1
|
Raschmanová JŠ, Fazekašová S, Martinková M, Fábian M, Pilátová MB, Cvačka J, Kofroňová E, Mezencev R. A 'Chiron' approach to novel phytosphingosine mimetics based on a cascade [3,3]-sigmatropic rearrangement. Carbohydr Res 2024; 541:109158. [PMID: 38796901 DOI: 10.1016/j.carres.2024.109158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/09/2024] [Accepted: 05/20/2024] [Indexed: 05/29/2024]
Abstract
Straightforward access to enantiomerically pure 3,4-diamino-3,4-dideoxyphytosphingosines, as novel analogues of natural d-ribo-phytosphingosine was accomplished, starting from two available chirons: dimethyl l-tartrate and d-isoascorbic acid. A sequential Overman rearrangement followed by late-stage introduction of the alkyl side chain moiety via olefin cross-metathesis is the cornerstone of this approach. The preliminary evaluation study of the synthesised sphingomimetics, based on their ability to inhibit a proliferation of human cancer cells, showed promising cytotoxicity against Jurkat and HeLa cells for (2R,3R,4S)-2,3,4-triaminooctadecan-1-ol trihydrochloride.
Collapse
Affiliation(s)
- Jana Špaková Raschmanová
- Institute of Chemical Sciences, Department of Organic Chemistry, P.J. Šafárik University, Moyzesova 11, 040 01, Košice, Slovak Republic
| | - Simona Fazekašová
- Institute of Chemical Sciences, Department of Organic Chemistry, P.J. Šafárik University, Moyzesova 11, 040 01, Košice, Slovak Republic
| | - Miroslava Martinková
- Institute of Chemical Sciences, Department of Organic Chemistry, P.J. Šafárik University, Moyzesova 11, 040 01, Košice, Slovak Republic.
| | - Martin Fábian
- Institute of Chemical Sciences, Department of Organic Chemistry, P.J. Šafárik University, Moyzesova 11, 040 01, Košice, Slovak Republic
| | - Martina Bago Pilátová
- Institute of Pharmacology, Faculty of Medicine, P.J. Šafárik University, SNP 1, 040 66, Košice, Slovak Republic
| | - Josef Cvačka
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo Nám. 2, 16610, Prague, Czech Republic
| | - Edita Kofroňová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo Nám. 2, 16610, Prague, Czech Republic
| | - Roman Mezencev
- Georgia Institute of Technology, College of Science, School of Biology, 310 Ferst Drive, Atlanta, GA, 30332, USA
| |
Collapse
|
2
|
Schlarmann P, Hanaoka K, Ikeda A, Muñiz M, Funato K. Ceramide sorting into non-vesicular transport is independent of acyl chain length in budding yeast. Biochem Biophys Res Commun 2024; 715:149980. [PMID: 38678780 DOI: 10.1016/j.bbrc.2024.149980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/10/2024] [Accepted: 04/22/2024] [Indexed: 05/01/2024]
Abstract
The transport of ceramide from the endoplasmic reticulum (ER) to the Golgi is a key step in the synthesis of complex sphingolipids, the main building blocks of the plasma membrane. In yeast, ceramide is transported to the Golgi either through ATP-dependent COPII vesicles of the secretory pathway or by ATP-independent non-vesicular transport that involves tethering proteins at ER-Golgi membrane contact sites. Studies in both mammalian and yeast cells reported that vesicular transport mainly carries ceramide containing very long chain fatty acids, while the main mammalian non-vesicular ceramide transport protein CERT only transports ceramides containing short chain fatty acids. However, if non-vesicular ceramide transport in yeast similarly favors short chain ceramides remained unanswered. Here we employed a yeast GhLag1 strain in which the endogenous ceramide synthase is replaced by the cotton-derived GhLag1 gene, resulting in the production of short chain C18 rather than C26 ceramides. We show that block of vesicular transport through ATP-depletion or the use of temperature-sensitive sec mutants caused a reduction in inositolphosphorylceramide (IPC) synthesis to similar extent in WT and GhLag1 backgrounds. Since the remaining IPC synthesis is a readout for non-vesicular ceramide transport, our results indicate that non-vesicular ceramide transport is neither blocked nor facilitated when only short chain ceramides are present. Therefore, we propose that the sorting of ceramide into non-vesicular transport is independent of acyl chain length in budding yeast.
Collapse
Affiliation(s)
- Philipp Schlarmann
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
| | - Kazuki Hanaoka
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
| | - Atsuko Ikeda
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
| | - Manuel Muñiz
- Department of Cell Biology, Faculty of Biology, University of Seville, Seville, Spain; Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen Del Rocío/Consejo Superior de Investigaciones Científicas/Universidad de Sevilla, Seville, Spain
| | - Kouichi Funato
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan.
| |
Collapse
|
3
|
Fábian M, Novotná M, Raschmanová JŠ, Vargová K, Martinková M, Pilátová MB, Kešeľáková A. Divergent access to a novel 3,4-diaminophytosphingosine-like ceramide via sequential Overman rearrangement. Carbohydr Res 2023; 530:108874. [PMID: 37336150 DOI: 10.1016/j.carres.2023.108874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/11/2023] [Accepted: 06/15/2023] [Indexed: 06/21/2023]
Abstract
A straightforward approach to a novel phytosphingosine-like ceramide has been accomplished. The cornerstone features of this divergent synthesis are a cascade Overman rearrangement of tris(imidate) to introduce three desired stereogenic centres via sequential chirality transfer and an effective olefin cross-metathesis to install a long side chain. The final unusual phytoceramides were evaluated for their capacity to inhibit the proliferation of cancer cell lines. The preliminary results revealed that compound 21 exhibits promising anticancer activity against HeLa and HCT-116 cells as well as the excellent selectivity in cytotoxicity (malignant vs non-malignant cell lines).
Collapse
Affiliation(s)
- Martin Fábian
- Institute of Chemical Sciences, Department of Organic Chemistry, P.J. Šafárik University, Moyzesova 11, 040 01, Košice, Slovak Republic
| | - Michaela Novotná
- Institute of Chemical Sciences, Department of Organic Chemistry, P.J. Šafárik University, Moyzesova 11, 040 01, Košice, Slovak Republic
| | - Jana Špaková Raschmanová
- Institute of Chemical Sciences, Department of Organic Chemistry, P.J. Šafárik University, Moyzesova 11, 040 01, Košice, Slovak Republic
| | - Kristína Vargová
- Institute of Chemical Sciences, Department of Organic Chemistry, P.J. Šafárik University, Moyzesova 11, 040 01, Košice, Slovak Republic
| | - Miroslava Martinková
- Institute of Chemical Sciences, Department of Organic Chemistry, P.J. Šafárik University, Moyzesova 11, 040 01, Košice, Slovak Republic.
| | - Martina Bago Pilátová
- Institute of Pharmacology, Faculty of Medicine, P.J. Šafárik University, SNP 1, 040 66, Košice, Slovak Republic
| | - Alexandra Kešeľáková
- Institute of Pharmacology, Faculty of Medicine, P.J. Šafárik University, SNP 1, 040 66, Košice, Slovak Republic
| |
Collapse
|
4
|
Vargová K, Martinková M, Raschmanová JŠ, Pilátová MB, Kešeľáková A, Jáger D. Straightforward access to novel cytotoxic phytosphingosine-like aminotriols from l-erythrose chiron. Carbohydr Res 2023; 526:108789. [PMID: 36934648 DOI: 10.1016/j.carres.2023.108789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/26/2023] [Accepted: 03/10/2023] [Indexed: 03/17/2023]
Abstract
A divergent approach to a small library of long-chain 6-amino-1,4,5-triols as novel phytosphingosine-type entities, together with their preliminary cytotoxic evaluation, was achieved. Construction of the target compounds addressed two key aspects. First, the installation of a carbon-nitrogen bond via two prototypes of [3,3]-sigmatropic rearrangements and second the introduction of an alkyl side chain unit by using a late stage olefin cross-metathesis process. As shown in cell viability experiments, the corresponding HCl salts proved to be the most cytotoxic derivatives among all the tested substances, with IC50 values in the lower micromolar range on the Jurkat, HeLa and HCT-116 cell lines.
Collapse
Affiliation(s)
- Kristína Vargová
- Institute of Chemical Sciences, Department of Organic Chemistry, P.J. Šafárik University, Moyzesova 11, 040 01, Košice, Slovak Republic
| | - Miroslava Martinková
- Institute of Chemical Sciences, Department of Organic Chemistry, P.J. Šafárik University, Moyzesova 11, 040 01, Košice, Slovak Republic.
| | - Jana Špaková Raschmanová
- Institute of Chemical Sciences, Department of Organic Chemistry, P.J. Šafárik University, Moyzesova 11, 040 01, Košice, Slovak Republic
| | - Martina Bago Pilátová
- Institute of Pharmacology, Faculty of Medicine, P.J. Šafárik University, SNP 1, 040 66, Košice, Slovak Republic
| | - Alexandra Kešeľáková
- Institute of Pharmacology, Faculty of Medicine, P.J. Šafárik University, SNP 1, 040 66, Košice, Slovak Republic
| | - Dávid Jáger
- Institute of Geotechnics, Slovak Academy of Sciences, Watsonova 45, 040 01, Košice, Slovak Republic
| |
Collapse
|
5
|
Takayama C, Koga A, Sakamoto R, Arita N, Tani M. Involvement of the mitochondrial retrograde pathway in dihydrosphingosine-induced cytotoxicity in budding yeast. Biochem Biophys Res Commun 2022; 605:63-69. [DOI: 10.1016/j.bbrc.2022.03.061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 03/09/2022] [Accepted: 03/12/2022] [Indexed: 11/28/2022]
|
6
|
Matos GS, Madeira JB, Fernandes CM, Dasilva D, Masuda CA, Del Poeta M, Montero-Lomelí M. Regulation of sphingolipid synthesis by the G1/S transcription factor Swi4. Biochim Biophys Acta Mol Cell Biol Lipids 2021; 1866:158983. [PMID: 34062255 PMCID: PMC8512607 DOI: 10.1016/j.bbalip.2021.158983] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 05/19/2021] [Accepted: 05/21/2021] [Indexed: 11/23/2022]
Abstract
SBF (Swi4/Swi6 Binding Factor) complex is a crucial regulator of G1/S transition in Saccharomyces cerevisiae. Here, we show that SBF complex is required for myriocin resistance, an inhibitor of sphingolipid synthesis. This phenotype was not shared with MBF complex mutants nor with deletion of the Swi4p downstream targets, CLN1/CLN2. Based on data mining results, we selected putative Swi4p targets related to sphingolipid metabolism and studied their gene transcription as well as metabolite levels during progression of the cell cycle. Genes which encode key enzymes for the synthesis of long chain bases (LCBs) and ceramides were periodically transcribed during the mitotic cell cycle, having a peak at G1/S, and required SWI4 for full transcription at this stage. In addition, HPLC-MS/MS data indicated that swi4Δ cells have decreased levels of sphingolipids during progression of the cell cycle, particularly, dihydrosphingosine (DHS), C24-phytoceramides and C24-inositolphosphoryl ceramide (IPC) while it had increased levels of mannosylinositol phosphorylceramide (MIPC). Furthermore, we demonstrated that both inhibition of de novo sphingolipid synthesis by myriocin or SWI4 deletion caused partial arrest at the G2/M phase. Importantly, our lipidomic data demonstrated that the sphingolipid profile of WT cells treated with myriocin resembled that of swi4Δ cells, with lower levels of DHS, IPC and higher levels of MIPC. Taken together, these results show that SBF complex plays an essential role in the regulation of sphingolipid homeostasis, which reflects in the correct progression through the G2/M phase of the cell cycle.
