1
|
Mijanović L, Putar D, Mimica L, Klajn S, Filić V, Weber I. The IQGAP-related RasGAP IqgC regulates cell-substratum adhesion in Dictyostelium discoideum. Cell Mol Biol Lett 2025; 30:4. [PMID: 39789437 PMCID: PMC11720917 DOI: 10.1186/s11658-024-00678-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 12/11/2024] [Indexed: 01/12/2025] Open
Abstract
Proper adhesion of cells to their environment is essential for the normal functioning of single cells and multicellular organisms. To attach to the extracellular matrix (ECM), mammalian cells form integrin adhesion complexes consisting of many proteins that together link the ECM and the actin cytoskeleton. Similar to mammalian cells, the amoeboid cells of the protist Dictyostelium discoideum also use multiprotein adhesion complexes to control their attachment to the underlying surface. However, the exact composition of the multiprotein complexes and the signaling pathways involved in the regulation of adhesion in D. discoideum have not yet been elucidated. Here, we show that the IQGAP-related protein IqgC is important for normal attachment of D. discoideum cells to the substratum. Mutant iqgC-null cells have impaired adhesion, whereas overexpression of IqgC promotes directional migration. A RasGAP C-terminal (RGCt) domain of IqgC is sufficient for its localization in the ventral adhesion focal complexes, while RasGAP activity of a GAP-related domain (GRD) is additionally required for the proper function of IqgC in adhesion. We identify the small GTPase RapA as a novel direct IqgC interactor and show that IqgC participates in a RapA-regulated signaling pathway targeting the adhesion complexes that include talin A, myosin VII, and paxillin B. On the basis of our results, we propose that IqgC is a positive regulator of adhesion, responsible for the strengthening of ventral adhesion structures and for the temporal control of their subsequent degradation.
Collapse
Affiliation(s)
- Lucija Mijanović
- Department of Molecular Biology, Ruđer Bošković Institute, 10000, Zagreb, Croatia
| | - Darija Putar
- Department of Molecular Biology, Ruđer Bošković Institute, 10000, Zagreb, Croatia
| | - Lucija Mimica
- Department of Molecular Biology, Ruđer Bošković Institute, 10000, Zagreb, Croatia
| | - Sabina Klajn
- Department of Molecular Biology, Ruđer Bošković Institute, 10000, Zagreb, Croatia
| | - Vedrana Filić
- Department of Molecular Biology, Ruđer Bošković Institute, 10000, Zagreb, Croatia
| | - Igor Weber
- Department of Molecular Biology, Ruđer Bošković Institute, 10000, Zagreb, Croatia.
| |
Collapse
|
2
|
Munoz-Ruiz R, Lamrabet O, Jauslin T, Guilhen C, Bourbon A, Cosson P. Antibacterial effectors in Dictyostelium discoideum: specific activity against different bacterial species. mSphere 2024; 9:e0047124. [PMID: 39377588 PMCID: PMC11520349 DOI: 10.1128/msphere.00471-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 09/10/2024] [Indexed: 10/09/2024] Open
Abstract
Dictyostelium discoideum is a phagocytic amoeba continuously eating, killing, and digesting bacteria. Previous studies have detected in D. discoideum cell extracts a bacteriolytic activity effective against Klebsiella pneumoniae bacteria. In this study, we characterized bacteriolytic activities found in D. discoideum cell extracts against five different bacteria (K. pneumoniae, Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, and Bacillus subtilis). We first analyzed the bacteriolytic activity against these five bacteria in parallel over a range of pH values. We then measured the remaining bacteriolytic activity in D. discoideum kil1 and modA knockout mutants. We also performed partial fractionation of D. discoideum extracts and assessed activity against different bacteria. Together our results indicate that optimal bacteriolytic activity against different bacteria results from the action of different effectors. Proteomic analysis allowed us to propose a list of potential bacteriolytic effectors.IMPORTANCEMany antibacterial effectors have been characterized over the past decades, and their biological importance, mode of action, and specificity are often still under study. Here we characterized in vitro bacteriolytic activity in D. discoideum extracts against five species of Gram-negative and Gram-positive bacteria. Our results reveal that optimal lysis of different bacteria mobilizes different effectors. Proteomic analysis generated a list of potential bacteriolytic effectors. This work opens the way for future analysis of the role of individual effectors in living D. discoideum cells.
Collapse
Affiliation(s)
- Raphael Munoz-Ruiz
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Otmane Lamrabet
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Tania Jauslin
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Cyril Guilhen
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Alixia Bourbon
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Pierre Cosson
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
3
|
Fakhari S, Belleannée C, Charrette SJ, Greener J. A Microfluidic Design for Quantitative Measurements of Shear Stress-Dependent Adhesion and Motion of Dictyostelium discoideum Cells. Biomimetics (Basel) 2024; 9:657. [PMID: 39590229 PMCID: PMC11592243 DOI: 10.3390/biomimetics9110657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 10/23/2024] [Accepted: 10/25/2024] [Indexed: 11/28/2024] Open
Abstract
Shear stress plays a crucial role in modulating cell adhesion and signaling. We present a microfluidic shear stress generator used to investigate the adhesion dynamics of Dictyostelium discoideum, an amoeba cell model organism with well-characterized adhesion properties. We applied shear stress and tracked cell adhesion, motility, and detachment using time-lapse videomicroscopy. In the precise shear conditions generated on-chip, our results show cell migration patterns are influenced by shear stress, with cells displaying an adaptive response to shear forces as they alter their adhesion and motility behavior. Additionally, we observed that DH1-10 wild-type D. discoideum cells exhibit stronger adhesion and resistance to shear-induced detachment compared to phg2 adhesion-defective mutant cells. We also highlight the influence of cell density on detachment kinetics.
Collapse
Affiliation(s)
- Sepideh Fakhari
- Department of Chemistry, Faculty of Science and Engineering, Université Laval, Québec City, QC G1V 0A6, Canada
- Centre de Recherche du Centre Hospitalier Universitaire de Québec, Université Laval, Québec City, QC G1V 0A6, Canada
- Centre de Recherche en Reproduction, Développement et Santé Intergénérationnelle, Department of Obstetrics, Gynecology, and Reproduction, Faculty of Medicine, Université Laval, Québec City, QC G1V 0A6, Canada
| | - Clémence Belleannée
- Centre de Recherche du Centre Hospitalier Universitaire de Québec, Université Laval, Québec City, QC G1V 0A6, Canada
- Centre de Recherche en Reproduction, Développement et Santé Intergénérationnelle, Department of Obstetrics, Gynecology, and Reproduction, Faculty of Medicine, Université Laval, Québec City, QC G1V 0A6, Canada
| | - Steve J. Charrette
- Department of Biochemistry, Microbiology and Bioinformatics, Faculty of Science and Engineering, Université Laval, Québec City, QC G1V 0A6, Canada;
| | - Jesse Greener
- Department of Chemistry, Faculty of Science and Engineering, Université Laval, Québec City, QC G1V 0A6, Canada
- Centre de Recherche du Centre Hospitalier Universitaire de Québec, Université Laval, Québec City, QC G1V 0A6, Canada
| |
Collapse
|
4
|
Ifrid E, Ouertatani-Sakouhi H, Zein El Dine H, Jauslin T, Chiriano G, Scapozza L, Lamrabet O, Cosson P. Compound K14 inhibits bacterial killing and protease activity in Dictyostelium discoideum phagosomes. PLoS One 2024; 19:e0309327. [PMID: 39186559 PMCID: PMC11346726 DOI: 10.1371/journal.pone.0309327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 07/30/2024] [Indexed: 08/28/2024] Open
Abstract
Phagocytic cells of the mammalian innate immune system play a critical role in protecting the body from bacterial infections. The multiple facets of this encounter (chemotaxis, phagocytosis, destruction, evasion and pathogenicity) are largely recapitulated in the phagocytic amoeba Dictyostelium discoideum. Here we identified a new chemical compound (K14; ZINC19168591) which inhibited intracellular destruction of ingested K. pneumoniae in D. discoideum cells. Concomitantly, K14 reduced proteolytic activity in D. discoideum phagosomes. In kil1 KO cells, K14 lost its ability to inhibit phagosomal proteolysis and to inhibit intra-phagosomal bacterial destruction, suggesting that K14 inhibits a Kil1-dependent protease involved in bacterial destruction. These observations stress the key role that proteases play in bacterial destruction. They also reveal an unsuspected link between Kil1 and phagosomal proteases. K14 can be used in the future as a tool to probe the role of different proteases in phagosomal physiology and in the destruction of ingested bacteria.
Collapse
Affiliation(s)
- Estelle Ifrid
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Hajer Ouertatani-Sakouhi
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Hiba Zein El Dine
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Tania Jauslin
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Gianpaolo Chiriano
- Pharmaceutical biochemistry, School of pharmaceutical sciences, University of Geneva, Geneva, Switzerland
| | - Leonardo Scapozza
- Pharmaceutical biochemistry, School of pharmaceutical sciences, University of Geneva, Geneva, Switzerland
| | - Otmane Lamrabet
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Pierre Cosson
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
5
|
Fierro Morales JC, Redfearn C, Titus MA, Roh-Johnson M. Reduced PaxillinB localization to cell-substrate adhesions promotes cell migration in Dictyostelium. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.19.585764. [PMID: 38562712 PMCID: PMC10983970 DOI: 10.1101/2024.03.19.585764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Many cells adhere to extracellular matrix for efficient cell migration. This adhesion is mediated by focal adhesions, a protein complex linking the extracellular matrix to the intracellular cytoskeleton. Focal adhesions have been studied extensively in mesenchymal cells, but recent research in physiological contexts and amoeboid cells suggest focal adhesion regulation differs from the mesenchymal focal adhesion paradigm. We used Dictyostelium discoideum to uncover new mechanisms of focal adhesion regulation, as Dictyostelium are amoeboid cells that form focal adhesion-like structures for migration. We show that PaxillinB, the Dictyostelium homologue of Paxillin, localizes to dynamic focal adhesion-like structures during Dictyostelium migration. Unexpectedly, reduced PaxillinB recruitment to these structures increases Dictyostelium cell migration. Quantitative analysis of focal adhesion size and dynamics show that lack of PaxillinB recruitment to focal adhesions does not alter focal adhesion size, but rather increases focal adhesion turnover. These findings are in direct contrast to Paxillin function at focal adhesions during mesenchymal migration, challenging the established focal adhesion model.
Collapse
Affiliation(s)
| | - Chandler Redfearn
- Department of Kinesiology, North Carolina Agricultural and Technical State University, Greensboro, NC 27411, USA
| | - Margaret A Titus
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Minna Roh-Johnson
- Department of Biochemistry, University of Utah, Salt Lake City, UT, 84112, USA
- Department of Kinesiology, North Carolina Agricultural and Technical State University, Greensboro, NC 27411, USA
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
6
|
St-Laurent RE, Vincent AT, Paquet VE, Leduc GR, Lorenc N, Ronholm J, Liu X, Charette SJ. Characterization of Aeromonas salmonicida mesophilic isolates from Alberta (Canada) allows the development of a more sensitive Dictyostelium discoideum predation test. FEMS Microbiol Lett 2024; 371:fnae078. [PMID: 39327009 PMCID: PMC11484801 DOI: 10.1093/femsle/fnae078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 09/18/2024] [Accepted: 09/25/2024] [Indexed: 09/28/2024] Open
Abstract
Aeromonas salmonicida is studied using Dictyostelium discoideum as a model host, with predation resistance measured as a key parameter. Aeromonas salmonicida mesophilic isolates exhibit inconclusive results with the amoebic model. This study focuses on new mesophilic isolates (S24-S38, S26-S10, and S28-S20) from Alberta, Canada, and introduces an improved predation test method. Phylogenetic analysis reveals two subgroups, with S24-S38 and S26-S10 clustering with the subspecies pectinolytica from Argentina, and S28-S20 with strains from India (Y567) and Spain (AJ83), showcasing surprising mesophilic strain diversity across geographic locations. Predation tests were carried out with various mesophilic and psychrophilic strains of A. salmonicida, including Alberta isolates. The amoeba cell lines used were DH1-10 and AX2. Although the mesophilic isolates were very resistant to predation by the amoeba DH1-10, some lost this resistance to the AX2 strain, which appeared more voracious in the conditions tested. In addition, when diluting the culture medium used in a predation test with AX2, a loss of the capacity to predation resistance was observed for all the mesophilic isolates, including the highly resistant S28-S20 isolate. This study provides insights into the predation resistance of A. salmonicida isolates and offers avenues for better characterizing mesophilic isolates.
