1
|
Yang L, Gong Y, Liu F, Chen W, Wang X, Long G, Li H, Xiao F, Lu M, Hu Y, Tong X, Zuo J. A novel phthalazinone derivative as a capsid assembly modulator inhibits hepatitis B virus expression. Antiviral Res 2024; 221:105763. [PMID: 38008192 DOI: 10.1016/j.antiviral.2023.105763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 11/02/2023] [Accepted: 11/19/2023] [Indexed: 11/28/2023]
Abstract
Development of new anti-hepatitis B virus (HBV) drugs that target viral capsid assembly is a very active research field. We identify a novel phthalazinone derivative, compound 5832, as a potent HBV inhibitor. In this study, we intend to elaborate the antiviral effect and mechanism of 5832 against HBV in vitro and in vivo. Compound 5832 treatment induces the formation of genome-free empty capsid by interfering with the core protein assembly domain, which significantly decreases the extracellular and intracellular HBV DNA. In the AAV-HBV transduced mouse model, 5832 suppresses serum HBV DNA after 4-week treatment, and decreases HBsAg and HBeAg levels. 5832 treatment also reduces intrahepatic HBV RNA, DNA and HBcAg levels. During the follow-up period after treatment withdrawal, serum antigen levels demonstrated no increase. We demonstrate 5832 treatment could active apoptotic signaling by elevating the expression of death receptor 5 (DR5), which participated in corresponding HBcAg-positive hepatocyte eradication. Phthalazinone derivative 5832 may serve as a promising anti-HBV drug candidate to improve the treatment options for chronic HBV infection.
Collapse
Affiliation(s)
- Li Yang
- Laboratory of Immunopharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 ZuChongZhi Road, Shanghai, 201203, China; Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, 200000,China
| | - Ying Gong
- Laboratory of Immunopharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 ZuChongZhi Road, Shanghai, 201203, China; University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China
| | - Feifei Liu
- Laboratory of Immunopharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 ZuChongZhi Road, Shanghai, 201203, China
| | - Wuhong Chen
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 ZuChongZhi Road, Shanghai, 201203, China
| | - Xinran Wang
- Laboratory of Immunopharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 ZuChongZhi Road, Shanghai, 201203, China; School of Chinese Materia Medica, Nanjing University of Chinese Medicine, No.138 Xianlin Road, Nanjing, 210023, China
| | - Guozhang Long
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 ZuChongZhi Road, Shanghai, 201203, China
| | - Heng Li
- Laboratory of Immunopharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 ZuChongZhi Road, Shanghai, 201203, China; University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China
| | - Fuling Xiao
- Laboratory of Immunopharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 ZuChongZhi Road, Shanghai, 201203, China; University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China
| | - MengJi Lu
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, 45122, Germany
| | - Youhong Hu
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 ZuChongZhi Road, Shanghai, 201203, China; School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China.
| | - Xiankun Tong
- Laboratory of Immunopharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 ZuChongZhi Road, Shanghai, 201203, China; University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China.
| | - Jianping Zuo
- Laboratory of Immunopharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 ZuChongZhi Road, Shanghai, 201203, China; University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China; School of Chinese Materia Medica, Nanjing University of Chinese Medicine, No.138 Xianlin Road, Nanjing, 210023, China.
| |
Collapse
|
2
|
Villanueva RA, Loyola A. Pre- and Post-Transcriptional Control of HBV Gene Expression: The Road Traveled towards the New Paradigm of HBx, Its Isoforms, and Their Diverse Functions. Biomedicines 2023; 11:1674. [PMID: 37371770 DOI: 10.3390/biomedicines11061674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 06/04/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
Hepatitis B virus (HBV) is an enveloped DNA human virus belonging to the Hepadnaviridae family. Perhaps its main distinguishable characteristic is the replication of its genome through a reverse transcription process. The HBV circular genome encodes only four overlapping reading frames, encoding for the main canonical proteins named core, P, surface, and X (or HBx protein). However, pre- and post-transcriptional gene regulation diversifies the full HBV proteome into diverse isoform proteins. In line with this, hepatitis B virus X protein (HBx) is a viral multifunctional and regulatory protein of 16.5 kDa, whose canonical reading frame presents two phylogenetically conserved internal in-frame translational initiation codons, and which results as well in the expression of two divergent N-terminal smaller isoforms of 8.6 and 5.8 kDa, during translation. The canonical HBx, as well as the smaller isoform proteins, displays different roles during viral replication and subcellular localizations. In this article, we reviewed the different mechanisms of pre- and post-transcriptional regulation of protein expression that take place during viral replication. We also investigated all the past and recent evidence about HBV HBx gene regulation and its divergent N-terminal isoform proteins. Evidence has been collected for over 30 years. The accumulated evidence simply strengthens the concept of a new paradigm of the canonical HBx, and its smaller divergent N-terminal isoform proteins, not only during viral replication, but also throughout cell pathogenesis.
Collapse
Affiliation(s)
| | - Alejandra Loyola
- Centro Ciencia & Vida, Fundación Ciencia & Vida, Santiago 8580702, Chile
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago 7510602, Chile
| |
Collapse
|
3
|
Interaction between the Hepatitis B Virus and Cellular FLIP Variants in Viral Replication and the Innate Immune System. Viruses 2022; 14:v14020373. [PMID: 35215970 PMCID: PMC8874586 DOI: 10.3390/v14020373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/28/2022] [Accepted: 02/08/2022] [Indexed: 12/10/2022] Open
Abstract
During viral evolution and adaptation, many viruses have utilized host cellular factors and machinery as their partners. HBx, as a multifunctional viral protein encoded by the hepatitis B virus (HBV), promotes HBV replication and greatly contributes to the development of HBV-associated hepatocellular carcinoma (HCC). HBx interacts with several host factors in order to regulate HBV replication and evolve carcinogenesis. The cellular FADD-like IL-1β-converting enzyme (FLICE)-like inhibitory protein (c-FLIP) is a major factor that functions in a variety of cellular pathways and specifically in apoptosis. It has been shown that the interaction between HBx and c-FLIP determines HBV fate. In this review, we provide a comprehensive and detailed overview of the interplay between c-FLIP and HBV in various environmental circumstances. We describe strategies adapted by HBV to establish its chronic infection. We also summarize the conventional roles of c-FLIP and highlight the functional outcome of the interaction between c-FLIP and HBV or other viruses in viral replication and the innate immune system.
Collapse
|
4
|
Tsai KN, Ou JHJ. Hepatitis B virus e antigen and viral persistence. Curr Opin Virol 2021; 51:158-163. [PMID: 34717215 PMCID: PMC8643334 DOI: 10.1016/j.coviro.2021.10.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 08/27/2021] [Accepted: 10/07/2021] [Indexed: 02/08/2023]
Abstract
Hepatitis B virus (HBV) e antigen (HBeAg) was discovered in the sera of HBV patients nearly 50 years ago. It is not essential for HBV to infect or replicate in hepatocytes. Earlier clinical studies suggested that this antigen might play an important role for HBV to establish persistence in babies after its mother-to-child transmission. Subsequent clinical studies also suggested that HBeAg might have immunomodulatory activities. In recent years, a large body of information on how HBeAg might modulate host immunity was published. In this review, we summarize recent research progresses on the immunomodulatory activities of HBeAg and discuss how these activities of HBeAg may promote HBV persistence.
Collapse
Affiliation(s)
- Kuen-Nan Tsai
- Department of Molecular Microbiology and Immunology, University of Southern California Keck School of Medicine, 2011 Zonal Avenue, HMR-401, Los Angeles, CA, 90033, USA
| | - Jing-Hsiung James Ou
- Department of Molecular Microbiology and Immunology, University of Southern California Keck School of Medicine, 2011 Zonal Avenue, HMR-401, Los Angeles, CA, 90033, USA.
| |
Collapse
|
5
|
Aizawa S, Brar G, Tsukamoto H. Cell Death and Liver Disease. Gut Liver 2020; 14:20-29. [PMID: 30917630 PMCID: PMC6974333 DOI: 10.5009/gnl18486] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 12/14/2018] [Accepted: 12/17/2018] [Indexed: 12/13/2022] Open
Abstract
Cell death is now reclassified into several types based on the mechanisms and morphologic phenotype. Understanding of such classifications offers insights into the pathogenesis of liver disease, as well as diagnostic or therapeutic implications. Apoptosis is recognized relatively easily due to its unique morphology, but lytic cell death may occur in the form of accidental necrosis, mitochondria permeability transition-driven necrosis, necroptosis, pyroptosis, ferroptosis, and parthanatos. The cell may be engulfed by neighboring cells due to a loss of integrin signaling or cancer cell competition by entosis, a type of cell death. The classification also includes mechanistically termed cell death such as autophagy-dependent cell death and lysosome-dependent cell death. These different types of cell death may occur uniquely in certain liver diseases but may coexist in the evolution of the disease. They occur in parenchymal and non-parenchymal liver cells, as well as inflammatory cells, causing distinct pathologic consequences. This review briefly covers the recently revised classifications of cell death and discusses their relevance to liver diseases of different etiologies.
Collapse
Affiliation(s)
- Satoka Aizawa
- Southern California Research Center for ALPD and Cirrhosis and Department of Pathology, Keck School of Medicine, University of Southern California, USA
| | - Gurmehr Brar
- Southern California Research Center for ALPD and Cirrhosis and Department of Pathology, Keck School of Medicine, University of Southern California, USA
| | - Hidekazu Tsukamoto
- Southern California Research Center for ALPD and Cirrhosis and Department of Pathology, Keck School of Medicine, University of Southern California, USA.,Department of Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA, USA
| |
Collapse
|
6
|
Guo K, Zhang X, Hou Y, Liu J, Feng Q, Wang K, Xu L, Zhang Y. A novel PCV2 ORF5-interacting host factor YWHAB inhibits virus replication and alleviates PCV2-induced cellular response. Vet Microbiol 2020; 251:108893. [PMID: 33096469 PMCID: PMC7568206 DOI: 10.1016/j.vetmic.2020.108893] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 10/11/2020] [Indexed: 11/17/2022]
Abstract
YWHAB is a PCV2 ORF5-interacting host factor. YWHAB expression is activated by PCV2 infection and ORF5 transfection. YWHAB inhibits PCV2 replication. YWHAB alleviates PCV2 infection induced ERS, autophagy, ROS production and apoptosis.
Porcine circovirus type 2 (PCV2) infection causes porcine circovirus associated diseases (PCVAD) worldwide. Identification of host factors that interact with viral proteins is a fundamental step to understand the pathogenesis of PCV2. Our previous study reported that ORF5, a newly identified PCV2 viral protein supports PCV2 replication and interacts with multiple host factors. Here, we showed that a host factor YWHAB is an ORF5-interacting protein and plays essential roles during PCV2 infection. By using protein-protein interaction assays, we confirmed that YWHAB directly interacts with PCV2-ORF5 protein. We further showed that YWHAB expression was potently induced upon ORF5 overexpression and PCV2 infection. Remarkably, we found that the YWHAB strongly inhibited PCV2 replication, suggesting its role in defending PCV2 infection. By using the ectopic overexpression and gene knockdown approaches, we revealed that YWHAB inhibits PCV2-induced endoplasmic reticulum stress (ERS), autophagy, reactive oxygen species (ROS) production and apoptosis, suggesting its vital role in alleviating PCV2-induced cellular damage. Together, this study demonstrated that an ORF5-interacting host factor YWHAB affects PCV2 infection and PCV2-induced cellular response, which expands the current understanding of YWHAB biological function and might serves as a new therapeutic target to manage PCV2 infection-associated diseases.