Collapse
Affiliation(s)
- Gabriel S Matos
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Juliana B Madeira
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Deveney Dasilva
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, NY, USA
| | - Claudio A Masuda
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Maurizio Del Poeta
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, NY, USA; Institute of Chemical Biology and Drug Discovery, Stony Brook University, Stony Brook, NY, USA; Veteran Administration Medical Center, Northport, NY, USA; MicroRid Technologies Inc., Dix Hills, NY, USA; Division of Infectious Diseases, School of Medicine, Stony Brook University, NY, USA
| | - Monica Montero-Lomelí
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
7
|
Fabri JHTM, de Sá NP, Malavazi I, Del Poeta M. The dynamics and role of sphingolipids in eukaryotic organisms upon thermal adaptation. Prog Lipid Res 2020; 80:101063. [PMID: 32888959 DOI: 10.1016/j.plipres.2020.101063] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 08/18/2020] [Accepted: 08/27/2020] [Indexed: 01/09/2023]
Abstract
All living beings have an optimal temperature for growth and survival. With the advancement of global warming, the search for understanding adaptive processes to climate changes has gained prominence. In this context, all living beings monitor the external temperature and develop adaptive responses to thermal variations. These responses ultimately change the functioning of the cell and affect the most diverse structures and processes. One of the first structures to detect thermal variations is the plasma membrane, whose constitution allows triggering of intracellular signals that assist in the response to temperature stress. Although studies on this topic have been conducted, the underlying mechanisms of recognizing thermal changes and modifying cellular functioning to adapt to this condition are not fully understood. Recently, many reports have indicated the participation of sphingolipids (SLs), major components of the plasma membrane, in the regulation of the thermal stress response. SLs can structurally reinforce the membrane or/and send signals intracellularly to control numerous cellular processes, such as apoptosis, cytoskeleton polarization, cell cycle arresting and fungal virulence. In this review, we discuss how SLs synthesis changes during both heat and cold stresses, focusing on fungi, plants, animals and human cells. The role of lysophospholipids is also discussed.
Collapse
Affiliation(s)
- João Henrique Tadini Marilhano Fabri
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, New York, USA; Departamento de Genética e Evolução, Centro de Ciências Biológicas e da Saúde, Universidade Federal de São Carlos, São Carlos, SP, Brazil
| | - Nivea Pereira de Sá
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, New York, USA
| | - Iran Malavazi
- Departamento de Genética e Evolução, Centro de Ciências Biológicas e da Saúde, Universidade Federal de São Carlos, São Carlos, SP, Brazil
| | - Maurizio Del Poeta
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, New York, USA; Division of Infectious Diseases, School of Medicine, Stony Brook University, Stony Brook, New York, USA; Veterans Administration Medical Center, Northport, New York, USA.
| |
Collapse
|
8
|
Guo Q, Zhang T, Meng N, Duan Y, Meng Y, Sun D, Liu Y, Luo G. Sphingolipids are required for exocyst polarity and exocytic secretion in Saccharomyces cerevisiae. Cell Biosci 2020; 10:53. [PMID: 32257111 PMCID: PMC7106735 DOI: 10.1186/s13578-020-00406-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Accepted: 03/10/2020] [Indexed: 11/13/2022] Open
Abstract
Background Exocytosis is a process by which vesicles are transported to and fused with specific areas of the plasma membrane. Although several studies have shown that sphingolipids are the main components of exocytic compartments, whether they control exocytosis process is unclear. Results Here, we have investigated the role of sphingolipids in exocytosis by reducing the activity of the serine palmitoyl-transferase (SPT), which catalyzes the first step in sphingolipid synthesis in endoplasmic reticulum. We found that the exocyst polarity and exocytic secretion were impaired in lcb1-100 mutant cells and in wild type cells treated with myriocin, a chemical which can specifically inhibit SPT enzyme activity, suggesting that sphingolipids controls exocytic secretion. This speculation was further confirmed by immuno-fluorescence and electron microscopy results that small secretory vesicles were accumulated in lcb1-100 mutant cells. Conclusions Taken together, our results suggest that sphingolipids are required for exocytosis. Mammals may use similar regulatory mechanisms because components of the exocytic secretion apparatus and signaling pathways are conserved.
Collapse
Affiliation(s)
- Qingguo Guo
- 1Institute of Translational Medicine, China Medical University, Shenyang, 110122 China.,2Department of Biochemistry and Molecular Biology, China Medical University, Shenyang, 110122 China
| | - Tianrui Zhang
- 2Department of Biochemistry and Molecular Biology, China Medical University, Shenyang, 110122 China
| | - Na Meng
- 2Department of Biochemistry and Molecular Biology, China Medical University, Shenyang, 110122 China
| | - Yuran Duan
- 2Department of Biochemistry and Molecular Biology, China Medical University, Shenyang, 110122 China
| | - Yuan Meng
- 2Department of Biochemistry and Molecular Biology, China Medical University, Shenyang, 110122 China
| | - Dong Sun
- 1Institute of Translational Medicine, China Medical University, Shenyang, 110122 China
| | - Ying Liu
- 2Department of Biochemistry and Molecular Biology, China Medical University, Shenyang, 110122 China
| | - Guangzuo Luo
- 1Institute of Translational Medicine, China Medical University, Shenyang, 110122 China
| |
Collapse
|
9
|
Arita N, Sakamoto R, Tani M. Mitochondrial reactive oxygen species-mediated cytotoxicity of intracellularly accumulated dihydrosphingosine in the yeast Saccharomyces cerevisiae. FEBS J 2020; 287:3427-3448. [PMID: 31944552 DOI: 10.1111/febs.15211] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Revised: 11/20/2019] [Accepted: 01/10/2020] [Indexed: 02/06/2023]
Abstract
In eukaryotic cells, the content of sphingoid long-chain bases (LCBs) is generally much lower than that of complex sphingolipids and ceramides, and the quantitative balance of these metabolites in cells is tightly regulated. In the budding yeast Saccharomyces cerevisiae, it has been demonstrated that exogenously added phytosphingosine (PHS) causes a strong growth defect in tryptophan auxotrophic cells, due to delayed uptake of tryptophan from the culture medium; however, the growth inhibitory effect of dihydrosphingosine (DHS) is less than that of PHS in tryptophan auxotrophic cells. Here, we found that, in tryptophan-prototrophic yeast cells, exogenously added DHS is much more toxic than PHS. Exogenously added DHS is converted to PHS, Cers, or LCB 1-phosphates through the action of sphingolipid C4-hydroxylase, Cer synthases, or LCB kinases, respectively; however, suppression of further metabolism of DHS in cells resulted in an increase in the growth inhibitory activity of exogenously added DHS, indicating that DHS itself is causative of the cytotoxicity. The cytotoxicity of DHS was not mediated by Pkh1/2, Sch9, and Ypk1/2 kinases, intracellular targets of LCBs. DHS treatment caused an increase in mitochondria-derived reactive oxygen species, and the cytotoxic effect of DHS was suppressed by depletion of mitochondrial DNA or antioxidant N-acetylcysteine, but enhanced by deletion of SOD1 and SOD2 encoding superoxide dismutases. Thus, collectively, these results indicated that intracellularly accumulated DHS has mitochondrial reactive oxygen species-mediated cytotoxic activity, which is much more potent than that of PHS.
Collapse
Affiliation(s)
- Nobuaki Arita
- Department of Chemistry, Faculty of Sciences, Kyushu University, Nishi-ku, Fukuoka, Japan
| | - Risa Sakamoto
- Department of Chemistry, Faculty of Sciences, Kyushu University, Nishi-ku, Fukuoka, Japan
| | - Motohiro Tani
- Department of Chemistry, Faculty of Sciences, Kyushu University, Nishi-ku, Fukuoka, Japan
| |
Collapse
|
10
|
Raschmanová JŠ, Martinková M, Gonda J, Pilátová MB, Kuchár J, Jáger D. Synthesis and in vitro biological evaluation of 3-amino-3-deoxydihydrosphingosines and their analogues. Tetrahedron 2020. [DOI: 10.1016/j.tet.2019.130803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
11
|
Heat Stress-Induced Metabolic Remodeling in Saccharomyces cerevisiae. Metabolites 2019; 9:metabo9110266. [PMID: 31694329 PMCID: PMC6918159 DOI: 10.3390/metabo9110266] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 10/25/2019] [Accepted: 10/30/2019] [Indexed: 01/22/2023] Open
Abstract
Yeast cells respond to heat stress by remodeling their gene expression, resulting in the changes of the corresponding proteins and metabolites. Compared to the intensively investigated transcriptome and proteome, the metabolic response to heat stress is not sufficiently characterized. Mitochondria have been recognized to play an essential role in heat stress tolerance. Given the compartmentalization of the cell, it is not clear if the heat stress-induced metabolic response occurs in mitochondria or in the cytosol. Therefore, a compartment-specific metabolite analysis was performed to analyze the heat stress-induced metabolic response in mitochondria and the cytoplasm. In this work, the isolated mitochondria and the cytoplasm of yeast cells grown at permissive temperature and cells adapting to heat stress were subjected to mass spectrometry-based metabolomics. Over a hundred metabolites could be identified, covering amino acid metabolism, energy metabolism, arginine metabolism, purine and pyrimidine metabolism, and others. Highly accumulated citrulline and reduced arginine suggested remodeled arginine metabolism. A stable isotope-labeled experiment was performed to analyze the heat stress-induced metabolic remodeling of the arginine metabolism, identifying activated de novo ornithine biosynthesis to support arginine and spermidine synthesis. The short-term increased spermidine and trehalose suggest their important roles as heat stress markers. These data provide metabolic clues of heat stress-induced metabolic remodeling, which helps in understanding the heat stress response.
Collapse
|
12
|
Gonda J, Fazekašová S, Martinková M, Mitríková T, Roman D, Pilátová MB. Synthesis and biological activity of sphingosines with integrated azobenzene switches. Org Biomol Chem 2019; 17:3361-3373. [DOI: 10.1039/c9ob00137a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The synthesis of photochromic active sphingosine analogues and their antiproliferative activity against seven human cancer cell lines is reported.
Collapse
Affiliation(s)
- Jozef Gonda
- Department of Organic Chemistry
- P.J. Šafárik University
- Sk-040 01 Košice
- Slovak Republic
| | - Simona Fazekašová
- Department of Organic Chemistry
- P.J. Šafárik University
- Sk-040 01 Košice
- Slovak Republic
| | - Miroslava Martinková
- Department of Organic Chemistry
- P.J. Šafárik University
- Sk-040 01 Košice
- Slovak Republic
| | - Tatiana Mitríková
- Department of Organic Chemistry
- P.J. Šafárik University
- Sk-040 01 Košice
- Slovak Republic
| | - Dávid Roman
- Chemical Biology of Microbe-Host Interactions
- Leibniz Institute for Natural Product Research and Infection Biology e.V
- Hans-Knöll-Institute (HKI)
- 07745 Jena
- Germany
| | - Martina Bago Pilátová
- Institute of Pharmacology
- Faculty of Medicine
- P.J. Šafárik University
- 040 66 Košice
- Slovak Republic
| |
Collapse
|
13
|
Villasmil ML, Gallo-Ebert C, Liu HY, Francisco J, Nickels JT. A link between very long chain fatty acid elongation and mating-specific yeast cell cycle arrest. Cell Cycle 2017; 16:2192-2203. [PMID: 28745545 DOI: 10.1080/15384101.2017.1329065] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Ceramides and sphingolipid intermediates are well-established regulators of the cell cycle. In the budding yeast Saccharomyces cerevisae, the complex sphingolipid backbone, ceramide, comprises a long chain sphingoid base, a polar head group, and a very long chain fatty acid (VLCFA). While ceramides and long chain bases have been extensively studied as to their roles in regulating cell cycle arrest under multiple conditions, the roles of VLCFAs are not well understood. Here, we used the yeast elo2 and elo3 mutants, which are unable to elongate fatty acids, as tools to explore if maintaining VLCFA elongation is necessary for cell cycle arrest in response to yeast mating. We found that both elo2 and elo3 cells had severely reduced mating efficiencies and were unable to form polarized shmoo projections that are necessary for cell-cell contact during mating. They also lacked functional MAP kinase signaling activity and were defective in initiating a cell cycle arrest in response to pheromone. Additional data suggests that mislocalization of the Ste5 scaffold in elo2 and elo3 mutants upon mating initiation may be responsible for the inability to initiate a cell cycle arrest. Moreover, the lack of proper Ste5 localization may be caused by the inability of mutant cells to mobilize PIP2. We suggest that VLCFAs are required for Ste5 localization, which is a necessary event for initiating MAP kinase signaling and cell cycle arrest during yeast mating initiation.
