1
|
González‐Rodríguez M, Ait Eldjoudi D, Cordero‐Barreal A, Farrag M, Varela‐García M, Ruiz‐Fernández C, Torrijos‐Pulpón C, Lago F, García‐Caballero L, Farrag Y, Conde‐Aranda J, Pino J, Gualillo O. E74-like ETS transcription factor 3 expression and regulation in human intervertebral disc. JOR Spine 2025; 8:e70016. [PMID: 39877798 PMCID: PMC11774240 DOI: 10.1002/jsp2.70016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 09/04/2024] [Accepted: 10/10/2024] [Indexed: 01/31/2025] Open
Abstract
Background Intervertebral disc degeneration (IVDD) is one of the main causes of chronic low back pain. The degenerative process is often initiated by an imbalance between catabolic and anabolic pathways. Despite the large socio-economic impact, the initiation and progress of disc degeneration are poorly understood. Although intervertebral disc (IVD) and articular joint are not identical, their degenerative roads are remarkably similar. We, and another authors, previously demonstrated that E-74-like factor 3 (ELF3), a transcription factor induced by inflammatory mediators in various cell types including chondrocytes, is a central contributing factor for cartilage degradation. Thus, we aim to explore, for the first time, the expression, modulation, and the role of ELF3 in human IVD cells. Methods The presence of ELF3 in healthy and degenerated IVD tissues was initially determined by immunohistochemistry in annulus fibrosus (AF) and nucleus pulposus (NP). mRNA and protein expression were measured, respectively, by RT-qPCR and Western blot in AF and NP IVD cells harvested from healthy individuals and IVDD patients. Overexpression of ELF3 was performed by transfection of AF IVDD cells with pESE-1: ELF3 expression vector or pCI: empty vector. Results Our results unveiled, for the first time, the expression of ELF3 in IVD tissues. ELF3 is notably upregulated in degenerated tissues compared to those from healthy patients. In addition, the stimulation of IVDD AF cells with various proinflammatory stimuli, showed marked increase in both mRNA and protein expression of ELF3. ELF3 overexpression in AF IVDD cells resulted in the upregulation of proinflammatory and catabolic genes such as PTGS2, NOS2, LCN2, IL-6, MMP13, and ADAMTS-5; whereas, ELF3 silencing resulted in the opposite results. Conclusions Our results support a novel role for ELF3 as a pro-inflammatory and pro-catabolic transcriptional mediator, whose targeting in IVD tissues might be of potential therapeutic relevance in disc degeneration.
Collapse
Affiliation(s)
- María González‐Rodríguez
- SERGAS (Servizo Galego de Saude) and IDIS (Instituto de Investigación Sanitaria de Santiago), The NEIRID Group (Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases)Santiago University Clinical HospitalSantiago de CompostelaSpain
- International PhD SchoolUniversity of Santiago de Compostela (EDIUS)Santiago de CompostelaSpain
| | - Djedjiga Ait Eldjoudi
- SERGAS (Servizo Galego de Saude) and IDIS (Instituto de Investigación Sanitaria de Santiago), The NEIRID Group (Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases)Santiago University Clinical HospitalSantiago de CompostelaSpain
| | - Alfonso Cordero‐Barreal
- SERGAS (Servizo Galego de Saude) and IDIS (Instituto de Investigación Sanitaria de Santiago), The NEIRID Group (Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases)Santiago University Clinical HospitalSantiago de CompostelaSpain
- International PhD SchoolUniversity of Santiago de Compostela (EDIUS)Santiago de CompostelaSpain
| | - Mariam Farrag
- SERGAS (Servizo Galego de Saude) and IDIS (Instituto de Investigación Sanitaria de Santiago), The NEIRID Group (Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases)Santiago University Clinical HospitalSantiago de CompostelaSpain
| | - María Varela‐García
- SERGAS (Servizo Galego de Saude) and IDIS (Instituto de Investigación Sanitaria de Santiago), The NEIRID Group (Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases)Santiago University Clinical HospitalSantiago de CompostelaSpain
- International PhD SchoolUniversity of Santiago de Compostela (EDIUS)Santiago de CompostelaSpain
| | - Clara Ruiz‐Fernández
- SERGAS (Servizo Galego de Saude) and IDIS (Instituto de Investigación Sanitaria de Santiago), The NEIRID Group (Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases)Santiago University Clinical HospitalSantiago de CompostelaSpain
- International PhD SchoolUniversity of Santiago de Compostela (EDIUS)Santiago de CompostelaSpain
| | - Carlos Torrijos‐Pulpón
- SERGAS (Servizo Galego de Saude) and IDIS (Instituto de Investigación Sanitaria de Santiago), The NEIRID Group (Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases)Santiago University Clinical HospitalSantiago de CompostelaSpain
- International PhD SchoolUniversity of Santiago de Compostela (EDIUS)Santiago de CompostelaSpain
| | - Francisca Lago
- Molecular and Cellular Cardiology Group, SERGAS (Servizo Galego de Saude) and IDIS (Instituto de Investigación Sanitaria de Santiago), Research Laboratory 7Santiago University Clinical HospitalSantiago de CompostelaSpain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares CIBERCVInstituto de Salud Carlos IIIMadridSpain
| | - Lucía García‐Caballero
- Department of Morphological Sciences. School of Medicine and DentistryUniversity of Santiago de CompostelaSantiago de CompostelaSpain
| | - Yousof Farrag
- SERGAS (Servizo Galego de Saude) and IDIS (Instituto de Investigación Sanitaria de Santiago), The NEIRID Group (Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases)Santiago University Clinical HospitalSantiago de CompostelaSpain
| | - Javier Conde‐Aranda
- Molecular and Cellular GastroenterologyHealth Research Institute of Santiago de Compostela (IDIS)Santiago de CompostelaSpain
| | - Jesus Pino
- SERGAS (Servizo Galego de Saude) and IDIS (Instituto de Investigación Sanitaria de Santiago), The NEIRID Group (Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases)Santiago University Clinical HospitalSantiago de CompostelaSpain
- Department of Surgery and Medical‐Surgery SpecialitiesUniversity of Santiago de CompostelaSantiago de CompostelaSpain
| | - Oreste Gualillo
- SERGAS (Servizo Galego de Saude) and IDIS (Instituto de Investigación Sanitaria de Santiago), The NEIRID Group (Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases)Santiago University Clinical HospitalSantiago de CompostelaSpain
| |
Collapse
|
2
|
Xue H, Zhou H, Lou Q, Yuan P, Feng Z, Qiao L, Zhang J, Xie H, Shen Y, Ma Q, Wang S, Zhang B, Ye H, Cheng J, Sun X, Shi P. Urolithin B reduces cartilage degeneration and alleviates osteoarthritis by inhibiting inflammation. Food Funct 2024; 15:3552-3565. [PMID: 38465899 DOI: 10.1039/d3fo03793b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Osteoarthritis is the most prevalent degenerative joint disease reported worldwide. Conventional treatment strategies mainly focus on medication and involve surgical joint replacement. The use of these therapies is limited by gastrointestinal complications and the lifespan of joint prostheses. Hence, safe and efficacious drugs are urgently needed to impede the osteoarthritis progression. Urolithin B, a metabolite of ellagic acid in the gut, exhibits anti-inflammatory and antioxidant properties; however, its role in osteoarthritis remains unclear. In this study, we demonstrated that urolithin B efficiently inhibits the inflammatory factor-induced production of matrix metalloproteinases (MMP3 and MMP13) in vitro and upregulates the expression of type II collagen and aggrecan. Urolithin B alleviates cartilage erosion and osteophyte formation induced by anterior cruciate ligament transections. Moreover, urolithin B inhibits the activation of the NF-κB pathway by reducing the phosphorylation of Iκb-α and the nuclear translocation of P65. In summary, urolithin B significantly inhibits inflammation and alleviates osteoarthritis. Hence, urolithin B can be considered a potential agent suitable for the effective treatment of osteoarthritis in the future.
Collapse
Affiliation(s)
- Hong Xue
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Hongyu Zhou
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Qiliang Lou
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Putao Yuan
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Zhenhua Feng
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Li Qiao
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Jiateng Zhang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Hongwei Xie
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Yang Shen
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Qingliang Ma
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Shiyu Wang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Boya Zhang
- Department of Dermatology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Huali Ye
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Jiao Cheng
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Xuewu Sun
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Peihua Shi
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| |
Collapse
|
3
|
Shi Y, Wang R, Li Y, Cui Y, He Y, Wang H, Liu Y, Zhang M, Chen Y, Jia M, Chen K, Ruan X, Tian J, Ma T, Chen J. Involvement of TLRs/NF-κB/ESE-1 signaling pathway in T-2 toxin-induced cartilage matrix degradation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 342:123114. [PMID: 38081376 DOI: 10.1016/j.envpol.2023.123114] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 12/04/2023] [Accepted: 12/05/2023] [Indexed: 01/26/2024]
Abstract
T-2 toxin, a highly toxic type A monotrichothecene mycotoxin, has been found in many different types of cereals and is considered to be one of the most dangerous naturally occurring forms of food contamination. Globally, consuming grain-based food tainted with T-2 toxin poses significant risks to animal and human health. Prior research has indicated that the presence of T-2 toxin may lead to the demise of chondrocytes and the deterioration of the extracellular matrix of cartilage in degenerative bone and joint conditions, such as Kashin-Beck disease. However, the mechanisms by which T-2 toxin exerts its biological toxicity on the degradation of the extracellular matrix in cartilage are not well understood. In the current study, we found original results that demonstrate an upregulation of Toll-Like Receptors (TLR-2, TLR-4) and ESE-1 expression levels in the articular cartilage of a rat model subjected to T-2 toxin exposure. Furthermore, it was revealed that the exposure to T-2 toxin resulted in an increase in the expression of TLR-2, TLR-4, and ESE-1 in human C28/I2 chondrocytes. The findings of this study indicate that the increased expression of TLR-2, TLR-4, and ESE-1 may contribute to the development of degenerative osteoarthritic disease caused by T-2 toxin. Consistent with our hypotheses, we discovered that T-2 toxin increased the expression of MMP-1 and MMP-13 in human C28/I2 chondrocytes. We used a luciferase reporter gene assay to measure the activity of the ESE-1 promoter and transfected cells with plasmids encoding TLR-2 and TLR-4 to investigate their effects on this activity. TLR-2 and TLR-4 can activate ESE-1 transcriptional gene expression, and this expression is mediated through the NF-κB pathway, additional evidence is provided for the participation of the TLRs/NF-κB/ESE-1 signaling pathway in T-2 toxin-induced cartilage matrix degradation. Together, the findings indicated that the TLRs/NF-κB/ESE-1 signaling pathway played an essential part in T-2 toxin-induced cartilage matrix degradation.
Collapse
Affiliation(s)
- Yawen Shi
- School of Public Health, Xi'an Jiaotong University, Key Laboratory of Environment and Genes Related to Diseases in the Education Ministry and Key Laboratory of Trace Elements and Endemic Diseases in Ministry of Health, Xi'an, Shaanxi, 710061, China
| | - Rui Wang
- School of Public Health, Xi'an Jiaotong University, Key Laboratory of Environment and Genes Related to Diseases in the Education Ministry and Key Laboratory of Trace Elements and Endemic Diseases in Ministry of Health, Xi'an, Shaanxi, 710061, China; Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Xi'an, Shaanxi, 710018, China
| | - Yanan Li
- School of Public Health, Xi'an Jiaotong University, Key Laboratory of Environment and Genes Related to Diseases in the Education Ministry and Key Laboratory of Trace Elements and Endemic Diseases in Ministry of Health, Xi'an, Shaanxi, 710061, China; School of Energy and Power Engineering, Xi'an Jiaotong University, Key Laboratory of Thermo-Fluid Science and Engineering, Ministry of Education, Xi'an, Shaanxi, 710049, China
| | - Yixin Cui
- School of Public Health, Xi'an Jiaotong University, Key Laboratory of Environment and Genes Related to Diseases in the Education Ministry and Key Laboratory of Trace Elements and Endemic Diseases in Ministry of Health, Xi'an, Shaanxi, 710061, China
| | - Ying He
- School of Public Health, Xi'an Jiaotong University, Key Laboratory of Environment and Genes Related to Diseases in the Education Ministry and Key Laboratory of Trace Elements and Endemic Diseases in Ministry of Health, Xi'an, Shaanxi, 710061, China
| | - Hui Wang
- School of Public Health, Xi'an Jiaotong University, Key Laboratory of Environment and Genes Related to Diseases in the Education Ministry and Key Laboratory of Trace Elements and Endemic Diseases in Ministry of Health, Xi'an, Shaanxi, 710061, China
| | - Yinan Liu
- School of Public Health, Xi'an Jiaotong University, Key Laboratory of Environment and Genes Related to Diseases in the Education Ministry and Key Laboratory of Trace Elements and Endemic Diseases in Ministry of Health, Xi'an, Shaanxi, 710061, China
| | - Meng Zhang
- School of Public Health, Xi'an Jiaotong University, Key Laboratory of Environment and Genes Related to Diseases in the Education Ministry and Key Laboratory of Trace Elements and Endemic Diseases in Ministry of Health, Xi'an, Shaanxi, 710061, China
| | - Yonghui Chen
- School of Public Health, Xi'an Jiaotong University, Key Laboratory of Environment and Genes Related to Diseases in the Education Ministry and Key Laboratory of Trace Elements and Endemic Diseases in Ministry of Health, Xi'an, Shaanxi, 710061, China
| | - Mingzhao Jia
- School of Public Health, Xi'an Jiaotong University, Key Laboratory of Environment and Genes Related to Diseases in the Education Ministry and Key Laboratory of Trace Elements and Endemic Diseases in Ministry of Health, Xi'an, Shaanxi, 710061, China
| | - Kunpan Chen
- School of Public Health, Xi'an Jiaotong University, Key Laboratory of Environment and Genes Related to Diseases in the Education Ministry and Key Laboratory of Trace Elements and Endemic Diseases in Ministry of Health, Xi'an, Shaanxi, 710061, China
| | - Xingran Ruan
- School of Public Health, Xi'an Jiaotong University, Key Laboratory of Environment and Genes Related to Diseases in the Education Ministry and Key Laboratory of Trace Elements and Endemic Diseases in Ministry of Health, Xi'an, Shaanxi, 710061, China
| | - Jing Tian
- School of Public Health, Xi'an Jiaotong University, Key Laboratory of Environment and Genes Related to Diseases in the Education Ministry and Key Laboratory of Trace Elements and Endemic Diseases in Ministry of Health, Xi'an, Shaanxi, 710061, China
| | - Tianyou Ma
- School of Public Health, Xi'an Jiaotong University, Key Laboratory of Environment and Genes Related to Diseases in the Education Ministry and Key Laboratory of Trace Elements and Endemic Diseases in Ministry of Health, Xi'an, Shaanxi, 710061, China
| | - Jinghong Chen
- School of Public Health, Xi'an Jiaotong University, Key Laboratory of Environment and Genes Related to Diseases in the Education Ministry and Key Laboratory of Trace Elements and Endemic Diseases in Ministry of Health, Xi'an, Shaanxi, 710061, China.
