1
|
Kumar R, Couly S, Muys BR, Li XL, Grammatikakis I, Singh R, Guest M, Wen X, Tang W, Ambs S, Jenkins LM, Pehrsson EC, Chari R, Su TP, Lal A. p53-induced RNA-binding protein ZMAT3 inhibits transcription of a hexokinase to suppress mitochondrial respiration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.05.12.653341. [PMID: 40391325 PMCID: PMC12087986 DOI: 10.1101/2025.05.12.653341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2025]
Abstract
The tumor suppressor p53 is a transcription factor that controls the expression of hundreds of genes. Emerging evidence suggests that the p53-induced RNA-binding protein ZMAT3 is a key splicing regulator that functions in p53-dependent tumor suppression in vitro and in vivo . However, the mechanism by which ZMAT3 functions in the p53 pathway is largely unclear. Here, we discovered a function of ZMAT3 in inhibiting transcription of HKDC1 , a hexokinase that regulates glucose metabolism and mitochondrial respiration. Using quantitative proteomics, we identified HKDC1 as the most significantly upregulated protein in ZMAT3 -depleted colorectal cancer cells. ZMAT3 depletion results in increased mitochondrial respiration that was rescued upon depletion of HKDC1 , suggesting that HKDC1 is a critical downstream effector of ZMAT3 . Unexpectedly, ZMAT3 did not bind to the HKDC1 RNA or DNA but the identification of the ZMAT3-interactome uncovered its interaction with the oncogenic transcription factor JUN. ZMAT3 depletion resulted in increased JUN binding at the HKDC1 promoter and increased HKDC1 transcription that was rescued upon JUN depletion, suggesting that JUN activates HKDC1 transcription in ZMAT3-depleted cells. Collectively, these data reveal a mechanism by which ZMAT3 regulates transcription and demonstrates that HKDC1 is a key component of the ZMAT3-regulated transcriptome in the context of mitochondrial respiration regulation.
Collapse
|
2
|
Agarwal H, Tal P, Goldfinger N, Chattopadhyay E, Malkin D, Rotter V, Attery A. Mutant p53 reactivation restricts the protumorigenic consequences of wild type p53 loss of heterozygosity in Li-Fraumeni syndrome patient-derived fibroblasts. Cell Death Differ 2024; 31:855-867. [PMID: 38745079 PMCID: PMC11239894 DOI: 10.1038/s41418-024-01307-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 04/13/2024] [Accepted: 04/26/2024] [Indexed: 05/16/2024] Open
Abstract
The p53 tumor suppressor, encoded by the TP53 gene, serves as a major barrier against malignant transformation. Patients with Li-Fraumeni syndrome (LFS) inherit a mutated TP53 allele from one parent and a wild-type TP53 allele from the other. Subsequently, the wild-type allele is lost and only the mutant TP53 allele remains. This process, which is termed loss of heterozygosity (LOH), results in only mutant p53 protein expression. We used primary dermal fibroblasts from LFS patients carrying the hotspot p53 gain-of-function pathogenic variant, R248Q to study the LOH process and characterize alterations in various pathways before and after LOH. We previously described the derivation of mutant p53 reactivating peptides, designated pCAPs (p53 Conformation Activating Peptides). In this study, we tested the effect of lead peptide pCAP-250 on LOH and on its associated cellular changes. We report that treatment of LFS fibroblasts with pCAP-250 prevents the accumulation of mutant p53 protein, inhibits LOH, and alleviates its cellular consequences. Furthermore, prolonged treatment with pCAP-250 significantly reduces DNA damage and restores long-term genomic stability. pCAPs may thus be contemplated as a potential preventive treatment to prevent or delay early onset cancer in carriers of mutant p53.
Collapse
Affiliation(s)
- Himanshi Agarwal
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Perry Tal
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Naomi Goldfinger
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Esita Chattopadhyay
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - David Malkin
- Department of Genetics and Genome Biology and the Division of Hematology/Oncology, The Hospital for Sick Children, Toronto, ON, Canada
- Departments of Medical Biophysics and Pediatrics, University of Toronto, Toronto, ON, Canada
| | - Varda Rotter
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel.
| | - Ayush Attery
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel.
- Department of Tumor Cell Biology, St Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
3
|
Lin Y, Jin X. Effect of ubiquitin protease system on DNA damage response in prostate cancer (Review). Exp Ther Med 2024; 27:33. [PMID: 38125344 PMCID: PMC10731405 DOI: 10.3892/etm.2023.12321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 10/26/2023] [Indexed: 12/23/2023] Open
Abstract
Genomic instability is an essential hallmark of cancer, and cellular DNA damage response (DDR) defects drive tumorigenesis by disrupting genomic stability. Several studies have identified abnormalities in DDR-associated genes, and a dysfunctional ubiquitin-proteasome system (UPS) is the most common molecular event in metastatic castration-resistant prostate cancer (PCa). For example, mutations in Speckle-type BTB/POZ protein-Ser119 result in DDR downstream target activation deficiency. Skp2 excessive upregulation inhibits homologous recombination repair and promotes cell growth and migration. Abnormally high expression of a deubiquitination enzyme, ubiquitin-specific protease 12, stabilizes E3 ligase MDM2, which further leads to p53 degradation, causing DDR interruption and genomic instability. In the present review, the basic pathways of DDR, UPS dysfunction, and its induced DDR alterations mediated by genomic instability, and especially the potential application of UPS and DDR alterations as biomarkers and therapeutic targets in PCa treatment, were described.
Collapse
Affiliation(s)
- Yan Lin
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
- Department of Oncology, The First Hospital of Ningbo University, Ningbo, Zhejiang 315010, P.R. China
| | - Xiaofeng Jin
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
- Department of Oncology, The First Hospital of Ningbo University, Ningbo, Zhejiang 315010, P.R. China
| |
Collapse
|
4
|
CNOT6: A Novel Regulator of DNA Mismatch Repair. Cells 2022; 11:cells11030521. [PMID: 35159331 PMCID: PMC8833972 DOI: 10.3390/cells11030521] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/29/2022] [Accepted: 01/31/2022] [Indexed: 11/16/2022] Open
Abstract
DNA mismatch repair (MMR) is a highly conserved pathway that corrects both base–base mispairs and insertion-deletion loops (IDLs) generated during DNA replication. Defects in MMR have been linked to carcinogenesis and drug resistance. However, the regulation of MMR is poorly understood. Interestingly, CNOT6 is one of four deadenylase subunits in the conserved CCR4-NOT complex and it targets poly(A) tails of mRNAs for degradation. CNOT6 is overexpressed in acute lymphoblastic leukemia (ALL), acute myeloid leukemia (AML) and androgen-independent prostate cancer cells, which suggests that an altered expression of CNOT6 may play a role in tumorigenesis. Here, we report that a depletion of CNOT6 sensitizes human U2OS cells to N-methyl-N′nitro-N-nitrosoguanidine (MNNG) and leads to enhanced apoptosis. We also demonstrate that the depletion of CNOT6 upregulates MMR and decreases the mutation frequency in MMR-proficient cells. Furthermore, the depletion of CNOT6 increases the stability of mRNA transcripts from MMR genes, leading to the increased expression of MMR proteins. Our work provides insight into a novel CNOT6-dependent mechanism for regulating MMR.
Collapse
|
5
|
Liu P, Ma D, Wang P, Pan C, Fang Q, Wang J. Nrf2 overexpression increases risk of high tumor mutation burden in acute myeloid leukemia by inhibiting MSH2. Cell Death Dis 2021; 12:20. [PMID: 33414469 PMCID: PMC7790830 DOI: 10.1038/s41419-020-03331-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 12/01/2020] [Accepted: 12/04/2020] [Indexed: 12/12/2022]
Abstract
Nuclear factor erythroid 2-related factor 2 (Nrf2, also called NFE2L2) plays an important role in cancer chemoresistance. However, little is known about the role of Nrf2 in tumor mutation burden and the effect of Nrf2 in modulating DNA mismatch repair (MMR) gene in acute myeloid leukemia (AML). Here we show that Nrf2 expression is associated with tumor mutation burden in AML. Patients with Nrf2 overexpression had a higher frequency of gene mutation and drug resistance. Nrf2 overexpression protected the AML cells from apoptosis induced by cytarabine in vitro and increased the risk of drug resistance associated with a gene mutation in vivo. Furthermore, Nrf2 overexpression inhibited MutS Homolog 2 (MSH2) protein expression, which caused DNA MMR deficiency. Mechanistically, the inhibition of MSH2 by Nrf2 was in a ROS-independent manner. Further studies showed that an increased activation of JNK/c-Jun signaling in Nrf2 overexpression cells inhibited the expression of the MSH2 protein. Our findings provide evidence that high Nrf2 expression can induce gene instability-dependent drug resistance in AML. This study demonstrates the reason why the high Nrf2 expression leads to the increase of gene mutation frequency in AML, and provides a new strategy for clinical practice.
Collapse
Affiliation(s)
- Ping Liu
- Department of Hematology, Affiliated Hospital of Guizhou Medical University, Guizhou Province Institute of Hematology, Guizhou Province Laboratory of Hematopoietic Stem Cell Transplantation Centre, 550004, Guiyang, China.,Basic Medical College, Guizhou Medical University, 550004, Guiyang, China
| | - Dan Ma
- Department of Hematology, Affiliated Hospital of Guizhou Medical University, Guizhou Province Institute of Hematology, Guizhou Province Laboratory of Hematopoietic Stem Cell Transplantation Centre, 550004, Guiyang, China
| | - Ping Wang
- Department of Hematology, Affiliated Hospital of Guizhou Medical University, Guizhou Province Institute of Hematology, Guizhou Province Laboratory of Hematopoietic Stem Cell Transplantation Centre, 550004, Guiyang, China
| | - Chengyun Pan
- Department of Hematology, Affiliated Hospital of Guizhou Medical University, Guizhou Province Institute of Hematology, Guizhou Province Laboratory of Hematopoietic Stem Cell Transplantation Centre, 550004, Guiyang, China.,Basic Medical College, Guizhou Medical University, 550004, Guiyang, China
| | - Qin Fang
- Department of Pharmacy, Affiliated Hospital of Guizhou Medical University, 550004, Guiyang, China
| | - Jishi Wang
- Department of Hematology, Affiliated Hospital of Guizhou Medical University, Guizhou Province Institute of Hematology, Guizhou Province Laboratory of Hematopoietic Stem Cell Transplantation Centre, 550004, Guiyang, China. .,National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, 215006, Suzhou, China.
| |
Collapse
|
6
|
Karakaidos P, Karagiannis D, Rampias T. Resolving DNA Damage: Epigenetic Regulation of DNA Repair. Molecules 2020; 25:molecules25112496. [PMID: 32471288 PMCID: PMC7321228 DOI: 10.3390/molecules25112496] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/22/2020] [Accepted: 05/25/2020] [Indexed: 12/18/2022] Open
Abstract
Epigenetic research has rapidly evolved into a dynamic field of genome biology. Chromatin regulation has been proved to be an essential aspect for all genomic processes, including DNA repair. Chromatin structure is modified by enzymes and factors that deposit, erase, and interact with epigenetic marks such as DNA and histone modifications, as well as by complexes that remodel nucleosomes. In this review we discuss recent advances on how the chromatin state is modulated during this multi-step process of damage recognition, signaling, and repair. Moreover, we examine how chromatin is regulated when different pathways of DNA repair are utilized. Furthermore, we review additional modes of regulation of DNA repair, such as through the role of global and localized chromatin states in maintaining expression of DNA repair genes, as well as through the activity of epigenetic enzymes on non-nucleosome substrates. Finally, we discuss current and future applications of the mechanistic interplays between chromatin regulation and DNA repair in the context cancer treatment.