Collapse
Affiliation(s)
| | - Christina Gallo-Ebert
- b Institute of Metabolic Disorders, Genesis Biotechnology Group , Hamilton , NJ , USA
| | - Hsing-Yin Liu
- b Institute of Metabolic Disorders, Genesis Biotechnology Group , Hamilton , NJ , USA
| | | | - Joseph T Nickels
- b Institute of Metabolic Disorders, Genesis Biotechnology Group , Hamilton , NJ , USA
| |
Collapse
|
14
|
Martínez-Montañés F, Schneiter R. Following the flux of long-chain bases through the sphingolipid pathway in vivo using mass spectrometry. J Lipid Res 2016; 57:906-15. [PMID: 26977056 DOI: 10.1194/jlr.d066472] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Indexed: 02/06/2023] Open
Abstract
Sphingolipids are essential components of the plasma membrane. Their synthesis is tightly controlled by regulatory proteins, which impinge on the rate-limiting step of the pathway, the condensation of serine and palmitoyl-CoA to long-chain base (LCB). The subsequent conversion of LCB to ceramide by ceramide synthase (CerS) is also tightly regulated, because both the accumulation of LCB as well as an excess of ceramide is toxic. Here we describe an in vivo assay to monitor the flux of LCB through the sphingolipid pathway in yeast. Cells are provided with nonnatural odd-chain sphingosine analogs, C17-dihydrosphingosine or C17-phytosphingosine (PHS), and their incorporation into ceramide and more complex sphingolipids is monitored by mass spectrometry. Incorporation of C17-PHS is time and concentration dependent, is inhibited by fumonisin B1, an inhibitor of CerS, and greatly reduced in double mutant cells lacking components of the CerS, Lac1 and Lag1. The resulting C17-ceramides are further metabolized to more complex sphingolipids, inositol phosphorylceramide and mannosylinositol phosphorylceramide), indicating that the tracer can be used to decipher the regulation of later steps of the pathway. In support of this notion, we show that mutants lacking the Orm proteins, regulators of the rate-limiting step of the pathway, display increased steady-state levels of these intermediates without affecting their rate of synthesis.
Collapse
Affiliation(s)
| | - Roger Schneiter
- Department of Biology, University of Fribourg, 1700 Fribourg, Switzerland
| |
Collapse
|
15
|
Marine cytotoxic jaspine B and its stereoisomers: biological activity and syntheses. Carbohydr Res 2016; 423:1-42. [DOI: 10.1016/j.carres.2016.01.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 01/11/2016] [Accepted: 01/20/2016] [Indexed: 01/03/2023]
|
16
|
Villasmil ML, Francisco J, Gallo-Ebert C, Donigan M, Liu HY, Brower M, Nickels JT. Ceramide signals for initiation of yeast mating-specific cell cycle arrest. Cell Cycle 2016; 15:441-54. [PMID: 26726837 DOI: 10.1080/15384101.2015.1127475] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
Sphingolipids are major constituents of membranes. A number of S. cerevisiae sphingolipid intermediates such as long chains sphingoid bases (LCBs) and ceramides act as signaling molecules regulating cell cycle progression, adaptability to heat stress, and survival in response to starvation. Here we show that S. cerevisiae haploid cells must synthesize ceramide in order to induce mating specific cell cycle arrest. Cells devoid of sphingolipid biosynthesis or defective in ceramide synthesis are sterile and harbor defects in pheromone-induced MAP kinase-dependent transcription. Analyses of G1/S cyclin levels indicate that mutant cells cannot reduce Cln1/2 levels in response to pheromone. FACS analysis indicates a lack of ability to arrest. The addition of LCBs to sphingolipid deficient cells restores MAP kinase-dependent transcription, reduces cyclin levels, and allows for mating, as does the addition of a cell permeable ceramide to cells blocked at ceramide synthesis. Pharmacological studies using the inositolphosphorylceramide synthase inhibitor aureobasidin A indicate that the ability to synthesize and accumulate ceramide alone is sufficient for cell cycle arrest and mating. Studies indicate that ceramide also has a role in PI(4,5)P2 polarization during mating, an event necessary for initiating cell cycle arrest and mating itself. Moreover, our studies suggest a third role for ceramide in localizing the mating-specific Ste5 scaffold to the plasma membrane. Thus, ceramide plays a role 1) in pheromone-induced cell cycle arrest, 2) in activation of MAP kinase-dependent transcription, and 3) in PtdIns(4,5)P2 polarization. All three events are required for differentiation during yeast mating.
Collapse
Affiliation(s)
- Michelle L Villasmil
- a The Institute of Metabolic Disorders, Genesis Biotechnology Group , Hamilton , NJ , USA.,b Cato Research Ltd. , Durham , NC , USA
| | - Jamie Francisco
- a The Institute of Metabolic Disorders, Genesis Biotechnology Group , Hamilton , NJ , USA
| | - Christina Gallo-Ebert
- a The Institute of Metabolic Disorders, Genesis Biotechnology Group , Hamilton , NJ , USA
| | - Melissa Donigan
- a The Institute of Metabolic Disorders, Genesis Biotechnology Group , Hamilton , NJ , USA
| | - Hsing-Yin Liu
- a The Institute of Metabolic Disorders, Genesis Biotechnology Group , Hamilton , NJ , USA
| | - Melody Brower
- a The Institute of Metabolic Disorders, Genesis Biotechnology Group , Hamilton , NJ , USA.,c Synthes, Inc , Paoli , PA , USA
| | - Joseph T Nickels
- a The Institute of Metabolic Disorders, Genesis Biotechnology Group , Hamilton , NJ , USA
| |
Collapse
|
17
|
Teixeira V, Costa V. Unraveling the role of the Target of Rapamycin signaling in sphingolipid metabolism. Prog Lipid Res 2015; 61:109-33. [PMID: 26703187 DOI: 10.1016/j.plipres.2015.11.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 11/04/2015] [Accepted: 11/09/2015] [Indexed: 02/06/2023]
Abstract
Sphingolipids are important bioactive molecules that regulate basic aspects of cellular metabolism and physiology, including cell growth, adhesion, migration, senescence, apoptosis, endocytosis, and autophagy in yeast and higher eukaryotes. Since they have the ability to modulate the activation of several proteins and signaling pathways, variations in the relative levels of different sphingolipid species result in important changes in overall cellular functions and fate. Sphingolipid metabolism and their route of synthesis are highly conserved from yeast to mammalian cells. Studies using the budding yeast Saccharomyces cerevisiae have served in many ways to foster our understanding of sphingolipid dynamics and their role in the regulation of cellular processes. In the past decade, studies in S. cerevisiae have unraveled a functional association between the Target of Rapamycin (TOR) pathway and sphingolipids, showing that both TOR Complex 1 (TORC1) and TOR Complex 2 (TORC2) branches control temporal and spatial aspects of sphingolipid metabolism in response to physiological and environmental cues. In this review, we report recent findings in this emerging and exciting link between the TOR pathway and sphingolipids and implications in human health and disease.
Collapse
Affiliation(s)
- Vitor Teixeira
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; IBMC, Instituto de Biologia Molecular e Celular, Porto, Portugal; ICBAS, Instituto de Ciências Biomédicas Abel Salazar, Departamento de Biologia Molecular, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Vítor Costa
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; IBMC, Instituto de Biologia Molecular e Celular, Porto, Portugal; ICBAS, Instituto de Ciências Biomédicas Abel Salazar, Departamento de Biologia Molecular, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| |
Collapse
|
18
|
Chauhan N, Han G, Somashekarappa N, Gable K, Dunn T, Kohlwein SD. Regulation of Sphingolipid Biosynthesis by the Morphogenesis Checkpoint Kinase Swe1. J Biol Chem 2015; 291:2524-34. [PMID: 26634277 PMCID: PMC4732232 DOI: 10.1074/jbc.m115.693200] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Indexed: 12/31/2022] Open
Abstract
Sphingolipid (SL) biosynthesis is negatively regulated by the highly conserved endoplasmic reticulum-localized Orm family proteins. Defective SL synthesis in Saccharomyces cerevisiae leads to increased phosphorylation and inhibition of Orm proteins by the kinase Ypk1. Here we present evidence that the yeast morphogenesis checkpoint kinase, Swe1, regulates SL biosynthesis independent of the Ypk1 pathway. Deletion of the Swe1 kinase renders mutant cells sensitive to serine palmitoyltransferase inhibition due to impaired sphingoid long-chain base synthesis. Based on these data and previous results, we suggest that Swe1 kinase perceives alterations in SL homeostasis, activates SL synthesis, and may thus represent the missing regulatory link that controls the SL rheostat during the cell cycle.
Collapse
Affiliation(s)
- Neha Chauhan
- From the Institute of Molecular Biosciences, BioTechMed-Graz, University of Graz, Humboldtstrasse 50/II, 8010 Graz, Austria and
| | - Gongshe Han
- the Department of Biochemistry, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814
| | | | - Kenneth Gable
- the Department of Biochemistry, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814
| | - Teresa Dunn
- the Department of Biochemistry, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814
| | - Sepp D Kohlwein
- From the Institute of Molecular Biosciences, BioTechMed-Graz, University of Graz, Humboldtstrasse 50/II, 8010 Graz, Austria and
| |
Collapse
|
19
|
Role of Inositol Phosphosphingolipid Phospholipase C1, the Yeast Homolog of Neutral Sphingomyelinases in DNA Damage Response and Diseases. J Lipids 2015; 2015:161392. [PMID: 26346287 PMCID: PMC4544949 DOI: 10.1155/2015/161392] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 07/25/2015] [Accepted: 07/29/2015] [Indexed: 02/06/2023] Open
Abstract
Sphingolipids play a very crucial role in many diseases and are well-known as signaling mediators in many pathways. Sphingolipids are produced during the de novo process in the ER (endoplasmic reticulum) from the nonsphingolipid precursor and comprise both structural and bioactive lipids. Ceramide is the central core of the sphingolipid pathway, and its production has been observed following various treatments that can induce several different cellular effects including growth arrest, DNA damage, apoptosis, differentiation, and senescence. Ceramides are generally produced through the sphingomyelin hydrolysis and catalyzed by the enzyme sphingomyelinase (SMase) in mammals. Presently, there are many known SMases and they are categorized into three groups acid SMases (aSMases), alkaline SMases (alk-SMASES), and neutral SMases (nSMases). The yeast homolog of mammalians neutral SMases is inositol phosphosphingolipid phospholipase C. Yeasts generally have inositol phosphosphingolipids instead of sphingomyelin, which may act as a homolog of mammalian sphingomyelin. In this review, we shall explain the structure and function of inositol phosphosphingolipid phospholipase C1, its localization inside the cells, mechanisms, and its roles in various cell responses during replication stresses and diseases. This review will also give a new basis for our understanding for the mechanisms and nature of the inositol phosphosphingolipid phospholipase C1/nSMase.
Collapse
|
20
|
Ikeda A, Muneoka T, Murakami S, Hirota A, Yabuki Y, Karashima T, Nakazono K, Tsuruno M, Pichler H, Shirahige K, Kodama Y, Shimamoto T, Mizuta K, Funato K. Sphingolipids regulate telomere clustering by affecting the transcription of genes involved in telomere homeostasis. J Cell Sci 2015; 128:2454-67. [PMID: 26045446 DOI: 10.1242/jcs.164160] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 05/20/2015] [Indexed: 12/14/2022] Open
Abstract
In eukaryotic organisms, including mammals, nematodes and yeasts, the ends of chromosomes, telomeres are clustered at the nuclear periphery. Telomere clustering is assumed to be functionally important because proper organization of chromosomes is necessary for proper genome function and stability. However, the mechanisms and physiological roles of telomere clustering remain poorly understood. In this study, we demonstrate a role for sphingolipids in telomere clustering in the budding yeast Saccharomyces cerevisiae. Because abnormal sphingolipid metabolism causes downregulation of expression levels of genes involved in telomere organization, sphingolipids appear to control telomere clustering at the transcriptional level. In addition, the data presented here provide evidence that telomere clustering is required to protect chromosome ends from DNA-damage checkpoint signaling. As sphingolipids are found in all eukaryotes, we speculate that sphingolipid-based regulation of telomere clustering and the protective role of telomere clusters in maintaining genome stability might be conserved in eukaryotes.