Collapse
Affiliation(s)
- Kangkang Guo
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiuping Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China; College of Animal Science, Tarim University, Alar, Xinjiang, 843300, China
| | - Yufeng Hou
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jing Liu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Quanwen Feng
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Kai Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Lei Xu
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Yanming Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
7
|
Chang S, Wang LHC, Chen BS. Investigating Core Signaling Pathways of Hepatitis B Virus Pathogenesis for Biomarkers Identification and Drug Discovery via Systems Biology and Deep Learning Method. Biomedicines 2020; 8:biomedicines8090320. [PMID: 32878239 PMCID: PMC7555687 DOI: 10.3390/biomedicines8090320] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/19/2020] [Accepted: 08/21/2020] [Indexed: 12/17/2022] Open
Abstract
Hepatitis B Virus (HBV) infection is a major cause of morbidity and mortality worldwide. However, poor understanding of its pathogenesis often gives rise to intractable immune escape and prognosis recurrence. Thus, a valid systematic approach based on big data mining and genome-wide RNA-seq data is imperative to further investigate the pathogenetic mechanism and identify biomarkers for drug design. In this study, systems biology method was applied to trim false positives from the host/pathogen genetic and epigenetic interaction network (HPI-GEN) under HBV infection by two-side RNA-seq data. Then, via the principal network projection (PNP) approach and the annotation of KEGG (Kyoto Encyclopedia of Genes and Genomes) pathways, significant biomarkers related to cellular dysfunctions were identified from the core cross-talk signaling pathways as drug targets. Further, based on the pre-trained deep learning-based drug-target interaction (DTI) model and the validated pharmacological properties from databases, i.e., drug regulation ability, toxicity, and sensitivity, a combination of promising multi-target drugs was designed as a multiple-molecule drug to create more possibility for the treatment of HBV infection. Therefore, with the proposed systems medicine discovery and repositioning procedure, we not only shed light on the etiologic mechanism during HBV infection but also efficiently provided a potential drug combination for therapeutic treatment of Hepatitis B.
Collapse
Affiliation(s)
- Shen Chang
- Laboratory of Automatic Control, Signal Processing and Systems Biology, Department of Electrical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan;
| | - Lily Hui-Ching Wang
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu 30013, Taiwan;
| | - Bor-Sen Chen
- Laboratory of Automatic Control, Signal Processing and Systems Biology, Department of Electrical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan;
- Correspondence:
| |
Collapse
|
8
|
Nathan KG, Lal SK. The Multifarious Role of 14-3-3 Family of Proteins in Viral Replication. Viruses 2020; 12:E436. [PMID: 32294919 PMCID: PMC7232403 DOI: 10.3390/v12040436] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 04/06/2020] [Accepted: 04/07/2020] [Indexed: 02/06/2023] Open
Abstract
The 14-3-3 proteins are a family of ubiquitous and exclusively eukaryotic proteins with an astoundingly significant number of binding partners. Their binding alters the activity, stability, localization, and phosphorylation state of a target protein. The association of 14-3-3 proteins with the regulation of a wide range of general and specific signaling pathways suggests their crucial role in health and disease. Recent studies have linked 14-3-3 to several RNA and DNA viruses that may contribute to the pathogenesis and progression of infections. Therefore, comprehensive knowledge of host-virus interactions is vital for understanding the viral life cycle and developing effective therapeutic strategies. Moreover, pharmaceutical research is already moving towards targeting host proteins in the control of virus pathogenesis. As such, targeting the right host protein to interrupt host-virus interactions could be an effective therapeutic strategy. In this review, we generated a 14-3-3 protein interactions roadmap in viruses, using the freely available Virusmentha network, an online virus-virus or virus-host interaction tool. Furthermore, we summarize the role of the 14-3-3 family in RNA and DNA viruses. The participation of 14-3-3 in viral infections underlines its significance as a key regulator for the expression of host and viral proteins.
Collapse
Affiliation(s)
- Kavitha Ganesan Nathan
- School of Science, Monash University, Bandar Sunway, Selangor Darul Ehsan 47500, Malaysia;
| | - Sunil K. Lal
- School of Science, Monash University, Bandar Sunway, Selangor Darul Ehsan 47500, Malaysia;
- Tropical Medicine & Biology Platform, Monash University, Bandar Sunway, Selangor Darul Ehsan 47500, Malaysia
| |
Collapse
|
9
|
Liu W, Guo TF, Jing ZT, Tong QY. Repression of Death Receptor-Mediated Apoptosis of Hepatocytes by Hepatitis B Virus e Antigen. THE AMERICAN JOURNAL OF PATHOLOGY 2019; 189:2181-2195. [PMID: 31449776 DOI: 10.1016/j.ajpath.2019.07.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 06/25/2019] [Accepted: 07/08/2019] [Indexed: 01/09/2023]
Abstract
Hepatitis B virus (HBV) e antigen (HBeAg) is associated with viral persistence and pathogenesis. Resistance of HBV-infected hepatocytes to apoptosis is seen as one of the primary promotors for HBV chronicity and malignancy. Fas receptor/ligand (Fas/FasL) and the tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) system plays a key role in hepatic death during HBV infection. We found that HBeAg mediates resistance of hepatocytes to FasL or TRAIL-induced apoptosis. Introduction of HBeAg into human hepatocytes rendered resistance to FasL or TRAIL cytotoxicity in a p53-dependent manner. HBeAg further inhibited the expression of p53, total Fas, membrane-bound Fas, TNF receptor superfamily member 10a, and TNF receptor superfamily member 10b at both mRNA and protein levels. In contrast, HBeAg enhanced the expression of soluble forms of Fas through facilitation of Fas alternative mRNA splicing. In a mouse model, expression of HBeAg in mice injected with recombinant adenovirus-associated virus 8 inhibited agonistic anti-Fas antibody-induced hepatic apoptosis. Xenograft tumorigenicity assay also found that HBeAg-induced carcinogenesis was resistant to the proapoptotic effect of TRAIL and chemotherapeutic drugs. These results indicate that HBeAg may prevent hepatocytes from FasL and TRAIL-induced apoptosis by regulating the expression of the proapoptotic and antiapoptotic forms of death receptors, which may contribute to the survival and persistence of infected hepatocytes during HBV infection.
Collapse
Affiliation(s)
- Wei Liu
- Institute of Digestive Disease, China Three Gorges University, Yichang, China; Department of Gastroenterology, Yichang Central People's Hospital, Yichang, China.
| | - Teng-Fei Guo
- Institute of Digestive Disease, China Three Gorges University, Yichang, China
| | - Zhen-Tang Jing
- Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, China
| | - Qiao-Yun Tong
- Institute of Digestive Disease, China Three Gorges University, Yichang, China; Department of Gastroenterology, Yichang Central People's Hospital, Yichang, China.
| |
Collapse
|
10
|
Abdoli A, Nakhaie M, Feizi N, Salimi Jeda A, Ramezani A. Harmonized Autophagy Versus Full-Fledged Hepatitis B Virus: Victorious or Defeated. Viral Immunol 2019; 32:322-334. [PMID: 31483214 DOI: 10.1089/vim.2019.0042] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Autophagy is a finely tuned process in the regulation of innate immunity to avoid excessive inflammatory responses and inflammasome signaling. In contrast, the results of recent studies have shown that autophagy may disease-dependently contribute to the pathogenesis of liver diseases, such as fibrosis, cirrhosis, and hepatocellular carcinoma (HCC) during hepatitis B virus (HBV) infection. HBV has learned to subvert the cell's autophagic machinery to promote its replication. Given the great impact of the autophagy mechanism on the HBV infection and HCC, recognizing these factors may be offered new hope for human intervention and treatment of chronic HBV. This review focuses on recent findings viewing the dual role of autophagy plays in the pathogenesis of HBV infected hepatocytes.
Collapse
Affiliation(s)
- Asghar Abdoli
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran
| | - Mohsen Nakhaie
- Department of Virology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Neda Feizi
- Dipartimento di Medicina Interna e Specialità Mediche, Sapienza Università di Roma, Rome, Italy
| | - Ali Salimi Jeda
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Amitis Ramezani
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
11
|
Jiang Y, Han QJ, Zhang J. Hepatocellular carcinoma: Mechanisms of progression and immunotherapy. World J Gastroenterol 2019; 25:3151-3167. [PMID: 31333308 PMCID: PMC6626719 DOI: 10.3748/wjg.v25.i25.3151] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 04/28/2019] [Accepted: 05/18/2019] [Indexed: 02/06/2023] Open
Abstract
Liver cancer is one of the most common malignancies, and various pathogenic factors can lead to its occurrence and development. Among all primary liver cancers, hepatocellular carcinoma (HCC) is the most common. With extensive studies, an increasing number of molecular mechanisms that promote HCC are being discovered. Surgical resection is still the most effective treatment for patients with early HCC. However, early detection and treatment are difficult for most HCC patients, and the postoperative recurrence rate is high, resulting in poor clinical prognosis of HCC. Although immunotherapy takes longer than conventional chemotherapy to produce therapeutic effects, it persists for longer. In recent years, the emergence of many new immunotherapies, such as immune checkpoint blockade and chimeric antigen receptor T cell therapies, has given new hope for the treatment of HCC.
Collapse
MESH Headings
- Adjuvants, Immunologic/administration & dosage
- Antineoplastic Agents, Immunological/therapeutic use
- Cancer Vaccines/therapeutic use
- Carcinoma, Hepatocellular/immunology
- Carcinoma, Hepatocellular/pathology
- Carcinoma, Hepatocellular/therapy
- Clinical Trials as Topic
- Disease Progression
- Humans
- Immunotherapy, Adoptive/methods
- Liver Neoplasms/immunology
- Liver Neoplasms/pathology
- Liver Neoplasms/therapy
- Neoplasm Recurrence, Local/immunology
- Neoplasm Recurrence, Local/pathology
- Neoplasm Recurrence, Local/prevention & control
- Receptors, Chimeric Antigen/immunology
- Treatment Outcome
Collapse
Affiliation(s)
- Yu Jiang
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, Shandong Province, China
| | - Qiu-Ju Han
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, Shandong Province, China
| | - Jian Zhang
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, Shandong Province, China
| |
Collapse
|
12
|
Li Y, Xia Y, Cheng X, Kleiner DE, Hewitt SM, Sproch J, Li T, Zhuang H, Liang TJ. Hepatitis B Surface Antigen Activates Unfolded Protein Response in Forming Ground Glass Hepatocytes of Chronic Hepatitis B. Viruses 2019; 11:v11040386. [PMID: 31027244 PMCID: PMC6520809 DOI: 10.3390/v11040386] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 04/19/2019] [Accepted: 04/23/2019] [Indexed: 12/11/2022] Open
Abstract
Ground glass hepatocytes (GGHs), a histological hallmark of chronic hepatitis B virus (HBV) infection, contain excessive hepatitis surface antigen (HBsAg) in the endoplasmic reticulum (ER), which is linked to unfolded protein response (UPR). The mechanism by which HBV activates UPR has not been fully defined. To investigate this, HepG2-NTCP cells and primary human hepatocytes (PHHs) were either infected with HBV or transduced with adenoviral vectors expressing replication-competent HBV genome or individual HBV genes. UPR markers were evaluated by qPCR, Western blotting, and immunofluorescence. Apoptosis and cell viability were measured by Caspase-3/7 and ATPlite assay respectively. We found that UPR markers were induced by the overexpression of HBsAg in HepG2-NTCP cells and PHHs. Elevation of UPR-induced genes showed a dose-dependent correlation with HBsAg levels. In HBV-infected livers, GGHs also demonstrated excessive accumulation of HBsAg associated with increased BIP/GRP78 staining, a marker of UPR. Prolonged activation of UPR by HBsAg overexpression induced signs of apoptosis. Overexpression of HBsAg can induce ER stress through protein kinase RNA-like endoplasmic reticulum kinase (PERK) pathway in vitro, and may be linked to the appearance of GGHs. The activation of UPR by HBsAg may sensitize hepatocytes to cell death and result in possible subsequent cellular changes leading to a premalignant phenotype.
Collapse
Affiliation(s)
- Yao Li
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China.