Collapse
Affiliation(s)
| | - Dimitris Karagiannis
- Department of Genetics and Development, Columbia University Medical Center, New York, NY 10032, USA;
| | - Theodoros Rampias
- Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece;
- Correspondence: ; Tel.: +30-210-659-7469
| |
Collapse
|
7
|
Struve N, Binder ZA, Stead LF, Brend T, Bagley SJ, Faulkner C, Ott L, Müller-Goebel J, Weik AS, Hoffer K, Krug L, Rieckmann T, Bußmann L, Henze M, Morrissette JJD, Kurian KM, Schüller U, Petersen C, Rothkamm K, O Rourke DM, Short SC, Kriegs M. EGFRvIII upregulates DNA mismatch repair resulting in increased temozolomide sensitivity of MGMT promoter methylated glioblastoma. Oncogene 2020; 39:3041-3055. [PMID: 32066879 PMCID: PMC7142016 DOI: 10.1038/s41388-020-1208-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 01/23/2020] [Accepted: 02/03/2020] [Indexed: 11/08/2022]
Abstract
The oncogene epidermal growth factor receptor variant III (EGFRvIII) is frequently expressed in glioblastomas (GBM) but its impact on therapy response is still under controversial debate. Here we wanted to test if EGFRvIII influences the sensitivity towards the alkylating agent temozolomide (TMZ). Therefore, we retrospectively analyzed the survival of 336 GBM patients, demonstrating that under standard treatment, which includes TMZ, EGFRvIII expression is associated with prolonged survival, but only in patients with O6-methylguanine-DNA methyltransferase (MGMT) promoter methylated tumors. Using isogenic GBM cell lines with endogenous EGFRvIII expression we could demonstrate that EGFRvIII increases TMZ sensitivity and results in enhanced numbers of DNA double-strand breaks and a pronounced S/G2-phase arrest after TMZ treatment. We observed a higher expression of DNA mismatch repair (MMR) proteins in EGFRvIII+ cells and patient tumor samples, which was most pronounced for MSH2 and MSH6. EGFRvIII-specific knockdown reduced MMR protein expression thereby increasing TMZ resistance. Subsequent functional kinome profiling revealed an increased activation of p38- and ERK1/2-dependent signaling in EGFRvIII expressing cells, which regulates MMR protein expression downstream of EGFRvIII. In summary, our results demonstrate that the oncoprotein EGFRvIII sensitizes a fraction of GBM to current standard of care treatment through the upregulation of DNA MMR.
Collapse
Affiliation(s)
- Nina Struve
- Laboratory of Radiobiology & Experimental Radiation Oncology, Hubertus Wald Tumorzentrum - University Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | - Zev A Binder
- Department of Neurosurgery, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Lucy F Stead
- Leeds Institute of Medical Research at St James's, Wellcome Trust Brenner Building, St. James's University Hospital, Leeds, UK
| | - Tim Brend
- Leeds Institute of Medical Research at St James's, Wellcome Trust Brenner Building, St. James's University Hospital, Leeds, UK
| | - Stephen J Bagley
- Division of Hematology/Oncology, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Claire Faulkner
- Bristol Genetics Laboratory, Southmead Hospital, Bristol, UK
| | - Leonie Ott
- Laboratory of Radiobiology & Experimental Radiation Oncology, Hubertus Wald Tumorzentrum - University Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Justus Müller-Goebel
- Laboratory of Radiobiology & Experimental Radiation Oncology, Hubertus Wald Tumorzentrum - University Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Anna-Sophie Weik
- Laboratory of Radiobiology & Experimental Radiation Oncology, Hubertus Wald Tumorzentrum - University Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Konstantin Hoffer
- Laboratory of Radiobiology & Experimental Radiation Oncology, Hubertus Wald Tumorzentrum - University Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Leonie Krug
- Laboratory of Radiobiology & Experimental Radiation Oncology, Hubertus Wald Tumorzentrum - University Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Otorhinolaryngology and Head and Neck Surgery, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Thorsten Rieckmann
- Laboratory of Radiobiology & Experimental Radiation Oncology, Hubertus Wald Tumorzentrum - University Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Otorhinolaryngology and Head and Neck Surgery, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Lara Bußmann
- Laboratory of Radiobiology & Experimental Radiation Oncology, Hubertus Wald Tumorzentrum - University Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Otorhinolaryngology and Head and Neck Surgery, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Marvin Henze
- Laboratory of Radiobiology & Experimental Radiation Oncology, Hubertus Wald Tumorzentrum - University Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Radiotherapy and Radiooncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jennifer J D Morrissette
- Division of Precision and Computational Diagnostics, Department of Pathology and Laboratory Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Kathreena M Kurian
- Bristol Brain Tumour Research Centre, University of Bristol, Bristol, UK
| | - Ulrich Schüller
- Research Institute Children's Cancer Center Hamburg, Hamburg, Germany
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Cordula Petersen
- Laboratory of Radiobiology & Experimental Radiation Oncology, Hubertus Wald Tumorzentrum - University Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Radiotherapy and Radiooncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Kai Rothkamm
- Laboratory of Radiobiology & Experimental Radiation Oncology, Hubertus Wald Tumorzentrum - University Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Donald M O Rourke
- Department of Neurosurgery, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Susan C Short
- Leeds Institute of Medical Research at St James's, Wellcome Trust Brenner Building, St. James's University Hospital, Leeds, UK
| | - Malte Kriegs
- Laboratory of Radiobiology & Experimental Radiation Oncology, Hubertus Wald Tumorzentrum - University Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
8
|
Ho T, Tan BX, Lane D. How the Other Half Lives: What p53 Does When It Is Not Being a Transcription Factor. Int J Mol Sci 2019; 21:ijms21010013. [PMID: 31861395 PMCID: PMC6982169 DOI: 10.3390/ijms21010013] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 12/07/2019] [Accepted: 12/16/2019] [Indexed: 12/31/2022] Open
Abstract
It has been four decades since the discovery of p53, the designated ‘Guardian of the Genome’. P53 is primarily known as a master transcription factor and critical tumor suppressor, with countless studies detailing the mechanisms by which it regulates a host of gene targets and their consequent signaling pathways. However, transcription-independent functions of p53 also strongly define its tumor-suppressive capabilities and recent findings shed light on the molecular mechanisms hinted at by earlier efforts. This review highlights the transcription-independent mechanisms by which p53 influences the cellular response to genomic instability (in the form of replication stress, centrosome homeostasis, and transposition) and cell death. We also pinpoint areas for further investigation in order to better understand the context dependency of p53 transcription-independent functions and how these are perturbed when TP53 is mutated in human cancer.
Collapse
|
9
|
Pitolli C, Wang Y, Mancini M, Shi Y, Melino G, Amelio I. Do Mutations Turn p53 into an Oncogene? Int J Mol Sci 2019; 20:E6241. [PMID: 31835684 PMCID: PMC6940991 DOI: 10.3390/ijms20246241] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 11/26/2019] [Accepted: 12/05/2019] [Indexed: 02/06/2023] Open
Abstract
The key role of p53 as a tumor suppressor became clear when it was realized that this gene is mutated in 50% of human sporadic cancers, and germline mutations expose carriers to cancer risk throughout their lifespan. Mutations in this gene not only abolish the tumor suppressive functions of p53, but also equip the protein with new pro-oncogenic functions. Here, we review the mechanisms by which these new functions gained by p53 mutants promote tumorigenesis.
Collapse
Affiliation(s)
- Consuelo Pitolli
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133 Rome, Italy; (C.P.); (M.M.); (G.M.)
- MRC Toxicology Unit, University of Cambridge, Pathology Building, Tennis Court Road, Cambridge CB2 1PQ, UK
| | - Ying Wang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 100012, China; (Y.W.); (Y.S.)
| | - Mara Mancini
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133 Rome, Italy; (C.P.); (M.M.); (G.M.)
- IDI-IRCCS, Biochemistry Laboratory, 00167 Rome, Italy
| | - Yufang Shi
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 100012, China; (Y.W.); (Y.S.)
- Institutes for Translational Medicine, Soochow University, Suzhou 215006, China
| | - Gerry Melino
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133 Rome, Italy; (C.P.); (M.M.); (G.M.)
- MRC Toxicology Unit, University of Cambridge, Pathology Building, Tennis Court Road, Cambridge CB2 1PQ, UK
| | - Ivano Amelio
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133 Rome, Italy; (C.P.); (M.M.); (G.M.)
- MRC Toxicology Unit, University of Cambridge, Pathology Building, Tennis Court Road, Cambridge CB2 1PQ, UK
| |
Collapse
|
10
|
Paulsson JO, Backman S, Wang N, Stenman A, Crona J, Thutkawkorapin J, Ghaderi M, Tham E, Stålberg P, Zedenius J, Juhlin CC. Whole-genome sequencing of synchronous thyroid carcinomas identifies aberrant DNA repair in thyroid cancer dedifferentiation. J Pathol 2019; 250:183-194. [PMID: 31621921 DOI: 10.1002/path.5359] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Revised: 09/13/2019] [Accepted: 10/15/2019] [Indexed: 12/30/2022]
Abstract
The genetics underlying thyroid cancer dedifferentiation is only partly understood and has not yet been characterised using comprehensive pan-genomic analyses. We investigated a unique case with synchronous follicular thyroid carcinoma (FTC), poorly differentiated thyroid carcinoma (PDTC), and anaplastic thyroid carcinoma (ATC), as well as regional lymph node metastases from the PDTC and ATC from a single patient using whole-genome sequencing (WGS). The FTC displayed mutations in CALR, RB1, and MSH2, and the PDTC exhibited mutations in TP53, DROSHA, APC, TERT, and additional DNA repair genes - associated with an immense increase in sub-clonal somatic mutations. All components displayed an overrepresentation of C>T transitions with associated microsatellite instability (MSI) in the PDTC and ATC, with borderline MSI in the FTC. Clonality analyses pinpointed a shared ancestral clone enriched for mutations in TP53-associated regulation of DNA repair and identified important sub-clones for each tumour component already present in the corresponding preceding lesion. This genomic characterisation of the natural progression of thyroid cancer reveals several novel genes of interest for future studies. Moreover, the findings support the theory of a stepwise dedifferentiation process and suggest that defects in DNA repair could play an important role in the clonal evolution of thyroid cancer. © 2019 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Johan O Paulsson
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Samuel Backman
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Na Wang
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Adam Stenman
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden.,Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.,Department of Breast, Endocrine Tumors and Sarcoma, Karolinska University Hospital, Stockholm, Sweden
| | - Joakim Crona
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Jessada Thutkawkorapin
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.,Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Mehran Ghaderi
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Emma Tham
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.,Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Peter Stålberg
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Jan Zedenius
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.,Department of Breast, Endocrine Tumors and Sarcoma, Karolinska University Hospital, Stockholm, Sweden
| | - C Christofer Juhlin
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden.,Department of Pathology and Cytology, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
11
|
Andjelković A, Mordas A, Bruinsma L, Ketola A, Cannino G, Giordano L, Dhandapani PK, Szibor M, Dufour E, Jacobs HT. Expression of the Alternative Oxidase Influences Jun N-Terminal Kinase Signaling and Cell Migration. Mol Cell Biol 2018; 38:e00110-18. [PMID: 30224521 PMCID: PMC6275184 DOI: 10.1128/mcb.00110-18] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 04/11/2018] [Accepted: 09/11/2018] [Indexed: 12/25/2022] Open
Abstract
Downregulation of Jun N-terminal kinase (JNK) signaling inhibits cell migration in diverse model systems. In Drosophila pupal development, attenuated JNK signaling in the thoracic dorsal epithelium leads to defective midline closure, resulting in cleft thorax. Here we report that concomitant expression of the Ciona intestinalis alternative oxidase (AOX) was able to compensate for JNK pathway downregulation, substantially correcting the cleft thorax phenotype. AOX expression also promoted wound-healing behavior and single-cell migration in immortalized mouse embryonic fibroblasts (iMEFs), counteracting the effect of JNK pathway inhibition. However, AOX was not able to rescue developmental phenotypes resulting from knockdown of the AP-1 transcription factor, the canonical target of JNK, nor its targets and had no effect on AP-1-dependent transcription. The migration of AOX-expressing iMEFs in the wound-healing assay was differentially stimulated by antimycin A, which redirects respiratory electron flow through AOX, altering the balance between mitochondrial ATP and heat production. Since other treatments affecting mitochondrial ATP did not stimulate wound healing, we propose increased mitochondrial heat production as the most likely primary mechanism of action of AOX in promoting cell migration in these various contexts.