Collapse
Affiliation(s)
- Atsuko Ikeda
- Department of Biofunctional Science and Technology, Graduate School of Biosphere Science, Hiroshima University, Hiroshima 739-8528, Japan
| | - Tetsuya Muneoka
- Department of Biofunctional Science and Technology, Graduate School of Biosphere Science, Hiroshima University, Hiroshima 739-8528, Japan
| | - Suguru Murakami
- Department of Biofunctional Science and Technology, Graduate School of Biosphere Science, Hiroshima University, Hiroshima 739-8528, Japan
| | - Ayaka Hirota
- Department of Biofunctional Science and Technology, Graduate School of Biosphere Science, Hiroshima University, Hiroshima 739-8528, Japan
| | - Yukari Yabuki
- Department of Biofunctional Science and Technology, Graduate School of Biosphere Science, Hiroshima University, Hiroshima 739-8528, Japan
| | - Takefumi Karashima
- Department of Biofunctional Science and Technology, Graduate School of Biosphere Science, Hiroshima University, Hiroshima 739-8528, Japan
| | - Kota Nakazono
- Department of Biofunctional Science and Technology, Graduate School of Biosphere Science, Hiroshima University, Hiroshima 739-8528, Japan
| | - Masahiro Tsuruno
- Department of Biofunctional Science and Technology, Graduate School of Biosphere Science, Hiroshima University, Hiroshima 739-8528, Japan
| | - Harald Pichler
- Institute of Molecular Biotechnology, Graz University of Technology, NAWI Graz, Petersgasse 14/2, Graz 8010, Austria
| | - Katsuhiko Shirahige
- Laboratory of Genome Structure and Function, Institute of Molecular and Cellular Biosciences, the University of Tokyo, Tokyo 113-0032, Japan
| | | | - Toshi Shimamoto
- Department of Biofunctional Science and Technology, Graduate School of Biosphere Science, Hiroshima University, Hiroshima 739-8528, Japan
| | - Keiko Mizuta
- Department of Biofunctional Science and Technology, Graduate School of Biosphere Science, Hiroshima University, Hiroshima 739-8528, Japan
| | - Kouichi Funato
- Department of Biofunctional Science and Technology, Graduate School of Biosphere Science, Hiroshima University, Hiroshima 739-8528, Japan
| |
Collapse
|
21
|
Regulation of ceramide channel formation and disassembly: Insights on the initiation of apoptosis. Saudi J Biol Sci 2015; 22:760-72. [PMID: 26587005 PMCID: PMC4625378 DOI: 10.1016/j.sjbs.2015.03.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 03/12/2015] [Accepted: 03/15/2015] [Indexed: 01/04/2023] Open
Abstract
Sphingolipid research has surged in the past two decades and has produced a wide variety of evidence supporting the role of this class of molecules in mediating cellular growth, differentiation, senescence, and apoptosis. Ceramides are a subgroup of sphingolipids (SLs) that are directly involved in the process of initiation of apoptosis. We, and others, have recently shown that ceramides are capable of the formation of protein-permeable channels in mitochondrial outer membranes under physiological conditions. These pores are indeed good candidates for the pathway of release of pro-apoptotic proteins from the mitochondrial intermembrane space (IMS) into the cytosol to initiate intrinsic apoptosis. Here, we review recent findings on the regulation of ceramide channel formation and disassembly, highlighting possible implications on the initiation of the intrinsic apoptotic pathway.
Collapse
Key Words
- Apoptosis
- Assembly and disassembly
- Bcl-2 family proteins
- Bcl-2, B cell CLL/lymphoma-2
- Cer, ceramide
- CerS, ceramide synthase
- Ceramide channels
- Chain length
- DES, dihydroceramide desaturase
- DHCer, dihydroceramide
- ER, endoplasmic reticulum
- IMS, intermembrane space
- KSR, 3-ketosphinganine reductase
- MOMP, mitochondrial outer membrane permeability
- Mitochondria
- SLs, sphingolipids
- SM, sphingomyelin
- SPT, serine palmitoyl transferase
- So, sphingosine
- Sphingolipids
- de novo synthesis
Collapse
|
22
|
Fiedler MR, Lorenz A, Nitsche BM, van den Hondel CA, Ram AF, Meyer V. The capacity of Aspergillus niger to sense and respond to cell wall stress requires at least three transcription factors: RlmA, MsnA and CrzA. Fungal Biol Biotechnol 2014; 1:5. [PMID: 28955447 PMCID: PMC5598236 DOI: 10.1186/s40694-014-0005-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 08/18/2014] [Indexed: 12/29/2022] Open
Abstract
Background Cell wall integrity, vesicle transport and protein secretion are key factors contributing to the vitality and productivity of filamentous fungal cell factories such as Aspergillus niger. In order to pioneer rational strain improvement programs, fundamental knowledge on the genetic basis of these processes is required. The aim of the present study was thus to unravel survival strategies of A. niger when challenged with compounds interfering directly or indirectly with its cell wall integrity: calcofluor white, caspofungin, aureobasidin A, FK506 and fenpropimorph. Results Transcriptomics signatures of A. niger and phenotypic analyses of selected null mutant strains were used to predict regulator proteins mediating the survival responses against these stressors. This integrated approach allowed us to reconstruct a model for the cell wall salvage gene network of A. niger that ensures survival of the fungus upon cell surface stress. The model predicts that (i) caspofungin and aureobasidin A induce the cell wall integrity pathway as a main compensatory response via induction of RhoB and RhoD, respectively, eventually activating the mitogen-activated protein kinase kinase MkkA and the transcription factor RlmA. (ii) RlmA is the main transcription factor required for the protection against calcofluor white but it cooperates with MsnA and CrzA to ensure survival of A. niger when challenged with caspofungin and aureobasidin A. (iii) Membrane stress provoked by aureobasidin A via disturbance of sphingolipid synthesis induces cell wall stress, whereas fenpropimorph-induced disturbance of ergosterol synthesis does not. Conclusion The present work uncovered a sophisticated defence system of A. niger which employs at least three transcription factors - RlmA, MsnA and CrzA – to protect itself against cell wall stress. The transcriptomic data furthermore predicts a fourth transfactor, SrbA, which seems to be specifically important to survive fenpropimorph-induced cell membrane stress. Future studies will disclose how these regulators are interlocked in different signaling pathways to secure survival of A. niger under different cell wall stress conditions. Electronic supplementary material The online version of this article (doi:10.1186/s40694-014-0005-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Markus Rm Fiedler
- Institute of Biotechnology, Department Applied and Molecular Microbiology Berlin University of Technology, Gustav-Meyer-Allee 25, Berlin, D-13355 Germany
| | - Annett Lorenz
- Institute of Biology Leiden, Leiden University, Molecular Microbiology and Biotechnology, Sylviusweg 72, Leiden, 2333 BE The Netherlands
| | - Benjamin M Nitsche
- Institute of Biotechnology, Department Applied and Molecular Microbiology Berlin University of Technology, Gustav-Meyer-Allee 25, Berlin, D-13355 Germany.,Institute of Biology Leiden, Leiden University, Molecular Microbiology and Biotechnology, Sylviusweg 72, Leiden, 2333 BE The Netherlands
| | | | - Arthur Fj Ram
- Institute of Biology Leiden, Leiden University, Molecular Microbiology and Biotechnology, Sylviusweg 72, Leiden, 2333 BE The Netherlands.,Kluyver Centre for Genomics of Industrial Fermentation, Delft, 2600 GA The Netherlands
| | - Vera Meyer
- Institute of Biotechnology, Department Applied and Molecular Microbiology Berlin University of Technology, Gustav-Meyer-Allee 25, Berlin, D-13355 Germany.,Institute of Biology Leiden, Leiden University, Molecular Microbiology and Biotechnology, Sylviusweg 72, Leiden, 2333 BE The Netherlands.,Kluyver Centre for Genomics of Industrial Fermentation, Delft, 2600 GA The Netherlands
| |
Collapse
|
23
|
Spincemaille P, Cammue BP, Thevissen K. Sphingolipids and mitochondrial function, lessons learned from yeast. MICROBIAL CELL (GRAZ, AUSTRIA) 2014; 1:210-224. [PMID: 28357246 PMCID: PMC5349154 DOI: 10.15698/mic2014.07.156] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Accepted: 06/10/2014] [Indexed: 01/22/2023]
Abstract
Mitochondrial dysfunction is a hallmark of several neurodegenerative diseases such as Alzheimer's disease and Parkinson's disease, but also of cancer, diabetes and rare diseases such as Wilson's disease (WD) and Niemann Pick type C1 (NPC). Mitochondrial dysfunction underlying human pathologies has often been associated with an aberrant cellular sphingolipid metabolism. Sphingolipids (SLs) are important membrane constituents that also act as signaling molecules. The yeast Saccharomyces cerevisiae has been pivotal in unraveling mammalian SL metabolism, mainly due to the high degree of conservation of SL metabolic pathways. In this review we will first provide a brief overview of the major differences in SL metabolism between yeast and mammalian cells and the use of SL biosynthetic inhibitors to elucidate the contribution of specific parts of the SL metabolic pathway in response to for instance stress. Next, we will discuss recent findings in yeast SL research concerning a crucial signaling role for SLs in orchestrating mitochondrial function, and translate these findings to relevant disease settings such as WD and NPC. In summary, recent research shows that S. cerevisiae is an invaluable model to investigate SLs as signaling molecules in modulating mitochondrial function, but can also be used as a tool to further enhance our current knowledge on SLs and mitochondria in mammalian cells.
Collapse
Affiliation(s)
- Pieter Spincemaille
- Centre of Microbial and Plant Genetics (CMPG), KU Leuven,
Kasteelpark Arenberg 20, 3001 Heverlee, Belgium
| | - Bruno P. Cammue
- Centre of Microbial and Plant Genetics (CMPG), KU Leuven,
Kasteelpark Arenberg 20, 3001 Heverlee, Belgium
- Department of Plant Systems Biology, VIB, Technologiepark 927, 9052,
Ghent, Belgium
| | - Karin Thevissen
- Centre of Microbial and Plant Genetics (CMPG), KU Leuven,
Kasteelpark Arenberg 20, 3001 Heverlee, Belgium
| |
Collapse
|
24
|
Teixeira V, Medeiros TC, Vilaça R, Moradas-Ferreira P, Costa V. Reduced TORC1 signaling abolishes mitochondrial dysfunctions and shortened chronological lifespan of Isc1p-deficient cells. MICROBIAL CELL 2014; 1:21-36. [PMID: 28357207 PMCID: PMC5349163 DOI: 10.15698/mic2014.01.121] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The target of rapamycin (TOR) is an important signaling pathway on a hierarchical
network of interacting pathways regulating central biological processes, such as
cell growth, stress response and aging. Several lines of evidence suggest a
functional link between TOR signaling and sphingolipid metabolism. Here, we
report that the TORC1-Sch9p pathway is activated in cells lacking Isc1p, the
yeast orthologue of mammalian neutral sphingomyelinase 2. The deletion of
TOR1 or SCH9 abolishes the premature
aging, oxidative stress sensitivity and mitochondrial dysfunctions displayed by
isc1Δ cells and this is correlated with the suppression of
the autophagic flux defect exhibited by the mutant strain. The protective effect
of TOR1 deletion, as opposed to that of SCH9
deletion, is not associated with the attenuation of Hog1p hyperphosphorylation,
which was previously implicated in isc1Δ phenotypes. Our data
support a model in which Isc1p regulates mitochondrial function and
chronological lifespan in yeast through the TORC1-Sch9p pathway although Isc1p
and TORC1 also seem to act through independent pathways, as
isc1Δtor1Δ phenotypes are intermediate to
those displayed by isc1Δ and tor1Δ cells. We
also provide evidence that TORC1 downstream effectors, the type 2A protein
phosphatase Sit4p and the AGC protein kinase Sch9p, integrate nutrient and
stress signals from TORC1 with ceramide signaling derived from Isc1p to regulate
mitochondrial function and lifespan in yeast. Overall, our results show that
TORC1-Sch9p axis is deregulated in Isc1p-deficient cells, contributing to
mitochondrial dysfunction, enhanced oxidative stress sensitivity and premature
aging of isc1Δ cells.
Collapse
Affiliation(s)
- Vitor Teixeira
- Instituto de Biologia Molecular e Celular, Rua do Campo Alegre, 823, 4150-180 Porto, Portugal. ; Departamento de Biologia Molecular, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Tânia C Medeiros
- Instituto de Biologia Molecular e Celular, Rua do Campo Alegre, 823, 4150-180 Porto, Portugal
| | - Rita Vilaça
- Instituto de Biologia Molecular e Celular, Rua do Campo Alegre, 823, 4150-180 Porto, Portugal. ; Departamento de Biologia Molecular, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Pedro Moradas-Ferreira
- Instituto de Biologia Molecular e Celular, Rua do Campo Alegre, 823, 4150-180 Porto, Portugal. ; Departamento de Biologia Molecular, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Vítor Costa
- Instituto de Biologia Molecular e Celular, Rua do Campo Alegre, 823, 4150-180 Porto, Portugal. ; Departamento de Biologia Molecular, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| |
Collapse
|
25
|
Montefusco DJ, Matmati N, Hannun YA. The yeast sphingolipid signaling landscape. Chem Phys Lipids 2014; 177:26-40. [PMID: 24220500 PMCID: PMC4211598 DOI: 10.1016/j.chemphyslip.2013.10.006] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Revised: 10/18/2013] [Accepted: 10/19/2013] [Indexed: 12/13/2022]
Abstract
Sphingolipids are recognized as signaling mediators in a growing number of pathways, and represent potential targets to address many diseases. The study of sphingolipid signaling in yeast has created a number of breakthroughs in the field, and has the potential to lead future advances. The aim of this article is to provide an inclusive view of two major frontiers in yeast sphingolipid signaling. In the first section, several key studies in the field of sphingolipidomics are consolidated to create a yeast sphingolipidome that ranks nearly all known sphingolipid species by their level in a resting yeast cell. The second section presents an overview of most known phenotypes identified for sphingolipid gene mutants, presented with the intention of illuminating not yet discovered connections outside and inside of the field.
