shamoun
- Department of Laboratory Medicine and Pathology, Region Jönköping County, Jönköping, Sweden
| | | | - Kalle Landerholm
- Department of Surgery, Region Jönköping County, Jönköping, Sweden
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Dick Wågsäter
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
9
|
Slapak EJ, El Mandili M, Ten Brink MS, Kros A, Bijlsma MF, Spek CA. CAPN2-responsive mesoporous silica nanoparticles: A promising nanocarrier for targeted therapy of pancreatic cancer. Cancer Lett 2024; 590:216845. [PMID: 38589004 DOI: 10.1016/j.canlet.2024.216845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 02/29/2024] [Accepted: 03/28/2024] [Indexed: 04/10/2024]
Abstract
Pancreatic adenocarcinoma (PDAC) is highly resistant to conventional chemotherapeutic interventions, resulting in exceptionally low survival rates. The limited efficacy can in part be attributed to dose limitations and treatment cessation urged by toxicity of currently used chemotherapy. The advent of targeted delivery strategies has kindled hope for circumventing off-target toxicity. We have previously reported a PDAC-specific mesoporous silica nanoparticle (MSN) containing a protease linker responsive to ADAM9, a PDAC-enriched extracellularly deposited protease. Upon loading with paclitaxel these ADAM9-MSNs reduced side effects both in vitro and in vivo, however, disappointing antitumor efficacy was observed in vivo. Here, we propose that an efficient uptake of MSNs by tumor cells might underlie the lack of antitumor efficacy of MSNs functionalized with linker responsive to extracellular proteases. Harnessing this premise to improve antitumor efficacy, we performed an in silico analysis to identify PDAC-enriched intracellular proteases. We report the identification of BACE2, CAPN2 and DPP3 as PDAC enriched intracellular proteases, and report the synthesis of BACE2-, CAPN2- and DPP3-responsive MSNs. Extensive preclinical assessments revealed that paclitaxel-loaded CAPN2- and DPP3-MSNs exhibit high PDAC specificity in vitro as opposed to free paclitaxel. The administration of paclitaxel-loaded CAPN2- and DPP3-MSNs in vivo confirmed the reduction of leukopenia and induced no organ damage. Promisingly, in two mouse models CAPN2-MSNs reduced tumor growth at least as efficiently as free paclitaxel. Taken together, our results pose CAPN2-MSNs as a promising nanocarrier for the targeted delivery of chemotherapeutics in PDAC.
Collapse
Affiliation(s)
- Etienne J Slapak
- Amsterdam UMC Location University of Amsterdam, Center of Experimental and Molecular Medicine, Meibergdreef 9, Amsterdam, the Netherlands; Cancer Center Amsterdam, Cancer Biology, Amsterdam, the Netherlands.
| | - Mouad El Mandili
- Amsterdam UMC Location University of Amsterdam, Center of Experimental and Molecular Medicine, Meibergdreef 9, Amsterdam, the Netherlands.
| | - Marieke S Ten Brink
- Amsterdam UMC Location University of Amsterdam, Center of Experimental and Molecular Medicine, Meibergdreef 9, Amsterdam, the Netherlands.
| | - Alexander Kros
- Department of Supramolecular & Biomaterials Chemistry, Leiden Institute of Chemistry, Leiden University, Leiden, the Netherlands.
| | - Maarten F Bijlsma
- Amsterdam UMC Location University of Amsterdam, Center of Experimental and Molecular Medicine, Meibergdreef 9, Amsterdam, the Netherlands; Cancer Center Amsterdam, Cancer Biology, Amsterdam, the Netherlands.
| | - C Arnold Spek
- Amsterdam UMC Location University of Amsterdam, Center of Experimental and Molecular Medicine, Meibergdreef 9, Amsterdam, the Netherlands; Cancer Center Amsterdam, Cancer Biology, Amsterdam, the Netherlands.
| |
Collapse
|
10
|
Langeland JA, Baumann L, DeYoung EM, Varella RA, Mwenda N, Aguirre A, Moore DB. Early Animal Origin of BACE1 APP/Aβ Proteolytic Function. BIOLOGY 2024; 13:320. [PMID: 38785802 PMCID: PMC11117577 DOI: 10.3390/biology13050320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/24/2024] [Accepted: 04/30/2024] [Indexed: 05/25/2024]
Abstract
Alzheimer's disease is characterized, in part, by the accumulation of β-amyloid (Aβ) in the brain. Aβ is produced via the proteolysis of APP by BACE1 and γ-secretase. Since BACE1 is the rate-limiting enzyme in the production of Aβ, and a target for therapeutics, it is of interest to know when its proteolytic function evolved and for what purpose. Here, we take a functional evolutionary approach to show that BACE1 likely evolved from a gene duplication event near the base of the animal clade and that BACE1 APP/Aβ proteolytic function evolved during early animal diversification, hundreds of millions of years before the evolution of the APP/Aβ substrate. Our examination of BACE1 APP/Aβ proteolytic function includes cnidarians, ctenophores, and choanoflagellates. The most basal BACE1 ortholog is found in cnidarians, while ctenophores, placozoa, and choanoflagellates have genes equally orthologous to BACE1 and BACE2. BACE1 from a cnidarian (Hydra) can cleave APP to release Aβ, pushing back the date of the origin of its function to near the origin of animals. We tested more divergent BACE1/2 genes from a ctenophore (Mnemiopsis) and a choanoflagellate (Monosiga), and neither has this activity. These findings indicate that the specific proteolytic function of BACE1 evolved during the very earliest diversification of animals, most likely after a gene-duplication event.
Collapse
Affiliation(s)
| | | | | | | | | | | | - D. Blaine Moore
- Department of Biology, Kalamazoo College, 1200 Academy Street, Kalamazoo, MI 49006, USA
| |
Collapse
|
11
|
Wang J, Gleeson PA, Fourriere L. Spatial-Temporal Mapping Reveals the Golgi as the Major Processing Site for the Pathogenic Swedish APP Mutation: Familial APP Mutant Shifts the Major APP Processing Site. Traffic 2024; 25:e12932. [PMID: 38528836 DOI: 10.1111/tra.12932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 02/13/2024] [Accepted: 03/01/2024] [Indexed: 03/27/2024]
Abstract
Alzheimer's disease is associated with increased levels of amyloid beta (Aβ) generated by sequential intracellular cleavage of amyloid precursor protein (APP) by membrane-bound secretases. However, the spatial and temporal APP cleavage events along the trafficking pathways are poorly defined. Here, we use the Retention Using Selective Hooks (RUSH) to compare in real time the anterograde trafficking and temporal cleavage events of wild-type APP (APPwt) with the pathogenic Swedish APP (APPswe) and the disease-protective Icelandic APP (APPice). The analyses revealed differences in the trafficking profiles and processing between APPwt and the APP familial mutations. While APPwt was predominantly processed by the β-secretase, BACE1, following Golgi transport to the early endosomes, the transit of APPswe through the Golgi was prolonged and associated with enhanced amyloidogenic APP processing and Aβ secretion. A 20°C block in cargo exit from the Golgi confirmed β- and γ-secretase processing of APPswe in the Golgi. Inhibition of the β-secretase, BACE1, restored APPswe anterograde trafficking profile to that of APPwt. APPice was transported rapidly through the Golgi to the early endosomes with low levels of Aβ production. This study has revealed different intracellular locations for the preferential cleavage of APPwt and APPswe and Aβ production, and the Golgi as the major processing site for APPswe, findings relevant to understand the molecular basis of Alzheimer's disease.
Collapse
Affiliation(s)
- Jingqi Wang
- The Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, Australia
| | - Paul A Gleeson
- The Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, Australia
| | - Lou Fourriere
- The Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
12
|
Rudisch DM, Krasko MN, Barnett DGS, Mueller KD, Russell JA, Connor NP, Ciucci MR. Early ultrasonic vocalization deficits and related thyroarytenoid muscle pathology in the transgenic TgF344-AD rat model of Alzheimer's disease. Front Behav Neurosci 2024; 17:1294648. [PMID: 38322496 PMCID: PMC10844490 DOI: 10.3389/fnbeh.2023.1294648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 12/01/2023] [Indexed: 02/08/2024] Open
Abstract
Background Alzheimer's disease (AD) is a progressive neurologic disease and the most common cause of dementia. Classic pathology in AD is characterized by inflammation, abnormal presence of tau protein, and aggregation of β-amyloid that disrupt normal neuronal function and lead to cell death. Deficits in communication also occur during disease progression and significantly reduce health, well-being, and quality of life. Because clinical diagnosis occurs in the mid-stage of the disease, characterizing the prodrome and early stages in humans is currently challenging. To overcome these challenges, we use the validated TgF344-AD (F344-Tg(Prp-APP, Prp-PS1)19/Rrrc) transgenic rat model that manifests cognitive, behavioral, and neuropathological dysfunction akin to AD in humans. Objectives The overarching goal of our work is to test the central hypothesis that pathology and related behavioral deficits such as communication dysfunction in part manifest in the peripheral nervous system and corresponding target tissues already in the early stages. The primary aims of this study are to test the hypotheses that: (1) changes in ultrasonic vocalizations (USV) occur in the prodromal stage at 6 months of age and worsen at 9 months of age, (2) inflammation as well as AD-related pathology can be found in the thyroarytenoid muscle (TA) at 12 months of age (experimental endpoint tissue harvest), and to (3) demonstrate that the TgF344-AD rat model is an appropriate model for preclinical investigations of early AD-related vocal deficits. Methods USVs were collected from male TgF344-AD (N = 19) and wildtype (WT) Fischer-344 rats (N = 19) at 6 months (N = 38; WT: n = 19; TgF344-AD: n = 19) and 9 months of age (N = 18; WT: n = 10; TgF344-AD: n = 8) and acoustically analyzed for duration, mean power, principal frequency, low frequency, high frequency, peak frequency, and call type. RT-qPCR was used to assay peripheral inflammation and AD-related pathology via gene expressions in the TA muscle of male TgF344-AD rats (n = 6) and WT rats (n = 6) at 12 months of age. Results This study revealed a significant reduction in mean power of ultrasonic calls from 6 to 9 months of age and increased peak frequency levels over time in TgF344-AD rats compared to WT controls. Additionally, significant downregulation of AD-related genes Uqcrc2, Bace2, Serpina3n, and Igf2, as well as downregulation of pro-inflammatory gene Myd88 was found in the TA muscle of TgF344-AD rats at 12 months of age. Discussion Our findings demonstrate early and progressive vocal deficits in the TgF344-AD rat model. We further provide evidence of dysregulation of AD-pathology-related genes as well as inflammatory genes in the TA muscles of TgF344-AD rats in the early stage of the disease, confirming this rat model for early-stage investigations of voice deficits and related pathology.
Collapse
Affiliation(s)
- Denis Michael Rudisch
- Department of Communication Sciences and Disorders, University of Wisconsin-Madison, Madison, WI, United States
- Department of Surgery, Division of Otolaryngology - Head and Neck Surgery, UW School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
- UW Institute for Clinical and Translational Research, UW School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| | - Maryann N Krasko
- Department of Communication Sciences and Disorders, University of Wisconsin-Madison, Madison, WI, United States
- Department of Surgery, Division of Otolaryngology - Head and Neck Surgery, UW School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| | - David G S Barnett
- Department of Surgery, Division of Otolaryngology - Head and Neck Surgery, UW School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| | - Kimberly D Mueller
- Department of Communication Sciences and Disorders, University of Wisconsin-Madison, Madison, WI, United States
- Wisconsin Alzheimer's Disease Research Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| | - John A Russell
- Department of Surgery, Division of Otolaryngology - Head and Neck Surgery, UW School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| | - Nadine P Connor
- Department of Communication Sciences and Disorders, University of Wisconsin-Madison, Madison, WI, United States
- Department of Surgery, Division of Otolaryngology - Head and Neck Surgery, UW School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| | - Michelle R Ciucci
- Department of Communication Sciences and Disorders, University of Wisconsin-Madison, Madison, WI, United States
- Department of Surgery, Division of Otolaryngology - Head and Neck Surgery, UW School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
- Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
13
|
Narayanan AP, Jayan J, Sudevan ST, Dhyani A, Zachariah SM, Mathew B. Flavonoid and Chalcone Scaffolds as Inhibitors of BACE1: Recent Updates. Comb Chem High Throughput Screen 2024; 27:1243-1256. [PMID: 37519205 DOI: 10.2174/1386207326666230731092409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 02/27/2023] [Accepted: 03/08/2023] [Indexed: 08/01/2023]
Abstract
Flavonoids and chalcones are two major classes of chemical moieties that have a vast background of pharmacological activities. Chalcone is a subclass of flavonoids whose therapeutic potential has been implicated due to an array of bioactivities. A lot of research works have shown interest in investigating the neuroprotective effect of these molecules, and have revealed them to be much more potent molecules that can be used to treat neurodegenerative disorders. Beta-site APP cleaving enzyme (BACE1), which is majorly found in the brain, is one of the reasons behind the development of Alzheimer's disease (AD). Flavonoids and chalcones have proven clinical data that they inhibit the production of Aβ plaques that are involved in the progression of AD. In this article, we have provided a detailed chronological review of the research work on the BACE1 inhibiting potency of both flavonoids and chalcones. Almost all the flavonoids and chalcones mentioned in this article have shown very good in vitro and in vivo BACE1 inhibiting activity. The docking studies and the structural importance of some BACE1-inhibiting flavonoids, as well as chalcones, are also mentioned here.