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Yuchen Xia
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Xiaoming Cheng
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | - David E Kleiner
- Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Stephen M Hewitt
- Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Julia Sproch
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Tong Li
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China.
| | - Hui Zhuang
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China.
| | - T Jake Liang
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
13
|
Xu Q, Gu S, Liang J, Lin Z, Zheng S, Yan J. The Biological Function of Hepatitis B Virus X Protein in Hepatocellular Carcinoma. Oncol Res 2019; 27:509-514. [PMID: 29891022 PMCID: PMC7848407 DOI: 10.3727/096504018x15278771272963] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the major malignant tumors that lead to death. Chronic hepatitis B virus infection is an important risk factor for HCC initiation. HBx protein, encoded by the HBV X gene, is a significant factor that promotes HBV-related HCC, although the exact molecular mechanism remains unclear. This article summarizes the pathological roles and related mechanisms of HBx in HCC. HBx plays a carcinogenic role by promoting cell proliferation, metastasis, and angiogenesis and inhibiting apoptosis in HCC. A detailed study of the biological functions of HBx will help to elucidate the mechanism of hepatocarcinogenesis and lead to the development of novel therapeutic targets for the treatment of HBV-related HCC.
Collapse
Affiliation(s)
- Qiaodong Xu
- Department of Biliary-Pancreatic Minimally Invasive Surgery, The First Affiliated Hospital of Shantou University Medical College, Shantou, P.R. China
| | - Songgang Gu
- Department of Biliary-Pancreatic Minimally Invasive Surgery, The First Affiliated Hospital of Shantou University Medical College, Shantou, P.R. China
| | - Jiahong Liang
- Department of Biliary-Pancreatic Minimally Invasive Surgery, The First Affiliated Hospital of Shantou University Medical College, Shantou, P.R. China
| | - Zhihua Lin
- Department of Biliary-Pancreatic Minimally Invasive Surgery, The First Affiliated Hospital of Shantou University Medical College, Shantou, P.R. China
| | - Shaodong Zheng
- Department of Biliary-Pancreatic Minimally Invasive Surgery, The First Affiliated Hospital of Shantou University Medical College, Shantou, P.R. China
| | - Jiang Yan
- Department of Biliary-Pancreatic Minimally Invasive Surgery, The First Affiliated Hospital of Shantou University Medical College, Shantou, P.R. China
| |
Collapse
|
14
|
Wu SX, Chen WN, Jing ZT, Liu W, Lin XJ, Lin X. Hepatitis B Spliced Protein (HBSP) Suppresses Fas-Mediated Hepatocyte Apoptosis via Activation of PI3K/Akt Signaling. J Virol 2018; 92:e01273-18. [PMID: 30209179 PMCID: PMC6232459 DOI: 10.1128/jvi.01273-18] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 09/04/2018] [Indexed: 12/12/2022] Open
Abstract
Hepatitis B spliced protein (HBSP) is known to associate with viral persistence and pathogenesis; however, its biological and clinical significance remains poorly defined. Acquired resistance to Fas-mediated apoptosis is thought to be one of the major promotors for hepatitis B virus (HBV) chronicity and malignancy. The purpose of this study was to investigate whether HBSP could protect hepatocytes against Fas-initiated apoptosis. We showed here that HBSP mediated resistance of hepatoma cells or primary human hepatocytes (PHH) to agonistic anti-Fas antibody (CH11)- or FasL-induced apoptosis. Under Fas signaling stimulation, expression of HBSP inhibited Fas aggregation and prevented recruitment of the adaptor molecule Fas-associated death domain (FADD) and procaspase-8 (or FADD-like interleukin-1β-converting enzyme [FLICE]) into the death-inducing signaling complex (DISC) while increasing recruitment of cellular FLICE-inhibitory protein L (FLIPL) into the DISC. Those effects may be mediated through activation of the phosphoinositide 3-kinase (PI3K)/Akt pathway as evidenced by increased cellular phosphatidylinositol (3,4,5)-trisphosphate (PIP3) content and PI3K activity and enhanced phosphorylation of mTORC2 and PDPK1 as well as Akt itself. Confirmedly, inhibition of PI3K by LY294002 reversed the effect of HBSP on Fas aggregation, FLIPL expression, and cellular apoptosis. These results indicate that HBSP functions to prevent hepatocytes from Fas-induced apoptosis by enhancing PI3K/Akt activity, which may contribute to the survival and persistence of infected hepatocytes during chronic infection.IMPORTANCE Our study revealed a previously unappreciated role of HBSP in Fas-mediated apoptosis. The antiapoptotic activity of HBSP is important for understanding hepatitis B virus pathogenesis. In particular, HBV variants associated with hepatoma carcinoma may downregulate apoptosis of hepatocytes through enhanced HBSP expression. Our study also found that Akt is centrally involved in Fas-induced hepatocyte apoptosis and revealed that interventions directed at inhibiting the activation or functional activity of Akt may be of therapeutic value in this process.
Collapse
Affiliation(s)
- Shu-Xiang Wu
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Wan-Nan Chen
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Zhen-Tang Jing
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Wei Liu
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Xin-Jian Lin
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Xu Lin
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Tumor Microbiology, Department of Medical Microbiology, Fujian Medical University, Fuzhou, China
| |
Collapse
|
15
|
Tang Y, Zhang Y, Wang C, Sun Z, Li L, Dong J, Zhou W. 14-3-3ζ binds to hepatitis B virus protein X and maintains its protein stability in hepatocellular carcinoma cells. Cancer Med 2018; 7:5543-5553. [PMID: 30358169 PMCID: PMC6247021 DOI: 10.1002/cam4.1512] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 03/07/2018] [Accepted: 03/29/2018] [Indexed: 12/17/2022] Open
Abstract
14‐3‐3ζ, a phosphopeptide‐binding molecule, is reportedly overexpressed in the cancerous tissues of patients with hepatocellular carcinoma (HCC). Hepatitis B virus (HBV) protein X (HBx) draws intensive attention in HBV‐related HCC because it not only regulates HBV replication, but also promotes carcinogenesis by interacting with various tumor or antitumor molecules. This study is performed to investigate whether and how 14‐3‐3ζ interacts with HBx. The coimmunoprecipitation (Co‐IP) results showed that 14‐3‐3ζ bond to HBx in HBV‐infected Hep3B HCC cells and CSQT‐2 portal vein tumor thrombosis (PVTT) cells. By performing Co‐IP assay in HBV‐free Huh7 cells expressing wild‐type HBx, mutant HBx‐S31A, or HBx‐S31D (serine31 was mutated into alanine31 or aspartic acid31), we found that the phosphorylated serine31 with its near amino acid residues constituted a RPLphosphoS31GP (R, arginine; P, proline; L, leucine; S, serine; G, glycine) motif in HBx for 14‐3‐3ζ docking. This 14‐3‐3ζ‐HBx interaction was partly impaired when Akt signaling transduction was blocked by LY294002. Furthermore, 14‐3‐3ζ silencing augmented HBx ubiquitination and decreased its expression in cancer cells and xenograft tumor. The migratory and invasive abilities of CSQT‐2 cells were inhibited upon 14‐3‐3ζ silencing, whereas partly restored by HBx overexpression. Additionally, 14‐3‐3ζ positively correlated with HBx to be overexpressed in the primary HCC tissues (r = 0.344) and metastatic PVTT (r = 0.348). In summary, findings of this study reveal a novel 14‐3‐3ζ‐HBx interaction in HCC cells and suggest 14‐3‐3ζ as a candidate target for treating HBV‐related HCC.
Collapse
Affiliation(s)
- Yufu Tang
- Department of Hepatobiliary Surgery, The General Hospital of Shenyang Military Area Command, Shenyang, 100016, China.,Post-doctoral Station, The General Hospital of Shenyang Military Area Command, Shenyang, 10016, China
| | - Yibing Zhang
- Department of Hepatobiliary Surgery, The General Hospital of Shenyang Military Area Command, Shenyang, 100016, China
| | - Chunhui Wang
- Department of Hepatobiliary Surgery, The General Hospital of Shenyang Military Area Command, Shenyang, 100016, China
| | - Zhongyi Sun
- Department of Hepatobiliary Surgery, The General Hospital of Shenyang Military Area Command, Shenyang, 100016, China
| | - Longfei Li
- Department of Hepatobiliary Surgery, The General Hospital of Shenyang Military Area Command, Shenyang, 100016, China
| | - Jiahong Dong
- Department of Hepatobiliary and Pancreas Surgery, Beijing Tsinghua Changgung Hospital (BTCH), School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Wenping Zhou
- Department of Hepatobiliary Surgery, The General Hospital of Shenyang Military Area Command, Shenyang, 100016, China
| |
Collapse
|
16
|
Jing ZT, Liu W, Wu SX, He Y, Lin YT, Chen WN, Lin XJ, Lin X. Hepatitis B Virus Surface Antigen Enhances the Sensitivity of Hepatocytes to Fas-Mediated Apoptosis via Suppression of AKT Phosphorylation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2018; 201:2303-2314. [PMID: 30171166 PMCID: PMC6176106 DOI: 10.4049/jimmunol.1800732] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 08/06/2018] [Indexed: 12/12/2022]
Abstract
The Fas receptor/ligand system plays a prominent role in hepatic apoptosis and hepatocyte death. Although hepatitis B virus (HBV) surface Ag (HBsAg) is the most abundant HBV protein in the liver and peripheral blood of patients with chronic HBV infection, its role in Fas-mediated hepatocyte apoptosis has not been disclosed. In this study, we report that HBsAg sensitizes HepG2 cells to agonistic anti-Fas Ab CH11-induced apoptosis through increasing the formation of SDS-stable Fas aggregation and procaspase-8 cleavage but decreasing both the expression of cellular FLIPL/S and the recruitment of FLIPL/S at the death-inducing signaling complex (DISC). Notably, HBsAg increased endoplasmic reticulum stress and consequently reduced AKT phosphorylation by deactivation of phosphoinositide-dependent kinase-1 (PDPK1) and mechanistic target of rapamycin complex 2 (mTORC2), leading to enhancement of Fas-mediated apoptosis. In a mouse model, expression of HBsAg in mice injected with recombinant adenovirus-associated virus 8 aggravated Jo2-induced acute liver failure, which could be effectively attenuated by the AKT activator SC79. Based on these results, it is concluded that HBsAg predisposes hepatocytes to Fas-mediated apoptosis and mice to acute liver failure via suppression of AKT prosurviving activity, suggesting that interventions directed at enhancing the activation or functional activity of AKT may be of therapeutic value in Fas-mediated progressive liver cell injury and liver diseases.
Collapse
Affiliation(s)
- Zhen-Tang Jing
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350122, China; and
| | - Wei Liu
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350122, China; and
- Key Laboratory of Tumor Microbiology, Department of Medical Microbiology, Fujian Medical University, Fuzhou 350004, China
| | - Shu-Xiang Wu
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350122, China; and
| | - Yun He
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350122, China; and
| | - Yan-Ting Lin
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350122, China; and
| | - Wan-Nan Chen
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350122, China; and
- Key Laboratory of Tumor Microbiology, Department of Medical Microbiology, Fujian Medical University, Fuzhou 350004, China
| | - Xin-Jian Lin
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350122, China; and
| | - Xu Lin
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350122, China; and
- Key Laboratory of Tumor Microbiology, Department of Medical Microbiology, Fujian Medical University, Fuzhou 350004, China
| |
Collapse
|
17
|
HBV infection increases the risk of macular degeneration: the roles of HBx-mediated sensitization of retinal pigment epithelial cells to UV and blue light irradiation. J Transl Med 2018; 16:221. [PMID: 30097062 PMCID: PMC6086029 DOI: 10.1186/s12967-018-1594-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 08/02/2018] [Indexed: 11/29/2022] Open
Abstract
Background Hepatitis B virus (HBV) infection is strongly associated with hepatocellular carcinoma due to the main pathogenic X protein of HBV (HBx). Whether HBV infection and the HBx protein could result in macular degeneration (MD) is not known. The aim of this study is to assess the association and underlying mechanisms between HBV infection and MD. Methods The National Health Research Institutes in Taiwan built a large database, the National Health Insurance Research Database (NHIRD), which includes the claims data from the Taiwan National Health Insurance (NHI) program. The Taiwan NHI is a single-payer, compulsory health insurance program for Taiwan citizens. The data for the present study were derived from the Longitudinal Health Insurance Database, which contains the claims data of 1 million insured people within the NHIRD, including beneficiary registration, inpatient and outpatient files, drug use, and other medical services. In this study, we first investigated the association of HBV infection and the risk of MD by a population-based cohorts study enrolling 39,796 HBV-infected patients and 159,184 non-HBV-infected patients. Results After adjustment of age, sex, and comorbidities, the risk of MD was significantly higher in the HBV-infected cohort than in the non-HBV-infected cohort (adjusted HR = 1.31; 95% CI = 1.17–1.46). In vitro, we provided evidence to demonstrate that overexpression of HBx in the human retinal pigment epithelial (RPE) cell line, ARPE19, significantly reduced cell viability and clonogenic survival upon UV and blue light irradiation. By gene microarray analysis, we further showed that almost all genes in DNA repair pathways including base excision repair, nucleotide excision repair, mismatch repair, and homologous recombination were significantly down-regulated in the UV-induced cell death of HBx-transfected ARPE19 cells. Conclusions The HBx protein may sensitize RPE cells to UV and blue light irradiation and increase the risk of HBV-infection-associated MD through down-regulation of multiple DNA repair pathways. Electronic supplementary material The online version of this article (10.1186/s12967-018-1594-4) contains supplementary material, which is available to authorized users.