Collapse
Affiliation(s)
- David J Montefusco
- Dept. Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, United States.
| | - Nabil Matmati
- Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY, United States
| | - Yusuf A Hannun
- Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY, United States.
| |
Collapse
|
26
|
Montefusco DJ, Chen L, Matmati N, Lu S, Newcomb B, Cooper GF, Hannun YA, Lu X. Distinct signaling roles of ceramide species in yeast revealed through systematic perturbation and systems biology analyses. Sci Signal 2013; 6:rs14. [PMID: 24170935 PMCID: PMC3974757 DOI: 10.1126/scisignal.2004515] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Ceramide, the central molecule of sphingolipid metabolism, is an important bioactive molecule that participates in various cellular regulatory events and that has been implicated in disease. Deciphering ceramide signaling is challenging because multiple ceramide species exist, and many of them may have distinct functions. We applied systems biology and molecular approaches to perturb ceramide metabolism in the yeast Saccharomyces cerevisiae and inferred causal relationships between ceramide species and their potential targets by combining lipidomic, genomic, and transcriptomic analyses. We found that during heat stress, distinct metabolic mechanisms controlled the abundance of different groups of ceramide species and provided experimental support for the importance of the dihydroceramidase Ydc1 in mediating the decrease in dihydroceramides during heat stress. Additionally, distinct groups of ceramide species, with different N-acyl chains and hydroxylations, regulated different sets of functionally related genes, indicating that the structural complexity of these lipids produces functional diversity. The transcriptional modules that we identified provide a resource to begin to dissect the specific functions of ceramides.
Collapse
Affiliation(s)
- David J. Montefusco
- Dept. Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina
| | - Lujia Chen
- Dept. Biomedical Informatics, University of Pittsburgh, Pittsburgh, PA 15232
| | - Nabil Matmati
- Dept. Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina
- Department of Medicine and the Stony Brook Cancer Center at Stony Brook University, Stony Brook, NY, 11794
| | - Songjian Lu
- Dept. Biomedical Informatics, University of Pittsburgh, Pittsburgh, PA 15232
| | - Benjamin Newcomb
- Dept. Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina
- Department of Medicine and the Stony Brook Cancer Center at Stony Brook University, Stony Brook, NY, 11794
| | - Gregory F. Cooper
- Dept. Biomedical Informatics, University of Pittsburgh, Pittsburgh, PA 15232
| | - Yusuf A. Hannun
- Dept. Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina
- Department of Medicine and the Stony Brook Cancer Center at Stony Brook University, Stony Brook, NY, 11794
| | - Xinghua Lu
- Dept. Biomedical Informatics, University of Pittsburgh, Pittsburgh, PA 15232
| |
Collapse
|
27
|
A novel Sit4 phosphatase complex is involved in the response to ceramide stress in yeast. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2013; 2013:129645. [PMID: 24082981 PMCID: PMC3777123 DOI: 10.1155/2013/129645] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Revised: 06/28/2013] [Accepted: 07/25/2013] [Indexed: 12/17/2022]
Abstract
Ceramide is a building block for complex sphingolipids in the plasma membrane, but it also plays a significant role in secondary signalling pathways regulating cell proliferation and apoptosis in response to stress. Ceramide activated protein phosphatase activity has been previously observed in association with the Sit4 protein phosphatase. Here we find that sit4Δ mutants have decreased ceramide levels and display resistance to exogenous ceramides and phytosphingosine. Mutants lacking SIT4 or KTI12 display a shift towards nonhydroxylated forms of long chain bases and sphingolipids, suggesting regulation of hydroxylase (SUR2) or ceramide synthase by Sit4p. We have identified novel subunits of the Sit4 complex and have also shown that known Sit4 regulatory subunits—SAP proteins—are not involved in the ceramide response. This is the first observation of separation of function between Sit4 and SAP proteins. We also find that the Sit4p target Elongator is not involved in the ceramide response but that cells deficient in Kti12p—an accessory protein with an undefined regulatory role—have similar ceramide phenotypes to sit4Δ mutants. Therefore, Kti12p may play a similar secondary role in the ceramide response. This evidence points to a novel Sit4-dependent regulatory mechanism in response to ceramide stress.
Collapse
|
28
|
Matmati N, Metelli A, Tripathi K, Yan S, Mohanty BK, Hannun YA. Identification of C18:1-phytoceramide as the candidate lipid mediator for hydroxyurea resistance in yeast. J Biol Chem 2013; 288:17272-84. [PMID: 23620586 DOI: 10.1074/jbc.m112.444802] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Recent studies showed that deletion of ISC1, the yeast homologue of the mammalian neutral sphingomyelinase, resulted in an increased sensitivity to hydroxyurea (HU). This raised an intriguing question as to whether sphingolipids are involved in pathways initiated by HU. In this study, we show that HU treatment led to a significant increase in Isc1 activity. Analysis of sphingolipid deletion mutants and pharmacological analysis pointed to a role for ceramide in mediating HU resistance. Lipid analysis revealed that HU induced increases in phytoceramides in WT cells but not in isc1Δ cells. To probe functions of specific ceramides, we developed an approach to supplement the medium with fatty acids. Oleate (C18:1) was the only fatty acid protecting isc1Δ cells from HU toxicity in a ceramide-dependent manner. Because phytoceramide activates protein phosphatases in yeast, we evaluated the role of CDC55, the regulatory subunit of ceramide-activated protein phosphatase PP2A. Overexpression of CDC55 overcame the sensitivity to HU in isc1Δ cells. However, addition of oleate did not protect the isc1Δ,cdc55Δ double mutant from HU toxicity. These results demonstrate that HU launches a lipid pathway mediated by a specific sphingolipid, C18:1-phytoceramide, produced by Isc1, which provides protection from HU by modulating Swe1 levels through the PP2A subunit Cdc55.
Collapse
Affiliation(s)
- Nabil Matmati
- Stony Brook Cancer Center and the Department of Medicine, Stony Brook University, Stony Brook, New York 11794-8155, USA
| | | | | | | | | | | |
Collapse
|
29
|
Colabardini AC, Brown NA, Savoldi M, Goldman MHS, Goldman GH. Functional characterization of Aspergillus nidulans ypkA, a homologue of the mammalian kinase SGK. PLoS One 2013; 8:e57630. [PMID: 23472095 PMCID: PMC3589345 DOI: 10.1371/journal.pone.0057630] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Accepted: 01/23/2013] [Indexed: 11/19/2022] Open
Abstract
The serum- and glucocorticoid-regulated protein kinase (SGK) is an AGC kinase involved in signal cascades regulated by glucocorticoid hormones and serum in mammals. The Saccharomyces cerevisiae ypk1 and ypk2 genes were identified as SGK homologues and Ypk1 was shown to regulate the balance of sphingolipids between the inner and outer plasma membrane. This investigation characterized the Aspergillus nidulans YPK1 homologue, YpkA, representing the first filamentous fungal YPK1 homologue. Two conditional mutant strains were constructed by replacing the endogenous ypk1 promoter with two different regulatable promoters, alcA (from the alcohol dehydrogenase gene) and niiA (from the nitrate reductase gene). Both constructs confirmed that ypkA was an essential gene in A. nidulans. Repression of ypkA caused decreased radial growth, a delay in conidial germination, deficient polar axis establishment, intense branching during late stages of growth, a lack of asexual spores, and a terminal phenotype. Membrane lipid polarization, endocytosis, eisosomes and vacuolar distribution were also affected by ypkA repression, suggesting that YpkA plays a role in hyphal morphogenesis via coordinating the delivery of cell membrane and wall constituents to the hyphal apex. The A. nidulans Pkh1 homologue pkhA was also shown to be an essential gene, and preliminary genetic analysis suggested that the ypkA gene is not directly downstream of pkhA or epistatic to pkhA, rather, ypkA and pkhA are genetically independent or in parallel. BarA is a homologue of the yeast Lag1 acyl-CoA-dependent ceramide synthase, which catalyzes the condensation of phytosphingosine with a fatty acyl-CoA to form phytoceramide. When barA was absent, ypkA repression was lethal to the cell. Therefore, there appears to be a genetic interaction between ypkA, barA, and the sphingolipid synthesis. Transcriptional profiling of ypkA overexpression and down-regulation revealed several putative YpkA targets associated with the observed phenotypes.
Collapse
Affiliation(s)
- Ana Cristina Colabardini
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - Neil Andrew Brown
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - Marcela Savoldi
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - Maria Helena S. Goldman
- Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - Gustavo Henrique Goldman
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol – CTBE, São Paulo, Brazil
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
- * E-mail: address:
| |
Collapse
|
30
|
Biology of the heat shock response and protein chaperones: budding yeast (Saccharomyces cerevisiae) as a model system. Microbiol Mol Biol Rev 2012; 76:115-58. [PMID: 22688810 DOI: 10.1128/mmbr.05018-11] [Citation(s) in RCA: 391] [Impact Index Per Article: 30.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The eukaryotic heat shock response is an ancient and highly conserved transcriptional program that results in the immediate synthesis of a battery of cytoprotective genes in the presence of thermal and other environmental stresses. Many of these genes encode molecular chaperones, powerful protein remodelers with the capacity to shield, fold, or unfold substrates in a context-dependent manner. The budding yeast Saccharomyces cerevisiae continues to be an invaluable model for driving the discovery of regulatory features of this fundamental stress response. In addition, budding yeast has been an outstanding model system to elucidate the cell biology of protein chaperones and their organization into functional networks. In this review, we evaluate our understanding of the multifaceted response to heat shock. In addition, the chaperone complement of the cytosol is compared to those of mitochondria and the endoplasmic reticulum, organelles with their own unique protein homeostasis milieus. Finally, we examine recent advances in the understanding of the roles of protein chaperones and the heat shock response in pathogenic fungi, which is being accelerated by the wealth of information gained for budding yeast.
Collapse
|
31
|
The control of the balance between ceramide and sphingosine-1-phosphate by sphingosine kinase: Oxidative stress and the seesaw of cell survival and death. Comp Biochem Physiol B Biochem Mol Biol 2012; 163:26-36. [DOI: 10.1016/j.cbpb.2012.05.006] [Citation(s) in RCA: 158] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Revised: 05/09/2012] [Accepted: 05/12/2012] [Indexed: 12/19/2022]
|
32
|
Sun Y, Miao Y, Yamane Y, Zhang C, Shokat KM, Takematsu H, Kozutsumi Y, Drubin DG. Orm protein phosphoregulation mediates transient sphingolipid biosynthesis response to heat stress via the Pkh-Ypk and Cdc55-PP2A pathways. Mol Biol Cell 2012; 23:2388-98. [PMID: 22535525 PMCID: PMC3374756 DOI: 10.1091/mbc.e12-03-0209] [Citation(s) in RCA: 109] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
This study reveals the basis for how temporal phosphoregulation of Orm protein controls sphingolipid production in response to stress. Orm protein phosphorylation is highly responsive to sphingoid bases, and Ypk1 protein kinase transmits heat stress signals to the sphingolipid biosynthesis pathway via Orm phosphorylation. Sphingoid intermediates accumulate in response to a variety of stresses, including heat, and trigger cellular responses. However, the mechanism by which stress affects sphingolipid biosynthesis has yet to be identified. Recent studies in yeast suggest that sphingolipid biosynthesis is regulated through phosphorylation of the Orm proteins, which in humans are potential risk factors for childhood asthma. Here we demonstrate that Orm phosphorylation status is highly responsive to sphingoid bases. We also demonstrate, by monitoring temporal changes in Orm phosphorylation and sphingoid base production in cells inhibited for yeast protein kinase 1 (Ypk1) activity, that Ypk1 transmits heat stress signals to the sphingolipid biosynthesis pathway via Orm phosphorylation. Our data indicate that heat-induced sphingolipid biosynthesis in turn triggers Orm protein dephosphorylation, making the induction transient. We identified Cdc55–protein phosphatase 2A (PP2A) as a key phosphatase that counteracts Ypk1 activity in Orm-mediated sphingolipid biosynthesis regulation. In total, our study reveals a mechanism through which the conserved Pkh-Ypk kinase cascade and Cdc55-PP2A facilitate rapid, transient sphingolipid production in response to heat stress through Orm protein phosphoregulation. We propose that this mechanism serves as the basis for how Orm phosphoregulation controls sphingolipid biosynthesis in response to stress in a kinetically coupled manner.
