1
|
Nicchio IG, Cirelli T, Quil LCDC, Camilli AC, Scarel-Caminaga RM, Leite FRM. Understanding the peroxisome proliferator-activated receptor gamma (PPAR-γ) role in periodontitis and diabetes mellitus: A molecular perspective. Biochem Pharmacol 2025; 237:116908. [PMID: 40157459 DOI: 10.1016/j.bcp.2025.116908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 02/19/2025] [Accepted: 03/25/2025] [Indexed: 04/01/2025]
Abstract
Periodontitis and Type 2 Diabetes Mellitus (T2DM) are chronic conditions with dysregulated immune responses. Periodontitis involves immune dysfunction and dysbiotic biofilms, leading to tissue destruction. T2DM is marked by insulin resistance and systemic inflammation, driving metabolic and tissue damage. Both conditions share activation of key pathways, including Nuclear Factor Kappa B (NF-κB), Activator Protein-1 (AP-1), and Signal Transducer and Activator of Transcription (STAT) proteins, reinforcing an inflammatory feedback loop. This review highlights the role of Peroxisome Proliferator-Activated Receptor Gamma (PPAR-γ), a transcription factor central to lipid and glucose metabolism, adipogenesis, and immune regulation. PPAR-γ activation has been shown to suppress inflammatory mediators such as Tumor Necrosis Factor Alpha (TNF-α) and Interleukin 6 (IL-6) through the inhibition of NF-κB, AP-1, and STAT pathways, thereby potentially disrupting the inflammatory-metabolic cycle that drives both diseases. PPAR-γ agonists, including thiazolidinediones (TZDs) and endogenous ligands such as 15-deoxy-Δ12,14-prostaglandin J2 (15d-PGJ2), show promise in reducing inflammation and improving insulin sensitivity, but they are limited by adverse effects. Therapies, including Selective Peroxisome Proliferator-Activated Receptor Modulators (SPPARMs), have been developed to offer a more targeted approach, allowing for selective modulation of PPAR-γ activity to retain its anti-inflammatory benefits while minimizing their side effects. By integrating insights into PPAR-γ's molecular mechanisms, this review underscores its therapeutic potential in mitigating inflammation and enhancing metabolic control.
Collapse
Affiliation(s)
- Ingra Gagno Nicchio
- Department of Diagnosis and Surgery, School of Dentistry at Araraquara, São Paulo State University-UNESP, Araraquara 14801-903, SP, Brazil; Department of Morphology, Genetics, Orthodontics and Pediatric Dentistry, School of Dentistry at Araraquara, São Paulo State University-UNESP, Araraquara 14801-903, SP, Brazil.
| | - Thamiris Cirelli
- Department of Dentistry, Centro Universitário das Faculdades Associadas, São João da Boa Vista 13870-377, SP, Brazil.
| | - Lucas César da Costa Quil
- Department of Diagnosis and Surgery, School of Dentistry at Araraquara, São Paulo State University-UNESP, Araraquara 14801-903, SP, Brazil; Department of Morphology, Genetics, Orthodontics and Pediatric Dentistry, School of Dentistry at Araraquara, São Paulo State University-UNESP, Araraquara 14801-903, SP, Brazil.
| | - Angelo Constantino Camilli
- Department of Diagnosis and Surgery, School of Dentistry at Araraquara, São Paulo State University-UNESP, Araraquara 14801-903, SP, Brazil.
| | - Raquel Mantuaneli Scarel-Caminaga
- Department of Morphology, Genetics, Orthodontics and Pediatric Dentistry, School of Dentistry at Araraquara, São Paulo State University-UNESP, Araraquara 14801-903, SP, Brazil.
| | - Fabio Renato Manzolli Leite
- National Dental Research Institute Singapore, National Dental Centre Singapore, 168938, Singapore; Oral Health Academic Clinical Programme, Duke-NUS Medical School, 169857, Singapore.
| |
Collapse
|
2
|
Chen Y, Peng S, Liang J, Wei K. SIRT1 in acute lung injury: unraveling its pleiotropic functions and therapeutic development prospects. Mol Cell Biochem 2025; 480:1449-1464. [PMID: 39269678 DOI: 10.1007/s11010-024-05111-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 08/27/2024] [Indexed: 09/15/2024]
Abstract
Acute lung injury (ALI) is a continuum of lung changes caused by multiple lung injuries, often associated with severe complications and even death. In ALI, macrophages, alveolar epithelial cells and vascular endothelial cells in the lung are damaged to varying degrees and their function is impaired. Research in recent years has focused on the use of SIRT1 for the treatment of ALI. In this paper, we reviewed the role of SIRT1 in ALI in terms of its cellular and molecular mechanism, targeting of SIRT1 by non-coding RNAs and drug components, as well as pointing out the value of SIRT1 for clinical diagnosis and prognosis. Based on the current literature, SIRT1 exhibits diverse functionalities and possesses significant therapeutic potential. Targeting SIRT1 may provide new therapeutic ideas for the treatment of ALI.
Collapse
Affiliation(s)
- Yina Chen
- Medical School, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Shuangyan Peng
- Medical School, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Junjie Liang
- Medical School, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Ke Wei
- Medical School, Hunan University of Chinese Medicine, Changsha, 410208, China.
- Hunan Province Key Laboratory of Integrative Pathogen Biology, Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China.
| |
Collapse
|
3
|
Hayes CM, Gallucci GM, Boyer JL, Assis DN, Ghonem NS. PPAR agonists for the treatment of cholestatic liver diseases: Over a decade of clinical progress. Hepatol Commun 2025; 9:e0612. [PMID: 39699308 PMCID: PMC11661771 DOI: 10.1097/hc9.0000000000000612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 11/13/2024] [Indexed: 12/20/2024] Open
Abstract
Primary biliary cholangitis (PBC) and primary sclerosing cholangitis (PSC) are characterized by the destruction of the small bile ducts and the formation of multifocal biliary strictures, respectively, impairing bile flow. This leads to the hepatic accumulation of bile acids, causing liver injury and the risk of progression to cirrhosis and liver failure. First-line therapy for PBC is ursodeoxycholic acid, although up to 40% of treated individuals are incomplete responders, and there is no effective therapy for PSC, highlighting the need for better therapeutic options in these diseases. In addition, pruritus is a common symptom of cholestasis that has severe consequences for quality of life and is often undertreated or untreated. Nuclear receptors are pharmacological targets to treat cholestasis due to their multifactorial regulation of hepatic enzymatic pathways, particularly in bile acid metabolism. The peroxisome proliferator-activated receptor (PPAR) is of significant clinical interest due to its role in regulating bile acid synthesis and detoxification pathways. PPAR agonism by fibrates has traditionally been explored due to PPARα's expression in the liver; however, recent interest has expanded to focus on newer PPAR agonists that activate other PPAR isoforms, for example, δ, γ, alone or in combination. Several PPAR agonists have been investigated as second-line therapy for people living with PBC, including the recent accelerated United States Food and Drug Administration approval of elafibranor and seladelpar. This review evaluates available data on the efficacy and safety of the five PPAR agonists investigated for the treatment of cholestasis and associated pruritus in PBC and PSC, namely fenofibrate, bezafibrate, saroglitazar, elafibranor, and seladelpar.
Collapse
Affiliation(s)
- Colleen M. Hayes
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island, USA
| | - Gina M. Gallucci
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island, USA
| | - James L. Boyer
- Section of Digestive Diseases and Yale Liver Center, Yale School of Medicine, New Haven, Connecticut, USA
| | - David N. Assis
- Section of Digestive Diseases and Yale Liver Center, Yale School of Medicine, New Haven, Connecticut, USA
| | - Nisanne S. Ghonem
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island, USA
| |
Collapse
|
4
|
Noh SG, Kim HW, Kim S, Chung KW, Jung YS, Yoon JH, Yu BP, Lee J, Chung HY. Senoinflammation as the underlying mechanism of aging and its modulation by calorie restriction. Ageing Res Rev 2024; 101:102503. [PMID: 39284417 DOI: 10.1016/j.arr.2024.102503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/25/2024] [Accepted: 09/09/2024] [Indexed: 09/22/2024]
Abstract
Senoinflammation is characterized by an unresolved low-grade inflammatory process that affects multiple organs and systemic functions. This review begins with a brief overview of the fundamental concepts and frameworks of senoinflammation. It is widely involved in the aging of various organs and ultimately leads to progressive systemic degeneration. Senoinflammation underlying age-related inflammation, is causally related to metabolic dysregulation and the formation of senescence-associated secretory phenotype (SASP) during aging and age-related diseases. This review discusses the biochemical evidence and molecular biology data supporting the concept of senoinflammation and its regulatory processes, highlighting the anti-aging and anti-inflammatory effects of calorie restriction (CR). Experimental data from CR studies demonstrated effective suppression of various pro-inflammatory cytokines and chemokines, lipid accumulation, and SASP during aging. In conclusion, senoinflammation represents the basic mechanism that creates a microenvironment conducive to aging and age-related diseases. Furthermore, it serves as a potential therapeutic target for mitigating aging and age-related diseases.
Collapse
Affiliation(s)
- Sang Gyun Noh
- Research Institute for Drug Development, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 46241, Republic of Korea
| | - Hyun Woo Kim
- Research Institute for Drug Development, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 46241, Republic of Korea
| | - Seungwoo Kim
- Department of Pharmacy, College of Pharmacy, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 46241, Republic of Korea
| | - Ki Wung Chung
- Research Institute for Drug Development, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 46241, Republic of Korea; Department of Pharmacy, College of Pharmacy, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 46241, Republic of Korea
| | - Young-Suk Jung
- Research Institute for Drug Development, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 46241, Republic of Korea; Department of Pharmacy, College of Pharmacy, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 46241, Republic of Korea
| | - Jeong-Hyun Yoon
- Research Institute for Drug Development, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 46241, Republic of Korea; Department of Pharmacy, College of Pharmacy, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 46241, Republic of Korea
| | - Byung Pal Yu
- Department of Physiology, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Jaewon Lee
- Research Institute for Drug Development, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 46241, Republic of Korea; Department of Pharmacy, College of Pharmacy, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 46241, Republic of Korea.
| | - Hae Young Chung
- Research Institute for Drug Development, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 46241, Republic of Korea; Department of Pharmacy, College of Pharmacy, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 46241, Republic of Korea.
| |
Collapse
|
5
|
Shinkai Y, Sasaki K, Tamura R, Ike T, Takahashi A, Osaki Y, Ishiuchi N, Maeoka Y, Nakashima A, Masaki T. Selective activation of PPARα by pemafibrate mitigates peritoneal inflammation and fibrosis through suppression of NLRP3 inflammasome and modulation of inflammation. Sci Rep 2024; 14:23816. [PMID: 39394435 PMCID: PMC11470028 DOI: 10.1038/s41598-024-74340-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 09/25/2024] [Indexed: 10/13/2024] Open
Abstract
Peritoneal inflammation and fibrosis remain major challenges to the long-term maintenance of peritoneal dialysis. Pemafibrate, a selective peroxisome proliferator-activated receptor α (PPARα) modulator, has been implicated in the management of fibrosis-related disorders. We investigated whether pemafibrate ameliorates peritoneal inflammation and fibrosis and explored the underlying mechanisms in mice with methylglyoxal (MGO)-induced peritoneal fibrosis (MGO mice). MGO mice exhibited peritoneal fibrosis with increased expression of mesenchymal markers, transforming growth factor-β1 (TGF-β1), and substantial deposition of extracellular matrix (ECM) proteins. Additionally, MGO mice exhibited peritoneal inflammation as indicated by elevated tumor necrosis factor-α expression and macrophage infiltration in peritoneal tissue. These effects were mitigated by pemafibrate treatment, which also restored peritoneal membrane function. Furthermore, pemafibrate promoted anti-inflammatory macrophage polarization in both mice and THP-1 cells. In human peritoneal mesothelial cells (HPMCs), pemafibrate effectively inhibited interferon-γ-induced production of TGF-β1 and ECM while suppressing the proinflammatory cytokines nuclear factor-κB (NF-κB) and activator protein 1. The NF-κB inhibitory effect of pemafibrate involved stabilization of the NF-κB inhibitory protein IkBα. Notably, pemafibrate hindered activation of the NLR family pyrin domain containing 3/caspase-1 axis in interferon-γ-stimulated THP-1 cells. These findings suggest that pemafibrate ameliorates peritoneal inflammation and fibrosis, making it a promising candidate for peritoneal fibrosis therapy.
Collapse
Affiliation(s)
- Yutaka Shinkai
- Department of Nephrology, Hiroshima University Hospital, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Kensuke Sasaki
- Department of Nephrology, Hiroshima University Hospital, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan.
| | - Ryo Tamura
- Department of Nephrology, Hiroshima University Hospital, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Takeshi Ike
- Department of Nephrology, Hiroshima University Hospital, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Akira Takahashi
- Department of Nephrology, Hiroshima University Hospital, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Yosuke Osaki
- Department of Nephrology, Hiroshima University Hospital, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Naoki Ishiuchi
- Department of Nephrology, Hiroshima University Hospital, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Yujiro Maeoka
- Department of Nephrology, Hiroshima University Hospital, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Ayumu Nakashima
- Department of Nephrology, Hiroshima University Hospital, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Takao Masaki
- Department of Nephrology, Hiroshima University Hospital, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan.
| |
Collapse
|
6
|
Chow BJ, Lee IXY, Liu C, Liu YC. Potential therapeutic effects of peroxisome proliferator-activated receptors on corneal diseases. Exp Biol Med (Maywood) 2024; 249:10142. [PMID: 38993197 PMCID: PMC11238193 DOI: 10.3389/ebm.2024.10142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 06/12/2024] [Indexed: 07/13/2024] Open
Abstract
The cornea is an avascular tissue in the eye that has multiple functions in the eye to maintain clear vision which can significantly impair one's vision when subjected to damage. Peroxisome proliferator-activated receptors (PPARs), a family of nuclear receptor proteins comprising three different peroxisome proliferator-activated receptor (PPAR) isoforms, namely, PPAR alpha (α), PPAR gamma (γ), and PPAR delta (δ), have emerged as potential therapeutic targets for treating corneal diseases. In this review, we summarised the current literature on the therapeutic effects of PPAR agents on corneal diseases. We discussed the role of PPARs in the modulation of corneal wound healing, suppression of corneal inflammation, neovascularisation, fibrosis, stimulation of corneal nerve regeneration, and amelioration of dry eye by inhibiting oxidative stress within the cornea. We also discussed the underlying mechanisms of these therapeutic effects. Future clinical trials are warranted to further attest to the clinical therapeutic efficacy.
Collapse
Affiliation(s)
- Bing Jie Chow
- Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Isabelle Xin Yu Lee
- Tissue Engineering and Cell Therapy Group, Singapore Eye Research Institute, Singapore, Singapore
| | - Chang Liu
- Tissue Engineering and Cell Therapy Group, Singapore Eye Research Institute, Singapore, Singapore
| | - Yu-Chi Liu
- Tissue Engineering and Cell Therapy Group, Singapore Eye Research Institute, Singapore, Singapore
- Department of Cornea and External Eye Disease, Singapore National Eye Centre, Singapore, Singapore
- Ophthalmology and Visual Sciences Academic Clinical Program, Duke-National University of Singapore (NUS) Medical School, Singapore, Singapore
| |
Collapse
|
7
|
Branković M, Gmizić T, Dukić M, Zdravković M, Daskalović B, Mrda D, Nikolić N, Brajković M, Gojgić M, Lalatović J, Kralj Đ, Pantić I, Vojnović M, Milovanović T, Đurašević S, Todorović Z. Therapeutic Potential of Palmitoylethanolamide in Gastrointestinal Disorders. Antioxidants (Basel) 2024; 13:600. [PMID: 38790705 PMCID: PMC11117950 DOI: 10.3390/antiox13050600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/02/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024] Open
Abstract
Palmitoylethanolamide (PEA) is an endocannabinoid-like bioactive lipid mediator belonging to the family of N-acylethanolamines, most abundantly found in peanuts and egg yolk. When the gastrointestinal (GI) effects of PEA are discussed, it must be pointed out that it affects intestinal motility but also modulates gut microbiota. This is due to anti-inflammatory, antioxidant, analgesic, antimicrobial, and immunomodulatory features. Additionally, PEA has shown beneficial effects in several GI diseases, particularly irritable bowel syndrome and inflammatory bowel diseases, as various studies have shown, and it is important to emphasize its relative lack of toxicity, even at high dosages. Unfortunately, there is not enough endogenous PEA to treat disturbed gut homeostasis, even though it is produced in the GI tract in response to inflammatory stimuli, so exogenous intake is mandatory to achieve homeostasis. Intake of PEA could be through animal and/or vegetable food, but bearing in mind that a high dosage is needed to achieve a therapeutic effect, it must be compensated through dietary supplements. There are still open questions pending to be answered, so further studies investigating PEA's effects and mechanisms of action, especially in humans, are crucial to implementing PEA in everyday clinical practice.