Collapse
|
18
|
Wu IC, Liu WC, Chang TT. Applications of next-generation sequencing analysis for the detection of hepatocellular carcinoma-associated hepatitis B virus mutations. J Biomed Sci 2018; 25:51. [PMID: 29859540 PMCID: PMC5984823 DOI: 10.1186/s12929-018-0442-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 04/30/2018] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Next-generation sequencing (NGS) is a powerful and high-throughput method for the detection of viral mutations. This article provides a brief overview about optimization of NGS analysis for hepatocellular carcinoma (HCC)-associated hepatitis B virus (HBV) mutations, and hepatocarcinogenesis of relevant mutations. MAIN BODY For the application of NGS analysis in the genome of HBV, four noteworthy steps were discovered in testing. First, a sample-specific reference sequence was the most effective mapping reference for NGS. Second, elongating the end of reference sequence improved mapping performance at the end of the genome. Third, resetting the origin of mapping reference sequence could probed deletion mutations and variants at a certain location with common mutations. Fourth, using a platform-specific cut-off value to distinguish authentic minority variants from technical artifacts was found to be highly effective. One hundred and sixty-seven HBV single nucleotide variants (SNVs) were found to be studied previously through a systematic literature review, and 12 SNVs were determined to be associated with HCC by meta-analysis. From comprehensive research using a HBV genome-wide NGS analysis, 60 NGS-defined HCC-associated SNVs with their pathogenic frequencies were identified, with 19 reported previously. All the 12 HCC-associated SNVs proved by meta-analysis were confirmed by NGS analysis, except for C1766T and T1768A which were mainly expressed in genotypes A and D, but including the subgroup analysis of A1762T. In the 41 novel NGS-defined HCC-associated SNVs, 31.7% (13/41) had cut-off values of SNV frequency lower than 20%. This showed that NGS could be used to detect HCC-associated SNVs with low SNV frequency. Most SNV II (the minor strains in the majority of non-HCC patients) had either low (< 20%) or high (> 80%) SNV frequencies in HCC patients, a characteristic U-shaped distribution pattern. The cut-off values of SNV frequency for HCC-associated SNVs represent their pathogenic frequencies. The pathogenic frequencies of HCC-associated SNV II also showed a U-shaped distribution. Hepatocarcinogenesis induced by HBV mutated proteins through cellular pathways was reviewed. CONCLUSION NGS analysis is useful to discover novel HCC-associated HBV SNVs, especially those with low SNV frequency. The hepatocarcinogenetic mechanisms of novel HCC-associated HBV SNVs defined by NGS analysis deserve further investigation.
Collapse
Affiliation(s)
- I-Chin Wu
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, 138 Sheng-Li Road, Tainan, 70403, Taiwan, Republic of China.,Infectious Disease and Signaling Research Center, National Cheng Kung University, Tainan, Taiwan, Republic of China
| | - Wen-Chun Liu
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, 138 Sheng-Li Road, Tainan, 70403, Taiwan, Republic of China.,Infectious Disease and Signaling Research Center, National Cheng Kung University, Tainan, Taiwan, Republic of China
| | - Ting-Tsung Chang
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, 138 Sheng-Li Road, Tainan, 70403, Taiwan, Republic of China.
| |
Collapse
|
19
|
Yao JH, Liu ZJ, Yi JH, Wang J, Liu YN. Hepatitis B Virus X Protein Upregulates Intracellular Calcium Signaling by Binding C-terminal of Orail Protein. Curr Med Sci 2018; 38:26-34. [PMID: 30074148 DOI: 10.1007/s11596-018-1843-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Revised: 01/15/2018] [Indexed: 12/15/2022]
Abstract
Hepatitis B virus X (HBx) protein plays a pivotal role in the development of hepatitis B virus (HBV)-associated hepatocellular carcinoma. Although regulation of cytosolic calcium is essential for HBV replication and is mediated by HBx protein, the mechanism of HBx protein regulating intracellular calcium level remains poorly understood. The present study examined whether HBx protein elevated the intracellular calcium through interacting with storeoperated calcium entry (SOCE) components, Orail and stromal interaction molecule 1, and then identified the targets of HBx protein, with an attempt to understand the mechanism of HBx protein upsetting intracellular calcium homeostasis. By employing co-immunoprecipitation and GST-pull-down assay, we found that Orail protein interacted with HBx protein, and the C-terminus of Orail was implicated in the interaction. Confocal microscopy also revealed that HBx protein could co-localize with full-length Orail protein in HEK293 cells. Moreover, live cell calcium imaging exhibited that HBx protein elevated intracellular calcium, possibly by binding to SOCE components. Our results suggest that HBx protein binds to STIM1-Orail complexes to positively regulate the activity of plasma membrane store-operated calcium channels.
Collapse
Affiliation(s)
- Jing-Hong Yao
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Zi-Jian Liu
- Department of Anatomy, School of Basic Medical Sciences, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Jian-Hua Yi
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jun Wang
- Department of Gastroenterology, the Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, China
| | - Ya-Nan Liu
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| |
Collapse
|
20
|
Choi JH, Jeong H, Jang KL. Hepatitis B virus X protein suppresses all-trans retinoic acid-induced apoptosis in human hepatocytes by repressing p14 expression via DNA methylation. J Gen Virol 2017; 98:2786-2798. [PMID: 29068287 DOI: 10.1099/jgv.0.000958] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
All-trans retinoic acid (ATRA), the most biologically active metabolite of vitamin A, is known to activate p14 expression via promoter hypermethylation to induce p53-dependent apoptosis in human hepatocytes. In this study, we found that the oncogenic hepatitis B virus (HBV) X protein (HBx) of HBV, derived from both overexpression and 1.2-mer replicon systems, suppresses ATRA-induced apoptosis in p53-positive human hepatocytes. For this effect, HBx upregulated both protein and enzyme activity levels of DNA methyltransferase 1, 3a and 3b, in the presence of ATRA and thereby inhibited p14 expression via promoter hypermethylation, resulting in inactivation of the p14-mouse double minute 2 pathway and subsequent downregulation of p53 levels. As a result, HBx was able to impair the potential of ATRA to activate apoptosis-related molecules, including Bax, p53-upregulated modulator of apoptosis, caspase-9, caspase-3 and poly (ADP-ribose) polymerase. In conclusion, the present study provides a new oncogenic action mechanism of HBx, namely by suppressing the anticancer potential of ATRA to induce p53-dependent apoptosis in HBV-infected hepatocytes.
Collapse
Affiliation(s)
- Jung-Hye Choi
- Department of Microbiology, College of Natural Sciences, Pusan National University, Busan 46241, Republic of Korea
| | - Hyerin Jeong
- Department of Microbiology, College of Natural Sciences, Pusan National University, Busan 46241, Republic of Korea
| | - Kyung Lib Jang
- Department of Microbiology, College of Natural Sciences, Pusan National University, Busan 46241, Republic of Korea
| |
Collapse
|
21
|
X protein variants of the autochthonous Latin American hepatitis B virus F genotype promotes human hepatocyte death by the induction of apoptosis and autophagy. Virus Res 2017; 242:156-165. [PMID: 28986109 PMCID: PMC7114566 DOI: 10.1016/j.virusres.2017.09.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 09/29/2017] [Accepted: 09/30/2017] [Indexed: 02/07/2023]
Abstract
The impact of BCP mutations on HBV-X biologic activity was analyzed. Genotype F wild type and mutant HBV-X induce apoptosis of human hepatocytes. HBV-X variants modulate the expression of Bcl-2 family proteins. Subgenotypes F1b and F4 HBV-X and variants induce autophagy of human hepatocytes.
The hepatitis B virus X protein (HBV-X) is a multifunctional regulatory protein associated with the pathogenesis of liver disease in chronic HBV infection. Basal core promoter mutations (BCP), associated with the clinical course of chronic HBV infection, affect HBV-X at 130–131 positions. The role of these mutations on HBV-X biological activity remains largely unknown. The aim of this study was to analyze the impact of the presence of different amino acids at 130–131 positions of HBV-X on the biological activity of the protein. Transient expression of wild type and mutant F1b and F4 HBV-X increased cell mortality by the induction of apoptosis in human hepatoma cells. The wild type and mutant HBV-X differentially modulate the expression of pro-apoptotic (Bax) and anti-apoptotic (Bcl-2 and Bcl-X) regulatory proteins of the Bcl-2 family. Furthermore, the expression of HBV-X variants of both subgenotypes induced autophagy of human tumoral hepatocytes. In conclusion, HBV-X variants of the Latin American HBV F genotype promotes human hepatocytes death by the induction of apoptosis and autophagy. The results of this work describe some of the molecular mechanisms by which HBV-X variants contribute to the pathogenesis of liver diseases in the infected liver and help to the biological characterization of genotype F, responsible of the majority of HBV infections in Argentina.
Collapse
|
22
|
Interference of Apoptosis by Hepatitis B Virus. Viruses 2017; 9:v9080230. [PMID: 28820498 PMCID: PMC5580487 DOI: 10.3390/v9080230] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 08/07/2017] [Accepted: 08/10/2017] [Indexed: 12/16/2022] Open
Abstract
Hepatitis B virus (HBV) causes liver diseases that have been a consistent problem for human health, leading to more than one million deaths every year worldwide. A large proportion of hepatocellular carcinoma (HCC) cases across the world are closely associated with chronic HBV infection. Apoptosis is a programmed cell death and is frequently altered in cancer development. HBV infection interferes with the apoptosis signaling to promote HCC progression and viral proliferation. The HBV-mediated alteration of apoptosis is achieved via interference with cellular signaling pathways and regulation of epigenetics. HBV X protein (HBX) plays a major role in the interference of apoptosis. There are conflicting reports on the HBV interference of apoptosis with the majority showing inhibition of and the rest reporting induction of apoptosis. In this review, we described recent studies on the mechanisms of the HBV interference with the apoptosis signaling during the virus infection and provided perspective.
Collapse
|
23
|
Cao L, Quan XB, Zeng WJ, Yang XO, Wang MJ. Mechanism of Hepatocyte Apoptosis. J Cell Death 2016; 9:19-29. [PMID: 28058033 PMCID: PMC5201115 DOI: 10.4137/jcd.s39824] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 08/14/2016] [Accepted: 08/18/2016] [Indexed: 12/12/2022] Open
Abstract
Hepatocyte apoptosis plays important roles in both the removal of external microorganisms and the occurrence and development of liver diseases. Different conditions, such as virus infection, fatty liver disease, hepatic ischemia reperfusion, and drug-induced liver injury, are accompanied by hepatocyte apoptosis. This review summarizes recent research on the mechanism of hepatocyte apoptosis involving the classical extrinsic and intrinsic apoptotic pathways, endoplasmic reticulum stress, and oxidative stress-induced apoptosis. We emphasized the major causes of apoptosis according to the characteristics of different liver diseases. Several concerns regarding future research and clinical application are also raised.
