1
|
Zoppo CT, Mocco J, Manning NW, Bogdanov AA, Gounis MJ. Surface modification of neurovascular stents: from bench to patient. J Neurointerv Surg 2024; 16:908-913. [PMID: 37793794 DOI: 10.1136/jnis-2023-020620] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 09/19/2023] [Indexed: 10/06/2023]
Abstract
Flow-diverting stents (FDs) for the treatment of cerebrovascular aneurysms are revolutionary. However, these devices require systemic dual antiplatelet therapy (DAPT) to reduce thromboembolic complications. Given the risk of ischemic complications as well as morbidity and contraindications associated with DAPT, demonstrating safety and efficacy for FDs either without DAPT or reducing the duration of DAPT is a priority. The former may be achieved by surface modifications that decrease device thrombogenicity, and the latter by using coatings that expedite endothelial growth. Biomimetics, commonly achieved by grafting hydrophilic and non-interacting polymers to surfaces, can mask the device surface with nature-derived coatings from circulating factors that normally activate coagulation and inflammation. One strategy is to mimic the surfaces of innocuous circulatory system components. Phosphorylcholine and glycan coatings are naturally inspired and present on the surface of all eukaryotic cell membranes. Another strategy involves linking synthetic biocompatible polymer brushes to the surface of a device that disrupts normal interaction with circulating proteins and cells. Finally, drug immobilization can also impart antithrombotic effects that counteract normal foreign body reactions in the circulatory system without systemic effects. Heparin coatings have been explored since the 1960s and used on a variety of blood contacting surfaces. This concept is now being explored for neurovascular devices. Coatings that improve endothelialization are not as clinically mature as anti-thrombogenic coatings. Coronary stents have used an anti-CD34 antibody coating to capture circulating endothelial progenitor cells on the surface, potentially accelerating endothelial integration. Similarly, coatings with CD31 analogs are being explored for neurovascular implants.
Collapse
Affiliation(s)
- Christopher T Zoppo
- New England Center for Stroke Research, Department of Radiology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - J Mocco
- Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Nathan W Manning
- The MIRI Centre, Ingham Institute for Applied Medical Science, Sydney, New South Wales, Australia
- Department of Interventional Radiology, Liverpool Hospital, Sydney, New South Wales, Australia
| | - Alexei A Bogdanov
- New England Center for Stroke Research, Department of Radiology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Matthew J Gounis
- New England Center for Stroke Research, Department of Radiology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| |
Collapse
|
2
|
Saghour N, Chérifi F, Saoud S, Zebbiche Y, Meribai A, Bekkari N, Samya TM, Laraba-Djebari F. Structural, Biochemical Characterization and Molecular Mechanism of Cerastokunin: A New Kunitz-Type Peptide with Potential Inhibition of Thrombin, Factor Xa and Platelets. Protein J 2024; 43:888-909. [PMID: 39095592 DOI: 10.1007/s10930-024-10226-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/07/2024] [Indexed: 08/04/2024]
Abstract
The current investigation focused on separating Cerastes cerastes venom to produce the first Kunitz-type peptide. Based on its anti-trypsin effect, Cerastokunin, a 7.75 kDa peptide, was purified until homogenity by three steps of chromatography. Cerastokunin was found to include 67 amino acid residues that were obtained by de novo sequencing using LC-MALDI-MSMS. Upon alignment with Kunitz-type peptides, there was a high degree of similarity. Cerastokunin's 3D structure had 12% α-helices and 21% β-strands with pI 8.48. Cerastokunin showed a potent anticoagulant effect by inhibiting the protease activity of thrombin and trypsin as well as blocking the intrinsic and extrinsic coagulation pathways. In both PT and aPPT, Cerastokunin increased the blood clotting time in a dose-dependent way. Using Lys48 and Gln192 for direct binding, Cerastokunin inhibited thrombin, Factor Xa and trypsin as shown by molecular docking. Cerastokunin exhibited a dose-response blockade of PARs-dependent pathway platelet once stimulated by thrombin. An increased concentration of Cerastokunin resulted in a larger decrease of tail thrombus in the mice-carrageenan model in an in vivo investigation when compared to the effects of antithrombotic medications. At all Cerastokunin doses up to 6 mg/kg, no in vivo toxicity was seen in challenged mice over the trial's duration.