Collapse
Affiliation(s)
- Ana Andjelković
- Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
- BioMediTech Institute, University of Tampere, Tampere, Finland
| | - Amelia Mordas
- Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
- BioMediTech Institute, University of Tampere, Tampere, Finland
| | - Lyon Bruinsma
- Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
- BioMediTech Institute, University of Tampere, Tampere, Finland
| | - Annika Ketola
- Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
- BioMediTech Institute, University of Tampere, Tampere, Finland
| | - Giuseppe Cannino
- Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
- BioMediTech Institute, University of Tampere, Tampere, Finland
| | - Luca Giordano
- Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
- BioMediTech Institute, University of Tampere, Tampere, Finland
| | - Praveen K Dhandapani
- Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
- BioMediTech Institute, University of Tampere, Tampere, Finland
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Marten Szibor
- Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
- BioMediTech Institute, University of Tampere, Tampere, Finland
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Eric Dufour
- Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
- BioMediTech Institute, University of Tampere, Tampere, Finland
| | - Howard T Jacobs
- Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
- BioMediTech Institute, University of Tampere, Tampere, Finland
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| |
Collapse
|
12
|
DNA damage responses and p53 in the aging process. Blood 2017; 131:488-495. [PMID: 29141944 DOI: 10.1182/blood-2017-07-746396] [Citation(s) in RCA: 231] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 09/01/2017] [Indexed: 12/18/2022] Open
Abstract
The genome is constantly attacked by genotoxic insults. DNA damage has long been established as a cause of cancer development through its mutagenic consequences. Conversely, radiation therapy and chemotherapy induce DNA damage to drive cells into apoptosis or senescence as outcomes of the DNA damage response (DDR). More recently, DNA damage has been recognized as a causal factor for the aging process. The role of DNA damage in aging and age-related diseases is illustrated by numerous congenital progeroid syndromes that are caused by mutations in genome maintenance pathways. During the past 2 decades, understanding how DDR drives cancer development and contributes to the aging process has progressed rapidly. It turns out that the DDR factor p53 takes center stage during tumor development and also plays an important role in the aging process. Studies in metazoan models ranging from Caenorhabditis elegans to mammals have revealed cell-autonomous and systemic DDR mechanisms that orchestrate adaptive responses that augment maintenance of the aging organism amid gradually accumulating DNA damage.
Collapse
|
13
|
Fadare O, Parkash V. p53 aberrations in low grade endometrioid carcinoma of the endometrium with nodal metastases: possible insights on pathogenesis discerned from immunohistochemistry. Diagn Pathol 2017; 12:81. [PMID: 29137657 PMCID: PMC5686909 DOI: 10.1186/s13000-017-0668-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 11/07/2017] [Indexed: 11/19/2022] Open
Abstract
Background TP53 mutations are rarely identified in low grade endometrioid carcinoma of the endometrium, and their pathogenic significance in such tumors is evidenced by the fact that TP53 aberrations have been associated with reduced recurrence-free survival in this subset of tumors. However, TP53 aberrations may not always represent a driving molecular event in a given endometrial cancer with a mutation. In this case study, the immunophenotype of a distinctive low grade endometrioid adenocarcinoma with an unusual pattern of lymph node metastases is used to explore the possible roles for underlying TP53-related molecular events in its pathogenesis. Case presentation A low grade endometrioid carcinoma, 9 cm in greatest dimension, with 35% invasion of the myometrial wall thickness, focal lymphovascular invasion, and metastases to 2 of 16 pelvic lymph nodes, was diagnosed in a 52-year-old woman. The endometrial tumor showed a p53-mutation (aberrant)-type immunohistochemical pattern in 40% of the tumor, but the rest of the tumor, as well as the foci of myometrial and lymphovascular invasion, were p53-wild type. Both lymph nodes with metastatic disease showed a distinct biphasic pattern, comprised of both p53-wild type and p53-aberrant areas in tumoral foci that were spatially apposed but not intermixed. Most p53-aberrant areas (at both the lymph nodes and the endometrium) showed a higher mitotic index and increased atypia as compared to the p53-wild type areas; both showed squamous differentiation. The p53-aberrant areas at both locations were also p16-diffusely positive, vimentin-positive, and estrogen/progesterone receptor-positive, whereas the p53-wild type areas showed an identical immunophenotype with the exception of being p16-mosaic positive. All components of the tumor at both the primary and metastatic sites showed loss of MSH2 and MSH6 and retained MLH/PMS2 expression. Conclusions The presence of p53-mutant and wild-type areas in multiple lymph nodes, coupled with the absence of a p53-aberrant immunophenotype in the myometrium-invasive or lymphovascular-invasive portions of the tumor, argues against the possibility that the TP53 mutation in this tumor is a driving event in its pathogenesis, at least regarding the metastatic process. This case illustrates how routine immunohistochemistry can provide important insights into underlying molecular events in cancers, exemplifies an uncommon co-existence of DNA mismatch repair protein deficiency and p53-aberrant immunophenotype in low-grade endometrioid carcinoma, illustrates morphologic differences between p53-aberrant and p53-wild type areas within in the same tumor, and is an exemplar of the emerging theory that lymph node metastases of endometrial cancer may be comprised of different subclones of the primary tumor.
Collapse
Affiliation(s)
- Oluwole Fadare
- Department of Pathology, University of California San Diego Health, 9300 Campus Point Drive, Suite 1-200, MC 7723, La Jolla, CA, 92037, USA.
| | - Vinita Parkash
- Department of Pathology, Yale School of Medicine, New Haven, CT, USA
| |
Collapse
|
14
|
Abstract
The cells in the human body are continuously challenged by a variety of genotoxic attacks. Erroneous repair of the DNA can lead to mutations and chromosomal aberrations that can alter the functions of tumor suppressor genes or oncogenes, thus causing cancer development. As a central tumor suppressor, p53 guards the genome by orchestrating a variety of DNA-damage-response (DDR) mechanisms. Already early in metazoan evolution, p53 started controlling the apoptotic demise of genomically compromised cells. p53 plays a prominent role as a facilitator of DNA repair by halting the cell cycle to allow time for the repair machineries to restore genome stability. In addition, p53 took on diverse roles to also directly impact the activity of various DNA-repair systems. It thus appears as if p53 is multitasking in providing protection from cancer development by maintaining genome stability.
Collapse
Affiliation(s)
- Ashley B Williams
- Medical Faculty, Institute for Genome Stability in Ageing and Disease, University of Cologne, 50931 Cologne, Germany Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), Center for Molecular Medicine Cologne (CMMC) and Systems Biology of Ageing Cologne, University of Cologne, 50931 Cologne, Germany
| | - Björn Schumacher
- Medical Faculty, Institute for Genome Stability in Ageing and Disease, University of Cologne, 50931 Cologne, Germany Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), Center for Molecular Medicine Cologne (CMMC) and Systems Biology of Ageing Cologne, University of Cologne, 50931 Cologne, Germany
| |
Collapse
|
15
|
Zhang M, Hu C, Tong D, Xiang S, Williams K, Bai W, Li GM, Bepler G, Zhang X. Ubiquitin-specific Peptidase 10 (USP10) Deubiquitinates and Stabilizes MutS Homolog 2 (MSH2) to Regulate Cellular Sensitivity to DNA Damage. J Biol Chem 2016; 291:10783-91. [PMID: 26975374 DOI: 10.1074/jbc.m115.700047] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Indexed: 11/06/2022] Open
Abstract
MSH2 is a key DNA mismatch repair protein, which plays an important role in genomic stability. In addition to its DNA repair function, MSH2 serves as a sensor for DNA base analogs-provoked DNA replication errors and binds to various DNA damage-induced adducts to trigger cell cycle arrest or apoptosis. Loss or depletion of MSH2 from cells renders resistance to certain DNA-damaging agents. Therefore, the level of MSH2 determines DNA damage response. Previous studies showed that the level of MSH2 protein is modulated by the ubiquitin-proteasome pathway, and histone deacetylase 6 (HDAC6) serves as an ubiquitin E3 ligase. However, the deubiquitinating enzymes, which regulate MSH2 remain unknown. Here we report that ubiquitin-specific peptidase 10 (USP10) interacts with and stabilizes MSH2. USP10 deubiquitinates MSH2 in vitro and in vivo Moreover, the protein level of MSH2 is positively correlated with the USP10 protein level in a panel of lung cancer cell lines. Knockdown of USP10 in lung cancer cells exhibits increased cell survival and decreased apoptosis upon the treatment of DNA-methylating agent N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) and antimetabolite 6-thioguanine (6-TG). The above phenotypes can be rescued by ectopic expression of MSH2. In addition, knockdown of MSH2 decreases the cellular mismatch repair activity. Overall, our results suggest a novel USP10-MSH2 pathway regulating DNA damage response and DNA mismatch repair.