Collapse
Affiliation(s)
- Lei Cao
- Research Center on Aging and Medicine, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Xi-Bing Quan
- Research Center on Aging and Medicine, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Wen-Jiao Zeng
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Xiao-Ou Yang
- Department of Gastroenterology, Peking Union Medical College Hospital, Beijing, China
| | - Ming-Jie Wang
- Research Center on Aging and Medicine, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| |
Collapse
|
24
|
Shin GC, Kang HS, Lee AR, Kim KH. Hepatitis B virus-triggered autophagy targets TNFRSF10B/death receptor 5 for degradation to limit TNFSF10/TRAIL response. Autophagy 2016; 12:2451-2466. [PMID: 27740879 DOI: 10.1080/15548627.2016.1239002] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Death receptors of TNFSF10/TRAIL (tumor necrosis factor superfamily member 10) contribute to immune surveillance against virus-infected or transformed cells by promoting apoptosis. Many viruses evade antiviral immunity by modulating TNFSF10 receptor signaling, leading to persistent infection. Here, we report that hepatitis B virus (HBV) X protein (HBx) restricts TNFSF10 receptor signaling via macroautophagy/autophagy-mediated degradation of TNFRSF10B/DR5, a TNFSF10 death receptor, and thus permits survival of virus-infected cells. We demonstrate that the expression of the TNFRSF10B protein is dramatically reduced both in liver tissues of chronic hepatitis B patients and in cell lines transfected with HBV or HBx. HBx-mediated downregulation of TNFRSF10B is caused by the lysosomal, but not proteasomal, degradation pathway. Immunoblotting analysis of LC3B and SQSTM1, and microscopy analysis of tandem-fluorescence-tagged LC3B revealed that HBx promotes complete autophagy. Inhibition of autophagy with a pharmacological inhibitor and LC3B knockdown revealed that HBx-induced autophagy is crucial for TNFRSF10B degradation. Immunoprecipitation and GST affinity isolation assays showed that HBx directly interacts with TNFRSF10B and recruits it to phagophores, the precursors to autophagosomes. We confirmed that autophagy activation is related to the downregulation of the TNFRSF10B protein in liver tissues of chronic hepatitis B patients. Inhibition of autophagy enhanced the susceptibility of HBx-infected hepatocytes to TNFSF10. These results identify the dual function of HBx in TNFRSF10B degradation: HBx plays a role as an autophagy receptor-like molecule, which promotes the association of TNFRSF10B with LC3B; HBx is also an autophagy inducer. Our data suggest a molecular mechanism for HBV evasion from TNFSF10-mediated antiviral immunity, which may contribute to chronic HBV infection.
Collapse
Affiliation(s)
- Gu-Choul Shin
- a Department of Pharmacology , Center for Cancer Research and Diagnostic Medicine, IBST, School of Medicine, Konkuk University , Seoul , Korea.,b KU Open Innovation Center, Research Institute of Medical Sciences, Konkuk University , Seoul , Korea
| | - Hong Seok Kang
- a Department of Pharmacology , Center for Cancer Research and Diagnostic Medicine, IBST, School of Medicine, Konkuk University , Seoul , Korea
| | - Ah Ram Lee
- a Department of Pharmacology , Center for Cancer Research and Diagnostic Medicine, IBST, School of Medicine, Konkuk University , Seoul , Korea
| | - Kyun-Hwan Kim
- a Department of Pharmacology , Center for Cancer Research and Diagnostic Medicine, IBST, School of Medicine, Konkuk University , Seoul , Korea.,b KU Open Innovation Center, Research Institute of Medical Sciences, Konkuk University , Seoul , Korea.,c Research Institute of Medical Sciences, Konkuk University , Seoul , Korea
| |
Collapse
|
25
|
Lamontagne RJ, Bagga S, Bouchard MJ. Hepatitis B virus molecular biology and pathogenesis. HEPATOMA RESEARCH 2016; 2:163-186. [PMID: 28042609 PMCID: PMC5198785 DOI: 10.20517/2394-5079.2016.05] [Citation(s) in RCA: 115] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
As obligate intracellular parasites, viruses need a host cell to provide a milieu favorable to viral replication. Consequently, viruses often adopt mechanisms to subvert host cellular signaling processes. While beneficial for the viral replication cycle, virus-induced deregulation of host cellular signaling processes can be detrimental to host cell physiology and can lead to virus-associated pathogenesis, including, for oncogenic viruses, cell transformation and cancer progression. Included among these oncogenic viruses is the hepatitis B virus (HBV). Despite the availability of an HBV vaccine, 350-500 million people worldwide are chronically infected with HBV, and a significant number of these chronically infected individuals will develop hepatocellular carcinoma (HCC). Epidemiological studies indicate that chronic infection with HBV is the leading risk factor for the development of HCC. Globally, HCC is the second highest cause of cancer-associated deaths, underscoring the need for understanding mechanisms that regulate HBV replication and the development of HBV-associated HCC. HBV is the prototype member of the Hepadnaviridae family; members of this family of viruses have a narrow host range and predominately infect hepatocytes in their respective hosts. The extremely small and compact hepadnaviral genome, the unique arrangement of open reading frames, and a replication strategy utilizing reverse transcription of an RNA intermediate to generate the DNA genome are distinguishing features of the Hepadnaviridae. In this review, we provide a comprehensive description of HBV biology, summarize the model systems used for studying HBV infections, and highlight potential mechanisms that link a chronic HBV-infection to the development of HCC. For example, the HBV X protein (HBx), a key regulatory HBV protein that is important for HBV replication, is thought to play a cofactor role in the development of HBV-induced HCC, and we highlight the functions of HBx that may contribute to the development of HBV-associated HCC.
Collapse
Affiliation(s)
- R. Jason Lamontagne
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA 19102, USA
- The Wistar Institute, Philadelphia, PA 19104, USA
| | - Sumedha Bagga
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA 19102, USA
| | - Michael J. Bouchard
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA 19102, USA
| |
Collapse
|
26
|
Slagle BL, Bouchard MJ. Hepatitis B Virus X and Regulation of Viral Gene Expression. Cold Spring Harb Perspect Med 2016; 6:a021402. [PMID: 26747833 DOI: 10.1101/cshperspect.a021402] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The efficient replication of hepatitis B virus (HBV) requires the HBV regulatory hepatitis B virus X (HBx) protein. The exact contributions of HBx are not fully understood, in part because of the limitations of the assays used for its study. When HBV replication is driven from a plasmid DNA, the contribution of HBx is modest. However, there is an absolute requirement for HBx in assays that recapitulate the infectious virus life cycle. There is much evidence that HBx can contribute directly to HBV replication by acting on viral promoters embedded within protein coding sequences. In addition, HBx may also contribute indirectly by modulating cellular pathways to benefit virus replication. Understanding the mechanism(s) of HBx action during virus replication may provide insight into novel ways to disrupt chronic HBV replication.
Collapse
Affiliation(s)
- Betty L Slagle
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas 77030
| | - Michael J Bouchard
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102
| |
Collapse
|
27
|
Yeganeh B, Rezaei Moghadam A, Alizadeh J, Wiechec E, Alavian SM, Hashemi M, Geramizadeh B, Samali A, Bagheri Lankarani K, Post M, Peymani P, Coombs KM, Ghavami S. Hepatitis B and C virus-induced hepatitis: Apoptosis, autophagy, and unfolded protein response. World J Gastroenterol 2015; 21:13225-13239. [PMID: 26715805 PMCID: PMC4679754 DOI: 10.3748/wjg.v21.i47.13225] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2015] [Revised: 10/14/2015] [Accepted: 11/13/2015] [Indexed: 02/06/2023] Open
Abstract
AIM To investigate the co-incidence of apoptosis, autophagy, and unfolded protein response (UPR) in hepatitis B (HBV) and C (HCV) infected hepatocytes. METHODS We performed immunofluorescence confocal microscopy on 10 liver biopsies from HBV and HCV patients and tissue microarrays of HBV positive liver samples. We used specific antibodies for LC3β, cleaved caspase-3, BIP (GRP78), and XBP1 to detect autophagy, apoptosis and UPR, respectively. Anti-HCV NS3 and anti-HBs antibodies were also used to confirm infection. We performed triple blind counting of events to determine the co-incidence of autophagy (LC3β punctuate), apoptosis (cleaved caspase-3), and unfolded protein response (GRP78) with HBV and HCV infection in hepatocytes. All statistical analyses were performed using SPSS software for Windows (Version 16 SPSS Inc, Chicago, IL, United States). P-values < 0.05 were considered statistically significant. Statistical analyses were performed with Mann-Whitney test to compare incidence rates for autophagy, apoptosis, and UPR in HBV- and HCV-infected cells and adjacent non-infected cells. RESULTS Our results showed that infection of hepatocytes with either HBV and HCV induces significant increase (P < 0.001) in apoptosis (cleavage of caspase-3), autophagy (LC3β punctate), and UPR (increase in GRP78 expression) in the HCV- and HBV-infected cells, as compared to non-infected cells of the same biopsy sections. Our tissue microarray immunohistochemical expression analysis of LC3β in HBV(Neg) and HBV(Pos) revealed that majority of HBV-infected hepatocytes display strong positive staining for LC3β. Interestingly, although XBP splicing in HBV-infected cells was significantly higher (P < 0.05), our analyses show a slight increase of XBP splicing was in HCV-infected cells (P > 0.05). Furthermore, our evaluation of patients with HBV and HCV infection based on stage and grade of the liver diseases revealed no correlation between these pathological findings and induction of apoptosis, autophagy, and UPR. CONCLUSION The results of this study indicate that HCV and HBV infection activates apoptosis, autophagy and UPR, but slightly differently by each virus. Further studies are warranted to elucidate the interconnections between these pathways in relation to pathology of HCV and HBV in the liver tissue.
Collapse
|
28
|
Shi Y, Wang J, Wang Y, Wang A, Guo H, Wei F, Mehta SR, Espitia S, Smith DM, Liu L, Zhang Y, Chen D. A novel mutant 10Ala/Arg together with mutant 144Ser/Arg of hepatitis B virus X protein involved in hepatitis B virus-related hepatocarcinogenesis in HepG2 cell lines. Cancer Lett 2015; 371:285-91. [PMID: 26706415 DOI: 10.1016/j.canlet.2015.12.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 12/05/2015] [Accepted: 12/07/2015] [Indexed: 12/26/2022]
Abstract
Hepatitis B virus (HBV) infection-related hepatocellular carcinoma (HCC) represents a major health problem worldwide. HBV X (HBx) protein is the most common open reading frame that may undergo mutations, resulting in the development of HCC. This study aimed to determine specific HBx mutations that differentiate the central- and para-tumor tissues, and identify their association with HCC development. HBx gene from HCC tumor and para-tumor tissues of 47 HCC patients was amplified, sequenced and statistically analyzed. A novel combination of 2 mutations at residues 10 and 144 was identified which might play a significant role in HCC development. Expression vectors carrying HBx with the specific mutations were constructed and transfected into HepG2 and p53-null HepG2 cells. Compared to wild type (WT) and single mutation of HBx at residue 10 or 144, the 10/144 double mutations strongly up-regulated p21 expression and prolonged G1/S transition in WT- and p53-null HepG2 cells. Apoptosis was also inhibited by HBx harboring 10/44 double-mutation. Binding of 10/144 double-mutant HBx to p53 was lower than WT HBx. Conclusively, the 10/144 double mutation of HBx might play a crucial role in HCC formation.