Collapse
Affiliation(s)
- Rébecca E St-Laurent
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Quebec City, QC G1V 0A6, Canada
- Département de Biochimie, de Microbiologie et de Bio-Informatique, Faculté des Sciences et de Génie, Université Laval, Quebec City, QC G1V 0A6, Canada
| | - Antony T Vincent
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Quebec City, QC G1V 0A6, Canada
- Département de Biochimie, de Microbiologie et de Bio-Informatique, Faculté des Sciences et de Génie, Université Laval, Quebec City, QC G1V 0A6, Canada
- Département des sciences animales, Faculté des sciences de l'agriculture et de l'alimentation, Université Laval, Quebec City, QCG1V 0A6, Canada
| | - Valérie E Paquet
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Quebec City, QC G1V 0A6, Canada
- Département de Biochimie, de Microbiologie et de Bio-Informatique, Faculté des Sciences et de Génie, Université Laval, Quebec City, QC G1V 0A6, Canada
| | - Gabrielle R Leduc
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Quebec City, QC G1V 0A6, Canada
- Département de Biochimie, de Microbiologie et de Bio-Informatique, Faculté des Sciences et de Génie, Université Laval, Quebec City, QC G1V 0A6, Canada
| | - Natalia Lorenc
- Faculty of Agricultural and Environmental Sciences, McGill University, Montreal, QC H9X 3V9, Canada
| | - Jennifer Ronholm
- Faculty of Agricultural and Environmental Sciences, McGill University, Montreal, QC H9X 3V9, Canada
| | - Xiaoji Liu
- Agriculture and Agri-Food Canada, Lacombe Research and Development Centre, Lacombe, AB T4L 1W1, Canada
| | - Steve J Charette
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Quebec City, QC G1V 0A6, Canada
- Département de Biochimie, de Microbiologie et de Bio-Informatique, Faculté des Sciences et de Génie, Université Laval, Quebec City, QC G1V 0A6, Canada
| |
Collapse
|
7
|
Ayadi I, Lamrabet O, Munoz-Ruiz R, Jauslin T, Guilhen C, Cosson P. Extracellular and intracellular destruction of Pseudomonas aeruginosa by Dictyostelium discoideum phagocytes mobilize different antibacterial mechanisms. Mol Microbiol 2024; 121:69-84. [PMID: 38017607 DOI: 10.1111/mmi.15197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 11/13/2023] [Accepted: 11/13/2023] [Indexed: 11/30/2023]
Abstract
Ingestion and killing of bacteria by phagocytic cells are critical processes to protect the human body from bacterial infections. In addition, some immune cells (neutrophils, NK cells) can release microbicidal molecules in the extracellular medium to eliminate non-ingested microorganism. Molecular mechanisms involved in the resulting intracellular and extracellular killing are still poorly understood. In this study, we used the amoeba Dictyostelium discoideum as a model phagocyte to investigate the mechanisms allowing intracellular and extracellular killing of Pseudomonas aeruginosa. When a D. discoideum cell establishes a close contact with a P. aeruginosa bacterium, it can either ingest it and kill it in phagosomes, or kill it extracellularly, allowing a direct side-by-side comparison of these two killing modalities. Efficient intracellular destruction of P. aeruginosa requires the presence of the Kil2 pump in the phagosomal membrane. On the contrary, extracellular lysis is independent on Kil2 but requires the expression of the superoxide-producing protein NoxA, and the extracellular release of the AplA bacteriolytic protein. These results shed new light on the molecular mechanisms allowing elimination of P. aeruginosa bacteria by phagocytic cells.
Collapse
Affiliation(s)
- Imen Ayadi
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Otmane Lamrabet
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Raphael Munoz-Ruiz
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Tania Jauslin
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Cyril Guilhen
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Pierre Cosson
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
8
|
Martin M, deVisch A, Boudehen YM, Barthe P, Gutierrez C, Turapov O, Aydogan T, Heriaud L, Gracy J, Neyrolles O, Mukamolova GV, Letourneur F, Cohen-Gonsaud M. A Mycobacterium tuberculosis Effector Targets Mitochondrion, Controls Energy Metabolism, and Limits Cytochrome c Exit. Microbiol Spectr 2023; 11:e0106623. [PMID: 37036353 PMCID: PMC10269737 DOI: 10.1128/spectrum.01066-23] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 03/17/2023] [Indexed: 04/11/2023] Open
Abstract
Host metabolism reprogramming is a key feature of Mycobacterium tuberculosis (Mtb) infection that enables the survival of this pathogen within phagocytic cells and modulates the immune response facilitating the spread of the tuberculosis disease. Here, we demonstrate that a previously uncharacterized secreted protein from Mtb, Rv1813c, manipulates the host metabolism by targeting mitochondria. When expressed in eukaryotic cells, the protein is delivered to the mitochondrial intermembrane space and promotes the enhancement of host ATP production by boosting the oxidative phosphorylation metabolic pathway. Furthermore, the release of cytochrome c from mitochondria, an early apoptotic event in response to short-term oxidative stress, is delayed in Rv1813c-expressing cells. This study reveals a novel class of mitochondria targeting effectors from Mtb that might participate in host cell metabolic reprogramming and apoptosis control during Mtb infections. IMPORTANCE In this article, using a combination of techniques (bioinformatics, structural biology, and cell biology), we identified and characterized a new class of effectors present only in intracellular mycobacteria. These proteins specifically target host cell mitochondria when ectopically expressed in cells. We showed that one member of this family (Rv1813c) affects mitochondria metabolism in a way that might twist the immune response. This effector also inhibits the cytochrome c exit from mitochondria, suggesting that it might alter normal host cell apoptotic capacities, one of the first defenses of immune cells against Mtb infection.
Collapse
Affiliation(s)
- Marianne Martin
- Laboratory of Pathogen Host Interactions, Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Angelique deVisch
- Centre de Biochimie Structurale, CNRS, INSERM, Université de Montpellier, Montpellier, France
| | - Yves-Marie Boudehen
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse CNRS, UPS, Toulouse, France
| | - Philippe Barthe
- Centre de Biochimie Structurale, CNRS, INSERM, Université de Montpellier, Montpellier, France
| | - Claude Gutierrez
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse CNRS, UPS, Toulouse, France
| | - Obolbek Turapov
- Leicester Tuberculosis Research Group, Department of Respiratory Sciences, University of Leicester, Leicester, UK
| | - Talip Aydogan
- Laboratory of Pathogen Host Interactions, Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Laurène Heriaud
- Centre de Biochimie Structurale, CNRS, INSERM, Université de Montpellier, Montpellier, France
| | - Jerome Gracy
- Centre de Biochimie Structurale, CNRS, INSERM, Université de Montpellier, Montpellier, France
| | - Olivier Neyrolles
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse CNRS, UPS, Toulouse, France
| | - Galina V. Mukamolova
- Leicester Tuberculosis Research Group, Department of Respiratory Sciences, University of Leicester, Leicester, UK
| | - François Letourneur
- Laboratory of Pathogen Host Interactions, Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Martin Cohen-Gonsaud
- Centre de Biochimie Structurale, CNRS, INSERM, Université de Montpellier, Montpellier, France
| |
Collapse
|
9
|
Attéré SA, Gagné-Thivierge C, Paquet VE, Leduc GR, Vincent AT, Charette SJ. Aeromonas salmonicida isolates from Canada demonstrate wide distribution and clustering among mesophilic strains. Genome 2023; 66:108-115. [PMID: 36780641 DOI: 10.1139/gen-2022-0086] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
All the 36 known species to date of the genus Aeromonas are mesophilic except the species Aeromonas salmonicida, which includes both psychrophilic and mesophilic subspecies. For 20 years, more and more mesophilic A. salmonicida strains have been discovered. Only A. salmonicida subsp. pectinolytica has officially been classified as a mesophilic subspecies. Most mesophiles have been isolated in hot countries. We present, for the first time, the characterization of two new mesophilic isolates from Quebec (Canada). Phenotypic and genomic characterizations were carried out on these strains, isolated from dead fish from a fish farm. Isolates 19-K304 and 19-K308 are clearly mesophiles, virulent to the amoeba Dictyostelium discoideum, a surrogate host, and close to strain Y577, isolated in India. To our knowledge, this is the first time that mesophilic strains isolated from different countries are so similar. The major difference between the isolates is the presence of plasmid pY47-3, a cryptic plasmid that sometimes presents in mesophilic strains. More importantly, our extensive phylogenetic analysis reveals two well-defined clades of mesophilic strains with psychrophiles associated with one of these clades. This helps to have a better understanding of the evolution of this species and the apparition of psychrophilic subspecies.
Collapse
Affiliation(s)
- Sabrina A Attéré
- Institut de Biologie Intégrative et des Systèmes, Pavillon Charles-Eugène-Marchand, Université Laval, Quebec City, QC G1V 0A6, Canada.,Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Hôpital Laval, Quebec City, QC G1V 4G5, Canada.,Département de biochimie, de microbiologie et de bio-informatique, Faculté des Sciences et de Génie, Université Laval, Quebec City, QC G1V 0A6, Canada
| | - Cynthia Gagné-Thivierge
- Institut de Biologie Intégrative et des Systèmes, Pavillon Charles-Eugène-Marchand, Université Laval, Quebec City, QC G1V 0A6, Canada.,Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Hôpital Laval, Quebec City, QC G1V 4G5, Canada.,Département de biochimie, de microbiologie et de bio-informatique, Faculté des Sciences et de Génie, Université Laval, Quebec City, QC G1V 0A6, Canada
| | - Valérie E Paquet
- Institut de Biologie Intégrative et des Systèmes, Pavillon Charles-Eugène-Marchand, Université Laval, Quebec City, QC G1V 0A6, Canada.,Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Hôpital Laval, Quebec City, QC G1V 4G5, Canada.,Département de biochimie, de microbiologie et de bio-informatique, Faculté des Sciences et de Génie, Université Laval, Quebec City, QC G1V 0A6, Canada
| | - Gabrielle R Leduc
- Institut de Biologie Intégrative et des Systèmes, Pavillon Charles-Eugène-Marchand, Université Laval, Quebec City, QC G1V 0A6, Canada.,Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Hôpital Laval, Quebec City, QC G1V 4G5, Canada.,Département de biochimie, de microbiologie et de bio-informatique, Faculté des Sciences et de Génie, Université Laval, Quebec City, QC G1V 0A6, Canada
| | - Antony T Vincent
- Institut de Biologie Intégrative et des Systèmes, Pavillon Charles-Eugène-Marchand, Université Laval, Quebec City, QC G1V 0A6, Canada.,Département des sciences animales, Faculté des Sciences de l'Agriculture et de l'Alimentation, Université Laval, 2425, rue de l'Agriculture, Quebec City, QC G1V 0A6, Canada
| | - Steve J Charette
- Institut de Biologie Intégrative et des Systèmes, Pavillon Charles-Eugène-Marchand, Université Laval, Quebec City, QC G1V 0A6, Canada.,Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Hôpital Laval, Quebec City, QC G1V 4G5, Canada.,Département de biochimie, de microbiologie et de bio-informatique, Faculté des Sciences et de Génie, Université Laval, Quebec City, QC G1V 0A6, Canada
| |
Collapse
|
10
|
Crespo-Yanez X, Oddy J, Lamrabet O, Jauslin T, Marchetti A, Cosson P. Sequential action of antibacterial effectors in Dictyostelium discoideum phagosomes. Mol Microbiol 2023; 119:74-85. [PMID: 36416195 PMCID: PMC10107278 DOI: 10.1111/mmi.15004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 11/08/2022] [Accepted: 11/18/2022] [Indexed: 11/23/2022]
Abstract
Mammalian professional phagocytic cells ingest and kill invading microorganisms and prevent the development of bacterial infections. Our understanding of the sequence of events that results in bacterial killing and permeabilization in phagosomes is still largely incomplete. In this study, we used the Dictyostelium discoideum amoeba as a model phagocyte to study the fate of the bacteria Klebsiella pneumoniae inside phagosomes. Our analysis distinguishes three consecutive phases: bacteria first lose their ability to divide (killing), then their cytosolic content is altered (permeabilization), and finally their DNA is degraded (digestion). Phagosomal acidification and production of free radicals are necessary for rapid killing, membrane-permeabilizing proteins BpiC and AlyL are required for efficient permeabilization. These results illustrate how a combination of genetic and microscopical tools can be used to finely dissect the molecular events leading to bacterial killing and permeabilization in a maturing phagosome.
Collapse
Affiliation(s)
- Xènia Crespo-Yanez
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Joseph Oddy
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Otmane Lamrabet
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Tania Jauslin
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Anna Marchetti
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Pierre Cosson
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
11
|
Ifrid E, Ouertatani-Sakouhi H, Jauslin T, Kicka S, Chiriano G, Harrison CF, Hilbi H, Scapozza L, Soldati T, Cosson P. 5-ethyl-2'-deoxyuridine fragilizes Klebsiella pneumoniae outer wall and facilitates intracellular killing by phagocytic cells. PLoS One 2022; 17:e0269093. [PMID: 36315510 PMCID: PMC9621411 DOI: 10.1371/journal.pone.0269093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 05/14/2022] [Indexed: 01/24/2023] Open
Abstract
Klebsiella pneumoniae is the causative agent of a variety of severe infections. Many K. pneumoniae strains are resistant to multiple antibiotics, and this situation creates a need for new antibacterial molecules. K. pneumoniae pathogenicity relies largely on its ability to escape phagocytosis and intracellular killing by phagocytic cells. Interfering with these escape mechanisms may allow to decrease bacterial virulence and to combat infections. In this study, we used Dictyostelium discoideum as a model phagocyte to screen a collection of 1,099 chemical compounds. Phg1A KO D. discoideum cells cannot feed upon K. pneumoniae bacteria, unless bacteria bear mutations decreasing their virulence. We identified 3 non-antibiotic compounds that restored growth of phg1A KO cells on K. pneumoniae, and we characterized the mode of action of one of them, 5-ethyl-2'-deoxyuridine (K2). K2-treated bacteria were more rapidly killed in D. discoideum phagosomes than non-treated bacteria. They were more sensitive to polymyxin and their outer membrane was more accessible to a hydrophobic fluorescent probe. These results suggest that K2 acts by rendering the membrane of K. pneumoniae accessible to antibacterial effectors. K2 was effective on three different K. pneumoniae strains, and acted at concentrations as low as 3 μM. K2 has previously been used to treat viral infections but its precise molecular mechanism of action in K. pneumoniae remains to be determined.