Collapse
Affiliation(s)
- Yidi Sun
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Huang X, Liu J, Dickson RC. Down-regulating sphingolipid synthesis increases yeast lifespan. PLoS Genet 2012; 8:e1002493. [PMID: 22319457 PMCID: PMC3271065 DOI: 10.1371/journal.pgen.1002493] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2011] [Accepted: 12/07/2011] [Indexed: 12/14/2022] Open
Abstract
Knowledge of the mechanisms for regulating lifespan is advancing rapidly, but lifespan is a complex phenotype and new features are likely to be identified. Here we reveal a novel approach for regulating lifespan. Using a genetic or a pharmacological strategy to lower the rate of sphingolipid synthesis, we show that Saccharomyces cerevisiae cells live longer. The longer lifespan is due in part to a reduction in Sch9 protein kinase activity and a consequent reduction in chromosomal mutations and rearrangements and increased stress resistance. Longer lifespan also arises in ways that are independent of Sch9 or caloric restriction, and we speculate on ways that sphingolipids might mediate these aspects of increased lifespan. Sch9 and its mammalian homolog S6 kinase work downstream of the target of rapamycin, TOR1, protein kinase, and play evolutionarily conserved roles in regulating lifespan. Our data establish Sch9 as a focal point for regulating lifespan by integrating nutrient signals from TOR1 with growth and stress signals from sphingolipids. Sphingolipids are found in all eukaryotes and our results suggest that pharmacological down-regulation of one or more sphingolipids may provide a means to reduce age-related diseases and increase lifespan in other eukaryotes.
Collapse
Affiliation(s)
- Xinhe Huang
- Department of Molecular and Cellular Biochemistry and the Lucille Markey Cancer Center, University of Kentucky College of Medicine, Lexington, Kentucky, United States of America
| | - Jun Liu
- Department of Molecular and Cellular Biochemistry and the Lucille Markey Cancer Center, University of Kentucky College of Medicine, Lexington, Kentucky, United States of America
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Science, Sichuan University, Chengdu, China
| | - Robert C. Dickson
- Department of Molecular and Cellular Biochemistry and the Lucille Markey Cancer Center, University of Kentucky College of Medicine, Lexington, Kentucky, United States of America
- * E-mail:
| |
Collapse
|
34
|
Montefusco DJ, Newcomb B, Gandy JL, Brice SE, Matmati N, Cowart LA, Hannun YA. Sphingoid bases and the serine catabolic enzyme CHA1 define a novel feedforward/feedback mechanism in the response to serine availability. J Biol Chem 2012; 287:9280-9. [PMID: 22277656 DOI: 10.1074/jbc.m111.313445] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Targets of bioactive sphingolipids in Saccharomyces cerevisiae were previously identified using microarray experiments focused on sphingolipid-dependent responses to heat stress. One of these heat-induced genes is the serine deamidase/dehydratase Cha1 known to be regulated by increased serine availability. This study investigated the hypothesis that sphingolipids may mediate the induction of Cha1 in response to serine availability. The results showed that inhibition of de novo synthesis of sphingolipids, pharmacologically or genetically, prevented the induction of Cha1 in response to increased serine availability. Additional studies implicated the sphingoid bases phytosphingosine and dihydrosphingosine as the likely mediators of Cha1 up-regulation. The yeast protein kinases Pkh1 and Pkh2, known sphingoid base effectors, were found to mediate CHA1 up-regulation via the transcription factor Cha4. Because the results disclosed a role for sphingolipids in negative feedback regulation of serine metabolism, we investigated the effects of disrupting this mechanism on sphingolipid levels and on cell growth. Intriguingly, exposure of the cha1Δ strain to high serine resulted in hyperaccumulation of endogenous serine and in turn a significant accumulation of sphingoid bases and ceramides. Under these conditions, the cha1Δ strain displayed a significant growth defect that was sphingolipid-dependent. Together, this work reveals a feedforward/feedback loop whereby the sphingoid bases serve as sensors of serine availability and mediate up-regulation of Cha1 in response to serine availability, which in turn regulates sphingolipid levels by limiting serine accumulation.
Collapse
Affiliation(s)
- David J Montefusco
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina 29403, USA
| | | | | | | | | | | | | |
Collapse
|
35
|
Alvarez-Vasquez F, Riezman H, Hannun YA, Voit EO. Mathematical modeling and validation of the ergosterol pathway in Saccharomyces cerevisiae. PLoS One 2011; 6:e28344. [PMID: 22194828 PMCID: PMC3237449 DOI: 10.1371/journal.pone.0028344] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2011] [Accepted: 11/06/2011] [Indexed: 11/22/2022] Open
Abstract
The de novo biosynthetic machinery for both sphingolipid and ergosterol production in yeast is localized in the endoplasmic reticulum (ER) and Golgi. The interconnections between the two pathways are still poorly understood, but they may be connected in specialized membrane domains, and specific knockouts strongly suggest that both routes have different layers of mutual control and are co-affected by drugs. With the goal of shedding light on the functional integration of the yeast sphingolipid-ergosterol (SL-E) pathway, we constructed a dynamic model of the ergosterol pathway using the guidelines of Biochemical Systems Theory (BST) (Savageau., J. theor. Biol., 25, 365–9, 1969). The resulting model was merged with a previous mathematical model of sphingolipid metabolism in yeast (Alvarez-Vasquez et al., J. theor. Biol., 226, 265–91, 2004; Alvarez-Vasquez et al., Nature433, 425–30, 2005). The S-system format within BST was used for analyses of consistency, stability, and sensitivity of the SL-E model, while the GMA format was used for dynamic simulations and predictions. Model validation was accomplished by comparing predictions from the model with published results on sterol and sterol-ester dynamics in yeast. The validated model was used to predict the metabolomic dynamics of the SL-E pathway after drug treatment. Specifically, we simulated the action of drugs affecting sphingolipids in the endoplasmic reticulum and studied changes in ergosterol associated with microdomains of the plasma membrane (PM).
Collapse
Affiliation(s)
- Fernando Alvarez-Vasquez
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina, United States of America.
| | | | | | | |
Collapse
|
36
|
Sphingolipid long chain base phosphates can regulate apoptotic-like programmed cell death in plants. Biochem Biophys Res Commun 2011; 410:574-80. [PMID: 21683064 DOI: 10.1016/j.bbrc.2011.06.028] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2011] [Accepted: 06/02/2011] [Indexed: 01/02/2023]
Abstract
Sphingolipids are ubiquitous components of eukaryotic cells and sphingolipid metabolites, such as the long chain base phosphate (LCB-P), sphingosine 1 phosphate (S1P) and ceramide (Cer) are important regulators of apoptosis in animal cells. This study evaluated the role of LCB-Ps in regulating apoptotic-like programmed cell death (AL-PCD) in plant cells using commercially available S1P as a tool. Arabidopsis cell cultures were exposed to a diverse array of cell death-inducing treatments (including Cer) in the presence of S1P. Rates of AL-PCD and cell survival were recorded using vital stains and morphological markers of AL-PCD. Internal LCB-P levels were altered in suspension cultured cells using inhibitors of sphingosine kinase and changes in rates of death in response to heat stress were evaluated. S1P reduced AL-PCD and promoted cell survival in cells subjected to a range of stresses. Treatments with inhibitors of sphingosine kinase lowered the temperature which induced maximal AL-PCD in cell cultures. The data supports the existence of a sphingolipid rheostat involved in controlling cell fate in Arabidopsis cells and that sphingolipid regulation of cell death may be a shared feature of both animal apoptosis and plant AL-PCD.
Collapse
|
37
|
Rives A, Baudoin-Dehoux C, Saffon N, Andrieu-Abadie N, Génisson Y. Asymmetric synthesis and cytotoxic activity of isomeric phytosphingosine derivatives. Org Biomol Chem 2011; 9:8163-70. [DOI: 10.1039/c1ob06195j] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
38
|
Revealing a signaling role of phytosphingosine-1-phosphate in yeast. Mol Syst Biol 2010; 6:349. [PMID: 20160710 PMCID: PMC2835565 DOI: 10.1038/msb.2010.3] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2009] [Accepted: 12/28/2009] [Indexed: 12/02/2022] Open
Abstract
Perturbing metabolic systems of bioactive sphingolipids with genetic approach Multiple types of “omics” data collected from the system Systems approach for integrating multiple “omics” information Predicting signal transduction information flow: lipid; TF activation; gene expression
In contemporary biomedical research, gene mutation remains the most powerful and commonly used tool in molecular and systems biology for perturbation and dissection of biological systems. However, as biological systems consist of highly connected networks, for example, metabolic networks or signal transduction networks, perturbing one portion could result in widely spread effects across the network. Such ‘ripple effects' in systems pose a challenge to the paradigm of investigating the role of a metabolite through mutating enzymes required for its production. In this study, we have developed a systems biology approach that integrates different types of ‘-omics' data to identify signal transduction pathways involving spingolipids and gene expression. See Figure 1 for an overall scheme of our approaches. Sphingolipids are a family of bioactive lipids that have important signaling functions in cells; in yeast, de novo synthesis is required to mediate the cell response to heat shock. We hypothesized that a specific sphingolipid, phyto-sphingosine-1-phosphate (PHS1P), functions as a signaling molecule in the heat stress response (HSR) because, though its mammalian counterparts are known to have important signaling roles, the function of this metabolite in yeast remains unknown. To identify a putative role of PHS1P in the HSR, we deleted the genes involved in production (LCB4 and LCB5) and degradation (DPL1) of PHS1P to perturb its levels in cells. In wild-type cells, heat shock induces a significant increase in PHS1P. Over the same course, expression of over a thousand genes was modulated. While deleting the genes involved in PHS1P metabolism ‘clamped' the PHS1P concentration as expected, these mutations also resulted in wide spread changes in many sphingolipids in addition to PHS1P. This ‘ripple effect' prevented direct identification of signaling role of PHS1P in gene expression. We overcame this difficulty by using a set of systems approaches as follows: (1) identifying the information between levels of each individual sphingolipid species and gene expression through combining correlation analysis and clustering; (2) identifying the putative PHS1P-sensitive subset of genes by analyzing the results from step 1; (3) identifying transcription factors (TFs) that potentially regulate these PHS1P-sensitive genes thought promoter analysis; (4) modeling the activation states of the TFs by combining gene expression data and promoter sequence data; and finally, (5) modeling the relationship between sphingolipids and activation of TFs. Our study showed that 441 genes were differentially expressed in the lcb4Δ/lcb5Δ strain in comparison to wild-type strain; however, only 77 genes among them showed a significant correlation with respect to PHS1P, with 22 genes positively correlated and 54 genes negatively correlated. The results led to a hypothesis that the genes showing significant correlation were PHS1P sensitive whereas differential expression of other genes resulted from the compounding ‘ripple effects' of the gene deletions. We tested this hypothesis by directly treating cells with PHS1P and monitoring the expression levels of the genes that were PHS1P sensitive and PHS1P insensitive, and the results showed that the expression of PHS1P-sensitive genes indeed changed in response to the treatment whereas others did not. We developed a statistical model referred to as Bayesian transcription factor state model to infer activation states of TFs in cells under a specific condition based on the genomic information and gene expression data. We then used a Bayesian logistic regression to further model the relationship between the lipid concentrations and activation states of the TFs. Combined TF enrichment analysis and TF state modeling indicated that the HAP TF complex was likely responding to the signal from PHS1P and mediating the regulation of PHS1P-sensitive genes. We tested this hypothesis by treating wild type and a strain of yeast with deletion of HAP4 gene (hap4Δ), a component of the HAP complex, with PHS1P and monitoring the expression of PHS1P-sensitive genes. Indeed, the PHS1P induced the genes in the wild-type strain but not in hap4Δ, thus indicating that induction of the PHS1P-sensitive genes required a functioning HAP complex (see Figure 5 ). In summary, our experiments demonstrated that, though gene mutation remains one of the most powerful tools to perturb biological systems, the high connectivity of biological systems poses a challenge for using this approach to identify signaling roles of bioactive metabolites. Here, we demonstrated combining the information from multiple types of ‘-omics' data using systems approaches, it is possible to circumvent these difficulties and reveal novel signal transduction pathways. Sphingolipids including sphingosine-1-phosphate and ceramide participate in numerous cell programs through signaling mechanisms. This class of lipids has important functions in stress responses; however, determining which sphingolipid mediates specific events has remained encumbered by the numerous metabolic interconnections of sphingolipids, such that modulating a specific lipid of interest through manipulating metabolic enzymes causes ‘ripple effects', which change levels of many other lipids. Here, we develop a method of integrative analysis for genomic, transcriptomic, and lipidomic data to address this previously intractable problem. This method revealed a specific signaling role for phytosphingosine-1-phosphate, a lipid with no previously defined specific function in yeast, in regulating genes required for mitochondrial respiration through the HAP complex transcription factor. This approach could be applied to extract meaningful biological information from a similar experimental design that produces multiple sets of high-throughput data.