Collapse
Affiliation(s)
- Anishma Payyappilliparambil Narayanan
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, Kerala-682041, India
| | - Jayalakshmi Jayan
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, Kerala-682041, India
| | - Sachithra Thazhathuveedu Sudevan
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, Kerala-682041, India
| | - Archana Dhyani
- School of Pharmacy, Graphic Era Hill University, Dehradun, 248007, Uttarakhand, India
| | - Subin Mary Zachariah
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, Kerala-682041, India
| | - Bijo Mathew
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, Kerala-682041, India
| |
Collapse
|
14
|
Ohno M. A Strategy for Allowing Earlier Diagnosis and Rigorous Evaluation of BACE1 Inhibitors in Preclinical Alzheimer's Disease. J Alzheimers Dis 2024; 99:431-445. [PMID: 38701146 DOI: 10.3233/jad-231451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
Given continued failure of BACE1 inhibitor programs at symptomatic and prodromal stages of Alzheimer's disease (AD), clinical trials need to target the earlier preclinical stage. However, trial design is complex in this population with negative diagnosis of classical hippocampal amnesia on standard memory tests. Besides recent advances in brain imaging, electroencephalogram, and fluid-based biomarkers, new cognitive markers should be established for earlier diagnosis that can optimize recruitment to BACE1 inhibitor trials in presymptomatic AD. Notably, accelerated long-term forgetting (ALF) is emerging as a sensitive cognitive measure that can discriminate between asymptomatic individuals with high risks for developing AD and healthy controls. ALF is a form of declarative memory impairment characterized by increased forgetting rates over longer delays (days to months) despite normal storage within the standard delays of testing (20-60 min). Therefore, ALF may represent a harbinger of preclinical dementia and the impairment of systems memory consolidation, during which memory traces temporarily stored in the hippocampus become gradually integrated into cortical networks. This review provides an overview of the utility of ALF in a rational design of next-generation BACE1 inhibitor trials in preclinical AD. I explore potential mechanisms underlying ALF and relevant early-stage biomarkers useful for BACE1 inhibitor evaluation, including synaptic protein alterations, astrocytic dysregulation and neuron hyperactivity in the hippocampal-cortical network. Furthermore, given the physiological role of the isoform BACE2 as an AD-suppressor gene, I also discuss the possible association between the poor selectivity of BACE1 inhibitors and their side effects (e.g., cognitive worsening) in prior clinical trials.
Collapse
Affiliation(s)
- Masuo Ohno
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY, USA
| |
Collapse
|
15
|
Pratsch K, Unemura C, Ito M, Lichtenthaler SF, Horiguchi N, Herms J. New Highly Selective BACE1 Inhibitors and Their Effects on Dendritic Spine Density In Vivo. Int J Mol Sci 2023; 24:12283. [PMID: 37569661 PMCID: PMC10418759 DOI: 10.3390/ijms241512283] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/27/2023] [Accepted: 07/28/2023] [Indexed: 08/13/2023] Open
Abstract
β-site amyloid precursor protein-cleaving enzyme 1 (BACE1) is considered a therapeutic target to combat Alzheimer's disease by reducing β-amyloid in the brain. To date, all clinical trials involving the inhibition of BACE1 have been discontinued due to a lack of efficacy or undesirable side effects such as cognitive worsening. The latter could have been the result of the inhibition of BACE at the synapse where it is expressed in high amounts. We have previously shown that prolonged inhibition of BACE interferes with structural synaptic plasticity, most likely due to the diminished processing of the physiological BACE substrate Seizure protein 6 (Sez6) which is exclusively processed by BACE1 and is required for dendritic spine plasticity. Given that BACE1 has significant amino acid similarity with its homolog BACE2, the inhibition of BACE2 may cause some of the side effects, as most BACE inhibitors do not discriminate between the two. In this study, we used newly developed BACE inhibitors that have a different chemotype from previously developed inhibitors and a high selectivity for BACE1 over BACE2. By using longitudinal in vivo two-photon microscopy, we investigated the effect on dendritic spine dynamics of pyramidal layer V neurons in the somatosensory cortex in mice treated with highly selective BACE1 inhibitors. Treatment with those inhibitors showed a reduction in soluble Sez6 (sSez6) levels to 27% (elenbecestat, Biogen, Eisai Co., Ltd., Tokyo, Japan), 17% (Shionogi compound 1) and 39% (Shionogi compound 2), compared to animals fed with vehicle pellets. We observed a significant decrease in the number of dendritic spines with Shionogi compound 1 after 21 days of treatment but not with Shionogi compound 2 or with elenbecestat, which did not show cognitive worsening in clinical trials. In conclusion, highly selective BACE1 inhibitors do alter dendritic spine density similar to non-selective inhibitors if soluble (sSez6) levels drop too much. Low-dose BACE1 inhibition might be reasonable if dosing is carefully adjusted to the amount of Sez6 cleavage, which can be easily monitored during the first week of treatment.
Collapse
Affiliation(s)
- Katrin Pratsch
- German Center for Neurodegenerative Diseases (DZNE), 81377 Munich, Germany; (K.P.); (S.F.L.)
- Munich Cluster for Systems Neurology (SyNergy), 81377 Munich, Germany
- Center for Neuropathology and Prion Research (ZNP), Faculty of Medicine, LMU Munich, 81377 Munich, Germany
| | - Chie Unemura
- Laboratory for Drug Discovery and Disease Research, Shionogi & Co., Ltd., Shionogi Pharmaceutical Research Center, Osaka 561-0825, Japan; (C.U.); (M.I.); (N.H.)
| | - Mana Ito
- Laboratory for Drug Discovery and Disease Research, Shionogi & Co., Ltd., Shionogi Pharmaceutical Research Center, Osaka 561-0825, Japan; (C.U.); (M.I.); (N.H.)
| | - Stefan F. Lichtenthaler
- German Center for Neurodegenerative Diseases (DZNE), 81377 Munich, Germany; (K.P.); (S.F.L.)
- Munich Cluster for Systems Neurology (SyNergy), 81377 Munich, Germany
- Neuroproteomics, School of Medicine, Klinikum Rechts der Isar, Technical University of Munich, 81675 Munich, Germany
| | - Naotaka Horiguchi
- Laboratory for Drug Discovery and Disease Research, Shionogi & Co., Ltd., Shionogi Pharmaceutical Research Center, Osaka 561-0825, Japan; (C.U.); (M.I.); (N.H.)
| | - Jochen Herms
- German Center for Neurodegenerative Diseases (DZNE), 81377 Munich, Germany; (K.P.); (S.F.L.)
- Munich Cluster for Systems Neurology (SyNergy), 81377 Munich, Germany
- Center for Neuropathology and Prion Research (ZNP), Faculty of Medicine, LMU Munich, 81377 Munich, Germany
| |
Collapse
|
16
|
Plekratoke K, Boonyarat C, Monthakantirat O, Nualkaew N, Wangboonskul J, Awale S, Chulikhit Y, Daodee S, Khamphukdee C, Chaiwiwatrakul S, Waiwut P. The Effect of Ethanol Extract from Mesua ferrea Linn Flower on Alzheimer's Disease and Its Underlying Mechanism. Curr Issues Mol Biol 2023; 45:4063-4079. [PMID: 37232728 DOI: 10.3390/cimb45050259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/27/2023] [Accepted: 05/03/2023] [Indexed: 05/27/2023] Open
Abstract
The effects of Mesua ferrea Linn flower (MFE) extract on the pathogenic cascade of Alzheimer's disease (AD) were determined by an in vitro and cell culture model in the search for a potential candidate for the treatment of AD. The 2,2'-azino-bis-3-ethylbenzthiazoline-6-sulphonic acid (ABTS) and 1,1-diphenyl-2-picrylhydrazyl (DPPH) assay exhibited that the MFE extract had antioxidant activities. According to the Ellman and the thioflavin T method's result, the extracts could inhibit acetylcholinesterase and β-amyloid (Aβ) aggregation. Studies on neuroprotection in cell culture found that the MFE extract could reduce the death of human neuroblastoma cells (SH-SY5Y) caused by H2O2 and Aβ. Western blot analysis exhibited that the MFE extract alleviated H2O2-induced neuronal cell damage by downregulating the pro-apoptotic proteins, including cleaved caspase-3, Bax, and by enhancing the expression of anti-apoptotic markers including MCl1, BClxl, and survivin. Moreover, MFE extract inhibited the expression of APP, presenilin 1, and BACE, and increased the expression of neprilysin. In addition, the MFE extract could enhance scopolamine-induced memory deficit in mice. Overall, results showed that the MFE extract had several modes of action related to the AD pathogenesis cascade, including antioxidants, anti-acetylcholinesterase, anti-Aβ aggregation, and neuroprotection against oxidative stress and Aβ. Therefore, the M. ferrea L. flower might be a possibility for further development as a medication for AD.
Collapse
Affiliation(s)
- Kusawadee Plekratoke
- Biomedical Science Program, Graduate School, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Chantana Boonyarat
- Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
| | | | - Natsajee Nualkaew
- Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Jinda Wangboonskul
- Faculty of Pharmaceutical Sciences, Thummasart University, Bangkok 10330, Thailand
| | - Suresh Awale
- Division of Natural Drug Discovery, Institute of Natural Medicine, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Yaowared Chulikhit
- Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Supawadee Daodee
- Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Charinya Khamphukdee
- Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Suchada Chaiwiwatrakul
- Department of English, Faculty of Humanities and Social Sciences, Ubon Ratchathani Rajabhat University, Ubon Ratchathani 34000, Thailand
| | - Pornthip Waiwut
- Faculty of Pharmaceutical Sciences, Ubon Ratchathani University, Ubon Ratchathani 34190, Thailand
| |
Collapse
|
17
|
Yeap YJ, Kandiah N, Nizetic D, Lim KL. BACE2: A Promising Neuroprotective Candidate for Alzheimer's Disease. J Alzheimers Dis 2023; 94:S159-S171. [PMID: 36463454 PMCID: PMC10473127 DOI: 10.3233/jad-220867] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/28/2022] [Indexed: 11/30/2022]
Abstract
Alzheimer's disease (AD) is the most common cause of dementia that affects millions of predominantly elderly individuals worldwide. Despite intensive research over several decades, controversies still surround the etiology of AD and the disease remains incurable. Meanwhile, new molecular players of the central amyloid cascade hypothesis have emerged and among these is a protease known as β-site APP cleavage enzyme 2 (BACE2). Unlike BACE1, BACE2 cleaves the amyloid-β protein precursor within the Aβ domain that accordingly prevents the generation of Aβ42 peptides, the aggregation of which is commonly regarded as the toxic entity that drives neurodegeneration in AD. Given this non-amyloidogenic role of BACE2, it is attractive to position BACE2 as a therapeutic target for AD. Indeed, several groups including ours have demonstrated a neuroprotective role for BACE2 in AD. In this review, we discuss emerging evidence supporting the ability of BACE2 in mitigating AD-associated pathology in various experimental systems including human pluripotent stem cell-derived cerebral organoid disease models. Alongside this, we also provide an update on the identification of single nucleotide polymorphisms occurring in the BACE2 gene that are linked to increased risk and earlier disease onset in the general population. In particular, we highlight a recently identified point mutation on BACE2 that apparently leads to sporadic early-onset AD. We believe that a better understanding of the role of BACE2 in AD would provide new insights for the development of viable therapeutic strategies for individuals with dementia.
Collapse
Affiliation(s)
- Yee Jie Yeap
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Nagaendran Kandiah
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Dean Nizetic
- Barts & The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Kah-Leong Lim
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- Department of Brain Sciences, Imperial College London, London, UK
- Shanxi Medical University, Taiyuan, People’s Republic of China
| |
Collapse
|
18
|
Hampel H, Caruso G, Nisticò R, Piccioni G, Mercuri NB, Giorgi FS, Ferrarelli F, Lemercier P, Caraci F, Lista S, Vergallo A. Biological Mechanism-based Neurology and Psychiatry: A BACE1/2 and Downstream Pathway Model. Curr Neuropharmacol 2023; 21:31-53. [PMID: 34852743 PMCID: PMC10193755 DOI: 10.2174/1570159x19666211201095701] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 11/26/2021] [Accepted: 11/28/2021] [Indexed: 02/04/2023] Open
Abstract
In oncology, comprehensive omics and functional enrichment studies have led to an extensive profiling of (epi)genetic and neurobiological alterations that can be mapped onto a single tumor's clinical phenotype and divergent clinical phenotypes expressing common pathophysiological pathways. Consequently, molecular pathway-based therapeutic interventions for different cancer typologies, namely tumor type- and site-agnostic treatments, have been developed, encouraging the real-world implementation of a paradigm shift in medicine. Given the breakthrough nature of the new-generation translational research and drug development in oncology, there is an increasing rationale to transfertilize this blueprint to other medical fields, including psychiatry and neurology. In order to illustrate the emerging paradigm shift in neuroscience, we provide a state-of-the-art review of translational studies on the β-site amyloid precursor protein cleaving enzyme (BACE) and its most studied downstream effector, neuregulin, which are molecular orchestrators of distinct biological pathways involved in several neurological and psychiatric diseases. This body of data aligns with the evidence of a shared genetic/biological architecture among Alzheimer's disease, schizoaffective disorder, and autism spectrum disorders. To facilitate a forward-looking discussion about a potential first step towards the adoption of biological pathway-based, clinical symptom-agnostic, categorization models in clinical neurology and psychiatry for precision medicine solutions, we engage in a speculative intellectual exercise gravitating around BACE-related science, which is used as a paradigmatic case here. We draw a perspective whereby pathway-based therapeutic strategies could be catalyzed by highthroughput techniques embedded in systems-scaled biology, neuroscience, and pharmacology approaches that will help overcome the constraints of traditional descriptive clinical symptom and syndrome-focused constructs in neurology and psychiatry.