Collapse
Affiliation(s)
- Estelle Ifrid
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Centre Médical Universitaire, Geneva, Switzerland
| | - Hajer Ouertatani-Sakouhi
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Centre Médical Universitaire, Geneva, Switzerland
| | - Tania Jauslin
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Centre Médical Universitaire, Geneva, Switzerland
| | - Sebastien Kicka
- Department of Biochemistry, Faculty of Science, University of Geneva, Geneva, Switzerland
| | - Gianpaolo Chiriano
- Pharmaceutical Biochemistry, School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland
| | - Christopher F. Harrison
- Max von Pettenkofer Institute, Department of Medicine, Ludwig-Maximilians University Munich, Munich, Germany
| | - Hubert Hilbi
- Institute of Medical Microbiology, Department of Medicine, University of Zürich, Zürich, Switzerland
| | - Leonardo Scapozza
- Pharmaceutical Biochemistry, School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland
| | - Thierry Soldati
- Department of Biochemistry, Faculty of Science, University of Geneva, Geneva, Switzerland
| | - Pierre Cosson
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Centre Médical Universitaire, Geneva, Switzerland
- * E-mail:
| |
Collapse
|
12
|
Fierro Morales JC, Xue Q, Roh-Johnson M. An evolutionary and physiological perspective on cell-substrate adhesion machinery for cell migration. Front Cell Dev Biol 2022; 10:943606. [PMID: 36092727 PMCID: PMC9453864 DOI: 10.3389/fcell.2022.943606] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 07/25/2022] [Indexed: 11/13/2022] Open
Abstract
Cell-substrate adhesion is a critical aspect of many forms of cell migration. Cell adhesion to an extracellular matrix (ECM) generates traction forces necessary for efficient migration. One of the most well-studied structures cells use to adhere to the ECM is focal adhesions, which are composed of a multilayered protein complex physically linking the ECM to the intracellular actin cytoskeleton. Much of our understanding of focal adhesions, however, is primarily derived from in vitro studies in Metazoan systems. Though these studies provide a valuable foundation to the cell-substrate adhesion field, the evolution of cell-substrate adhesion machinery across evolutionary space and the role of focal adhesions in vivo are largely understudied within the field. Furthering investigation in these areas is necessary to bolster our understanding of the role cell-substrate adhesion machinery across Eukaryotes plays during cell migration in physiological contexts such as cancer and pathogenesis. In this review, we review studies of cell-substrate adhesion machinery in organisms evolutionary distant from Metazoa and cover the current understanding and ongoing work on how focal adhesions function in single and collective cell migration in an in vivo environment, with an emphasis on work that directly visualizes cell-substrate adhesions. Finally, we discuss nuances that ought to be considered moving forward and the importance of future investigation in these emerging fields for application in other fields pertinent to adhesion-based processes.
Collapse
Affiliation(s)
| | | | - Minna Roh-Johnson
- Department of Biochemistry, University of Utah, Salt Lake City, UT, United States
| |
Collapse
|
13
|
Use of a Novel DNA-Loaded Alginate-Calcium Carbonate Biopolymer Surrogate to Study the Engulfment of Legionella pneumophila by Acanthamoeba polyphaga in Water Systems. Microbiol Spectr 2022; 10:e0221022. [PMID: 35950853 PMCID: PMC9430812 DOI: 10.1128/spectrum.02210-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The engulfment of Legionella pneumophila by free-living amoebae (FLA) in engineered water systems (EWS) enhances L. pneumophila persistence and provides a vehicle for rapid replication and increased public health risk. Despite numerous legionellosis outbreaks worldwide, effective tools for studying interactions between L. pneumophila and FLA in EWS are lacking. To address this, we have developed a biopolymer surrogate with a similar size, shape, surface charge, and hydrophobicity to those of stationary-phase L. pneumophila. Parallel experiments were conducted to observe the engulfment of L. pneumophila and the surrogate by Acanthamoeba polyphaga in dechlorinated, filter-sterilised tap water at 30°C for 72 h. Trophozoites engulfed both the surrogate and L. pneumophila, reaching maximum uptake after 2 and 6 h, respectively, but the peak surrogate uptake was ~2-log lower. Expulsion of the engulfed surrogate from A. polyphaga was also faster compared to that of L. pneumophila. Confocal laser scanning microscopy confirmed that the surrogate was actively engulfed and maintained within vacuoles for several hours before being expelled. L. pneumophila and surrogate phagocytosis appear to follow similar pathways, suggesting that the surrogate can be developed as a useful tool for studying interactions between L. pneumophila and FLA in EWS. IMPORTANCE The internalization of L. pneumophila within amoebae is a critical component of their life cycle in EWS, as it protects the bacteria from commonly used water disinfectants and provides a niche for their replication. Intracellularly replicated forms of L. pneumophila are also more virulent and resistant to sanitizers. Most importantly, the bacteria’s adaptation to the intracellular environments of amoebae primes them for the infection of human macrophages, posing a significant public health risk in EWS. The significance of our study is that a newly developed L. pneumophila biopolymer surrogate can mimic the L. pneumophila engulfment process in A. polyphaga, a free-living amoeba. With further development, the surrogate has the potential to improve the understanding of amoeba-mediated L. pneumophila persistence in EWS and the associated public health risk management.
Collapse
|
14
|
Adiba S, Forget M, De Monte S. Evolving social behaviour through selection of single-cell adhesion in Dictyostelium discoideum. iScience 2022; 25:105006. [PMID: 36105585 PMCID: PMC9464967 DOI: 10.1016/j.isci.2022.105006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 06/09/2022] [Accepted: 08/19/2022] [Indexed: 11/30/2022] Open
Abstract
The social amoeba Dictyostelium discoideum commonly forms chimeric fruiting bodies. Genetic variants that produce a higher proportion of spores are predicted to undercut multicellular organization unless cooperators assort positively. Cell adhesion is considered a primary factor driving such assortment, but evolution of adhesion has not been experimentally connected to changes in social performance. We modified by experimental evolution the efficiency of individual cells in attaching to a surface. Surprisingly, evolution appears to have produced social cooperators irrespective of whether stronger or weaker adhesion was selected. Quantification of reproductive success, cell-cell adhesion, and developmental patterns, however, revealed two distinct social behaviors, as captured when the classical metric for social success is generalized by considering clonal spore production. Our work shows that cell mechanical interactions can constrain the evolution of development and sociality in chimeras and that elucidation of proximate mechanisms is necessary to understand the ultimate emergence of multicellular organization. Cooperative behavior evolved as a pleiotropic effect of selection for surface adhesion Multicellular development of evolved lines with the ancestor follows two different paths A metric of social behavior including clonal development differentiates these two paths
Collapse
Affiliation(s)
- Sandrine Adiba
- Institut de Biologie de l’ENS (IBENS), Département de biologie, Ecole normale supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France
- Corresponding author
| | - Mathieu Forget
- Institut de Biologie de l’ENS (IBENS), Département de biologie, Ecole normale supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France
- Department of Evolutionary Theory, Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Silvia De Monte
- Institut de Biologie de l’ENS (IBENS), Département de biologie, Ecole normale supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France
- Department of Evolutionary Theory, Max Planck Institute for Evolutionary Biology, Plön, Germany
| |
Collapse
|
15
|
Mijanović L, Weber I. Adhesion of Dictyostelium Amoebae to Surfaces: A Brief History of Attachments. Front Cell Dev Biol 2022; 10:910736. [PMID: 35721508 PMCID: PMC9197732 DOI: 10.3389/fcell.2022.910736] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 05/13/2022] [Indexed: 12/23/2022] Open
Abstract
Dictyostelium amoebae adhere to extracellular material using similar mechanisms to metazoan cells. Notably, the cellular anchorage loci in Amoebozoa and Metazoa are both arranged in the form of discrete spots and incorporate a similar repertoire of intracellular proteins assembled into multicomponent complexes located on the inner side of the plasma membrane. Surprisingly, however, Dictyostelium lacks integrins, the canonical transmembrane heterodimeric receptors that dominantly mediate adhesion of cells to the extracellular matrix in multicellular animals. In this review article, we summarize the current knowledge about the cell-substratum adhesion in Dictyostelium, present an inventory of the involved proteins, and draw parallels with the situation in animal cells. The emerging picture indicates that, while retaining the basic molecular architecture common to their animal relatives, the adhesion complexes in free-living amoeboid cells have evolved to enable less specific interactions with diverse materials encountered in their natural habitat in the deciduous forest soil. Dissection of molecular mechanisms that underlay short lifetime of the cell-substratum attachments and high turnover rate of the adhesion complexes in Dictyostelium should provide insight into a similarly modified adhesion phenotype that accompanies the mesenchymal-amoeboid transition in tumor metastasis.
Collapse
Affiliation(s)
| | - Igor Weber
- Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| |
Collapse
|
16
|
Gruenheit N, Baldwin A, Stewart B, Jaques S, Keller T, Parkinson K, Salvidge W, Baines R, Brimson C, Wolf JB, Chisholm R, Harwood AJ, Thompson CRL. Mutant resources for functional genomics in Dictyostelium discoideum using REMI-seq technology. BMC Biol 2021; 19:172. [PMID: 34429112 PMCID: PMC8386026 DOI: 10.1186/s12915-021-01108-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 07/22/2021] [Indexed: 01/26/2023] Open
Abstract
Background Genomes can be sequenced with relative ease, but ascribing gene function remains a major challenge. Genetically tractable model systems are crucial to meet this challenge. One powerful model is the social amoeba Dictyostelium discoideum, a eukaryotic microbe widely used to study diverse questions in the cell, developmental and evolutionary biology. Results We describe REMI-seq, an adaptation of Tn-seq, which allows high throughput, en masse, and quantitative identification of the genomic site of insertion of a drug resistance marker after restriction enzyme-mediated integration. We use REMI-seq to develop tools which greatly enhance the efficiency with which the sequence, transcriptome or proteome variation can be linked to phenotype in D. discoideum. These comprise (1) a near genome-wide resource of individual mutants and (2) a defined pool of ‘barcoded’ mutants to allow large-scale parallel phenotypic analyses. These resources are freely available and easily accessible through the REMI-seq website that also provides comprehensive guidance and pipelines for data analysis. We demonstrate that integrating these resources allows novel regulators of cell migration, phagocytosis and macropinocytosis to be rapidly identified. Conclusions We present methods and resources, generated using REMI-seq, for high throughput gene function analysis in a key model system. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-021-01108-y.
Collapse
Affiliation(s)
- Nicole Gruenheit
- Centre for Life's Origins and Evolution, Department of Genetics, Evolution and Environment, University College London, Darwin Building, Gower Street, London, WC1E 6BT, UK
| | - Amy Baldwin
- Cardiff School of Biosciences, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff, CF24 4HQ, UK
| | - Balint Stewart
- Centre for Life's Origins and Evolution, Department of Genetics, Evolution and Environment, University College London, Darwin Building, Gower Street, London, WC1E 6BT, UK
| | - Sarah Jaques
- Cardiff School of Biosciences, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff, CF24 4HQ, UK
| | - Thomas Keller
- Division of Developmental Biology and Medicine, Faculty of Biology, Medicine and Health, The University of Manchester, Michael Smith Building, Oxford Road, Manchester, M13 9PT, UK
| | - Katie Parkinson
- Division of Developmental Biology and Medicine, Faculty of Biology, Medicine and Health, The University of Manchester, Michael Smith Building, Oxford Road, Manchester, M13 9PT, UK
| | - William Salvidge
- Centre for Life's Origins and Evolution, Department of Genetics, Evolution and Environment, University College London, Darwin Building, Gower Street, London, WC1E 6BT, UK
| | - Robert Baines
- Centre for Life's Origins and Evolution, Department of Genetics, Evolution and Environment, University College London, Darwin Building, Gower Street, London, WC1E 6BT, UK
| | - Chris Brimson
- Centre for Life's Origins and Evolution, Department of Genetics, Evolution and Environment, University College London, Darwin Building, Gower Street, London, WC1E 6BT, UK
| | - Jason B Wolf
- Milner Centre for Evolution and Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| | - Rex Chisholm
- Feinberg School of Medicine, Northwestern University, Chicago, Illinois, 60611, USA
| | - Adrian J Harwood
- Cardiff School of Biosciences, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff, CF24 4HQ, UK.
| | - Christopher R L Thompson
- Centre for Life's Origins and Evolution, Department of Genetics, Evolution and Environment, University College London, Darwin Building, Gower Street, London, WC1E 6BT, UK.
| |
Collapse
|
17
|
Mazzocca A, Fais S. New hypotheses for cancer generation and progression. Med Hypotheses 2021; 152:110614. [PMID: 34087614 DOI: 10.1016/j.mehy.2021.110614] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 03/29/2021] [Accepted: 05/24/2021] [Indexed: 01/14/2023]
Abstract
Since Nixon famously declared war on cancer in 1971, trillions of dollars have been spent on cancer research but the life expectancy for most forms of cancer is still poor. There are many reasons for the partial success of cancer translational research. One of these can be the predominance of certain paradigms that potentially narrowed the vision in interpreting cancer. The main paradigm to explain carcinogenesis is based on DNA mutations, which is well interpreted by the somatic mutation theory (SMT). However, a different theory claims that cancer is instead a tissue disease as proposed by the Tissue Organization Field Theory (TOFT). Here, we propose new hypotheses to explain the origin and pathogenesis of cancer. In this perspective, the systemic-evolutionary theory of cancer (SETOC) is discussed as well as how the microenvironment affects the adaptation of transformed cells and the reversion to a unicellular-like or embryo-like phenotype.