Collapse
|
39
|
Strub GM, Maceyka M, Hait NC, Milstien S, Spiegel S. Extracellular and intracellular actions of sphingosine-1-phosphate. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 688:141-55. [PMID: 20919652 PMCID: PMC2951632 DOI: 10.1007/978-1-4419-6741-1_10] [Citation(s) in RCA: 262] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Sphingosine-1-phosphate (S1P) is a bioactive lipid mediator with crucial roles in a wide variety of cellular functions across a broad range of organisms. Though a simple molecule in structure, S1P functions are complex. The formation of S1P is catalyzed by one of two sphingosine kinases that have differential cellular distributions as well as both overlapping and opposing functions and which are activated by many different stimuli. S1P can act on a family of G protein-coupled receptors (S1PRs) that are also differentially expressed in different cell types, which influences the cellular responses to S1P. In addition to acting on receptors located on the plasma membrane, S1P can also function inside the cell, independently of S1PRs. It also appears that both the intracellular location and the isotype of sphingosine kinase involved are major determinants of inside-out signaling of S1P in response to many extracellular stimuli. This chapter is focused on the current literature on extracellular and intracellular actions of S1P.
Collapse
Affiliation(s)
- Graham M. Strub
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298 USA
| | - Michael Maceyka
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298 USA
| | - Nitai C. Hait
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298 USA
| | | | - Sarah Spiegel
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298 USA
| |
Collapse
|
40
|
McCourt PC, Morgan JM, Nickels JT. Stress-induced ceramide-activated protein phosphatase can compensate for loss of amphiphysin-like activity in Saccharomyces cerevisiae and functions to reinitiate endocytosis. J Biol Chem 2009; 284:11930-41. [PMID: 19254955 DOI: 10.1074/jbc.m900857200] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Saccharomyces cerevisiae cells lacking the amphiphysin-like orthologs, Rvs161 or Rvs167, are unable to thrive under many stress conditions. Here we show cells lacking Rvs161 require Cdc55, the B subunit of the yeast ceramide-activated protein phosphatase, for viability under heat stress. By using specific rvs mutant alleles, we linked this lethal genetic interaction to loss of Rvs161 endocytic domain function. Recessive mutations in the sphingolipid pathway, such as deletion of the very long-chain fatty acid elongase, Sur4, suppress the osmotic growth defect of rvs161 cells. We demonstrate that Cdc55 is required for sur4-dependent suppressor activity and that protein phosphatase activation, through overexpression of CDC55 alone, can also remediate this defect. Loss of SUR4 in rvs161 cells reinitiates Ste3 a-factor receptor endocytosis and requires Cdc55 function to do so. Moreover, overexpression of CDC55 reinitiates Ste3 endocytic-dependent degradation and restores fluid phase endocytosis in rvs161 cells. In contrast, loss of SUR4 or CDC55 overexpression does not remediate the actin polarization defects of osmotic stressed rvs161 cells. Importantly, remediation of rvs161 defects by protein phosphatase activation requires the ceramide-activated protein phosphatase catalytic subunit, Sit4, and the protein phosphatase 2A catalytic subunits, Pph21/Pph22. Finally, genetic analyses reveal a synthetic lethal interaction between loss of CDC55 and gene deletions lethal with rvs161, all of which function in endocytosis.
Collapse
Affiliation(s)
- Paula C McCourt
- Pharmacogenomics Division, Medical Diagnostics Laboratories, LLC, Hamilton, New Jersey 08690, USA
| | | | | |
Collapse
|
41
|
Matmati N, Kitagaki H, Montefusco D, Mohanty BK, Hannun YA. Hydroxyurea sensitivity reveals a role for ISC1 in the regulation of G2/M. J Biol Chem 2009; 284:8241-6. [PMID: 19158081 DOI: 10.1074/jbc.m900004200] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Saccharomyces cerevisiae cells lacking ISC1 (inositol phosphosphingolipase C) exhibit sensitivity to genotoxic agents such as methyl methanesulfonate and hydroxyurea (HU). Cell cycle analysis by flow cytometry revealed a G(2)/M block in isc1Delta cells when treated with methyl methanesulfonate or HU. Further investigation revealed that the levels of Cdc28 phosphorylated on Tyr-19, which plays an essential role in the regulation of the G(2)/M checkpoint, were higher in synchronized and asynchronous cells lacking ISC1 in response to HU. Use of a Cdc28-Y19F mutant protected isc1Delta from the G(2)/M block. In wild type cells, HU induced a loss of the Swe1p kinase, the enzyme that phosphorylates Cdc28-Tyr-19, correlating with resumption of the cell cycle. In the isc1Delta cells, however, the levels of Swe1p remained at sustained high levels in response to HU. Significantly, deletion of SWE1 in an isc1Delta background overcame the G(2)/M block in response to HU. The double isc1Delta/swe1Delta mutant also overcame the growth defect on HU. Taken together, these findings implicate Isc1p as an upstream regulator of Swe1p levels and stability and Cdc28-Tyr-19 phosphorylation, in effect signaling recovery from the effects of genotoxic stress and allowing G(2)/M progression.
Collapse
Affiliation(s)
- Nabil Matmati
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina 29403, USA
| | | | | | | | | |
Collapse
|
42
|
Quist TM, Sokolchik I, Shi H, Joly RJ, Bressan RA, Maggio A, Narsimhan M, Li X. HOS3, an ELO-like gene, inhibits effects of ABA and implicates a S-1-P/ceramide control system for abiotic stress responses in Arabidopsis thaliana. MOLECULAR PLANT 2009; 2:138-51. [PMID: 19529829 PMCID: PMC2639740 DOI: 10.1093/mp/ssn085] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2008] [Accepted: 11/03/2008] [Indexed: 05/19/2023]
Abstract
A hyper-osmotically sensitive mutant of Arabidopsis thaliana, designated hos3-1 (high expression of osmotically responsive genes), was identified based on its hyper-luminescence of RD29A:LUC promoter fusion plants upon treatment with NaCl and ABA. These responses implicate the disrupted gene as a direct or indirect negative regulator of the RD29A stress-responsive pathway. By sequencing the flanking regions of the T-DNA borders, it was determined that the disrupted gene is at locus At4g36830, annotated as encoding a putative protein with high homology to CIG30 (ELO2/FEN1). CIG30 has been implicated in synthesis of very long chain fatty acids (VLCFA), which are essential precursors for sphingolipids and ceramides. Altered stress responses characteristic of ABA-hypersensitivity, including reduced root growth inhibition and reduced germination with ABA treatment and reduced water loss from leaves, were exhibited by allelic hos3-1 and hos3-2 mutants. The hos3-2 mutant is partially suppressed in its transcript abundance and is inherited as a recessive trait. Further, the HOS3 ORF under the control of the 35SCaMV promoter restored wild-type NaCl- and ABA-root growth sensitivity as well as RD29A:LUC luminescence in mutant plants. We also show here that the HOS3 wild-type gene functionally complements the sensitivity of elo2 and elo3 yeast mutants to monensin. Furthermore, both hos3-1 and hos3-2 alleles shared increased sensitivity to the herbicide Metolachlor, which inhibits acyl chain elongation in synthesis of VLCFA, and HOS3 functionally complemented both elo2 and elo3 and restored levels of VLCFA. Together, these data establish that HOS3 inhibits ABA-mediated stress responses and implicate the VLCFA pathway and products as control points for several aspects of abiotic stress signaling and responses. The results also provide support for a role of ceramide in the control of stomatal behavior.
Collapse
Affiliation(s)
- Tanya M. Quist
- Center for Plant Environmental Stress Physiology, Purdue University, West Lafayette, IN 47907-2010, USA
| | - Irina Sokolchik
- Center for Plant Environmental Stress Physiology, Purdue University, West Lafayette, IN 47907-2010, USA
| | - Huazhong Shi
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409-1061, USA
| | - Robert J. Joly
- Center for Plant Environmental Stress Physiology, Purdue University, West Lafayette, IN 47907-2010, USA
| | - Ray A. Bressan
- Center for Plant Environmental Stress Physiology, Purdue University, West Lafayette, IN 47907-2010, USA
| | - Albino Maggio
- Department of Agricultural Engineering and Agronomy, University of Naples Federico II, Via Università 100, Portici (NA), Italy 80055
| | - Meena Narsimhan
- Center for Plant Environmental Stress Physiology, Purdue University, West Lafayette, IN 47907-2010, USA
| | - Xia Li
- The Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, Hebei, 050021 China
- To whom correspondence should be addressed. E-mail , tel. 86-0311-85871744
| |
Collapse
|
43
|
A systems approach demonstrating sphingolipid-dependent transcription in stress responses. Methods Mol Biol 2008. [PMID: 19082961 DOI: 10.1007/978-1-60327-517-0_28] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Microarray hybridization allows genome-wide screening of changes in mRNA levels under stress conditions. In Saccharomyces cerevisiae, this approach has demonstrated that responses to heat stress, oxidative stress, nutrient deprivation, and other stress signals are highly overlapping and mRNA levels of a core group of genes, termed 'Environmental Stress Response' (ESR) genes, respond similarly to many stressors. In addition to changes in mRNA levels, stress responses induce wide changes in cell metabolic pathways and metabolite levels. Microarrays coupled with chemical inhibition of these pathways and/or using organisms with genetic mutations in enzymes in the pathways of interest allow determination of the roles of specific metabolites in gene expression. In cases where high-throughput '-omics' strategies are available for determining changes in a spectrum of metabolites, these datasets can be integrated with gene expression data to obtain a systems view of regulations and functions of a given pathway. We have used these approaches to determine the regulation and functions of sphingolipid synthesis in Saccharomyces cerevisiae. Microarray hybridization and sphingolipidomic analysis experiments were performed on two yeast strains bearing mutations in enzymes of sphingolipid metabolism (and their respective parental strains), under normal conditions and during heat stress. These strategies have revealed diverse roles for sphingolipids in regulating stress response genes, and moreover, could be applied to numerous biological systems and thus provide a method to elucidate activities for a vast array of biomolecules, the metabolic pathways by which they are generated, and their cellular functions.
Collapse
|
44
|
Fridberg A, Olson CL, Nakayasu ES, Tyler KM, Almeida IC, Engman DM. Sphingolipid synthesis is necessary for kinetoplast segregation and cytokinesis in Trypanosoma brucei. J Cell Sci 2008; 121:522-35. [PMID: 18230649 DOI: 10.1242/jcs.016741] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Sphingolipids and their metabolites have been thought crucial for cell growth and cell cycle progression, membrane and protein trafficking, signal transduction, and formation of lipid rafts; however, recent studies in trypanosomes point to the dispensability of sphingolipids in some of these processes. In this study, we explore the requirements for de novo sphingolipid biosynthesis in the insect life cycle stage of the African trypanosome Trypanosoma brucei by inhibiting the enzyme serine palmitoyltransferase (SPT2) by using RNA interference or treatment with a potent SPT2 inhibitor myriocin. Mass spectrometry revealed that upon SPT2 inhibition, the parasites contained substantially reduced levels of inositolphosphorylceramide. Although phosphatidylcholine and cholesterol levels were increased to compensate for this loss, the cells were ultimately not viable. The most striking result of sphingolipid reduction in procyclic T. brucei was aberrant cytokinesis, characterized by incomplete cleavage-furrow formation, delayed kinetoplast segregation and emergence of cells with abnormal DNA content. Organelle replication continued despite sphingolipid depletion, indicating that sphingolipids act as second messengers regulating cellular proliferation and completion of cytokinesis. Distention of the mitochondrial membrane, formation of multilamellar structures within the mitochondrion and near the nucleus, accumulation of lipid bodies and, less commonly, disruption of the Golgi complex were observed after prolonged sphingolipid depletion. These findings suggest that some aspects of vesicular trafficking may be compromised. However, flagellar membrane targeting and the association of the flagellar membrane protein calflagin with detergent-resistant membranes were not affected, indicating that the vesicular trafficking defects were mild. Our studies indicate that sphingolipid biosynthesis is vital for cell cycle progression and cell survival, but not essential for the normal trafficking of flagellar membrane-associated proteins or lipid raft formation in procyclic T. brucei.