Collapse
Affiliation(s)
- Mu Zhang
- From the Department of Pathology and Cell Biology, Morsani College of Medicine, Tampa, Florida 33612
| | - Chen Hu
- From the Department of Pathology and Cell Biology, Morsani College of Medicine, Tampa, Florida 33612
| | - Dan Tong
- Department of Toxicology and Cancer Biology, University of Kentucky College of Medicine, Lexington, Kentucky 40536
| | - Shengyan Xiang
- From the Department of Pathology and Cell Biology, Morsani College of Medicine, Tampa, Florida 33612
| | - Kendra Williams
- From the Department of Pathology and Cell Biology, Morsani College of Medicine, Tampa, Florida 33612
| | - Wenlong Bai
- From the Department of Pathology and Cell Biology, Morsani College of Medicine, Tampa, Florida 33612, Cancer Biology and Evolution Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida 33612, and
| | - Guo-Min Li
- Department of Toxicology and Cancer Biology, University of Kentucky College of Medicine, Lexington, Kentucky 40536
| | - Gerold Bepler
- Molecular Therapeutics Program, Karmanos Cancer Institute, Detroit, Michigan 48201
| | - Xiaohong Zhang
- From the Department of Pathology and Cell Biology, Morsani College of Medicine, Tampa, Florida 33612, Cancer Biology and Evolution Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida 33612, and
| |
Collapse
|
16
|
Correlation between cell cycle proteins and hMSH2 in actinic cheilitis and lip cancer. Arch Dermatol Res 2016; 308:165-71. [PMID: 26842232 DOI: 10.1007/s00403-016-1625-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 12/14/2015] [Accepted: 01/20/2016] [Indexed: 10/24/2022]
Abstract
This study aims to evaluate and verify the relationship between the immunoexpression of hMSH2, p53 and p21 in actinic cheilitis (AC) and lower lip squamous cell carcinoma (SCC) cases. Forty AC and 40 SCC cases were submitted to immunoperoxidase method and quantitatively analyzed. Expression was compared by Mann-Whitney test, Student t test or one-way ANOVA. To correlate the variables, Pearson's correlation coefficient was calculated. The expression of p53 and p21 showed no significant differences between histopathological grades of AC or lower lip SCC (p > 0.05). Immunoexpression of p53 was higher in SCC than in AC (p < 0.001), while p21 expression was more observed in AC when compared to SCC group (p = 0.006). The AC group revealed an inverse correlation between p53 and hMSH2 expression (r = -0.30, p = 0.006). Alterations in p53 and p21 expression suggest that these proteins are involved in lower lip carcinogenesis. Moreover, p53 and hMSH2 seem to be interrelated in early events of this process.
Collapse
|
17
|
Engström W, Darbre P, Eriksson S, Gulliver L, Hultman T, Karamouzis MV, Klaunig JE, Mehta R, Moorwood K, Sanderson T, Sone H, Vadgama P, Wagemaker G, Ward A, Singh N, Al-Mulla F, Al-Temaimi R, Amedei A, Colacci AM, Vaccari M, Mondello C, Scovassi AI, Raju J, Hamid RA, Memeo L, Forte S, Roy R, Woodrick J, Salem HK, Ryan EP, Brown DG, Bisson WH. The potential for chemical mixtures from the environment to enable the cancer hallmark of sustained proliferative signalling. Carcinogenesis 2015; 36 Suppl 1:S38-S60. [PMID: 26106143 PMCID: PMC4565610 DOI: 10.1093/carcin/bgv030] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2014] [Revised: 12/09/2014] [Accepted: 12/15/2014] [Indexed: 01/20/2023] Open
Abstract
The aim of this work is to review current knowledge relating the established cancer hallmark, sustained cell proliferation to the existence of chemicals present as low dose mixtures in the environment. Normal cell proliferation is under tight control, i.e. cells respond to a signal to proliferate, and although most cells continue to proliferate into adult life, the multiplication ceases once the stimulatory signal disappears or if the cells are exposed to growth inhibitory signals. Under such circumstances, normal cells remain quiescent until they are stimulated to resume further proliferation. In contrast, tumour cells are unable to halt proliferation, either when subjected to growth inhibitory signals or in the absence of growth stimulatory signals. Environmental chemicals with carcinogenic potential may cause sustained cell proliferation by interfering with some cell proliferation control mechanisms committing cells to an indefinite proliferative span.
Collapse
Affiliation(s)
- Wilhelm Engström
- Department of Biosciences and Veterinary Public Health, Faculty of Veterinary Medicine, Swedish University of Agricultural Sciences, PO Box 7028, 75007 Uppsala, Sweden,
| | - Philippa Darbre
- School of Biological Sciences, University of Reading, Whiteknights, Reading RG6 6UB, UK
| | - Staffan Eriksson
- Department of Biochemistry, Faculty of Veterinary Medicine, Swedish University of Agricultural Sciences, Box 575, 75123 Uppsala, Sweden
| | - Linda Gulliver
- Faculty of Medicine, University of Otago, PO Box 913, Dunedin 9050, New Zealand
| | - Tove Hultman
- Department of Biosciences and Veterinary Public Health, Faculty of Veterinary Medicine, Swedish University of Agricultural Sciences, PO Box 7028, 75007 Uppsala, Sweden, School of Biological Sciences, University of Reading, Whiteknights, Reading RG6 6UB, UK
| | - Michalis V Karamouzis
- Department of Biological Chemistry Medical School, Institute of Molecular Medicine and Biomedical Research, University of Athens, Marasli 3, Kolonaki, Athens 10676, Greece
| | - James E Klaunig
- Department of Environmental Health, School of Public Health, Indiana University Bloomington , 1025 E. 7th Street, Suite 111, Bloomington, IN 47405, USA
| | - Rekha Mehta
- Regulatory Toxicology Research Division, Bureau of Chemical Safety, Food Directorate, HPFB, Health Canada, 251 Sir F.G. Banting Driveway, AL # 2202C, Tunney's Pasture, Ottawa, Ontario K1A 0K9, Canada
| | - Kim Moorwood
- Department of Biochemistry and Biology, University of Bath , Claverton Down, Bath BA2 7AY, UK
| | - Thomas Sanderson
- INRS-Institut Armand-Frappier, 531 boulevard des Prairies, Laval, Quebec H7V 1B7, Canada
| | - Hideko Sone
- Environmental Exposure Research Section, Center for Environmental Risk Research, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibraki 3058506, Japan
| | - Pankaj Vadgama
- IRC in Biomedical Materials, School of Engineering & Materials Science, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| | - Gerard Wagemaker
- Center for Stem Cell Research and Development, Hacettepe University, Ankara 06100, Turkey
| | - Andrew Ward
- Department of Biochemistry and Biology, University of Bath , Claverton Down, Bath BA2 7AY, UK
| | - Neetu Singh
- Centre for Advanced Research, King George's Medical University, Chowk, Lucknow, Uttar Pradesh 226003, India
| | - Fahd Al-Mulla
- Department of Pathology, Kuwait University, Safat 13110, Kuwait
| | | | - Amedeo Amedei
- Department of Experimental and Clinical Medicine, University of Firenze, Firenze 50134, Italy
| | - Anna Maria Colacci
- Center for Environmental Carcinogenesis and Risk Assessment, Environmental Protection and Health Prevention Agency, Bologna 40126, Italy
| | - Monica Vaccari
- Center for Environmental Carcinogenesis and Risk Assessment, Environmental Protection and Health Prevention Agency, Bologna 40126, Italy
| | - Chiara Mondello
- Institute of Molecular Genetics, National Research Council, Pavia 27100, Italy
| | - A Ivana Scovassi
- Institute of Molecular Genetics, National Research Council, Pavia 27100, Italy
| | - Jayadev Raju
- Regulatoty Toxicology Research Division, Bureau of Chemical Safety, Food Directorate, HPFB, Health Canada, Ottawa, Ontario K1A0K9, Canada
| | - Roslida A Hamid
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Lorenzo Memeo
- Mediterranean Institute of Oncology, Viagrande 95029, Italy
| | - Stefano Forte
- Mediterranean Institute of Oncology, Viagrande 95029, Italy
| | - Rabindra Roy
- Molecular Oncology Program, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Jordan Woodrick
- Molecular Oncology Program, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Hosni K Salem
- Urology Dept. kasr Al-Ainy School of Medicine, Cairo University, El Manial, Cairo 12515, Egypt
| | - Elizabeth P Ryan
- Department of Environmental and Radiological Sciences, Colorado State University//Colorado School of Public Health, Fort Collins CO 80523-1680, USA and
| | - Dustin G Brown
- Department of Environmental and Radiological Sciences, Colorado State University//Colorado School of Public Health, Fort Collins CO 80523-1680, USA and
| | - William H Bisson
- Environmental and Molecular Toxicology, Environmental Health Sciences Center, Oregon State University, Corvallis, OR 97331, USA
| |
Collapse
|
18
|
Expression of p53 target genes in the early phase of long-term potentiation in the rat hippocampal CA1 area. Neural Plast 2015; 2015:242158. [PMID: 25767724 PMCID: PMC4341845 DOI: 10.1155/2015/242158] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Accepted: 01/27/2015] [Indexed: 01/09/2023] Open
Abstract
Gene expression plays an important role in the mechanisms of long-term potentiation (LTP), which is a widely accepted experimental model of synaptic plasticity. We have studied the expression of at least 50 genes that are transcriptionally regulated by p53, as well as other genes that are related to p53-dependent processes, in the early phase of LTP. Within 30 min after Schaffer collaterals (SC) tetanization, increases in the mRNA and protein levels of Bax, which are upregulated by p53, and a decrease in the mRNA and protein levels of Bcl2, which are downregulated by p53, were observed. The inhibition of Mdm2 by nutlin-3 increased the basal p53 protein level and rescued its tetanization-induced depletion, which suggested the involvement of Mdm2 in the control over p53 during LTP. Furthermore, nutlin-3 caused an increase in the basal expression of Bax and a decrease in the basal expression of Bcl2, whereas tetanization-induced changes in their expression were occluded. These results support the hypothesis that p53 may be involved in transcriptional regulation during the early phase of LTP. We hope that the presented data may aid in the understanding of the contribution of p53 and related genes in the processes that are associated with synaptic plasticity.
Collapse
|
19
|
Speidel D. The role of DNA damage responses in p53 biology. Arch Toxicol 2015; 89:501-17. [PMID: 25618545 DOI: 10.1007/s00204-015-1459-z] [Citation(s) in RCA: 124] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 01/08/2015] [Indexed: 12/16/2022]
Abstract
The tumour suppressor p53 is a central player in cellular DNA damage responses. P53 is upregulated and activated by genotoxic stress and induces a transcriptional programme with effectors promoting apoptosis, cell cycle arrest, senescence and DNA repair. For the best part of the last three decades, these DNA damage-related programmes triggered by p53 were unequivocally regarded as the major if not sole mechanism by which p53 exerts its tumour suppressor function. However, this interpretation has been challenged by a number of recent in vivo studies, demonstrating that mice which are defective in inducing p53-dependent apoptosis, cell cycle arrest and senescence suppress thymic lymphoma as well as wild-type p53 expressing animals. Consequently, the importance of DNA damage responses for p53-mediated tumour suppression has been questioned. In this review, I summarize current knowledge on p53-controlled DNA damage responses and argue that these activities, while their role has certainly changed, remain an important feature of p53 biology with relevance for cancer therapy and tumour suppression.