Collapse
Affiliation(s)
- Noussaiba Saghour
- Laboratory of Cellular and Molecular Biology, Faculty of Biological Sciences, USTHB, BP 32 El-Alia, Bab Ezzouar, Algiers, Algeria
| | - Fatah Chérifi
- Laboratory of Cellular and Molecular Biology, Faculty of Biological Sciences, USTHB, BP 32 El-Alia, Bab Ezzouar, Algiers, Algeria.
| | - Samah Saoud
- Faculty of Sciences, University of Algiers 1, Algiers, Algeria
| | - Younes Zebbiche
- Faculty of Pharmacy, University of Algiers 1, Algiers, Algeria
| | - Amel Meribai
- Food Technology and Human Nutrition Research Laboratory, National Agronomic High School, Algiers, Algeria
| | - Nadjia Bekkari
- Laboratory of Cellular and Molecular Biology, Faculty of Biological Sciences, USTHB, BP 32 El-Alia, Bab Ezzouar, Algiers, Algeria
| | | | - Fatima Laraba-Djebari
- Laboratory of Cellular and Molecular Biology, Faculty of Biological Sciences, USTHB, BP 32 El-Alia, Bab Ezzouar, Algiers, Algeria
| |
Collapse
|
3
|
Renda G, Bucciarelli V, Barbieri G, Lanuti P, Berteotti M, Malatesta G, Cesari F, Salvatore T, Giusti B, Gori AM, Marcucci R, De Caterina R. Ex Vivo Antiplatelet Effects of Oral Anticoagulants. J Cardiovasc Dev Dis 2024; 11:111. [PMID: 38667729 PMCID: PMC11049965 DOI: 10.3390/jcdd11040111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/27/2024] [Accepted: 03/29/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND The impact of non-vitamin K antagonist oral anticoagulants (NOACs) on platelet function is still unclear. We conducted a comprehensive ex vivo study aimed at assessing the effect of the four currently marketed NOACs on platelet function. METHODS We incubated blood samples from healthy donors with concentrations of NOACs (50, 150 and 250 ng/mL), in the range of those achieved in the plasma of patients during therapy. We evaluated generation of thrombin; light transmittance platelet aggregation (LTA) in response to adenosine diphosphate (ADP), thrombin receptor-activating peptide (TRAP), human γ-thrombin (THR) and tissue factor (TF); generation of thromboxane (TX)B2; and expression of protease-activated receptor (PAR)-1 and P-selectin on the platelet surface. RESULTS All NOACs concentration-dependently reduced thrombin generation compared with control. THR-induced LTA was suppressed by the addition of dabigatran at any concentration, while TF-induced LTA was reduced by factor-Xa inhibitors. ADP- and TRAP-induced LTA was not modified by NOACs. TXB2 generation was reduced by all NOACs, particularly at the highest concentrations. We found a concentration-dependent increase in PAR-1 expression after incubation with dabigatran, mainly at the highest concentrations, but not with FXa inhibitors; P-selectin expression was not changed by any drugs. CONCLUSIONS Treatment with the NOACs is associated with measurable ex vivo changes in platelet function, arguing for antiplatelet effects beyond the well-known anticoagulant activities of these drugs. There are differences, however, among the NOACs, especially between dabigatran and the FXa inhibitors.