Collapse
Affiliation(s)
- Antonio Mazzocca
- Interdisciplinary Department of Medicine, University of Bari School of Medicine, Piazza G. Cesare, 11, 70124 Bari, Italy.
| | - Stefano Fais
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità (National Institute of Health), Viale Regina Elena, 299, 00161 Rome, Italy.
| |
Collapse
|
18
|
Hiroguchi A, Sakamoto S, Mitsuda N, Miwa K. Golgi-localized membrane protein AtTMN1/EMP12 functions in the deposition of rhamnogalacturonan II and I for cell growth in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:3611-3629. [PMID: 33587102 PMCID: PMC8096605 DOI: 10.1093/jxb/erab065] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 02/10/2021] [Indexed: 05/20/2023]
Abstract
Appropriate pectin deposition in cell walls is important for cell growth in plants. Rhamnogalacturonan II (RG-II) is a portion of pectic polysaccharides; its borate crosslinking is essential for maintenance of pectic networks. However, the overall process of RG-II synthesis is not fully understood. To identify a novel factor for RG-II deposition or dimerization in cell walls, we screened Arabidopsis mutants with altered boron (B)-dependent growth. The mutants exhibited alleviated disorders of primary root and stem elongation, and fertility under low B, but reduced primary root lengths under sufficient B conditions. Altered primary root elongation was associated with cell elongation changes caused by loss of function in AtTMN1 (Transmembrane Nine 1)/EMP12, which encodes a Golgi-localized membrane protein of unknown function that is conserved among eukaryotes. Mutant leaf and root dry weights were lower than those of wild-type plants, regardless of B conditions. In cell walls, AtTMN1 mutations reduced concentrations of B, RG-II specific 2-keto-3-deoxy monosaccharides, and rhamnose largely derived from rhamnogalacturonan I (RG-I), suggesting reduced RG-II and RG-I. Together, our findings demonstrate that AtTMN1 is required for the deposition of RG-II and RG-I for cell growth and suggest that pectin modulates plant growth under low B conditions.
Collapse
Affiliation(s)
- Akihiko Hiroguchi
- Graduate School of Environmental Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Shingo Sakamoto
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305–8566, Japan
| | - Nobutaka Mitsuda
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305–8566, Japan
| | - Kyoko Miwa
- Graduate School of Environmental Science, Hokkaido University, Sapporo 060-0810, Japan
- Correspondence:
| |
Collapse
|
19
|
Liu Y, Tian S, Thaker H, Dong M. Shiga Toxins: An Update on Host Factors and Biomedical Applications. Toxins (Basel) 2021; 13:222. [PMID: 33803852 PMCID: PMC8003205 DOI: 10.3390/toxins13030222] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/13/2021] [Accepted: 03/15/2021] [Indexed: 12/18/2022] Open
Abstract
Shiga toxins (Stxs) are classic bacterial toxins and major virulence factors of toxigenic Shigella dysenteriae and enterohemorrhagic Escherichia coli (EHEC). These toxins recognize a glycosphingolipid globotriaosylceramide (Gb3/CD77) as their receptor and inhibit protein synthesis in cells by cleaving 28S ribosomal RNA. They are the major cause of life-threatening complications such as hemolytic uremic syndrome (HUS), associated with severe cases of EHEC infection, which is the leading cause of acute kidney injury in children. The threat of Stxs is exacerbated by the lack of toxin inhibitors and effective treatment for HUS. Here, we briefly summarize the Stx structure, subtypes, in vitro and in vivo models, Gb3 expression and HUS, and then introduce recent studies using CRISPR-Cas9-mediated genome-wide screens to identify the host cell factors required for Stx action. We also summarize the latest progress in utilizing and engineering Stx components for biomedical applications.
Collapse
Affiliation(s)
- Yang Liu
- Department of Nephrology, The First Hospital of Jilin University, Changchun 130021, China
- Department of Urology, Boston Children’s Hospital, Boston, MA 02115, USA; (S.T.); (H.T.)
- Department of Microbiology and Department of Surgery, Harvard Medical School, Boston, MA 02115, USA
| | - Songhai Tian
- Department of Urology, Boston Children’s Hospital, Boston, MA 02115, USA; (S.T.); (H.T.)
- Department of Microbiology and Department of Surgery, Harvard Medical School, Boston, MA 02115, USA
| | - Hatim Thaker
- Department of Urology, Boston Children’s Hospital, Boston, MA 02115, USA; (S.T.); (H.T.)
- Department of Microbiology and Department of Surgery, Harvard Medical School, Boston, MA 02115, USA
| | - Min Dong
- Department of Urology, Boston Children’s Hospital, Boston, MA 02115, USA; (S.T.); (H.T.)
- Department of Microbiology and Department of Surgery, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
20
|
Bodinier R, Sabra A, Leiba J, Marchetti A, Lamrabet O, Ayadi I, Filić V, Kawata T, Weber I, Cosson P. Role of LrrkA in the Control of Phagocytosis and Cell Motility in Dictyostelium discoideum. Front Cell Dev Biol 2021; 9:629200. [PMID: 33763419 PMCID: PMC7982419 DOI: 10.3389/fcell.2021.629200] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 02/15/2021] [Indexed: 11/21/2022] Open
Abstract
LrrkA is a Dictyostelium discoideum kinase with leucine-rich repeats. LrrkA stimulates Kil2 and intra-phagosomal killing of ingested bacteria in response to folate. In this study, we show that genetic inactivation of lrrkA also causes a previously unnoticed phenotype: lrrkA KO cells exhibit enhanced phagocytosis and cell motility compared to parental cells. This phenotype is cell autonomous, is reversible upon re-expression of LrrkA, and is not due to an abnormal response to inhibitory quorum-sensing factors secreted by D. discoideum in its medium. In addition, folate increases motility in parental D. discoideum cells, but not in lrrkA KO cells, suggesting that LrrkA plays a pivotal role in the cellular response to folate. On the contrary, lrrkA KO cells regulate gene transcription in response to folate in a manner indistinguishable from parental cells. Overall, based on analysis of mutant phenotypes, we identify gene products that participate in the control of intracellular killing, cell motility, and gene transcription in response to folate. These observations reveal a mechanism by which D. discoideum encountering bacterially-secreted folate can migrate, engulf, and kill bacteria more efficiently.
Collapse
Affiliation(s)
- Romain Bodinier
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Ayman Sabra
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Jade Leiba
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Anna Marchetti
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Otmane Lamrabet
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Imen Ayadi
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Vedrana Filić
- Division of Molecular Biology, Ruder Boskovic Institute, Zagreb, Croatia
| | - Takefumi Kawata
- Department of Biology, Faculty of Science, Toho University, Tokyo, Japan
| | - Igor Weber
- Division of Molecular Biology, Ruder Boskovic Institute, Zagreb, Croatia
| | - Pierre Cosson
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
21
|
Hüsler D, Steiner B, Welin A, Striednig B, Swart AL, Molle V, Hilbi H, Letourneur F. Dictyostelium lacking the single atlastin homolog Sey1 shows aberrant ER architecture, proteolytic processes and expansion of the Legionella-containing vacuole. Cell Microbiol 2021; 23:e13318. [PMID: 33583106 DOI: 10.1111/cmi.13318] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 02/04/2021] [Accepted: 02/05/2021] [Indexed: 02/06/2023]
Abstract
Dictyostelium discoideum Sey1 is the single ortholog of mammalian atlastin 1-3 (ATL1-3), which are large homodimeric GTPases mediating homotypic fusion of endoplasmic reticulum (ER) tubules. In this study, we generated a D. discoideum mutant strain lacking the sey1 gene and found that amoebae deleted for sey1 are enlarged, but grow and develop similarly to the parental strain. The ∆sey1 mutant amoebae showed an altered ER architecture, and the tubular ER network was partially disrupted without any major consequences for other organelles or the architecture of the secretory and endocytic pathways. Macropinocytic and phagocytic functions were preserved; however, the mutant amoebae exhibited cumulative defects in lysosomal enzymes exocytosis, intracellular proteolysis, and cell motility, resulting in impaired growth on bacterial lawns. Moreover, ∆sey1 mutant cells showed a constitutive activation of the unfolded protein response pathway (UPR), but they still readily adapted to moderate levels of ER stress, while unable to cope with prolonged stress. In D. discoideum ∆sey1 the formation of the ER-associated compartment harbouring the bacterial pathogen Legionella pneumophila was also impaired. In the mutant amoebae, the ER was less efficiently recruited to the "Legionella-containing vacuole" (LCV), the expansion of the pathogen vacuole was inhibited at early stages of infection and intracellular bacterial growth was reduced. In summary, our study establishes a role of D. discoideum Sey1 in ER architecture, proteolysis, cell motility and intracellular replication of L. pneumophila.
Collapse
Affiliation(s)
- Dario Hüsler
- Institute of Medical Microbiology, University of Zürich, Zürich, Switzerland
| | - Bernhard Steiner
- Institute of Medical Microbiology, University of Zürich, Zürich, Switzerland
| | - Amanda Welin
- Division of Inflammation and Infection, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Bianca Striednig
- Institute of Medical Microbiology, University of Zürich, Zürich, Switzerland
| | - A Leoni Swart
- Institute of Medical Microbiology, University of Zürich, Zürich, Switzerland
| | - Virginie Molle
- Laboratory of Pathogen Host Interactions, Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Hubert Hilbi
- Institute of Medical Microbiology, University of Zürich, Zürich, Switzerland
| | - François Letourneur
- Laboratory of Pathogen Host Interactions, Université de Montpellier, CNRS, INSERM, Montpellier, France
| |
Collapse
|
22
|
How Phagocytic Cells Kill Different Bacteria: a Quantitative Analysis Using Dictyostelium discoideum. mBio 2021; 12:mBio.03169-20. [PMID: 33593980 PMCID: PMC8545105 DOI: 10.1128/mbio.03169-20] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Ingestion and killing of bacteria by phagocytic cells protect the human body against infections. While many mechanisms have been proposed to account for bacterial killing in phagosomes, their relative importance, redundancy, and specificity remain unclear. In this study, we used the Dictyostelium discoideum amoeba as a model phagocyte and quantified the requirement of 11 individual gene products, including nine putative effectors, for the killing of bacteria. This analysis revealed that radically different mechanisms are required to kill Klebsiella pneumoniae, Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, and Bacillus subtilis AlyL, a lysozyme-like protein equipped with a distinct bacteriolytic region, plays a specific role in the intracellular killing of K. pneumoniae, with assistance from BpiC and Aoah, two lipopolysaccharide (LPS)-binding proteins. Rapid killing of E. coli and P. aeruginosa requires the presence of BpiC and of the NoxA NADPH oxidase. No single effector tested is essential for rapid killing of S. aureus or B. subtilis Overall, our observations reveal an unsuspected degree of specificity in the elimination of bacteria in phagosomes.IMPORTANCE Phagocytic cells ingest and kill bacteria, a process essential for the defense of the human body against infections. Many potential killing mechanisms have been identified in phagocytic cells, including free radicals, toxic ions, enzymes, and permeabilizing peptides. Yet fundamental questions remain unanswered: what is the relative importance of these mechanisms, how redundant are they, and are different mechanisms used to kill different species of bacteria? We addressed these questions using Dictyostelium discoideum, a model phagocytic cell amenable to genetic manipulations and quantitative analysis. Our results reveal that vastly different mechanisms are required to kill different species of bacteria. This very high degree of specificity was unexpected and indicates that a lot remains to be discovered about how phagocytic cells eliminate bacteria.
Collapse
|
23
|
Guilhen C, Lima WC, Ifrid E, Crespo-Yañez X, Lamrabet O, Cosson P. A New Family of Bacteriolytic Proteins in Dictyostelium discoideum. Front Cell Infect Microbiol 2021; 10:617310. [PMID: 33614529 PMCID: PMC7886984 DOI: 10.3389/fcimb.2020.617310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 12/17/2020] [Indexed: 11/17/2022] Open
Abstract
Phagocytic cells ingest and destroy bacteria efficiently and in doing so ensure the defense of the human body against infections. Phagocytic Dictyostelium discoideum amoebae represent a powerful model system to study the intracellular mechanisms ensuring destruction of ingested bacteria in phagosomes. Here, we discovered the presence of a bacteriolytic activity against Klebsiella pneumoniae in cellular extracts from D. discoideum. The bacteriolytic activity was detected only at a very acidic pH mimicking the conditions found in D. discoideum phagosomes. It was also strongly decreased in extracts of kil1 KO cells that were previously described to kill inefficiently internalized bacteria, suggesting that the activity observed in vitro is involved in killing of bacteria in phagosomes. We purified a fraction enriched in bacteriolytic activity where only 16 proteins were detected and focused on four proteins selectively enriched in this fraction. Three of them belong to a poorly characterized family of D. discoideum proteins exhibiting a DUF3430 domain of unknown function and were named BadA (Bacteriolytic D. discoideum A), BadB, and BadC. We overexpressed the BadA protein in cells, and the bacteriolytic activity increased concomitantly in cell extracts. Conversely, depletion of BadA from cell extracts decreased significantly their bacteriolytic activity. Finally, in cells overexpressing BadA, bacterial killing was faster than in parental cells. Together these results identify BadA as a D. discoideum protein required for cellular bactericidal activity. They also define a new strategy to identify and characterize bactericidal proteins in D. discoideum cells.