Collapse
Affiliation(s)
- Harald Hampel
- Sorbonne University, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Boulevard de l'hôpital, Paris, France
| | | | - Robert Nisticò
- Laboratory of Pharmacology of Synaptic Plasticity, EBRI Rita Levi-Montalcini Foundation, Rome, Italy
- School of Pharmacy, University of Rome “Tor Vergata”, Rome, Italy
| | - Gaia Piccioni
- Laboratory of Pharmacology of Synaptic Plasticity, EBRI Rita Levi-Montalcini Foundation, Rome, Italy
- Department of Physiology and Pharmacology “V.Erspamer”, Sapienza University of Rome, Rome, Italy
| | - Nicola B. Mercuri
- Department of Systems Medicine, University of Rome “Tor Vergata”, Rome, Italy
- IRCCS Santa Lucia Foundation, Rome, Italy
| | - Filippo Sean Giorgi
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, Pisa, Italy
| | - Fabio Ferrarelli
- Department of Psychiatry, University of Pittsburgh, School of Medicine, Pittsburgh, PA, USA
| | - Pablo Lemercier
- Sorbonne University, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Boulevard de l'hôpital, Paris, France
| | - Filippo Caraci
- Oasi Research Institute-IRCCS, Troina, Italy
- Department of Drug Sciences, University of Catania, Catania, Italy
| | - Simone Lista
- Sorbonne University, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Boulevard de l'hôpital, Paris, France
- Memory Resources and Research Center (CMRR), Neurology Department, Gui de Chauliac University Hospital, Montpellier, France
| | - Andrea Vergallo
- Sorbonne University, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Boulevard de l'hôpital, Paris, France
| |
Collapse
|
19
|
Monteiro KLC, Dos Santos Alcântara MG, Freire NML, Brandão EM, do Nascimento VL, Dos Santos Viana LM, de Aquino TM, da Silva-Júnior EF. BACE-1 Inhibitors Targeting Alzheimer's Disease. Curr Alzheimer Res 2023; 20:131-148. [PMID: 37309767 DOI: 10.2174/1567205020666230612155953] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 04/27/2023] [Accepted: 05/25/2023] [Indexed: 06/14/2023]
Abstract
The accumulation of amyloid-β (Aβ) is the main event related to Alzheimer's disease (AD) progression. Over the years, several disease-modulating approaches have been reported, but without clinical success. The amyloid cascade hypothesis evolved and proposed essential targets such as tau protein aggregation and modulation of β-secretase (β-site amyloid precursor protein cleaving enzyme 1 - BACE-1) and γ-secretase proteases. BACE-1 cuts the amyloid precursor protein (APP) to release the C99 fragment, giving rise to several Aβ peptide species during the subsequent γ-secretase cleavage. In this way, BACE-1 has emerged as a clinically validated and attractive target in medicinal chemistry, as it plays a crucial role in the rate of Aβ generation. In this review, we report the main results of candidates in clinical trials such as E2609, MK8931, and AZD-3293, in addition to highlighting the pharmacokinetic and pharmacodynamic-related effects of the inhibitors already reported. The current status of developing new peptidomimetic, non-peptidomimetic, naturally occurring, and other class inhibitors are demonstrated, considering their main limitations and lessons learned. The goal is to provide a broad and complete approach to the subject, exploring new chemical classes and perspectives.
Collapse
Affiliation(s)
- Kadja Luana Chagas Monteiro
- Research Group on Therapeutic Strategies - GPET, Laboratory of Synthesis and Research in Medicinal Chemistry - LSPMED, Institute of Chemistry and Biotechnology, Federal University of Alagoas, Lourival Melo Mota Avenue, 57072-970, Maceió, Alagoas, Brazil
| | - Marcone Gomes Dos Santos Alcântara
- Research Group on Therapeutic Strategies - GPET, Laboratory of Synthesis and Research in Medicinal Chemistry - LSPMED, Institute of Chemistry and Biotechnology, Federal University of Alagoas, Lourival Melo Mota Avenue, 57072-970, Maceió, Alagoas, Brazil
| | - Nathalia Monteiro Lins Freire
- Research Group on Therapeutic Strategies - GPET, Laboratory of Synthesis and Research in Medicinal Chemistry - LSPMED, Institute of Chemistry and Biotechnology, Federal University of Alagoas, Lourival Melo Mota Avenue, 57072-970, Maceió, Alagoas, Brazil
| | - Esaú Marques Brandão
- Research Group on Therapeutic Strategies - GPET, Laboratory of Synthesis and Research in Medicinal Chemistry - LSPMED, Institute of Chemistry and Biotechnology, Federal University of Alagoas, Lourival Melo Mota Avenue, 57072-970, Maceió, Alagoas, Brazil
| | - Vanessa Lima do Nascimento
- Research Group on Therapeutic Strategies - GPET, Laboratory of Synthesis and Research in Medicinal Chemistry - LSPMED, Institute of Chemistry and Biotechnology, Federal University of Alagoas, Lourival Melo Mota Avenue, 57072-970, Maceió, Alagoas, Brazil
| | - Líbni Maísa Dos Santos Viana
- Research Group on Therapeutic Strategies - GPET, Laboratory of Synthesis and Research in Medicinal Chemistry - LSPMED, Institute of Chemistry and Biotechnology, Federal University of Alagoas, Lourival Melo Mota Avenue, 57072-970, Maceió, Alagoas, Brazil
| | - Thiago Mendonça de Aquino
- Research Group on Therapeutic Strategies - GPET, Laboratory of Synthesis and Research in Medicinal Chemistry - LSPMED, Institute of Chemistry and Biotechnology, Federal University of Alagoas, Lourival Melo Mota Avenue, 57072-970, Maceió, Alagoas, Brazil
| | - Edeildo Ferreira da Silva-Júnior
- Institute of Chemistry and Biotechnology, Federal University of Alagoas, Lourival Melo Mota Avenue, 57072-970, Maceió, Alagoas, Brazil
| |
Collapse
|
20
|
Chu PL, Gigliotti JC, Cechova S, Bodonyi-Kovacs G, Wang YT, Chen L, Wassertheil-Smoller S, Cai J, Isakson BE, Franceschini N, Le TH. Collectrin ( Tmem27) deficiency in proximal tubules causes hypertension in mice and a TMEM27 variant associates with blood pressure in males in a Latino cohort. Am J Physiol Renal Physiol 2023; 324:F30-F42. [PMID: 36264884 PMCID: PMC9762972 DOI: 10.1152/ajprenal.00176.2022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 09/07/2022] [Accepted: 09/23/2022] [Indexed: 02/04/2023] Open
Abstract
Collectrin (Tmem27), an angiotensin-converting enzyme 2 homologue, is a chaperone of amino acid transporters in the kidney and endothelium. Global collectrin knockout (KO) mice have hypertension, endothelial dysfunction, exaggerated salt sensitivity, and diminished renal blood flow. This phenotype is associated with altered nitric oxide and superoxide balance and increased proximal tubule (PT) Na+/H+ exchanger isoform 3 (NHE3) expression. Collectrin is located on the X chromosome where genome-wide association population studies have largely been excluded. In the present study, we generated PT-specific collectrin KO (PT KO) mice to determine the precise contribution of PT collectrin in blood pressure homeostasis. We also examined the association of human TMEM27 single-nucleotide polymorphisms with blood pressure traits in 11,926 Hispanic Community Health Study/Study of Latinos (HCHS/SOL) Hispanic/Latino participants. PT KO mice exhibited hypertension, and this was associated with increased baseline NHE3 expression and diminished lithium excretion. However, PT KO mice did not display exaggerated salt sensitivity or a reduction in renal blood flow compared with control mice. Furthermore, PT KO mice exhibited enhanced endothelium-mediated dilation, suggesting a compensatory response to systemic hypertension induced by deficiency of collectrin in the PT. In HCHS/SOL participants, we observed sex-specific single-nucleotide polymorphism associations with diastolic blood pressure. In conclusion, loss of collectrin in the PT is sufficient to induce hypertension, at least in part, through activation of NHE3. Importantly, our model supports the notion that altered renal blood flow may be a determining factor for salt sensitivity. Further studies are needed to investigate the role of the TMEM27 locus on blood pressure and salt sensitivity in humans.NEW & NOTEWORTHY The findings of our study are significant in several ways: 1) loss of an amino acid chaperone in the proximal tubule is sufficient to cause hypertension, 2) the results in global and proximal tubule-specific collectrin knockout mice support the notion that vascular dysfunction is required for salt sensitivity or that impaired renal tubule function causes hypertension but is not sufficient to cause salt sensitivity, and 3) our study is the first to implicate a role of collectrin in human hypertension.
Collapse
Affiliation(s)
- Pei-Lun Chu
- Division of Nephrology, Fu Jen Catholic University Hospital, and School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Joseph C Gigliotti
- Department of Integrated Physiology and Pharmacology, Liberty University College of Osteopathic Medicine, Lynchburg, Virginia
| | - Sylvia Cechova
- Division of Nephrology, Department of Medicine, University of Virginia Health System, Charlottesville, Virginia
| | - Gabor Bodonyi-Kovacs
- Division of Nephrology, Department of Medicine, University of Virginia Health System, Charlottesville, Virginia
| | - Yves T Wang
- Division of Nephrology, Department of Medicine, University of Rochester Medical Center Rochester, Rochester, New York
| | - Luojing Chen
- Division of Nephrology, Department of Medicine, University of Rochester Medical Center Rochester, Rochester, New York
| | - Sylvia Wassertheil-Smoller
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, New York
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx, New York
| | - Jianwen Cai
- Department of Biostatistics, University of North Carolina, Chapel Hill, North Carolina
| | - Brant E Isakson
- Robert M. Berne Cardiovascular Research Center and Department of Molecular Physiology and Biophysics, University of Virginia Health System, Charlottesville, Virginia
| | - Nora Franceschini
- Department of Epidemiology, University of North Carolina, Chapel Hill, North Carolina
| | - Thu H Le
- Division of Nephrology, Department of Medicine, University of Rochester Medical Center Rochester, Rochester, New York
| |
Collapse
|
21
|
Hodges SL, Bouza AA, Isom LL. Therapeutic Potential of Targeting Regulated Intramembrane Proteolysis Mechanisms of Voltage-Gated Ion Channel Subunits and Cell Adhesion Molecules. Pharmacol Rev 2022; 74:1028-1048. [PMID: 36113879 PMCID: PMC9553118 DOI: 10.1124/pharmrev.121.000340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 05/13/2022] [Indexed: 10/03/2023] Open
Abstract
Several integral membrane proteins undergo regulated intramembrane proteolysis (RIP), a tightly controlled process through which cells transmit information across and between intracellular compartments. RIP generates biologically active peptides by a series of proteolytic cleavage events carried out by two primary groups of enzymes: sheddases and intramembrane-cleaving proteases (iCLiPs). Following RIP, fragments of both pore-forming and non-pore-forming ion channel subunits, as well as immunoglobulin super family (IgSF) members, have been shown to translocate to the nucleus to function in transcriptional regulation. As an example, the voltage-gated sodium channel β1 subunit, which is also an IgSF-cell adhesion molecule (CAM), is a substrate for RIP. β1 RIP results in generation of a soluble intracellular domain, which can regulate gene expression in the nucleus. In this review, we discuss the proposed RIP mechanisms of voltage-gated sodium, potassium, and calcium channel subunits as well as the roles of their generated proteolytic products in the nucleus. We also discuss other RIP substrates that are cleaved by similar sheddases and iCLiPs, such as IgSF macromolecules, including CAMs, whose proteolytically generated fragments function in the nucleus. Importantly, dysfunctional RIP mechanisms are linked to human disease. Thus, we will also review how understanding RIP events and subsequent signaling processes involving ion channel subunits and IgSF proteins may lead to the discovery of novel therapeutic targets. SIGNIFICANCE STATEMENT: Several ion channel subunits and immunoglobulin superfamily molecules have been identified as substrates of regulated intramembrane proteolysis (RIP). This signal transduction mechanism, which generates polypeptide fragments that translocate to the nucleus, is an important regulator of gene transcription. RIP may impact diseases of excitability, including epilepsy, cardiac arrhythmia, and sudden death syndromes. A thorough understanding of the role of RIP in gene regulation is critical as it may reveal novel therapeutic strategies for the treatment of previously intractable diseases.
Collapse
Affiliation(s)
- Samantha L Hodges
- Departments of Pharmacology (S.L.H., A.A.B., L.L.I.), Neurology (L.L.I.), and Molecular & Integrative Physiology (L.L.I.), University of Michigan Medical School, Ann Arbor, Michigan
| | - Alexandra A Bouza
- Departments of Pharmacology (S.L.H., A.A.B., L.L.I.), Neurology (L.L.I.), and Molecular & Integrative Physiology (L.L.I.), University of Michigan Medical School, Ann Arbor, Michigan
| | - Lori L Isom
- Departments of Pharmacology (S.L.H., A.A.B., L.L.I.), Neurology (L.L.I.), and Molecular & Integrative Physiology (L.L.I.), University of Michigan Medical School, Ann Arbor, Michigan
| |
Collapse
|
22
|
Taylor HA, Przemylska L, Clavane EM, Meakin PJ. BACE1: More than just a β-secretase. Obes Rev 2022; 23:e13430. [PMID: 35119166 PMCID: PMC9286785 DOI: 10.1111/obr.13430] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 01/04/2022] [Accepted: 01/16/2022] [Indexed: 02/06/2023]
Abstract
β-site amyloid precursor protein cleaving enzyme-1 (BACE1) research has historically focused on its actions as the β-secretase responsible for the production of β-amyloid beta, observed in Alzheimer's disease. Although the greatest expression of BACE1 is found in the brain, BACE1 mRNA and protein is also found in many cell types including pancreatic β-cells, adipocytes, hepatocytes, and vascular cells. Pathologically elevated BACE1 expression in these cells has been implicated in the development of metabolic diseases, including type 2 diabetes, obesity, and cardiovascular disease. In this review, we examine key questions surrounding the BACE1 literature, including how is BACE1 regulated and how dysregulation may occur in disease, and understand how BACE1 regulates metabolism via cleavage of a myriad of substrates. The phenotype of the BACE1 knockout mice models, including reduced weight gain, increased energy expenditure, and enhanced leptin signaling, proposes a physiological role of BACE1 in regulating energy metabolism and homeostasis. Taken together with the weight loss observed with BACE1 inhibitors in clinical trials, these data highlight a novel role for BACE1 in regulation of metabolic physiology. Finally, this review aims to examine the possibility that BACE1 inhibitors could provide a innovative treatment for obesity and its comorbidities.