Collapse
Affiliation(s)
- Ying Shi
- Capital Medical University Affiliated Beijing Youan Hospital, Beijing Institute of Hepatology, Beijing 100054, China
| | - Junwei Wang
- Capital Medical University Affiliated Beijing Youan Hospital, Beijing Institute of Hepatology, Beijing 100054, China; Shandong Cancer Hospital and Institute, Jinan, China
| | - Yuhe Wang
- Department of General Surgery, Changping District Hospital, Beijing 102200, China
| | - Anna Wang
- Capital Medical University Affiliated Beijing Youan Hospital, Beijing Institute of Hepatology, Beijing 100054, China
| | - Hongliang Guo
- Shandong Cancer Hospital and Institute, Jinan, China
| | - Feili Wei
- Capital Medical University Affiliated Beijing Youan Hospital, Beijing Institute of Hepatology, Beijing 100054, China
| | - Sanjay R Mehta
- Department of General Surgery, Changping District Hospital, Beijing 102200, China
| | - Stephen Espitia
- San Diego Veterans Affairs Medical Center, La Jolla, CA, USA; Division of Infectious Diseases, University of California, San Diego, CA, USA
| | - Davey M Smith
- San Diego Veterans Affairs Medical Center, La Jolla, CA, USA; Division of Infectious Diseases, University of California, San Diego, CA, USA
| | - Longgen Liu
- Department of Infectious Diseases, The Third Hospital of Changzhou, Changzhou Institute of Hepatology, Changzhou City 213001, Jiangsu Province, China.
| | - Yulin Zhang
- Capital Medical University Affiliated Beijing Youan Hospital, Beijing Institute of Hepatology, Beijing 100054, China; Department of Infectious Diseases, The Third Hospital of Changzhou, Changzhou Institute of Hepatology, Changzhou City 213001, Jiangsu Province, China.
| | - Dexi Chen
- Capital Medical University Affiliated Beijing Youan Hospital, Beijing Institute of Hepatology, Beijing 100054, China.
| |
Collapse
|
29
|
Lin HJ, Kao ST, Siao Y, Yeh CC. The Chinese medicine Sini-San inhibits HBx-induced migration and invasiveness of human hepatocellular carcinoma cells. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 15:348. [PMID: 26446078 PMCID: PMC4597375 DOI: 10.1186/s12906-015-0870-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2015] [Accepted: 09/21/2015] [Indexed: 12/29/2022]
Abstract
Background Sini-San (SNS) is a formulation of four Traditional Chinese Drugs that exhibits beneficial therapeutic effects in liver injury and hepatitis. However, there are no reports describing its effects on the hepatitis B X-protein (HBx)-induced invasion and metastasis in hepatoma cells, and the detailed molecular mechanisms of its actions are still unclear. Methods In this study, we investigated the mechanisms underlying SNS-mediated inhibition of HBx-induced cell invasion and the inhibition of secreted and cytosolic MMP-9 production, using gelatin zymography and Western blot analysis in a human hepatoma cell line (HepG2). Relative luciferase activity was assessed for MMP-9, NF-κB, or AP-1 reporter plasmid-transfected cells. Results SNS suppressed MMP-9 transcription by inhibiting activator protein (AP)-1 and nuclear factor-κ B (NF-κB) activity. SNS suppressed HBx-induced AP-1 activity through inhibition of phosphorylation in the extracellular signal-related kinase (ERK) and c-Jun N-terminal kinase (JNK) signaling pathways. SNS also suppressed HBx-induced inhibition of NF-κB nuclear translocation through IκB and suppressed HBx-induced activation of ERK/phosphatidylinositol 3-kinase/Akt upstream of NF-κB and AP-1. Conclusions SNS suppresses the invasiveness and metastatic potential of hepatocellular carcinoma cells by inhibiting multiple signal transduction pathways.
Collapse
|
30
|
Oh IS, Park SH. Immune-mediated Liver Injury in Hepatitis B Virus Infection. Immune Netw 2015; 15:191-8. [PMID: 26330805 PMCID: PMC4553257 DOI: 10.4110/in.2015.15.4.191] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2015] [Revised: 07/26/2015] [Accepted: 08/02/2015] [Indexed: 12/29/2022] Open
Abstract
Hepatitis B virus (HBV) is responsible for approximately 350 million chronic infections worldwide and is a leading cause of broad-spectrum liver diseases such as hepatitis, cirrhosis and liver cancer. Although it has been well established that adaptive immunity plays a critical role in viral clearance, the pathogenetic mechanisms that cause liver damage during acute and chronic HBV infection remain largely known. This review describes our current knowledge of the immune-mediated pathogenesis of HBV infection and the role of immune cells in the liver injury during hepatitis B.
Collapse
Affiliation(s)
- In Soo Oh
- Laboratory of Immunology and Infectious Diseases, Graduate School of Medical Science and Engineering, KAIST, Daejeon 34141, Korea. ; Department of Internal Medicine, Chung-Ang University College of Medicine, Seoul 06973, Korea
| | - Su-Hyung Park
- Laboratory of Translational Immunology and Vaccinology, Graduate School of Medical Science and Engineering, KAIST, Daejeon 34141, Korea
| |
Collapse
|
31
|
Up-regulation of IL-12 expression in patients with chronic hepatitis B is mediated by the PI3K/Akt pathway. Mol Cell Biochem 2015; 407:135-42. [PMID: 26062743 DOI: 10.1007/s11010-015-2463-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 05/29/2015] [Indexed: 12/15/2022]
Abstract
Hepatitis B virus (HBV) replicates noncytopathically in hepatocytes, but HBV or proteins encoded by HBV genome could induce cytokines, chemokines expression by hepatocytes.IL-12 is a typical proinflammatory cytokine that plays a critical role in host defense against pathogens, including the HBV. However, the role of IL-12 in chronic hepatitis B (CHB) remains unclear. The aims of this study were to detect the expression of IL-12 in CHB patients and explore the molecular mechanism of HBV-induced IL-12 expression. The results showed that serum levels and hepatic expression of IL-12 were significantly upregulated in CHB patients. HBx protein increased IL-12 expression in a dose-dependent manner. Furthermore, inhibition of PI3K/Akt significantly decreased the HBx-induced IL-12 expression and Akt activation. Taken together, these results indicate that the molecular mechanism of HBV-induced IL-12 expression involves activation of the PI3K/Akt pathway by HBx, leading to transactivation of the IL-12 p35 and p40 promoters.
Collapse
|
32
|
Wang YQ, Ma X, Lu L, Zhao L, Zhang X, Xu Q, Wang Y. Defective antiviral CD8 T-cell response and viral clearance in the absence of c-Jun N-terminal kinases. Immunology 2014; 142:603-13. [PMID: 24673683 DOI: 10.1111/imm.12270] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2014] [Accepted: 02/13/2014] [Indexed: 12/19/2022] Open
Abstract
The c-Jun N-terminal kinase (JNK) signalling pathway appears to act as a critical intermediate in the regulation of lymphocyte activation and proliferation. The majority of studies on the importance of JNK are focused on its role in T helper responses, with very few reports addressing the mechanisms of JNK in governing CD8 T-cell-mediated immunity. By using a well-defined mousepox model, we demonstrate that JNK is involved in CD8(+) T-cell-mediated antiviral responses. Deficiency of either JNK1 or JNK2 impaired viral clearance, subsequently resulting in an increased susceptibility to ectromelia virus in resistant mice. The impairment of CD8 responses in JNK-deficient mice was not directly due to an inhibition of effector T-cell expansion, as both JNK1 and JNK2 had limited effect on the activation-induced cell death of CD8(+) T cells, and only JNK2-deficient mice exhibited a significant change in CD8(+) T-cell proliferation after acute ectromelia virus infection. However, optimal activation of CD8(+) T cells and their effector functions require signals from both JNK1 and JNK2. Our results suggest that the JNK pathway acts as a critical intermediate in antiviral immunity through regulation of the activation and effector function of CD8(+) T cells rather than by altering their expansion.
Collapse
Affiliation(s)
- Yong-Qin Wang
- Department of Pathogen Biology, School of Medicine, Nankai University, Tianjin, China
| | | | | | | | | | | | | |
Collapse
|
33
|
Chang KC, Chang Y, Wang LHC, Tsai HW, Huang W, Su IJ. Pathogenesis of virus-associated human cancers: Epstein–Barr virus and hepatitis B virus as two examples. J Formos Med Assoc 2014; 113:581-90. [PMID: 24095032 DOI: 10.1016/j.jfma.2013.09.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Revised: 08/02/2013] [Accepted: 09/02/2013] [Indexed: 12/12/2022] Open
|
34
|
Mosca N, Castiello F, Coppola N, Trotta MC, Sagnelli C, Pisaturo M, Sagnelli E, Russo A, Potenza N. Functional interplay between hepatitis B virus X protein and human miR-125a in HBV infection. Biochem Biophys Res Commun 2014; 449:141-145. [PMID: 24824183 DOI: 10.1016/j.bbrc.2014.05.009] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Accepted: 05/02/2014] [Indexed: 12/11/2022]
Abstract
The hepatitis B virus (HBV) is a widespread human pathogen and chronic HBV infection is a major risk factor for hepatocellular carcinoma (HCC). Some cellular microRNAs are emerging as important regulators of virus-host interaction, indirectly or directly modulating HBV replication and pathogenesis. miR-125a binds the viral transcript encoding the surface antigen and interferes with its expression, thus inhibiting viral replication. Intriguingly, liver miR-125a expression has been found increased in patients with high levels of hepatic HBV-DNA. The present study investigates the mechanism by which liver exposure to HBV induces the expression of miR-125a. The analyses were first performed on liver biopsies from HBV patients, showing that the expression of the viral transactivator X protein (HBx) paralleled the increase of miR-125a expression. Then, transfection of HCC cell lines with an HBx-expressing vector showed a substantial increase of miR-125a expression. Overall, the available data depict a self-inhibitory feedback loop in which HBV, through HBx, increases the expression of miR-125a, that in turn interferes with expression of HBV surface antigen, thus repressing viral replication.
Collapse
Affiliation(s)
- Nicola Mosca
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Second University of Naples, via Vivaldi 43, 81100 Caserta, Italy.
| | - Filomena Castiello
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Second University of Naples, via Vivaldi 43, 81100 Caserta, Italy.
| | - Nicola Coppola
- Department of Mental Health and Public Medicine, Section of Infectious Diseases, Second University of Naples, via L. Armanni 5, 80135 Naples, Italy.
| | - Maria Consiglia Trotta
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Second University of Naples, via Vivaldi 43, 81100 Caserta, Italy.
| | - Caterina Sagnelli
- Department of Mental Health and Public Medicine, Section of Infectious Diseases, Second University of Naples, via L. Armanni 5, 80135 Naples, Italy.
| | - Mariantonietta Pisaturo
- Department of Mental Health and Public Medicine, Section of Infectious Diseases, Second University of Naples, via L. Armanni 5, 80135 Naples, Italy.
| | - Evangelista Sagnelli
- Department of Mental Health and Public Medicine, Section of Infectious Diseases, Second University of Naples, via L. Armanni 5, 80135 Naples, Italy.
| | - Aniello Russo
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Second University of Naples, via Vivaldi 43, 81100 Caserta, Italy.
| | - Nicoletta Potenza
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Second University of Naples, via Vivaldi 43, 81100 Caserta, Italy.
| |
Collapse
|
35
|
Feitelson MA, Bonamassa B, Arzumanyan A. The roles of hepatitis B virus-encoded X protein in virus replication and the pathogenesis of chronic liver disease. Expert Opin Ther Targets 2014; 18:293-306. [PMID: 24387282 DOI: 10.1517/14728222.2014.867947] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Hepatitis B virus (HBV) is a major cause of chronic liver disease (CLD) and hepatocellular carcinoma (HCC) worldwide. More than 350 million people are at risk for HCC, and with few treatment options available, therapeutic approaches to targets other than the virus polymerase will be needed. This review suggests that the HBV-encoded X protein, HBx, would be an outstanding target because it contributes to the biology and pathogenesis of HBV in three fundamental ways. AREAS COVERED First, HBx is a trans-activating protein that stimulates virus gene expression and replication, thereby promoting the development and persistence of the carrier state. Second, HBx partially blocks the development of immune responses that would otherwise clear the virus, and protects infected hepatocytes from immune-mediated destruction. Thus, HBx contributes to the development of CLD without virus clearance. Third, HBx alters patterns of host gene expression that make possible the emergence of HCC. The selected literature cited is from the National Library of Medicine (Pubmed and Medline). EXPERT OPINION Understanding the mechanisms, whereby HBx supports virus replication and promotes pathogenesis, suggests that HBx will be an important therapeutic target against both virus replication and CLD aimed at the chemoprevention of HCC.