Collapse
Affiliation(s)
- Daniel Speidel
- Children's Medical Research Institute, 214 Hawkesbury Road, Westmead, NSW, 2145, Australia,
| |
Collapse
|
20
|
Abstract
Ionizing radiation, like a variety of other cellular stress factors, can activate or down-regulate multiple signaling pathways, leading to either increased cell death or increased cell proliferation. Modulation of the signaling process, however, depends on the cell type, radiation dose, and culture conditions. The mitogen-activated protein kinase (MAPK) pathway transduces signals from the cell membrane to the nucleus in response to a variety of different stimuli and participates in various intracellular signaling pathways that control a wide spectrum of cellular processes, including growth, differentiation, and stress responses, and is known to have a key role in cancer progression. Multiple signal transduction pathways stimulated by ionizing radiation are mediated by the MAPK superfamily including the extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), and p38 MAPK. The ERK pathway, activated by mitogenic stimuli such as growth factors, cytokines, and phorbol esters, plays a major role in regulating cell growth, survival, and differentiation. In contrast, JNK and p38 MAPK are weakly activated by growth factors but respond strongly to stress signals including tumor necrosis factor (TNF), interleukin-1, ionizing and ultraviolet radiation, hyperosmotic stress, and chemotherapeutic drugs. Activation of JNK and p38 MAPK by stress stimuli is strongly associated with apoptotic cell death. MAPK signaling is also known to potentially influence tumor cell radiosensitivity because of their activity associated with radiation-induced DNA damage response. This review will discuss the MAPK signaling pathways and their roles in cellular radiation responses.
Collapse
Affiliation(s)
- Anupama Munshi
- Department of Radiation Oncology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Rajagopal Ramesh
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| |
Collapse
|
21
|
Fischer M, Steiner L, Engeland K. The transcription factor p53: not a repressor, solely an activator. Cell Cycle 2014; 13:3037-58. [PMID: 25486564 PMCID: PMC4612452 DOI: 10.4161/15384101.2014.949083] [Citation(s) in RCA: 115] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Accepted: 07/10/2014] [Indexed: 12/12/2022] Open
Abstract
The predominant function of the tumor suppressor p53 is transcriptional regulation. It is generally accepted that p53-dependent transcriptional activation occurs by binding to a specific recognition site in promoters of target genes. Additionally, several models for p53-dependent transcriptional repression have been postulated. Here, we evaluate these models based on a computational meta-analysis of genome-wide data. Surprisingly, several major models of p53-dependent gene regulation are implausible. Meta-analysis of large-scale data is unable to confirm reports on directly repressed p53 target genes and falsifies models of direct repression. This notion is supported by experimental re-analysis of representative genes reported as directly repressed by p53. Therefore, p53 is not a direct repressor of transcription, but solely activates its target genes. Moreover, models based on interference of p53 with activating transcription factors as well as models based on the function of ncRNAs are also not supported by the meta-analysis. As an alternative to models of direct repression, the meta-analysis leads to the conclusion that p53 represses transcription indirectly by activation of the p53-p21-DREAM/RB pathway.
Collapse
Key Words
- CDE, cell cycle-dependent element
- CDKN1A
- CHR, cell cycle genes homology region
- ChIP, chromatin immunoprecipitation
- DREAM complex
- DREAM, DP, RB-like, E2F4, and MuvB complex
- E2F/RB complex
- HPV, human papilloma virus
- NF-Y, Nuclear factor Y
- cdk, cyclin-dependent kinase
- genome-wide meta-analysis
- p53
Collapse
Affiliation(s)
- Martin Fischer
- Molecular Oncology; Medical School; University of Leipzig; Leipzig, Germany
| | - Lydia Steiner
- Center for Complexity & Collective Computation; Wisconsin Institute for Discovery; Madison, WI USA
- Computational EvoDevo Group & Bioinformatics Group; Department of Computer Science and Interdisciplinary Center for Bioinformatics; University of Leipzig; Leipzig, Germany
| | - Kurt Engeland
- Molecular Oncology; Medical School; University of Leipzig; Leipzig, Germany
| |
Collapse
|
22
|
|
23
|
Christmann M, Kaina B. Transcriptional regulation of human DNA repair genes following genotoxic stress: trigger mechanisms, inducible responses and genotoxic adaptation. Nucleic Acids Res 2013; 41:8403-20. [PMID: 23892398 PMCID: PMC3794595 DOI: 10.1093/nar/gkt635] [Citation(s) in RCA: 172] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
DNA repair is the first barrier in the defense against genotoxic stress. In recent years, mechanisms that recognize DNA damage and activate DNA repair functions through transcriptional upregulation and post-translational modification were the focus of intensive research. Most DNA repair pathways are complex, involving many proteins working in discrete consecutive steps. Therefore, their balanced expression is important for avoiding erroneous repair that might result from excessive base removal and DNA cleavage. Amelioration of DNA repair requires both a fine-tuned system of lesion recognition and transcription factors that regulate repair genes in a balanced way. Transcriptional upregulation of DNA repair genes by genotoxic stress is counteracted by DNA damage that blocks transcription. Therefore, induction of DNA repair resulting in an adaptive response is only visible through a narrow window of dose. Here, we review transcriptional regulation of DNA repair genes in normal and cancer cells and describe mechanisms of promoter activation following genotoxic exposures through environmental carcinogens and anticancer drugs. The data available to date indicate that 25 DNA repair genes are subject to regulation following genotoxic stress in rodent and human cells, but for only a few of them, the data are solid as to the mechanism, homeostatic regulation and involvement in an adaptive response to genotoxic stress.
Collapse
Affiliation(s)
- Markus Christmann
- Department of Toxicology, University Medical Center, Obere Zahlbacher Str. 67, D-55131 Mainz, Germany
| | | |
Collapse
|
24
|
Tung MC, Wu HH, Cheng YW, Wang L, Chen CY, Yeh SD, Wu TC, Lee H. Association of epidermal growth factor receptor mutations with human papillomavirus 16/18 E6 oncoprotein expression in non-small cell lung cancer. Cancer 2013; 119:3367-76. [PMID: 23797467 DOI: 10.1002/cncr.28220] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Revised: 05/08/2013] [Accepted: 05/10/2013] [Indexed: 01/09/2023]
Abstract
BACKGROUND Lung cancers in women, in nonsmokers, and in patients with adenocarcinoma from Asia have more prevalent mutations in the epidermal growth factor receptor (EGFR) gene than their counterparts. However, the etiology of EGFR mutations in this population remains unclear. The authors hypothesized that the human papillomavirus (HPV) type 16/18 (HPV16/18) E6 oncoprotein may contribute to EGFR mutations in Taiwanese patients with lung cancer. METHODS One hundred fifty-one tumors from patients with lung cancer were enrolled to determine HPV16/18 E6 and EGFR mutations using immunohistochemistry and direct sequencing, respectively. Levels of 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxo-dG) in lung tumors and cells were evaluated using immunohistochemistry and liquid chromatography-mass spectrometry/mass spectrometry. An supF mutagenesis assay was used to determine H2 O2 -induced mutation rates of lung cancer cells with or without E6 expression. RESULTS Patients with E6-positive tumors had a greater frequency of EGFR mutations than those with E6-negative tumors (41% vs 20%; P = .006). Levels of 8-oxo-dG were correlated with EGFR mutations (36% vs 16%; P = .012). Two stable clones of E6-overexpressing H157 and CL-3 cells were established for the supF mutagenesis assay. The data indicated that the cells with high E6 overexpression had higher H2 O2 -induced SupF gene mutation rates compared with the cells that expressed lower levels of E6 and compared with vector control cells. CONCLUSIONS HPV16/18 E6 may contribute in part to EGFR mutations in lung cancer, at least in the Taiwanese population.
Collapse
Affiliation(s)
- Min-Che Tung
- Department of Surgery, Tung' Taichung MetroHarbor Hospital, Taichung, Taiwan, Republic of China; Graduate Institute of Clinical Medicine, Taipei Medical University, Taipei, Taiwan, Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Kelley MR, Georgiadis MM, Fishel ML. APE1/Ref-1 role in redox signaling: translational applications of targeting the redox function of the DNA repair/redox protein APE1/Ref-1. Curr Mol Pharmacol 2012; 5:36-53. [PMID: 22122463 DOI: 10.2174/1874467211205010036] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2010] [Revised: 08/18/2010] [Accepted: 08/25/2010] [Indexed: 12/22/2022]
Abstract
The heterogeneity of most cancers diminishes the treatment effectiveness of many cancer-killing regimens. Thus, treatments that hold the most promise are ones that block multiple signaling pathways essential to cancer survival. One of the most promising proteins in that regard is APE1, whose reduction-oxidation activity influences multiple cancer survival mechanisms, including growth, proliferation, metastasis, angiogenesis, and stress responses. With the continued research using APE1 redox specific inhibitors alone or coupled with developing APE1 DNA repair inhibitors it will now be possible to further delineate the role of APE1 redox, repair and protein-protein interactions. Previously, use of siRNA or over expression approaches, while valuable, do not give a clear picture of the two major functions of APE1 since both techniques severely alter the cellular milieu. Additionally, use of the redox-specific APE1 inhibitor, APX3330, now makes it possible to study how inhibition of APE1's redox signaling can affect multiple tumor pathways and can potentiate the effectiveness of existing cancer regimens. Because APE1 is an upstream effector of VEGF, as well as other molecules that relate to angiogenesis and the tumor microenvironment, it is also being studied as a possible treatment for agerelated macular degeneration and diabetic retinopathy. This paper reviews all of APE1's functions, while heavily focusing on its redox activities. It also discusses APE1's altered expression in many cancers and the therapeutic potential of selective inhibition of redox regulation, which is the subject of intense preclinical studies.
Collapse
Affiliation(s)
- Mark R Kelley
- Department of Pediatrics (Section of Hematology/Oncology), Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | | | | |
Collapse
|
26
|
MSH2 is required for cell proliferation, cell cycle control and cell invasiveness in colorectal cancer cells. CHINESE SCIENCE BULLETIN-CHINESE 2012. [DOI: 10.1007/s11434-012-5258-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
27
|
Mo C, Dai Y, Kang N, Cui L, He W. Ectopic expression of human MutS homologue 2 on renal carcinoma cells is induced by oxidative stress with interleukin-18 promotion via p38 mitogen-activated protein kinase (MAPK) and c-Jun N-terminal kinase (JNK) signaling pathways. J Biol Chem 2012; 287:19242-54. [PMID: 22493490 DOI: 10.1074/jbc.m112.349936] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Human MutS homologue 2 (hMSH2), a crucial element of the highly conserved DNA mismatch repair system, maintains genetic stability in the nucleus of normal cells. Our previous studies indicate that hMSH2 is ectopically expressed on the surface of epithelial tumor cells and recognized by both T cell receptor γδ (TCRγδ) and natural killer group 2 member D (NKG2D) on Vδ2 T cells. Ectopically expressed hMSH2 could trigger a γδ T cell-mediated cytolysis. In this study, we showed that oxidative stress induced ectopic expression of hMSH2 on human renal carcinoma cells. Under oxidative stress, both p38 mitogen-activated protein kinase (MAPK) and c-Jun N-terminal kinase (JNK) pathways have been confirmed to mediate the ectopic expression of hMSH2 through the apoptosis-signaling kinase 1 (ASK1) upstream and activating transcription factor 3 (ATF3) downstream of both pathways. Moreover, renal carcinoma cell-derived interleukin (IL)-18 in oxidative stress was a prominent stimulator for ectopically induced expression of hMSH2, which was promoted by interferon (IFN)-γ as well. Finally, oxidative stress or pretreatment with IL-18 and IFN-γ enhanced γδ T cell-mediated cytolysis of renal carcinoma cells. Our results not only establish a mechanism of ectopic hMSH2 expression in tumor cells but also find a biological linkage between ectopic expression of hMSH2 and activation of γδ T cells in stressful conditions. Because γδ T cells play an important role in the early stage of innate anti-tumor response, γδ T cell activation triggered by ectopically expressed hMSH2 may be an important event in immunosurveillance for carcinogenesis.