Collapse
Affiliation(s)
- Cyril Guilhen
- Department of Cell Physiology and Metabolism, Faculty of Medicine, Centre Médical Universitaire, University of Geneva, Geneva, Switzerland
| | - Wanessa C Lima
- Department of Cell Physiology and Metabolism, Faculty of Medicine, Centre Médical Universitaire, University of Geneva, Geneva, Switzerland
| | - Estelle Ifrid
- Department of Cell Physiology and Metabolism, Faculty of Medicine, Centre Médical Universitaire, University of Geneva, Geneva, Switzerland
| | - Xenia Crespo-Yañez
- Department of Cell Physiology and Metabolism, Faculty of Medicine, Centre Médical Universitaire, University of Geneva, Geneva, Switzerland
| | - Otmane Lamrabet
- Department of Cell Physiology and Metabolism, Faculty of Medicine, Centre Médical Universitaire, University of Geneva, Geneva, Switzerland
| | - Pierre Cosson
- Department of Cell Physiology and Metabolism, Faculty of Medicine, Centre Médical Universitaire, University of Geneva, Geneva, Switzerland
| |
Collapse
|
24
|
Durocher AF, Gagné-Thivierge C, Charette SJ. Various dictyostelids from the environment can produce multilamellar bodies. Can J Microbiol 2020; 66:679-688. [PMID: 32735763 DOI: 10.1139/cjm-2020-0187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Multilamellar bodies (MLBs), structures composed of concentric membrane layers, are known to be produced by different protozoa, including species of ciliates, free-living amoebae, and Dictyostelium discoideum social amoebae. Initially believed to be metabolic waste, potential roles like cell communication and food storage have been suggested for D. discoideum MLBs, which could be useful for the multicellular development of social amoebae and as a food source. However, among dictyostelids, this phenomenon has only been observed with D. discoideum, and mainly with laboratory strains grown in axenic conditions. It was thought that other social amoebae may also produce MLBs. Four environmental social amoeba isolates were characterized. All strains belong to the Dictyostelium genus, including some likely to be Dictyostelium giganteum. They have distinctive phenotypes comprising their growth rate on Klebsiella aerogenes lawns and the morphology of their fruiting bodies. They all produce MLBs like those produced by a D. discoideum laboratory strain when grown on K. aerogenes lawns, as revealed by analysis using the H36 antibody in epifluorescence microscopy as well as by transmission electron microscopy. Consequently, this study shows that MLBs are produced by various dictyostelid species, which further supports a role for MLBs in the lifestyle of amoebae.
Collapse
Affiliation(s)
- Alicia F Durocher
- Institut de Biologie Intégrative et des Systèmes, Pavillon Charles-Eugène-Marchand, Université Laval, 1030 avenue de la Médicine, Québec, QC G1V 0A6, Canada.,Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Université Laval, 2725, chemin Sainte-Foy, Québec, QC G1V 4G5, Canada.,Département de biochimie, de microbiologie et de bio-informatique, Faculté des sciences et de génie, Université Laval, 1045, avenue de la Médicine, Québec, QC G1V 0A6, Canada
| | - Cynthia Gagné-Thivierge
- Institut de Biologie Intégrative et des Systèmes, Pavillon Charles-Eugène-Marchand, Université Laval, 1030 avenue de la Médicine, Québec, QC G1V 0A6, Canada.,Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Université Laval, 2725, chemin Sainte-Foy, Québec, QC G1V 4G5, Canada.,Département de biochimie, de microbiologie et de bio-informatique, Faculté des sciences et de génie, Université Laval, 1045, avenue de la Médicine, Québec, QC G1V 0A6, Canada
| | - Steve J Charette
- Institut de Biologie Intégrative et des Systèmes, Pavillon Charles-Eugène-Marchand, Université Laval, 1030 avenue de la Médicine, Québec, QC G1V 0A6, Canada.,Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Université Laval, 2725, chemin Sainte-Foy, Québec, QC G1V 4G5, Canada.,Département de biochimie, de microbiologie et de bio-informatique, Faculté des sciences et de génie, Université Laval, 1045, avenue de la Médicine, Québec, QC G1V 0A6, Canada
| |
Collapse
|
25
|
A Mesophilic Aeromonas salmonicida Strain Isolated from an Unsuspected Host, the Migratory Bird Pied Avocet. Microorganisms 2019; 7:microorganisms7120592. [PMID: 31757113 PMCID: PMC6955901 DOI: 10.3390/microorganisms7120592] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 11/14/2019] [Accepted: 11/15/2019] [Indexed: 12/18/2022] Open
Abstract
Aeromonas salmonicida is a Gram-negative bacterium, known as a fish pathogen since its discovery. Although the species was initially considered psychrophilic, a mesophilic subspecies (pectinolytica) and many other mesophilic strains still not attributed to subspecies have been described in the last two decades. These mesophilic strains were sampled from various sources, including humans, and some of them are known to be pathogenic. In this study, we describe a strain, JF2480, which was isolated from the spleen, and also found the kidney and liver of a dead pied avocet (Recurvirostra avosetta), a type of migratory bird inhabiting aquatic environments. A core genome phylogenomic analysis suggests that JF2480 is taxonomically distant from other known A. salmonicida subspecies. The genome sequence confirms that the strain possesses key virulence genes that are present in the typical A. salmonicida psychrophilic subspecies, with the exception of the genes encoding the type three secretion system (T3SS). Bacterial virulence assays conducted on the surrogate host Dictyostelium discoideum amoeba confirmed that the strain is virulent despite the lack of T3SS. Bacterial growth curves showed that strain JF2480 grow well at 40 °C, the body temperature of the pied avocet, and even faster at 41 °C, compared to other mesophilic strains. Discovery of this strain further demonstrates the extent of the phylogenomic tree of this species. This study also suggests that A. salmonicida can infect a wider array of hosts than previously suspected and that we need to rethink the way we perceive A. salmonicida's natural environment.
Collapse
|
26
|
Bodinier R, Leiba J, Sabra A, Jauslin TN, Lamrabet O, Guilhen C, Marchetti A, Iwade Y, Kawata T, Lima WC, Cosson P. LrrkA, a kinase with leucine-rich repeats, links folate sensing with Kil2 activity and intracellular killing. Cell Microbiol 2019; 22:e13129. [PMID: 31652367 PMCID: PMC7003747 DOI: 10.1111/cmi.13129] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 09/20/2019] [Accepted: 10/03/2019] [Indexed: 12/14/2022]
Abstract
Phagocytic cells ingest bacteria by phagocytosis and kill them efficiently inside phagolysosomes. The molecular mechanisms involved in intracellular killing and their regulation are complex and still incompletely understood. Dictyostelium discoideum has been used as a model to discover and to study new gene products involved in intracellular killing of ingested bacteria. In this study, we performed random mutagenesis of Dictyostelium cells and isolated a mutant defective for growth on bacteria. This mutant is characterized by the genetic inactivation of the lrrkA gene, which encodes a protein with a kinase domain and leucine-rich repeats. LrrkA knockout (KO) cells kill ingested Klebsiella pneumoniae bacteria inefficiently. This defect is not additive to the killing defect observed in kil2 KO cells, suggesting that the function of Kil2 is partially controlled by LrrkA. Indeed, lrrkA KO cells exhibit a phenotype similar to that of kil2 KO cells: Intraphagosomal proteolysis is inefficient, and both intraphagosomal killing and proteolysis are restored upon exogenous supplementation with magnesium ions. Bacterially secreted folate stimulates intracellular killing in Dictyostelium cells, but this stimulation is lost in cells with genetic inactivation of kil2, lrrkA, or far1. Together, these results indicate that the stimulation of intracellular killing by folate involves Far1 (the cell surface receptor for folate), LrrkA, and Kil2. This study is the first identification of a signalling pathway regulating intraphagosomal bacterial killing in Dictyostelium cells.
Collapse
Affiliation(s)
- Romain Bodinier
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Jade Leiba
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Ayman Sabra
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Tania N Jauslin
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Otmane Lamrabet
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Cyril Guilhen
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Anna Marchetti
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Yumi Iwade
- Department of Biology, Faculty of Science, Toho University, Funabashi, Japan
| | - Takefumi Kawata
- Department of Biology, Faculty of Science, Toho University, Funabashi, Japan
| | - Wanessa C Lima
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Pierre Cosson
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
27
|
Knockdown of TM9SF4 boosts ER stress to trigger cell death of chemoresistant breast cancer cells. Oncogene 2019; 38:5778-5791. [PMID: 31249383 DOI: 10.1038/s41388-019-0846-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 05/09/2019] [Accepted: 05/10/2019] [Indexed: 02/02/2023]
Abstract
Drug resistance is one of the major obstacles to breast cancer therapy. However, the mechanisms of how cancer cells develop chemoresistance are still not fully understood. In the present study, we found that expression of TM9SF4 proteins was much higher in adriamycin (ADM)-resistant breast cancer cells MCF-7/ADM than in its parental line wild-type breast cancer cells MCF-7/WT. shRNA-mediated knockdown of TM9SF4 preferentially reduced cell growth and triggered cell death in chemoresistant MCF-7/ADM cells compared with MCF-7/WT cells. Knockdown of TM9SF4 also reduced cell growth and triggered cell death in chemoresistant MDA-MB-231/GEM cells. Mechanistic studies showed that TM9SF4 knockdown increased protein misfolding and elevated endoplasmic reticulum (ER) stress level in MCF-7/ADM cells, as indicated by aggresome formation and upregulated expression of ER stress markers, the effect of which was reversed by a small molecule chaperone 4-phenybutyric acid. In an athymic nude mouse model of ADM-resistant human breast xenograft tumor, knockdown of TM9SF4 decreased the growth of tumor xenografts. In chemoresistant breast cancer patients, chemotherapy increased the expression of TM9SF4 proteins in breast tumor samples. Taken together, these results uncovered a novel role of TM9SF4 proteins in alleviating ER stress and protecting chemoresistant breast cancer cells from apoptotic/necrotic cell death. These results highlight a possible strategy of targeting TM9SF4 to overcome breast cancer chemoresistance.
Collapse
|
28
|
Nagel O, Frey M, Gerhardt M, Beta C. Harnessing Motile Amoeboid Cells as Trucks for Microtransport and -Assembly. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1801242. [PMID: 30775225 PMCID: PMC6364505 DOI: 10.1002/advs.201801242] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 09/21/2018] [Indexed: 06/09/2023]
Abstract
Cell-driven microtransport is one of the most prominent applications in the emerging field of biohybrid systems. While bacterial cells have been successfully employed to drive the swimming motion of micrometer-sized cargo particles, the transport capacities of motile adherent cells remain largely unexplored. Here, it is demonstrated that motile amoeboid cells can act as efficient and versatile trucks to transport microcargo. When incubated together with microparticles, cells of the social amoeba Dictyostelium discoideum readily pick up and move the cargo particles. Relying on the unspecific adhesive properties of the amoeba, a wide range of different cargo materials can be used. The cell-driven transport can be directionally guided based on the chemotactic responses of amoeba to chemoattractant gradients. On the one hand, the cargo can be assembled into clusters in a self-organized fashion, relying on the developmentally induced chemotactic aggregation of cells. On the other hand, chemoattractant gradients can be externally imposed to guide the cellular microtrucks to a desired location. Finally, larger cargo particles of different shapes that exceed the size of a single cell by more than an order of magnitude, can also be transported by the collective effort of large numbers of motile cells.
Collapse
Affiliation(s)
- Oliver Nagel
- Institute of Physics and AstronomyUniversity of PotsdamKarl‐Liebknecht‐Str. 24/2514476PotsdamGermany
| | - Manuel Frey
- Institute of Physics and AstronomyUniversity of PotsdamKarl‐Liebknecht‐Str. 24/2514476PotsdamGermany
| | - Matthias Gerhardt
- Institute of Physics and AstronomyUniversity of PotsdamKarl‐Liebknecht‐Str. 24/2514476PotsdamGermany
| | - Carsten Beta
- Institute of Physics and AstronomyUniversity of PotsdamKarl‐Liebknecht‐Str. 24/2514476PotsdamGermany
| |
Collapse
|
29
|
Kamprad N, Witt H, Schröder M, Kreis CT, Bäumchen O, Janshoff A, Tarantola M. Adhesion strategies of Dictyostelium discoideum- a force spectroscopy study. NANOSCALE 2018; 10:22504-22519. [PMID: 30480299 DOI: 10.1039/c8nr07107a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Biological adhesion is essential for all motile cells and generally limits locomotion to suitably functionalized substrates displaying a compatible surface chemistry. However, organisms that face vastly varying environmental challenges require a different strategy. The model organism Dictyostelium discoideum (D.d.), a slime mould dwelling in the soil, faces the challenge of overcoming variable chemistry by employing the fundamental forces of colloid science. To understand the origin of D.d. adhesion, we realized and modified a variety of conditions for the amoeba comprising the absence and presence of the specific adhesion protein Substrate Adhesion A (sadA), glycolytic degradation, ionic strength, surface hydrophobicity and strength of van der Waals interactions by generating tailored model substrates. By employing AFM-based single cell force spectroscopy we could show that experimental force curves upon retraction exhibit two regimes. The first part up to the critical adhesion force can be described in terms of a continuum model, while the second regime of the curve beyond the critical adhesion force is governed by stochastic unbinding of individual binding partners and bond clusters. We found that D.d. relies on adhesive interactions based on EDL-DLVO (Electrical Double Layer-Derjaguin-Landau-Verwey-Overbeek) forces and contributions from the glycocalix and specialized adhesion molecules like sadA. This versatile mechanism allows the cells to adhere to a large variety of natural surfaces under various conditions.
Collapse
Affiliation(s)
- Nadine Kamprad
- Max Planck Institute for Dynamics and Self-Organization, Am Faßberg 17, 37077 Göttingen, Germany.
| | | | | | | | | | | | | |
Collapse
|
30
|
Abstract
Cell-in-cell structures are reported in numerous cancers, and their presence is an indicator for poor prognosis. Mechanistic studies have identified how cancer cells manage to ingest whole neighbouring cells to form such structures, and the consequences of cell-in-cell formation on cancer progression have been elucidated. In this Opinion article, we discuss how two related cell-in-cell processes, cell cannibalism and entosis, are regulated and how these mechanisms promote cancer progression. We propose that cannibalistic activity is a hallmark of cancer that results in part from selection by metabolic stress and serves to feed aggressive cancer cells.