Collapse
Affiliation(s)
- Marija Branković
- University Hospital Medical Center Bežanijska Kosa, 11000 Belgrade, Serbia; (T.G.); (M.D.); (M.Z.); (D.M.); (N.N.); (M.B.); (J.L.); (Z.T.)
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia;
| | - Tijana Gmizić
- University Hospital Medical Center Bežanijska Kosa, 11000 Belgrade, Serbia; (T.G.); (M.D.); (M.Z.); (D.M.); (N.N.); (M.B.); (J.L.); (Z.T.)
| | - Marija Dukić
- University Hospital Medical Center Bežanijska Kosa, 11000 Belgrade, Serbia; (T.G.); (M.D.); (M.Z.); (D.M.); (N.N.); (M.B.); (J.L.); (Z.T.)
| | - Marija Zdravković
- University Hospital Medical Center Bežanijska Kosa, 11000 Belgrade, Serbia; (T.G.); (M.D.); (M.Z.); (D.M.); (N.N.); (M.B.); (J.L.); (Z.T.)
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia;
| | | | - Davor Mrda
- University Hospital Medical Center Bežanijska Kosa, 11000 Belgrade, Serbia; (T.G.); (M.D.); (M.Z.); (D.M.); (N.N.); (M.B.); (J.L.); (Z.T.)
| | - Novica Nikolić
- University Hospital Medical Center Bežanijska Kosa, 11000 Belgrade, Serbia; (T.G.); (M.D.); (M.Z.); (D.M.); (N.N.); (M.B.); (J.L.); (Z.T.)
| | - Milica Brajković
- University Hospital Medical Center Bežanijska Kosa, 11000 Belgrade, Serbia; (T.G.); (M.D.); (M.Z.); (D.M.); (N.N.); (M.B.); (J.L.); (Z.T.)
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia;
| | - Milan Gojgić
- University Hospital Medical Center Bežanijska Kosa, 11000 Belgrade, Serbia; (T.G.); (M.D.); (M.Z.); (D.M.); (N.N.); (M.B.); (J.L.); (Z.T.)
| | - Jovana Lalatović
- University Hospital Medical Center Bežanijska Kosa, 11000 Belgrade, Serbia; (T.G.); (M.D.); (M.Z.); (D.M.); (N.N.); (M.B.); (J.L.); (Z.T.)
| | - Đorđe Kralj
- University Hospital Medical Center Zvezdara, 11000 Belgrade, Serbia;
| | - Ivana Pantić
- Clinic of Gastroenterology and Hepatology, University Clinical Center of Serbia, 11000 Belgrade, Serbia; (I.P.); (M.V.)
| | - Marko Vojnović
- Clinic of Gastroenterology and Hepatology, University Clinical Center of Serbia, 11000 Belgrade, Serbia; (I.P.); (M.V.)
| | - Tamara Milovanović
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia;
- Clinic of Gastroenterology and Hepatology, University Clinical Center of Serbia, 11000 Belgrade, Serbia; (I.P.); (M.V.)
| | - Siniša Đurašević
- Department for Comparative Physiology and Ecophysiology, Institute for Physiology and Biochemistry Ivan Đaja, Faculty of Biology, University of Belgrade, 11000 Belgrade, Serbia;
| | - Zoran Todorović
- University Hospital Medical Center Bežanijska Kosa, 11000 Belgrade, Serbia; (T.G.); (M.D.); (M.Z.); (D.M.); (N.N.); (M.B.); (J.L.); (Z.T.)
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia;
| |
Collapse
|
8
|
Zhang Y, Zhang XY, Shi SR, Ma CN, Lin YP, Song WG, Guo SD. Natural products in atherosclerosis therapy by targeting PPARs: a review focusing on lipid metabolism and inflammation. Front Cardiovasc Med 2024; 11:1372055. [PMID: 38699583 PMCID: PMC11064802 DOI: 10.3389/fcvm.2024.1372055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 04/09/2024] [Indexed: 05/05/2024] Open
Abstract
Inflammation and dyslipidemia are critical inducing factors of atherosclerosis. Peroxisome proliferator-activated receptors (PPARs) are ligand-activated transcription factors and control the expression of multiple genes that are involved in lipid metabolism and inflammatory responses. However, synthesized PPAR agonists exhibit contrary therapeutic effects and various side effects in atherosclerosis therapy. Natural products are structural diversity and have a good safety. Recent studies find that natural herbs and compounds exhibit attractive therapeutic effects on atherosclerosis by alleviating hyperlipidemia and inflammation through modulation of PPARs. Importantly, the preparation of natural products generally causes significantly lower environmental pollution compared to that of synthesized chemical compounds. Therefore, it is interesting to discover novel PPAR modulator and develop alternative strategies for atherosclerosis therapy based on natural herbs and compounds. This article reviews recent findings, mainly from the year of 2020 to present, about the roles of natural herbs and compounds in regulation of PPARs and their therapeutic effects on atherosclerosis. This article provides alternative strategies and theoretical basis for atherosclerosis therapy using natural herbs and compounds by targeting PPARs, and offers valuable information for researchers that are interested in developing novel PPAR modulators.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Endocrinology and Metabolism, Guiqian International General Hospital, Guiyang, China
| | - Xue-Ying Zhang
- Institute of Lipid Metabolism and Atherosclerosis, School of Pharmacy, Shandong Second Medical University, Weifang, China
| | - Shan-Rui Shi
- Institute of Lipid Metabolism and Atherosclerosis, School of Pharmacy, Shandong Second Medical University, Weifang, China
| | - Chao-Nan Ma
- Institute of Lipid Metabolism and Atherosclerosis, School of Pharmacy, Shandong Second Medical University, Weifang, China
| | - Yun-Peng Lin
- Department of General Surgery, Qixia Traditional Chinese Medicine Hospital in Shandong Province, Yantai, China
| | - Wen-Gang Song
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Shou-Dong Guo
- Institute of Lipid Metabolism and Atherosclerosis, School of Pharmacy, Shandong Second Medical University, Weifang, China
| |
Collapse
|
9
|
Deng M, Kersten S. Characterization of sexual dimorphism in ANGPTL4 levels and function. J Lipid Res 2024; 65:100526. [PMID: 38431115 PMCID: PMC10973588 DOI: 10.1016/j.jlr.2024.100526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 02/20/2024] [Accepted: 02/22/2024] [Indexed: 03/05/2024] Open
Abstract
ANGPTL4 is an attractive pharmacological target for lowering plasma triglycerides and cardiovascular risk. Since most preclinical studies on ANGPTL4 were performed in male mice, little is known about sexual dimorphism in ANGPTL4 regulation and function. Here, we aimed to study potential sexual dimorphism in ANGPTL4 mRNA and protein levels and ANGPTL4 function. Additionally, we performed exploratory studies on the function of ANGPTL4 in the liver during fasting using Angptl4-transgenic and Angptl4-/- mice. Compared to female mice, male mice showed higher hepatic and adipose ANGPTL4 mRNA and protein levels, as well as a more pronounced effect of genetic ANGPTL4 modulation on plasma lipids. By contrast, very limited sexual dimorphism in ANGPTL4 levels was observed in human liver and adipose tissue. In human and mouse adipose tissue, ANGPTL8 mRNA and/or protein levels were significantly higher in females than males. Adipose LPL protein levels were higher in female than male Angptl4-/- mice, which was abolished by ANGPTL4 (over) expression. At the human genetic level, the ANGPTL4 E40K loss-of-function variant was associated with similar plasma triglyceride reductions in women and men. Finally, ANGPTL4 ablation in fasted mice was associated with changes in hepatic gene expression consistent with PPARα activation. In conclusion, the levels of ANGPTL4 and the magnitude of the effect of ANGPTL4 on plasma lipids exhibit sexual dimorphism. Nonetheless, inactivation of ANGPTL4 should confer a similar metabolic benefit in women and men. Expression levels of ANGPTL8 in human and mouse adipose tissue are highly sexually dimorphic, showing higher levels in females than males.
Collapse
Affiliation(s)
- Mingjuan Deng
- Nutrition, Metabolism, and Genomics group, Division of Human Nutrition and Health, Wageningen University, Wageningen, The Netherlands
| | - Sander Kersten
- Nutrition, Metabolism, and Genomics group, Division of Human Nutrition and Health, Wageningen University, Wageningen, The Netherlands; Division of Nutritional Sciences, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
10
|
Wang Y, Jin J, Wu G, Wei W, Jin Q, Wang X. Omega-9 monounsaturated fatty acids: a review of current scientific evidence of sources, metabolism, benefits, recommended intake, and edible safety. Crit Rev Food Sci Nutr 2024; 65:1857-1877. [PMID: 38343184 DOI: 10.1080/10408398.2024.2313181] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
Omega-9 monounsaturated fatty acids (ω-9 MUFAs) are a group of unsaturated fatty acids with a unique double bond in the 9th position at the end of the methyl group terminal, having the same double bond location but different carbon chain lengths. Although knowledge about ω-9 MUFAs is constantly being updated, problems with its integration remain in the field. The review summarizes the natural sources, biosynthesis, and catabolic properties of ω-9 MUFAs, emphasizing their positive effects on health functions as well as the active intermediates produced during their metabolic processes. Subsequently, the gap between the actual consumption and recommended intake of ω-9 MUFAs in our daily diet was calculated, and their food safety and potential challenges were discussed. Finally, the outlook of potential future applications and possible research trends are presented. The review aims to promote the rational consumption of ω-9 MUFAs, provide references for their application as functional foods and clinical auxiliary special medical foods, and propose more ideas and possibilities for future scientific research.
Collapse
Affiliation(s)
- Yue Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Jun Jin
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Gangcheng Wu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Wei Wei
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Qingzhe Jin
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Xingguo Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi, China
| |
Collapse
|
11
|
Youn I, Han S, Jung HJ, Noh SG, Chung HY, Koo YK, Shin S, Seo EK. Anti-Inflammatory Activity of the Constituents from the Leaves of Perilla frutescens var. acuta. Pharmaceuticals (Basel) 2023; 16:1655. [PMID: 38139782 PMCID: PMC10747482 DOI: 10.3390/ph16121655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/18/2023] [Accepted: 11/26/2023] [Indexed: 12/24/2023] Open
Abstract
Perilla frutense var. acuta (Lamiaceae) has been used to treat indigestion, asthma, and allergies in traditional medicine. In this study, luteolin 7-O-diglucuronide (1), apigenin 7-O-diglucuronide (2), and rosmarinic acid (3) were isolated from the leaves of P. frutescens var. acuta through various chromatographic purification techniques. Several approaches were used to investigate the anti-inflammatory activity of the constituents (1-3) and their working mechanisms. In silico docking simulation demonstrated that 1-3 would work as a PPAR-α/δ/γ agonist, and in vitro PPAR-α/δ/γ transcriptional assay showed that the Perilla water extract (PWE) and 3 increased PPAR-α luciferase activity (1.71 and 1.61 times of the control (PPAR-α + PPRE, p < 0.001)). In the NF-κB luciferase assay, 1 suppressed NF-κB activity the most (56.83% at 5 µM; 74.96% at 10 µM; 79.86% at 50 µM). In addition, 1 and 2 inhibited the mRNA expression of NF-κB target genes, including Il6, Mcp1, and Tnfa, at 50 µM, and 3 suppressed the genes at the mRNA level in a dose-dependent manner. We report that 1 and 2 exert anti-inflammatory effects through NF-κB inhibition, and the PPAR-α/NF-κB signaling pathway is related to the anti-inflammatory activity of 3.
Collapse
Affiliation(s)
- Isoo Youn
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul 03760, Republic of Korea; (I.Y.); (S.H.)
| | - Sujin Han
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul 03760, Republic of Korea; (I.Y.); (S.H.)
| | - Hee Jin Jung
- Department of Pharmacy, College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea; (H.J.J.); (S.G.N.); (H.Y.C.)
| | - Sang Gyun Noh
- Department of Pharmacy, College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea; (H.J.J.); (S.G.N.); (H.Y.C.)
| | - Hae Young Chung
- Department of Pharmacy, College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea; (H.J.J.); (S.G.N.); (H.Y.C.)
| | - Yean Kyoung Koo
- Department of R&I Center, COSMAXBIO, Seongnam 13487, Republic of Korea;
| | - Sunhye Shin
- Major of Food and Nutrition, Division of Applied Food System, Seoul Women’s University, Seoul 01797, Republic of Korea
| | - Eun Kyoung Seo
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul 03760, Republic of Korea; (I.Y.); (S.H.)
| |
Collapse
|
12
|
Pu Y, Cheng CK, Zhang H, Luo JY, Wang L, Tomlinson B, Huang Y. Molecular mechanisms and therapeutic perspectives of peroxisome proliferator-activated receptor α agonists in cardiovascular health and disease. Med Res Rev 2023; 43:2086-2114. [PMID: 37119045 DOI: 10.1002/med.21970] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 03/10/2023] [Accepted: 04/12/2023] [Indexed: 04/30/2023]
Abstract
The prevalence of cardiovascular disease (CVD) has been rising due to sedentary lifestyles and unhealthy dietary patterns. Peroxisome proliferator-activated receptor α (PPARα) is a nuclear receptor regulating multiple biological processes, such as lipid metabolism and inflammatory response critical to cardiovascular homeostasis. Healthy endothelial cells (ECs) lining the lumen of blood vessels maintains vascular homeostasis, where endothelial dysfunction associated with increased oxidative stress and inflammation triggers the pathogenesis of CVD. PPARα activation decreases endothelial inflammation and senescence, contributing to improved vascular function and reduced risk of atherosclerosis. Phenotypic switch and inflammation of vascular smooth muscle cells (VSMCs) exacerbate vascular dysfunction and atherogenesis, in which PPARα activation improves VSMC homeostasis. Different immune cells participate in the progression of vascular inflammation and atherosclerosis. PPARα in immune cells plays a critical role in immunological events, such as monocyte/macrophage adhesion and infiltration, macrophage polarization, dendritic cell (DC) embedment, T cell activation, and B cell differentiation. Cardiomyocyte dysfunction, a major risk factor for heart failure, can also be alleviated by PPARα activation through maintaining cardiac mitochondrial stability and inhibiting cardiac lipid accumulation, oxidative stress, inflammation, and fibrosis. This review discusses the current understanding and future perspectives on the role of PPARα in the regulation of the cardiovascular system as well as the clinical application of PPARα ligands.
Collapse
Affiliation(s)
- Yujie Pu
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Chak Kwong Cheng
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Hongsong Zhang
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Jiang-Yun Luo
- Institute for Cardiovascular Development and Regenerative Medicine, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Li Wang
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Brian Tomlinson
- Faculty of Medicine, Macau University of Science & Technology, Macau, China
| | - Yu Huang
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| |
Collapse
|
13
|
Xu Q, Sheng L, Zhu X, Liu Z, Wei G, Zhang T, Du H, Yang A, Yao J, Zhang G, Sun R. Jingfang granules exert anti-psoriasis effect by targeting MAPK-mediated dendritic cell maturation and PPARγ-mediated keratinocytes cell cycle progression in vitro and in vivo. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 117:154925. [PMID: 37321079 DOI: 10.1016/j.phymed.2023.154925] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 06/02/2023] [Accepted: 06/06/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND Jingfang granules (JFG), derived from JingFangBaiDu San (JFBDS), are a traditional herbal formulas used for the treatment of respiratory tract infections. They were initially prescribed to treat skin disease, such as psoriasis in Chinese Taiwan, but are not widely used for psoriasis treatment in mainland China because of the lack of anti-psoriasis mechanism research. PURPOSES The present study was designed to evaluate the anti-psoriasis effect of JFG and reveal the correlated mechanisms of JFG in vivo and in vitro using network pharmacology, UPLC-Q-TOF-MS technology and molecular biotechnology methods. RESULTS An imiquimod-induced psoriasis-like murine model was used to verify the anti-psoriasis effect in vivo, with inhibition of lymphocytosis and CD3+CD19+B cell proliferation in the peripheral blood and prevention of the activation of CD4+IL17+T cells and CD11c+ MHC Ⅱ+ dendritic cells (DCs) in the spleen. Network pharmacology analysis demonstrated that the targets of the active components were significantly enriched in pathways involved in cancer, inflammatory bowel disease and rheumatoid arthritis, which were closely related to cell proliferation and immune regulation. The drug-component-target networks and molecular docking analysis demonstrated the active ingredients to be luteolin, naringin and 6'-feruloylnodakenin, which had a good binding affinity to PPARγ, p38a MAPK and TNF-a. Finally, UPLC-Q-TOF-MS analysis to validate the active ingredients in drug-containing serum and in vitro experiments showed that JFG inhibited the maturation and activation of BMDCs via the p38a MAPK signaling pathway and translocation of the agonist PPARγ into the nuclei to reduce the activity of NF-κB/STAT3 inflammatory signaling pathway in keratinocytes. CONCLUSIONS Our study demonstrated that JFG improved psoriasis by inhibiting the maturation and activation of BMDCs and proliferation and inflammation of keratinocytes, which may facilitate the applications of JFG in anti-psoriasis therapy in clinical settings.