Collapse
Affiliation(s)
- Chen Mo
- Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Peking Union Medical College, Beijing 100005, China
| | | | | | | | | |
Collapse
|
28
|
Zheltukhin AO, Chumakov PM. Constitutive and induced functions of the p53 gene. BIOCHEMISTRY (MOSCOW) 2011; 75:1692-721. [DOI: 10.1134/s0006297910130110] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
29
|
Ratnam S, Bozek G, Nicolae D, Storb U. The pattern of somatic hypermutation of Ig genes is altered when p53 is inactivated. Mol Immunol 2010; 47:2611-8. [PMID: 20691478 DOI: 10.1016/j.molimm.2010.05.291] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2010] [Revised: 05/24/2010] [Accepted: 05/27/2010] [Indexed: 10/19/2022]
Abstract
Mice with a deletion of the p53 gene have normal antibody titers against sheep red blood cells and normal switching to all Ig isotypes. In older mice (11 and 16 weeks old) the somatic hypermutation (SHM) frequencies are progressively reduced. In young mice (8 weeks old) with p53 deletion, the SHM frequencies are normal. However, the mutation pattern is changed in all p53-/- mice: mutations at A are increased. Surprisingly, deletion of the Ung2 gene in addition to the deletion of p53 corrected the A mutation frequencies to those of control mice. Known interactions of p53 protein with several proteins involved in error-prone BER during SHM may explain these findings. There is no indication that the absence of p53 affects the function of AID. Inactivation of p21 does not alter SHM, supporting the idea that the p53 protein is involved in SHM by its direct association with the SHM process. There is no significant change of mutations at T. Thus, the hypermutability at A is strand-biased (transcription? replication?). The translesion polymerase pol eta has so far been found to be the sole mutator at A and T in mice. However, the pattern in p53-/- mice is compatible with the possible inhibition by p53 of another translesion polymerase, pol iota, which in the absence of p53 may be recruited to error-prone repair of abasic sites in SHM.
Collapse
Affiliation(s)
- Sarayu Ratnam
- Department of Molecular Genetics and Cell Biology, University of Chicago, 920 East 58th Street, Chicago, IL 60637, United States
| | | | | | | |
Collapse
|
30
|
Luo M, He H, Kelley MR, Georgiadis MM. Redox regulation of DNA repair: implications for human health and cancer therapeutic development. Antioxid Redox Signal 2010; 12:1247-69. [PMID: 19764832 PMCID: PMC2864659 DOI: 10.1089/ars.2009.2698] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Redox reactions are known to regulate many important cellular processes. In this review, we focus on the role of redox regulation in DNA repair both in direct regulation of specific DNA repair proteins as well as indirect transcriptional regulation. A key player in the redox regulation of DNA repair is the base excision repair enzyme apurinic/apyrimidinic endonuclease 1 (APE1) in its role as a redox factor. APE1 is reduced by the general redox factor thioredoxin, and in turn reduces several important transcription factors that regulate expression of DNA repair proteins. Finally, we consider the potential for chemotherapeutic development through the modulation of APE1's redox activity and its impact on DNA repair.
Collapse
Affiliation(s)
- Meihua Luo
- Department of Pediatrics (Section of Hematology/Oncology), Herman B. Wells Center for Pediatric Research, Indiana University, Indiana
| | - Hongzhen He
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indiana
| | - Mark R. Kelley
- Department of Pediatrics (Section of Hematology/Oncology), Herman B. Wells Center for Pediatric Research, Indiana University, Indiana
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indiana
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indiana
| | - Millie M. Georgiadis
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indiana
- Department of Chemistry and Chemical Biology, Indiana University-Purdue University at Indianapolis, Indianapolis, Indiana
| |
Collapse
|
31
|
Paulitschke V, Schicher N, Szekeres T, Jäger W, Elbling L, Riemer AB, Scheiner O, Trimurtulu G, Venkateswarlu S, Mikula M, Swoboda A, Fiebiger E, Gerner C, Pehamberger H, Kunstfeld R. 3,3',4,4',5,5'-hexahydroxystilbene impairs melanoma progression in a metastatic mouse model. J Invest Dermatol 2009; 130:1668-79. [PMID: 19956188 DOI: 10.1038/jid.2009.376] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Stilbenes comprise a group of polyphenolic compounds, which exert inhibitory effects on various malignancies. The aim of this study was to evaluate the antitumor effects of a previously unreported stilbene derivative-3,3',4,4',5,5'-hexahydroxystilbene, termed M8-on human melanoma cells. Cell-cycle analysis of the metastatic melanoma cell line M24met showed that M8 treatment induces G(2)/M arrest accompanied with a dose- and time-dependent upregulation of p21 and downregulation of CDK-2 and leads to apoptosis. M8 induces the expression of phosphorylated p53, proteins involved in the mismatch repair machinery (MSH6, MSH2, and MLH1) and a robust tail moment in a comet assay. In addition, M8 inhibited cell migration in Matrigel assays. Shotgun proteomics and western analysis showed the regulation among others of paxillin, integrin-linked protein kinase, p21-activated kinase, and ROCK-1 indicating that M8 inhibits mesenchymal and amoeboid cell migration. These in vitro data were confirmed in vivo in a metastatic human melanoma severe combined immunodeficient (SCID) mouse model. We showed that M8 significantly impairs tumor growth. M8 also interfered with the metastatic process, as M8 treatment prevented the metastatic spread of melanoma cells to distant lymph nodes in vivo. In summary, M8 exerts strong antitumor effects with the potential to become a new drug for the treatment of metastatic melanoma.
Collapse
Affiliation(s)
- Verena Paulitschke
- Department of Dermatology, Medical University of Vienna, Währingergürtel 18-20, Vienna, Austria
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Vlachostergios PJ, Patrikidou A, Daliani DD, Papandreou CN. The ubiquitin-proteasome system in cancer, a major player in DNA repair. Part 2: transcriptional regulation. J Cell Mol Med 2009; 13:3019-3031. [PMID: 19522844 PMCID: PMC4516462 DOI: 10.1111/j.1582-4934.2009.00825.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2009] [Accepted: 06/03/2009] [Indexed: 12/12/2022] Open
Abstract
DNA repair is an indispensable part of a cell's defence system against the devastating effects of DNA-damaging conditions. The regulation of this function is a really demanding situation, particularly when the stressing factors persist for a long time. In such cases, the depletion of existing DNA repair proteins has to be compensated by the induction of the analogous gene products. In addition, the arrest of transcription, which is another result of many DNA-damaging agents, needs to be overcome through regulation of transcription-specific DNA repair pathways. The involvement of the ubiquitin-proteasome system (UPS) in cancer- and chemotherapy-related DNA-damage repair relevant to the above transcriptional modification mechanisms are illustrated in this review. Furthermore, the contribution of UPS to the regulation of localization and accessibility of DNA repair proteins to chromatin, in response to cellular stress is discussed.
Collapse
|
33
|
Rass K, Reichrath J. UV damage and DNA repair in malignant melanoma and nonmelanoma skin cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2008; 624:162-78. [PMID: 18348455 DOI: 10.1007/978-0-387-77574-6_13] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Exposition of the skin with solar ultraviolet radiation (UV) is the main cause of skin cancer development. The consistently increasing incidences of melanocytic and nonmelanocytic skin tumors are believed to be at least in part associated with recreational sun exposure. Epidemiological data indicate that excessive or cumulative sunlight exposition takes place years and decades before the resulting malignancies arise. The most important defense mechanisms that protect human skin against UV radiation involve melanin synthesis and active repair mechanisms. DNA is the major target of direct or indirect UV-induced cellular damage. Low pigmentation capacity in white Caucasians and rare congenital defects in DNA repair are mainly responsible for protection failures. The important function of nucleotide excision DNA repair (NER) to protect against skin cancer becomes obvious by the rare genetic disease xeroderma pigmentosum, in which diverse NER genes are mutated. In animal models, it has been demonstrated that UVB is more effective to induce skin cancer than UVA. UV-induced DNA photoproducts are able to cause specific mutations (UV-signature) in susceptible genes for squamous cell carcinoma (SCC) and basal cell carcinoma (BCC). In SCC development, UV-signature mutations in the p513 tumor suppressor gene are the most common event, as precancerous lesions reveal approximately 80% and SCCs > 90% UV-specific p53 mutations. Mutations in Hedgehog pathway related genes, especially PTCH1, are well known to represent the most significant pathogenic event in BCC. However, specific UV-induced mutations can be found only in approximately 50% of sporadic BCCs. Thus, cumulative UVB radiation can not be considered to be the single etiologic risk factor for BCC development. During the last decades, experimental animal models, including genetically engineered mice, the Xiphophorus hybrid fish, the south american oppossum and human skin xenografts, have further elucidated the important role of the DNA repair system in the multi-step process of UV-induced melanomagenesis. An increasing body of evidence now indicates that nucleotide excision repair is not the only DNA repair pathway that is involved in UV-induced tumorigenesis of melanoma and nonmelanoma skin cancer. An interesting new perspective in DNA damage and repair research lies in the participation of mammalian mismatch repair (MMR) in UV damage correction. As MMR enzyme hMSH2 displays a p53 target gene, is induced by UVB radiation and is involved in NER pathways, studies have now been initiated to elucidate the physiological and pathophysiological role of MMR in malignant melanoma and nonmelanoma skin cancer development.
Collapse
Affiliation(s)
- Knuth Rass
- Clinic for Dermatology, Venerology and Allergology, The Saarland University Hospital, 66421 Homburg/Saar, Germany.
| | | |
Collapse
|
34
|
Chang YC, Liao CB, Hsieh PYC, Liou ML, Liu YC. Expression of tumor suppressor p53 facilitates DNA repair but not UV-induced G2/M arrest or apoptosis in Chinese hamster ovary CHO-K1 cells. J Cell Biochem 2008; 103:528-37. [PMID: 17549699 DOI: 10.1002/jcb.21428] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Tumor suppressor p53 is an essential regulator in mammalian cellular responses to DNA damage including cell cycle arrest and apoptosis. Our study with Chinese hamster ovary CHO-K1 cells indicates that when p53 expression and its transactivation capacity was inhibited by siRNA, UVC-induced G2/M arrest or apoptosis were unaffected as revealed by flow cyotmetric analyses and other measurements. However, inhibition of p53 rendered the cells slower to repair UV-induced damages upon a plasmid as shown in host cell reactivation assay. Furthermore, the nuclear extract (NE) of p53 siRNA-treated cells was inactive to excise the UV-induced DNA adducts as analyzed by comet assay. Consistently, the immunodepletion of p53 also deprived the excision activity of the NE in the similar experiment. Thus, tumor suppressor p53 of CHO-K1 cells may facilitate removal of UV-induced DNA damages partly via its involvement in the repair mechanism.