Collapse
Affiliation(s)
- Stefano Fais
- Department of Oncology and Molecular Medicine, National Institute of Health, Rome, Italy.
| | - Michael Overholtzer
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
31
|
Vernay A, Lamrabet O, Perrin J, Cosson P. TM9SF4 levels determine sorting of transmembrane domains in the early secretory pathway. J Cell Sci 2018; 131:jcs.220830. [PMID: 30301779 DOI: 10.1242/jcs.220830] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 09/26/2018] [Indexed: 11/20/2022] Open
Abstract
Previous studies have shown that TM9SF4 interacts with glycine-rich transmembrane domains (TMDs) and promotes their surface localization, presumably by escorting them along the secretory pathway. Here, we delineated the role of TM9 proteins in the sorting of TMDs. Our results indicate that TM9SF4 interacts with and sorts a variety of TMDs. In human embryonic kidney (HEK) cells, a TMD carrying a positively charged residue (T-R1) or a negatively charged residue (T-D1) was localized to the endoplasmic reticulum (ER), but partially relocated to the Golgi complex upon overexpression of TM9SF4. These results show that TM9SF4 controls the sorting of TMDs at the ER-Golgi interface. Remarkably, sorting of T-R1 in HCT116 cells was different from that in HEK cells: in HCT116 cells, a substantial fraction of T-R1 was localized to the Golgi complex, and it was relocated to the ER by genetic ablation of TM9SF4. This observation indicates that TM9SF4 sorting activity differs in HEK and HCT116 cells, resulting in different sorting of TMDs in these two cell types. Although TM9SF1 associated with several TMDs, it did not visibly alter their intracellular transport in the secretory pathway and may function in other intracellular transport pathways.
Collapse
Affiliation(s)
- Alexandre Vernay
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, CH-1211 Geneva 4, Switzerland
| | - Otmane Lamrabet
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, CH-1211 Geneva 4, Switzerland
| | - Jackie Perrin
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, CH-1211 Geneva 4, Switzerland
| | - Pierre Cosson
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, CH-1211 Geneva 4, Switzerland
| |
Collapse
|
32
|
Tian S, Muneeruddin K, Choi MY, Tao L, Bhuiyan RH, Ohmi Y, Furukawa K, Furukawa K, Boland S, Shaffer SA, Adam RM, Dong M. Genome-wide CRISPR screens for Shiga toxins and ricin reveal Golgi proteins critical for glycosylation. PLoS Biol 2018; 16:e2006951. [PMID: 30481169 PMCID: PMC6258472 DOI: 10.1371/journal.pbio.2006951] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 10/02/2018] [Indexed: 12/15/2022] Open
Abstract
Glycosylation is a fundamental modification of proteins and membrane lipids. Toxins that utilize glycans as their receptors have served as powerful tools to identify key players in glycosylation processes. Here, we carried out Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-Cas9-mediated genome-wide loss-of-function screens using two related bacterial toxins, Shiga-like toxins (Stxs) 1 and 2, which use a specific glycolipid, globotriaosylceramide (Gb3), as receptors, and the plant toxin ricin, which recognizes a broad range of glycans. The Stxs screens identified major glycosyltransferases (GTs) and transporters involved in Gb3 biosynthesis, while the ricin screen identified GTs and transporters involved in N-linked protein glycosylation and fucosylation. The screens also identified lysosomal-associated protein transmembrane 4 alpha (LAPTM4A), a poorly characterized four-pass membrane protein, as a factor specifically required for Stxs. Mass spectrometry analysis of glycolipids and their precursors demonstrates that LAPTM4A knockout (KO) cells lack Gb3 biosynthesis. This requirement of LAPTM4A for Gb3 synthesis is not shared by its homolog lysosomal-associated protein transmembrane 4 beta (LAPTM4B), and switching the domains between them determined that the second luminal domain of LAPTM4A is required, potentially acting as a specific "activator" for the GT that synthesizes Gb3. These screens also revealed two Golgi proteins, Transmembrane protein 165 (TMEM165) and Transmembrane 9 superfamily member 2 (TM9SF2), as shared factors required for both Stxs and ricin. TMEM165 KO and TM9SF2 KO cells both showed a reduction in not only Gb3 but also other glycosphingolipids, suggesting that they are required for maintaining proper levels of glycosylation in general in the Golgi. In addition, TM9SF2 KO cells also showed defective endosomal trafficking. These studies reveal key Golgi proteins critical for regulating glycosylation and glycolipid synthesis and provide novel therapeutic targets for blocking Stxs and ricin toxicity.
Collapse
Affiliation(s)
- Songhai Tian
- Department of Urology, Boston Children’s Hospital, Boston, Massachusetts, United States of America
- Department of Surgery, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Khaja Muneeruddin
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- Mass Spectrometry Facility, University of Massachusetts Medical School, Shrewsbury, Massachusetts, United States of America
| | - Mei Yuk Choi
- Division of Genetics, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Liang Tao
- Department of Urology, Boston Children’s Hospital, Boston, Massachusetts, United States of America
- Department of Surgery, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Robiul H. Bhuiyan
- Department of Biomedical Sciences, Chubu University College of Life and Health Sciences, Matsumoto, Kasugai, Aichi, Japan
| | - Yuhsuke Ohmi
- Department of Biomedical Sciences, Chubu University College of Life and Health Sciences, Matsumoto, Kasugai, Aichi, Japan
| | - Keiko Furukawa
- Department of Biomedical Sciences, Chubu University College of Life and Health Sciences, Matsumoto, Kasugai, Aichi, Japan
| | - Koichi Furukawa
- Department of Biomedical Sciences, Chubu University College of Life and Health Sciences, Matsumoto, Kasugai, Aichi, Japan
| | - Sebastian Boland
- Department of Genetics and Complex Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Scott A. Shaffer
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- Mass Spectrometry Facility, University of Massachusetts Medical School, Shrewsbury, Massachusetts, United States of America
| | - Rosalyn M. Adam
- Department of Urology, Boston Children’s Hospital, Boston, Massachusetts, United States of America
- Department of Surgery, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Min Dong
- Department of Urology, Boston Children’s Hospital, Boston, Massachusetts, United States of America
- Department of Surgery, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, United States of America
| |
Collapse
|
33
|
Abstract
Autophagy influences cell survival through maintenance of cell bioenergetics and clearance of protein aggregates and damaged organelles. Several lines of evidence indicate that autophagy is a multifaceted regulator of cell death, but controversy exists over whether autophagy alone can drive cell death under physiologically relevant circumstances. Here, we review the role of autophagy in cell death and examine how autophagy interfaces with other forms of cell death including apoptosis and necrosis.
Collapse
|
34
|
Sattler N, Bosmani C, Barisch C, Guého A, Gopaldass N, Dias M, Leuba F, Bruckert F, Cosson P, Soldati T. Functions of the Dictyostelium LIMP-2 and CD36 homologues in bacteria uptake, phagolysosome biogenesis and host cell defence. J Cell Sci 2018; 131:jcs218040. [PMID: 30054386 DOI: 10.1242/jcs.218040] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 07/17/2018] [Indexed: 12/17/2023] Open
Abstract
Phagocytic cells take up, kill and digest microbes by a process called phagocytosis. To this end, these cells bind the particle, rearrange their actin cytoskeleton, and orchestrate transport of digestive factors to the particle-containing phagosome. The mammalian lysosomal membrane protein LIMP-2 (also known as SCARB2) and CD36, members of the class B of scavenger receptors, play a crucial role in lysosomal enzyme trafficking and uptake of mycobacteria, respectively, and generally in host cell defences against intracellular pathogens. Here, we show that the Dictyostelium discoideum LIMP-2 homologue LmpA regulates phagocytosis and phagolysosome biogenesis. The lmpA knockdown mutant is highly affected in actin-dependent processes, such as particle uptake, cellular spreading and motility. Additionally, the cells are severely impaired in phagosomal acidification and proteolysis, likely explaining the higher susceptibility to infection with the pathogenic bacterium Mycobacterium marinum, a close cousin of the human pathogen Mycobacterium tuberculosis Furthermore, we bring evidence that LmpB is a functional homologue of CD36 and specifically mediates uptake of mycobacteria. Altogether, these data indicate a role for LmpA and LmpB, ancestors of the family of which LIMP-2 and CD36 are members, in lysosome biogenesis and host cell defence.
Collapse
Affiliation(s)
- Natascha Sattler
- Départment de Biochimie, Faculté des Sciences, Université de Genève, Sciences II, 30 quai Ernest Ansermet, CH-1211 Genève-4, Switzerland
| | - Cristina Bosmani
- Départment de Biochimie, Faculté des Sciences, Université de Genève, Sciences II, 30 quai Ernest Ansermet, CH-1211 Genève-4, Switzerland
| | - Caroline Barisch
- Départment de Biochimie, Faculté des Sciences, Université de Genève, Sciences II, 30 quai Ernest Ansermet, CH-1211 Genève-4, Switzerland
| | - Aurélie Guého
- Départment de Biochimie, Faculté des Sciences, Université de Genève, Sciences II, 30 quai Ernest Ansermet, CH-1211 Genève-4, Switzerland
| | - Navin Gopaldass
- Départment de Biochimie, Faculté des Sciences, Université de Genève, Sciences II, 30 quai Ernest Ansermet, CH-1211 Genève-4, Switzerland
| | - Marco Dias
- Department of Cell Physiology and Metabolism, Centre Médical Universitaire, University of Geneva, 1 rue Michel Servet, CH-1211 Geneva 4, Switzerland
| | - Florence Leuba
- Départment de Biochimie, Faculté des Sciences, Université de Genève, Sciences II, 30 quai Ernest Ansermet, CH-1211 Genève-4, Switzerland
| | - Franz Bruckert
- Laboratoire des Matériaux et du Génie Physique (LMGP), Grenoble Institute of Technology, 3 parvis Louis Néel, BP 257, 38016 Grenoble cedex 1, France
| | - Pierre Cosson
- Department of Cell Physiology and Metabolism, Centre Médical Universitaire, University of Geneva, 1 rue Michel Servet, CH-1211 Geneva 4, Switzerland
| | - Thierry Soldati
- Départment de Biochimie, Faculté des Sciences, Université de Genève, Sciences II, 30 quai Ernest Ansermet, CH-1211 Genève-4, Switzerland
| |
Collapse
|
35
|
Dunn JD, Bosmani C, Barisch C, Raykov L, Lefrançois LH, Cardenal-Muñoz E, López-Jiménez AT, Soldati T. Eat Prey, Live: Dictyostelium discoideum As a Model for Cell-Autonomous Defenses. Front Immunol 2018; 8:1906. [PMID: 29354124 PMCID: PMC5758549 DOI: 10.3389/fimmu.2017.01906] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 12/13/2017] [Indexed: 12/11/2022] Open
Abstract
The soil-dwelling social amoeba Dictyostelium discoideum feeds on bacteria. Each meal is a potential infection because some bacteria have evolved mechanisms to resist predation. To survive such a hostile environment, D. discoideum has in turn evolved efficient antimicrobial responses that are intertwined with phagocytosis and autophagy, its nutrient acquisition pathways. The core machinery and antimicrobial functions of these pathways are conserved in the mononuclear phagocytes of mammals, which mediate the initial, innate-immune response to infection. In this review, we discuss the advantages and relevance of D. discoideum as a model phagocyte to study cell-autonomous defenses. We cover the antimicrobial functions of phagocytosis and autophagy and describe the processes that create a microbicidal phagosome: acidification and delivery of lytic enzymes, generation of reactive oxygen species, and the regulation of Zn2+, Cu2+, and Fe2+ availability. High concentrations of metals poison microbes while metal sequestration inhibits their metabolic activity. We also describe microbial interference with these defenses and highlight observations made first in D. discoideum. Finally, we discuss galectins, TNF receptor-associated factors, tripartite motif-containing proteins, and signal transducers and activators of transcription, microbial restriction factors initially characterized in mammalian phagocytes that have either homologs or functional analogs in D. discoideum.
Collapse
Affiliation(s)
- Joe Dan Dunn
- Faculty of Sciences, Department of Biochemistry, University of Geneva, Geneva, Switzerland
| | - Cristina Bosmani
- Faculty of Sciences, Department of Biochemistry, University of Geneva, Geneva, Switzerland
| | - Caroline Barisch
- Faculty of Sciences, Department of Biochemistry, University of Geneva, Geneva, Switzerland
| | - Lyudmil Raykov
- Faculty of Sciences, Department of Biochemistry, University of Geneva, Geneva, Switzerland
| | - Louise H Lefrançois
- Faculty of Sciences, Department of Biochemistry, University of Geneva, Geneva, Switzerland
| | - Elena Cardenal-Muñoz
- Faculty of Sciences, Department of Biochemistry, University of Geneva, Geneva, Switzerland
| | | | - Thierry Soldati
- Faculty of Sciences, Department of Biochemistry, University of Geneva, Geneva, Switzerland
| |
Collapse
|
36
|
The fate of multilamellar bodies produced and secreted by Dictyostelium discoideum amoebae. Eur J Cell Biol 2017; 96:767-773. [DOI: 10.1016/j.ejcb.2017.10.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2017] [Revised: 10/12/2017] [Accepted: 10/13/2017] [Indexed: 11/19/2022] Open
|
37
|
Sun L, Meng Z, Zhu Y, Lu J, Li Z, Zhao Q, Huang Y, Jiang L, Yao X. TM9SF4 is a novel factor promoting autophagic flux under amino acid starvation. Cell Death Differ 2017; 25:368-379. [PMID: 29125601 DOI: 10.1038/cdd.2017.166] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 09/06/2017] [Accepted: 09/08/2017] [Indexed: 12/16/2022] Open
Abstract
Autophagy is a highly complicated process with participation of large numbers of autophagy-related proteins. Under nutrient starvation, autophagy promotes cell survival by breaking down nonessential cellular components for recycling use. However, due to its high complexity, molecular mechanism of autophagy is still not fully understood. In the present study, we report a novel autophagy-related protein TM9SF4, which plays a functional role in the induction phase of autophagic process. TM9SF4 proteins were abundantly expressed in the kidney, especially in renal proximal tubular epithelial cells. At subcellular cells, TM9SF4 proteins were mostly localized in lysosome, Golgi, late endosome and autophagosome. Knockdown of TM9SF4 with TM9SF4-shRNAs markedly reduced the starvation-induced autophagy in HEK293 cells, the effect of which persisted in the presence of bafilomycin A1. TM9SF4-shRNAs also substantially attenuated the starvation-induced mTOR inactivation. In animal model, starvation was able to induce LC3-II accumulation and cause mTOR inactivation in renal cortical tissue in wild-type mice, the effect of which was minimal/absent in TM9SF4 knockout (TM9SF4-/-) mice. Co-immunoprecipitation and proximity ligation assay demonstrated physical interaction of TM9SF4 proteins with mTOR. In addition, knockdown or knockout of TM9SF4 reduced the starvation-induced cell death in HEK293 cells and animal model. Taken together, the present study identifies TM9SF4 as a novel autophagy-related protein. Under nutrient starvation, TM9SF4 functions to facilitate mTOR inactivation, resulting in an enhanced autophagic flux, which serves to protect cells from apoptotic cell death.