Collapse
Affiliation(s)
- Qingqing Xu
- Department of Dermato-Venereology, The Second Hospital of Shandong University, Jinan 250033, China; State Key laboratory of Generic Manufacture Technology of Chines Traditional Medicine, Lunan Pharmaceutical Co., Ltd., Linyi 276005, China; Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Lisong Sheng
- State Key laboratory of Generic Manufacture Technology of Chines Traditional Medicine, Lunan Pharmaceutical Co., Ltd., Linyi 276005, China; Advanced Medical Research Institute, Shandong University, Jinan 250012, China
| | - Xia Zhu
- Department of Dermato-Venereology, The Second Hospital of Shandong University, Jinan 250033, China
| | - Zhaoyang Liu
- Department of Dermato-Venereology, The Second Hospital of Shandong University, Jinan 250033, China
| | - Guo Wei
- Department of Dermato-Venereology, The Second Hospital of Shandong University, Jinan 250033, China
| | - Tianyu Zhang
- Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Hang Du
- The Second Hospital of Shandong University, Jinan 250033, China
| | - Anbo Yang
- Department of Dermato-Venereology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China
| | - Jingchun Yao
- State Key laboratory of Generic Manufacture Technology of Chines Traditional Medicine, Lunan Pharmaceutical Co., Ltd., Linyi 276005, China; Linyi Key Laboratory for Immunopharmacology and Immunotoxicology of Natural Medicine, Lunan Pharmaceutical Group Co. Ltd., Linyi 273400, China
| | - Guimin Zhang
- State Key laboratory of Generic Manufacture Technology of Chines Traditional Medicine, Lunan Pharmaceutical Co., Ltd., Linyi 276005, China; Linyi Key Laboratory for Immunopharmacology and Immunotoxicology of Natural Medicine, Lunan Pharmaceutical Group Co. Ltd., Linyi 273400, China.
| | - Rong Sun
- The Second Hospital of Shandong University, Jinan 250033, China; Advanced Medical Research Institute, Shandong University, Jinan 250012, China.
| |
Collapse
|
14
|
Alhirmizi IAO, Uysal F, Arslan SO, Özünlü SAÇ, Koç A, Parlar A, Bayram KK. Fenofibrate Attenuates Asthma Features in an Ovalbumin-induced Mouse Model Via Suppressing NF-κB Binding Activity. Respir Physiol Neurobiol 2023:104083. [PMID: 37295485 DOI: 10.1016/j.resp.2023.104083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 05/07/2023] [Accepted: 05/20/2023] [Indexed: 06/12/2023]
Abstract
BACKGROUND/AIM Asthma is a chronic inflammatory disease of the airways with a high prevalence. Asthma has a complex pathophysiology and about 5-10% of patients are not fully responsive to the currently available treatments. The aim of this study is to investigate the involvement of NF-κB in the effects of fenofibrate on a mouse model of allergic asthma. MATERIALS AND METHODS A total of 49 BALB/c mice were randomly distributed into 7 groups (n=7). Allergic asthma model was created by administering i.p. injections of ovalbumin on days 0, 14 and 21, followed by provocation with inhaled ovalbumin on days 28, 29 and 30. Fenofibrate was orally given in 3 different doses; 1, 10 and 30mg/kg through days 21 to 30 of the experiment. On day 31, pulmonary function test using whole body plethysmography was performed. The mice were sacrificed 24hours later. Blood samples were obtained, and serum of each sample was separated for IgE determination. Bronchoalveolar lavage fluid (BALF) and lung tissues were collected to measure IL-5 and IL-13 levels. Nuclear extracts of lung tissues were employed to assess nuclear factor kappa B (NF-κB) p65 binding activity. RESULTS Enhanced Pause (Penh) values were significantly increased in ovalbumin-sensitized and challenged mice (p<0.01). Administration of fenofibrate (10 and 30mg/kg) resulted in improved pulmonary function as shown by significantly lower Penh values (p<0.01). Interleukin (IL) -5 and IL-13 levels in BALF and lung tissues and immunoglobulin E (IgE) levels in serum were significantly elevated in the allergic mice. IL-5 levels in the lung tissues of mice treated with 1mg/kg fenofibrate (FEN1) group were significantly reduced (p<0.01). BALF and lung tissue IL-5 and IL-13 levels in mice treated with 10 and 30mg/kg fenofibrate, FEN10 and FEN30, respectively, were significantly diminished when compared to the ovalbumin-treated (OVA) group, whereas treatment with 1mg/kg fenofibrate resulted in insignificant changes. IgE levels in the serum of FEN30 group mice have shown a prominent reduction (p<0.01). NF-κB p65 binding activity was higher in mice sensitized and challenged with ovalbumin (p<0.01). NF-κB p65 binding activity was significantly reduced in allergic mice treated with 30mg/kg (p<0.01) fenofibrate. CONCLUSIONS In this study, we showed that administration of 10 and 30mg/kg fenofibrate effectively attenuated airway hyperresponsiveness and inflammation in a mouse model of allergic asthma, possibly through inhibition of NF-κB binding activity.
Collapse
Affiliation(s)
| | - Fatma Uysal
- Medical Pharmacology Department, Faculty of Medicine, Ankara Yıldırım Beyazıt University, Ankara, Türkiye
| | - Seyfullah Oktay Arslan
- Medical Pharmacology Department, Faculty of Medicine, Ankara Yıldırım Beyazıt University, Ankara, Türkiye.
| | - Saliha Ayşenur Çam Özünlü
- Medical Pharmacology, Ankara, Türkiye Department, Faculty of Medicine, Ankara Yıldırım Beyazıt University, Ankara, Türkiye
| | - Ayşegül Koç
- Ankara Yıldırım Beyazıt University, Ankara, Türkiye
| | - Ali Parlar
- Medical Pharmacology Department, Faculty of Medicine, University of Adıyaman, Adıyaman, Türkiye
| | - Keziban Korkmaz Bayram
- Medical Genetic Department, Faculty of Medicine, Ankara Yıldırım Beyazıt University, Ankara, Türkiye
| |
Collapse
|
15
|
Phung NV, Rong F, Xia WY, Fan Y, Li XY, Wang SA, Li FL. Nervonic acid and its sphingolipids: Biological functions and potential food applications. Crit Rev Food Sci Nutr 2023; 64:8766-8785. [PMID: 37114919 DOI: 10.1080/10408398.2023.2203753] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
Nervonic acid, a 24-carbon fatty acid with only one double bond at the 9th carbon (C24:1n-9), is abundant in the human brain, liver, and kidney. It not only functions in free form but also serves as a critical component of sphingolipids which participate in many biological processes such as cell membrane formation, apoptosis, and neurotransmission. Recent studies show that nervonic acid supplementation is not only beneficial to human health but also can improve the many medical conditions such as neurological diseases, cancers, diabetes, obesity, and their complications. Nervonic acid and its sphingomyelins serve as a special material for myelination in infants and remyelination patients with multiple sclerosis. Besides, the administration of nervonic acid is reported to reduce motor disorder in mice with Parkinson's disease and limit weight gain. Perturbations of nervonic acid and its sphingolipids might lead to the pathogenesis of many diseases and understanding these mechanisms is critical for investigating potential therapeutic approaches for such diseases. However, available studies about this aspect are limited. In this review, relevant findings about functional mechanisms of nervonic acid have been comprehensively and systematically described, focusing on four interconnected functions: cellular structure, signaling, anti-inflammation, lipid mobilization, and their related diseases.
Collapse
Affiliation(s)
- Nghi Van Phung
- Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao C1 Refinery Engineering Research Center, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| | - Fei Rong
- Department of Anesthesiology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, China
| | - Wan Yue Xia
- Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao C1 Refinery Engineering Research Center, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| | - Yong Fan
- Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao C1 Refinery Engineering Research Center, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
- Qingdao New Energy Shandong Laboratory, Qingdao, China
| | - Xian Yu Li
- China Academy of Chinese Medical Sciences, Beijing, China
| | - Shi An Wang
- Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao C1 Refinery Engineering Research Center, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
- Shandong Energy Institute, Qingdao, China
| | - Fu Li Li
- Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao C1 Refinery Engineering Research Center, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
- Qingdao New Energy Shandong Laboratory, Qingdao, China
- Shandong Energy Institute, Qingdao, China
| |
Collapse
|
16
|
Salama A, Elgohary R, Amin MM, Elwahab SA. Impact of protocatechuic acid on alleviation of pulmonary damage induced by cyclophosphamide targeting peroxisome proliferator activator receptor, silent information regulator type-1, and fork head box protein in rats. Inflammopharmacology 2023; 31:1361-1372. [PMID: 36877411 DOI: 10.1007/s10787-023-01156-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 02/06/2023] [Indexed: 03/07/2023]
Abstract
Cyclophosphamide (CP) is a chemotherapeutic agent that causes pulmonary damage by generating free radicals and pro-inflammatory cytokines. Pulmonary damage has a high mortality rate due to the severe inflammation and edema occurred in lung. PPARγ/Sirt 1 signaling has been shown to be cytoprotective effect against cellular inflammatory stress and oxidative injury. Protocatechuic acid (PCA) is a potent Sirt1 activator and exhibits antioxidant as well as anti-inflammatory properties. The current study aims to investigate the therapeutic impacts of PCA against CP-induced pulmonary damage in rats. Rats were assigned randomly into 4 experimental groups. The control group was injected with a single i.p injection of saline. CP group was injected with a single i.p injection of CP (200 mg/kg). PCA groups were administered orally with PCA (50 and 100 mg/kg; p.o.) once daily for 10 consecutive days after CP injection. PCA treatment resulted in a significant decrease in the protein levels of MDA, a marker of lipid peroxidation, NO and MPO along with a significant increase in GSH and catalase protein levels. Moreover, PCA downregulated anti-inflammatory markers as IL-17, NF-κB, IKBKB, COX-2, TNF-α, and PKC and upregulated cytoprotective defenses as PPARγ, and SIRT1. In addition, PCA administration ameliorated FoxO-1 elevation, increased Nrf2 gene expression, and reduced air alveoli emphysema, bronchiolar epithelium hyperplasia and inflammatory cell infiltration induced by CP. PCA might represent a promising adjuvant to prevent pulmonary damage in patients receiving CP due to its antioxidant and anti-inflammatory effects with cytoprotective defenses.
Collapse
Affiliation(s)
- Abeer Salama
- Pharmacology Department, Medical Research and Clinical Studies Institute, National Research Centre, 33 El Buhouth St. (Former El-Tahrir St.), Dokki, Cairo, 12622, Egypt
| | - Rania Elgohary
- Narcotics, Ergogenics and Poisons Department, Medical Research and Clinical Studies Institute, National Research Centre, 33 El Buhouth St. (Former El-Tahrir St.), Dokki, Cairo, 12622, Egypt.
| | - Mohamed M Amin
- Pharmacology Department, Medical Research and Clinical Studies Institute, National Research Centre, 33 El Buhouth St. (Former El-Tahrir St.), Dokki, Cairo, 12622, Egypt
| | - Sahar Abd Elwahab
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine Cairo University Al Kasr Al Aini, Old Cairo, Cairo Governorate, Egypt
| |
Collapse
|
17
|
d’Angelo M, Brandolini L, Catanesi M, Castelli V, Giorgio C, Alfonsetti M, Tomassetti M, Zippoli M, Benedetti E, Cesta MC, Colagioia S, Cocchiaro P, Cimini A, Allegretti M. Differential Effects of Nonsteroidal Anti-Inflammatory Drugs in an In Vitro Model of Human Leaky Gut. Cells 2023; 12:cells12050728. [PMID: 36899865 PMCID: PMC10001324 DOI: 10.3390/cells12050728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/06/2023] [Accepted: 02/21/2023] [Indexed: 03/02/2023] Open
Abstract
The intestinal barrier is the main contributor to gut homeostasis. Perturbations of the intestinal epithelium or supporting factors can lead to the development of intestinal hyperpermeability, termed "leaky gut". A leaky gut is characterized by loss of epithelial integrity and reduced function of the gut barrier, and is associated with prolonged use of Non-Steroidal Anti-Inflammatories. The harmful effect of NSAIDs on intestinal and gastric epithelial integrity is considered an adverse effect that is common to all drugs belonging to this class, and it is strictly dependent on NSAID properties to inhibit cyclo-oxygenase enzymes. However, different factors may affect the specific tolerability profile of different members of the same class. The present study aims to compare the effects of distinct classes of NSAIDs, such as ketoprofen (K), Ibuprofen (IBU), and their corresponding lysine (Lys) and, only for ibuprofen, arginine (Arg) salts, using an in vitro model of leaky gut. The results obtained showed inflammatory-induced oxidative stress responses, and related overloads of the ubiquitin-proteasome system (UPS) accompanied by protein oxidation and morphological changes to the intestinal barrier, many of these effects being counteracted by ketoprofen and ketoprofen lysin salt. In addition, this study reports for the first time a specific effect of R-Ketoprofen on the NFkB pathway that sheds new light on previously reported COX-independent effects, and that may account for the observed unexpected protective effect of K on stress-induced damage on the IEB.
Collapse
Affiliation(s)
- Michele d’Angelo
- Dept. of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| | - Laura Brandolini
- Dompé Farmaceutici S.p.A., via Campo di Pile snc, 67100 L’Aquila, Italy
| | - Mariano Catanesi
- Dept. of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| | - Vanessa Castelli
- Dept. of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| | - Cristina Giorgio
- Dompé Farmaceutici S.p.A., via De Amicis 95, 80131 Napoli, Italy
| | - Margherita Alfonsetti
- Dept. of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| | - Mara Tomassetti
- Dompé Farmaceutici S.p.A., via De Amicis 95, 80131 Napoli, Italy
| | - Mara Zippoli
- Dompé Farmaceutici S.p.A., via De Amicis 95, 80131 Napoli, Italy
| | - Elisabetta Benedetti
- Dept. of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| | | | - Sandro Colagioia
- Dompé Farmaceutici S.p.A., via Campo di Pile snc, 67100 L’Aquila, Italy
| | | | - Annamaria Cimini
- Dept. of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy
- Sbarro Institute for Cancer Research and Molecular Medicine, Dept. of Biology, Temple University, Philadelphia, PA 19122, USA
- Correspondence: (A.C.); (M.A.)
| | - Marcello Allegretti
- Dompé Farmaceutici S.p.A., via Campo di Pile snc, 67100 L’Aquila, Italy
- Correspondence: (A.C.); (M.A.)
| |
Collapse
|
18
|
Peroxisome Proliferator-Activated Receptor-Targeted Therapies: Challenges upon Infectious Diseases. Cells 2023; 12:cells12040650. [PMID: 36831317 PMCID: PMC9954612 DOI: 10.3390/cells12040650] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 02/13/2023] [Accepted: 02/14/2023] [Indexed: 02/22/2023] Open
Abstract
Peroxisome proliferator-activated receptors (PPARs) α, β, and γ are nuclear receptors that orchestrate the transcriptional regulation of genes involved in a variety of biological responses, such as energy metabolism and homeostasis, regulation of inflammation, cellular development, and differentiation. The many roles played by the PPAR signaling pathways indicate that PPARs may be useful targets for various human diseases, including metabolic and inflammatory conditions and tumors. Accumulating evidence suggests that each PPAR plays prominent but different roles in viral, bacterial, and parasitic infectious disease development. In this review, we discuss recent PPAR research works that are focused on how PPARs control various infections and immune responses. In addition, we describe the current and potential therapeutic uses of PPAR agonists/antagonists in the context of infectious diseases. A more comprehensive understanding of the roles played by PPARs in terms of host-pathogen interactions will yield potential adjunctive personalized therapies employing PPAR-modulating agents.