Collapse
Affiliation(s)
- Hannah A Taylor
- Discovery & Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| | - Lena Przemylska
- Discovery & Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| | - Eva M Clavane
- Discovery & Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| | - Paul J Meakin
- Discovery & Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| |
Collapse
|
23
|
Patel S, Bansoad AV, Singh R, Khatik GL. BACE1: A Key Regulator in Alzheimer's Disease Progression and Current Development of its Inhibitors. Curr Neuropharmacol 2022; 20:1174-1193. [PMID: 34852746 PMCID: PMC9886827 DOI: 10.2174/1570159x19666211201094031] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/26/2021] [Accepted: 11/28/2021] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is a chronic neurodegenerative disease with no specific disease-modifying treatment. β-secretase (BACE1) is considered the potential and rationale target because it is involved in the rate-limiting step, which produces toxic Aβ42 peptides that leads to deposits in the form of amyloid plaques extracellularly, resulting in AD. OBJECTIVE This study aims to discuss the role and implications of BACE1 and its inhibitors in the management of AD. METHODS We have searched and collected the relevant quality work from PubMed using the following keywords "BACE1", BACE2", "inhibitors", and "Alzheimer's disease". In addition, we included the work which discusses the role of BACE1 in AD and the recent work on its inhibitors. RESULTS In this review, we have discussed the importance of BACE1 in regulating AD progression and the current development of BACE1 inhibitors. However, the development of a BACE1 inhibitor is very challenging due to the large active site of BACE1. Nevertheless, some of the BACE1 inhibitors have managed to enter advanced phases of clinical trials, such as MK-8931 (Verubecestat), E2609 (Elenbecestat), AZD3293 (Lanabecestat), and JNJ-54861911 (Atabecestat). This review also sheds light on the prospect of BACE1 inhibitors as the most effective therapeutic approach in delaying or preventing AD progression. CONCLUSION BACE1 is involved in the progression of AD. The current ongoing or failed clinical trials may help understand the role of BACE1 inhibition in regulating the Aβ load and cognitive status of AD patients.
Collapse
Affiliation(s)
| | - Ankush Vardhaman Bansoad
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research-Raebareli, New Transit Campus, Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, Lucknow (Uttar Pradesh), 226002, India
| | - Rakesh Singh
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research-Raebareli, New Transit Campus, Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, Lucknow (Uttar Pradesh), 226002, India
| | - Gopal L. Khatik
- Department of Medicinal Chemistry, ,Address correspondence to this author at the Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research- Raebareli, New Transit Campus, Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, Lucknow, Uttar Pradesh, India, 226002; E-mail: ,
| |
Collapse
|
24
|
Luo J, Zou H, Guo Y, Huang K, Ngan ESW, Li P. BACE2 variant identified from HSCR patient causes AD-like phenotypes in hPSC-derived brain organoids. Cell Death Discov 2022; 8:47. [PMID: 35110536 PMCID: PMC8811022 DOI: 10.1038/s41420-022-00845-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/30/2021] [Accepted: 01/20/2022] [Indexed: 02/07/2023] Open
Abstract
β-site APP-cleaving enzyme 2 (BACE2) is a homolog of BACE1, which is considered as the most promising therapeutic target for Alzheimer's disease (AD). However, the expression and functional role of BACE2 in central nervous system (CNS) remain obscured. Previously, we identified several BACE2 rare variants in Hirschsprung disease (HSCR) patients and proved that BACE2-mediated APP cleavage might represent a novel HSCR pathogenesis mechanism in enteric nervous system. Here, we validated that these HSCR-associated BACE2 variants were loss-of-function mutations. Using the human pluripotent stem cell (hPSC)-derived brain organoids (BOs), we further demonstrated that BACE2 was mainly expressed in the ventricular zone and cortical plate of BOs, and its expression level was gradually increased along with the BO maturation. Functionally, we found that the BOs carrying the BACE2 loss-of-function mutation (BACE2G446R) showed greater apoptosis and increased levels of Aβ oligomers compared to the control BOs, resembling with the AD-associated phenotypes. All these phenotypes could be rescued via the removal of APP protein in BACE2G446R BOs. Furthermore, rather than BACE2G446R, BACE2WT overexpression in BOs carrying the APP Swedish/Indiana mutations attenuated the AD-associated phenotypes, including Aβ accumulation and neuronal cell death. Taken together, our results unravel that BACE2 can protect the neuronal cell from apoptosis caused by Aβ accumulation, and the deficiency of BACE2-mediated APP cleavage may represent a common pathological mechanism for both HSCR and AD.
Collapse
Affiliation(s)
- Juan Luo
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, Guangdong, People's Republic of China
| | - Hailin Zou
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, Guangdong, People's Republic of China
| | - Yibo Guo
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, Guangdong, People's Republic of China
| | - Ke Huang
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, Guangdong, People's Republic of China
| | - Elly Sau-Wai Ngan
- Department of Surgery, Li Ka Shing Faculty of Medicine, University of Hong Kong, Pokfulam, Hong Kong.
| | - Peng Li
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, Guangdong, People's Republic of China.
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, No. 628 Zhenyuan Road, Shenzhen, 518107, Guangdong, People's Republic of China.
| |
Collapse
|
25
|
Sun Q, Liu F, Zhao J, Wang P, Sun X. Cleavage of Kv2.1 by BACE1 decreases potassium current and reduces neuronal apoptosis. Neurochem Int 2022; 155:105310. [DOI: 10.1016/j.neuint.2022.105310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 02/09/2022] [Accepted: 02/18/2022] [Indexed: 10/19/2022]
|
26
|
Vitória JJM, Trigo D, da Cruz E Silva OAB. Revisiting APP secretases: an overview on the holistic effects of retinoic acid receptor stimulation in APP processing. Cell Mol Life Sci 2022; 79:101. [PMID: 35089425 PMCID: PMC11073327 DOI: 10.1007/s00018-021-04090-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 11/18/2021] [Accepted: 12/01/2021] [Indexed: 01/03/2023]
Abstract
Alzheimer's disease (AD) is the leading cause of dementia worldwide and is characterized by the accumulation of the β-amyloid peptide (Aβ) in the brain, along with profound alterations in phosphorylation-related events and regulatory pathways. The production of the neurotoxic Aβ peptide via amyloid precursor protein (APP) proteolysis is a crucial step in AD development. APP is highly expressed in the brain and is complexly metabolized by a series of sequential secretases, commonly denoted the α-, β-, and γ-cleavages. The toxicity of resulting fragments is a direct consequence of the first cleaving event. β-secretase (BACE1) induces amyloidogenic cleavages, while α-secretases (ADAM10 and ADAM17) result in less pathological peptides. Hence this first cleavage event is a prime therapeutic target for preventing or reverting initial biochemical events involved in AD. The subsequent cleavage by γ-secretase has a reduced impact on Aβ formation but affects the peptides' aggregating capacity. An array of therapeutic strategies are being explored, among them targeting Retinoic Acid (RA) signalling, which has long been associated with neuronal health. Additionally, several studies have described altered RA levels in AD patients, reinforcing RA Receptor (RAR) signalling as a promising therapeutic strategy. In this review we provide a holistic approach focussing on the effects of isoform-specific RAR modulation with respect to APP secretases and discuss its advantages and drawbacks in subcellular AD related events.
Collapse
Affiliation(s)
- José J M Vitória
- Department of Medical Sciences, Neurosciences and Signalling Group, Institute of Biomedicine, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Diogo Trigo
- Department of Medical Sciences, Neurosciences and Signalling Group, Institute of Biomedicine, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Odete A B da Cruz E Silva
- Department of Medical Sciences, Neurosciences and Signalling Group, Institute of Biomedicine, University of Aveiro, 3810-193, Aveiro, Portugal.
| |
Collapse
|
27
|
Fourriere L, Cho EHJ, Gleeson PA. Segregation of the membrane cargoes, BACE1 and amyloid precursor protein (APP) throughout the Golgi apparatus. Traffic 2022; 23:158-173. [PMID: 35076977 PMCID: PMC9303681 DOI: 10.1111/tra.12831] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/26/2021] [Accepted: 01/18/2022] [Indexed: 11/28/2022]
Abstract
The intracellular trafficking of β‐site amyloid precursor protein (APP) cleaving enzyme (BACE1) and APP regulates amyloid‐β production. Our previous work demonstrated that newly synthesized BACE1 and APP are segregated into distinct trafficking pathways from the trans‐Golgi network (TGN), and that alterations in their trafficking lead to an increase in Aβ production in non‐neuronal and neuronal cells. However, it is not known whether BACE1 and APP are transported through the Golgi stacks together and sorted at the TGN or segregated prior to arrival at the TGN. To address this question, we have used high‐resolution Airyscan technology followed by Huygens deconvolution to quantify the overlap of BACE1 and APP in Golgi subcompartments in HeLa cells and primary neurons. Here, we show that APP and BACE1 are segregated, on exit from the endoplasmic reticulum and in the cis‐Golgi and throughout the Golgi stack. In contrast, the transferrin receptor, which exits the TGN in AP‐1 mediated transport carriers as for BACE1, colocalizes with BACE1, but not APP, throughout the Golgi stack. The segregation of APP and BACE1 is independent of the Golgi ribbon structure and the cytoplasmic domain of the cargo. Overall, our findings reveal the segregation of different membrane cargoes early in the secretory pathway, a finding relevant to the regulation of APP processing events.
Collapse
Affiliation(s)
- Lou Fourriere
- The Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria, Australia
| | - Ellie Hyun-Jung Cho
- The Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria, Australia.,Biological Optical Microscopy Platform, The University of Melbourne, Victoria, Australia
| | - Paul A Gleeson
- The Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria, Australia
| |
Collapse
|
28
|
Díaz-Catalán D, Alcarraz-Vizán G, Castaño C, de Pablo S, Rodríguez-Comas J, Fernández-Pérez A, Vallejo M, Ramírez S, Claret M, Parrizas M, Novials A, Servitja JM. BACE2 suppression in mice aggravates the adverse metabolic consequences of an obesogenic diet. Mol Metab 2021; 53:101251. [PMID: 34015524 PMCID: PMC8190493 DOI: 10.1016/j.molmet.2021.101251] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 04/16/2021] [Accepted: 05/09/2021] [Indexed: 01/21/2023] Open
Abstract
OBJECTIVE Pancreatic β-cell dysfunction is a central feature in the pathogenesis of type 2 diabetes (T2D). Accumulating evidence indicates that β-site APP-cleaving enzyme 2 (BACE2) inhibition exerts a beneficial effect on β-cells in different models of T2D. Thus, targeting BACE2 may represent a potential therapeutic strategy for the treatment of this disease. Here, we aimed to investigate the effects of BACE2 suppression on glucose homeostasis in a model of diet-induced obesity. METHODS BACE2 knock-out (BKO) and wild-type (WT) mice were fed with a high-fat diet (HFD) for 2 or 16 weeks. Body weight, food intake, respiratory exchange ratio, locomotor activity, and energy expenditure were determined. Glucose homeostasis was evaluated by glucose and insulin tolerance tests. β-cell proliferation was assessed by Ki67-positive nuclei, and β-cell function was determined by measuring glucose-stimulated insulin secretion. Leptin sensitivity was evaluated by quantifying food intake and body weight after an intraperitoneal leptin injection. Neuropeptide gene expression and insulin signaling in the mediobasal hypothalamus were determined by qPCR and Akt phosphorylation, respectively. RESULTS After 16 weeks of HFD feeding, BKO mice exhibited an exacerbated body weight gain and hyperphagia, in comparison to WT littermates. Glucose tolerance was similar in both groups, whereas HFD-induced hyperinsulinemia, insulin resistance, and β-cell expansion were more pronounced in BKO mice. In turn, leptin-induced food intake inhibition and hypothalamic insulin signaling were impaired in BKO mice, regardless of the diet, in accordance with deregulation of the expression of hypothalamic neuropeptide genes. Importantly, BKO mice already showed increased β-cell proliferation and glucose-stimulated insulin secretion with respect to WT littermates after two weeks of HFD feeding, before the onset of obesity. CONCLUSIONS Collectively, these results reveal that BACE2 suppression in an obesogenic setting leads to exacerbated body weight gain, hyperinsulinemia, and insulin resistance. Thus, we conclude that inhibition of BACE2 may aggravate the adverse metabolic effects associated with obesity.