Collapse
Affiliation(s)
- Alina Fridberg
- Department of Pathology and Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | | | | | | | | | | |
Collapse
|
45
|
Nikolova-Karakashian M, Karakashian A, Rutkute K. Role of neutral sphingomyelinases in aging and inflammation. Subcell Biochem 2008; 49:469-86. [PMID: 18751923 DOI: 10.1007/978-1-4020-8831-5_18] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Aging is characterized by changes in the organism's immune functions and stress response, which in the elderly leads to increased incidence of complications and mortality following inflammatory stress. Alterations in the neuro-endocrine axes and overall decline in the immune system play an essential role in this process. Overwhelming evidence however suggests that many cellular cytokine signaling pathways are also affected, thus underscoring the idea that both, "cellular" and "systemic" changes contribute to aging. IL-1beta for example, induces more potent cellular responses in hepatocytes isolated from aged animals then in hepatocytes from young rats. This phenomenon is referred to as IL-1b hyperresponsiveness and is linked to abnormal regulation of various acute phase proteins during aging.Evidence has consistently indicated that activation of neutral sphingomyelinase and the resulting accumulation of ceramide mediate cellular responses to LPS, IL-1beta, and TNFalpha in young animals. More recent studies identified the cytokine-inducible neutral sphingomyelinase with nSMase2 (smpd3) that is localized in the plasma membrane and mediates cellular responses to IL-1beta and TNFalpha. Intriguingly, constitutive up-regulation of nSMase2 occurs in aging and it underlies the hepatic IL-1b hyperresponsiveness. The increased activity of nSMases2 in aging is caused by a substantial decline in hepatic GSH content linking thereby oxidative stress to the onset of pro-inflammatory state in liver. nSMase2 apparently follows a pattern of regulation consisting with "developmental-aging" continuum, since in animal models of delayed aging, like calorie-restricted animals, the aging-associated changes in NSMase activity and function are reversed.
Collapse
|
46
|
Kitagaki H, Cowart LA, Matmati N, de Avalos SV, Novgorodov SA, Zeidan YH, Bielawski J, Obeid LM, Hannun YA. Isc1 regulates sphingolipid metabolism in yeast mitochondria. BIOCHIMICA ET BIOPHYSICA ACTA 2007; 1768:2849-61. [PMID: 17880915 PMCID: PMC2121593 DOI: 10.1016/j.bbamem.2007.07.019] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/21/2007] [Revised: 07/27/2007] [Accepted: 07/27/2007] [Indexed: 12/22/2022]
Abstract
The Saccharomyces cerevisiae inositol sphingolipid phospholipase C (Isc1p), a homolog of mammalian neutral sphingomyelinases, hydrolyzes complex sphingolipids to produce ceramide in vitro. Epitope-tagged Isc1p associates with the mitochondria in the post-diauxic phase of yeast growth. In this report, the mitochondrial localization of Isc1p and its role in regulating sphingolipid metabolism were investigated. First, endogenous Isc1p activity was enriched in highly purified mitochondria, and western blots using highly purified mitochondrial membrane fractions demonstrated that epitope-tagged Isc1p localized to the outer mitochondrial membrane as an integral membrane protein. Next, LC/MS was employed to determine the sphingolipid composition of highly purified mitochondria which were found to be significantly enriched in alpha-hydroxylated phytoceramides (21.7 fold) relative to the whole cell. Mitochondria, on the other hand, were significantly depleted in sphingoid bases. Compared to the parental strain, mitochondria from isc1Delta in the post-diauxic phase showed drastic reduction in the levels of alpha-hydroxylated phytoceramide (93.1% loss compared to WT mitochondria with only 2.58 fold enrichment in mitochondria compared to whole cell). Functionally, isc1Delta showed a higher rate of respiratory-deficient cells after incubation at high temperature and was more sensitive to hydrogen peroxide and ethidium bromide, indicating that isc1Delta exhibits defects related to mitochondrial function. These results suggest that Isc1p generates ceramide in mitochondria, and the generated ceramide contributes to the normal function of mitochondria. This study provides a first insight into the specific composition of ceramides in mitochondria.
Collapse
Affiliation(s)
- Hiroshi Kitagaki
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina 29425
- Ministry of Education, Culture, Sports, Science and Technology, Chiyoda-ku, Toyko, Japan
- National Research Institute of Brewing, Higashihiroshima city, Hiroshima, Japan
| | - L. Ashley Cowart
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina 29425
- Ralph H. Johnson Veterans Affairs Medical Center, Charleston, South Carolina 29401
| | - Nabil Matmati
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Silvia Vaena de Avalos
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Sergei A. Novgorodov
- Department of Medicine, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Youssef H. Zeidan
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Jacek Bielawski
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Lina M. Obeid
- Department of Medicine, Medical University of South Carolina, Charleston, South Carolina 29425
- Ralph H. Johnson Veterans Affairs Medical Center, Charleston, South Carolina 29401
| | - Yusuf A. Hannun
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina 29425
| |
Collapse
|
47
|
Alvarez-Vasquez F, Sims KJ, Voit EO, Hannun YA. Coordination of the dynamics of yeast sphingolipid metabolism during the diauxic shift. Theor Biol Med Model 2007; 4:42. [PMID: 17974024 PMCID: PMC2203994 DOI: 10.1186/1742-4682-4-42] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2007] [Accepted: 10/31/2007] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The diauxic shift in yeast requires cells to coordinate a complicated response that involves numerous genes and metabolic processes. It is unknown whether responses of this type are mediated in vivo through changes in a few "key" genes and enzymes, which are mathematically characterized by high sensitivities, or whether they are based on many small changes in genes and enzymes that are not particularly sensitive. In contrast to global assessments of changes in gene or protein interaction networks, we study here control aspects of the diauxic shift by performing a detailed analysis of one specific pathway-sphingolipid metabolism-which is known to have signaling functions and is associated with a wide variety of stress responses. RESULTS The approach uses two components: publicly available sets of expression data of sphingolipid genes and a recently developed Generalized Mass Action (GMA) mathematical model of the sphingolipid pathway. In one line of exploration, we analyze the sensitivity of the model with respect to enzyme activities, and thus gene expression. Complementary to this approach, we convert the gene expression data into changes in enzyme activities and then predict metabolic consequences by means of the mathematical model. It was found that most of the sensitivities in the model are low in magnitude, but that some stand out as relatively high. This information was then deployed to test whether the cell uses a few of the very sensitive pathway steps to mount a response or whether the control is distributed throughout the pathway. Pilot experiments confirm qualitatively and in part quantitatively the predictions of a group of metabolite simulations. CONCLUSION The results indicate that yeast coordinates sphingolipid mediated changes during the diauxic shift through an array of small changes in many genes and enzymes, rather than relying on a strategy involving a few select genes with high sensitivity. This study also highlights a novel approach in coupling data mining with mathematical modeling in order to evaluate specific metabolic pathways.
Collapse
Affiliation(s)
- Fernando Alvarez-Vasquez
- Dept. of Biostatistics, Bioinformatics and Epidemiology. Medical University of South Carolina, Charleston, SC. USA.
| | | | | | | |
Collapse
|
48
|
Alvarez SE, Milstien S, Spiegel S. Autocrine and paracrine roles of sphingosine-1-phosphate. Trends Endocrinol Metab 2007; 18:300-7. [PMID: 17904858 DOI: 10.1016/j.tem.2007.07.005] [Citation(s) in RCA: 241] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2007] [Revised: 07/18/2007] [Accepted: 07/18/2007] [Indexed: 11/16/2022]
Abstract
Sphingosine-1-phosphate (S1P) is a bioactive sphingolipid metabolite that has been implicated in many biological processes, including cell migration, survival, proliferation, angiogenesis and immune and allergic responses. S1P levels inside cells are regulated tightly by the balance between its synthesis by sphingosine kinases and degradation by S1P lyases and S1P phosphatases. Activation of sphingosine kinase by any of a variety of agonists increases S1P levels, which in turn can function intracellularly as a second messenger or in an autocrine and/or paracrine fashion to activate and signal through S1P receptors present on the surface of the cell. This review summarizes recent findings on the roles of S1P as a mediator of the actions of cytokines, growth factors and hormones.
Collapse
Affiliation(s)
- Sergio E Alvarez
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA
| | | | | |
Collapse
|
49
|
Huang D, Friesen H, Andrews B. Pho85, a multifunctional cyclin-dependent protein kinase in budding yeast. Mol Microbiol 2007; 66:303-14. [PMID: 17850263 DOI: 10.1111/j.1365-2958.2007.05914.x] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Pho85 is a multifunctional cyclin-dependent kinase (Cdk) in Saccharomyces cerevisiae that has emerged as an important model for the role of Cdks in both cell cycle control and other processes. Pho85 is targeted to its substrates by 10 different cyclins or Pcls. Three of these Pcls have specific roles in G1 phase of the cell cycle, both in regulating G1-specific gene expression and in controlling polarized growth. Many known substrates of the G1 forms of Pho85 are also phosphorylated by the homologous Cdk Cln-Cdc28, suggesting parallel or overlapping roles. Most of the remaining Pcls function in signalling: Pho85 is generally active when environmental conditions are satisfactory, phosphorylating proteins involved in transcription and other regulatory events to keep the stress response and inappropriate activities turned off. Recently, genetic screens for synthetic lethality and synthetic dosage lethality, and proteomic screens for in vitro Pho85 substrates, have revealed more details about how Pho85 functions to regulate a variety of cellular processes.
Collapse
Affiliation(s)
- Dongqing Huang
- Banting and Best Department of Medical Research, Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Canada
| | | | | |
Collapse
|
50
|
Iwaki S, Sano T, Takagi T, Osumi M, Kihara A, Igarashi Y. Intracellular Trafficking Pathway of Yeast Long-chain Base Kinase Lcb4, from Its Synthesis to Its Degradation. J Biol Chem 2007; 282:28485-28492. [PMID: 17686782 DOI: 10.1074/jbc.m701607200] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Sphingoid long-chain base 1-phosphates act as bioactive lipid molecules in eukaryotic cells. In budding yeast, long-chain base 1-phosphates are synthesized mainly by the long-chain base kinase Lcb4. We recently reported that, soon after yeast cells enter into the stationary phase, Lcb4 is rapidly degraded by being delivered to the vacuole in a palmitoylation- and phosphorylation-dependent manner. In this study, we investigated the complete trafficking pathway of Lcb4, from its synthesis to its degradation. After membrane anchoring by palmitoylation at the Golgi apparatus, Lcb4 is delivered to the plasma membrane (PM) through the late Sec pathway and then to the endoplasmic reticulum (ER). The yeast ER consists of a cortical network juxtaposed to the PM (cortical ER) with tubular connections to the nuclear envelope (nuclear ER). Remarkably, the localization of Lcb4 is restricted to the cortical ER. As the cells reach the stationary phase, G(1) cell cycle arrest initiates Lcb4 degradation and its delivery to the vacuole via the Golgi apparatus. The protein transport pathway from the PM to the ER found in this study has not been previously reported. We speculate that this novel pathway is mediated by the PM-ER contact.
Collapse
Affiliation(s)
- Soichiro Iwaki
- Laboratory of Biomembrane and Biofunctional Chemistry, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita 12-jo, Nishi 6-choume, Kita-ku, Sapporo 060-0812
| | - Takamitsu Sano
- Laboratory of Biomembrane and Biofunctional Chemistry, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita 12-jo, Nishi 6-choume, Kita-ku, Sapporo 060-0812
| | - Tomoko Takagi
- Division of Biology, Department of Life Sciences, Graduate School of Arts and Sciences, University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902
| | - Masako Osumi
- Laboratory of Electron Microscopy/Open Research Center, Japan Women's University, 2-8-1 Mejirodai, Bunkyo-ku, Tokyo 112-8681; Integrated Imaging Research Support, Villa Royal Hirakawa, 1-7-5, Hirakawacho, Chiyoda-ku Tokyo 102-0093
| | - Akio Kihara
- Laboratory of Biomembrane and Biofunctional Chemistry, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita 12-jo, Nishi 6-choume, Kita-ku, Sapporo 060-0812.
| | - Yasuyuki Igarashi
- Laboratory of Biomembrane and Biofunctional Chemistry, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita 12-jo, Nishi 6-choume, Kita-ku, Sapporo 060-0812; Laboratory of Biomembrane and Biofunctional Chemistry, Faculty of Advanced Life Sciences, Hokkaido University, Kita 21-jo, Nishi 11-choume, Kita-ku, Sapporo 001-0021, Japan
| |
Collapse
|