Collapse
Affiliation(s)
- Mark A Feitelson
- Temple University, College of Science and Technology, Department of Biology , Room 409 BioLife Science Building, 1900 N. 12th Street, Philadelphia, PA 19122 , USA +1 215 204 8434 ; +1 215 204 8359 ;
| | | | | |
Collapse
|
36
|
Bharadwaj M, Roy G, Dutta K, Misbah M, Husain M, Hussain S. Tackling hepatitis B virus-associated hepatocellular carcinoma--the future is now. Cancer Metastasis Rev 2013; 32:229-68. [PMID: 23114844 DOI: 10.1007/s10555-012-9412-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Hepatocellular carcinoma (HCC) is one of the most lethal and prevalent cancers in many developing countries including India. Among the various etiological factors being implicated in the cause of HCC, the most important cause, however, is hepatitis B virus (HBV) infection. Among all HBV genes, HBx is the most critical carcinogenic component, the molecular mechanisms of which have not been completely elucidated. Despite its clinical significance, there exists a very elemental understanding of the molecular, cellular, and environmental mechanisms that drive disease pathogenesis in HCC infected with HBV. Furthermore, there are only limited therapeutic options, the clinical benefits of which are insignificant. Therefore, the quest for novel and effective therapeutic regimen against HBV-related HCC is of paramount importance. This review attempts to epitomize the current state of knowledge of this most common and dreaded liver neoplasm, highlighting the putative treatment avenues and therapeutic research strategies that need to be implemented with immediate effect for tackling HBV-related HCC that has plagued the medical and scientific fraternity for decades. Additionally, this review proposes a novel "five-point" management algorithm for HBV-related HCC apart from portraying the unmet needs, principal challenges, and scientific perspectives that are relevant to controlling this accelerating global health crisis.
Collapse
Affiliation(s)
- Mausumi Bharadwaj
- Division of Molecular Genetics & Biochemistry, Institute of Cytology & Preventive Oncology (ICMR), Noida, India.
| | | | | | | | | | | |
Collapse
|
37
|
Anand SK, Tikoo SK. Viruses as modulators of mitochondrial functions. Adv Virol 2013; 2013:738794. [PMID: 24260034 PMCID: PMC3821892 DOI: 10.1155/2013/738794] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Accepted: 08/30/2013] [Indexed: 02/07/2023] Open
Abstract
Mitochondria are multifunctional organelles with diverse roles including energy production and distribution, apoptosis, eliciting host immune response, and causing diseases and aging. Mitochondria-mediated immune responses might be an evolutionary adaptation by which mitochondria might have prevented the entry of invading microorganisms thus establishing them as an integral part of the cell. This makes them a target for all the invading pathogens including viruses. Viruses either induce or inhibit various mitochondrial processes in a highly specific manner so that they can replicate and produce progeny. Some viruses encode the Bcl2 homologues to counter the proapoptotic functions of the cellular and mitochondrial proteins. Others modulate the permeability transition pore and either prevent or induce the release of the apoptotic proteins from the mitochondria. Viruses like Herpes simplex virus 1 deplete the host mitochondrial DNA and some, like human immunodeficiency virus, hijack the host mitochondrial proteins to function fully inside the host cell. All these processes involve the participation of cellular proteins, mitochondrial proteins, and virus specific proteins. This review will summarize the strategies employed by viruses to utilize cellular mitochondria for successful multiplication and production of progeny virus.
Collapse
Affiliation(s)
- Sanjeev K. Anand
- Vaccine & Infection Disease Organization-International Vaccine Center (VIDO-InterVac), University of Saskatchewan, 120 Veterinary Road, Saskatoon, SK, Canada S7E 5E3
- Veterinary Microbiology, University of Saskatchewan, 120 Veterinary Road, Saskatoon, SK, Canada S7E 5E3
| | - Suresh K. Tikoo
- Vaccine & Infection Disease Organization-International Vaccine Center (VIDO-InterVac), University of Saskatchewan, 120 Veterinary Road, Saskatoon, SK, Canada S7E 5E3
- Veterinary Microbiology, University of Saskatchewan, 120 Veterinary Road, Saskatoon, SK, Canada S7E 5E3
- School of Public Health, University of Saskatchewan, 120 Veterinary Road, Saskatoon, SK, Canada S7E 5E3
| |
Collapse
|
38
|
Hepatitis B virus inhibits apoptosis of hepatoma cells by sponging the MicroRNA 15a/16 cluster. J Virol 2013; 87:13370-8. [PMID: 24089558 DOI: 10.1128/jvi.02130-13] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Hepatitis B virus (HBV) causes chronic hepatitis in hundreds of millions of people worldwide, which can eventually lead to hepatocellular carcinoma (HCC). The molecular mechanisms underlying HBV persistence are not well understood. In this study, we found that HBV inhibited the chemotherapy drug etoposide-induced apoptosis of hepatoma cells. Further analysis revealed that HBV mRNAs possess a microRNA 15a/16 (miR-15a/16)-complementary site (HBV nucleotides [nt] 1362 to 1383) that acts as a sponge to bind and sequester endogenous miR-15a/16. Consequently, Bcl-2, known as the target of miR-15a/16, was upregulated in HBV-infected cells. The data from HBV-transgenic mice further confirmed that HBV transcripts cause the reduction of miR-15a/16 and increase of Bcl-2. More importantly, we examined the levels of HBV transcripts and miR-15a/16 in HBV-infected HCC from patients and found that the amount of HBV mRNA and the level of miR-15a/16 were negatively correlated. Consistently, the level of Bcl-2 mRNA was upregulated in HBV-infected patients. In conclusion, we identified a novel HBV mRNA-miR-15a/16-Bcl-2 regulatory pathway that is involved in inhibiting etoposide-induced apoptosis of hepatoma cells, which may contribute to facilitating chronic HBV infection and hepatoma development.
Collapse
|
39
|
Primary hepatocytes and their cultures in liver apoptosis research. Arch Toxicol 2013; 88:199-212. [PMID: 24013573 DOI: 10.1007/s00204-013-1123-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Accepted: 08/29/2013] [Indexed: 01/18/2023]
Abstract
Apoptosis not only plays a key role in physiological demise of defunct hepatocytes, but is also associated with a plethora of acute and chronic liver diseases as well as with hepatotoxicity. The present paper focuses on the modelling of this mode of programmed cell death in primary hepatocyte cultures. Particular attention is paid to the activation of spontaneous apoptosis during the isolation of hepatocytes from the liver, its progressive manifestation upon the subsequent establishment of cell cultures and simultaneously to strategies to counteract this deleterious process. In addition, currently applied approaches to experimentally induce controlled apoptosis in this in vitro setting for mechanistic research purposes and thereby its detection using relevant biomarkers are reviewed.
Collapse
|
40
|
Shen L, Zhang X, Hu D, Feng T, Li H, Lu Y, Huang J. Hepatitis B virus X (HBx) play an anti-apoptosis role in hepatic progenitor cells by activating Wnt/β-catenin pathway. Mol Cell Biochem 2013; 383:213-22. [PMID: 23934090 DOI: 10.1007/s11010-013-1769-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Accepted: 08/02/2013] [Indexed: 12/16/2022]
Abstract
Increasing evidence has shown that normal stem cells may act as cancer-initiating cells and contribute to the development and progression of cancer. HBx has a close relationship with hepatocellular carcinoma, however, the role of HBx in hepatic progenitor cells (HPCs) is poorly understood. In this study, we sought to determine the role of HBx in regulating HPCs apoptosis and the underlying molecular mechanism(s) using HPCs derived from mouse fetal liver. The apoptotic ratio of HPCs infected with adenovirus-expressing HBx (Ad-HBx) was examined using flow cytometry. Results showed that the Ad-HBx treatment led to substantially decreased apoptotic ratio of HPCs, as confirmed by the Hoechst 33342 staining and terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling (TUNEL). Possible alterations of relative proteins were examined using Western blot and real-time PCR assays. The HBx expression in HPCs increased the expression levels of Bcl2 and Mcl1 while decreasing the expression levels of Bax and cleaved caspase-9 and -3. In addition, the mRNA and protein expression levels of β-catenin were both increased. The β-catenin protein were mainly accumulated in cytoplasm and tended to transfer into cell nucleus after Ad-HBx treatment. The over-expression of β-catenin decreased the apoptotic ratio of HPCs and inhibited the expression of cleaved caspase-9 and -3 while blocking β-catenin expression resulted in the opposite results. Taken together, our results strongly suggested that the HBx protein may inhibits apoptosis of hepatic progenitor cells, at least in part by activating the WNT/β-catenin pathway. This provided a new insight into the molecular mechanism of HBx-mediated live carcinogenesis.
Collapse
Affiliation(s)
- Lihong Shen
- Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
41
|
Kuo CY, Chou TY, Chen CM, Tsai YF, Hwang GY, Hwang TL. Hepatitis B virus X protein disrupts stress fiber formation and triggers apoptosis. Virus Res 2013; 175:20-9. [PMID: 23591626 DOI: 10.1016/j.virusres.2013.03.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Revised: 03/22/2013] [Accepted: 03/26/2013] [Indexed: 12/28/2022]
Abstract
Cytoskeletal proteins are key participants in the cellular progression to apoptosis. In a previous study we injected nude mice with CCL13-HBx cells and identified in contrast to non-HBx transfected cells a differentially phosphorylated myosin light chain (p-MLC) by two-dimensional PAGE and mass spectrometry of the tumor material. To investigate the role of HBx in myosin light chain kinase (MLCK) signaling pathways, we analyzed the key molecules, p-MLC and MLCK, by western blotting. Immunofluorescence staining analysis showed that HBx disrupted stress fiber formation and that focal adhesion kinase (FAK) and integrin-linked kinase (ILK) were regulated by HBx-mediated phosphatase and tensin homolog (PTEN). We also used pharmacological inhibitors to explore the correlation between cytoskeletal rearrangements and HBx-mediated cell apoptosis via an MLCK and a PTEN-dependent pathway. The results showed that both ML9 and bvp restored the effects caused by HBx induction. Our findings suggest that HBx disrupts stress fiber formation and triggers apoptosis via an MLCK and a PTEN-dependent pathway.
Collapse
Affiliation(s)
- Chan-Yen Kuo
- Graduate Institute of Natural Products, Chang Gung University, Taoyuan, Taiwan
| | | | | | | | | | | |
Collapse
|
42
|
You X, Liu F, Zhang T, Li Y, Ye L, Zhang X. Hepatitis B virus X protein upregulates oncogene Rab18 to result in the dysregulation of lipogenesis and proliferation of hepatoma cells. Carcinogenesis 2013; 34:1644-52. [PMID: 23471881 DOI: 10.1093/carcin/bgt089] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Hepatitis B virus X protein (HBx) contributes to the development of hepatocellular carcinoma (HCC) through inducing dysregulation of lipogenesis. However, the mechanism by which HBx induces the abnormal lipogenesis is not well known. In this study, we report that the oncogene Rab18, a member of Ras family, enhances the HBx-induced hepatocarcinogenesis through inducing dysregulation of lipogenesis and proliferation. Our data showed that the expression levels of Rab18 were positively associated with those of HBx in clinical HCC tissues. HBx was able to upregulate the expression of Rab18 in p21-HBx transgenic mice and hepatoma cell lines. Next, we identified the mechanism by which HBx upregulated Rab18. The results demonstrated that cyclooxygenase-2 (COX-2) and 5-lipoxygenase (5-LOX) were able to stimulate Rab18 promoter through activating transcription factor activator protein 1 (AP-1) and cyclic adenosine 3',5'-monophosphate response element-binding (CREB). In addition, we identified another pathway that HBx activated Rab18. We found that miR-429 was able to directly target the 3' untranslated region of Rab18, suggesting that Rab18 is one of the target genes of miR-429. Then, we found that HBx was able to downregulate miR-429 in hepatoma cells. The oil red O staining showed that HBx resulted in the dysregulation of lipogenesis through Rab18. Moreover, Rab18 contributed to the HBx-enhanced proliferation of hepatoma cells in vitro and in vivo. HBx enhances hepatocarcinogenesis through leading to the dysregulation of lipogenesis and proliferation of hepatoma cells, involving two pathways such as HBx/COX-2/5-LOX/AP-1/CREB/Rab18 and HBx/miR-429/Rab18.