Collapse
Affiliation(s)
- Daniela Díaz-Catalán
- Pathogenesis and Prevention of Diabetes Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Spain
| | - Gema Alcarraz-Vizán
- Pathogenesis and Prevention of Diabetes Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Spain
| | - Carlos Castaño
- Pathogenesis and Prevention of Diabetes Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Spain
| | - Sara de Pablo
- Pathogenesis and Prevention of Diabetes Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Júlia Rodríguez-Comas
- Pathogenesis and Prevention of Diabetes Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Antonio Fernández-Pérez
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Spain; Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas (CSIC)/Universidad Autónoma de Madrid, Madrid, Spain
| | - Mario Vallejo
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Spain; Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas (CSIC)/Universidad Autónoma de Madrid, Madrid, Spain
| | - Sara Ramírez
- Neuronal Control of Metabolism (NeuCoMe) Laboratory, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Marc Claret
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Spain; Neuronal Control of Metabolism (NeuCoMe) Laboratory, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; School of Medicine, Universitat de Barcelona, Barcelona, Spain
| | - Marcelina Parrizas
- Pathogenesis and Prevention of Diabetes Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Spain
| | - Anna Novials
- Pathogenesis and Prevention of Diabetes Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Spain.
| | - Joan-Marc Servitja
- Pathogenesis and Prevention of Diabetes Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Spain.
| |
Collapse
|
29
|
Alić I, Goh PA, Murray A, Portelius E, Gkanatsiou E, Gough G, Mok KY, Koschut D, Brunmeir R, Yeap YJ, O'Brien NL, Groet J, Shao X, Havlicek S, Dunn NR, Kvartsberg H, Brinkmalm G, Hithersay R, Startin C, Hamburg S, Phillips M, Pervushin K, Turmaine M, Wallon D, Rovelet-Lecrux A, Soininen H, Volpi E, Martin JE, Foo JN, Becker DL, Rostagno A, Ghiso J, Krsnik Ž, Šimić G, Kostović I, Mitrečić D, Francis PT, Blennow K, Strydom A, Hardy J, Zetterberg H, Nižetić D. Patient-specific Alzheimer-like pathology in trisomy 21 cerebral organoids reveals BACE2 as a gene dose-sensitive AD suppressor in human brain. Mol Psychiatry 2021; 26:5766-5788. [PMID: 32647257 PMCID: PMC8190957 DOI: 10.1038/s41380-020-0806-5] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 05/18/2020] [Accepted: 05/29/2020] [Indexed: 11/15/2022]
Abstract
A population of more than six million people worldwide at high risk of Alzheimer's disease (AD) are those with Down Syndrome (DS, caused by trisomy 21 (T21)), 70% of whom develop dementia during lifetime, caused by an extra copy of β-amyloid-(Aβ)-precursor-protein gene. We report AD-like pathology in cerebral organoids grown in vitro from non-invasively sampled strands of hair from 71% of DS donors. The pathology consisted of extracellular diffuse and fibrillar Aβ deposits, hyperphosphorylated/pathologically conformed Tau, and premature neuronal loss. Presence/absence of AD-like pathology was donor-specific (reproducible between individual organoids/iPSC lines/experiments). Pathology could be triggered in pathology-negative T21 organoids by CRISPR/Cas9-mediated elimination of the third copy of chromosome 21 gene BACE2, but prevented by combined chemical β and γ-secretase inhibition. We found that T21 organoids secrete increased proportions of Aβ-preventing (Aβ1-19) and Aβ-degradation products (Aβ1-20 and Aβ1-34). We show these profiles mirror in cerebrospinal fluid of people with DS. We demonstrate that this protective mechanism is mediated by BACE2-trisomy and cross-inhibited by clinically trialled BACE1 inhibitors. Combined, our data prove the physiological role of BACE2 as a dose-sensitive AD-suppressor gene, potentially explaining the dementia delay in ~30% of people with DS. We also show that DS cerebral organoids could be explored as pre-morbid AD-risk population detector and a system for hypothesis-free drug screens as well as identification of natural suppressor genes for neurodegenerative diseases.
Collapse
Grants
- MR/S011277/1 Medical Research Council
- MR/L501542/1 Medical Research Council
- RF1 AG059695 NIA NIH HHS
- G-0907 Parkinson's UK
- MR/N026004/1 Medical Research Council
- MR/R024901/1 Medical Research Council
- Wellcome Trust
- 217199 Wellcome Trust
- G0901254 Medical Research Council
- G0701075 Medical Research Council
- 098330 Wellcome Trust
- William Harvey Academy Fellowship, co-funded by the People Programme (Marie Curie Actions) of the European Union’s Seventh Framework Programme (FP7/2007-2013) under REA grant agreement n° 608765
- Fondation pour la Recherche Médicale (Foundation for Medical Research in France)
- National Research Foundation Singapore (National Research Foundation-Prime Minister’s office, Republic of Singapore)
- BrightFocus Foundation (BrightFocus)
- Foundation for the National Institutes of Health (Foundation for the National Institutes of Health, Inc.)
- Svenska Forskningsrådet Formas (Swedish Research Council Formas)
- KB holds the Torsten Söderberg Professorship in Medicine at the Royal Swedish Academy of Sciences, and is supported by the Swedish Alzheimer Foundation (#AF-742881), Hjärnfonden, Sweden (#FO2017-0243), and the Swedish State Support for Clinical Research (#ALFGBG-715986).
- Wellcome Trust (Wellcome)
- JH received funding from the Dementia Research Institute, an anonymous foundation and the Dolby foundation
- HZ is a Wallenberg Academy Fellow supported by grants from the Swedish Research Council, the European Research Council, Swedish State Support for Clinical Research (ALFGBG-720931) the UK Dementia Research Institute at UCL
Collapse
Affiliation(s)
- Ivan Alić
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 308232, Singapore
- The Blizard Institute, Barts & The London School of Medicine, Queen Mary University of London, London, E1 2AT, UK
- Department of Anatomy, Histology and Embryology, Faculty of Veterinary Medicine, University of Zagreb, 10000, Zagreb, Croatia
| | - Pollyanna A Goh
- The Blizard Institute, Barts & The London School of Medicine, Queen Mary University of London, London, E1 2AT, UK
- LonDownS Consortium, London, UK
| | - Aoife Murray
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 308232, Singapore
| | - Erik Portelius
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, S-405 30, Sweden
| | - Eleni Gkanatsiou
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, S-405 30, Sweden
| | - Gillian Gough
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 308232, Singapore
| | - Kin Y Mok
- LonDownS Consortium, London, UK
- Dementia Research Institute & Reta Lila Weston Institute, Institute of Neurology, University College London, London, WC1N 3BG, UK
| | - David Koschut
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 308232, Singapore
| | - Reinhard Brunmeir
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 308232, Singapore
| | - Yee Jie Yeap
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 308232, Singapore
| | - Niamh L O'Brien
- The Blizard Institute, Barts & The London School of Medicine, Queen Mary University of London, London, E1 2AT, UK
- LonDownS Consortium, London, UK
| | - Jürgen Groet
- The Blizard Institute, Barts & The London School of Medicine, Queen Mary University of London, London, E1 2AT, UK
- LonDownS Consortium, London, UK
| | - Xiaowei Shao
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 308232, Singapore
| | - Steven Havlicek
- Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), Singapore, 138672, Singapore
| | - N Ray Dunn
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 308232, Singapore
- Institute of Medical Biology, Agency for Science, Technology and Research (A*STAR), Singapore, 138648, Singapore
| | - Hlin Kvartsberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, S-405 30, Sweden
| | - Gunnar Brinkmalm
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, S-405 30, Sweden
| | - Rosalyn Hithersay
- LonDownS Consortium, London, UK
- Division of Psychiatry, University College London, London, WC1E 6BT, UK
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, SE5 8AF, UK
| | - Carla Startin
- LonDownS Consortium, London, UK
- Division of Psychiatry, University College London, London, WC1E 6BT, UK
| | - Sarah Hamburg
- LonDownS Consortium, London, UK
- Division of Psychiatry, University College London, London, WC1E 6BT, UK
| | - Margaret Phillips
- School of Biological Sciences, Nanyang Technological University, Singapore, 639798, Singapore
| | - Konstantin Pervushin
- School of Biological Sciences, Nanyang Technological University, Singapore, 639798, Singapore
| | - Mark Turmaine
- Division of Biosciences, University College London, Gower Street, London, WC1E 6BT, UK
| | - David Wallon
- Normandie Univ, UNIROUEN, Inserm U1245 and Rouen University Hospital, Department of Neurology and CNR-MAJ, F 76000, Normandy Center for Genomic and Personalized Medicine, Rouen, France
| | - Anne Rovelet-Lecrux
- Normandie Univ, UNIROUEN, Inserm U1245 and Rouen University Hospital, Department of Neurology and CNR-MAJ, F 76000, Normandy Center for Genomic and Personalized Medicine, Rouen, France
| | - Hilkka Soininen
- University of Eastern Finland, Institute of Clinical Medicine/Neurology, Kuopio, FI-70211, Finland
| | - Emanuela Volpi
- School of Life Sciences, University of Westminster, London, W1W 6UW, UK
| | - Joanne E Martin
- The Blizard Institute, Barts & The London School of Medicine, Queen Mary University of London, London, E1 2AT, UK
| | - Jia Nee Foo
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 308232, Singapore
- Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), Singapore, 138672, Singapore
| | - David L Becker
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 308232, Singapore
| | - Agueda Rostagno
- Department of Pathology & Department of Psychiatry, New York University School of Medicine, New York, NY, 10016, USA
| | - Jorge Ghiso
- Department of Pathology & Department of Psychiatry, New York University School of Medicine, New York, NY, 10016, USA
| | - Željka Krsnik
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, 10000, Zagreb, Croatia
| | - Goran Šimić
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, 10000, Zagreb, Croatia
| | - Ivica Kostović
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, 10000, Zagreb, Croatia
| | - Dinko Mitrečić
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, 10000, Zagreb, Croatia
| | - Paul T Francis
- Wolfson Centre for Age-Related Diseases, King's College London, London, SE1 1UL, UK
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, S-405 30, Sweden
| | - Andre Strydom
- LonDownS Consortium, London, UK
- Division of Psychiatry, University College London, London, WC1E 6BT, UK
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, SE5 8AF, UK
| | - John Hardy
- LonDownS Consortium, London, UK
- Dementia Research Institute & Reta Lila Weston Institute, Institute of Neurology, University College London, London, WC1N 3BG, UK
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, S-405 30, Sweden
- Dementia Research Institute & Reta Lila Weston Institute, Institute of Neurology, University College London, London, WC1N 3BG, UK
| | - Dean Nižetić
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 308232, Singapore.
- The Blizard Institute, Barts & The London School of Medicine, Queen Mary University of London, London, E1 2AT, UK.
- LonDownS Consortium, London, UK.
| |
Collapse
|
30
|
Shah H, Patel A, Parikh V, Nagani A, Bhimani B, Shah U, Bambharoliya T. The β-Secretase Enzyme BACE1: A Biochemical Enigma for Alzheimer's Disease. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2021; 19:184-194. [PMID: 32452328 DOI: 10.2174/1871527319666200526144141] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 04/18/2020] [Accepted: 04/29/2020] [Indexed: 01/08/2023]
Abstract
Beta site amyloid precursor protein cleaving enzyme 1 (BACE1) is a rational target in Alzheimer's Disease (AD) drug development due to its role in amyloidogenic cleavage of Amyloid Precursor Protein (APP) in generating Amyloid β (Aβ). This β-secretase cleaves not only Amyloid Precursor Protein (APP) and its homologues, but also small series of substrates including neuregulin and β subunit of voltage-gated sodium channel that play a very important role in the development and normal function of the brain. Moreover, BACE1 is modulated at the post-translational level by several factors that are associated with both physiological and pathological functions. Since the discovery of BACE1 over a decade ago, medicinal chemistry and pharmacokinetics of BACE1 small molecule inhibitors have proven challenging for the treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Hirak Shah
- Department of Pharmaceutical Chemistry, Parul Institute of Pharmacy, Parul University, Vadodara, Gujarat 391760, India
| | - Ashish Patel
- Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, Changa, Gujarat 388421, India
| | - Vruti Parikh
- Department of Pharmaceutical Chemistry, Parul Institute of Pharmacy, Parul University, Vadodara, Gujarat 391760, India
| | - Afzal Nagani
- Department of Pharmaceutical Chemistry, Parul Institute of Pharmacy, Parul University, Vadodara, Gujarat 391760, India
| | - Bhargav Bhimani
- Piramal Discovery Solution, Pharmaceutical Special Economic Zone, Ahmedabad 382213, India
| | - Umang Shah
- Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, Changa, Gujarat 388421, India
| | - Tushar Bambharoliya
- Pharmaceutical Polymer Technology, North Carolina State University, North Carolina, NC, United States
| |
Collapse
|
31
|
Ugbaja SC, Lawal M, Kumalo H. An Overview of β-Amyloid Cleaving Enzyme 1 (Bace1) in Alzheimer's Disease Therapy Elucidating its Exosite-Binding Antibody and Allosteric Inhibitor. Curr Med Chem 2021; 29:114-135. [PMID: 34102967 DOI: 10.2174/0929867328666210608145357] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 04/18/2021] [Accepted: 04/19/2021] [Indexed: 11/22/2022]
Abstract
Over decades of its identification, numerous past and ongoing researches have focused on the therapeutic roles of β-amyloid cleaving enzyme 1 (BACE1) as a target in treating Alzheimer's disease (AD). Although the initial BACE1 inhibitors at phase-3 clinical trials tremendously reduced β-amyloid-associated plaques in patients with AD, the researchers eventually discontinued the tests due to the lack of potency. This discontinuation has resulted in limited drug development and discovery targeted at BACE1, despite the high demand for dementia and AD therapies. It is, therefore, imperative to describe the detailed underlying biological basis of the BACE1 therapeutic option in neurological diseases. Herein, we highlight BACE1 bioactivity, genetic properties, and role in neurodegenerative therapy. We review research contributions to BACE1 exosite-binding antibody and allosteric inhibitor development as AD therapies. The review also covers BACE1 biological function, the disease-associated mechanisms, and the enzyme conditions for amyloid precursor protein sites splitting. Based on the present review, we suggest further studies on anti-BACE1 exosite antibodies and BACE1 allosteric inhibitors. Non-active site inhibition might be the way forward to BACE1 therapy in Alzheimer's neurological disorder.