Collapse
Affiliation(s)
- Lei Sun
- Li Ka Shing Institute of Health Sciences and School of Biomedical Sciences, Faculty of Medicine, the Chinese University of Hong Kong, Hong Kong, China.,Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Zhaoyue Meng
- Li Ka Shing Institute of Health Sciences and School of Biomedical Sciences, Faculty of Medicine, the Chinese University of Hong Kong, Hong Kong, China.,Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China.,School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China
| | - Yifei Zhu
- Li Ka Shing Institute of Health Sciences and School of Biomedical Sciences, Faculty of Medicine, the Chinese University of Hong Kong, Hong Kong, China.,Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Jun Lu
- Li Ka Shing Institute of Health Sciences and School of Biomedical Sciences, Faculty of Medicine, the Chinese University of Hong Kong, Hong Kong, China.,Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Zhichao Li
- Li Ka Shing Institute of Health Sciences and School of Biomedical Sciences, Faculty of Medicine, the Chinese University of Hong Kong, Hong Kong, China.,Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Qiannan Zhao
- Li Ka Shing Institute of Health Sciences and School of Biomedical Sciences, Faculty of Medicine, the Chinese University of Hong Kong, Hong Kong, China.,Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Yu Huang
- Li Ka Shing Institute of Health Sciences and School of Biomedical Sciences, Faculty of Medicine, the Chinese University of Hong Kong, Hong Kong, China
| | - Liwen Jiang
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China
| | - Xiaoqiang Yao
- Li Ka Shing Institute of Health Sciences and School of Biomedical Sciences, Faculty of Medicine, the Chinese University of Hong Kong, Hong Kong, China.,Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| |
Collapse
|
38
|
Shear force-based genetic screen reveals negative regulators of cell adhesion and protrusive activity. Proc Natl Acad Sci U S A 2017; 114:E7727-E7736. [PMID: 28847951 DOI: 10.1073/pnas.1616600114] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The model organism Dictyostelium discoideum has greatly facilitated our understanding of the signal transduction and cytoskeletal pathways that govern cell motility. Cell-substrate adhesion is downstream of many migratory and chemotaxis signaling events. Dictyostelium cells lacking the tumor suppressor PTEN show strongly impaired migratory activity and adhere strongly to their substrates. We reasoned that other regulators of migration could be obtained through a screen for overly adhesive mutants. A screen of restriction enzyme-mediated integration mutagenized cells yielded numerous mutants with the desired phenotypes, and the insertion sites in 18 of the strains were mapped. These regulators of adhesion and motility mutants have increased adhesion and decreased motility. Characterization of seven strains demonstrated decreased directed migration, flatness, increased filamentous actin-based protrusions, and increased signal transduction network activity. Many of the genes share homology to human genes and demonstrate the diverse array of cellular networks that function in adhesion and migration.
Collapse
|
39
|
Inhibitors of Mycobacterium marinum virulence identified in a Dictyostelium discoideum host model. PLoS One 2017; 12:e0181121. [PMID: 28727774 PMCID: PMC5519057 DOI: 10.1371/journal.pone.0181121] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 06/26/2017] [Indexed: 12/21/2022] Open
Abstract
Tuberculosis remains one of the major threats to public health worldwide. Given the prevalence of multi drug resistance (MDR) in Mycobacterium tuberculosis strains, there is a strong need to develop new anti-mycobacterial drugs with modes of action distinct from classical antibiotics. Inhibitors of mycobacterial virulence might target new molecular processes and may represent a potential new therapeutic alternative. In this study, we used a Dictyostelium discoideum host model to assess virulence of Mycobacterium marinum and to identify compounds inhibiting mycobacterial virulence. Among 9995 chemical compounds, we selected 12 inhibitors of mycobacterial virulence that do not inhibit mycobacterial growth in synthetic medium. Further analyses revealed that 8 of them perturbed functions requiring an intact mycobacterial cell wall such as sliding motility, bacterial aggregation or cell wall permeability. Chemical analogs of two compounds were analyzed. Chemical modifications altered concomitantly their effect on sliding motility and on mycobacterial virulence, suggesting that the alteration of the mycobacterial cell wall caused the loss of virulence. We characterized further one of the selected compounds and found that it inhibited the ability of mycobacteria to replicate in infected cells. Together these results identify new antimycobacterial compounds that represent new tools to unravel the molecular mechanisms controlling mycobacterial pathogenicity. The isolation of compounds with anti-virulence activity is the first step towards developing new antibacterial treatments.
Collapse
|
40
|
Leiba J, Sabra A, Bodinier R, Marchetti A, Lima WC, Melotti A, Perrin J, Burdet F, Pagni M, Soldati T, Lelong E, Cosson P. Vps13F links bacterial recognition and intracellular killing in Dictyostelium. Cell Microbiol 2017; 19. [PMID: 28076662 PMCID: PMC5484366 DOI: 10.1111/cmi.12722] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 01/06/2017] [Accepted: 01/06/2017] [Indexed: 12/22/2022]
Abstract
Bacterial sensing, ingestion, and killing by phagocytic cells are essential processes to protect the human body from infectious microorganisms. The cellular mechanisms involved in intracellular killing, their relative importance, and their specificity towards different bacteria are however poorly defined. In this study, we used Dictyostelium discoideum, a phagocytic cell model amenable to genetic analysis, to identify new gene products involved in intracellular killing. A random genetic screen led us to identify the role of Vps13F in intracellular killing of Klebsiella pneumoniae. Vps13F knock‐out (KO) cells exhibited a delayed intracellular killing of K. pneumoniae, although the general organization of the phagocytic and endocytic pathway appeared largely unaffected. Transcriptomic analysis revealed that vps13F KO cells may be functionally similar to previously characterized fspA KO cells, shown to be defective in folate sensing. Indeed, vps13F KO cells showed a decreased chemokinetic response to various stimulants, suggesting a direct or indirect role of Vps13F in intracellular signaling. Overstimulation with excess folate restored efficient killing in vps13F KO cells. Finally, genetic inactivation of Far1, the folate receptor, resulted in inefficient intracellular killing of K. pneumoniae. Together, these observations show that stimulation of Dictyostelium by bacterial folate is necessary for rapid intracellular killing of K. pneumoniae.
Collapse
Affiliation(s)
- Jade Leiba
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Ayman Sabra
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Romain Bodinier
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Anna Marchetti
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Wanessa C Lima
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Astrid Melotti
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Jackie Perrin
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Frederic Burdet
- Vital-IT, Swiss Institute of Bioinformatics, University of Lausanne, Lausanne, Switzerland
| | - Marco Pagni
- Vital-IT, Swiss Institute of Bioinformatics, University of Lausanne, Lausanne, Switzerland
| | - Thierry Soldati
- Department of Biochemistry, University of Geneva, Geneva, Switzerland
| | - Emmanuelle Lelong
- Genomic Research Laboratory, Division of Infectious Diseases, Geneva University Hospitals, Geneva, Switzerland
| | - Pierre Cosson
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
41
|
Koller B, Schramm C, Siebert S, Triebel J, Deland E, Pfefferkorn AM, Rickerts V, Thewes S. Dictyostelium discoideum as a Novel Host System to Study the Interaction between Phagocytes and Yeasts. Front Microbiol 2016; 7:1665. [PMID: 27818653 PMCID: PMC5073093 DOI: 10.3389/fmicb.2016.01665] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 10/05/2016] [Indexed: 01/26/2023] Open
Abstract
The social amoeba Dictyostelium discoideum is a well-established model organism to study the interaction between bacteria and phagocytes. In contrast, research using D. discoideum as a host model for fungi is rare. We describe a comprehensive study, which uses D. discoideum as a host model system to investigate the interaction with apathogenic (Saccharomyces cerevisiae) and pathogenic (Candida sp.) yeast. We show that Dictyostelium can be co-cultivated with yeasts on solid media, offering a convenient test to study the interaction between fungi and phagocytes. We demonstrate that a number of D. discoideum mutants increase (atg1-, kil1-, kil2-) or decrease (atg6-) the ability of the amoebae to predate yeast cells. On the yeast side, growth characteristics, reduced phagocytosis rate, as well as known virulence factors of C. albicans (EFG1, CPH1, HGC1, ICL1) contribute to the resistance of yeast cells against predation by the amoebae. Investigating haploid C. albicans strains, we suggest using the amoebae plate test for screening purposes after random mutagenesis. Finally, we discuss the potential of our adapted amoebae plate test to use D. discoideum for risk assessment of yeast strains.
Collapse
Affiliation(s)
- Barbara Koller
- Department of Biology, Chemistry, Pharmacy, Institute for Biology - Microbiology, Freie Universität Berlin Berlin, Germany
| | - Christin Schramm
- Department of Biology, Chemistry, Pharmacy, Institute for Biology - Microbiology, Freie Universität BerlinBerlin, Germany; FG16, Robert Koch InstituteBerlin, Germany
| | - Susann Siebert
- Department of Biology, Chemistry, Pharmacy, Institute for Biology - Microbiology, Freie Universität Berlin Berlin, Germany
| | - János Triebel
- Department of Biology, Chemistry, Pharmacy, Institute for Biology - Microbiology, Freie Universität Berlin Berlin, Germany
| | - Eric Deland
- Department of Biology, Chemistry, Pharmacy, Institute for Biology - Microbiology, Freie Universität Berlin Berlin, Germany
| | - Anna M Pfefferkorn
- Department of Biology, Chemistry, Pharmacy, Institute for Biology - Microbiology, Freie Universität Berlin Berlin, Germany
| | | | - Sascha Thewes
- Department of Biology, Chemistry, Pharmacy, Institute for Biology - Microbiology, Freie Universität Berlin Berlin, Germany
| |
Collapse
|
42
|
Delincé MJ, Bureau JB, López-Jiménez AT, Cosson P, Soldati T, McKinney JD. A microfluidic cell-trapping device for single-cell tracking of host-microbe interactions. LAB ON A CHIP 2016; 16:3276-85. [PMID: 27425421 DOI: 10.1039/c6lc00649c] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The impact of cellular individuality on host-microbe interactions is increasingly appreciated but studying the temporal dynamics of single-cell behavior in this context remains technically challenging. Here we present a microfluidic platform, InfectChip, to trap motile infected cells for high-resolution time-lapse microscopy. This approach allows the direct visualization of all stages of infection, from bacterial uptake to death of the bacterium or host cell, over extended periods of time. We demonstrate the utility of this approach by co-culturing an established host-cell model, Dictyostelium discoideum, with the extracellular pathogen Klebsiella pneumoniae or the intracellular pathogen Mycobacterium marinum. We show that the outcome of such infections is surprisingly heterogeneous, ranging from abortive infection to death of the bacterium or host cell. InfectChip thus provides a simple method to dissect the time-course of host-microbe interactions at the single-cell level, yielding new insights that could not be gleaned from conventional population-based measurements.
Collapse
Affiliation(s)
- Matthieu J Delincé
- School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland.
| | - Jean-Baptiste Bureau
- School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland.
| | | | - Pierre Cosson
- Department for Cell Physiology and Metabolism, Centre Medical Universitaire, University of Geneva, Switzerland
| | - Thierry Soldati
- Department of Biochemistry, University of Geneva, Geneva, Switzerland.
| | - John D McKinney
- School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland.
| |
Collapse
|
43
|
Dias M, Brochetta C, Marchetti A, Bodinier R, Brückert F, Cosson P. Role of SpdA in Cell Spreading and Phagocytosis in Dictyostelium. PLoS One 2016; 11:e0160376. [PMID: 27512991 PMCID: PMC4981364 DOI: 10.1371/journal.pone.0160376] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 07/18/2016] [Indexed: 11/18/2022] Open
Abstract
Dictyostelium discoideum is a widely used model to study molecular mechanisms controlling cell adhesion, cell spreading on a surface, and phagocytosis. In this study we isolated and characterize a new mutant created by insertion of a mutagenic vector in the heretofore uncharacterized spdA gene. SpdA-ins mutant cells produce an altered, slightly shortened version of the SpdA protein. They spread more efficiently than WT cells when allowed to adhere to a glass substrate, and phagocytose particles more efficiently. On the contrary, a functional spdA knockout mutant where a large segment of the gene was deleted phagocytosed less efficiently and spread less efficiently on a substrate. These phenotypes were highly dependent on the cellular density, and were most visible at high cell densities, where secreted quorum-sensing factors inhibiting cell motility, spreading and phagocytosis are most active. These results identify the involvement of SpdA in the control of cell spreading and phagocytosis. The underlying molecular mechanisms, as well as the exact link between SpdA and cell spreading, remain to be established.