Collapse
Affiliation(s)
- Xiaona You
- Department of Cancer Research, Key Laboratory of Molecular Microbiology and Technology of Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | | | | | | | | | | |
Collapse
|
43
|
SREBP-1a activation by HBx and the effect on hepatitis B virus enhancer II/core promoter. Biochem Biophys Res Commun 2013; 432:643-9. [PMID: 23422505 DOI: 10.1016/j.bbrc.2013.02.030] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Accepted: 02/08/2013] [Indexed: 01/12/2023]
Abstract
Hepatitis B virus (HBV) X protein (HBx) plays an important role in HBV pathogenesis by regulating gene expression. Sterol regulatory element binding protein-1a (SREBP-1a) is a key transcriptional factor for modulating fatty acid and cholesterol synthesis. Here we demonstrated that HBx increased mature SREBP-1a protein level in the nucleus and its activity as a transcription factor. We further showed that the up-regulation of SREBP-1a by HBx occurred at the transcriptional level after ectopic expression and in the context of HBV replication. Deletional analysis using SREBP-1a promoter revealed that the sequence from -436 to -398 in the promoter was required for its activation by HBx. This promoter region possesses the binding sequences for two basic leucine zipper (b-ZIP) transcription factors, namely C/EBP and E4BP4. Mutagenesis of the binding sequences on the SREBP-1a promoter and ectopic expression experiments demonstrated that C/EBPα enhanced SREBP-1a activation by HBx, while E4BP4 had an inhibitory effect. C/EBPα was able to significantly reverse the inhibitory activity of E4BP4 on SREBP-1a promoter. These results demonstrated that HBx activates SREBP-1a activity at the transcription level through a complex mechanism involving two bZIP transcription factors C/EBP and E4BP4 with C/EBP being the dominant positive factor. Finally, we showed that knocking down SREBP-1 abolishes HBV enhancer II/core promoter activation by HBx.
Collapse
|
44
|
Lim L, Tran BM, Vincan E, Locarnini S, Warner N. HBV-related hepatocellular carcinoma: the role of integration, viral proteins and miRNA. Future Virol 2012. [DOI: 10.2217/fvl.12.113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The development of hepatocellular carcinoma during chronic hepatitis B infection is a multifactorial process thought to be a consequence of several direct and indirect mechanisms. In this review we discuss how viral proteins and cycles of ongoing liver damage and regeneration, coupled with HBV DNA integration and aberrant miRNA expression may enhance the risk for the development of hepatocellular carcinoma.
Collapse
Affiliation(s)
- Lucy Lim
- Victorian Infectious Diseases Reference Laboratories, North Melbourne, Victoria, Australia
- Austin Liver Transplant Unit, Heidelberg, Victoria, Australia
| | - Bang Manh Tran
- Victorian Infectious Diseases Reference Laboratories, North Melbourne, Victoria, Australia
- Cancer Biology Laboratory, Department of Anatomy & Neuroscience, The University of Melbourne, Parkville, Victoria, Australia
| | - Elizabeth Vincan
- Victorian Infectious Diseases Reference Laboratories, North Melbourne, Victoria, Australia
- Cancer Biology Laboratory, Department of Anatomy & Neuroscience, The University of Melbourne, Parkville, Victoria, Australia
| | - Stephen Locarnini
- Victorian Infectious Diseases Reference Laboratories, North Melbourne, Victoria, Australia
| | - Nadia Warner
- Victorian Infectious Diseases Reference Laboratories, North Melbourne, Victoria, Australia
| |
Collapse
|
45
|
Rawat S, Clippinger AJ, Bouchard MJ. Modulation of apoptotic signaling by the hepatitis B virus X protein. Viruses 2012; 4:2945-72. [PMID: 23202511 PMCID: PMC3509679 DOI: 10.3390/v4112945] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Revised: 10/23/2012] [Accepted: 10/31/2012] [Indexed: 12/18/2022] Open
Abstract
Worldwide, an estimated 350 million people are chronically infected with the Hepatitis B Virus (HBV); chronic infection with HBV is associated with the development of severe liver diseases including hepatitis and cirrhosis. Individuals who are chronically infected with HBV also have a significantly higher risk of developing hepatocellular carcinoma (HCC) than uninfected individuals. The HBV X protein (HBx) is a key regulatory HBV protein that is important for HBV replication, and likely plays a cofactor role in the development of HCC in chronically HBV-infected individuals. Although some of the functions of HBx that may contribute to the development of HCC have been characterized, many HBx activities, and their putative roles during the development of HBV-associated HCC, remain incompletely understood. HBx is a multifunctional protein that localizes to the cytoplasm, nucleus, and mitochondria of HBV‑infected hepatocytes. HBx regulates numerous cellular signal transduction pathways and transcription factors as well as cell cycle progression and apoptosis. In this review, we will summarize reports in which the impact of HBx expression on cellular apoptotic pathways has been analyzed. Although various effects of HBx on apoptotic pathways have been observed in different model systems, studies of HBx activities in biologically relevant hepatocyte systems have begun to clarify apoptotic effects of HBx and suggest mechanisms that could link HBx modulation of apoptotic pathways to the development of HBV-associated HCC.
Collapse
Affiliation(s)
- Siddhartha Rawat
- Graduate Program in Molecular and Cellular Biology and Genetics, Drexel University College of Medicine, Philadelphia, PA 19102, USA;
| | - Amy J. Clippinger
- Department of Cancer Biology, Abramson Family Cancer Research Institute, School of Medicine, University of Pennsylvania Philadelphia, PA 19104, USA;
| | - Michael J. Bouchard
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA 19102, USA
| |
Collapse
|
46
|
Liu H, Yuan Y, Guo H, Mitchelson K, Zhang K, Xie L, Qin W, Lu Y, Wang J, Guo Y, Zhou Y, He F. Hepatitis B virus encoded X protein suppresses apoptosis by inhibition of the caspase-independent pathway. J Proteome Res 2012; 11:4803-13. [PMID: 22871131 DOI: 10.1021/pr2012297] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Hepatitis B virus (HBV) encoded X protein (HBx) has been implicated in apoptotic and related pathogenic events during hepatocellular carcinoma. However, the underlying molecular mechanism through which HBx acts is largely unclear. We used tandem affinity purification under mild conditions to gain insight into the HBx interactome in HBV-producing HepG2.2.15 cells and identified 49 proteins by mass spectrometry that are potentially associated with HBx. Two of the key proteins of the caspase-independent apoptosis pathway were newly identified, apoptosis-inducing factor (AIF) and the homologous AMID (AIF-homologue mitochondrion-associated inducer of death). We confirmed the interactions of HBx with AIF and with AMID by reciprocal coimmunoprecipitation experiments, respectively. We observed the expression of HBx-reduced AIF-mediated apoptosis and HBx colocalization with AIF and AMID, principally in the cytoplasm. Furthermore, the elevated cytoplasmic levels of HBx could inhibit mitochondrion-to-nucleus translocation of AIF. Here, we present the first detailed molecular evidence that HBx can repress apoptosis via inhibition of the caspase-independent apoptosis pathway. This inhibition of apoptosis involves the repression of the mitochondrion-to-nucleus translocation of AIF, although tests with AMID were not conclusive. These findings provide important insights into the new mechanism of the apoptosis inhibition by HBV.
Collapse
Affiliation(s)
- Haiying Liu
- The State Key Laboratory of Biomembrane and Membrane Biotechnology, Tsinghua University, Beijing 100084, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
HBx induces HepG-2 cells autophagy through PI3K/Akt-mTOR pathway. Mol Cell Biochem 2012; 372:161-8. [PMID: 23001846 DOI: 10.1007/s11010-012-1457-x] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Accepted: 09/07/2012] [Indexed: 12/18/2022]
Abstract
Chronic hepatitis B virus infection is the dominant global cause of hepatocellular carcinoma (HCC), especially hepatitis B virus-X (HBx) plays a major role in this process. HBx protein promotes cell cycle progression, inactivates negative growth regulators, and binds to and inhibits the expression of p53 tumor suppressor gene and other tumor suppressor genes and senescence-related factors. However, the relationship between HBx and autophagy during the HCC development is poorly known. Previous studies found that autophagy functions as a survival mechanism in liver cancer cells. We suggest that autophagy plays a possible role in the pathogenesis of HBx-induced HCC. The present study showed that HBx transfection brought about an increase in the formation of autophagosomes and autolysosomes. Microtubule-associated protein light chain 3, Beclin 1, and lysosome-associated membrane protein 2a were up-regulated after HBx transfection. HBx-induced increase in the autophagic level was increased by mTOR inhibitor rapamycin and was blocked by treatment with the PI3K-Akt inhibitor LY294002. The same results can also be found in HepG2.2.15 cells. These results suggest that HBx activates the autophagic lysosome pathway in HepG-2 cells through the PI3K-Akt-mTOR pathway.
Collapse
|
48
|
Pro-apoptotic or anti-apoptotic property of X protein of hepatitis B virus is determined by phosphorylation at Ser31 by Akt. Arch Biochem Biophys 2012; 528:156-62. [PMID: 22982405 DOI: 10.1016/j.abb.2012.08.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Revised: 08/14/2012] [Accepted: 08/16/2012] [Indexed: 01/16/2023]
Abstract
The X protein of hepatitis B virus (HBx) has been specifically implicated in either pro-apoptotic or anti-apoptotic activity in an experimental system, but the underlying mechanism is yet uncertain. Activations of survival and proliferation signaling pathways appear to account partly for its anti-apoptotic property. Change in mitochondrial membrane potential may be responsible for its apoptotic property. In this study, we isolated two HBx isoforms from an HBV carrier, one of which contains Akt phosphorylation site at Ser31 and functions as an anti-apoptotic protein (designated HBx-S31). The other does not contain Akt phosphorylation site and functions as an apoptotic protein (designated HBx-L31). HBx-S31 can activate Akt, whereas HBx-L31 cannot; the former enhances tumor growth, whereas the latter suppresses tumorigenesis. Our study provides evidence that HBx plays dual roles, namely pro-apoptotic and anti-apoptotic, through different isoforms in which HBx with Ser31 transduces survival signal.
Collapse
|
49
|
GUO PENGTAO, YANG DONG, SUN ZHE, XU HUIMIAN. Hepatitis B virus X protein plays an important role in gastric ulcers. Oncol Rep 2012; 28:1653-8. [DOI: 10.3892/or.2012.2011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Accepted: 07/09/2012] [Indexed: 11/06/2022] Open
|
50
|
Huang J, Shen L, Lu Y, Li H, Zhang X, Hu D, Feng T, Song F. Parallel induction of cell proliferation and inhibition of cell differentiation in hepatic progenitor cells by hepatitis B virus X gene. Int J Mol Med 2012; 30:842-8. [PMID: 22797416 DOI: 10.3892/ijmm.2012.1060] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2012] [Accepted: 06/04/2012] [Indexed: 12/16/2022] Open
Abstract
Increasing evidence has shown that normal stem cells may contribute to the development and progression of cancer by acting as cancer-initiating cells. The hepatitis B virus X (HBX) protein has been implicated in the hepatitis B virus (HBV)-associated liver carcinogenesis. However, the role of HBX in hepatic progenitor cells (HPCs) is poorly understood. In this study, we aimed to determine the role of HBX in regulating HPC proliferation and differentiation. Using MTT analysis, we showed that HPCs infected with adenovirus expressing HBX (Ad-HBX) grew more rapidly compared to HPCs infected with adenovirus expressing green fluorescent protein (Ad-GFP). To reveal the mechanism for the increased cell number after HBX treatment, we searched for possible alterations in the cell cycle and apoptosis by flow cytometry. We found that HBX treatment resulted in an increase in the S phase cell cycle fraction and a decrease in apoptosis. In addition, we examined the differentiation of HPCs infected with Ad-HBX and found that the HBX expression in HP14.5 cells led to an increased expression of early progenitor markers and a decreased expression of late hepatocyte markers. Furthermore, HBX inhibited glycogen synthesis in HP14.5 cells, indicating that HBX is capable of inhibiting terminal hepatic differentiation. Therefore, our results strongly suggest that HBX plays an important role in regulating HPC proliferation and differentiation. This is the potential mechanism of HBX-mediated liver carcinogenesis.
Collapse
Affiliation(s)
- Jiayi Huang
- Molecular Medicine and Cancer Research Center, Chongqing 400016, PR China
| | | | | | | | | | | | | | | |
Collapse
|