| |
Collapse
|
4
|
Li F, Qiu F, Fan X, Yu Q, Liu S, Guo Y, Zhu Y, Xi X, Du B. Expression of CD44 is regulated by ELF3 in 5-FU treated colorectal cancer cells. Gene 2024; 892:147896. [PMID: 37832805 DOI: 10.1016/j.gene.2023.147896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 10/03/2023] [Accepted: 10/10/2023] [Indexed: 10/15/2023]
Abstract
The development of chemoresistance in colorectal cancer (CRC) cells was usually thought to be inevitable as a result of continuing exposure to chemotherapeutic drugs. The existence of cancer stem cells (CSCs) within CRC tissues was recently suggested to play importance roles for this process. In this study, in order to mimic a dose schedule used in clinic (continuous infusion), low dose of fluorouracil (IC10 of 5-FU) was used to treat CRC cells. Our results showed that the expression of CD44, including some other CSCs markers were all increased after 5-FU treatment. The stemness properties of survived CRC cells were also observed to be enhanced. RNA-seq analysis revealed that ELF3, one of the members of ETS (E26 transformation-specific) transcription activator family, was increased along with CD44 after 5-FU treatment of CRC cells. Results from dual-luciferase reporter assay revealed that the transcription of CD44 could be activated by ELF3 in CRC cells. The induced CD44 expression in 5-FU treated CRC cells could also be decreased after the expression of ELF3 was inhibited. Moreover, it could be observed that the expression of ELF3 is significantly higher in CD44+ CRC cells. Taken together, our results suggested that CD44 expression might be regulated by ELF3 and could be induced after 5-FU treatment of CRC cells. Inhibition of ELF3 might be a promising treatment method when it was used in combination with chemotherapeutics to overcome chemoresistance formation during CRC treatment in clinic.
Collapse
Affiliation(s)
- Fangzhou Li
- Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan City, Hubei Province, PR China; Biomedical Research Institute, Hubei University of Medicine, Shiyan City, Hubei Province, PR China
| | - Fen Qiu
- Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan City, Hubei Province, PR China
| | - Xu Fan
- Taihe Hospital, Hubei University of Medicine, Shiyan City, Hubei Province, PR China
| | - Qingqing Yu
- Biomedical Research Institute, Hubei University of Medicine, Shiyan City, Hubei Province, PR China
| | - Shuaitong Liu
- Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan City, Hubei Province, PR China
| | - Yang Guo
- Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan City, Hubei Province, PR China; Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan City, Hubei Province, PR China
| | - Yunhe Zhu
- Renmin Hospital, Hubei University of Medicine, Shiyan City, Hubei Province, PR China.
| | - Xueyan Xi
- Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan City, Hubei Province, PR China; Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan City, Hubei Province, PR China; Renmin Hospital, Hubei University of Medicine, Shiyan City, Hubei Province, PR China.
| | - Boyu Du
- Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan City, Hubei Province, PR China; Biomedical Research Institute, Hubei University of Medicine, Shiyan City, Hubei Province, PR China; Renmin Hospital, Hubei University of Medicine, Shiyan City, Hubei Province, PR China; Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Shiyan City, Hubei Province, PR China.
| |
Collapse
|
5
|
Chlorogenic acid rich in coffee pulp extract suppresses inflammatory status by inhibiting the p38, MAPK, and NF-κB pathways. Heliyon 2023; 9:e13917. [PMID: 36873494 PMCID: PMC9982044 DOI: 10.1016/j.heliyon.2023.e13917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 02/08/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
Coffee pulp (CP) is a coffee byproduct that contains various active ingredients, namely, chlorogenic acid (CGA) and caffeine. These active compounds show several benefits, including antihyperlipidemia, antioxidants, and anti-inflammation. However, the anti-inflammatory properties of Coffea pulp extract (CPE) are unknown. This work determined the impact of CPE on lipopolysaccharide (LPS)-activated murine macrophage cells and the molecular mechanism behind this action. RAW 264.7 cells were exposed to varying doses of CPE with or without LPS. Inflammatory markers and their mechanism were studied. CPE therapy has been shown to suppress the synthesis of inflammatory cytokines and mediators, namely, tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), IL-1β, cyclooxygenase-2 (COX-2), inducible nitric oxide synthase (iNOS), and nitric oxide (NO), as well as prostaglandin E2 (PGE2). Finally, CPE inactivated the nuclear factor-kappa B (NF-κB) and MAPK signaling pathways. Consequently, CPE might be used as a nutraceutical to treat inflammation and its related disorders.
Collapse
|
6
|
Kouri VP, Olkkonen J, Nurmi K, Peled N, Ainola M, Mandelin J, Nordström DC, Eklund KK. IL-17A and TNF synergistically drive expression of proinflammatory mediators in synovial fibroblasts via IκBζ-dependent induction of ELF3. Rheumatology (Oxford) 2023; 62:872-885. [PMID: 35792833 PMCID: PMC9891425 DOI: 10.1093/rheumatology/keac385] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 06/20/2022] [Accepted: 06/25/2022] [Indexed: 02/04/2023] Open
Abstract
OBJECTIVE IL-17A and TNF act in synergy to induce proinflammatory mediators in synovial fibroblasts thus contributing to diseases associated with chronic arthritis. Many of these factors are regulated by transcription factor E74-like factor-3 (ELF3). Therefore, we sought to investigate ELF3 as a downstream target of IL-17A and TNF signalling and to characterize its role in the molecular mechanism of synergy between IL-17A and TNF. METHODS Regulation of ELF3 expression by IL-17A and TNF was studied in synovial fibroblasts of RA and OA patients and RA synovial explants. Signalling leading to ELF3 mRNA induction and the impact of ELF3 on the response to IL-17A and TNF were studied using siRNA, transient overexpression and signalling inhibitors in synovial fibroblasts and HEK293 cells. RESULTS ELF3 was marginally affected by IL-17A or TNF alone, but their combination resulted in high and sustained expression. ELF3 expression was regulated by the nuclear factor-κB (NF-κB) pathway and CCAAT/enhancer-binding protein β (C/EBPβ), but its induction required synthesis of the NF-κB co-factor IκB (inhibitor of NF-κB) ζ. siRNA-mediated depletion of ELF3 attenuated the induction of cytokines and matrix metalloproteinases by the combination of IL-17A and TNF. Overexpression of ELF3 or IκBζ showed synergistic effect with TNF in upregulating expression of chemokine (C-C motif) ligand 8 (CCL8), and depletion of ELF3 abrogated CCL8 mRNA induction by the combination of IκBζ overexpression and TNF. CONCLUSION Altogether, our results establish ELF3 as an important mediator of the synergistic effect of IL-17A and TNF in synovial fibroblasts. The findings provide novel information of the pathogenic mechanisms of IL-17A in chronic arthritis and implicate ELF3 as a potential therapeutic target.
Collapse
Affiliation(s)
- Vesa-Petteri Kouri
- Department of Medicine, University of Helsinki and Helsinki University Hospital.,Translational Immunology Research Program, Research Programs Unit, University of Helsinki.,Department of Clinical Chemistry, University of Helsinki and Helsinki University Hospital
| | - Juri Olkkonen
- Department of Medicine, University of Helsinki and Helsinki University Hospital.,Translational Immunology Research Program, Research Programs Unit, University of Helsinki
| | - Katariina Nurmi
- Department of Medicine, University of Helsinki and Helsinki University Hospital.,Translational Immunology Research Program, Research Programs Unit, University of Helsinki
| | - Nitai Peled
- Department of Medicine, University of Helsinki and Helsinki University Hospital.,Translational Immunology Research Program, Research Programs Unit, University of Helsinki
| | - Mari Ainola
- Department of Medicine, University of Helsinki and Helsinki University Hospital.,Translational Immunology Research Program, Research Programs Unit, University of Helsinki
| | - Jami Mandelin
- Department of Medicine, University of Helsinki and Helsinki University Hospital.,Translational Immunology Research Program, Research Programs Unit, University of Helsinki
| | - Dan C Nordström
- Department of Medicine, University of Helsinki and Helsinki University Hospital.,Translational Immunology Research Program, Research Programs Unit, University of Helsinki.,Department of Internal Medicine and Rehabilitation
| | - Kari K Eklund
- Department of Medicine, University of Helsinki and Helsinki University Hospital.,Translational Immunology Research Program, Research Programs Unit, University of Helsinki.,Inflammation Center, Division of Rheumatology, Helsinki University Hospital.,ORTON Orthopaedic Hospital of the Orton Foundation, Helsinki, Finland
| |
Collapse
|
7
|
Huerta M, Franco-Serrano L, Amela I, Perez-Pons JA, Piñol J, Mozo-Villarías A, Querol E, Cedano J. Role of Moonlighting Proteins in Disease: Analyzing the Contribution of Canonical and Moonlighting Functions in Disease Progression. Cells 2023; 12:cells12020235. [PMID: 36672169 PMCID: PMC9857295 DOI: 10.3390/cells12020235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/27/2022] [Accepted: 12/29/2022] [Indexed: 01/09/2023] Open
Abstract
The term moonlighting proteins refers to those proteins that present alternative functions performed by a single polypeptide chain acquired throughout evolution (called canonical and moonlighting, respectively). Over 78% of moonlighting proteins are involved in human diseases, 48% are targeted by current drugs, and over 25% of them are involved in the virulence of pathogenic microorganisms. These facts encouraged us to study the link between the functions of moonlighting proteins and disease. We found a large number of moonlighting functions activated by pathological conditions that are highly involved in disease development and progression. The factors that activate some moonlighting functions take place only in pathological conditions, such as specific cellular translocations or changes in protein structure. Some moonlighting functions are involved in disease promotion while others are involved in curbing it. The disease-impairing moonlighting functions attempt to restore the homeostasis, or to reduce the damage linked to the imbalance caused by the disease. The disease-promoting moonlighting functions primarily involve the immune system, mesenchyme cross-talk, or excessive tissue proliferation. We often find moonlighting functions linked to the canonical function in a pathological context. Moonlighting functions are especially coordinated in inflammation and cancer. Wound healing and epithelial to mesenchymal transition are very representative. They involve multiple moonlighting proteins with a different role in each phase of the process, contributing to the current-phase phenotype or promoting a phase switch, mitigating the damage or intensifying the remodeling. All of this implies a new level of complexity in the study of pathology genesis, progression, and treatment. The specific protein function involved in a patient's progress or that is affected by a drug must be elucidated for the correct treatment of diseases.
Collapse
|
8
|
Elf3 deficiency during zebrafish development alters extracellular matrix organization and disrupts tissue morphogenesis. PLoS One 2022; 17:e0276255. [DOI: 10.1371/journal.pone.0276255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 10/03/2022] [Indexed: 11/17/2022] Open
Abstract
E26 transformation specific (ETS) family transcription factors are expressed during embryogenesis and are involved in various cellular processes such as proliferation, migration, differentiation, angiogenesis, apoptosis, and survival of cellular lineages to ensure appropriate development. Dysregulated expression of many of the ETS family members is detected in different cancers. The human ELF3, a member of the ETS family of transcription factors, plays a role in the induction and progression of human cancers is well studied. However, little is known about the role of ELF3 in early development. Here, the zebrafish elf3 was cloned, and its expression was analyzed during zebrafish development. Zebrafish elf3 is maternally deposited. At different developmental stages, elf3 expression was detected in different tissue, mainly neural tissues, endoderm-derived tissues, cartilage, heart, pronephric duct, blood vessels, and notochord. The expression levels were high at the tissue boundaries. Elf3 loss-of-function consequences were examined by using translation blocking antisense morpholino oligonucleotides, and effects were validated using CRISPR/Cas9 knockdown. Elf3-knockdown produced short and bent larvae with notochord, craniofacial cartilage, and fin defects. The extracellular matrix (ECM) in the fin and notochord was disorganized. Neural defects were also observed. Optic nerve fasciculation (bundling) and arborization in the optic tectum were defective in Elf3-morphants, and fragmentation of spinal motor neurons were evident. Dysregulation of genes encoding ECM proteins and matrix metalloprotease (MMP) and disorganization of ECM may play a role in the observed defects in Elf3 morphants. We conclude that zebrafish Elf3 is required for epidermal, mesenchymal, and neural tissue development.