Collapse
Affiliation(s)
- Samuel C Ugbaja
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Science, University of KwaZulu-Natal, Durban 4001, South Africa
| | - Monsurat Lawal
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Science, University of KwaZulu-Natal, Durban 4001, South Africa
| | - Hezekiel Kumalo
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Science, University of KwaZulu-Natal, Durban 4001, South Africa
| |
Collapse
|
32
|
Prendecki M, Kowalska M, Toton E, Kozubski W. Genetic Editing and Pharmacogenetics in Current And Future Therapy Of Neurocognitive Disorders. Curr Alzheimer Res 2021; 17:238-258. [PMID: 32321403 DOI: 10.2174/1567205017666200422152440] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 02/05/2020] [Accepted: 03/25/2020] [Indexed: 12/11/2022]
Abstract
Dementia is an important issue in western societies, and in the following years, this problem will also rise in the developing regions, such as Africa and Asia. The most common types of dementia in adults are Alzheimer's Disease (AD), Dementia with Lewy Bodies (DLB), Frontotemporal Dementia (FTD) and Vascular Dementia (VaD), of which, AD accounts for more than half of the cases. The most prominent symptom of AD is cognitive impairment, currently treated with four drugs: Donepezil, rivastigmine, and galantamine, enhancing cholinergic transmission; as well as memantine, protecting neurons against glutamate excitotoxicity. Despite ongoing efforts, no new drugs in the treatment of AD have been registered for the last ten years, thus multiple studies have been conducted on genetic factors affecting the efficacy of antidementia pharmacotherapy. The researchers investigate the effects of variants in multiple genes, such as ABCB1, ACE, CHAT, CHRNA7, CYP2C9, CYP2C19, CYP2D6, CYP3A4, CYP3A5, CYP3A7, NR1I2, NR1I3, POR, PPAR, RXR, SLC22A1/2/5, SLC47A1, UGT1A6, UGT1A9 and UGT2B7, associated with numerous pathways: the development of pathological proteins, formation and metabolism of acetylcholine, transport, metabolism and excretion of antidementia drugs and transcription factors regulating the expression of genes responsible for metabolism and transport of drugs. The most promising results have been demonstrated for APOE E4, dementia risk variant, BCHE-K, reduced butyrylcholinesterase activity variant, and CYP2D6 UM, ultrarapid hepatic metabolism. Further studies investigate the possibilities of the development of emerging drugs or genetic editing by CRISPR/Cas9 for causative treatment. In conclusion, the pharmacogenetic studies on dementia diseases may improve the efficacy of pharmacotherapy in some patients with beneficial genetic variants, at the same time, identifying the carriers of unfavorable alleles, the potential group of novel approaches to the treatment and prevention of dementia.
Collapse
Affiliation(s)
- Michal Prendecki
- Laboratory of Neurobiology, Department of Neurology, Poznan University of Medical Sciences, 60-355 Poznan, Poland
| | - Marta Kowalska
- Laboratory of Neurobiology, Department of Neurology, Poznan University of Medical Sciences, 60-355 Poznan, Poland
| | - Ewa Toton
- Department of Clinical Chemistry and Molecular Diagnostics, Poznan University of Medical Sciences, 60-355 Poznan, Poland
| | - Wojciech Kozubski
- Department of Neurology, Poznan University of Medical Sciences, 60-355 Poznan, Poland
| |
Collapse
|
33
|
Farris F, Matafora V, Bachi A. The emerging role of β-secretases in cancer. J Exp Clin Cancer Res 2021; 40:147. [PMID: 33926496 PMCID: PMC8082908 DOI: 10.1186/s13046-021-01953-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 04/19/2021] [Indexed: 01/08/2023] Open
Abstract
BACE1 and BACE2 belong to a class of proteases called β-secretases involved in ectodomain shedding of different transmembrane substrates. These enzymes have been extensively studied in Alzheimer's disease as they are responsible for the processing of APP in neurotoxic Aβ peptides. These proteases, especially BACE2, are overexpressed in tumors and correlate with poor prognosis. Recently, different research groups tried to address the role of BACE1 and 2 in cancer development and progression. In this review, we summarize the latest findings on β-secretases in cancer, highlighting the mechanisms that build the rationale to propose inhibitors of these proteins as a new line of treatment for different tumor types.
Collapse
Affiliation(s)
| | | | - Angela Bachi
- IFOM- FIRC Institute of Molecular Oncology, Milan, Italy.
| |
Collapse
|
34
|
Dekeryte R, Franklin Z, Hull C, Croce L, Kamli-Salino S, Helk O, Hoffmann PA, Yang Z, Riedel G, Delibegovic M, Platt B. The BACE1 inhibitor LY2886721 improves diabetic phenotypes of BACE1 knock-in mice. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166149. [PMID: 33892080 DOI: 10.1016/j.bbadis.2021.166149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 03/18/2021] [Accepted: 04/13/2021] [Indexed: 11/24/2022]
Abstract
AIM The β-site amyloid precursor protein (APP) cleaving enzyme 1 (BACE1) has been identified as the central initiator of amyloid β (Aβ) generation in the brain, the key hallmark of Alzheimer's disease (AD). However, recent studies provided evidence that BACE1 also plays a crucial role in metabolic regulation, and we have shown that neuronal human BACE1 knock-in mice (PLB4) display type 2 diabetes mellitus (T2DM)-like symptoms alongside AD-like impairments. Hence, we here investigated if targeted BACE1 inhibition using LY2886721, an active site BACE1 inhibitor, would improve glucose homeostasis, insulin sensitivity and motor performance in PLB4 mice. MATERIALS AND METHODS LY2886721 was administered as a dietary supplement (0.02% wt/wt) for six consecutive weeks. Physiological, metabolic and motor assessments were performed during the last two weeks of treatment, followed by molecular tissue analyses post-mortem. RESULTS LY2886721 treatment improved glucose homeostasis and hepatic gluconeogenesis in diabetic PLB4 mice, as determined by improvements in basal glucose and glucose/pyruvate tolerance tests. Furthermore, LY2886721 improved hepatic insulin sensitivity, as indicated by enhanced basal hyperphosphorylation of insulin receptors. In PLB4 brains, we detected altered basal conditions of APP expression and processing, with beneficial effects on APP processing achieved by LY2886721 treatment. No improvements in motor coordination were found. CONCLUSIONS Our data provide support for a role of BACE1 as a regulator of systemic glucose homeostasis and suggest BACE1 inhibitors for the treatment of T2DM-associated pathologies, especially in cases where diabetes is comorbid to AD.
Collapse
Affiliation(s)
- Ruta Dekeryte
- Institute of Medical Sciences, University of Aberdeen, Foresterhill Health Campus, Aberdeen AB25 2ZD, UK
| | - Zara Franklin
- Institute of Medical Sciences, University of Aberdeen, Foresterhill Health Campus, Aberdeen AB25 2ZD, UK
| | - Claire Hull
- Institute of Medical Sciences, University of Aberdeen, Foresterhill Health Campus, Aberdeen AB25 2ZD, UK
| | - Lorenzo Croce
- Institute of Medical Sciences, University of Aberdeen, Foresterhill Health Campus, Aberdeen AB25 2ZD, UK
| | - Sarah Kamli-Salino
- Institute of Medical Sciences, University of Aberdeen, Foresterhill Health Campus, Aberdeen AB25 2ZD, UK
| | - Oliver Helk
- Institute of Medical Sciences, University of Aberdeen, Foresterhill Health Campus, Aberdeen AB25 2ZD, UK
| | - Philip A Hoffmann
- Institute of Medical Sciences, University of Aberdeen, Foresterhill Health Campus, Aberdeen AB25 2ZD, UK
| | - Zhixiang Yang
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46285, USA
| | - Gernot Riedel
- Institute of Medical Sciences, University of Aberdeen, Foresterhill Health Campus, Aberdeen AB25 2ZD, UK
| | - Mirela Delibegovic
- Institute of Medical Sciences, University of Aberdeen, Foresterhill Health Campus, Aberdeen AB25 2ZD, UK.
| | - Bettina Platt
- Institute of Medical Sciences, University of Aberdeen, Foresterhill Health Campus, Aberdeen AB25 2ZD, UK.
| |
Collapse
|
35
|
Milardi D, Gazit E, Radford SE, Xu Y, Gallardo RU, Caflisch A, Westermark GT, Westermark P, Rosa CL, Ramamoorthy A. Proteostasis of Islet Amyloid Polypeptide: A Molecular Perspective of Risk Factors and Protective Strategies for Type II Diabetes. Chem Rev 2021; 121:1845-1893. [PMID: 33427465 PMCID: PMC10317076 DOI: 10.1021/acs.chemrev.0c00981] [Citation(s) in RCA: 138] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The possible link between hIAPP accumulation and β-cell death in diabetic patients has inspired numerous studies focusing on amyloid structures and aggregation pathways of this hormone. Recent studies have reported on the importance of early oligomeric intermediates, the many roles of their interactions with lipid membrane, pH, insulin, and zinc on the mechanism of aggregation of hIAPP. The challenges posed by the transient nature of amyloid oligomers, their structural heterogeneity, and the complex nature of their interaction with lipid membranes have resulted in the development of a wide range of biophysical and chemical approaches to characterize the aggregation process. While the cellular processes and factors activating hIAPP-mediated cytotoxicity are still not clear, it has recently been suggested that its impaired turnover and cellular processing by proteasome and autophagy may contribute significantly toward toxic hIAPP accumulation and, eventually, β-cell death. Therefore, studies focusing on the restoration of hIAPP proteostasis may represent a promising arena for the design of effective therapies. In this review we discuss the current knowledge of the structures and pathology associated with hIAPP self-assembly and point out the opportunities for therapy that a detailed biochemical, biophysical, and cellular understanding of its aggregation may unveil.
Collapse
Affiliation(s)
- Danilo Milardi
- Istituto di Cristallografia, Consiglio Nazionale delle Ricerche, Via P. Gaifami 18, 95126 Catania, Italy
| | - Ehud Gazit
- Department of Molecular Microbiology and Biotechnology, The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Sheena E Radford
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Yong Xu
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Rodrigo U Gallardo
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Amedeo Caflisch
- Department of Biochemistry, University of Zürich, Zürich CH-8057, Switzerland
| | - Gunilla T Westermark
- Department of Medical Cell Biology, Uppsala University, SE-751 23 Uppsala, Sweden
| | - Per Westermark
- Department of Immunology, Genetics and Pathology, Uppsala University, SE-751 85 Uppsala, Sweden
| | - Carmelo La Rosa
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, Viale Andrea Doria 6, 95125 Catania, Italy
| | - Ayyalusamy Ramamoorthy
- Biophysics, Department of Chemistry, Biomedical Engineering, Macromolecular Science and Engineering, University of Michigan, Ann Arbor, Michigan 41809-1055, United States
| |
Collapse
|
36
|
Syeda T, Cannon JR. Environmental exposures and the etiopathogenesis of Alzheimer's disease: The potential role of BACE1 as a critical neurotoxic target. J Biochem Mol Toxicol 2021; 35:e22694. [PMID: 33393683 DOI: 10.1002/jbt.22694] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 12/18/2020] [Accepted: 12/22/2020] [Indexed: 12/13/2022]
Abstract
Alzheimer's disease (AD) is a major public health crisis due to devastating cognitive symptoms, a lack of curative treatments, and increasing prevalence. Most cases are sporadic (>95% of cases) after the age of 65 years, implicating an important role of environmental factors in disease pathogenesis. Environmental neurotoxicants have been implicated in neurodegenerative disorders including Parkinson's Disease and AD. Animal models of AD and in vitro studies have shed light on potential neuropathological mechanisms, yet the biochemical and molecular underpinnings of AD-relevant environmental neurotoxicity remain poorly understood. Beta-site amyloid precursor protein cleaving enzyme 1 (BACE1) is a potentially critical pathogenic target of environmentally induced neurotoxicity. BACE1 clearly has a critical role in AD pathophysiology: It is required for amyloid beta production and expression and activity of BACE1 are increased in the AD brain. Though the literature on BACE1 in response to environmental insults is limited, current studies, along with extensive AD neurobiology literature suggest that BACE1 deserves attention as an important neurotoxic target. Here, we critically review research on environmental neurotoxicants such as metals, pesticides, herbicides, fungicides, polyfluoroalkyl substances, heterocyclic aromatic amines, advanced glycation end products, and acrolein that modulate BACE1 and potential mechanisms of action. Though more research is needed to clearly understand whether BACE1 is a critical mediator of AD-relevant neurotoxicity, available reports provide convincing evidence that BACE1 is altered by environmental risk factors associated with AD pathology, implying that BACE1 inhibition and its use as a biomarker should be considered in AD management and research.
Collapse
Affiliation(s)
- Tauqeerunnisa Syeda
- School of Health Sciences, Purdue University, West Lafayette, Indiana, USA.,Purdue Institute for Integrative Neurosciences, Purdue University, West Lafayette, Indiana, USA
| | - Jason R Cannon
- School of Health Sciences, Purdue University, West Lafayette, Indiana, USA.,Purdue Institute for Integrative Neurosciences, Purdue University, West Lafayette, Indiana, USA
| |
Collapse
|
37
|
[The future of dementia prevention and treatment strategies]. Nihon Ronen Igakkai Zasshi 2020; 57:374-396. [PMID: 33268621 DOI: 10.3143/geriatrics.57.374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
38
|
Uddin MS, Kabir MT, Niaz K, Jeandet P, Clément C, Mathew B, Rauf A, Rengasamy KR, Sobarzo-Sánchez E, Ashraf GM, Aleya L. Molecular Insight into the Therapeutic Promise of Flavonoids against Alzheimer's Disease. Molecules 2020; 25:1267. [PMID: 32168835 PMCID: PMC7143946 DOI: 10.3390/molecules25061267] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 03/05/2020] [Accepted: 03/10/2020] [Indexed: 12/12/2022] Open
Abstract
Alzheimer's disease (AD) is one of the utmost chronic neurodegenerative disorders, which is characterized from a neuropathological point of view by the aggregates of amyloid beta (Aβ) peptides that are deposited as senile plaques and tau proteins which form neurofibrillary tangles (NFTs). Even though advancement has been observed in order to understand AD pathogenesis, currently available therapeutic methods can only deliver modest symptomatic relief. Interestingly, naturally occurring dietary flavonoids have gained substantial attention due to their antioxidative, anti-inflammatory, and anti-amyloidogenic properties as alternative candidates for AD therapy. Experimental proof provides support to the idea that some flavonoids might protect AD by interfering with the production and aggregation of Aβ peptides and/or decreasing the aggregation of tau. Flavonoids have the ability to promote clearance of Aβ peptides and inhibit tau phosphorylation by the mTOR/autophagy signaling pathway. Moreover, due to their cholinesterase inhibitory potential, flavonoids can represent promising symptomatic anti-Alzheimer agents. Several processes have been suggested for the aptitude of flavonoids to slow down the advancement or to avert the onset of Alzheimer's pathogenesis. To enhance cognitive performance and to prevent the onset and progress of AD, the interaction of flavonoids with various signaling pathways is proposed to exert their therapeutic potential. Therefore, this review elaborates on the probable therapeutic approaches of flavonoids aimed at averting or slowing the progression of the AD pathogenesis.