Collapse
Affiliation(s)
- Yu-Ching Chang
- Institute of Molecular Medicine, National Tsing-Hua University, Hsin-Chu, Taiwan
| | | | | | | | | |
Collapse
|
35
|
Oliveira PA, Colaço A, Chaves R, Guedes-Pinto H, De-La-Cruz P. LF, Lopes C. Chemical carcinogenesis. AN ACAD BRAS CIENC 2007; 79:593-616. [DOI: 10.1590/s0001-37652007000400004] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2005] [Accepted: 05/10/2007] [Indexed: 12/18/2022] Open
Abstract
The use of chemical compounds benefits society in a number of ways. Pesticides, for instance, enable foodstuffs to be produced in sufficient quantities to satisfy the needs of millions of people, a condition that has led to an increase in levels of life expectancy. Yet, at times, these benefits are offset by certain disadvantages, notably the toxic side effects of the chemical compounds used. Exposure to these compounds can have varying effects, ranging from instant death to a gradual process of chemical carcinogenesis. There are three stages involved in chemical carcinogenesis. These are defined as initiation, promotion and progression. Each of these stages is characterised by morphological and biochemical modifications and result from genetic and/or epigenetic alterations. These genetic modifications include: mutations in genes that control cell proliferation, cell death and DNA repair - i.e. mutations in proto-oncogenes and tumour suppressing genes. The epigenetic factors, also considered as being non-genetic in character, can also contribute to carcinogenesis via epigenetic mechanisms which silence gene expression. The control of responses to carcinogenesis through the application of several chemical, biochemical and biological techniques facilitates the identification of those basic mechanisms involved in neoplasic development. Experimental assays with laboratory animals, epidemiological studies and quick tests enable the identification of carcinogenic compounds, the dissection of many aspects of carcinogenesis, and the establishment of effective strategies to prevent the cancer which results from exposure to chemicals.
Collapse
Affiliation(s)
| | - Aura Colaço
- University of Trás-os-Montes and Alto Douro, Portugal
| | - Raquel Chaves
- University of Trás-os-Montes and Alto Douro (UTAD), Portugal
| | | | | | - Carlos Lopes
- Portuguese Institute of Oncology, Portugal; University of Porto, Portugal
| |
Collapse
|
36
|
Abstract
The p53 tumor suppressor plays a pivotal role in multicellular organism by enforcing benefits of the organism over those of an individual cell. The task of p53 is to control the integrity and correctness of all processes in each individual cell and in the organism as a whole. Information about the state of ongoing events in the cell is gathered through multiple signaling pathways that convey signals modifying activities of p53. Changes in the activities depend on the character of damages or deviations from optimum in processes, and the activity of p53 changes depending on the degree of the aberration, which results in either stimulation of repair processes and protective mechanisms, or the cessation of further cell divisions and the induction of programmed cell death. The strategy of p53 ensures genetic identity of cells and prevents the selection of abnormal cells. By accomplishing these strategic tasks, p53 may use a wide spectrum of activities, such as its ability to function as a transcription factor, by inducing or repressing different genes, or as an enzyme, by acting as an exonuclease during DNA reparation, or as an adaptor or a regulatory protein, intervening into functions of numerous signaling pathways. Loss of function of the p53 gene occurs in virtually every case of cancer, and deficiency in p53 is an unavoidable prerequisite to the development of malignancies. The functions of p53 play substantial roles in many other pathologies as well as in the aging process. This review is focused on strategies of the p53 gene, demonstrating individual mechanisms underlying its functions.
Collapse
Affiliation(s)
- P M Chumakov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia.
| |
Collapse
|
37
|
Young LC, Keuling AM, Lai R, Nation PN, Tron VA, Andrew SE. The associated contributions of p53 and the DNA mismatch repair protein Msh6 to spontaneous tumorigenesis. Carcinogenesis 2007; 28:2131-8. [PMID: 17615258 DOI: 10.1093/carcin/bgm153] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
DNA mismatch repair (MMR) is a highly conserved system that repairs DNA adducts acquired during replication, as well as some forms of exogenous/endogenous DNA damage. Additionally, MMR proteins bind to DNA adducts that are not removed by MMR and influence damage-response mechanisms other than repair. Hereditary non-polyposis colorectal cancer, as well as mouse models for MMR deficiency, illustrate that MMR proteins are required for maintenance of genetic stability and tumor suppression. In both humans and mice, the phenotype associated with Msh6-associated tumorigenesis is distinct from that of Msh2. In this study, we hypothesized that Msh6-/-;p53+/- mice would display earlier tumor onset than their Msh6-/- or p53+/- counterparts, indicating that concomitant loss of these two tumor suppressors contributes to tumorigenesis via mechanisms that are only partially interrelated. We generated a Msh6-/-;p53+/- mouse model which succumbed to malignant disease at an accelerated rate and with a tumor spectrum distinct from both Msh6-/- and p53+/- models. Alteration of tumor phenotype in the Msh6-/-;p53+/- mice included a marked increase in microsatellite instability that was associated with loss of heterozygosity of the remaining p53 allele. Also, genetic instability was inversely correlated with survival. This manuscript marks the first in vivo investigation into the association between Msh6 and p53, and their combined role in the suppression of spontaneous tumorigenesis, cell survival and genomic stability. Our results support the hypothesis that p53 and Msh6 are functionally interrelated and that, with concomitant mutation, these tumor suppressors act together to accelerate tumorigenesis.
Collapse
Affiliation(s)
- Leah C Young
- Department of Medical Genetics, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | | | | | | | | | | |
Collapse
|
38
|
Abstract
Convergent studies demonstrated that p53 regulates homologous recombination (HR) independently of its classic tumour-suppressor functions in transcriptionally transactivating cellular target genes that are implicated in growth control and apoptosis. In this review, we summarise the analyses of the involvement of p53 in spontaneous and double-strand break (DSB)-triggered HR and in alternative DSB repair routes. Molecular characterisation indicated that p53 controls the fidelity of Rad51-dependent HR and represses aberrant processing of replication forks after stalling at unrepaired DNA lesions. These findings established a genome stabilising role of p53 in counteracting error-prone DSB repair. However, recent work has also unveiled a stimulatory role for p53 in topoisomerase I-induced recombinative repair events that may have implications for a gain-of-function phenotype of cancer-related p53 mutants. Additional evidence will be discussed which suggests that p53 and/or p53-regulated gene products also contribute to nucleotide excision, base excision, and mismatch repair.
Collapse
Affiliation(s)
- S A Gatz
- Universitätsklinik für Kinder- und Jugendmedizin, Eythstr. 24, 89075 Ulm, Germany
| | | |
Collapse
|
39
|
Abstract
The tumor suppressor p53 plays a central role in the DNA damage response. After exposure to genotoxic stress, p53 can both positively and negatively regulate cell fate. Initially, p53 promotes cell survival by inducing cell cycle arrest, DNA repair, and other pro-survival pathways. However, when cells accumulate DNA damage or demonstrate aberrant growth, p53 can direct the elimination of damaged cells. In this review, we will discuss the transcriptional-dependent and -independent roles of p53 in regulating the DNA damage response.
Collapse
Affiliation(s)
- E Scott Helton
- Department of Cell Biology, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | |
Collapse
|
40
|
Gray SE, Kay EW, Leader M, Mabruk MJEMF. Enhanced detection of microsatellite instability and mismatch repair gene expression in cutaneous squamous cell carcinomas. Mol Diagn Ther 2006; 10:327-34. [PMID: 17022696 DOI: 10.1007/bf03256208] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
BACKGROUND Microsatellite instability (MSI) is a phenotypic characteristic of tumors with biallelic inactivation of mismatch repair genes, such as MSH2 or MLH1, and contributes to malignant transformation. AIMS The aim of this study was to examine the prevalence of MSI in cutaneous squamous cell carcinoma (SCC) using a PCR and fluorescent-based detection system. These methods of analysis offer several advantages over the use of silver staining and autoradiographic techniques. We also aimed to determine if MSI status correlated with expression of the MSH2 and MLH1 mismatch repair proteins in these cutaneous SCC samples. METHODS The MSI status of 22 histologically confirmed invasive cutaneous SCC samples were analyzed at five microsatellite markers (the National Cancer Institute's Bethesda panel of two mononucleotide and three dinucleotide markers) using a PCR and fluorescent-based detection system. Immunohistochemical analysis of MSH2 and MLH1 protein expression was also carried out on the SCC samples. RESULTS Only one case of cutaneous SCC displayed MSI. This was found at just one of five markers, and thus was low frequency MSI. All 22 cutaneous SCC cases strongly expressed MSH2 protein. Eighteen (82%) of the cutaneous SCC cases showed moderate to strong expression of MLH1 protein. The remaining four cases of cutaneous SCC were negative for MLH1 protein. Therefore, the majority of the SCC patients analyzed showed a correlation between absence of MSI and expression of MSH2 and MLH1 proteins. CONCLUSIONS MSI is uncommon in cutaneous SCC. In addition, MSH2 was strongly expressed in all SCC samples analyzed and appeared to be upregulated when compared with the corresponding normal tissue. MLH1 protein was not detected in 4 of 22 SCC cases, although it was expressed in the corresponding normal tissue, suggesting that inactivation of MLH1 may be a late event in a subset of invasive SCC cases.
Collapse
Affiliation(s)
- Sarah E Gray
- Molecular Oncology Laboratory, Pathology Department, Royal College of Surgeons in Ireland (RCSI) and the Beaumont Hospital, Dublin, Ireland
| | | | | | | |
Collapse
|
41
|
Seifert M, Reichrath J. The role of the human DNA mismatch repair gene hMSH2 in DNA repair, cell cycle control and apoptosis: implications for pathogenesis, progression and therapy of cancer. J Mol Histol 2006; 37:301-7. [PMID: 17080293 DOI: 10.1007/s10735-006-9062-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2006] [Accepted: 09/26/2006] [Indexed: 01/12/2023]
Abstract
The cellular DNA mismatch repair (MMR) pathway, involving the DNA mismatch repair genes MLH1 and MSH2, detects and repairs DNA replication errors. Defects in MSH2 and MLH1 account for most cases of hereditary non-polyposis colorectal cancer as well as for sporadic colorectal tumors. Additionally, increased expression of MSH2 RNA and/or protein has been reported in various malignancies. Loss of DNA MMR in mammalian cells has been linked to resistance to certain DNA damaging agents including clinically important cytotoxic chemotherapeutics. Due to other functions besides its role in DNA repair, that include regulation of cell proliferation and apoptosis, MSH2 has recently been shown to be of importance for pathogenesis and progression of cancer. This review summarizes our present understanding of the function of MSH2 for DNA repair, cell cycle control, and apoptosis and discusses its importance for pathogenesis, progression and therapy of cancer.
Collapse
Affiliation(s)
- Markus Seifert
- Department of Dermatology, The Saarland University Hospital, Building 18, Kirrberger Strasse, 66421 Homburg, Germany.
| | | |
Collapse
|
42
|
Wang Y, Shupenko CC, Melo LF, Strauss PR. DNA repair protein involved in heart and blood development. Mol Cell Biol 2006; 26:9083-93. [PMID: 16966376 PMCID: PMC1636828 DOI: 10.1128/mcb.01216-06] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Apurinic/apyrimidinic endonuclease 1, a key enzyme in repairing abasic sites in DNA, is an embryonic lethal in mice. We are examining its role in embryogenesis in zebra fish. Zebra fish contain two genomic copies (zfAPEX1a and zfAPEX1b) with identical coding sequences. zfAPEX1b lacks introns. Recombinant protein (ZAP1) is highly homologous with and has the same enzymatic properties as its human orthologue. ZAP1 is highly expressed throughout development. Embryos microinjected with morpholino oligonucleotide (MO) targeting the translation start site die at approximately the midblastula transition (MBT) without apoptosis. They are rescued with mRNA for human wild-type APEX1 but not for APEX1 encoding endonuclease-defective protein. Rescued embryos develop dysmorphic hearts, pericardial edema, few erythrocytes, small eyes, and abnormal notochords. Although the hearts in rescued embryos form defective loops ranging from no loop to one that is abnormally shaped, cardiac myosin (cmlc2) is present and contraction occurs. Embryos microinjected with MO targeting zfAPEX1a intron-exon junctions also pass the MBT with similar abnormalities. We conclude that AP endonuclease 1 is involved in both repairing DNA and regulating specific early stages of embryonic development.