Collapse
|
9
|
Shao J, Ding J, Lu L, Hou W, Wang F, Sun Z, Jiang H, Zhao Y. Propofol protects against high glucose-mediated endothelial injury via inhibition of COX2 and iNOS expressions. Acta Biochim Biophys Sin (Shanghai) 2022; 54:548-555. [PMID: 35607962 PMCID: PMC9827823 DOI: 10.3724/abbs.2022020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Perioperative hyperglycemia is a common metabolic disorder in the clinic. Hyperglycemia, via upregulation of E74-like ETS transcription factor 3 (ELF3), induces cyclooxygenase 2 (COX2) and inducible nitric oxide synthase (iNOS) expressions, thus leading to endothelial apoptosis and vascular endothelial injury. Propofol is a widely used anesthetic. In the present study, we explored whether and how propofol protects against high glucose-induced COX2 and iNOS expressions in human umbilical vein endothelial cells (HUVECs). We found that high glucose level decreases cell viability and increases COX2 and iNOS expressions in HUVECs. Our data also indicated that ELF3 overexpression participates in high glucose-mediated cell viability reduction and high glucose-induced COX2 and iNOS expressions. Moreover, propofol treatment improves high glucose-mediated reduction in cell viability and decreases COX2 and iNOS expressions via inhibition of ELF3 expressions. Furthermore, specificity protein 1 (SP1) was found to regulate ELF3 expression, thus mediating endothelial injury. Propofol inhibits high glucose-induced SP1 expression. High glucose increases the abundance of SP1 bound to the ELF3 promoter, which can be reversed by propofol treatment. The protective effect of propofol is reversed by SP1 overexpression. In conclusion, propofol downregulates high glucose-induced SP1 expression, thus attenuating high glucose-induced ELF3 expression, inhibiting high glucose-induced COX2 and iNOS expressions, and improving high glucose-mediated cell viability reduction in HUVECs.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Hui Jiang
- Correspondence address. Tel: +86-21-64175590; Fax: +86-21-64174774; E-mail: (H.J.) / E-mail: (Y.Z.)@163.com
| | - Yanjun Zhao
- Correspondence address. Tel: +86-21-64175590; Fax: +86-21-64174774; E-mail: (H.J.) / E-mail: (Y.Z.)@163.com
| |
Collapse
|
10
|
Ueno M, Okimura T, Oda T. Ascophyllan. ENCYCLOPEDIA OF MARINE BIOTECHNOLOGY 2020:793-809. [DOI: 10.1002/9781119143802.ch31] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
11
|
Abstract
Vascularization is a major hurdle in complex tissue and organ engineering. Tissues greater than 200 μm in diameter cannot rely on simple diffusion to obtain nutrients and remove waste. Therefore, an integrated vascular network is required for clinical translation of engineered tissues. Microvessels have been described as <150 μm in diameter, but clinically they are defined as <1 mm. With new advances in super microsurgery, vessels less than 1 mm can be anastomosed to the recipient circulation. However, this technical advancement still relies on the creation of a stable engineered microcirculation that is amenable to surgical manipulation and is readily perfusable. Microvascular engineering lays on the crossroads of microfabrication, microfluidics, and tissue engineering strategies that utilize various cellular constituents. Early research focused on vascularization by co-culture and cellular interactions, with the addition of angiogenic growth factors to promote vascular growth. Since then, multiple strategies have been utilized taking advantage of innovations in additive manufacturing, biomaterials, and cell biology. However, the anatomy and dynamics of native blood vessels has not been consistently replicated. Inconsistent results can be partially attributed to cell sourcing which remains an enigma for microvascular engineering. Variations of endothelial cells, endothelial progenitor cells, and stem cells have all been used for microvascular network fabrication along with various mural cells. As each source offers advantages and disadvantages, there continues to be a lack of consensus. Furthermore, discord may be attributed to incomplete understanding about cell isolation and characterization without considering the microvascular architecture of the desired tissue/organ.
Collapse
|
12
|
High glucose mediates NLRP3 inflammasome activation via upregulation of ELF3 expression. Cell Death Dis 2020; 11:383. [PMID: 32439949 PMCID: PMC7242464 DOI: 10.1038/s41419-020-2598-6] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 05/05/2020] [Accepted: 05/06/2020] [Indexed: 01/17/2023]
Abstract
Microtubule affinity regulating kinase 4 (MARK4) plays a crucial role in the regulation of NOD-like receptor pyrin domain 3 (NLRP3) inflammasome activation, which leads to the generation of bioactive interleukin (IL)-1β and IL-18. E74-like ETS transcription factor 3 (ELF3) participates in endothelial inflammatory processes. We hypothesized that ELF3 modulates MARK4 expression in vascular endothelial cells, thus contributing to high glucose-mediated NLRP3 inflammasome activation. Plasma IL-1β, IL-18, NLRP3 inflammasome and MARK4 expression was increased in diabetic patients and rats. An in vitro study indicated that high glucose increased IL-1β and IL-18 expression and activated the NLRP3 inflammasome via upregulation of MARK4 in human umbilical vein endothelial cells (HUVECs). Furthermore, high glucose increased ELF3 expression. ELF3 downregulation reversed the effects of high glucose treatment. Accordingly, the effects of ELF3 overexpression were similar to those of high glucose treatment and were counteracted by siMARK4. Furthermore, ELF3 was found to interact with SET8. High glucose inhibited SET8 expression and histone H4 lysine 20 methylation (H4K20me1), a downstream target of SET8. Overexpression of SET8 inhibited high glucose-induced MARK4 expression and NLRP3 inflammasome activation. The effects of shSET8 were similar to those of high glucose treatment and were counteracted by siMARK4. A mechanistic study found that ELF3 and H4K20me1 were enriched in the MARK4 promoter region. si-ELF3 attenuated MARK4 promoter activity and augmented the inhibitory effect of SET8 on MARK4 promoter activity. Furthermore, SET8 downregulation and ELF3 upregulation were confirmed in diabetic patients and rats. In conclusion, ELF3 interacted with SET8 to modulate MARK4 expression, which participated in hyperglycaemia-mediated endothelial NLRP3 inflammasome activation.
Collapse
|
13
|
Qi J, Wu Q, Cheng Q, Chen X, Zhu M, Miao C. High Glucose Induces Endothelial COX2 and iNOS Expression via Inhibition of Monomethyltransferase SETD8 Expression. J Diabetes Res 2020; 2020:2308520. [PMID: 32185234 PMCID: PMC7060408 DOI: 10.1155/2020/2308520] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 12/18/2019] [Accepted: 01/23/2020] [Indexed: 12/21/2022] Open
Abstract
Cyclooxygenase 2 (COX2) and inducible nitric oxide synthase (iNOS) overexpression results in endothelial apoptosis, thus mediating vascular endothelial injury in hyperglycaemia. E26 transformation-specific sequence transcription factor-1 (ESE-1), which belongs to the E26 transformation-specific family of transcription factors, has been demonstrated to be involved in COX2 and iNOS gene transcription. Our previous study indicated that SET domain-containing protein 8 (SETD8) downregulation is involved in high glucose-mediated endothelial inflammation in human umbilical vein endothelial cells (HUVECs). Here, we report that SETD8 plays a major role in hyperglycaemia-induced COX2 and iNOS expression. In HUVECs, upregulation of ESE-1 expression was related to high glucose-mediated apoptosis and COX2 and iNOS expression. High glucose inhibited SETD8 expression, and overexpression of SETD8 diminished the effects of high glucose treatment. Consistently, RNA silencing of SETD8 led to the opposite effect. Furthermore, SETD8 was found to interact with specificity protein 1 (SP1). Blockade of SP1 protected against high glucose-mediated endothelial injury. Mechanistically, we showed that H4K20me1, a downstream target of SETD8, and SP1 were enriched at the ESE-1 promoter region by ChIP assay. Luciferase reporter assays indicated that SETD8 overexpression attenuated ESE-1 promoter activity and augmented the inhibitory effect of siSP1 on ESE-1 promoter activity. In general, our data indicate that SETD8 interacts with SP1 to coregulate ESE-1 expression, which is involved in hyperglycaemia-mediated endothelial apoptosis in HUVECs.
Collapse
Affiliation(s)
- Jie Qi
- Department of Anaesthesiology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Qichao Wu
- Department of Anaesthesiology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Qian Cheng
- Department of Anaesthesiology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Xiangyuan Chen
- Department of Anaesthesiology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Minmin Zhu
- Department of Anaesthesiology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Changhong Miao
- Department of Anaesthesiology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| |
Collapse
|
14
|
Epithelial tumor suppressor ELF3 is a lineage-specific amplified oncogene in lung adenocarcinoma. Nat Commun 2019; 10:5438. [PMID: 31780666 PMCID: PMC6882813 DOI: 10.1038/s41467-019-13295-y] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 10/24/2019] [Indexed: 01/22/2023] Open
Abstract
Gene function in cancer is often cell type-specific. The epithelial cell-specific transcription factor ELF3 is a documented tumor suppressor in many epithelial tumors yet displays oncogenic properties in others. Here, we show that ELF3 is an oncogene in the adenocarcinoma subtype of lung cancer (LUAD), providing genetic, functional, and clinical evidence of subtype specificity. We discover a region of focal amplification at chromosome 1q32.1 encompassing the ELF3 locus in LUAD which is absent in the squamous subtype. Gene dosage and promoter hypomethylation affect the locus in up to 80% of LUAD analyzed. ELF3 expression was required for tumor growth and a pan-cancer expression network analysis supports its subtype and tissue specificity. We further show that ELF3 displays strong prognostic value in LUAD but not LUSC. We conclude that, contrary to many other tumors of epithelial origin, ELF3 is an oncogene and putative therapeutic target in LUAD. Tissue context can dictate why a gene can have seemingly opposing functions in different settings. ELF3 is tumor suppressive in many cancers of epithelial origin but in lung cancer, the authors describe an oncogenic role in the adenocarcinoma histology of non-small cell lung cancer.
Collapse
|
15
|
Choi MC, Jo J, Park J, Kang HK, Park Y. NF-κB Signaling Pathways in Osteoarthritic Cartilage Destruction. Cells 2019; 8:cells8070734. [PMID: 31319599 PMCID: PMC6678954 DOI: 10.3390/cells8070734] [Citation(s) in RCA: 354] [Impact Index Per Article: 59.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 07/15/2019] [Accepted: 07/15/2019] [Indexed: 12/21/2022] Open
Abstract
Osteoarthritis (OA) is a type of joint disease associated with wear and tear, inflammation, and aging. Mechanical stress along with synovial inflammation promotes the degradation of the extracellular matrix in the cartilage, leading to the breakdown of joint cartilage. The nuclear factor-kappaB (NF-κB) transcription factor has long been recognized as a disease-contributing factor and, thus, has become a therapeutic target for OA. Because NF-κB is a versatile and multi-functional transcription factor involved in various biological processes, a comprehensive understanding of the functions or regulation of NF-κB in the OA pathology will aid in the development of targeted therapeutic strategies to protect the cartilage from OA damage and reduce the risk of potential side-effects. In this review, we discuss the roles of NF-κB in OA chondrocytes and related signaling pathways, including recent findings, to better understand pathological cartilage remodeling and provide potential therapeutic targets that can interfere with NF-κB signaling for OA treatment.
Collapse
Affiliation(s)
- Moon-Chang Choi
- Department of Biomedical Science, Chosun University, Gwangju 61452, Korea.
| | - Jiwon Jo
- Department of Biomedical Science, Chosun University, Gwangju 61452, Korea
| | - Jonggwan Park
- Department of Bioinformatics, Kongju National University, Kongju 38065, Korea
| | - Hee Kyoung Kang
- Department of Biomedical Science, Chosun University, Gwangju 61452, Korea
| | - Yoonkyung Park
- Department of Biomedical Science, Chosun University, Gwangju 61452, Korea.
| |
Collapse
|
16
|
Atopic Dermatitis-Related Inflammation in Macrophages and Keratinocytes: The Inhibitory Effects of Bee Venom. JOURNAL OF ACUPUNCTURE RESEARCH 2019. [DOI: 10.13045/jar.2019.00038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
|
17
|
Wondimu EB, Culley KL, Quinn J, Chang J, Dragomir CL, Plumb DA, Goldring MB, Otero M. Elf3 Contributes to Cartilage Degradation in vivo in a Surgical Model of Post-Traumatic Osteoarthritis. Sci Rep 2018; 8:6438. [PMID: 29691435 PMCID: PMC5915581 DOI: 10.1038/s41598-018-24695-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 04/09/2018] [Indexed: 11/23/2022] Open
Abstract
The E-74 like factor 3 (ELF3) is a transcription factor induced by inflammatory factors in various cell types, including chondrocytes. ELF3 levels are elevated in human cartilage from patients with osteoarthritis (OA), and ELF3 contributes to the IL-1β-induced expression of genes encoding Mmp13, Nos2, and Ptgs2/Cox2 in chondrocytes in vitro. Here, we investigated the contribution of ELF3 to cartilage degradation in vivo, using a mouse model of OA. To this end, we generated mouse strains with cartilage-specific Elf3 knockout (Col2Cre:Elf3f/f) and Comp-driven Tet-off-inducible Elf3 overexpression (TRE-Elf3:Comp-tTA). To evaluate the contribution of ELF3 to OA, we induced OA in 12-week-old Col2Cre:Elf3f/f and 6-month-old TRE-Elf3:Comp-tTA male mice using the destabilization of the medial meniscus (DMM) model. The chondrocyte-specific deletion of Elf3 led to decreased levels of IL-1β- and DMM-induced Mmp13 and Nos2 mRNA in vitro and in vivo, respectively. Histological grading showed attenuation of cartilage loss in Elf3 knockout mice compared to wild type (WT) littermates at 8 and 12 weeks following DMM surgery that correlated with reduced collagenase activity. Accordingly, Elf3 overexpression led to increased cartilage degradation post-surgery compared to WT counterparts. Our results provide evidence that ELF3 is a central contributing factor for cartilage degradation in post-traumatic OA in vivo.
Collapse
Affiliation(s)
- Elisabeth B Wondimu
- HSS Research Institute, Hospital for Special Surgery, New York, NY, 10021, USA.,Weill Cornell Graduate School of Medical Sciences, New York, NY, 10021, USA
| | - Kirsty L Culley
- HSS Research Institute, Hospital for Special Surgery, New York, NY, 10021, USA
| | - Justin Quinn
- HSS Research Institute, Hospital for Special Surgery, New York, NY, 10021, USA
| | - Jun Chang
- HSS Research Institute, Hospital for Special Surgery, New York, NY, 10021, USA
| | - Cecilia L Dragomir
- HSS Research Institute, Hospital for Special Surgery, New York, NY, 10021, USA
| | - Darren A Plumb
- HSS Research Institute, Hospital for Special Surgery, New York, NY, 10021, USA
| | - Mary B Goldring
- HSS Research Institute, Hospital for Special Surgery, New York, NY, 10021, USA.,Weill Cornell Graduate School of Medical Sciences, New York, NY, 10021, USA.,Department of Cell and Developmental Biology, Weill Cornell Medical College, New York, NY, 10021, USA
| | - Miguel Otero
- HSS Research Institute, Hospital for Special Surgery, New York, NY, 10021, USA.
| |
Collapse
|
18
|
Ueno M, Cho K, Hirata N, Yamashita K, Yamaguchi K, Kim D, Oda T. Macrophage-stimulating activities of newly isolated complex polysaccharides from Parachlorella kessleri strain KNK-A001. Int J Biol Macromol 2017; 104:400-406. [PMID: 28596008 DOI: 10.1016/j.ijbiomac.2017.06.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 05/14/2017] [Accepted: 06/03/2017] [Indexed: 10/19/2022]
Abstract
Our previous studies demonstrated that the microalga Parachlorella kessleri (KNK-A001) has immunostimulatory activities, which were observed as an increase in natural killer (NK) cell activity in mice after intraperitoneal injection or as a protective effect on a virus-infected model shrimp after oral administration. In this study, we attempted to gain insight into the constituent substances of KNK-A001 that are responsible for the immunostimulatory activity. First, we obtained five polysaccharide fractions from KNK-A001 by DEAE anion exchange chromatography. Among the fractions, F5 showed the most potent induction of nitric oxide (NO) secretion in RAW264.7 cells, and both mRNA and protein expression levels of inducible NO synthase (iNOS) were increased in F5-treated RAW264.7 cells. A significant increase in the nuclear translocation of the p65 subunit of nuclear factor-kappa B (NF-κB) was observed in F5-treated RAW264.7 cells. F5 also induced the secretion of tumor necrosis factor (TNF)-α in RAW264.7 cells. Analysis using mitogen-activated protein (MAP) kinase inhibitors suggested that c-Jun N-terminal kinase (JNK) and p38 MAP kinase were mainly involved in F5-induced NO and TNF-α productions. The compositional analysis of F5 identified the main constituents as galactose, glucose, galacturonic acid, and mannose. Gel-filtration analysis suggested that molecular mass of F5 was approximately 400kDa.