Collapse
|
19
|
Yu L, Liu Y, Wang S, Zhang Q, Zhao J, Zhang H, Narbad A, Tian F, Zhai Q, Chen W. Cholestasis: exploring the triangular relationship of gut microbiota-bile acid-cholestasis and the potential probiotic strategies. Gut Microbes 2023; 15:2181930. [PMID: 36864554 PMCID: PMC9988349 DOI: 10.1080/19490976.2023.2181930] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 02/09/2023] [Indexed: 03/04/2023] Open
Abstract
Cholestasis is a condition characterized by the abnormal production or excretion of bile, and it can be induced by a variety of causes, the factors of which are extremely complex. Although great progress has been made in understanding cholestasis pathogenesis, the specific mechanisms remain unclear. Therefore, it is important to understand and distinguish cholestasis from different etiologies, which will also provide indispensable theoretical support for the development of corresponding therapeutic drugs. At present, the treatment of cholestasis mainly involves several bile acids (BAs) and their derivatives, most of which are in the clinical stage of development. Multiple lines of evidence indicate that ecological disorders of the gut microbiota are strongly related to the occurrence of cholestasis, in which BAs also play a pivotal role. Recent studies indicate that probiotics seem to have certain effects on cholestasis, but further confirmation from clinical trials is required. This paper reviews the etiology of and therapeutic strategies for cholestasis; summarizes the similarities and differences in inducement, symptoms, and mechanisms of related diseases; and provides information about the latest pharmacological therapies currently available and those under research for cholestasis. We also reviewed the highly intertwined relationship between gut microbiota-BA-cholestasis, revealing the potential role and possible mechanism of probiotics in the treatment of cholestasis.
Collapse
Affiliation(s)
- Leilei Yu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- International Joint Research Laboratory for Probiotics, Jiangnan University, Wuxi, Jiangsu, China
| | - Yaru Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Shunhe Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Qingsong Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- International Joint Research Laboratory for Probiotics, Jiangnan University, Wuxi, Jiangsu, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- International Joint Research Laboratory for Probiotics, Jiangnan University, Wuxi, Jiangsu, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
| | - Arjan Narbad
- International Joint Research Laboratory for Probiotics, Jiangnan University, Wuxi, Jiangsu, China
- Gut Health and Microbiome Institute Strategic Programme, Quadram Institute Bioscience, Norwich, UK
| | - Fengwei Tian
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- International Joint Research Laboratory for Probiotics, Jiangnan University, Wuxi, Jiangsu, China
| | - Qixiao Zhai
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- International Joint Research Laboratory for Probiotics, Jiangnan University, Wuxi, Jiangsu, China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- International Joint Research Laboratory for Probiotics, Jiangnan University, Wuxi, Jiangsu, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
| |
Collapse
|
20
|
Sunagawa Y, Kawaguchi S, Miyazaki Y, Katanasaka Y, Funamoto M, Shimizu K, Shimizu S, Hamabe-Horiike T, Kawase Y, Komiyama M, Mori K, Murakami A, Hasegawa K, Morimoto T. Auraptene, a citrus peel-derived natural product, prevents myocardial infarction-induced heart failure by activating PPARα in rats. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 107:154457. [PMID: 36223697 DOI: 10.1016/j.phymed.2022.154457] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 09/05/2022] [Accepted: 09/13/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Auraptene derived from the peel of Citrus hassaku possesses anti-tumor, anti-inflammatory, and neuroprotective activities. Thus, it could be a valuable pharmacological alternative to treat some diseases. However, the therapeutic value of auraptene for heart failure (HF) is unknown. STUDY DESIGN/METHODS In cultured cardiomyocytes from neonatal rats, the effect of auraptene on phenylephrine-induced hypertrophic responses and peroxisome proliferator-activated receptor-alpha (PPARα)-dependent gene transcriptions. To investigate whether auraptene prevents the development of heart failure after myocardial infarction (MI) in vivo, Sprague-Dawley rats with moderate MI (fractional shortening < 40%) were randomly assigned for treatment with low- or high-dose auraptene (5 or 50 mg/kg/day, respectively) or vehicle for 6 weeks. The effects of auraptene were evaluated by echocardiography, histological analysis, and the measurement of mRNA levels of hypertrophy, fibrosis, and PPARα-associated genes. RESULTS In cultured cardiomyocytes, auraptene repressed phenylephrine-induced hypertrophic responses, such as increases in cell size and activities of atrial natriuretic factor and endothelin-1 promoters. Auraptene induced PPARα-dependent gene activation by enhancing cardiomyocyte peroxisome proliferator-responsive element reporter activity. The inhibition of PPARα abrogated the protective effect of auraptene on phenylephrine-induced hypertrophic responses. In rats with MI, auraptene significantly improved MI-induced systolic dysfunction and increased posterior wall thickness compared to the vehicle. Auraptene treatment also suppressed MI-induced increases in myocardial cell diameter, perivascular fibrosis, and expression of hypertrophy and fibrosis response markers at the mRNA level compared with vehicle treatment. MI-induced decreases in the expression of PPARα-dependent genes were improved by auraptene treatment. CONCLUSIONS Auraptene has beneficial effects on MI-induced cardiac hypertrophy and left ventricular systolic dysfunction in rats, at least partly due to PPARα activation. Further clinical studies are required to evaluate the efficacy of auraptene in patients with HF.
Collapse
Affiliation(s)
- Yoichi Sunagawa
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan; Division of Translational Research, Clinical Research Institute, Kyoto Medical Center, National Hospital Organization, Kyoto 612-8555, Japan; Research Support Center, Shizuoka General Hospital, Shizuoka 420-8527, Japan
| | - Shogo Kawaguchi
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan
| | - Yusuke Miyazaki
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan; Division of Translational Research, Clinical Research Institute, Kyoto Medical Center, National Hospital Organization, Kyoto 612-8555, Japan; Research Support Center, Shizuoka General Hospital, Shizuoka 420-8527, Japan
| | - Yasufumi Katanasaka
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan; Division of Translational Research, Clinical Research Institute, Kyoto Medical Center, National Hospital Organization, Kyoto 612-8555, Japan; Research Support Center, Shizuoka General Hospital, Shizuoka 420-8527, Japan
| | - Masafumi Funamoto
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan; Division of Translational Research, Clinical Research Institute, Kyoto Medical Center, National Hospital Organization, Kyoto 612-8555, Japan
| | - Kana Shimizu
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan; Division of Translational Research, Clinical Research Institute, Kyoto Medical Center, National Hospital Organization, Kyoto 612-8555, Japan
| | - Satoshi Shimizu
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan; Division of Translational Research, Clinical Research Institute, Kyoto Medical Center, National Hospital Organization, Kyoto 612-8555, Japan
| | - Toshihide Hamabe-Horiike
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan
| | - Yuto Kawase
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan
| | - Maki Komiyama
- Division of Translational Research, Clinical Research Institute, Kyoto Medical Center, National Hospital Organization, Kyoto 612-8555, Japan
| | - Kiyoshi Mori
- Division of Molecular and Clinical Pharmacology, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan; Department of Nephrology, Shizuoka General Hospital, Shizuoka 420-8527, Japan; Shizuoka Graduate University of Public Health, Shizuoka 420-0881, Japan
| | - Akira Murakami
- School of Human Science and Environment, University of Hyogo, Hyogo 670-0092, Japan
| | - Koji Hasegawa
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan; Division of Translational Research, Clinical Research Institute, Kyoto Medical Center, National Hospital Organization, Kyoto 612-8555, Japan
| | - Tatsuya Morimoto
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan; Division of Translational Research, Clinical Research Institute, Kyoto Medical Center, National Hospital Organization, Kyoto 612-8555, Japan; Research Support Center, Shizuoka General Hospital, Shizuoka 420-8527, Japan.
| |
Collapse
|
21
|
Gallucci GM, Alsuwayt B, Auclair AM, Boyer JL, Assis DN, Ghonem NS. Fenofibrate Downregulates NF-κB Signaling to Inhibit Pro-inflammatory Cytokine Secretion in Human THP-1 Macrophages and During Primary Biliary Cholangitis. Inflammation 2022; 45:2570-2581. [PMID: 35838934 PMCID: PMC10853883 DOI: 10.1007/s10753-022-01713-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/20/2022] [Accepted: 07/01/2022] [Indexed: 11/05/2022]
Abstract
Chronic liver diseases, e.g., cholestasis, are negatively impacted by inflammation, which further aggravates liver injury. Pharmacotherapy targeting the peroxisome proliferator-activated receptor alpha (PPARα), e.g., fenofibrate, has recently become an off-label therapeutic option for patients with refractory cholestasis. Clinical studies show that fibrates can reduce some pro-inflammatory cytokines in primary biliary cholangitis (PBC) and primary sclerosing cholangitis (PSC); however, its anti-inflammatory mechanisms have not been established. Numerous cytokines are regulated by the transcription factor nuclear receptor kappa B (NF-κB), and PPARα has been shown to interfere with NF-κB signaling. This study investigates the anti-inflammatory mechanism of fenofibrate by inhibiting NF-κB signaling in human macrophages and clinical outcomes in patients with PBC. For adult patients with PBC and an incomplete biochemical response to ursodiol (13-15 mg/kg/day), the addition of fenofibrate (145-160 mg/day) reduced serum levels of TNF-α, IL-17A, IL-1β, IL-6, IL-8, and MCP-1 and increased IL-10. In THP-1 cells, pretreatment with fenofibrate (125 μM) reduced LPS-stimulated peak concentrations of IL-1β (- 63%), TNF-α (- 88%), and IL-8 (- 54%), in a PPARα-dependent manner. Treatment with fenofibrate prior to LPS significantly decreased nuclear NF-κB p50 and p65 subunit binding by 49% and 31%, respectively. Additionally, fenofibrate decreased nuclear NF-κB p50 and p65 protein expression by 66% and 55% and increased cytoplasmic levels by 53% and 54% versus LPS alone, respectively. Lastly, fenofibrate increased IκBα levels by 2.7-fold (p < 0.001) vs. LPS. These data demonstrate that fenofibrate reduces pro-inflammatory cytokines section by inhibiting in NF-κB signaling, which likely contribute to its anti-inflammatory effects during chronic liver diseases.
Collapse
Affiliation(s)
- Gina M Gallucci
- College of Pharmacy, Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, 7 Greenhouse Road, Avedisian Hall, Kingston, RI 02881, USA
| | - Bader Alsuwayt
- School of Pharmacy, Department of Pharmaceutical Sciences, Massachusetts College of Pharmacy and Health Sciences, Boston, MA, USA
| | - Adam M Auclair
- College of Pharmacy, Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, 7 Greenhouse Road, Avedisian Hall, Kingston, RI 02881, USA
| | - James L Boyer
- Yale School of Medicine, Liver Center, New Haven, CT, USA
| | - David N Assis
- Yale School of Medicine, Liver Center, New Haven, CT, USA
| | - Nisanne S Ghonem
- College of Pharmacy, Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, 7 Greenhouse Road, Avedisian Hall, Kingston, RI 02881, USA.
| |
Collapse
|
22
|
Barbiero JK, Ramos DC, Boschen S, Bassani T, Da Cunha C, Vital MABF. Fenofibrate promotes neuroprotection in a model of rotenone-induced Parkinson's disease. Behav Pharmacol 2022; 33:513-526. [PMID: 36094044 DOI: 10.1097/fbp.0000000000000699] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Parkinson's disease is a neurodegenerative disease, the etiology of which remains unknown, but some likely causes include oxidative stress, mitochondrial dysfunction and neuroinflammation. Peroxisome-proliferator-activated receptor (PPAR) agonists have been studied in animal models of Parkinson's disease and have shown neuroprotective effects. In this study, we aimed to (1) confirm the neuroprotective effects of PPAR-alpha agonist fenofibrate. To this end, male rats received fenofibrate (100 mg/kg) orally for 15 days, 5 days before the intraperitoneal injections of rotenone (2.5 mg/kg for 10 days). After finishing the treatment with rotenone and fenofibrate, animals were subjected to the open field, the forced swim test and the two-way active avoidance task. Subsequently, rats were euthanized for measurement of dopamine and metabolites levels in the striatum and quantification of tyrosine hydroxylase-immunoreactive neurons in the substantia nigra pars compacta (SNpc). In addition, we aimed to (2) evaluate the neuroprotective effects of fenofibrate on the accumulation of α-synuclein aggregates. Here, rats were treated for 5 days with fenofibrate continuing for over 28 days with rotenone. Then, animals were perfused for immunohistochemistry analysis of α-synuclein. The results showed that fenofibrate reduced depressive-like behavior and memory impairment induced by rotenone. Moreover, fenofibrate diminished the depletion of striatal dopamine and protected against dopaminergic neuronal death in the SNpc. Likewise, the administration of fenofibrate attenuated the aggregation of α-synuclein in the SNpc and striatum in the rotenone-lesioned rats. Our study confirmed that fenofibrate exerted neuroprotective effects because parkinsonian rats exhibited reduced behavioral, neurochemical and immunohistochemical changes, and importantly, a lower number of α-synuclein aggregates.
Collapse
Affiliation(s)
- Janaína K Barbiero
- Departamento de Farmacologia, Laboratório de Fisiologia e Farmacologia do Sistema Nervoso Central, Universidade Federal do Paraná, Curitiba, PR, Brazil
| | | | | | | | | | | |
Collapse
|
23
|
Alkhayyat SS, Al-kuraishy HM, Al-Gareeb AI, El-Bouseary MM, AboKamer AM, Batiha GES, Simal-Gandara J. Fenofibrate for COVID-19 and related complications as an approach to improve treatment outcomes: the missed key for Holy Grail. Inflamm Res 2022; 71:1159-1167. [PMID: 35941297 PMCID: PMC9360649 DOI: 10.1007/s00011-022-01615-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 07/05/2022] [Accepted: 07/17/2022] [Indexed: 12/18/2022] Open
Abstract
INTRODUCTION Fenofibrate is an agonist of peroxisome proliferator activated receptor alpha (PPAR-α), that possesses anti-inflammatory, antioxidant, and anti-thrombotic properties. Fenofibrate is effective against a variety of viral infections and different inflammatory disorders. Therefore, the aim of critical review was to overview the potential role of fenofibrate in the pathogenesis of SARS-CoV-2 and related complications. RESULTS By destabilizing SARS-CoV-2 spike protein and preventing it from binding angiotensin-converting enzyme 2 (ACE2), a receptor for SARS-CoV-2 entry, fenofibrate can reduce SARS-CoV-2 entry in human cells Fenofibrate also suppresses inflammatory signaling pathways, which decreases SARS-CoV-2 infection-related inflammatory alterations. In conclusion, fenofibrate anti-inflammatory, antioxidant, and antithrombotic capabilities may help to minimize the inflammatory and thrombotic consequences associated with SARSCoV-2 infection. Through attenuating the interaction between SARS-CoV-2 and ACE2, fenofibrate can directly reduce the risk of SARS-CoV-2 infection. CONCLUSIONS As a result, fenofibrate could be a potential treatment approach for COVID-19 control.
Collapse
Affiliation(s)
- Shadi Salem Alkhayyat
- Department of Internal Medicine, Faculty of Medicine, King Abdulaziz University, Jeddah, 21589 Saudi Arabia
| | - Hayder M. Al-kuraishy
- Department of Clinical Pharmacology and Medicine, College of Medicine, Al-Mustansiriyah University, Baghdad, Iraq
| | - Ali I. Al-Gareeb
- Department of Clinical Pharmacology and Medicine, College of Medicine, Al-Mustansiriyah University, Baghdad, Iraq
| | - Maisra M. El-Bouseary
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Amal M. AboKamer
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511 Al Beheira Egypt
| | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty Science, Universidade de Vigo, 32004 Ourense, Spain
| |
Collapse
|
24
|
Ortiz-López N, Fuenzalida C, Dufeu MS, Pinto-León A, Escobar A, Poniachik J, Roblero JP, Valenzuela-Pérez L, Beltrán CJ. The immune response as a therapeutic target in non-alcoholic fatty liver disease. Front Immunol 2022; 13:954869. [PMID: 36300120 PMCID: PMC9589255 DOI: 10.3389/fimmu.2022.954869] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 09/21/2022] [Indexed: 08/25/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a complex and heterogeneous disorder considered a liver-damaging manifestation of metabolic syndrome. Its prevalence has increased in the last decades due to modern-day lifestyle factors associated with overweight and obesity, making it a relevant public health problem worldwide. The clinical progression of NAFLD is associated with advanced forms of liver injury such as fibrosis, cirrhosis, and hepatocellular carcinoma (HCC). As such, diverse pharmacological strategies have been implemented over the last few years, principally focused on metabolic pathways involved in NAFLD progression. However, a variable response rate has been observed in NAFLD patients, which is explained by the interindividual heterogeneity of susceptibility to liver damage. In this scenario, it is necessary to search for different therapeutic approaches. It is worth noting that chronic low-grade inflammation constitutes a central mechanism in the pathogenesis and progression of NAFLD, associated with abnormal composition of the intestinal microbiota, increased lymphocyte activation in the intestine and immune effector mechanisms in liver. This review aims to discuss the current knowledge about the role of the immune response in NAFLD development. We have focused mainly on the impact of altered gut-liver-microbiota axis communication on immune cell activation in the intestinal mucosa and the role of subsequent lymphocyte homing to the liver in NAFLD development. We further discuss novel clinical trials that addressed the control of the liver and intestinal immune response to complement current NAFLD therapies.