Collapse
Affiliation(s)
- Md. Sahab Uddin
- Department of Pharmacy, Southeast University, Dhaka 1213, Bangladesh
- Pharmakon Neuroscience Research Network, Dhaka 1207, Bangladesh
| | | | - Kamal Niaz
- Department of Pharmacology and Toxicology, Faculty of Bio-Sciences, Cholistan University of Veterinary and Animal Sciences (CUVAS), Bahawalpur 63100, Pakistan
| | - Philippe Jeandet
- Research Unit, Induced Resistance and Plant Bioprotection, EA 4707, SFR Condorcet FR CNRS 3417, Faculty of Sciences, University of Reims Champagne-Ardenne, PO Box 1039, 51687 Reims CEDEX 2, France
| | - Christophe Clément
- Research Unit, Induced Resistance and Plant Bioprotection, EA 4707, SFR Condorcet FR CNRS 3417, Faculty of Sciences, University of Reims Champagne-Ardenne, PO Box 1039, 51687 Reims CEDEX 2, France
| | - Bijo Mathew
- Division of Drug Design and Medicinal Chemistry Research Lab, Department of Pharmaceutical Chemistry, Ahalia School of Pharmacy, Palakkad, Kerala 678557, India
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Anbar 23561, Khyber Pakhtunkhwa, Pakistan
| | | | - Eduardo Sobarzo-Sánchez
- Instituto de Investigación e Innovación en Salud, Facultad de Ciencias de la Salud, Universidad Central de Chile, Santiago 8330507, Chile
- Department of Organic Chemistry, Faculty of Pharmacy, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Ghulam Md Ashraf
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Lotfi Aleya
- Chrono-Environnement Laboratory, UMR CNRS 6249, Bourgogne Franche-Comté University, F-25030 Besançon, France
| |
Collapse
|
39
|
Tan JZA, Fourriere L, Wang J, Perez F, Boncompain G, Gleeson PA. Distinct anterograde trafficking pathways of BACE1 and amyloid precursor protein from the TGN and the regulation of amyloid-β production. Mol Biol Cell 2020; 31:27-44. [PMID: 31746668 PMCID: PMC6938271 DOI: 10.1091/mbc.e19-09-0487] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 11/01/2019] [Accepted: 11/15/2019] [Indexed: 01/08/2023] Open
Abstract
Processing of amyloid precursor protein (APP) by the β-secretase BACE1 is the initial step of the amyloidogenic pathway to generate amyloid-β (Aβ). Although newly synthesized BACE1 and APP are transported along the secretory pathway, it is not known whether BACE1 and APP share the same post-Golgi trafficking pathways or are partitioned into different transport routes. Here we demonstrate that BACE1 exits the Golgi in HeLa cells and primary neurons by a pathway distinct from the trafficking pathway for APP. By using the Retention Using Selective Hooks system, we show that BACE1 is transported from the trans-Golgi network to the plasma membrane in an AP-1- and Arf1/4-dependent manner. Subsequently, BACE1 is endocytosed to early and recycling endosomes. Perturbation of BACE1 post-Golgi trafficking results in an increase in BACE1 cleavage of APP and increased production of both Aβ40 and Aβ42. These findings reveal that Golgi exit of BACE1 and APP in primary neurons is tightly regulated, resulting in their segregation along different transport routes, which limits APP processing.
Collapse
Affiliation(s)
- Jing Zhi A. Tan
- Department of Biochemistry and Molecular Biology and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Victoria 3010, Australia
| | - Lou Fourriere
- Department of Biochemistry and Molecular Biology and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Victoria 3010, Australia
| | - Jingqi Wang
- Department of Biochemistry and Molecular Biology and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Victoria 3010, Australia
| | - Franck Perez
- Dynamics of Intracellular Organization Laboratory, Institut Curie, PSL Research University, Sorbonne Université, Centre National de la Recherche Scientifique, UMR 144, 75248 Paris, France
| | - Gaelle Boncompain
- Dynamics of Intracellular Organization Laboratory, Institut Curie, PSL Research University, Sorbonne Université, Centre National de la Recherche Scientifique, UMR 144, 75248 Paris, France
| | - Paul A. Gleeson
- Department of Biochemistry and Molecular Biology and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Victoria 3010, Australia
| |
Collapse
|
40
|
Czarnek M, Bereta J. Proteolytic Processing of Neuregulin 2. Mol Neurobiol 2019; 57:1799-1813. [PMID: 31838721 PMCID: PMC7118043 DOI: 10.1007/s12035-019-01846-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 11/25/2019] [Indexed: 01/17/2023]
Abstract
Neuregulin 2 (NRG2) belongs to the EGF family of growth factors. Most of this family members require proteolytic cleavage to liberate their ectodomains capable of binding and activating their cognate ErbB receptors. To date, most of the studies investigating proteolytic processing of neuregulins focused on NRG1, which was shown to undergo ectodomain shedding by several ADAM proteases and BACE1 and the remaining fragment was further cleaved by γ-secretase. Recently, NRG2 attracted more attention due to its role in the neurogenesis and modulation of behaviors associated with psychiatric disorders. In this study, we used genetic engineering methods to identify proteases involved in proteolytic processing of murine NRG2. Using non-neuronal cell lines as well as cultures of primary hippocampal neurons, we demonstrated that the major proteases responsible for releasing NRG2 ectodomain are ADAM10 and BACE2. Co-expression of NRG2 and BACE2 in neurons of certain brain structures including medulla oblongata and cerebellar deep nuclei was confirmed via immunohistochemical staining. The cleavage of NRG2 by ADAM10 or BACE2 generates a C-terminal fragment that serves as a substrate for γ-secretase. We also showed that murine NRG2 is subject to post-translational modifications, substantial glycosylation of its extracellular part, and phosphorylation of the cytoplasmic tail.
Collapse
Affiliation(s)
- Maria Czarnek
- Department of Cell Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Kraków, Gronostajowa 7, 30-387, Kraków, Poland.
| | - Joanna Bereta
- Department of Cell Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Kraków, Gronostajowa 7, 30-387, Kraków, Poland.
| |
Collapse
|
41
|
Chen J, Wang J, Yin B, Pang L, Wang W, Zhu W. Molecular Mechanism of Binding Selectivity of Inhibitors toward BACE1 and BACE2 Revealed by Multiple Short Molecular Dynamics Simulations and Free-Energy Predictions. ACS Chem Neurosci 2019; 10:4303-4318. [PMID: 31545898 DOI: 10.1021/acschemneuro.9b00348] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The β-amyloid cleaving enzymes 1 and 2 (BACE1 and BACE2) have been regarded as the prospective targets for clinically treating Alzheimer's disease (AD) in the last two decades. Thus, insight into the binding differences of inhibitors to BACE1 and BACE2 is of significance for designing highly selective inhibitors toward the two proteins. In this work, multiple short molecular dynamics (MSMD) simulations are coupled with the molecular mechanics generalized Born surface area (MM-GBSA) method to probe the binding selectivity of three inhibitors DBO, CS9, and SC7 on BACE1 over BACE2. The results show that the entropy effect plays a key role in selectivity identification of inhibitors toward BACE1 and BACE2, which determines that DBO has better selectivity toward BACE2 over BACE1, while CS9 and CS7 can more favorably bind to BACE1 than BACE2. The hierarchical clustering analysis based on energetic contributions of residues suggests that BACE1 and BACE2 share the common hot interaction spots. The residue-based free-energy decomposition method was applied to compute the inhibitor-residue interaction spectrum, and the results recognize four common binding subpockets corresponding to the different groups of inhibitors, which can be used as efficient targets for designing highly selective inhibitors toward BACE1 and BACE2. Therefore, these results provide a useful molecular basis and dynamics information for development of highly selective inhibitors targeting BACE1 and BACE2.
Collapse
Affiliation(s)
- Jianzhong Chen
- School of Science, Shandong Jiaotong University, Jinan 250357 China
| | - Jinan Wang
- Drug Discovery and Design Center, CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Baohua Yin
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Laixue Pang
- School of Science, Shandong Jiaotong University, Jinan 250357 China
| | - Wei Wang
- School of Science, Shandong Jiaotong University, Jinan 250357 China
| | - Weiliang Zhu
- Drug Discovery and Design Center, CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| |
Collapse
|
42
|
Pettus LH, Bourbeau MP, Bradley J, Bartberger MD, Chen K, Hickman D, Johnson M, Liu Q, Manning JR, Nanez A, Siegmund AC, Wen PH, Whittington DA, Allen JR, Wood S. Discovery of AM-6494: A Potent and Orally Efficacious β-Site Amyloid Precursor Protein Cleaving Enzyme 1 (BACE1) Inhibitor with in Vivo Selectivity over BACE2. J Med Chem 2019; 63:2263-2281. [DOI: 10.1021/acs.jmedchem.9b01034] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
43
|
Lopez-Font I, Boix CP, Zetterberg H, Blennow K, Sáez-Valero J. Characterization of Cerebrospinal Fluid BACE1 Species. Mol Neurobiol 2019; 56:8603-8616. [PMID: 31290061 DOI: 10.1007/s12035-019-01677-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 06/10/2019] [Indexed: 11/30/2022]
Abstract
The β-site amyloid precursor protein cleaving enzyme 1 (BACE1) is the main brain β-secretase responsible for the amyloidogenic processing of the amyloid precursor protein (APP). Previous studies have suggested that cerebrospinal fluid (CSF) β-secretase activity may be a candidate diagnostic biomarker for Alzheimer's disease (AD), but biochemical characterization of BACE1 protein in CSF is needed. CSF samples from 19 AD patients and 19 age-matched non-AD controls (n = 19) were classified according to their Aβ42, total tau, and P-tau CSF biomarker levels. We found that β-secretase activity was higher in the CSF of AD subjects than in that of the controls. We found that the majority of the β-secretase activity in the CSF, measured using a peptide substrate homologous to the BACE1 cleavage site, was not inhibited by specific BACE1 inhibitors. We defined enzymatic activity attributable specifically to BACE1 as the activity that was blocked by the specific inhibitors, which is still higher in AD subjects. BACE1 protein levels were characterized by lectin binding, immunoprecipitation, blue native-PAGE, and western blotting using antibodies against specific protein domains. BACE1 was found to be present in human CSF as a mature form of ~ 70 kDa that probably comprised truncated and full-length species, and also as an immature form of ~ 50 kDa that retains the prodomain. CSF-BACE1 was found to assemble into hetero-complexes containing distinct species. Immunoblotting with an antibody against the C-terminus of BACE1 revealed significantly higher levels of the 70-kDa full-length BACE1, while the 50 kDa immature form remained unaltered. When the 70-kDa species was probed with an antibody against the N-terminus of BACE1 (which does not discriminate between truncated and full-length forms), no increase in immunoreactivity was observed, suggesting that truncated forms of BACE1 do not increase in AD. In conclusion, the complexity of BACE1 species in CSF has to be taken into consideration when determining BACE1 activity and protein levels in CSF as biomarkers of AD.
Collapse
Affiliation(s)
- Inmaculada Lopez-Font
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-CSIC, Av. Ramón y Cajal s/n, E-03550, Sant Joan d'Alacant, Spain. .,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Sant Joan d'Alacant, Spain.
| | - Claudia P Boix
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-CSIC, Av. Ramón y Cajal s/n, E-03550, Sant Joan d'Alacant, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Sant Joan d'Alacant, Spain
| | - Henrik Zetterberg
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden.,Department of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK.,UK Dementia Research Institute at UCL, London, UK
| | - Kaj Blennow
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden.,Department of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Javier Sáez-Valero
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-CSIC, Av. Ramón y Cajal s/n, E-03550, Sant Joan d'Alacant, Spain. .,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Sant Joan d'Alacant, Spain.
| |
Collapse
|
44
|
Yuksel M, Tacal O. Trafficking and proteolytic processing of amyloid precursor protein and secretases in Alzheimer's disease development: An up-to-date review. Eur J Pharmacol 2019; 856:172415. [PMID: 31132354 DOI: 10.1016/j.ejphar.2019.172415] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 04/26/2019] [Accepted: 05/23/2019] [Indexed: 12/25/2022]
Abstract
Alzheimer's disease (AD), which is predicted to affect 1 in 85 persons worldwide by 2050, results in progressive loss of neuronal functions, leading to impairments in memory and cognitive abilities. As being one of the major neuropathological hallmarks of AD, senile plaques mainly consist of amyloid-β (Aβ) peptides, which are derived from amyloid precursor protein (APP) via the sequential cleavage by β- and γ-secretases. Although the overproduction and accumulation of Aβ peptides are at the center of AD research, the new discoveries point out to the complexity of the disease development. In this respect, it is crucial to understand the processing and the trafficking of APP, the enzymes involved in its processing, the cleavage products and their therapeutic potentials. This review summarizes the salient features of APP processing focusing on APP, the canonical secretases as well as the novel secretases and the cleavage products with an update of the recent developments. We also discussed the intracellular trafficking of APP and secretases in addition to their potential in AD therapy.