Collapse
Affiliation(s)
- Yi Wang
- Department of Biology, Northeastern University, 360 Huntington Ave., Boston, MA 02115, USA
| | | | | | | |
Collapse
|
43
|
Menendez D, Inga A, Resnick MA. The biological impact of the human master regulator p53 can be altered by mutations that change the spectrum and expression of its target genes. Mol Cell Biol 2006; 26:2297-308. [PMID: 16508005 PMCID: PMC1430278 DOI: 10.1128/mcb.26.6.2297-2308.2006] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2005] [Revised: 09/18/2005] [Accepted: 12/30/2005] [Indexed: 12/20/2022] Open
Abstract
Human tumor suppressor p53 is a sequence-specific master regulatory transcription factor that targets response elements (REs) in many genes. p53 missense mutations in the DNA-binding domain are often cancer associated. As shown with systems based on the yeast Saccharomyces cerevisiae, p53 mutants can alter the spectra and intensities of transactivation from individual REs. We address directly in human cells the relationship between changes in the p53 master regulatory network and biological outcomes. Expression of integrated, tightly regulated DNA-binding domain p53 mutants resulted in many patterns of apoptosis and survival following UV or ionizing radiation, or spontaneously. These patterns reflected changes in the spectra and activities of target genes, as demonstrated for P21, MDM2, BAX, and MSH2. Thus, as originally proposed for "master genes of diversity," p53 mutations in human cells can differentially influence target gene transactivation, resulting in a variety of biological consequences which, in turn, might be expected to influence tumor development and therapeutic efficacy.
Collapse
Affiliation(s)
- Daniel Menendez
- Chromosome Stability Section, Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, North Carolina 27709, USA
| | | | | |
Collapse
|
44
|
Christmann M, Fritz G, Kaina B. Induction of DNA Repair Genes in Mammalian Cells in Response to Genotoxic Stress. Genome Integr 2006. [DOI: 10.1007/7050_014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
45
|
Sengupta S, Harris CC. p53: traffic cop at the crossroads of DNA repair and recombination. Nat Rev Mol Cell Biol 2005; 6:44-55. [PMID: 15688066 DOI: 10.1038/nrm1546] [Citation(s) in RCA: 389] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
p53 mutants that lack DNA-binding activities, and therefore, transcriptional activities, are among the most common mutations in human cancer. Recently, a new role for p53 has come to light, as the tumour suppressor also functions in DNA repair and recombination. In cooperation with its function in transcription, the transcription-independent roles of p53 contribute to the control and efficiency of DNA repair and recombination.
Collapse
Affiliation(s)
- Sagar Sengupta
- Laboratory of Human Carcinogenesis, National Cancer Institute, National Institutes of Health, 37 Convent Drive, Building 37, Room 3068, Bethesda, Maryland, 20892-4255, USA
| | | |
Collapse
|
46
|
Hayakawa J, Mittal S, Wang Y, Korkmaz KS, Adamson E, English C, Ohmichi M, Omichi M, McClelland M, Mercola D. Identification of promoters bound by c-Jun/ATF2 during rapid large-scale gene activation following genotoxic stress. Mol Cell 2005; 16:521-35. [PMID: 15546613 DOI: 10.1016/j.molcel.2004.10.024] [Citation(s) in RCA: 161] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2004] [Revised: 08/31/2004] [Accepted: 10/14/2004] [Indexed: 02/08/2023]
Abstract
The NH2-terminal Jun kinases (JNKs) function in diverse roles through phosphorylation and activation of AP-1 components including ATF2 and c-Jun. However, the genes that mediate these processes are poorly understood. A model phenotype characterized by rapid activation of Jun kinase and enhanced DNA repair following cisplatin treatment was examined using chromatin immunoprecipitation with antibodies against ATF2 and c-Jun or their phosphorylated forms and hybridization to promoter arrays. Following genotoxic stress, we identified 269 genes whose promoters are bound upon phosphorylation of ATF2 and c-Jun. Binding did not occur following treatment with transplatin or the JNK inhibitor SP600125 or JNK-specific siRNA. Of 89 known DNA repair genes represented on the array, 23 are specifically activated by cisplatin treatment within 3-6 hr. Thus, the genotoxic stress response occurs at least partly via activation of ATF2 and c-Jun, leading to large-scale coordinate gene expression dominated by genes of DNA repair.
Collapse
Affiliation(s)
- Jun Hayakawa
- Sidney Kimmel Cancer Center, 10835 Altman Row, San Diego, California 92121, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
MacLaren A, Black EJ, Clark W, Gillespie DAF. c-Jun-deficient cells undergo premature senescence as a result of spontaneous DNA damage accumulation. Mol Cell Biol 2004; 24:9006-18. [PMID: 15456874 PMCID: PMC517871 DOI: 10.1128/mcb.24.20.9006-9018.2004] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Mouse embryo fibroblasts deficient for the c-Jun proto-oncogene (c-Jun-/- MEF) undergo p53-dependent premature senescence in conventional culture. This phenotype becomes evident only after several cell divisions, suggesting that senescence may result from exposure to unknown environmental factors. Here, we show that c-Jun-/- MEF can proliferate successfully in low oxygen (3% O2), indicating that premature senescence under conventional culture conditions is a consequence of hyperoxic stress. c-Jun-/- MEF exhibit higher basal levels of DNA damage compared to normal fibroblasts in high but not low oxygen, implying that senescence results from chronic accumulation of spontaneous DNA damage. This accumulation may be attributable, at least in part, to inefficient repair, since DNA damage induced by gamma ionizing radiation and H2O2 persists for longer in c-Jun-/- MEF than in wild-type MEF. Unexpectedly, p53 expression, phosphorylation, and transcriptional activity are largely unaffected by oxygen exposure, indicating that the accumulation of spontaneous DNA damage does not result in chronic activation of p53 as judged by conventional criteria. Finally, we find that c-Jun associates with nuclear foci containing gammaH2AX and ATM following irradiation, suggesting a potential role for c-Jun in DNA repair processes per se.
Collapse
Affiliation(s)
- Ann MacLaren
- Beatson Institute for Cancer Research, Bearsden, UK.
| | | | | | | |
Collapse
|
48
|
Yakovleva T, Kolesnikova L, Vukojević V, Gileva I, Tan-No K, Austen M, Lüscher B, Ekström TJ, Terenius L, Bakalkin G. YY1 binding to a subset of p53 DNA-target sites regulates p53-dependent transcription. Biochem Biophys Res Commun 2004; 318:615-24. [PMID: 15120643 DOI: 10.1016/j.bbrc.2004.04.065] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2004] [Indexed: 11/18/2022]
Abstract
The tumor suppressor protein p53 regulates gene transcription through binding to specific DNA-target sites. We here demonstrate that a subset of these sites is targeted by another DNA-binding factor. Binding specificity, reactivity with specific antibodies, and experiments with purified protein identified the factor as the multifunctional transcription regulator YY1. The YY1 core binding sequence ACAT is present in the center of p53-half-binding sites in the p21 and GADD45 genes regulating growth arrest and DNA repair, respectively, but is absent in those of the Bax gene critical for apoptosis. In transfection experiments YY1 inhibits p53-activated transcription from the p53-binding site that contains the ACAT sequence. YY1 and p53 are colocalized around the nucleoli and in discrete nuclear domains in PC12 cells undergoing apoptosis. YY1 might attenuate p53-dependent transcription from a subset of p53-target genes and this may be relevant for directing cells either to growth arrest or apoptosis upon p53 activation.
Collapse
Affiliation(s)
- Tatiana Yakovleva
- Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Hernandez-Pigeon H, Laurent G, Humbert O, Salles B, Lautier D. Degadration of mismatch repair hMutSalpha heterodimer by the ubiquitin-proteasome pathway. FEBS Lett 2004; 562:40-4. [PMID: 15043999 DOI: 10.1016/s0014-5793(04)00181-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2003] [Revised: 01/30/2004] [Accepted: 02/16/2004] [Indexed: 11/24/2022]
Abstract
Mismatch repair plays a critical role in genome stability. This process requires several proteins including hMSH2/hMSH6 (hMutSalpha) heterodimer involved in the first stage of the process, the mispair recognition. We previously reported that in U937 and HL-60 cell lines, hMSH2 and hMSH6 protein expression was much lower than that in HeLa and KG1a cells. Here, we showed that the decreased expression of hMutSalpha results from differences in the degradation rate of both proteins by the ubiquitin-proteasome pathway. Our data suggest that in human cell lines, ubiquitin-proteasome could play an important role in the regulation of hMutSalpha protein expression, thereby regulating mismatch repair activity.
Collapse
Affiliation(s)
- Hélène Hernandez-Pigeon
- INSERM U563, Centre de Physiopathologie Toulouse Purpan, Institut Claudius Regaud, 20 rue du Pont Saint-Pierre, 31052 Toulouse, France
| | | | | | | | | |
Collapse
|
50
|
Srivastava T, Chattopadhyay P, Mahapatra AK, Sarkar C, Sinha S. Increased hMSH2 protein expression in glioblastoma multiforme. J Neurooncol 2004; 66:51-7. [PMID: 15015769 DOI: 10.1023/b:neon.0000013482.99032.b0] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
hMSH2 and hMLH1 are the most commonly studied mismatch repair proteins and their absence is associated with microsatellite instability (MSI) especially in hereditary non-polyposis colorectal cancer, and also in some sporadic tumors. However, there are some tumors, namely, urothelial neoplasms and salivary gland tumors, where overexpression of the proteins has been reported, though the implications of these findings are not very clear. There is no report on the expression of these proteins in different grades of human astrocytic tumors. We have studied the expression pattern of hMSH2 and hMLHI in high (Grade IV, glioblastoma multiforme (GBM)) and low (Grade II, astrocytoma (AS)) grade primary human gliomas by immunohistochemistry. We observed that there was a significantly higher expression of hMSH2 protein in 28 GBM (mean 703.07 +/- 236.28) as compared with 27 AS (mean 307.03 +/- 204.71), p = 1.47 x 10(-8) by a two-tailed t-test of unpaired samples. However, for hMLH1 no such difference was observed, mean counts being 543.29 +/- 320.35 for 27 GBM and 505.92 +/- 342.37 for 26 AS, p = 0.67. A small proportion of tumors was observed to be immunonegative for either of the proteins in both high- and low-grade tumors. While MSI has been shown previously to be infrequent in human astrocytic tumors, the implications of the overexpression of hMSH2 in GBM are not clear.
Collapse
Affiliation(s)
- Tapasya Srivastava
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | | | | | | | | |
Collapse
|