Collapse
Affiliation(s)
- Nicolás Ortiz-López
- Laboratory of Immunogastroenterology, Unit of Gastroenterology, Department of Medicine, Hospital Clínico Universidad de Chile, Santiago, Chile
- School of Medicine, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Catalina Fuenzalida
- Laboratory of Immunogastroenterology, Unit of Gastroenterology, Department of Medicine, Hospital Clínico Universidad de Chile, Santiago, Chile
- School of Medicine, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - María Soledad Dufeu
- Laboratory of Immunogastroenterology, Unit of Gastroenterology, Department of Medicine, Hospital Clínico Universidad de Chile, Santiago, Chile
- School of Medicine, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Araceli Pinto-León
- Laboratory of Immunogastroenterology, Unit of Gastroenterology, Department of Medicine, Hospital Clínico Universidad de Chile, Santiago, Chile
| | | | - Jaime Poniachik
- Unit of Gastroenterology, Department of Medicine, Hospital Clínico Universidad de Chile, Santiago, Chile
| | - Juan Pablo Roblero
- Unit of Gastroenterology, Department of Medicine, Hospital Clínico Universidad de Chile, Santiago, Chile
| | - Lucía Valenzuela-Pérez
- Laboratory of Immunogastroenterology, Unit of Gastroenterology, Department of Medicine, Hospital Clínico Universidad de Chile, Santiago, Chile
- School of Medicine, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Caroll J. Beltrán
- Laboratory of Immunogastroenterology, Unit of Gastroenterology, Department of Medicine, Hospital Clínico Universidad de Chile, Santiago, Chile
- School of Medicine, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| |
Collapse
|
25
|
Martín MG, Dotti CG. Plasma membrane and brain dysfunction of the old: Do we age from our membranes? Front Cell Dev Biol 2022; 10:1031007. [PMID: 36274849 PMCID: PMC9582647 DOI: 10.3389/fcell.2022.1031007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 09/20/2022] [Indexed: 11/26/2022] Open
Abstract
One of the characteristics of aging is a gradual hypo-responsiveness of cells to extrinsic stimuli, mainly evident in the pathways that are under hormone control, both in the brain and in peripheral tissues. Age-related resistance, i.e., reduced response of receptors to their ligands, has been shown to Insulin and also to leptin, thyroid hormones and glucocorticoids. In addition, lower activity has been reported in aging for ß-adrenergic receptors, adenosine A2B receptor, and several other G-protein-coupled receptors. One of the mechanisms proposed to explain the loss of sensitivity to hormones and neurotransmitters with age is the loss of receptors, which has been observed in several tissues. Another mechanism that is finding more and more experimental support is related to the changes that occur with age in the lipid composition of the neuronal plasma membrane, which are responsible for changes in the receptors’ coupling efficiency to ligands, signal attenuation and pathway desensitization. In fact, recent works have shown that altered membrane composition—as occurs during neuronal aging—underlies reduced response to glutamate, to the neurotrophin BDNF, and to insulin, all these leading to cognition decay and epigenetic alterations in the old. In this review we present evidence that altered functions of membrane receptors due to altered plasma membrane properties may be a triggering factor in physiological decline, decreased brain function, and increased vulnerability to neuropathology in aging.
Collapse
Affiliation(s)
- Mauricio G. Martín
- Cellular and Molecular Neurobiology Department, Instituto Ferreyra (INIMEC)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Córdoba (UNC), Córdoba, Argentina
- *Correspondence: Mauricio G. Martín, ; Carlos G. Dotti,
| | - Carlos G. Dotti
- Molecular Neuropathology Unit, Physiological and Pathological Processes Program, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas (CSIC), Universidad Autónoma de Madrid (UAM), Madrid, Spain
- *Correspondence: Mauricio G. Martín, ; Carlos G. Dotti,
| |
Collapse
|
26
|
The Role of Transcription Factor PPAR-γ in the Pathogenesis of Psoriasis, Skin Cells, and Immune Cells. Int J Mol Sci 2022; 23:ijms23179708. [PMID: 36077103 PMCID: PMC9456565 DOI: 10.3390/ijms23179708] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 08/22/2022] [Accepted: 08/23/2022] [Indexed: 11/22/2022] Open
Abstract
The peroxisome proliferator-activated receptor PPAR-γ is one of three PPAR nuclear receptors that act as ligand-activated transcription factors. In immune cells, the skin, and other organs, PPAR-γ regulates lipid, glucose, and amino acid metabolism. The receptor translates nutritional, pharmacological, and metabolic stimuli into the changes in gene expression. The activation of PPAR-γ promotes cell differentiation, reduces the proliferation rate, and modulates the immune response. In the skin, PPARs also contribute to the functioning of the skin barrier. Since we know that the route from identification to the registration of drugs is long and expensive, PPAR-γ agonists already approved for other diseases may also represent a high interest for psoriasis. In this review, we discuss the role of PPAR-γ in the activation, differentiation, and proliferation of skin and immune cells affected by psoriasis and in contributing to the pathogenesis of the disease. We also evaluate whether the agonists of PPAR-γ may become one of the therapeutic options to suppress the inflammatory response in lesional psoriatic skin and decrease the influence of comorbidities associated with psoriasis.
Collapse
|
27
|
Ye X, Zhang T, Han H. PPARα: A potential therapeutic target of cholestasis. Front Pharmacol 2022; 13:916866. [PMID: 35924060 PMCID: PMC9342652 DOI: 10.3389/fphar.2022.916866] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 06/29/2022] [Indexed: 12/12/2022] Open
Abstract
The accumulation of bile acids in the liver leads to the development of cholestasis and hepatocyte injury. Nuclear receptors control the synthesis and transport of bile acids in the liver. Among them, the farnesoid X receptor (FXR) is the most common receptor studied in treating cholestasis. The activation of this receptor can reduce the amount of bile acid synthesis and decrease the bile acid content in the liver, alleviating cholestasis. Ursodeoxycholic acid (UDCA) and obeticholic acid (OCA) have a FXR excitatory effect, but the unresponsiveness of some patients and the side effect of pruritus seriously affect the results of UDCA or OCA treatment. The activator of peroxisome proliferator-activated receptor alpha (PPARα) has emerged as a new target for controlling the synthesis and transport of bile acids during cholestasis. Moreover, the anti-inflammatory effect of PPARα can effectively reduce cholestatic liver injury, thereby improving patients’ physiological status. Here, we will focus on the function of PPARα and its involvement in the regulation of bile acid transport and metabolism. In addition, the anti-inflammatory effects of PPARα will be discussed in some detail. Finally, we will discuss the application of PPARα agonists for cholestatic liver disorders.
Collapse
Affiliation(s)
- Xiaoyin Ye
- School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Tong Zhang
- School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- *Correspondence: Tong Zhang, ; Han Han,
| | - Han Han
- Experiment Center for Teaching and Learning, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- *Correspondence: Tong Zhang, ; Han Han,
| |
Collapse
|
28
|
PPAR Alpha as a Metabolic Modulator of the Liver: Role in the Pathogenesis of Nonalcoholic Steatohepatitis (NASH). BIOLOGY 2022; 11:biology11050792. [PMID: 35625520 PMCID: PMC9138523 DOI: 10.3390/biology11050792] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/17/2022] [Accepted: 05/18/2022] [Indexed: 12/31/2022]
Abstract
Simple Summary In the context of liver disease, one of the more growing public health problems is the transition from simple steatosis to non-alcoholic steatohepatitis. Profound metabolic dysregulations linked to inflammation and hepatic injury are features of non-alcoholic steatohepatitis. Since the peroxisomal-proliferator-activated receptor alpha has long been considered one of the key transcriptional factors in hepatic metabolism, its role in the pathogenesis of non-alcoholic steatohepatitis is discussed in this review. Abstract The strong relationship between metabolic alterations and non-alcoholic steatohepatitis (NASH) suggests a pathogenic interplay. However, many aspects have not yet been fully clarified. Nowadays, NASH is becoming the main cause of liver-associated morbidity and mortality. Therefore, an effort to understand the mechanisms underlying the pathogenesis of NASH is critical. Among the nuclear receptor transcription factors, peroxisome-proliferator-activated receptor alpha (PPARα) is highly expressed in the liver, where it works as a pivotal transcriptional regulator of the intermediary metabolism. In this context, PPARα’s function in regulating the lipid metabolism is essential for proper liver functioning. Here, we review metabolic liver genes under the control of PPARα and discuss how this aspect can impact the inflammatory condition and pathogenesis of NASH.
Collapse
|
29
|
Xu S, Qiao X, Peng P, Zhu Z, Li Y, Yu M, Chen L, Cai Y, Xu J, Shi X, Proud CG, Xie J, Shen K. Da-Chai-Hu-Tang Protects From Acute Intrahepatic Cholestasis by Inhibiting Hepatic Inflammation and Bile Accumulation via Activation of PPARα. Front Pharmacol 2022; 13:847483. [PMID: 35370715 PMCID: PMC8965327 DOI: 10.3389/fphar.2022.847483] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 02/15/2022] [Indexed: 12/12/2022] Open
Abstract
Cholestasis is caused by intrahepatic retention of excessive toxic bile acids and ultimately results in hepatic failure. Da-Chai-Hu-Tang (DCHT) has been used in China to treat liver and gallbladder diseases for over 1800 years. Here, we demonstrated that DCHT treatment prevented acute intrahepatic cholestasis with liver injury in response to α-naphthylisothiocyanate (ANIT) not to bile duct ligation (BDL) induced-extrahepatic cholestasis. ANIT (80 mg/kg) increased serum levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), direct bilirubin (DBiL), total bilirubin (TBiL), and total bile acids (TBA) which was attenuated by DCHT treatment in a dose-dependent manner. DCHT treatment at high dose of 1.875 g/kg restored bile acid homeostasis, as evidenced by the recovery of the transcription of genes implicated in bile acid biosynthesis, uptake and efflux. DCHT treatment (1.875 g/kg) reversed ANIT-evoked disordered glutathione homeostasis (as determined by GSH/GSSG ratio) and increased in the mRNA levels for Il6, Il1b and Tnfa associated with liver inflammation. Using network pharmacology-based approaches, we identified 22 putative targets involved in DCHT treatment for intrahepatic cholestasis not extrahepatic cholestasis. In addition, as evidenced by dual-luciferase reporter assays, compounds from DCHT with high affinity of PPARα increased luciferase levels from a PPARα-driven reporter. PPARα agonist fenofibrate was able to mimic the cytoprotective effect of DCHT on intrahepatic cholestasis, which was abolished by the PPARα antagonist GW6471. KEGG enrichment and western blot analyses showed that signaling axes of JNK/IL-6/NF-κB/STAT3 related to PPARα might be the principal pathway DCHT affects intrahepatic cholestasis. Taken together, the present study provides compelling evidence that DCHT is a promising formula against acute intrahepatic cholestasis with hepatotoxicity which works via PPARα activation.
Collapse
Affiliation(s)
- Shihao Xu
- School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xi Qiao
- School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Peike Peng
- School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ziyi Zhu
- School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yaoting Li
- School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,School of Pharmacy, Fudan University, Shanghai, China
| | - Mengyuan Yu
- School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | - Long Chen
- Experimental Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yin Cai
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Jin Xu
- School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xinwei Shi
- School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Christopher G Proud
- Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, SA, Australia.,Molecular and Biomedical Sciences, School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Jianling Xie
- Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, SA, Australia.,Flinders Health and Medical Research Institute, Flinders University, Adelaide, SA, Australia
| | - Kaikai Shen
- School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
30
|
Zou C, Fang Y, Lin N, Liu H. Polysaccharide extract from pomelo fruitlet ameliorates diet-induced nonalcoholic fatty liver disease in hybrid grouper (Epinephelus lanceolatus♂ × Epinephelus fuscoguttatus♀). FISH & SHELLFISH IMMUNOLOGY 2021; 119:114-127. [PMID: 34607007 DOI: 10.1016/j.fsi.2021.09.034] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/25/2021] [Accepted: 09/26/2021] [Indexed: 05/26/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is common in farmed fish fed a high-fat diet (HFD), which disrupts lipid metabolism, inhibits growth performance, and poses a serious threat to sustainable aquaculture. This study explored the anti-NAFLD effect and hepatoprotective mechanism of YZW-A, a water-soluble heteroglycan extracted from the pomelo fruitlet (Citrus maxima), in hybrid grouper (Epinephelus lanceolatus♂ × Epinephelus fuscoguttatus♀). Hybrid grouper were fed an HFD, with 15% lipid, supplemented with YZW-A for 56 days. In vivo, addition of YZW-A resulted in improved growth performance and feed utilization, while it reduced whole body and muscle lipid content, viscerosomatic and hepatosomatic indexes, and lipid deposition in the hepatocytes. Lipogenesis-related genes were downregulated while lipolysis-related genes were upregulated in grouper supplemented with YZW-A. Additionally, destructive morphological changes in the liver tissue cells detected in HFD-fed grouper were normalized after treatment with YZW-A. In vitro, YZW-A improved lipid emulsion-induced hepatic steatosis by modulating key factors of lipid metabolism, achieved by triggering the AMP-activated protein kinase (AMPK) pathway in the hepatocytes and activating the AMPK/Nrf2/ARE axis. These results demonstrated the therapeutic effect of YZW-A on diet-induced NAFLD in hybrid grouper and elucidated a possible mechanism underlying NAFLD prevention and suppression of further deterioration by YZW-A.
Collapse
Affiliation(s)
- Cuiyun Zou
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510225, China
| | - Yuke Fang
- College of Light Industry and Food, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, Guangdong, China
| | - Nuoyi Lin
- College of Light Industry and Food, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, Guangdong, China
| | - Huifan Liu
- College of Light Industry and Food, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, Guangdong, China.
| |
Collapse
|
31
|
Muzio G, Barrera G, Pizzimenti S. Peroxisome Proliferator-Activated Receptors (PPARs) and Oxidative Stress in Physiological Conditions and in Cancer. Antioxidants (Basel) 2021; 10:antiox10111734. [PMID: 34829605 PMCID: PMC8614822 DOI: 10.3390/antiox10111734] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 10/25/2021] [Accepted: 10/26/2021] [Indexed: 12/18/2022] Open
Abstract
Peroxisome proliferator-activated receptors (PPARs) belong to the nuclear hormone receptor superfamily. Originally described as “orphan nuclear receptors”, they can bind both natural and synthetic ligands acting as agonists or antagonists. In humans three subtypes, PPARα, β/δ, γ, are encoded by different genes, show tissue-specific expression patterns, and contribute to the regulation of lipid and carbohydrate metabolisms, of different cell functions, including proliferation, death, differentiation, and of processes, as inflammation, angiogenesis, immune response. The PPAR ability in increasing the expression of various antioxidant genes and decreasing the synthesis of pro-inflammatory mediators, makes them be considered among the most important regulators of the cellular response to oxidative stress conditions. Based on the multiplicity of physiological effects, PPAR involvement in cancer development and progression has attracted great scientific interest with the aim to describe changes occurring in their expression in cancer cells, and to investigate the correlation with some characteristics of cancer phenotype, including increased proliferation, decreased susceptibility to apoptosis, malignancy degree and onset of resistance to anticancer drugs. This review focuses on mechanisms underlying the antioxidant and anti-inflammatory properties of PPARs in physiological conditions, and on the reported beneficial effects of PPAR activation in cancer.
Collapse
|
32
|
Suzuki-Kemuriyama N, Abe A, Nakane S, Uno K, Ogawa S, Watanabe A, Sano R, Yuki M, Miyajima K, Nakae D. Non-obese mice with nonalcoholic steatohepatitis fed on a choline-deficient, L-amino acid-defined, high-fat diet exhibit alterations in signaling pathways. FEBS Open Bio 2021; 11:2950-2965. [PMID: 34390210 PMCID: PMC8564345 DOI: 10.1002/2211-5463.13272] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 07/21/2021] [Accepted: 08/11/2021] [Indexed: 11/10/2022] Open
Abstract
Nonalcoholic steatohepatitis (NASH) is often associated with obesity, but some patients develop NASH without obesity. The physiological processes by which non-obese patients develop NASH and cirrhosis have not yet been determined. Here, we analyzed the effects of dietary methionine content on NASH induced in mice fed on a choline-deficient, methionine-lowered, L-amino acid-defined high-fat diet (CDAHFD). CDAHFD with insufficient methionine induced insulin sensitivity and enhanced NASH pathology, but without obesity. In contrast, CDAHFD with sufficient methionine induced steatosis, and unlike CDAHFD with insufficient methionine, also induced obesity and insulin resistance. Gene profile analysis revealed that the disease severity in CDAHFD may partially be due to upregulation of the Rho family GTPases pathway, and mitochondrial and nuclear receptor signal dysfunction. The signaling factors/pathways detected in this study may assist in future study of NASH regulation, especially its "non-obese" subtype.