Collapse
Affiliation(s)
- Melike Yuksel
- Department of Biochemistry, School of Pharmacy, Hacettepe University, 06100, Ankara, Turkey.
| | - Ozden Tacal
- Department of Biochemistry, School of Pharmacy, Hacettepe University, 06100, Ankara, Turkey.
| |
Collapse
|
45
|
Zhao L, Zhao Y, Tang FL, Xiong L, Su C, Mei L, Zhu XJ, Xiong WC. pHluorin-BACE1-mCherry Acts as a Reporter for the Intracellular Distribution of Active BACE1 In Vitro and In Vivo. Cells 2019; 8:E474. [PMID: 31108937 PMCID: PMC6562731 DOI: 10.3390/cells8050474] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 05/09/2019] [Accepted: 05/15/2019] [Indexed: 12/23/2022] Open
Abstract
β-site APP-cleaving enzyme 1 (BACE1) initiates amyloid precursor protein (APP) cleavage and β-amyloid (Aβ) production, a critical step in the pathogenesis of Alzheimer's disease (AD). It is thus of considerable interest to investigate how BACE1 activity is regulated. BACE1 has its maximal activity at acidic pH and GFP variant-pHluorin-displays pH dependence. In light of these observations, we generated three tandem fluorescence-tagged BACE1 fusion proteins, named pHluorin-BACE1-mCherry, BACE1-mCherry-pHluorin and BACE1-mCherry-EGFP. Comparing the fluorescence characteristics of these proteins in response to intracellular pH changes induced by chloroquine or bafilomycin A1, we found that pHluorin-BACE1-mCherry is a better pH sensor for BACE1 because its fluorescence intensity responds to pH changes more dramatically and more quickly. Additionally, we found that (pro)renin receptor (PRR), a subunit of the v-ATPase complex, which is critical for maintaining vesicular pH, regulates pHluorin's fluorescence and BACE1 activity in pHluorin-BACE1-mCherry expressing cells. Finally, we found that the expression of Swedish mutant APP (APPswe) suppresses pHluorin fluorescence in pHluorin-BACE1-mCherry expressing cells in culture and in vivo, implicating APPswe not only as a substrate but also as an activator of BACE1. Taken together, these results suggest that the pHluorin-BACE1-mCherry fusion protein may serve as a useful tool for visualizing active/inactive BACE1 in culture and in vivo.
Collapse
Affiliation(s)
- Lu Zhao
- Key Laboratory of Molecular Epigenetics of Ministry of Education, Institute of Cytology and Genetics, Northeast Normal University, Changchun 130024, China.
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA.
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA.
| | - Yang Zhao
- Key Laboratory of Molecular Epigenetics of Ministry of Education, Institute of Cytology and Genetics, Northeast Normal University, Changchun 130024, China.
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA.
| | - Fu-Lei Tang
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA.
| | - Lei Xiong
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA.
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA.
| | - Ce Su
- Key Laboratory of Molecular Epigenetics of Ministry of Education, Institute of Cytology and Genetics, Northeast Normal University, Changchun 130024, China.
| | - Lin Mei
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA.
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA.
| | - Xiao-Juan Zhu
- Key Laboratory of Molecular Epigenetics of Ministry of Education, Institute of Cytology and Genetics, Northeast Normal University, Changchun 130024, China.
| | - Wen-Cheng Xiong
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA.
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA.
| |
Collapse
|
46
|
Neumann U, Machauer R, Shimshek DR. The β-secretase (BACE) inhibitor NB-360 in preclinical models: From amyloid-β reduction to downstream disease-relevant effects. Br J Pharmacol 2019; 176:3435-3446. [PMID: 30657591 DOI: 10.1111/bph.14582] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 11/19/2018] [Accepted: 12/13/2018] [Indexed: 01/18/2023] Open
Abstract
Inhibition of β-secretase 1 (BACE-1; also known as β-site amyloid precursor protein-cleaving enzyme-1) is a current approach to fight the amyloid-β (Aβ) deposition in the brains of patients with Alzheimer's disease, and a number of BACE-1 inhibitors are being tested in clinical trials. The BACE-1 inhibitor NB-360, although not a clinical compound, turned out to be a valuable pharmacological tool to investigate the effects of BACE-1 inhibition on the deposition of different Aβ species in amyloid precursor protein (APP) transgenic mice. Furthermore, chronic animal studies with NB-360 revealed relationships between BACE-1 inhibition, Aβ deposition, and Aβ-related downstream effects on neuroinflammation, neuronal function, and markers of neurodegeneration. NB-360 effects on the processing of physiological BACE-1 substrates as well as on nonenzymatic BACE-1 functions have been investigated, complementing studies in BACE-1 knockout mice. Because NB-360 is also an inhibitor for BACE-2, nonclinical studies in adult animals revealed physiological effects of BACE-2 inhibition. LINKED ARTICLES: This article is part of a themed section on Therapeutics for Dementia and Alzheimer's Disease: New Directions for Precision Medicine. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.18/issuetoc.
Collapse
Affiliation(s)
- Ulf Neumann
- Novartis Institute for BioMedical Research, Novartis Campus, Basel, Switzerland
| | - Rainer Machauer
- Novartis Institute for BioMedical Research, Novartis Campus, Basel, Switzerland
| | - Derya R Shimshek
- Novartis Institute for BioMedical Research, Novartis Campus, Basel, Switzerland
| |
Collapse
|
47
|
Xu X, Lü P, Wang J, Xu F, Liang L, Wang C, Niu Y, Xu P. Design, synthesis, and biological evaluation of 4‐aminopyrimidine or 4,6‐diaminopyrimidine derivatives as beta amyloid cleaving enzyme‐1 inhibitors. Chem Biol Drug Des 2019; 93:926-933. [DOI: 10.1111/cbdd.13489] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Revised: 12/14/2018] [Accepted: 01/09/2019] [Indexed: 02/02/2023]
Affiliation(s)
- Xiufeng Xu
- Department of Medicinal ChemistrySchool of Pharmaceutical SciencesPeking University Health Science Center Beijing China
| | - Peng Lü
- Department of Medicinal ChemistrySchool of Pharmaceutical SciencesPeking University Health Science Center Beijing China
| | - Junjie Wang
- Department of Medicinal ChemistrySchool of Pharmaceutical SciencesPeking University Health Science Center Beijing China
| | - Fengrong Xu
- Department of Medicinal ChemistrySchool of Pharmaceutical SciencesPeking University Health Science Center Beijing China
| | - Lei Liang
- Department of Medicinal ChemistrySchool of Pharmaceutical SciencesPeking University Health Science Center Beijing China
| | - Chao Wang
- Department of Medicinal ChemistrySchool of Pharmaceutical SciencesPeking University Health Science Center Beijing China
| | - Yan Niu
- Department of Medicinal ChemistrySchool of Pharmaceutical SciencesPeking University Health Science Center Beijing China
| | - Ping Xu
- Department of Medicinal ChemistrySchool of Pharmaceutical SciencesPeking University Health Science Center Beijing China
| |
Collapse
|
48
|
Wang Z, Xu Q, Cai F, Liu X, Wu Y, Song W. BACE2, a conditional β-secretase, contributes to Alzheimer's disease pathogenesis. JCI Insight 2019; 4:123431. [PMID: 30626751 DOI: 10.1172/jci.insight.123431] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 12/05/2018] [Indexed: 12/21/2022] Open
Abstract
Deposition of amyloid-β protein (Aβ) to form neuritic plaques is the characteristic neuropathology of Alzheimer's disease (AD). Aβ is generated from amyloid precursor protein (APP) by β- and γ-secretase cleavages. BACE1 is the β-secretase and its inhibition induces severe side effects, whereas its homolog BACE2 normally suppresses Aβ by cleaving APP/Aβ at the θ-site (Phe20) within the Aβ domain. Here, we report that BACE2 also processes APP at the β site, and the juxtamembrane helix (JH) of APP inhibits its β-secretase activity, enabling BACE2 to cleave nascent APP and aggravate AD symptoms. JH-disrupting mutations and clusterin binding to JH triggered BACE2-mediated β-cleavage. Both BACE2 and clusterin were elevated in aged mouse brains, and enhanced β-cleavage during aging. Therefore, BACE2 contributes to AD pathogenesis as a conditional β-secretase and could be a preventive and therapeutic target for AD without the side effects of BACE1 inhibition.
Collapse
Affiliation(s)
- Zhe Wang
- The National Clinical Research Center for Geriatric Disease, Xuanwu Hospital, Capital Medical University, Beijing, China.,Townsend Family Laboratories, Department of Psychiatry, The University of British Columbia, Vancouver, British Columbia, Canada.,Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Qin Xu
- Townsend Family Laboratories, Department of Psychiatry, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Fang Cai
- Townsend Family Laboratories, Department of Psychiatry, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Xi Liu
- Townsend Family Laboratories, Department of Psychiatry, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Yili Wu
- Department of Psychiatry, Jining Medical University, Jining, Shandong, China
| | - Weihong Song
- The National Clinical Research Center for Geriatric Disease, Xuanwu Hospital, Capital Medical University, Beijing, China.,Townsend Family Laboratories, Department of Psychiatry, The University of British Columbia, Vancouver, British Columbia, Canada.,Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| |
Collapse
|
49
|
Panza F, Lozupone M, Solfrizzi V, Sardone R, Piccininni C, Dibello V, Stallone R, Giannelli G, Bellomo A, Greco A, Daniele A, Seripa D, Logroscino G, Imbimbo BP. BACE inhibitors in clinical development for the treatment of Alzheimer’s disease. Expert Rev Neurother 2018; 18:847-857. [DOI: 10.1080/14737175.2018.1531706] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Francesco Panza
- Neurodegenerative Disease Unit, Department of Basic Medicine, Neuroscience, and Sense Organs, University of Bari Aldo Moro, Bari, Italy
- Department of Clinical Research in Neurology, Neurodegenerative Disease Unit, University of Bari Aldo Moro, Lecce, Italy
- Geriatric Unit, Fondazione IRCCS “Casa Sollievo della Sofferenza”, San Giovanni Rotondo, Foggia, Italy
| | - Madia Lozupone
- Neurodegenerative Disease Unit, Department of Basic Medicine, Neuroscience, and Sense Organs, University of Bari Aldo Moro, Bari, Italy
| | - Vincenzo Solfrizzi
- Interdisciplinary Department of Medicine, Geriatric Medicine-Memory Unit and Rare Disease Centre, University of Bari ‘Aldo Moro’, Bari, Italy
| | - Rodolfo Sardone
- National Institute of Gastroenterology “Saverio de Bellis”, Research Hospital, Castellana Grotte Bari, Italy
| | - Carla Piccininni
- National Institute of Gastroenterology “Saverio de Bellis”, Research Hospital, Castellana Grotte Bari, Italy
- Psychiatric Unit, Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Vittorio Dibello
- Interdisciplinary Department of Medicine (DIM), Section of Dentistry, University of Bari Aldo, Moro, Bari, Italy
| | - Roberta Stallone
- Neurodegenerative Disease Unit, Department of Basic Medicine, Neuroscience, and Sense Organs, University of Bari Aldo Moro, Bari, Italy
- National Institute of Gastroenterology “Saverio de Bellis”, Research Hospital, Castellana Grotte Bari, Italy
| | - Gianluigi Giannelli
- National Institute of Gastroenterology “Saverio de Bellis”, Research Hospital, Castellana Grotte Bari, Italy
| | - Antonello Bellomo
- Psychiatric Unit, Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Antonio Greco
- Geriatric Unit, Fondazione IRCCS “Casa Sollievo della Sofferenza”, San Giovanni Rotondo, Foggia, Italy
| | - Antonio Daniele
- Institute of Neurology, Catholic University of Sacred Heart, Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Davide Seripa
- Geriatric Unit, Fondazione IRCCS “Casa Sollievo della Sofferenza”, San Giovanni Rotondo, Foggia, Italy
| | - Giancarlo Logroscino
- Neurodegenerative Disease Unit, Department of Basic Medicine, Neuroscience, and Sense Organs, University of Bari Aldo Moro, Bari, Italy
- Department of Clinical Research in Neurology, Neurodegenerative Disease Unit, University of Bari Aldo Moro, Lecce, Italy
| | - Bruno P. Imbimbo
- Department of Research and Development, Chiesi Farmaceutici, Parma, Italy
| |
Collapse
|
50
|
Cleavage of potassium channel Kv2.1 by BACE2 reduces neuronal apoptosis. Mol Psychiatry 2018; 23:1542-1554. [PMID: 29703946 DOI: 10.1038/s41380-018-0060-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 02/24/2018] [Accepted: 03/13/2018] [Indexed: 12/20/2022]
Abstract
Potassium channel Kv2.1 regulates potassium current in cortical neurons and potassium efflux is necessary for cell apoptosis. As a major component of delayed rectifier current potassium channels, Kv2.1 forms clusters in the membrane of hippocampal neurons. BACE2 is an aspartyl protease to cleave APP to prevent the generation of Aβ, a central component of neuritic plaques in Alzheimer's brain. We now identified Kv2.1 as a novel substrate of BACE2. We found that BACE2 cleaved Kv2.1 at Thr376, Ala717, and Ser769 sites and disrupted Kv2.1 clustering on cell membrane, resulting in decreased Ik of Kv2.1 and a hyperpolarizing shift in primary neurons. Furthermore, we discovered that the BACE2-cleaved Kv2.1 forms, Kv2.1-1-375, Kv2.1-1-716, and Kv2.1-1-768, depressed the delayed rectifier Ik surge and reduced neuronal apoptosis. Our study suggests that BACE2 plays a neuroprotective role by cleavage of Kv2.1 to prevent the outward potassium currents, a potential new target for Alzheimer's treatment.
Collapse
|