Collapse
Affiliation(s)
- Mikinori Ueno
- Graduate School of Fisheries Science and Environmental Studies, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki, Nagasaki 852-8521, Japan
| | - Kichul Cho
- Geum River Environment Research Center, National Institute of Environmental Research, Jiyongstreet, Okcheon gun, Chungcheongbukdo, 29027, South Korea
| | - Narumi Hirata
- Graduate School of Fisheries Science and Environmental Studies, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki, Nagasaki 852-8521, Japan
| | - Kenji Yamashita
- KANEKA Corporation, 2-3-18 Nakanoshima Kita-Ku, Osaka 530-8288, Japan
| | - Kenichi Yamaguchi
- Graduate School of Fisheries Science and Environmental Studies, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki, Nagasaki 852-8521, Japan
| | - Daekyung Kim
- Jeju Center, Korea Basic Science Institute (KBSI), 213-4 Cheomdan-ro, Jeju City, Jeju Special Self-Governing Province 63309, South Korea.
| | - Tatsuya Oda
- Graduate School of Fisheries Science and Environmental Studies, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki, Nagasaki 852-8521, Japan.
| |
Collapse
|
19
|
Archer LK, Frame FM, Maitland NJ. Stem cells and the role of ETS transcription factors in the differentiation hierarchy of normal and malignant prostate epithelium. J Steroid Biochem Mol Biol 2017; 166:68-83. [PMID: 27185499 DOI: 10.1016/j.jsbmb.2016.05.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 04/25/2016] [Accepted: 05/07/2016] [Indexed: 12/18/2022]
Abstract
Prostate cancer is the most common cancer of men in the UK and accounts for a quarter of all new cases. Although treatment of localised cancer can be successful, there is no cure for patients presenting with invasive prostate cancer and there are less treatment options. They are generally treated with androgen-ablation therapies but eventually the tumours become hormone resistant and patients develop castration-resistant prostate cancer (CRPC) for which there are no further successful or curative treatments. This highlights the need for new treatment strategies. In order to prevent prostate cancer recurrence and treatment resistance, all the cell populations in a heterogeneous prostate tumour must be targeted, including the rare cancer stem cell (CSC) population. The ETS transcription factor family members are now recognised as a common feature in multiple cancers including prostate cancer; with aberrant expression, loss of tumour suppressor function, inactivating mutations and the formation of fusion genes observed. Most notably, the TMPRSS2-ERG gene fusion is present in approximately 50% of prostate cancers and in prostate CSCs. However, the role of other ETS transcription factors in prostate cancer is less well understood. This review will describe the prostate epithelial cell hierarchy and discuss the evidence behind prostate CSCs and their inherent resistance to conventional cancer therapies. The known and proposed roles of the ETS family of transcription factors in prostate epithelial cell differentiation and regulation of the CSC phenotype will be discussed, as well as how they might be targeted for therapy.
Collapse
Affiliation(s)
- Leanne K Archer
- Cancer Research Unit, Department of Biology, University of York, York, YO10 5DD, United Kingdom
| | - Fiona M Frame
- Cancer Research Unit, Department of Biology, University of York, York, YO10 5DD, United Kingdom
| | - Norman J Maitland
- Cancer Research Unit, Department of Biology, University of York, York, YO10 5DD, United Kingdom.
| |
Collapse
|
20
|
Otero M, Peng H, El Hachem K, Culley KL, Wondimu EB, Quinn J, Asahara H, Tsuchimochi K, Hashimoto K, Goldring MB. ELF3 modulates type II collagen gene (COL2A1) transcription in chondrocytes by inhibiting SOX9-CBP/p300-driven histone acetyltransferase activity. Connect Tissue Res 2017; 58:15-26. [PMID: 27310669 PMCID: PMC5326708 DOI: 10.1080/03008207.2016.1200566] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
AIM We showed previously that E74-like factor 3 (ELF3) protein levels are increased in osteoarthritic (OA) cartilage, that ELF3 accounts for inflammatory cytokine-driven MMP13 gene expression, and that, upon induction by interleukin-1β, ELF3 binds to the COL2A1 promoter and suppresses its activity in chondrocytes. Here, we aimed to further investigate the mechanism/s by which ELF3 represses COL2A1 transcription in chondrocytes. METHODS AND RESULTS We report that ELF3 inhibits Sox9-driven COL2A1 promoter activity by interfering with the activator functions of CBP/300 and Sox9. Co-transfection of the pGL2B-COL2A1 (-577/+3428 bp) reporter construct with Sox9 and with Sox5 and/or Sox6 increased COL2A1 promoter activity, and ELF3 overexpression significantly reduced the promoter transactivation. Co-transfection of ELF3 with the pLuc 4x48 enhancer construct, containing the 89-bp COL2A1 promoter and lacking the previously defined ELF3 binding sites, decreased both basal and Sox9-driven promoter activity. Co-transfection of ELF3 with a Gal4 reporter construct also inhibited Gal4-Sox9-driven transactivation, suggesting that ELF3 directly interacts with Sox9. Using truncated Sox9 fragments, we found that ELF3 interacts directly with the HMG domain of Sox9. Importantly, overexpression of ELF3 significantly decreased Sox9/CBP-dependent HAT activity. Finally, we show evidence that increased ELF3 mRNA expression in OA chondrocytes correlates with hypermethylation of the proximal promoter, suggesting that ELF3 transcription is subjected to epigenetic control in OA disease. CONCLUSION Our results highlight the contribution of ELF3 to transcriptional regulation of COL2A1 and its potential role in OA disease, and uncover epigenetic mechanisms at play in the regulation of ELF3 and its downstream targets in articular chondrocytes.
Collapse
Affiliation(s)
- Miguel Otero
- HSS Research Institute, Hospital for Special Surgery, and Department of Cell and Developmental Biology, Weill Cornell Medical College, New York, NY, USA
| | - Haibing Peng
- Beth Israel Deaconess Medical Center, New England Baptist Bone and Joint Institute, Boston, MA, USA
| | - Karim El Hachem
- HSS Research Institute, Hospital for Special Surgery, and Department of Cell and Developmental Biology, Weill Cornell Medical College, New York, NY, USA
| | - Kirsty L. Culley
- HSS Research Institute, Hospital for Special Surgery, and Department of Cell and Developmental Biology, Weill Cornell Medical College, New York, NY, USA
| | - Elisabeth B. Wondimu
- HSS Research Institute, Hospital for Special Surgery, and Department of Cell and Developmental Biology, Weill Cornell Medical College, New York, NY, USA,Weill Cornell Graduate Program of Medical Sciences, New York, NY, USA
| | - Justin Quinn
- HSS Research Institute, Hospital for Special Surgery, and Department of Cell and Developmental Biology, Weill Cornell Medical College, New York, NY, USA
| | - Hiroshi Asahara
- Department of Molecular and Experimental Medicine, Scripps Research Institute, La Jolla, CA, USA
| | - Kaneyuki Tsuchimochi
- HSS Research Institute, Hospital for Special Surgery, and Department of Cell and Developmental Biology, Weill Cornell Medical College, New York, NY, USA
| | - Ko Hashimoto
- HSS Research Institute, Hospital for Special Surgery, and Department of Cell and Developmental Biology, Weill Cornell Medical College, New York, NY, USA,Department of Orthopaedics, Tohoku University Hospital, Sendai, Japan
| | - Mary B. Goldring
- HSS Research Institute, Hospital for Special Surgery, and Department of Cell and Developmental Biology, Weill Cornell Medical College, New York, NY, USA,Weill Cornell Graduate Program of Medical Sciences, New York, NY, USA,To whom correspondence should be addressed: Mary B. Goldring, Ph.D., Hospital for Special Surgery, HSS Research Institute, Room 601, 515 East 71st Street, New York, NY 10021, USA; Tel. 212-774-7564; Fax. 617-249-2373;
| |
Collapse
|
21
|
Lee CM, Wu J, Xia Y, Hu J. ESE-1 in Early Development: Approaches for the Future. Front Cell Dev Biol 2016; 4:73. [PMID: 27446923 PMCID: PMC4924247 DOI: 10.3389/fcell.2016.00073] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 06/17/2016] [Indexed: 01/14/2023] Open
Abstract
E26 transformation-specific (Ets) family of transcription factors are characterized by the presence of Ets-DNA binding domain and have been found to be highly involved in hematopoiesis and various tissue differentiation. ESE-1, or Elf3 in mice, is a member of epithelium-specific Ets sub-family which is most prominently expressed in epithelial tissues such as the gut, mammary gland, and lung. The role of ESE-1 during embryogenesis had long been alluded from 30% fetal lethality in homozygous knockout mice and its high expression in preimplantation mouse embryos, but there has been no in-depth of analysis of ESE-1 function in early development. With improved proteomics, gene editing tools and increasing knowledge of ESE-1 function in adult tissues, we hereby propose future research directions for the study of ESE-1 in embryogenesis, including studying its regulation at the protein level and at the protein family level, as well as better defining the developmental phase under investigation. Understanding the role of ESE-1 in early development will provide new insights into its involvement in tissue regeneration and cancer, as well as how it functions with other Ets factors as a protein family.
Collapse
Affiliation(s)
- Chan Mi Lee
- Program in Physiology and Experimental Medicine, Peter Gilgan Centre for Research and Learning, SickKids Research Institute, SickKids HospitalToronto, ON, Canada; Laboratory Medicine and Pathobiology, University of TorontoToronto, ON, Canada
| | - Jing Wu
- Program in Physiology and Experimental Medicine, Peter Gilgan Centre for Research and Learning, SickKids Research Institute, SickKids Hospital Toronto, ON, Canada
| | - Yi Xia
- Program in Physiology and Experimental Medicine, Peter Gilgan Centre for Research and Learning, SickKids Research Institute, SickKids HospitalToronto, ON, Canada; Laboratory Medicine and Pathobiology, University of TorontoToronto, ON, Canada
| | - Jim Hu
- Program in Physiology and Experimental Medicine, Peter Gilgan Centre for Research and Learning, SickKids Research Institute, SickKids HospitalToronto, ON, Canada; Laboratory Medicine and Pathobiology, University of TorontoToronto, ON, Canada
| |
Collapse
|
22
|
Conde J, Otero M, Scotece M, Abella V, López V, Pino J, Gómez R, Lago F, Goldring MB, Gualillo O. E74-like factor 3 and nuclear factor-κB regulate lipocalin-2 expression in chondrocytes. J Physiol 2016; 594:6133-6146. [PMID: 27222093 DOI: 10.1113/jp272240] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 05/03/2016] [Indexed: 12/27/2022] Open
Abstract
KEY POINTS E74-like factor 3 (ELF3) is a transcription factor regulated by inflammation in different physio-pathological situations. Lipocalin-2 (LCN2) emerged as a relevant adipokine involved in the regulation of inflammation. In this study we showed for the first time the involvement of ELF3 in the control of LCN2 expression and its cooperation with nuclear factor-κB (NFκB). Our results will help to better understand of the role of ELF3, NFκB and LCN2 in the pathophysiology of articular cartilage. ABSTRACT E74-like factor 3 (ELF3) is a transcription factor induced by inflammatory cytokines in chondrocytes that increases gene expression of catabolic and inflammatory mediators. Lipocalin 2 (LCN2) is a novel adipokine that negatively impacts articular cartilage, triggering catabolic and inflammatory responses in chondrocytes. Here, we investigated the control of LCN2 gene expression by ELF3 in the context of interleukin 1 (IL-1)-driven inflammatory responses in chondrocytes. The interaction of ELF3 and nuclear factor-κB (NFκB) in modulating LCN2 levels was also explored. LCN2 mRNA and protein levels, as well those of several other ELF3 target genes, were determined by RT-qPCR and Western blotting. Human primary chondrocytes, primary chondrocytes from wild-type and Elf3 knockout mice, and immortalized human T/C-28a2 and murine ATDC5 cell lines were used in in vitro assays. The activities of various gene reporter constructs were evaluated by luciferase assays. Gene overexpression and knockdown were performed using specific expression vectors and siRNA technology, respectively. ELF3 overexpression transactivated the LCN2 promoter and increased the IL-1-induced mRNA and protein levels of LCN2, as well as the mRNA expression of other pro-inflammatory mediators, in human and mouse chondrocytes. We also identified a collaborative loop between ELF3 and NFκB that amplifies the induction of LCN2. Our findings show a novel role for ELF3 and NFκB in the induction of the pro-inflammatory adipokine LCN2, providing additional evidence of the interaction between ELF3 and NFκB in modulating inflammatory responses, and a better understanding of the mechanisms of action of ELF3 in chondrocytes.