Collapse
Affiliation(s)
- Noriko Suzuki-Kemuriyama
- Department of Nutritional Science and Food Safety, Faculty of Applied Bioscience, Tokyo University of Agriculture, 1-1-1, Sakura-ga-Oka, Setagaya, Tokyo, 156-8502, Japan
| | - Akari Abe
- Department of Nutritional Science and Food Safety, Graduate School of Applied Bioscience, Tokyo University of Agriculture, 1-1-1, Sakura-ga-Oka, Setagaya, Tokyo, 156-8502, Japan
| | - Sae Nakane
- Department of Nutritional Science and Food Safety, Graduate School of Applied Bioscience, Tokyo University of Agriculture, 1-1-1, Sakura-ga-Oka, Setagaya, Tokyo, 156-8502, Japan
| | - Kiniko Uno
- Department of Food and Nutritional Science, Graduate School of Applied Bioscience, Tokyo University of Agriculture, 1-1-1, Sakura-ga-Oka, Setagaya, Tokyo, 156-8502, Japan
| | - Shuji Ogawa
- Department of Food and Nutritional Science, Graduate School of Applied Bioscience, Tokyo University of Agriculture, 1-1-1, Sakura-ga-Oka, Setagaya, Tokyo, 156-8502, Japan
| | - Atsushi Watanabe
- Department of Nutritional Science and Food Safety, Graduate School of Applied Bioscience, Tokyo University of Agriculture, 1-1-1, Sakura-ga-Oka, Setagaya, Tokyo, 156-8502, Japan
| | - Ryuhei Sano
- Department of Nutritional Science and Food Safety, Graduate School of Applied Bioscience, Tokyo University of Agriculture, 1-1-1, Sakura-ga-Oka, Setagaya, Tokyo, 156-8502, Japan
| | - Megumi Yuki
- Department of Nutritional Science and Food Safety, Graduate School of Applied Bioscience, Tokyo University of Agriculture, 1-1-1, Sakura-ga-Oka, Setagaya, Tokyo, 156-8502, Japan
| | - Katsuhiro Miyajima
- Department of Nutritional Science and Food Safety, Faculty of Applied Bioscience, Tokyo University of Agriculture, 1-1-1, Sakura-ga-Oka, Setagaya, Tokyo, 156-8502, Japan.,Department of Nutritional Science and Food Safety, Graduate School of Applied Bioscience, Tokyo University of Agriculture, 1-1-1, Sakura-ga-Oka, Setagaya, Tokyo, 156-8502, Japan
| | - Dai Nakae
- Department of Nutritional Science and Food Safety, Faculty of Applied Bioscience, Tokyo University of Agriculture, 1-1-1, Sakura-ga-Oka, Setagaya, Tokyo, 156-8502, Japan.,Department of Nutritional Science and Food Safety, Graduate School of Applied Bioscience, Tokyo University of Agriculture, 1-1-1, Sakura-ga-Oka, Setagaya, Tokyo, 156-8502, Japan
| |
Collapse
|
33
|
Escandon P, Vasini B, Whelchel AE, Nicholas SE, Matlock HG, Ma JX, Karamichos D. The role of peroxisome proliferator-activated receptors in healthy and diseased eyes. Exp Eye Res 2021; 208:108617. [PMID: 34010603 PMCID: PMC8594540 DOI: 10.1016/j.exer.2021.108617] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 05/03/2021] [Accepted: 05/05/2021] [Indexed: 12/23/2022]
Abstract
Peroxisome Proliferator-Activated Receptors (PPARs) are a family of nuclear receptors that play essential roles in modulating cell differentiation, inflammation, and metabolism. Three subtypes of PPARs are known: PPAR-alpha (PPARα), PPAR-gamma (PPARγ), and PPAR-beta/delta (PPARβ/δ). PPARα activation reduces lipid levels and regulates energy homeostasis, activation of PPARγ results in regulation of adipogenesis, and PPARβ/δ activation increases fatty acid metabolism and lipolysis. PPARs are linked to various diseases, including but not limited to diabetes, non-alcoholic fatty liver disease, glaucoma and atherosclerosis. In the past decade, numerous studies have assessed the functional properties of PPARs in the eye and key PPAR mechanisms have been discovered, particularly regarding the retina and cornea. PPARγ and PPARα are well established in their functions in ocular homeostasis regarding neuroprotection, neovascularization, and inflammation, whereas PPARβ/δ isoform function remains understudied. Naturally, studies on PPAR agonists and antagonists, associated with ocular pathology, have also gained traction with the development of PPAR synthetic ligands. Studies on PPARs has significantly influenced novel therapeutics for diabetic eye disease, ocular neuropathy, dry eye, and age-related macular degeneration (AMD). In this review, therapeutic potentials and implications will be highlighted, as well as reported adverse effects. Further investigations are necessary before any of the PPARs ligands can be utilized, in the clinics, to treat eye diseases. Future research on the prominent role of PPARs will help unravel the complex mechanisms involved in order to prevent and treat ocular diseases.
Collapse
Affiliation(s)
- Paulina Escandon
- North Texas Eye Research Institute, University of North Texas Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, TX, 76107, USA; Department of Pharmaceutical Sciences, University of North Texas Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, TX, 76107, USA
| | - Brenda Vasini
- North Texas Eye Research Institute, University of North Texas Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, TX, 76107, USA; Department of Pharmaceutical Sciences, University of North Texas Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, TX, 76107, USA
| | - Amy E Whelchel
- Department of Physiology, University of Oklahoma Health Sciences Center, 940 Stanton L Young, Oklahoma City, OK, USA
| | - Sarah E Nicholas
- North Texas Eye Research Institute, University of North Texas Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, TX, 76107, USA; Department of Pharmaceutical Sciences, University of North Texas Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, TX, 76107, USA
| | - H Greg Matlock
- Department of Physiology, University of Oklahoma Health Sciences Center, 940 Stanton L Young, Oklahoma City, OK, USA
| | - Jian-Xing Ma
- Department of Physiology, University of Oklahoma Health Sciences Center, 940 Stanton L Young, Oklahoma City, OK, USA; Harold Hamm Oklahoma Diabetes Center, 1000 N Lincoln Blvd, Oklahoma City, OK, USA
| | - Dimitrios Karamichos
- North Texas Eye Research Institute, University of North Texas Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, TX, 76107, USA; Department of Pharmaceutical Sciences, University of North Texas Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, TX, 76107, USA; Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, TX, 76107, USA.
| |
Collapse
|
34
|
Liu Y, Xiao W, Yu L, Tian F, Wang G, Lu W, Narbad A, Chen W, Zhai Q. Evidence from comparative genomic analyses indicating that Lactobacillus-mediated irritable bowel syndrome alleviation is mediated by conjugated linoleic acid synthesis. Food Funct 2021; 12:1121-1134. [PMID: 33427835 DOI: 10.1039/d0fo02616f] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Irritable bowel syndrome (IBS) is a chronic intestinal disorder accompanied by low-grade inflammation, visceral hypersensitivity, and gut microbiota dysbiosis. Several studies have indicated that Lactobacillus supplementation can help to alleviate IBS symptoms and that these effects are strain-specific. Therefore, this study aimed to investigate the key physiological characteristics and functional genes contributing to the IBS-alleviating effects of Lactobacillus. An IBS model was established by subjecting C57BL/6 mice to Citrobacter rodentium ingestion and water avoidance stress. Lactobacillus strains with different physiological characteristics were administered to mice intragastrically for 4 weeks (5 × 109 CFU/0.2 mL per mouse per day). Indicators of colonic inflammation, visceral hypersensitivity, and gut microbiota were also evaluated. Finally, differences in functional genes between Lactobacillus strains were analyzed by a comparative genomic analysis, and the relationships between the physiological characteristics, functional genes, and IBS-alleviating effects of the strains were quantified using correlation analysis. Among the eight tested Lactobacillus strains, only Lactobacillus plantarum CCFM8610 significantly inhibited the expression of IL-1β, IL-6, PAR-2, and mast cell tryptase. L. plantarum CCFM8610 also significantly increased the intestinal barrier function, inhibited visceral hypersensitivity symptoms, and modulated the gut microbiota diversity and composition. The correlation analysis of factors associated with the IBS-alleviating effects of Lactobacillus revealed the ability to synthesize conjugated linoleic acid as the most strongly associated physiological characteristic and COG1028-related genes as the most strongly associated functional genes. In conclusion, these findings can facilitate the rapid screening of Lactobacillus strains with IBS-alleviating effects and lay a foundation for studies of the related mechanisms.
Collapse
Affiliation(s)
- Yang Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Wei Xiao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Leilei Yu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Fengwei Tian
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China. and International Joint Research Laboratory for Pharmabiotics & Antibiotic Resistance, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Gang Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China. and International Joint Research Laboratory for Pharmabiotics & Antibiotic Resistance, Jiangnan University, Wuxi, Jiangsu 214122, China and (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou 225004, China
| | - Wenwei Lu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China. and National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, China and (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou 225004, China
| | - Arjan Narbad
- International Joint Research Laboratory for Pharmabiotics & Antibiotic Resistance, Jiangnan University, Wuxi, Jiangsu 214122, China and Gut Health and Food Safety Programme, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China. and National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, China and Beijing Innovation Center of Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Qixiao Zhai
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China. and International Joint Research Laboratory for Pharmabiotics & Antibiotic Resistance, Jiangnan University, Wuxi, Jiangsu 214122, China
| |
Collapse
|
35
|
Villavicencio-Tejo F, Flores-Bastías O, Marambio-Ruiz L, Pérez-Reytor D, Karahanian E. Fenofibrate (a PPAR-α Agonist) Administered During Ethanol Withdrawal Reverts Ethanol-Induced Astrogliosis and Restores the Levels of Glutamate Transporter in Ethanol-Administered Adolescent Rats. Front Pharmacol 2021; 12:653175. [PMID: 33959021 PMCID: PMC8093785 DOI: 10.3389/fphar.2021.653175] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 03/31/2021] [Indexed: 01/11/2023] Open
Abstract
High-ethanol intake induces a neuroinflammatory response, which has been proposed as responsible for the maintenance of chronic ethanol consumption. Neuroinflammation decreases glutamate transporter (GLT-1) expression, increasing levels of glutamate that trigger dopamine release at the corticolimbic reward areas, driving long-term drinking behavior. The activation of peroxisome proliferator-activated receptor alpha (PPARα) by fibrates inhibits neuroinflammation, in models other than ethanol consumption. However, the effect of fibrates on ethanol-induced neuroinflammation has not yet been studied. We previously reported that the administration of fenofibrate to ethanol-drinking rats decreased ethanol consumption. Here, we studied whether fenofibrate effects are related to a decrease in ethanol-induced neuroinflammation and to the normalization of the levels of GLT-1. Rats were administered ethanol on alternate days for 4 weeks (2 g/kg/day). After ethanol withdrawal, fenofibrate was administered for 14 days (50 mg/kg/day) and the levels of glial fibrillary acidic protein (GFAP), phosphorylated NF-κB-inhibitory protein (pIκBα) and GLT-1, were quantified in the prefrontal cortex, hippocampus, and hypothalamus. Ethanol treatment increased the levels of GFAP in the hippocampus and hypothalamus, indicating a clear astrocytic activation. Similarly, ethanol increased the levels of pIκBα in the three areas. The administration of fenofibrate decreased the expression of GFAP and pIκBα in the three areas. These results indicate that fenofibrate reverts both astrogliosis and NF-κB activation. Finally, ethanol decreased GLT-1 expression in the prefrontal cortex and hippocampus. Fenofibrate normalized the levels of GLT-1 in both areas, suggesting that its effect in reducing ethanol consumption could be due to the normalization of glutamatergic tone.
Collapse
Affiliation(s)
| | - Osvaldo Flores-Bastías
- Institute of Biomedical Sciences, Faculty of Health Sciences, Universidad Autónoma de Chile, Santiago, Chile
| | - Lucas Marambio-Ruiz
- Institute of Biomedical Sciences, Faculty of Health Sciences, Universidad Autónoma de Chile, Santiago, Chile
| | - Diliana Pérez-Reytor
- Institute of Biomedical Sciences, Faculty of Health Sciences, Universidad Autónoma de Chile, Santiago, Chile
| | - Eduardo Karahanian
- Institute of Biomedical Sciences, Faculty of Health Sciences, Universidad Autónoma de Chile, Santiago, Chile
| |
Collapse
|
36
|
Bioactivity profiling of per- and polyfluoroalkyl substances (PFAS) identifies potential toxicity pathways related to molecular structure. Toxicology 2021; 457:152789. [PMID: 33887376 DOI: 10.1016/j.tox.2021.152789] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 03/31/2021] [Accepted: 04/16/2021] [Indexed: 01/09/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are a broad class of hundreds of fluorinated chemicals with environmental health concerns due to their widespread presence and persistence in the environment. Several of these chemicals have been comprehensively studied for experimental toxicity, environmental fate and exposure, and human epidemiology; however, most chemicals have limited or no data available. To inform methods for prioritizing these data-poor chemicals for detailed toxicity studies, we evaluated 142 PFAS using an in vitro screening platform consisting of two multiplexed transactivation assays encompassing 81 diverse transcription factor activities and tested in concentration-response format ranging from 137 nM to 300 μM. Results showed activity for various nuclear receptors, including three known PFAS targets--specifically estrogen receptor alpha and peroxisome proliferator receptors alpha and gamma. We also report activity against the retinoid X receptor beta, the key heterodimeric partner of type II, non-steroidal nuclear receptors. Additional activities were found against the pregnane X receptor, nuclear receptor related-1 protein, and nuclear factor erythroid 2-related factor 2, a sensor of oxidative stress. Using orthogonal assay approaches, we confirmed activity of representative PFAS against several of these targets. Finally, we identified key PFAS structural features associated with nuclear receptor activity that can inform future predictive models for use in prioritizing chemicals for risk assessment and in the design of new structures devoid of biological activity.
Collapse
|
37
|
Li L, Niu P, Wang X, Bing F, Tan W, Huo Y. Short-Term Inhalation of Ultrafine Zinc Particles Could Alleviate Cardiac Dysfunctions in Rats of Myocardial Infarction. Front Bioeng Biotechnol 2021; 9:646533. [PMID: 33937215 PMCID: PMC8081065 DOI: 10.3389/fbioe.2021.646533] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 03/25/2021] [Indexed: 12/27/2022] Open
Abstract
It is not clear for inhalation of ultrafine metal particles in air pollution to impair human health. In the study, we aimed to investigate whether short-term (4 weeks) inhalation of ultrafine zinc particles could deteriorate the cardiac and hemodynamic functions in rats of myocardial infarction (MI). MI was induced in Wistar rats through coronary artery ligation surgery and given an inhalation of ultrafine zinc particles for 4 weeks (post-MI 4 weeks, 4 days per week, and 4 h per day). Cardiac strain and strain rate were quantified by the speckle tracking echocardiography. The pressure and flow wave were recorded in the carotid artery and analyzed by using the Womersley model. Myocardial infarction resulted in the LV wall thinning, LV cavity dilation, remarkable decrease of ejection fraction, dp/dt Max, −dp/dt Min, myocardial strain and strain rates, and increased LV end-diastolic pressure, as well as impaired hemodynamic environment. The short-term inhalation of ultrafine zinc particles significantly alleviated cardiac and hemodynamic dysfunctions, which could protect from the MI-induced myocardial and hemodynamic impairments albeit it is unknown for the long-term inhalation.