Collapse
Affiliation(s)
- Marco Dias
- Department for Cell Physiology and Metabolism, Faculty of Medicine, Geneva University, Geneva, Switzerland
| | - Cristiana Brochetta
- Department for Cell Physiology and Metabolism, Faculty of Medicine, Geneva University, Geneva, Switzerland
| | - Anna Marchetti
- Department for Cell Physiology and Metabolism, Faculty of Medicine, Geneva University, Geneva, Switzerland
| | - Romain Bodinier
- Department for Cell Physiology and Metabolism, Faculty of Medicine, Geneva University, Geneva, Switzerland
| | - Franz Brückert
- Laboratoire des Matériaux et du Génie Physique (LMGP), UMR CNRS-Grenoble INP5628 Université Grenoble Alpes, 3 parvis Louis Néel, BP 257, Grenoble cedex 1, France
| | - Pierre Cosson
- Department for Cell Physiology and Metabolism, Faculty of Medicine, Geneva University, Geneva, Switzerland
- * E-mail:
| |
Collapse
|
44
|
Identification of Proteins Associated with Multilamellar Bodies Produced by Dictyostelium discoideum. PLoS One 2016; 11:e0158270. [PMID: 27340834 PMCID: PMC4920372 DOI: 10.1371/journal.pone.0158270] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 06/13/2016] [Indexed: 02/05/2023] Open
Abstract
Dictyostelium discoideum amoebae produce and secrete multilamellar bodies (MLBs) when fed digestible bacteria. The aim of the present study was to elucidate the proteic content of MLBs. The lipid composition of MLBs is mainly amoebal in origin, suggesting that MLB formation is a protozoa-driven process that could play a significant role in amoebal physiology. We identified four major proteins on purified MLBs using mass spectrometry in order to better understand the molecular mechanisms governing MLB formation and, eventually, to elucidate the true function of MLBs. These proteins were SctA, PhoPQ, PonC and a protein containing a cytidine/deoxycytidylate deaminase (CDD) zinc-binding region. SctA is a component of pycnosomes, which are membranous materials that are continuously secreted by amoebae. The presence of SctA on MLBs was confirmed by immunofluorescence and Western blotting using a specific anti-SctA antibody. The CDD protein may be one of the proteins recognized by the H36 antibody, which was used as a MLB marker in a previous study. The function of the CDD protein is unknown. Immunofluorescence and flow cytometric analyses confirmed that the H36 antibody is a better marker of MLBs than the anti-SctA antibody. This study is an additional step to elucidate the potential role of MLBs and revealed that only a small set of proteins appeared to be present on MLBs.
Collapse
|
45
|
Drexler SK, Brogna F, Vinet A, Pieters J. Investigating the Function of Coronin A in the Early Starvation Response of Dictyostelium discoideum by Aggregation Assays. J Vis Exp 2016. [PMID: 27403805 DOI: 10.3791/53972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Dictyostelium discoideum amoeba are found in soil, feeding on bacteria. When food sources become scarce, they secrete factors to initiate a multicellular development program, during which single cells chemotax towards aggregation centers(1-4). This process is dependent on the release of cyclic adenosine monophosphate (cAMP)(5). cAMP is produced in waves through the concerted action of adenylate cyclase and phosphodiesterases, and binds to G protein-coupled cAMP receptors(6,7). A widely used assay to analyze the mechanisms involved in the developmental cycle of the lower eukaryote Dictyostelium discoideum is based on the observation of cell aggregation in submerged conditions(8,9). This protocol describes the analysis of the role of coronin A in the developmental cycle by starvation in tissue-culture plates submerged in balanced salt solution (BSS)(10). Coronin A is a member of the widely conserved protein family of coronins that have been implicated in a wide variety of activities(11,12). Dictyostelium cells lacking coronin A are unable to form multicellular aggregates, and this defect can be rescued by supplying pulses of cAMP, suggesting that coronin A acts upstream of the cAMP cascade(10). The techniques described in these studies provide robust tools to investigate functions of proteins during the initial stages of the developmental cycle of Dictyostelium discoideum upstream of the cAMP cascade. Therefore, utilizing this aggregation assay may allow the further study of coronin A function and advance our understanding of coronin biology.
Collapse
|
46
|
Pycnosomes: Condensed Endosomal Structures Secreted by Dictyostelium Amoebae. PLoS One 2016; 11:e0154875. [PMID: 27187592 PMCID: PMC4871501 DOI: 10.1371/journal.pone.0154875] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 04/20/2016] [Indexed: 11/19/2022] Open
Abstract
Dictyostelium discoideum has been used largely as a model organism to study the organization and function of the endocytic pathway. Here we describe dense structures present in D. discoideum endocytic compartments, which we named pycnosomes. Pycnosomes are constitutively secreted in the extracellular medium, from which they can be recovered by differential centrifugation. We identified the most abundant protein present in secreted pycnosomes, that we designated SctA. SctA defines a new family of proteins with four members in D. discoideum, and homologous proteins in other protists and eumetazoa. We developed a monoclonal antibody specific for SctA and used it to further characterize secreted and intracellular pycnosomes. Within cells, immunofluorescence as well as electron microscopy identified pycnosomes as SctA-enriched dense structures in the lumen of endocytic compartments. Pycnosomes are occasionally seen in continuity with intra-endosomal membranes, particularly in U18666A-treated cells where intraluminal budding is highly enhanced. While the exact nature, origin and cellular function of pycnosomes remain to be established, this study provides a first description of these structures as well as a characterization of reagents that can be used for further studies.
Collapse
|
47
|
Paquet VE, Charette SJ. Amoeba-resisting bacteria found in multilamellar bodies secreted by Dictyostelium discoideum: social amoebae can also package bacteria. FEMS Microbiol Ecol 2016; 92:fiw025. [PMID: 26862140 DOI: 10.1093/femsec/fiw025] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/02/2016] [Indexed: 11/14/2022] Open
Abstract
Many bacteria can resist phagocytic digestion by various protozoa. Some of these bacteria (all human pathogens) are known to be packaged in multilamellar bodies produced in the phagocytic pathway of the protozoa and that are secreted into the extracellular milieu. Packaged bacteria are protected from harsh conditions, and the packaging process is suspected to promote bacterial persistence in the environment. To date, only a limited number of protozoa, belonging to free-living amoebae and ciliates, have been shown to perform bacteria packaging. It is still unknown if social amoebae can do bacteria packaging. The link between the capacity of 136 bacterial isolates to resist the grazing of the social amoeba Dictyostelium discoideum and to be packaged by this amoeba was investigated in the present study. The 45 bacterial isolates displaying a resisting phenotype were tested for their capacity to be packaged. A total of seven isolates from Cupriavidus, Micrococcus, Microbacterium and Rathayibacter genera seemed to be packaged and secreted by D. discoideum based on immunofluorescence results. Electron microscopy confirmed that the Cupriavidus and Rathayibacter isolates were formally packaged. These results show that social amoebae can package some bacteria from the environment revealing a new aspect of microbial ecology.
Collapse
Affiliation(s)
- Valérie E Paquet
- Institut de Biologie Intégrative et des Systèmes, Pavillon Charles-Eugène-Marchand, Université Laval, Quebec City, QC, G1V 0A6, Canada Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Hôpital Laval, Quebec City, QC, G1V 4G5, Canada
| | - Steve J Charette
- Institut de Biologie Intégrative et des Systèmes, Pavillon Charles-Eugène-Marchand, Université Laval, Quebec City, QC, G1V 0A6, Canada Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Hôpital Laval, Quebec City, QC, G1V 4G5, Canada Département de biochimie, de microbiologie et de bio-informatique, Faculté des sciences et de génie, Université Laval, Quebec City, QC, G1V 0A6, Canada
| |
Collapse
|
48
|
Leonhardt H, Gerhardt M, Höppner N, Krüger K, Tarantola M, Beta C. Cell-substrate impedance fluctuations of single amoeboid cells encode cell-shape and adhesion dynamics. Phys Rev E 2016; 93:012414. [PMID: 26871108 DOI: 10.1103/physreve.93.012414] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Indexed: 01/15/2023]
Abstract
We show systematic electrical impedance measurements of single motile cells on microelectrodes. Wild-type cells and mutant strains were studied that differ in their cell-substrate adhesion strength. We recorded the projected cell area by time-lapse microscopy and observed irregular oscillations of the cell shape. These oscillations were correlated with long-term variations in the impedance signal. Superposed to these long-term trends, we observed fluctuations in the impedance signal. Their magnitude clearly correlated with the adhesion strength, suggesting that strongly adherent cells display more dynamic cell-substrate interactions.
Collapse
Affiliation(s)
- Helmar Leonhardt
- Institute of Physics and Astronomy, University of Potsdam, Karl-Liebknecht Strasse 24/25, 14476 Potsdam, Germany
| | - Matthias Gerhardt
- Institute of Physics and Astronomy, University of Potsdam, Karl-Liebknecht Strasse 24/25, 14476 Potsdam, Germany
| | - Nadine Höppner
- Max Planck Institute for Dynamics and Self-Organization, Am Fassberg 17, 37077 Göttingen, Germany
| | - Kirsten Krüger
- Institute of Physics and Astronomy, University of Potsdam, Karl-Liebknecht Strasse 24/25, 14476 Potsdam, Germany
| | - Marco Tarantola
- Max Planck Institute for Dynamics and Self-Organization, Am Fassberg 17, 37077 Göttingen, Germany
| | - Carsten Beta
- Institute of Physics and Astronomy, University of Potsdam, Karl-Liebknecht Strasse 24/25, 14476 Potsdam, Germany.,Max Planck Institute for Dynamics and Self-Organization, Am Fassberg 17, 37077 Göttingen, Germany
| |
Collapse
|
49
|
Woo CH, Gao C, Yu P, Tu L, Meng Z, Banfield DK, Yao X, Jiang L. Conserved function of the lysine-based KXD/E motif in Golgi retention for endomembrane proteins among different organisms. Mol Biol Cell 2015; 26:4280-93. [PMID: 26378254 PMCID: PMC4642860 DOI: 10.1091/mbc.e15-06-0361] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 09/11/2015] [Indexed: 01/06/2023] Open
Abstract
We recently identified a new COPI-interacting KXD/E motif in the C-terminal cytosolic tail (CT) of Arabidopsis endomembrane protein 12 (AtEMP12) as being a crucial Golgi retention mechanism for AtEMP12. This KXD/E motif is conserved in CTs of all EMPs found in plants, yeast, and humans and is also present in hundreds of other membrane proteins. Here, by cloning selective EMP isoforms from plants, yeast, and mammals, we study the localizations of EMPs in different expression systems, since there are contradictory reports on the localizations of EMPs. We show that the N-terminal and C-terminal GFP-tagged EMP fusions are localized to Golgi and post-Golgi compartments, respectively, in plant, yeast, and mammalian cells. In vitro pull-down assay further proves the interaction of the KXD/E motif with COPI coatomer in yeast. COPI loss of function in yeast and plants causes mislocalization of EMPs or KXD/E motif-containing proteins to vacuole. Ultrastructural studies further show that RNA interference (RNAi) knockdown of coatomer expression in transgenic Arabidopsis plants causes severe morphological changes in the Golgi. Taken together, our results demonstrate that N-terminal GFP fusions reflect the real localization of EMPs, and KXD/E is a conserved motif in COPI interaction and Golgi retention in eukaryotes.
Collapse
Affiliation(s)
- Cheuk Hang Woo
- Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, School of Life Sciences, and
| | - Caiji Gao
- Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, School of Life Sciences, and
| | - Ping Yu
- Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Linna Tu
- Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Zhaoyue Meng
- School of Biomedical Sciences, Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - David K Banfield
- Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Xiaoqiang Yao
- School of Biomedical Sciences, Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China CUHK Shenzhen Research Institute, Chinese University of Hong Kong, Shenzhen 518057, China
| | - Liwen Jiang
- Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, School of Life Sciences, and CUHK Shenzhen Research Institute, Chinese University of Hong Kong, Shenzhen 518057, China )
| |
Collapse
|
50
|
Zhu X, Bouffanais R, Yue DKP. Interplay between motility and cell-substratum adhesion in amoeboid cells. BIOMICROFLUIDICS 2015; 9:054112. [PMID: 26487898 PMCID: PMC4592429 DOI: 10.1063/1.4931762] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Accepted: 09/15/2015] [Indexed: 05/07/2023]
Abstract
The effective migration of amoeboid cells requires a fine regulation of cell-substratum adhesion. These entwined processes have been shown to be regulated by a host of biophysical and biochemical cues. Here, we reveal the pivotal role played by calcium-based mechanosensation in the active regulation of adhesion resulting in a high migratory adaptability. Using mechanotactically driven Dictyostelium discoideum amoebae, we uncover the existence of optimal mechanosensitive conditions-corresponding to specific levels of extracellular calcium-for persistent directional migration over physicochemically different substrates. When these optimal mechanosensitive conditions are met, noticeable enhancement in cell migration directionality and speed is achieved, yet with significant differences among the different substrates. In the same narrow range of calcium concentrations that yields optimal cellular mechanosensory activity, we uncovered an absolute minimum in cell-substratum adhesion activity, for all considered substrates, with differences in adhesion strength among them amplified. The blocking of the mechanosensitive ion channels with gadolinium-i.e., the inhibition of the primary mechanosensory apparatus-hampers the active reduction in substrate adhesion, thereby leading to the same undifferentiated and drastically reduced directed migratory response. The adaptive behavioral responses of Dictyostelium cells sensitive to substrates with varying physicochemical properties suggest the possibility of novel surface analyses based on the mechanobiological ability of mechanosensitive and guidable cells to probe substrates at the nanometer-to-micrometer level.
Collapse
Affiliation(s)
- Xiaoying Zhu
- Singapore University of Technology and Design , 8 Somapah Road, Singapore 487372
| | - Roland Bouffanais
- Singapore University of Technology and Design , 8 Somapah Road, Singapore 487372
| | - Dick K P Yue
- Massachusetts Institute of Technology , 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
| |
Collapse
|