Collapse
Affiliation(s)
- Javier Conde
- SERGAS (Servizo Galego de Saude) and IDIS (Instituto de Investigación Sanitaria de Santiago), Research Laboratory 9, The NEIRID Lab (Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases), Santiago University Clinical Hospital, Santiago de Compostela, 15706, Spain
| | - Miguel Otero
- Tissue Engineering Regeneration and Repair Program, The Hospital for Special Surgery, and Department of Cell and Developmental Biology, Weill Cornell Medical College, New York, NY, USA
| | - Morena Scotece
- SERGAS (Servizo Galego de Saude) and IDIS (Instituto de Investigación Sanitaria de Santiago), Research Laboratory 9, The NEIRID Lab (Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases), Santiago University Clinical Hospital, Santiago de Compostela, 15706, Spain
| | - Vanessa Abella
- SERGAS (Servizo Galego de Saude) and IDIS (Instituto de Investigación Sanitaria de Santiago), Research Laboratory 9, The NEIRID Lab (Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases), Santiago University Clinical Hospital, Santiago de Compostela, 15706, Spain
| | - Verónica López
- SERGAS (Servizo Galego de Saude) and IDIS (Instituto de Investigación Sanitaria de Santiago), Research Laboratory 9, The NEIRID Lab (Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases), Santiago University Clinical Hospital, Santiago de Compostela, 15706, Spain
| | - Jesús Pino
- SERGAS (Servizo Gallego de Saude), Santiago University Clinical Hospital, Division of Orthopaedic Surgery, Santiago de Compostela, Spain
| | - Rodolfo Gómez
- SERGAS (Servizo Galego de Saude) and IDIS (Instituto de Investigación Sanitaria de Santiago), Research Laboratory 9, The NEIRID Lab (Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases), Santiago University Clinical Hospital, Santiago de Compostela, 15706, Spain
| | - Francisca Lago
- SERGAS (Servizo Galego de Saude) and IDIS (Instituto de Investigación Sanitaria de Santiago), Research Laboratory 9, The NEIRID Lab (Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases), Santiago University Clinical Hospital, Santiago de Compostela, 15706, Spain
| | - Mary B Goldring
- Tissue Engineering Regeneration and Repair Program, The Hospital for Special Surgery, and Department of Cell and Developmental Biology, Weill Cornell Medical College, New York, NY, USA
| | - Oreste Gualillo
- SERGAS (Servizo Galego de Saude) and IDIS (Instituto de Investigación Sanitaria de Santiago), Research Laboratory 9, The NEIRID Lab (Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases), Santiago University Clinical Hospital, Santiago de Compostela, 15706, Spain.
| |
Collapse
|
23
|
Feng Y, Xue H, Zhu J, Yang L, Zhang F, Qian R, Lin W, Wang Y. ESE1 is Associated with Neuronal Apoptosis in Lipopolysaccharide Induced Neuroinflammation. Neurochem Res 2016; 41:2752-2762. [PMID: 27350582 DOI: 10.1007/s11064-016-1990-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 05/20/2016] [Accepted: 06/22/2016] [Indexed: 12/21/2022]
Abstract
Neuronal apoptosis induced by the over-activation of microglia during neuroinflammation contributes to the pathology of central nervous system (CNS) degenerative diseases. ESE1 regulates apoptosis of intestinal epithelial cells in ulcerative colitis via accelerating NF-κB activation. NF-κB activation participates in neuronal apoptosis. However, the expression and functions of ESE1 in neuronal apoptosis during CNS inflammatory response remain unclear. In present study, ESE1 expression significantly increased in cerebral cortex after lipopolysaccharide (LPS) intracerebroventricular injection. Immunofluorescence staining indicated that ESE1 was located in neurons. Furthermore, there was a concomitant up-regulation of apoptotic markers including active caspase-3, BAX and decreased expression of anti-apoptosis protein Bcl-2. In vitro, ESE1 depletion in cortical primary neurons inhibited active caspase-3 and BAX expression as well as lactate dehydrogenase (LDH) release with up-regulation of Bcl-2, while ESE1 overexpression can exert opposite effects, indicating that ESE1 promoted neuronal apoptosis induced by LPS or LPS exposed microglia conditioned media (CM). ESE1 accelerated NF-κB activation in neurons with CM treatment. Collectively, all these data suggested that ESE1 might boost neuronal apoptosis during neuroinflammation via up-regulating NF-κB activation. These findings have implications on the potential target of ESE1 in CNS inflammation treatment.
Collapse
Affiliation(s)
- Yi Feng
- School of Clinical Medicine, Anhui Medical University, Wuxi, 214044, Jiangsu Province, China.,Department of Neurosurgery, Army's Traumatic Brain Injury Center, No.101 Hospital of Chinese PLA, Wuxi, 214044, Jiangsu Province, China
| | - Huaqing Xue
- Jiangsu Province Key Laboratory of Neuroregeneration, Nantong University, Nantong, 226001, Jiangsu Province, China.,Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Medical College of Nantong University, Nantong, 226001, Jiangsu Province, China
| | - Jie Zhu
- School of Clinical Medicine, Anhui Medical University, Wuxi, 214044, Jiangsu Province, China.,Department of Neurosurgery, Army's Traumatic Brain Injury Center, No.101 Hospital of Chinese PLA, Wuxi, 214044, Jiangsu Province, China
| | - Likun Yang
- School of Clinical Medicine, Anhui Medical University, Wuxi, 214044, Jiangsu Province, China.,Department of Neurosurgery, Army's Traumatic Brain Injury Center, No.101 Hospital of Chinese PLA, Wuxi, 214044, Jiangsu Province, China
| | - Feng Zhang
- School of Clinical Medicine, Anhui Medical University, Wuxi, 214044, Jiangsu Province, China.,Department of Neurosurgery, Army's Traumatic Brain Injury Center, No.101 Hospital of Chinese PLA, Wuxi, 214044, Jiangsu Province, China
| | - Rong Qian
- Department of Orthopedics, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu Province, China.,Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Medical College of Nantong University, Nantong, 226001, Jiangsu Province, China
| | - Wei Lin
- School of Clinical Medicine, Anhui Medical University, Wuxi, 214044, Jiangsu Province, China.,Department of Neurosurgery, Army's Traumatic Brain Injury Center, No.101 Hospital of Chinese PLA, Wuxi, 214044, Jiangsu Province, China
| | - Yuhai Wang
- School of Clinical Medicine, Anhui Medical University, Wuxi, 214044, Jiangsu Province, China. .,Department of Neurosurgery, Army's Traumatic Brain Injury Center, No.101 Hospital of Chinese PLA, Wuxi, 214044, Jiangsu Province, China.
| |
Collapse
|
24
|
Lee CM, Gupta S, Wang J, Johnson EM, Crofford LJ, Marshall JC, Kapoor M, Hu J. Epithelium-specific Ets transcription factor-1 acts as a negative regulator of cyclooxygenase-2 in human rheumatoid arthritis synovial fibroblasts. Cell Biosci 2016; 6:43. [PMID: 27313839 PMCID: PMC4910355 DOI: 10.1186/s13578-016-0105-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 05/25/2016] [Indexed: 01/21/2023] Open
Abstract
Background Rheumatoid arthritis (RA) is characterized by excessive synovial inflammation. Cyclooxygenase-2 (COX-2) is an enzyme that catalyzes the conversion of arachidonic acid (AA) into prostaglandins. Epithelium-specific Ets transcription factor-1 (ESE-1) was previously demonstrated to upregulate COX-2 in co-operation with nuclear factor kappa B (NFκB) in macrophages and chondrocytes. However, the role of ESE-1 in RA pathology has remained unclear. In this study, we aimed to elucidate the relationship between ESE-1 and COX-2 in RA synovial fibroblasts (RASFs) using a HD-Ad-mediated knockdown approach. Results ESE-1 and COX-2 were induced by IL-1β in RASFs that corresponded with an increase in PGE2. Endogenous levels of ESE-1 and COX-2 in human RASFs were analyzed by RT-qPCR and Western blot, and PGE2 was quantified using competitive ELISA. Interestingly, knockdown of ESE-1 using helper-dependent adenovirus (HD-Ad) led to a significant upregulation of COX-2 at a later phase of IL-1β stimulation. Examination of ESE-1 intracellular localization by nuclear fractionation revealed that ESE-1 was localized in the nucleus, occupying disparate cellular compartments to NFκB when COX-2 was increased. To confirm the ESE-1-COX-2 relationship in other cellular systems, COX-2 was also measured in SW982 synovial sarcoma cell line and ESE-1 knockout (KO) murine macrophages. Similarly, knockdown of ESE-1 transcriptionally upregulated COX-2 in SW982 and ESE-1 KO murine macrophages, suggesting that ESE-1 may be involved in the resolution of inflammation. Conclusion ESE-1 acts as a negative regulator of COX-2 in human RASFs and its effect on COX-2 is NFκB-independent. Electronic supplementary material The online version of this article (doi:10.1186/s13578-016-0105-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Chan-Mi Lee
- SickKids Research Institute, Program in Physiology and Experimental Medicine, The Hospital for Sick Children, Peter Gilgan Centre for Research and Learning, 9th floor, 686 Bay Street, Toronto, ON M5G 0A4 Canada ; Laboratory Medicine and Pathobiology, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8 Canada
| | - Sahil Gupta
- The Keenan Research Centre, Li Ka Shing Knowledge Institute, St. Michael's Hospital, 209 Victoria Street, Toronto, ON M5B 1T8 Canada ; Institute of Medical Science, Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8 Canada
| | - Jiafeng Wang
- The Keenan Research Centre, Li Ka Shing Knowledge Institute, St. Michael's Hospital, 209 Victoria Street, Toronto, ON M5B 1T8 Canada ; Department of Anesthesiology and Intensive Care, The Second Military Medical University, Changhai Hospital, Shanghai, 200433 China
| | - Elizabeth M Johnson
- Department of Medicine, Division of Rheumatology and Immunology, School of Medicine, Vanderbilt University, 1161 21st Ave S, MCN T-3113, Nashville, TN 37232 USA
| | - Leslie J Crofford
- Department of Medicine, Division of Rheumatology and Immunology, School of Medicine, Vanderbilt University, 1161 21st Ave S, MCN T-3113, Nashville, TN 37232 USA
| | - John C Marshall
- The Keenan Research Centre, Li Ka Shing Knowledge Institute, St. Michael's Hospital, 209 Victoria Street, Toronto, ON M5B 1T8 Canada ; Institute of Medical Science, Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8 Canada ; Department of Surgery, St. Michael's Hospital, University of Toronto, 30 Bond Street, Toronto, ON M5B 1W8 Canada
| | - Mohit Kapoor
- Laboratory Medicine and Pathobiology, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8 Canada ; Division of Genetics and Development, Toronto Western Research Institute, Toronto Western Hospital, University Health Network (UHN), 60 Leonard Avenue, Toronto, ON M5T 2S8 Canada
| | - Jim Hu
- SickKids Research Institute, Program in Physiology and Experimental Medicine, The Hospital for Sick Children, Peter Gilgan Centre for Research and Learning, 9th floor, 686 Bay Street, Toronto, ON M5G 0A4 Canada ; Laboratory Medicine and Pathobiology, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8 Canada ; Institute of Medical Science, Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8 Canada
| |
Collapse
|
25
|
Min KW, Lee SH, Baek SJ. Moonlighting proteins in cancer. Cancer Lett 2015; 370:108-16. [PMID: 26499805 DOI: 10.1016/j.canlet.2015.09.022] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 09/15/2015] [Accepted: 09/18/2015] [Indexed: 12/26/2022]
Abstract
Since the 1980s, growing evidence suggested that the cellular localization of proteins determined their activity and biological functions. In a classical view, a protein is characterized by the single cellular compartment where it primarily resides and functions. It is now believed that when proteins appear in different subcellular locations, the cells surpass the expected activity of proteins given the same genomic information to fulfill complex biological behavior. Many proteins are recognized for having the potential to exist in multiple locations in cells. Dysregulation of translocation may cause cancer or contribute to poorer cancer prognosis. Thus, quantitative and comprehensive assessment of dynamic proteins and associated protein movements could be a promising indicator in determining cancer prognosis and efficiency of cancer treatment and therapy. This review will summarize these so-called moonlighting proteins, in terms of a coupled intracellular cancer signaling pathway. Determination of the detailed biological intracellular and extracellular transit and regulatory activity of moonlighting proteins permits a better understanding of cancer and identification of potential means of molecular intervention.
Collapse
Affiliation(s)
- Kyung-Won Min
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN 37996, USA
| | - Seong-Ho Lee
- Department of Nutrition and Food Science, College of Agriculture and Natural Resources, University of Maryland, College Park, MD 20742, USA
| | - Seung Joon Baek
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN 37996, USA.
| |
Collapse
|
26
|
Olivotto E, Otero M, Marcu KB, Goldring MB. Pathophysiology of osteoarthritis: canonical NF-κB/IKKβ-dependent and kinase-independent effects of IKKα in cartilage degradation and chondrocyte differentiation. RMD Open 2015; 1:e000061. [PMID: 26557379 PMCID: PMC4632142 DOI: 10.1136/rmdopen-2015-000061] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2015] [Revised: 03/20/2015] [Accepted: 03/22/2015] [Indexed: 12/19/2022] Open
Abstract
Osteoarthritis (OA), a whole-joint disease driven by abnormal biomechanics and attendant cell-derived and tissue-derived factors, is a rheumatic disease with the highest prevalence, representing a severe health burden with a tremendous economic impact. Members of the nuclear factor κB (NF-κB) family orchestrate mechanical, inflammatory and oxidative stress-activated processes, thus representing a potential therapeutic target in OA disease. The two pivotal kinases, IκB kinase (IKK) α and IKKβ, activate NF-κB dimers that might translocate to the nucleus and regulate the expression of specific target genes involved in extracellular matrix remodelling and terminal differentiation of chondrocytes. IKKα, required for the activation of the so-called non-canonical pathway, has a number of NF-κB-independent and kinase-independent functions in vivo and in vitro, including controlling chondrocyte hypertrophic differentiation and collagenase activity. In this short review, we will discuss the role of NF-κB signalling in OA pathology, with emphasis on the functional effects of IKKα that are independent of its kinase activity and NF-κB activation.