Collapse
Affiliation(s)
- Giulia Renda
- Department of Neuroscience, Imaging and Clinical Sciences and Center for Advanced Studies and Technology, G. d’Annunzio University Chieti-Pescara, 66100 Chieti, Italy;
| | - Valentina Bucciarelli
- Cardiovascular Sciences Department, Azienda Ospedaliero-Universitaria delle Marche, 60121 Ancona, Italy;
| | - Giulia Barbieri
- Department of Experimental and Clinical Medicine, University of Florence, 50121 Florence, Italy; (G.B.); (M.B.); (F.C.); (B.G.); (A.M.G.); (R.M.)
| | - Paola Lanuti
- Department of Medicine and Aging Sciences and Center for Advanced Studies and Technology, G. d’Annunzio University Chieti-Pescara, 66100 Chieti, Italy;
| | - Martina Berteotti
- Department of Experimental and Clinical Medicine, University of Florence, 50121 Florence, Italy; (G.B.); (M.B.); (F.C.); (B.G.); (A.M.G.); (R.M.)
| | - Gelsomina Malatesta
- Cardiology Unit, National Institute of Health and Science on Aging (INRCA), 64125 Ancona, Italy;
| | - Francesca Cesari
- Department of Experimental and Clinical Medicine, University of Florence, 50121 Florence, Italy; (G.B.); (M.B.); (F.C.); (B.G.); (A.M.G.); (R.M.)
| | - Tanya Salvatore
- Department of Neuroscience, Imaging and Clinical Sciences and Center for Advanced Studies and Technology, G. d’Annunzio University Chieti-Pescara, 66100 Chieti, Italy;
| | - Betti Giusti
- Department of Experimental and Clinical Medicine, University of Florence, 50121 Florence, Italy; (G.B.); (M.B.); (F.C.); (B.G.); (A.M.G.); (R.M.)
| | - Anna Maria Gori
- Department of Experimental and Clinical Medicine, University of Florence, 50121 Florence, Italy; (G.B.); (M.B.); (F.C.); (B.G.); (A.M.G.); (R.M.)
| | - Rossella Marcucci
- Department of Experimental and Clinical Medicine, University of Florence, 50121 Florence, Italy; (G.B.); (M.B.); (F.C.); (B.G.); (A.M.G.); (R.M.)
| | - Raffaele De Caterina
- Cardiology Division 1-Pisa University Hospital, University of Pisa, 56124 Pisa, Italy;
- Fondazione Villa Serena per la Ricerca, 37011 Città Sant’Angelo, Italy
| |
Collapse
|
4
|
Berna-Erro A, Granados MP, Teruel-Montoya R, Ferrer-Marin F, Delgado E, Corbacho AJ, Fenández E, Vazquez-Godoy MT, Tapia JA, Redondo PC. SARAF overexpression impairs thrombin-induced Ca 2+ homeostasis in neonatal platelets. Br J Haematol 2024; 204:988-1004. [PMID: 38062782 DOI: 10.1111/bjh.19210] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 11/01/2023] [Accepted: 11/07/2023] [Indexed: 03/14/2024]
Abstract
Neonatal platelets present a reduced response to the platelet agonist, thrombin (Thr), thus resulting in a deficient Thr-induced aggregation. These alterations are more pronounced in premature newborns. Here, our aim was to uncover the causes underneath the impaired Ca2+ homeostasis described in neonatal platelets. Both Ca2+ mobilization and Ca2+ influx in response to Thr are decreased in neonatal platelets compared to maternal and control woman platelets. In neonatal platelets, we observed impaired Ca2+ mobilization in response to the PAR-1 agonist (SFLLRN) or by blocking SERCA3 function with tert-butylhydroquinone. Regarding SOCE, the STIM1 regulatory protein, SARAF, was found overexpressed in neonatal platelets, promoting an increase in STIM1/SARAF interaction even under resting conditions. Additionally, higher interaction between SARAF and PDCD61/ALG2 was also observed, reducing SARAF ubiquitination and prolonging its half-life. These results were reproduced by overexpressing SARAF in MEG01 and DAMI cells. Finally, we also observed that pannexin 1 permeability is enhanced in response to Thr in control woman and maternal platelets, but not in neonatal platelets, hence, leading to the deregulation of the Ca2+ entry found in neonatal platelets. Summarizing, we show that in neonatal platelets both Ca2+ accumulation in the intracellular stores and Thr-evoked Ca2+ entry through either capacitative channels or non-selective channels are altered in neonatal platelets, contributing to deregulated Ca2+ homeostasis in neonatal platelets and leading to the altered aggregation observed in these subjects.