Collapse
Affiliation(s)
- Li Li
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing, China
| | - Pei Niu
- PKU-HKUST Shenzhen-Hong Kong Institution, Shenzhen, China
| | - Xuan Wang
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing, China
| | - Fangbo Bing
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing, China
| | - Wenchang Tan
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing, China.,PKU-HKUST Shenzhen-Hong Kong Institution, Shenzhen, China.,Peking University Shenzhen Graduate School, Shenzhen, China.,Shenzhen Bay Laboratory, Shenzhen, China
| | - Yunlong Huo
- Institute of Mechanobiology and Medical Engineering, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
38
|
Mehmood A, Zhao L, Wang Y, Pan F, Hao S, Zhang H, Iftikhar A, Usman M. Dietary anthocyanins as potential natural modulators for the prevention and treatment of non-alcoholic fatty liver disease: A comprehensive review. Food Res Int 2021; 142:110180. [PMID: 33773656 DOI: 10.1016/j.foodres.2021.110180] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 01/18/2021] [Accepted: 01/24/2021] [Indexed: 02/07/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) refers to a metabolic syndrome linked with type 2 diabetes mellitus, obesity, and cardiovascular diseases. It is characterized by the accumulation of triglycerides in the hepatocytes in the absence of alcohol consumption. The prevalence of NAFLD has abruptly increased worldwide, with no effective treatment yet available. Anthocyanins (ACNs) belong to the flavonoid subclass of polyphenols, are commonly present in various edible plants, and possess a broad array of health-promoting properties. ACNs have been shown to have strong potential to combat NAFLD. We critically assessed the literature regarding the pharmacological mechanisms and biopharmaceutical features of the action of ACNs on NAFLD in humans and animal models. We found that ACNs ameliorate NAFLD by improving lipid and glucose metabolism, increasing antioxidant and anti-inflammatory activities, and regulating gut microbiota dysbiosis. In conclusion, ACNs have potential to attenuate NAFLD. However, further mechanistic studies are required to confirm these beneficial impacts of ACNs on NAFLD.
Collapse
Affiliation(s)
- Arshad Mehmood
- Beijing Advance Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Lei Zhao
- Beijing Advance Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China.
| | - Yong Wang
- Academy of National Food and Strategic Reserves Administration, Beijing 100037, China
| | - Fei Pan
- Beijing Advance Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Shuai Hao
- Beijing Advance Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Huimin Zhang
- Beijing Advance Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Asra Iftikhar
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, The University of Faisalabad, Faisalabad 38000, Pakistan
| | - Muhammad Usman
- Beijing Advance Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| |
Collapse
|
39
|
de Vries E, Bolier R, Goet J, Parés A, Verbeek J, de Vree M, Drenth J, van Erpecum K, van Nieuwkerk K, van der Heide F, Mostafavi N, Helder J, Ponsioen C, Oude Elferink R, van Buuren H, Beuers U. Fibrates for Itch (FITCH) in Fibrosing Cholangiopathies: A Double-Blind, Randomized, Placebo-Controlled Trial. Gastroenterology 2021; 160:734-743.e6. [PMID: 33031833 DOI: 10.1053/j.gastro.2020.10.001] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 09/19/2020] [Accepted: 10/01/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND AND AIMS Pruritus may seriously impair quality of life in patients with cholestatic diseases such as primary or secondary sclerosing cholangitis (PSC, SSC) and primary biliary cholangitis (PBC). Pharmacologic strategies show limited efficacy and can provoke serious side effects. We hypothesized that bezafibrate, a broad peroxisome proliferator-activated receptor (PPAR) agonist, relieves cholestasis-associated itch by alleviating hepatobiliary injury. The aim of this investigator-initiated FITCH trial (Fibrates for cholestatic ITCH) was to assess effects of bezafibrate on pruritus in patients with PSC, PBC, and SSC. METHODS Patients with moderate to severe pruritus (≥5 of 10 on visual analog scale [VAS]) due to PSC, PBC, or SSC were recruited for this double-blind, randomized, placebo-controlled trial between 2016 and 2019. Patients received once-daily bezafibrate (400 mg) or placebo for 21 days. The primary end point was ≥50% reduction of pruritus (VAS; intention-to-treat). RESULTS Of 74 randomized patients, 70 completed the trial (95%; 44 PSC, 24 PBC, 2 SSC). For the primary end point, bezafibrate led in 45% (41% PSC, 55% PBC) and placebo in 11% to ≥50% reduction of severe or moderate pruritus (P = .003). For secondary end points, bezafibrate reduced morning (P = .01 vs placebo) and evening (P = .007) intensity of pruritus (VAS) and improved the validated 5D-Itch questionnaire (P = .002 vs placebo). Bezafibrate also reduced serum alkaline phosphatase (-35%, P = .03 vs placebo) correlating with improved pruritus (VAS, P = .01) suggesting reduced biliary damage. Serum bile acids and autotaxin activity remained unchanged. Serum creatinine levels tended to mildly increase (3% bezafibrate, 5% placebo, P = .14). CONCLUSIONS Bezafibrate is superior to placebo in improving moderate to severe pruritus in patients with PSC and PBC. TRIAL REGISTRATION Netherlands Trial Register, ID: NTR5436 (August 3, 2015), ClinicalTrials.gov ID: NCT02701166 (March 2, 2016).
Collapse
Affiliation(s)
- Elsemieke de Vries
- Department of Gastroenterology & Hepatology and Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology & Metabolism, Amsterdam University Medical Centers, location AMC, Amsterdam, the Netherlands
| | - Ruth Bolier
- Department of Gastroenterology & Hepatology and Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology & Metabolism, Amsterdam University Medical Centers, location AMC, Amsterdam, the Netherlands
| | - Jorn Goet
- Department of Gastroenterology & Hepatology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Albert Parés
- Liver Unit, Hospital Clinic, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Institut d'Investigacion Biomediques August Pi-Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Jef Verbeek
- Department of Gastroenterology & Hepatology, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Marleen de Vree
- Department of Gastroenterology & Hepatology, University Medical Center Groningen, Groningen, the Netherlands
| | - Joost Drenth
- Department of Gastroenterology & Hepatology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Karel van Erpecum
- Department of Gastroenterology & Hepatology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Karin van Nieuwkerk
- Department of Gastroenterology & Hepatology, Amsterdam University Medical Centers, location Vrije Universiteit Medisch Centrum (VUmc), Amsterdam, the Netherlands
| | - Frans van der Heide
- Department of Gastroenterology & Hepatology, University Medical Center Groningen, Groningen, the Netherlands
| | - Nahid Mostafavi
- Department of Gastroenterology & Hepatology and Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology & Metabolism, Amsterdam University Medical Centers, location AMC, Amsterdam, the Netherlands
| | - Jeltje Helder
- Department of Gastroenterology & Hepatology and Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology & Metabolism, Amsterdam University Medical Centers, location AMC, Amsterdam, the Netherlands
| | - Cyriel Ponsioen
- Department of Gastroenterology & Hepatology and Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology & Metabolism, Amsterdam University Medical Centers, location AMC, Amsterdam, the Netherlands
| | - Ronald Oude Elferink
- Department of Gastroenterology & Hepatology and Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology & Metabolism, Amsterdam University Medical Centers, location AMC, Amsterdam, the Netherlands
| | - Henk van Buuren
- Department of Gastroenterology & Hepatology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Ulrich Beuers
- Department of Gastroenterology & Hepatology and Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology & Metabolism, Amsterdam University Medical Centers, location AMC, Amsterdam, the Netherlands.
| | | |
Collapse
|
40
|
Juretić N, Sepúlveda R, D'Espessailles A, Vera DB, Cadagan C, de Miguel M, González-Mañán D, Tapia G. Dietary alpha- and gamma-tocopherol (1:5 ratio) supplementation attenuates adipose tissue expansion, hepatic steatosis, and expression of inflammatory markers in a high-fat-diet-fed murine model. Nutrition 2021; 85:111139. [PMID: 33549947 DOI: 10.1016/j.nut.2021.111139] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 12/19/2020] [Accepted: 12/29/2020] [Indexed: 02/07/2023]
Abstract
OBJECTIVES The aim of this study was to evaluate the effect of the dietary supplementation of an alpha- and gamma-tocopherol mixture (1:5 ratio) in the adipose tissue expansion, hepatic steatosis, and expression of inflammatory markers induced by consumption of a high-fat diet (HFD) in mice. METHODS Male C57BL/6 J mice were fed for 12 wk and divided into the following: 1) control diet (CD; 10% fat, 20% protein, 70% carbohydrates); 2) CD + TF (CD plus alpha-tocopherol: 0.7 mg/kg/d, gamma-tocopherol: 3.5 mg/kg/d); 3) HFD (60% fat, 20% protein, 20% carbohydrates); and 4) HFD + TF (HFD plus alpha-tocopherol: 0.7 mg/kg/d, gamma-tocopherol: 3.5 mg/kg/d). General parameters, adipocyte size, liver steatosis, adipose and hepatic tumor necrosis factor-α (TNF-α) and interleukin-1 β (IL-1β) expression, hepatic nuclear factor kappa B (NF-κB), and peroxisome proliferator-activated receptor α (PPAR-α) levels were evaluated. RESULTS Tocopherol supplementation in HFD-fed mice showed a significant decrease in the body weight (19%) and adipose tissue weight (52%), adipose tissue/body weight ratio (36%), and serum triacylglycerols (56%); a 42% decrease (P < 0.05) of adipocyte size compared to HFD; attenuation of liver steatosis by decreasing (P < 0.05) lipid vesicles presence (90%) and total lipid content (75%); and downregulation of inflammatory markers (TNF-α and IL-1β), along with an upregulation of hepatic PPAR-α expression and its downstream-regulated genes (ACOX and CAT-1), and an inhibition of hepatic NF-κB activation. CONCLUSION The present study suggests that alpha- and gamma-tocopherol (1:5 ratio) supplementation attenuates the adipocyte enlargement, hepatic steatosis, and metabolic inflammation induced by HFD in association with PPAR-α/NF-κB modulation.
Collapse
Affiliation(s)
- Nevenka Juretić
- Cellular and Molecular Biology Program, Institute of Biomedical Sciences, University of Chile, Santiago, Chile
| | - Ruth Sepúlveda
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, University of Chile, Santiago, Chile
| | | | - Daniela B Vera
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, University of Chile, Santiago, Chile
| | - Cynthia Cadagan
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, University of Chile, Santiago, Chile
| | - Manuel de Miguel
- Department of Normal and Pathological Cytology and Histology, University of Seville, Seville, Spain
| | - Daniel González-Mañán
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, University of Chile, Santiago, Chile
| | - Gladys Tapia
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, University of Chile, Santiago, Chile.
| |
Collapse
|
41
|
Dai J, Xiang Y, Fu D, Xu L, Jiang J, Xu J. Ficus carica L. Attenuates Denervated Skeletal Muscle Atrophy via PPARα/NF-κB Pathway. Front Physiol 2020; 11:580223. [PMID: 33343385 PMCID: PMC7744683 DOI: 10.3389/fphys.2020.580223] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 10/13/2020] [Indexed: 12/31/2022] Open
Abstract
Treatment options for denervated skeletal muscle atrophy are limited, in part because the underlying molecular mechanisms are not well understood. Unlike previous transcriptomics studies conducted in rodent models of peripheral nerve injury, in the present study, we performed high-throughput sequencing with denervated atrophic biceps muscle and normal (non-denervated) sternocleidomastoid muscle samples obtained from four brachial plexus injury (BPI) patients. We also investigated whether Ficus carica L. (FCL.) extract can suppress denervated muscle atrophy in a mouse model, along with the mechanism of action. We identified 1471 genes that were differentially expressed between clinical specimens of atrophic and normal muscle, including 771 that were downregulated and 700 that were upregulated. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses revealed that the differentially expressed genes were mainly enriched in the GO terms “structural constituent of muscle,” “Z disc,” “M band,” and “striated muscle contraction,” as well as “Cell adhesion molecules,” “Glycolysis/Gluconeogenesis,” “Peroxisome proliferator-activated receptor alpha (PPARα) signaling pathway,” and “P53 signaling pathway.” In experiments using mice, the reduction in wet weight and myofiber diameter in denervated muscle was improved by FCL. extract compared to saline administration, which was accompanied by downregulation of the proinflammatory cytokines interleukin (IL)-1β and IL-6. Moreover, although both denervated groups showed increased nuclear factor (NF)-κB activation and PPARα expression, the degree of NF-κB activation was lower while PPARα and inhibitor of NF-κB IκBα expression was higher in FCL. extract-treated mice. Thus, FCL. extract suppresses denervation-induced inflammation and attenuates muscle atrophy by enhancing PPARα expression and inhibiting NF-κB activation. These findings suggest that FCL. extract has therapeutic potential for preventing denervation-induced muscle atrophy caused by peripheral nerve injury or disease.
Collapse
Affiliation(s)
- Junxi Dai
- Department of Hand Surgery, Huashan Hospital, Fudan University, Shanghai, China.,Key Laboratory of Hand Reconstruction, Ministry of Health, Shanghai, China.,Shanghai Key Laboratory of Peripheral Nerve and Microsurgery, Shanghai, China
| | - Yaoxian Xiang
- Department of Hand Surgery, Huashan Hospital, Fudan University, Shanghai, China.,Key Laboratory of Hand Reconstruction, Ministry of Health, Shanghai, China.,Shanghai Key Laboratory of Peripheral Nerve and Microsurgery, Shanghai, China
| | - Da Fu
- Central Laboratory, Shanghai Tenth People's Hospital, Shanghai, China
| | - Lei Xu
- Department of Hand Surgery, Huashan Hospital, Fudan University, Shanghai, China.,Key Laboratory of Hand Reconstruction, Ministry of Health, Shanghai, China.,Shanghai Key Laboratory of Peripheral Nerve and Microsurgery, Shanghai, China
| | - Junjian Jiang
- Department of Hand Surgery, Huashan Hospital, Fudan University, Shanghai, China.,Key Laboratory of Hand Reconstruction, Ministry of Health, Shanghai, China.,Shanghai Key Laboratory of Peripheral Nerve and Microsurgery, Shanghai, China
| | - Jianguang Xu
- Department of Hand Surgery, Huashan Hospital, Fudan University, Shanghai, China.,Key Laboratory of Hand Reconstruction, Ministry of Health, Shanghai, China.,Shanghai Key Laboratory of Peripheral Nerve and Microsurgery, Shanghai, China.,School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
42
|
Lin WS, Leland JV, Ho CT, Pan MH. Occurrence, Bioavailability, Anti-inflammatory, and Anticancer Effects of Pterostilbene. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:12788-12799. [PMID: 32064876 DOI: 10.1021/acs.jafc.9b07860] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Supplementation with natural compounds found in fruits and vegetables has long been associated with a reduced risk of several types of cancer. Pterostilbene is a natural stilbenoid and a dimethylated analogue of resveratrol which is found primarily in blueberries. Pterostilbene exhibits a range of pharmacological properties, particularly anti-inflammatory and anticancer effects. Due to two methoxy groups in its skeleton, pterostilbene is more lipophilic than resveratrol and thus possesses higher intestinal permeability and cellular uptake and enhanced stability. Moreover, pterostilbene exhibits less toxicity and fewer adverse effects, providing it with superior potential in cancer chemoprevention and chemotherapy applications. Numerous research studies have demonstrated that pterostilbene possesses detoxification activities, mediating the anti-inflammation response, regulating the cell cycle, augmenting apoptosis, enhancing autophagy, and inhibiting tumor angiogenesis, invasion, and metastasis by modulating signal transduction pathways which block multiple stages of carcinogenesis. In this review, we illustrate that pterostilbene is a natural compound having bioavailability. The extensive metabolism of pterostilbene will be discussed. We also summarize recent research on pterostilbene's anti-inflammatory and anticancer properties in the multistage carcinogenesis process and related molecular mechanism and conclude that it should contribute to improved cancer management.