Collapse
Affiliation(s)
- Eleonora Olivotto
- Laboratory RAMSES-Research, Innovation & Technology Department , Rizzoli Orthopedic Research Institute , Bologna , Italy
| | - Miguel Otero
- Research Division , Hospital for Special Surgery and Weill Cornell Medical College , New York , USA
| | - Kenneth B Marcu
- Biochemistry and Cell Biology Department , Stony Brook University , Stony Brook , USA
| | - Mary B Goldring
- Research Division , Hospital for Special Surgery and Weill Cornell Medical College , New York , USA
| |
Collapse
|
27
|
Epithelial-specific ETS-1 (ESE1/ELF3) regulates apoptosis of intestinal epithelial cells in ulcerative colitis via accelerating NF-κB activation. Immunol Res 2015; 62:198-212. [PMID: 25926267 DOI: 10.1007/s12026-015-8651-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
28
|
Wang F, Long Q, Gong Y, Hu L, Zhang H, Oettgen P, Peng T. Epithelium-Specific ETS (ESE)-1 upregulated GP73 expression in hepatocellular carcinoma cells. Cell Biosci 2014; 4:76. [PMID: 25530841 PMCID: PMC4271417 DOI: 10.1186/2045-3701-4-76] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 11/28/2014] [Indexed: 01/02/2023] Open
Abstract
Background Golgi protein-73 (GP73) is a Golgi transmembrane glycoprotein elevated in numerous liver diseases. Clinically, GP73 is strongly elevated in the serum of HCC patients and is thus regarded as a novel potential biomarker for HCC. However, the mechanism leading to GP73 dysregulation in liver diseases remains unknown. Results This study determined that epithelium-specific ETS (ESE)-1, an epithelium-specific transcription factor, and GP73 expressions were induced by IL-1β stimulation in vitro, and both were triggered during liver inflammation in vivo. In hepatocellular carcinoma cells, the overexpression of ESE-1 induced GP73 expression, whereas its knock-down did the opposite. Mechanistically, ESE-1 activated GP73 expression by directly binding to its promoter. Conclusions Our findings supported a novel paradigm for ESE-1 as a transcriptional mediator of GP73. This study provided a possible mechanism for GP73 upregulation in liver diseases. Electronic supplementary material The online version of this article (doi:10.1186/2045-3701-4-76) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Fang Wang
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530 China
| | - Qi Long
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530 China
| | - Yu Gong
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530 China ; Max Planck Institute for Molecular Biomedicine, Röntgenstraße 20, 48149 Münster, Germany
| | - Longbo Hu
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530 China
| | - Hong Zhang
- Guangzhou Overseas Chinese Hospital, Guangzhou, 510630 China
| | - Peter Oettgen
- Division of Immunology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts 02215 USA
| | - Tao Peng
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530 China ; Guangzhou Hoffmann Institute of Immunology, College of Basic Sciences, Guangzhou Medical University, Guangzhou, 510182 China
| |
Collapse
|
29
|
Solek CM, Oliveri P, Loza-Coll M, Schrankel CS, Ho EC, Wang G, Rast JP. An ancient role for Gata-1/2/3 and Scl transcription factor homologs in the development of immunocytes. Dev Biol 2013; 382:280-92. [DOI: 10.1016/j.ydbio.2013.06.019] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Revised: 06/07/2013] [Accepted: 06/12/2013] [Indexed: 12/30/2022]
|
30
|
Longoni N, Sarti M, Albino D, Civenni G, Malek A, Ortelli E, Pinton S, Mello-Grand M, Ostano P, D'Ambrosio G, Sessa F, Garcia-Escudero R, Thalmann GN, Chiorino G, Catapano CV, Carbone GM. ETS transcription factor ESE1/ELF3 orchestrates a positive feedback loop that constitutively activates NF-κB and drives prostate cancer progression. Cancer Res 2013; 73:4533-47. [PMID: 23687337 DOI: 10.1158/0008-5472.can-12-4537] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Chromosomal translocations leading to deregulated expression of ETS transcription factors are frequent in prostate tumors. Here, we report a novel mechanism leading to oncogenic activation of the ETS factor ESE1/ELF3 in prostate tumors. ESE1/ELF3 was overexpressed in human primary and metastatic tumors. It mediated transforming phenotypes in vitro and in vivo and induced an inflammatory transcriptome with changes in relevant oncogenic pathways. ESE1/ELF3 was induced by interleukin (IL)-1β through NF-κB and was a crucial mediator of the phenotypic and transcriptional changes induced by IL-1β in prostate cancer cells. This linkage was mediated by interaction of ESE1/ELF3 with the NF-κB subunits p65 and p50, acting by enhancing their nuclear translocation and transcriptional activity and by inducing p50 transcription. Supporting these findings, gene expression profiling revealed an enrichment of NF-κB effector functions in prostate cancer cells or tumors expressing high levels of ESE1/ELF3. We observed concordant upregulation of ESE1/ELF3 and NF-κB in human prostate tumors that was associated with adverse prognosis. Collectively, our results define an important new mechanistic link between inflammatory signaling and the progression of prostate cancer.
Collapse
Affiliation(s)
- Nicole Longoni
- Institute of Oncology Research (IOR), Oncology Institute of Southern Switzerland (IOSI), Bellinzona, Switzerland
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
de Andrés MC, Imagawa K, Hashimoto K, Gonzalez A, Roach HI, Goldring MB, Oreffo ROC. Loss of methylation in CpG sites in the NF-κB enhancer elements of inducible nitric oxide synthase is responsible for gene induction in human articular chondrocytes. ARTHRITIS AND RHEUMATISM 2013; 65:732-42. [PMID: 23239081 PMCID: PMC3937961 DOI: 10.1002/art.37806] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Accepted: 11/20/2012] [Indexed: 12/12/2022]
Abstract
OBJECTIVE To investigate whether the abnormal expression of inducible nitric oxide synthase (iNOS) by osteoarthritic (OA) human chondrocytes is associated with changes in the DNA methylation status in the promoter and/or enhancer elements of iNOS. METHODS Expression of iNOS was quantified by quantitative reverse transcriptase-polymerase chain reaction. The DNA methylation status of the iNOS promoter and enhancer regions was determined by bisulfite sequencing or pyrosequencing. The effect of CpG methylation on iNOS promoter and enhancer activities was determined using a CpG-free luciferase vector and a CpG methyltransferase. Cotransfections with expression vectors encoding NF-κB subunits were carried out to analyze iNOS promoter and enhancer activities in response to changes in methylation status. RESULTS The 1,000-bp iNOS promoter has only 7 CpG sites, 6 of which were highly methylated in both control and OA samples. The CpG site at -289 and the sites in the starting coding region were largely unmethylated in both groups. The NF-κB enhancer region at -5.8 kb was significantly demethylated in OA samples compared with control samples. This enhancer element was transactivated by cotransfection with the NF-κB subunit p65, alone or together with p50. Critically, methylation treatment of the iNOS enhancer element significantly decreased its activity in a reporter assay. CONCLUSION These findings demonstrate the association between demethylation of specific NF-κB-responsive enhancer elements and the activation of iNOS transactivation in human OA chondrocytes, consistent with the differences in methylation status observed in vivo in normal and human OA cartilage and, importantly, show association with the OA process.
Collapse
Affiliation(s)
- María C. de Andrés
- University of Southampton Medical School, Southampton, UK, and Hospitalario Universitario de Santiago, Santiago de Compostela, Spain
| | - Kei Imagawa
- University of Southampton Medical School, Southampton, UK
| | - Ko Hashimoto
- Hospital for Special Surgery and Weill Cornell Medical College, New York, New York
| | - Antonio Gonzalez
- Hospitalario Universitario de Santiago, Santiago de Compostela, Spain
| | | | - Mary B. Goldring
- Hospital for Special Surgery and Weill Cornell Medical College, New York, New York
| | | |
Collapse
|
32
|
ELF3 is a repressor of androgen receptor action in prostate cancer cells. Oncogene 2013; 33:862-71. [PMID: 23435425 DOI: 10.1038/onc.2013.15] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Revised: 12/10/2012] [Accepted: 12/14/2012] [Indexed: 12/19/2022]
Abstract
The androgen receptor (AR) has a critical role in the development and progression of prostate cancer (PC) and is a major therapeutic target in this disease. The transcriptional activity of AR is modulated by the coregulators with which it interacts, and consequently deregulation of cofactor expression and/or activity impacts the expression of genes whose products can have a role in PC pathogenesis. Here we report that E74-like factor 3 (ELF3), a member of the ETS family of transcription factors, is a repressor of AR transcriptional activity. Exogenous expression of ELF3 represses AR transcriptional activity when assessed using reporter-based transfection assays or when evaluated on endogenous AR target genes. Conversely, ELF3 knock down increases the AR transcriptional activity. Biochemical dissection of this activity indicates that it results from the physical interaction between ELF3 and AR and that this interaction inhibits the recruitment of AR to specific androgen response elements within target gene promoters. Significantly, we observed that depletion of ELF3 expression in LNCaP cells promotes cell migration, whereas increased ELF3 expression severely inhibits tumor growth in vitro and in a mouse xenograft model. Taken together, these results suggest that modulation of ELF3 expression and/or AR/ELF3 interaction may have utility in the treatment of PC.
Collapse
|
33
|
Danielsson K, Boldrup L, Rentoft M, Coates PJ, Ebrahimi M, Nylander E, Wahlin YB, Nylander K. Autoantibodies and decreased expression of the transcription factor ELF-3 together with increased chemokine pathways support an autoimmune phenotype and altered differentiation in lichen planus located in oral mucosa. J Eur Acad Dermatol Venereol 2012; 27:1410-6. [PMID: 23134363 DOI: 10.1111/jdv.12027] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
BACKGROUND The pathogenesis of oral lichen planus (OLP), a chronic inflammatory disease, is not fully understood. It is known that OLP has autoimmune features, and it is suggested to be an autoimmune disease. ELF-3 is involved in differentiation of keratinocytes and deregulated in different tumours and inflammatory diseases. CXCR-3 and its ligands CXCL-10 and CXCL-11 are increased in autoimmune diseases and linked to Th-1 immune response. OBJECTIVES To analyse and compare expression of ELF-3, CXCR-3, CXCL-10 and CXCL-11 in OLP lesions and controls in whole and microdissected epithelium. METHODS Tissue biopsies from 20 patients clinically and histologically diagnosed with OLP and 20 healthy controls were studied using whole tissues or microdissected epithelium. By the use of qRT-PCR, mRNA levels of ELF-3, CXCR-3, CXCL-10 and CXCL-11 were studied. Western blot was used for analysis of ELF-3 protein expression. Sera from 19 OLP patients and 20 controls were analysed with ELISA in search for autoantibodies. Results The upregulation of CXCR-3, CXCL-10 and CXCL-11 found in OLP is similar to previous findings showing an autoimmune phenotype in lichen planus (LP) and lichen sclerosus. Decreased expression of the differentiation-related transcription factor ELF-3 was also seen in OLP lesions, and we further demonstrate presence of circulating autoantibodies against the ELF-3 protein in sera from 3 of 19 (16%) LP patients tested. CONCLUSIONS On the basis of these findings, we confirm that OLP shows features of an autoimmune disease and suggest deregulated differentiation of keratinocytes to be one of the causes of the disease phenotype.
Collapse
Affiliation(s)
- K Danielsson
- Department of Odontology, Umeå UniversityDepartment of Medical Biosciences, Umeå University, Umeå, SwedenTayside Tissue Bank/Medical Research Institute, University of Dundee, Ninewells Hospital and Medical School, Dundee, UKDepartment of Clinical Medicine and Public Health/Dermatology and Venerology, Umeå University, Umeå, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Tanaka H, Sagisaka A, Fujita K, Furukawa S, Ishibashi J, Yamakawa M. BmEts upregulates promoter activity of lebocin in Bombyx mori. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2012; 42:474-481. [PMID: 22484450 DOI: 10.1016/j.ibmb.2012.03.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Revised: 03/15/2012] [Accepted: 03/20/2012] [Indexed: 05/31/2023]
Abstract
The Ets family protein BmEts is assumed to be implicated in determination of diapause in the embryogenesis of Bombyx mori. In this study, we found that expression of BmEts was increased in the fat body and other tissues of the 5th instar larvae in response to Escherichia coli injection. Cotransfection experiments using a silkworm cell line revealed that overexpression of BmEts significantly elevated the activity of lebocin promoter but not of cecropin B1, cecropin D, attacin, and moricin promoters. Activation of the lebocin promoter by BmEts was dependent on at least two κB elements and the most proximal GGAA/T motif located on the 5'-upstream region. BmEts further synergistically enhanced E. coli or BmRelish1-d2 (active form)-stimulated lebocin promoter activation. Two κB elements were also found to be involved in promoter activation by BmRelish1-d2 and in synergistic promoter activation by BmEts and BmRelish1-d2 in the silkworm cells. Specific binding of recombinant BmEts to the proximal κB element and the most proximal GGAA/T motif and interaction between BmEts and BmRelish1 were also observed. To our knowledge, this is the first report of an Ets family protein directly regulating immune-related genes in invertebrates.
Collapse
Affiliation(s)
- Hiromitsu Tanaka
- Insect Mimetics Research Unit, National Institute of Agrobiological Sciences, 1-2 Owashi, Tsukuba, Ibaraki 305-8634, Japan.
| | | | | | | | | | | |
Collapse
|
35
|
Chung JW, Choi RJ, Seo EK, Nam JW, Dong MS, Shin EM, Guo LY, Kim YS. Anti-inflammatory effects of (Z)-ligustilide through suppression of mitogen-activated protein kinases and nuclear factor-κB activation pathways. Arch Pharm Res 2012; 35:723-32. [PMID: 22553066 DOI: 10.1007/s12272-012-0417-z] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2011] [Revised: 09/29/2011] [Accepted: 10/23/2011] [Indexed: 11/28/2022]
Abstract
The roots of Angelica tenuissima have been commonly used for the treatment of cardiovascular diseases and menstrual discomfort in Asian countries, such as China and Korea. The primary volatile flavor components are essential oil ingredients, phthalide lactones. In this study, (Z)-ligustilide was tested for its anti-inflammatory activities in lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages. We found that (Z)-ligustilide strongly inhibitis the induction of LPS-induced inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) at both the mRNA and protein levels in a dose-dependent manner. The transcriptional activity of nuclear factor kappa B (NF-B) was also down-regulated in a concentration-dependent manner. Further study revealed that (Z)-ligustilide inhibited the phosphorylation and subsequent degradation of IBα, an inhibitor protein of NF-B. In addition, (Z)-ligustilide inhibited the phosphorylation of p38 mitogen-activated protein kinase (p38 MAPK), extracellular signal-regulated kinase (ERK) and c-Jun NH(2)-terminal kinase (JNK) in a dose-dependent manner. Taken together, these data suggest that (Z)-ligustilide can exert its antiinflammatory effects by regulating the NF-B and MAPK signal pathways.
Collapse
Affiliation(s)
- Ji Won Chung
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul, 151-742, Korea
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Mohan M, Kaushal D, Aye PP, Alvarez X, Veazey RS, Lackner AA. Focused examination of the intestinal lamina propria yields greater molecular insight into mechanisms underlying SIV induced immune dysfunction. PLoS One 2012; 7:e34561. [PMID: 22511950 PMCID: PMC3325268 DOI: 10.1371/journal.pone.0034561] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2011] [Accepted: 03/05/2012] [Indexed: 12/12/2022] Open
Abstract
Background The Gastrointestinal (GI) tract is critical to AIDS pathogenesis as it is the primary site for viral transmission and a major site of viral replication and CD4+ T cell destruction. Consequently GI disease, a major complication of HIV/SIV infection can facilitate translocation of lumenal bacterial products causing localized/systemic immune activation leading to AIDS progression. Methodology/Principal Findings To better understand the molecular mechanisms underlying GI disease we analyzed global gene expression profiles sequentially in the intestine of the same animals prior to and at 21 and 90d post SIV infection (PI). More importantly we maximized information gathering by examining distinct mucosal components (intraepithelial lymphocytes, lamina propria leukocytes [LPL], epithelium and fibrovascular stroma) separately. The use of sequential intestinal resections combined with focused examination of distinct mucosal compartments represents novel approaches not previously attempted. Here we report data pertaining to the LPL. A significant increase (±1.7-fold) in immune defense/inflammation, cell adhesion/migration, cell signaling, transcription and cell division/differentiation genes were observed at 21 and 90d PI. Genes associated with the JAK-STAT pathway (IL21, IL12R, STAT5A, IL10, SOCS1) and T-cell activation (NFATc1, CDK6, Gelsolin, Moesin) were notably upregulated at 21d PI. Markedly downregulated genes at 21d PI included IL17D/IL27 and IL28B/IFNγ3 (anti-HIV/viral), activation induced cytidine deaminase (B-cell function) and approximately 57 genes regulating oxidative phosphorylation, a critical metabolic shift associated with T-cell activation. The 90d transcriptome revealed further augmentation of inflammation (CXCL11, chitinase-1, JNK3), immune activation (CD38, semaphorin7A, CD109), B-cell dysfunction (CD70), intestinal microbial translocation (Lipopolysaccharide binding protein) and mitochondrial antiviral signaling (NLRX1) genes. Reduced expression of CD28, CD4, CD86, CD93, NFATc1 (T-cells), TLR8, IL8, CCL18, DECTIN1 (macrophages), HLA-DOA and GPR183 (B-cells) at 90d PI suggests further deterioration of overall immune function. Conclusions/Significance The reported transcriptional signatures provide significant new details on the molecular pathology of HIV/SIV induced GI disease and provide new opportunity for future investigation.
Collapse
Affiliation(s)
- Mahesh Mohan
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, Louisiana, United States of America
| | - Deepak Kaushal
- Division of Bacteriology and Parasitology, Tulane National Primate Research Center, Covington, Louisiana, United States of America
| | - Pyone P. Aye
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, Louisiana, United States of America
| | - Xavier Alvarez
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, Louisiana, United States of America
| | - Ronald S. Veazey
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, Louisiana, United States of America
| | - Andrew A. Lackner
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, Louisiana, United States of America
- * E-mail:
| |
Collapse
|
37
|
Multiple roles of the epithelium-specific ETS transcription factor, ESE-1, in development and disease. J Transl Med 2012; 92:320-30. [PMID: 22157719 DOI: 10.1038/labinvest.2011.186] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The E26 transformation-specific (ETS) family of transcription factors comprises of 27 and 26 members in humans and mice, respectively, which are known to regulate many different biological processes, including cell proliferation, cell differentiation, embryonic development, neoplasia, hematopoiesis, angiogenesis, and inflammation. The epithelium-specific ETS transcription factor-1 (ESE-1) is a physiologically important ETS transcription factor, which has been shown to play a role in the pathogenesis of various diseases, and was originally characterized as having an epithelial-restricted expression pattern, thus placing it within the epithelium-specific ETS subfamily. Despite a large body of published work on ETS biology, much remains to be learned about the precise functions of ESE-1 and other epithelium-specific ETS factors in regulating diverse disease processes. Clues as to the specific function of ESE-1 in the setting of various diseases can be obtained from studies aimed at examining the expression of putative target genes regulated by ESE-1. Thus, this review will focus primarily on the various roles of ESE-1 in different pathophysiological processes, including regulation of epithelial cell differentiation during both intestinal development and lung regeneration; regulation of dendritic cell-driven T-cell differentiation during allergic airway inflammation; regulation of mammary gland development and breast cancer; and regulation of the effects of inflammatory stimuli within the setting of synovial joint and vascular inflammation. Understanding the exact mechanisms by which ESE-1 regulates these processes can have important implications for the treatment of a wide range of diseases.
Collapse
|
38
|
Dryden NH, Sperone A, Martin-Almedina S, Hannah RL, Birdsey GM, Khan ST, Layhadi JA, Mason JC, Haskard DO, Göttgens B, Randi AM. The transcription factor Erg controls endothelial cell quiescence by repressing activity of nuclear factor (NF)-κB p65. J Biol Chem 2012; 287:12331-42. [PMID: 22337883 PMCID: PMC3320982 DOI: 10.1074/jbc.m112.346791] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The interaction of transcription factors with specific DNA sequences is critical for activation of gene expression programs. In endothelial cells (EC), the transcription factor NF-κB is important in the switch from quiescence to activation, and is tightly controlled to avoid excessive inflammation and organ damage. Here we describe a novel mechanism that controls the activation of NF-κB in EC. The transcription factor Erg, the most highly expressed ETS member in resting EC, controls quiescence by repressing proinflammatory gene expression. Focusing on intercellular adhesion molecule 1(ICAM)-1 as a model, we identify two ETS binding sites (EBS −118 and −181) within the ICAM-1 promoter required for Erg-mediated repression. We show that Erg binds to both EBS −118 and EBS −181, the latter located within the NF-κB binding site. Interestingly, inhibition of Erg expression in quiescent EC results in increased NF-κB-dependent ICAM-1 expression, indicating that Erg represses basal NF-κB activity. Erg prevents NF-κB p65 from binding to the ICAM-1 promoter, suggesting a direct mechanism of interference. Gene set enrichment analysis of transcriptome profiles of Erg and NF-κB-dependent genes, together with chromatin immunoprecipitation (ChIP) studies, reveals that this mechanism is common to other proinflammatory genes, including cIAP-2 and IL-8. These results identify a role for Erg as a gatekeeper controlling vascular inflammation, thus providing an important barrier to protect against inappropriate endothelial activation.
Collapse
Affiliation(s)
- Nicola H Dryden
- National Heart and Lung Institute Cardiovascular Sciences Unit, Hammersmith Hospital, Imperial College London, London W12 0NN, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Yuan L, Le Bras A, Sacharidou A, Itagaki K, Zhan Y, Kondo M, Carman CV, Davis GE, Aird WC, Oettgen P. ETS-related gene (ERG) controls endothelial cell permeability via transcriptional regulation of the claudin 5 (CLDN5) gene. J Biol Chem 2012; 287:6582-91. [PMID: 22235125 DOI: 10.1074/jbc.m111.300236] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
ETS-related gene (ERG) is a member of the ETS transcription factor family. Our previous studies have shown that ERG expression is highly enriched in endothelial cells (EC) both in vitro and in vivo. ERG expression is markedly repressed in response to inflammatory stimuli. It has been shown that ERG is a positive regulator of several EC-restricted genes including VE-cadherin, endoglin, and von Willebrand factor, and a negative regulator of other genes such as interleukin (IL)-8 and intercellular adhesion molecule (ICAM)-1. In this study we have identified a novel role for ERG in the regulation of EC barrier function. ERG knockdown results in marked increases in EC permeability. This is associated with a significant increase of stress fiber and gap formation in EC. Furthermore, we identify CLDN5 as a downstream target of ERG in EC. Thus, our results suggest that ERG plays a pivotal role in regulating EC barrier function and that this effect is mediated in part through its regulation of CLDN5 gene expression.
Collapse
Affiliation(s)
- Lei Yuan
- Division of Cardiology, Harvard Medical School, Boston, Massachusetts 02215, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Otero M, Plumb DA, Tsuchimochi K, Dragomir CL, Hashimoto K, Peng H, Olivotto E, Bevilacqua M, Tan L, Yang Z, Zhan Y, Oettgen P, Li Y, Marcu KB, Goldring MB. E74-like factor 3 (ELF3) impacts on matrix metalloproteinase 13 (MMP13) transcriptional control in articular chondrocytes under proinflammatory stress. J Biol Chem 2011; 287:3559-72. [PMID: 22158614 DOI: 10.1074/jbc.m111.265744] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Matrix metalloproteinase (MMP)-13 has a pivotal, rate-limiting function in cartilage remodeling and degradation due to its specificity for cleaving type II collagen. The proximal MMP13 promoter contains evolutionarily conserved E26 transformation-specific sequence binding sites that are closely flanked by AP-1 and Runx2 binding motifs, and interplay among these and other factors has been implicated in regulation by stress and inflammatory signals. Here we report that ELF3 directly controls MMP13 promoter activity by targeting an E26 transformation-specific sequence binding site at position -78 bp and by cooperating with AP-1. In addition, ELF3 binding to the proximal MMP13 promoter is enhanced by IL-1β stimulation in chondrocytes, and the IL-1β-induced MMP13 expression is inhibited in primary human chondrocytes by siRNA-ELF3 knockdown and in chondrocytes from Elf3(-/-) mice. Further, we found that MEK/ERK signaling enhances ELF3-driven MMP13 transactivation and is required for IL-1β-induced ELF3 binding to the MMP13 promoter, as assessed by chromatin immunoprecipitation. Finally, we show that enhanced levels of ELF3 co-localize with MMP13 protein and activity in human osteoarthritic cartilage. These studies define a novel role for ELF3 as a procatabolic factor that may contribute to cartilage remodeling and degradation by regulating MMP13 gene transcription.
Collapse
Affiliation(s)
- Miguel Otero
- Laboratory for Cartilage Biology, Research Division, the Hospital for Special Surgery, Weill Cornell Medical College, New York, New York 10021, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Jiang Z, Okimura T, Yamaguchi K, Oda T. The potent activity of sulfated polysaccharide, ascophyllan, isolated from Ascophyllum nodosum to induce nitric oxide and cytokine production from mouse macrophage RAW264.7 cells: Comparison between ascophyllan and fucoidan. Nitric Oxide 2011; 25:407-15. [PMID: 22024029 DOI: 10.1016/j.niox.2011.10.001] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Revised: 10/05/2011] [Accepted: 10/06/2011] [Indexed: 11/25/2022]
Abstract
Ascophyllan isolated from the brown alga Ascophyllum nodosum is a fucose-containing sulfated polysaccharide, which has similar but distinct characteristic monosaccharide composition and entire chemical structure to fucoidan. In this study, we examined the effects of ascophyllan, fucoidan isolated from A. nodosum (A-fucoidan), and fucoidan from Sigma (S-fucoidan) as a representative fucoidan derived from other source (Fucus vesiculosus) on mouse macrophage cell line RAW264.7 cells. No significant cytotoxic effects of ascophyllan and A-fucoidan on RAW264.7 cells were observed up to 1000μg/ml, while S-fucoidan showed cytotoxic effect in a concentration-dependent manner. Ascophyllan induced extremely higher level of nitric oxide (NO) production from RAW264.7 cells than those induced by fucoidans over the concentration range tested (0-200μg/ml). Reverse transcription polymerase chain reaction (RT-PCR) and western blot analysis revealed that expression level of inducible NO synthase (iNOS) in ascophyllan-treated RAW264.7 cells was much higher than the levels detected in the cells treated with fucoidans. Furthermore, the activities of ascophyllan to induce the secretion of tumor necrosis factor-α (TNF-α) and granulocyte colony-stimulating factor (G-CSF) from RAW264.7 cells were also greater than those induced by fucoidans especially at lower concentration range (3.1-50μg/ml). The activities of ascophyllan to induce NO and cytokine production in mouse peritoneal macrophages were also stronger than those of fucoidans. Electrophoretic mobility shift assay (EMSA) using infrared dye labeled nuclear factor-kappa B (NF-κB) and AP-1 consensus sequences suggested that ascophyllan can strongly activate these transcription factors. Marked increase in the nuclear translocation of p65, and the phosphorylation and degradation of IκB-α were also observed in ascophyllan-treated RAW264.7 cells. Analysis using mitogen-activated protein (MAP) kinase inhibitors and western blot analysis suggested that c-Jun N-terminal kinase (JNK) and p38 MAP kinase are mainly involved in ascophyllan-induced NO production.
Collapse
Affiliation(s)
- Zedong Jiang
- Graduate School of Science and Technology, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| | | | | | | |
Collapse
|
42
|
Elf3 plays a role in regulating bronchiolar epithelial repair kinetics following Clara cell-specific injury. J Transl Med 2011; 91:1514-29. [PMID: 21709667 DOI: 10.1038/labinvest.2011.100] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
E74-like transcription factor-3 (Elf3), a member of the E26 transformation-specific transcription factor family, is strongly expressed in epithelial-rich tissues, such as small intestine, fetal lung, and various lung cancers. Although previous studies have shown a defect in terminal differentiation of the small intestinal epithelium of Elf3-deficient (Elf3-/-) mice during embryonic development, very little is known about the role Elf3 may play in repair of the airway epithelium after injury. In order to investigate whether Elf3 is involved in regeneration of the bronchiolar epithelium after Clara cell-specific injury, we administered naphthalene to both wild-type (Elf3+/+) and Elf3-/- mice. Histopathological analysis revealed no significant difference in the extent of naphthalene-induced Clara cell necrosis between Elf3+/+ mice and Elf3-/- mice. In the bronchiolar epithelium of Elf3-/- mice, there was a substantial delay in the kinetics of cell proliferation and mitosis along with Clara cell renewal, whereas in the peribronchiolar interstitium, there was a significantly greater level of cell proliferation and mitosis in Elf3-/- mice than in Elf3+/+ mice. Last, the intensity of immunopositive signal for transforming growth factor-β type II receptor, which is a well-known transcriptional target gene of Elf3 and involved in the induction of epithelial cell differentiation, was significantly lower in the bronchiolar epithelium of Elf3-/- mice when compared with Elf3+/+ mice. Taken together, our results suggest that Elf3 plays an important role in the regulation of lung cell proliferation and differentiation during repair of the injured bronchiolar airway epithelium.