Collapse
Affiliation(s)
- Wei-Sheng Lin
- Institute of Food Science and Technology, National Taiwan University, Taipei 10617, Taiwan
| | | | - Chi-Tang Ho
- Department of Food Science, Rutgers University, New Brunswick, New Jersey 08901-8520, United States
| | - Min-Hsiung Pan
- Institute of Food Science and Technology, National Taiwan University, Taipei 10617, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 40402, Taiwan
- Department of Health and Nutrition Biotechnology, Asia University, Taichung 41354, Taiwan
| |
Collapse
|
43
|
Wang L, Ma J, Kang Y, Zhang N, Li X, Wang H, Song D, Li M, Gao H, Zhen X. Dysregulation of follicle fatty acid is a potential driver of human primary ovarian insufficiency. J Mol Cell Biol 2020; 12:817-819. [PMID: 32766859 PMCID: PMC7816672 DOI: 10.1093/jmcb/mjaa044] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 06/29/2020] [Accepted: 07/13/2020] [Indexed: 11/23/2022] Open
Affiliation(s)
- Lina Wang
- Peking Union Medical College Graduate School, Beijing 100000, China.,National Research Institute for Health and Family Planning, Beijing 100000, China.,Reproductive Medicine Center of Henan Provincial People's Hospital, Zhengzhou 450003, China
| | - Jihong Ma
- Center for Reproductive Medicine, Peking University Third Hospital, Beijing 100191, China.,National Clinical Research Center for Obstetrics and Gynecology, Beijing 100191, China
| | - Yixin Kang
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto M5S3M2, Canada
| | - Na Zhang
- Center for Reproductive Medicine, Peking University Third Hospital, Beijing 100191, China.,National Clinical Research Center for Obstetrics and Gynecology, Beijing 100191, China
| | - Xinyu Li
- Center for Reproductive Medicine, Peking University Third Hospital, Beijing 100191, China.,National Clinical Research Center for Obstetrics and Gynecology, Beijing 100191, China
| | - Hao Wang
- Center for Reproductive Medicine, Peking University Third Hospital, Beijing 100191, China
| | - Donghong Song
- Center for Reproductive Medicine, Peking University Third Hospital, Beijing 100191, China
| | - Mo Li
- Center for Reproductive Medicine, Peking University Third Hospital, Beijing 100191, China.,National Clinical Research Center for Obstetrics and Gynecology, Beijing 100191, China
| | - Huafang Gao
- National Research Institute for Health and Family Planning, Beijing 100000, China
| | - Xiumei Zhen
- Center for Reproductive Medicine, Peking University Third Hospital, Beijing 100191, China.,National Clinical Research Center for Obstetrics and Gynecology, Beijing 100191, China
| |
Collapse
|
44
|
Combination of Peroxisome Proliferator-Activated Receptor (PPAR) Alpha and Gamma Agonists Prevents Corneal Inflammation and Neovascularization in a Rat Alkali Burn Model. Int J Mol Sci 2020; 21:ijms21145093. [PMID: 32707656 PMCID: PMC7404145 DOI: 10.3390/ijms21145093] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/10/2020] [Accepted: 07/15/2020] [Indexed: 12/13/2022] Open
Abstract
Peroxisome proliferator-activated receptor alpha (PPARα) and gamma (PPARγ) agonists have anti-inflammatory and anti-neovascularization effects, but few reports have tested the combination of PPARα and PPARγ agonists. In this study, we investigated the therapeutic effects of ophthalmic solutions of agonists of PPARα, PPARγ, and the combination in a rat corneal alkali burn model. After alkali injury, an ophthalmic solution of 0.05% fenofibrate (PPARα group), 0.1% pioglitazone (PPARγ group), 0.05% fenofibrate + 0.1% pioglitazone (PPARα+γ group), or vehicle (vehicle group) was topically instilled onto the rat’s cornea twice a day. After instillation, upregulation was seen of PPAR mRNA corresponding to each agonist group. Administration of agonists for PPARα, PPARγ, and PPARα+γ suppressed inflammatory cells, neovascularization, and fibrotic changes. In addition, the PPARγ agonist upregulated M2 macrophages, which contributed to wound healing, whereas the PPARα agonist suppressed immature blood vessels in the early phase. Administration of PPARα+γ agonists showed therapeutic effects in corneal wound healing, combining the characteristics of both PPARα and PPARγ agonists. The results indicate that the combination of PPARα and γ agonists may be a new therapeutic strategy.
Collapse
|
45
|
Ghonem NS, Auclair AM, Hemme CL, Gallucci GM, de la Rosa Rodriguez R, Boyer JL, Assis DN. Fenofibrate Improves Liver Function and Reduces the Toxicity of the Bile Acid Pool in Patients With Primary Biliary Cholangitis and Primary Sclerosing Cholangitis Who Are Partial Responders to Ursodiol. Clin Pharmacol Ther 2020; 108:1213-1223. [PMID: 32480421 DOI: 10.1002/cpt.1930] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 05/07/2020] [Indexed: 12/12/2022]
Abstract
Cholestatic liver diseases result in the hepatic retention of bile acids, causing subsequent liver toxicity. Peroxisome proliferator-activated receptor alpha (PPARα) regulates bile acid metabolism. In this retrospective observational study, we assessed the effects of fenofibrate (a PPARα agonist) therapy on bile acid metabolism when given to patients with primary biliary cholangitis (PBC) and primary sclerosing cholangitis (PSC) who have had an incomplete response to Ursodiol monotherapy. When fenofibrate was added to Ursodiol therapy there was a significant reduction and in some cases normalization of serum alkaline phosphatase, alanine aminotransferase, and aspartate aminotransferase abnormalities, as well as pro-inflammatory cytokines. Combination fenofibrate treatment also reduced 7α-hydroxy-4-cholesten-3-one (C4), the bile acid precursor, as well as total, primary, and conjugated bile acids. In addition, principal components analysis and heatmap analysis show that bile acid metabolites trended closer to that of healthy control subjects. These favorable effects of fenofibrate on bile acid metabolism may contribute to its beneficial clinical effects in patients with PBC and PSC experiencing a subtherapeutic response to Ursodiol monotherapy.
Collapse
Affiliation(s)
- Nisanne S Ghonem
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island, USA
| | - Adam M Auclair
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island, USA
| | - Christopher L Hemme
- RI-INBRE Bioinformatics Core, University of Rhode Island, Kingston, Rhode Island, USA
| | - Gina M Gallucci
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island, USA
| | | | - James L Boyer
- Liver Center, Yale University School of Medicine, New Haven, Connecticut, USA
| | - David N Assis
- Liver Center, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
46
|
Roles of peroxisome proliferator-activated receptor α in the pathogenesis of ethanol-induced liver disease. Chem Biol Interact 2020; 327:109176. [PMID: 32534989 DOI: 10.1016/j.cbi.2020.109176] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/02/2020] [Accepted: 06/09/2020] [Indexed: 12/18/2022]
Abstract
Alcoholic liver disease (ALD) is a progressively aggravated liver disease with high incidence in alcoholics. Ethanol-induced fat accumulation and the subsequent lipopolysaccharide (LPS)-driven inflammation bring liver from reversible steatosis, to irreversible hepatitis, fibrosis, cirrhosis, and even hepatocellular carcinoma. Peroxisome proliferator-activated receptor α (PPARα) is a member of the nuclear receptor superfamily of ligand-activated transcription factors and plays pivotal roles in the regulation of fatty acid homeostasis as well as the inflammation control in the liver. It has been well documented that PPARα activity and/or expression are downregulated in liver of mice exposed to ethanol, which is thought to be one of the prime contributors to ethanol-induced steatosis, hepatitis and fibrosis. This article summarizes the current evidences from in vitro and animal models for the critical roles of PPARα in the onset and progression of ALD. Importantly, it should be noted that the expression of PPARα in human liver is reported to be similar to that in mice, and PPARα expression is downregulated in the liver of patients with nonalcoholic fatty liver disease (NAFLD), a disease sharing many similarities with ALD. Therefore, clinical trials investigating the expression of PPARα in the liver of ALD patients and the efficacy of strong PPARα agonists for the prevention and treatment of ALD are warranted.
Collapse
|
47
|
Zhang M, Sunaba T, Sun Y, Shibata T, Sasaki K, Isoda H, Kigoshi H, Kita M. Acyl-CoA dehydrogenase long chain (ACADL) is a target protein of stylissatin A, an anti-inflammatory cyclic heptapeptide. J Antibiot (Tokyo) 2020; 73:589-592. [PMID: 32439989 DOI: 10.1038/s41429-020-0322-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 04/27/2020] [Accepted: 05/01/2020] [Indexed: 01/10/2023]
Abstract
Stylissatin A (SA) is a cyclic heptapeptide isolated from the marine sponge Stylissa massa. SA shows anti-inflammatory activity against lipopolysaccharide (LPS)-stimulated murine RAW264.7 macrophage cells, but the detailed mechanism of action remains unclear. Here we report that D-Tyr1-tBuSA, a more potent SA derivative, inhibited production of the proinflammatory cytokines Interleukin-6 (IL-6) and tumor necrosis factor alpha (TNF-α) in LPS-stimulated RAW264.7 cells (EC50 = 1.4 and 5.9 μM, respectively). This compound also inhibited the LPS-stimulated expression of inducible nitric oxide synthase (iNOS) at 20 μM. Using a biotin derivative of SA, acyl-CoA dehydrogenase long chain (ACADL) was identified as a target protein of SA and its derivatives. It is proposed that SA and its derivatives might suppress the β-oxidation of fatty acids by ACADL, and the accumulation of fatty acids on macrophages would inhibit the nuclear factor-kappa B (NF-κB) signaling pathway and iNOS expression to show anti-inflammatory activity. Our research might provide a new mechanism of inflammation in macrophages, and contribute to the development of treatments for inflammatory diseases.
Collapse
Affiliation(s)
- Menghua Zhang
- Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba, 305-8571, Japan.,PhD Program in Human Biology, School of Integrative and Global Majors (SIGMA), University of Tsukuba, Tsukuba, 305-8577, Japan
| | - Taiki Sunaba
- Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba, 305-8571, Japan
| | - Yiting Sun
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, 464-8601, Japan
| | - Takahiro Shibata
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, 464-8601, Japan
| | - Kazunori Sasaki
- Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba, 305-8571, Japan.,Interdisciplinary Research Center for Catalytic Chemistry, National Institute of Advanced Industrial Science and Technology, Tsukuba, 305-8565, Japan
| | - Hiroko Isoda
- Graduate School of Life and Environmental Sciences, and Alliance for Research on North Africa (ARENA), University of Tsukuba, Tsukuba, 305-8577, Japan
| | - Hideo Kigoshi
- Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba, 305-8571, Japan.
| | - Masaki Kita
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, 464-8601, Japan.
| |
Collapse
|
48
|
Anti-Inflammatory Effects of Fucoxanthinol in LPS-Induced RAW264.7 Cells through the NAAA-PEA Pathway. Mar Drugs 2020; 18:md18040222. [PMID: 32326173 PMCID: PMC7230820 DOI: 10.3390/md18040222] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 04/15/2020] [Accepted: 04/15/2020] [Indexed: 02/07/2023] Open
Abstract
Palmitoylethanolamide (PEA) is an endogenous lipid mediator with powerful anti-inflammatory and analgesic functions. PEA can be hydrolyzed by a lysosomal enzyme N-acylethanolamine acid amidase (NAAA), which is highly expressed in macrophages and other immune cells. The pharmacological inhibition of NAAA activity is a potential therapeutic strategy for inflammation-related diseases. Fucoxanthinol (FXOH) is a marine carotenoid from brown seaweeds with various beneficial effects. However, the anti-inflammatory effects and mechanism of action of FXOH in lipopolysaccharide (LPS)-stimulated macrophages remain unclear. This study aimed to explore the role of FXOH in the NAAA–PEA pathway and the anti-inflammatory effects based on this mechanism. In vitro results showed that FXOH can directly bind to the active site of NAAA protein and specifically inhibit the activity of NAAA enzyme. In an LPS-induced inflammatory model in macrophages, FXOH pretreatment significantly reversed the LPS-induced downregulation of PEA levels. FXOH also substantially attenuated the mRNA expression of inflammatory factors, including inducible nitric oxide synthase (iNOS), interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-α), and markedly reduced the production of TNF-α, IL-6, IL-1β, and nitric oxide (NO). Moreover, the inhibitory effect of FXOH on NO induction was significantly abolished by the peroxisome proliferator-activated receptor α (PPAR-α) inhibitor GW6471. All these findings demonstrated that FXOH can prevent LPS-induced inflammation in macrophages, and its mechanisms may be associated with the regulation of the NAAA-PEA-PPAR-α pathway.
Collapse
|
49
|
Neurovascular protection by peroxisome proliferator-activated receptor α in ischemic stroke. Exp Neurol 2020; 331:113323. [PMID: 32320699 DOI: 10.1016/j.expneurol.2020.113323] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 04/14/2020] [Accepted: 04/17/2020] [Indexed: 12/11/2022]
Abstract
Ischemic stroke is a leading cause of death and disability worldwide. Currently, the only pharmacological therapy for ischemic stroke is thrombolysis with tissue plasminogen activator that has a narrow therapeutic window and increases the risk of intracerebral hemorrhage. New pharmacological treatments for ischemic stroke are desperately needed, but no neuroprotective drugs have successfully made it through clinical trials. Beneficial effects of peroxisome proliferator-activated receptor alpha (PPARα) activation on vascular integrity and function have been reported, and PPARα agonists have clinically been used for many years to manage cardiovascular disease. Thus, PPARα has gained interest in recent years as a target for neurovascular disease such as ischemic stroke. Accumulating preclinical evidence suggests that PPARα activation modulates several pathophysiological hallmarks of stroke such as oxidative stress, blood-brain barrier (BBB) dysfunction, and neuroinflammation to improve functional recovery. Therefore, this review summarizes the various actions PPARα exerts in neurovascular health and disease and the potential of employing exogenous PPARα agonists for future pharmacological treatment of ischemic stroke.
Collapse
|
50
|
Hu Y, Ren D, Song Y, Wu L, He Y, Peng Y, Zhou H, Liu S, Cong H, Zhang Z, Wang Q. Gastric protective activities of fucoidan from brown alga Kjellmaniella crassifolia through the NF-κB signaling pathway. Int J Biol Macromol 2020; 149:893-900. [PMID: 31972198 DOI: 10.1016/j.ijbiomac.2020.01.186] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 12/21/2019] [Accepted: 01/20/2020] [Indexed: 12/29/2022]
Abstract
Fucoidan has been reported to have abundant biological activities. The objective of the present study was to detect the protective effects of fucoidan from Kjellmaniella crassifolia (KF) newly cultured in Dalian, North of China on aspirin-induced gastric ulcers of the Wistar rat model. The present study showed that inflammatory cytokines tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-6 and IL-10 were effectively regulated in rats pretreated with KF. Superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) activities increased significantly in the KF pretreated groups, while the levels of maleic dialdehyde (MDA) decreased. The findings obtained by RT-PCR and western blotting indicated that KF could suppress aspirin-induced NF-κB activation via stabilization of IκB-α and thereby induced the downregulation of COX-2 and iNOS. It was demonstrated that KF exerted positive gastric protective effects via suppression of the inflammatory response and oxidative stress, and the mechanism of KF appeared to mediate the NF-κB signaling pathway.
Collapse
Affiliation(s)
- Yue Hu
- College of Food Science and Engineering, Dalian Ocean University, Dalian 116023, China
| | - Dandan Ren
- College of Food Science and Engineering, Dalian Ocean University, Dalian 116023, China; Key Laboratory of Aquatic Product Processing and Utilization of Liaoning Province, Dalian Ocean University, Dalian 116023, China; National R&D Branch Center for Seaweed Processing, Dalian Ocean University, Dalian 116023, China
| | - Yuefan Song
- College of Food Science and Engineering, Dalian Ocean University, Dalian 116023, China; Key Laboratory of Aquatic Product Processing and Utilization of Liaoning Province, Dalian Ocean University, Dalian 116023, China; National R&D Branch Center for Seaweed Processing, Dalian Ocean University, Dalian 116023, China
| | - Long Wu
- College of Food Science and Engineering, Dalian Ocean University, Dalian 116023, China; Key Laboratory of Aquatic Product Processing and Utilization of Liaoning Province, Dalian Ocean University, Dalian 116023, China; National R&D Branch Center for Seaweed Processing, Dalian Ocean University, Dalian 116023, China
| | - Yunhai He
- College of Food Science and Engineering, Dalian Ocean University, Dalian 116023, China; Key Laboratory of Aquatic Product Processing and Utilization of Liaoning Province, Dalian Ocean University, Dalian 116023, China; National R&D Branch Center for Seaweed Processing, Dalian Ocean University, Dalian 116023, China
| | - Yongbo Peng
- College of Food Science and Engineering, Dalian Ocean University, Dalian 116023, China
| | - Hui Zhou
- College of Food Science and Engineering, Dalian Ocean University, Dalian 116023, China; Key Laboratory of Aquatic Product Processing and Utilization of Liaoning Province, Dalian Ocean University, Dalian 116023, China; National R&D Branch Center for Seaweed Processing, Dalian Ocean University, Dalian 116023, China
| | - Shu Liu
- College of Food Science and Engineering, Dalian Ocean University, Dalian 116023, China; Key Laboratory of Aquatic Product Processing and Utilization of Liaoning Province, Dalian Ocean University, Dalian 116023, China; National R&D Branch Center for Seaweed Processing, Dalian Ocean University, Dalian 116023, China
| | - Haihua Cong
- College of Food Science and Engineering, Dalian Ocean University, Dalian 116023, China; Key Laboratory of Aquatic Product Processing and Utilization of Liaoning Province, Dalian Ocean University, Dalian 116023, China; National R&D Branch Center for Seaweed Processing, Dalian Ocean University, Dalian 116023, China
| | - Zeyu Zhang
- National R&D Branch Center for Seaweed Processing, Dalian Ocean University, Dalian 116023, China
| | - Qiukuan Wang
- College of Food Science and Engineering, Dalian Ocean University, Dalian 116023, China; Key Laboratory of Aquatic Product Processing and Utilization of Liaoning Province, Dalian Ocean University, Dalian 116023, China; National R&D Branch Center for Seaweed Processing, Dalian Ocean University, Dalian 116023, China.
| |
Collapse
|