Collapse
|
43
|
Goldring MB, Otero M, Plumb DA, Dragomir C, Favero M, El Hachem K, Hashimoto K, Roach HI, Olivotto E, Borzì RM, Marcu KB, Marcu KB. Roles of inflammatory and anabolic cytokines in cartilage metabolism: signals and multiple effectors converge upon MMP-13 regulation in osteoarthritis. Eur Cell Mater 2011; 21:202-20. [PMID: 21351054 PMCID: PMC3937960 DOI: 10.22203/ecm.v021a16] [Citation(s) in RCA: 354] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Human cartilage is a complex tissue of matrix proteins that vary in amount and orientation from superficial to deep layers and from loaded to unloaded zones. A major challenge to efforts to repair cartilage by stem cell-based and other tissue engineering strategies is the inability of the resident chondrocytes to lay down new matrix with the same structural and resilient properties that it had upon its original formation. This is particularly true of the collagen network, which is susceptible to cleavage once proteoglycans are depleted. Thus, a thorough understanding of the similarities and particularly the marked differences in mechanisms of cartilage remodeling during development, osteoarthritis, and aging may lead to more effective strategies for preventing cartilage damage and promoting repair. To identify and characterize effectors or regulators of cartilage remodeling in these processes, we are using culture models of primary human and mouse chondrocytes and cell lines and mouse genetic models to manipulate gene expression programs leading to matrix remodeling and subsequent chondrocyte hypertrophic differentiation, pivotal processes which both go astray in OA disease. Matrix metalloproteinases (MMP)-13, the major type II collagen-degrading collagenase, is regulated by stress-, inflammation-, and differentiation-induced signals that not only contribute to irreversible joint damage (progression) in OA, but importantly, also to the initiation/onset phase, wherein chondrocytes in articular cartilage leave their natural growth- and differentiation-arrested state. Our work points to common mediators of these processes in human OA cartilage and in early through late stages of OA in surgical and genetic mouse models.
Collapse
Affiliation(s)
- Mary B. Goldring
- Tissue Engineering, Regeneration, and Repair Program, Research Division, The Hospital for Special Surgery, Weill Cornell Medical College, New York, NY 10021, USA,Address for correspondence: Mary B. Goldring, 535 East 70th Street, Caspary Research Building, 5th Floor, New York, NY 10021. USA,
| | - Miguel Otero
- Tissue Engineering, Regeneration, and Repair Program, Research Division, The Hospital for Special Surgery, Weill Cornell Medical College, New York, NY 10021, USA
| | - Darren A. Plumb
- Tissue Engineering, Regeneration, and Repair Program, Research Division, The Hospital for Special Surgery, Weill Cornell Medical College, New York, NY 10021, USA
| | - Cecilia Dragomir
- Tissue Engineering, Regeneration, and Repair Program, Research Division, The Hospital for Special Surgery, Weill Cornell Medical College, New York, NY 10021, USA
| | - Marta Favero
- Tissue Engineering, Regeneration, and Repair Program, Research Division, The Hospital for Special Surgery, Weill Cornell Medical College, New York, NY 10021, USA
| | - Karim El Hachem
- Tissue Engineering, Regeneration, and Repair Program, Research Division, The Hospital for Special Surgery, Weill Cornell Medical College, New York, NY 10021, USA
| | - Ko Hashimoto
- Tissue Engineering, Regeneration, and Repair Program, Research Division, The Hospital for Special Surgery, Weill Cornell Medical College, New York, NY 10021, USA
| | | | - Eleonora Olivotto
- Laboratorio di Immunoreumatologia e Rigenerazione Tissutale, Istituti Ortopedia Rizzoli, 40136 Bologna, Italy
| | - Rosa Maria Borzì
- Laboratorio di Immunoreumatologia e Rigenerazione Tissutale, Istituti Ortopedia Rizzoli, 40136 Bologna, Italy
| | - Kenneth B. Marcu
- Laboratorio di Immunoreumatologia e Rigenerazione Tissutale, Istituti Ortopedia Rizzoli, 40136 Bologna, Italy,Biochemistry and Cell Biology Dept., Stony Brook University, Stony Brook, NY, 11794-5215, USA
| | | |
Collapse
|
44
|
Ratovitski EA. ΔNp63α/IRF6 interplay activates NOS2 transcription and induces autophagy upon tobacco exposure. Arch Biochem Biophys 2011; 506:208-15. [PMID: 21129360 DOI: 10.1016/j.abb.2010.11.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2010] [Revised: 11/05/2010] [Accepted: 11/24/2010] [Indexed: 12/31/2022]
Abstract
Tobacco-induced oxidative stress leads to chronic inflammation and is implicated in the development of many human epithelial cancers, including head and neck cancer. Cigarette smoke exposure was shown to induce the expression of the ΔNp63α and nitric oxide synthase (NOS)-2 in head and neck squamous cell carcinoma cells and immortalized oral keratinocytes. The NOS2 promoter was found to contain various cognate sequences for several transcription factors including interferon regulatory factor (IRF)-6 and p63, which were shown in vivo binding to the NOS2 promoter in response to smoke exposure. Small interfering (si)-RNAs against both ΔNp63α and IRF6 decreased the induction of NOS2 promoter-driven reporter luciferase activity and were shown to inhibit NOS2 activity. Furthermore, both mainstream (MSE) and sidestream (SSE) smoking extracts induced changes in expression of autophagic marker, LC3B, while siRNA against ΔNp63α, IRF6 and NOS2 modulated these autophagic changes. Overall, these data support the notion that ΔNp63α/IRF6 interplay regulates NOS2 transcription, thereby underlying the autophagic-related cancer cell response to tobacco exposure.
Collapse
Affiliation(s)
- Edward A Ratovitski
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA.
| |
Collapse
|
45
|
Andy Chen CC, Ferreri NR. Epithelium-specific ETS-1: a counter-regulatory factor against vascular dysfunction and inflammation. Am J Hypertens 2010; 23:1252. [PMID: 21079584 DOI: 10.1038/ajh.2010.190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
46
|
Zhan Y, Yuan L, Kondo M, Oettgen P. The counter-regulatory effects of ESE-1 during angiotensin II-mediated vascular inflammation and remodeling. Am J Hypertens 2010; 23:1312-7. [PMID: 20689519 DOI: 10.1038/ajh.2010.164] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Angiotensin II (Ang II) is a critical mediator vascular inflammation and remodeling in a number of diseases including hypertension and atherosclerosis. The purpose of this study was to evaluate the role of the epithelium-specific ETS transcription factor-1 (ESE-1), a member of E26 transformation-specific sequence (ETS) transcription factors, as a mediator of Ang II-mediated vascular responses. METHODS ESE-1 knockout mice were used to evaluate the role of ESE-1 in regulating Ang II-mediated vascular inflammation and remodeling. RESULTS ESE-1 levels are low to undetectable under basal conditions but rapidly increase in response to Ang II. Intimal medial thickness and perivascular fibrosis of the aorta were significantly greater in ESE-1 knockout mice compared with the wild-type littermate controls. Proliferating cell nuclear antigen (PCNA) staining was also greater in the aorta of the Ang II-infused ESE-1 knockout mice compared with the controls. The infiltration of T cells and macrophage into the vessel wall of the aorta was dramatically enhanced in the ESE-1 knockout mice compared with the controls. Finally, Ang II-induced expression of a known downstream target of ESE-1, nitric oxide synthase 2 (NOS2), was significantly blunted in ESE-1 knockout mice compared to littermate controls. The alterations in vascular inflammation and remodeling were associated with an exaggerated systolic blood pressure response to Ang II in ESE-1 knockout mice. CONCLUSIONS ESE-1 is an Ang II-inducible transcription factor that plays an important counter-regulatory role in the setting of vascular inflammation and remodeling.
Collapse
|
47
|
Pautz A, Art J, Hahn S, Nowag S, Voss C, Kleinert H. Regulation of the expression of inducible nitric oxide synthase. Nitric Oxide 2010; 23:75-93. [PMID: 20438856 DOI: 10.1016/j.niox.2010.04.007] [Citation(s) in RCA: 393] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2010] [Accepted: 04/23/2010] [Indexed: 12/13/2022]
Abstract
Nitric oxide (NO) generated by the inducible isoform of nitric oxide synthase (iNOS) is involved in complex immunomodulatory and antitumoral mechanisms and has been described to have multiple beneficial microbicidal, antiviral and antiparasital effects. However, dysfunctional induction of iNOS expression seems to be involved in the pathophysiology of several human diseases. Therefore iNOS has to be regulated very tightly. Modulation of expression, on both the transcriptional and post-transcriptional level, is the major regulation mechanism for iNOS. Pathways resulting in the induction of iNOS expression vary in different cells or species. Activation of the transcription factors NF-kappaB and STAT-1alpha and thereby activation of the iNOS promoter seems to be an essential step for the iNOS induction in most human cells. However, at least in the human system, also post-transcriptional mechanisms involving a complex network of RNA-binding proteins build up by AUF1, HuR, KSRP, PTB and TTP is critically involved in the regulation of iNOS expression. Recent data also implicate regulation of iNOS expression by non-coding RNAs (ncRNAs).
Collapse
Affiliation(s)
- Andrea Pautz
- Department of Pharmacology, University Medical Center of the Johannes Gutenberg University Mainz, D-55101 Mainz, Germany
| | | | | | | | | | | |
Collapse
|
48
|
Marcu KB, Otero M, Olivotto E, Borzi RM, Goldring MB. NF-kappaB signaling: multiple angles to target OA. Curr Drug Targets 2010; 11:599-613. [PMID: 20199390 PMCID: PMC3076145 DOI: 10.2174/138945010791011938] [Citation(s) in RCA: 453] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2009] [Accepted: 12/10/2009] [Indexed: 11/22/2022]
Abstract
In the context of OA disease, NF-kappaB transcription factors can be triggered by a host of stress-related stimuli including pro-inflammatory cytokines, excessive mechanical stress and ECM degradation products. Activated NF-kappaB regulates the expression of many cytokines and chemokines, adhesion molecules, inflammatory mediators, and several matrix degrading enzymes. NF-kappaB also influences the regulated accumulation and remodeling of ECM proteins and has indirect positive effects on downstream regulators of terminal chondrocyte differentiation (including beta-catenin and Runx2). Although driven partly by pro-inflammatory and stress-related factors, OA pathogenesis also involves a "loss of maturational arrest" that inappropriately pushes chondrocytes towards a more differentiated, hypertrophic-like state. Growing evidence points to NF-kappaB signaling as not only playing a central role in the pro-inflammatory stress-related responses of chondrocytes to extra- and intra-cellular insults, but also in the control of their differentiation program. Thus unlike other signaling pathways the NF-kappaB activating kinases are potential therapeutic OA targets for multiple reasons. Targeted strategies to prevent unwanted NF-kappaB activation in this context, which do not cause side effects on other proteins or signaling pathways, need to be focused on the use of highly specific drug modalities, siRNAs or other biological inhibitors that are targeted to the activating NF-kappaB kinases IKKalpha or IKKbeta or specific activating canonical NF-kappaB subunits. However, work remains in its infancy to evaluate the effects of efficacious, targeted NF-kappaB inhibitors in animal models of OA disease in vivo and to also target these strategies only to affected cartilage and joints to avoid other undesirable systemic effects.
Collapse
Affiliation(s)
- Kenneth B. Marcu
- Biochemistry and Cell Biology Department, Stony Brook University, Stony Brook, NY 11794, USA
- Department of Immunology and Genetics, Rizzoli Orthopedic Institute, 40136 Bologna, Italy
| | - Miguel Otero
- Research Division, Hospital for Special Surgery, Weill Cornell Medical College, Caspary Research Building, 535 E. 70th Street, New York, NY 10021, USA
| | - Eleonora Olivotto
- Department of Immunology and Genetics, Rizzoli Orthopedic Institute, 40136 Bologna, Italy
| | - Rosa Maria Borzi
- Department of Immunology and Genetics, Rizzoli Orthopedic Institute, 40136 Bologna, Italy
| | - Mary B. Goldring
- Research Division, Hospital for Special Surgery, Weill Cornell Medical College, Caspary Research Building, 535 E. 70th Street, New York, NY 10021, USA
| |
Collapse
|
49
|
Agarkar VB, Babayeva ND, Wilder PJ, Rizzino A, Tahirov TH. Crystal structure of mouse Elf3 C-terminal DNA-binding domain in complex with type II TGF-beta receptor promoter DNA. J Mol Biol 2010; 397:278-89. [PMID: 20079749 DOI: 10.1016/j.jmb.2010.01.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2009] [Revised: 01/05/2010] [Accepted: 01/06/2010] [Indexed: 12/21/2022]
Abstract
The Ets family of transcription factors is composed of more than 30 members. One of its members, Elf3, is expressed in virtually all epithelial cells as well as in many tumors, including breast tumors. Several studies observed that the promoter of the type II TGF-beta receptor gene (TbetaR-II) is strongly stimulated by Elf3 via two adjacent Elf3 binding sites, the A-site and the B-site. Here, we report the 2.2 A resolution crystal structure of a mouse Elf3 C-terminal fragment, containing the DNA-binding Ets domain, in complex with the B-site of mouse type II TGF-beta receptor promoter DNA (mTbetaR-II(DNA)). Elf3 contacts the core GGAA motif of the B-site from a major groove similar to that of known Ets proteins. However, unlike other Ets proteins, Elf3 also contacts sequences of the A-site from the minor groove of the DNA. DNA binding experiments and cell-based transcription studies indicate that minor groove interaction by Arg349 located in the Ets domain is important for Elf3 function. Equally interesting, previous studies have shown that the C-terminal region of Elf3, which flanks the Ets domain, is required for Elf3 binding to DNA. In this study, we determined that Elf3 amino acid residues within this flanking region, including Trp361, are important for the structural integrity of the protein as well as for the Efl3 DNA binding and transactivation activity.
Collapse
Affiliation(s)
- Vinod B Agarkar
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, 987696 Nebraska Medical Center, Omaha, NE 68198-7696, USA
| | | | | | | | | |
Collapse
|
50
|
Abstract
Transcription factors of the ETS family are important regulators of endothelial gene expression. Here, we review the evidence that ETS factors regulate angiogenesis and briefly discuss the target genes and pathways involved. Finally, we discuss novel evidence that shows how these transcription factors act in a combinatorial fashion with others, through composite sites that may be crucial in determining endothelial specificity in gene transcription.
Collapse
|