Collapse
Affiliation(s)
- Alejandro Berna-Erro
- Department of Physiology (PHYCELL Group), University of Extremadura, Caceres, Spain
| | - Maria P Granados
- Pharmacy Unit of Health Center, Extremadura County Health Service, Caceres, Spain
| | - Raul Teruel-Montoya
- Hemodonation County Center, University Hospital of Morales-Meseguer, IMIB-Arrixaca, CIBERER CB55, Murcia, Spain
| | - Francisca Ferrer-Marin
- Hemodonation County Center, University Hospital of Morales-Meseguer, IMIB-Arrixaca, CIBERER CB55, Murcia, Spain
| | - Elena Delgado
- Blood Donation Center, Extremadura County Health Service, Merida, Spain
| | | | | | | | - Jose A Tapia
- Department of Physiology (PHYCELL Group), University of Extremadura, Caceres, Spain
| | - Pedro Cosme Redondo
- Department of Physiology (PHYCELL Group), University of Extremadura, Caceres, Spain
| |
Collapse
|
5
|
Guan IA, Liu JST, Sawyer RC, Li X, Jiao W, Jiramongkol Y, White MD, Hagimola L, Passam FH, Tran DP, Liu X, Schoenwaelder SM, Jackson SP, Payne RJ, Liu X. Integrating Phenotypic and Chemoproteomic Approaches to Identify Covalent Targets of Dietary Electrophiles in Platelets. ACS CENTRAL SCIENCE 2024; 10:344-357. [PMID: 38435523 PMCID: PMC10906253 DOI: 10.1021/acscentsci.3c00822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 12/24/2023] [Accepted: 12/28/2023] [Indexed: 03/05/2024]
Abstract
A large variety of dietary phytochemicals has been shown to improve thrombosis and stroke outcomes in preclinical studies. Many of these compounds feature electrophilic functionalities that potentially undergo covalent addition to the sulfhydryl side chain of cysteine residues within proteins. However, the impact of such covalent modifications on the platelet activity and function remains unclear. This study explores the irreversible engagement of 23 electrophilic phytochemicals with platelets, unveiling the unique antiplatelet selectivity of sulforaphane (SFN). SFN impairs platelet responses to adenosine diphosphate (ADP) and a thromboxane A2 receptor agonist while not affecting thrombin and collagen-related peptide activation. It also substantially reduces platelet thrombus formation under arterial flow conditions. Using an alkyne-integrated probe, protein disulfide isomerase A6 (PDIA6) was identified as a rapid kinetic responder to SFN. Mechanistic profiling studies revealed SFN's nuanced modulation of PDIA6 activity and substrate specificity. In an electrolytic injury model of thrombosis, SFN enhanced the thrombolytic activity of recombinant tissue plasminogen activator (rtPA) without increasing blood loss. Our results serve as a catalyst for further investigations into the preventive and therapeutic mechanisms of dietary antiplatelets, aiming to enhance the clot-busting power of rtPA, currently the only approved therapeutic for stroke recanalization that has significant limitations.
Collapse
Affiliation(s)
- Ivy A. Guan
- School
of Chemistry, Faculty of Science, The University
of Sydney, Sydney, New South Wales 2006, Australia
- The
Heart Research Institute, The University
of Sydney, Newtown, New South Wales 2042, Australia
| | - Joanna S. T. Liu
- The
Heart Research Institute, The University
of Sydney, Newtown, New South Wales 2042, Australia
- School
of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Renata C. Sawyer
- School
of Chemistry, Faculty of Science, The University
of Sydney, Sydney, New South Wales 2006, Australia
- The
Heart Research Institute, The University
of Sydney, Newtown, New South Wales 2042, Australia
| | - Xiang Li
- Department
of Medicine, Washington University in St.
Louis, St. Louis, Missouri 63110, United States
- McDonnell
Genome Institute, Washington University
in St. Louis, St. Louis, Missouri 63108, United States
| | - Wanting Jiao
- Ferrier Research
Institute, Victoria University of Wellington, Wellington 6140, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland 1142, New Zealand
| | - Yannasittha Jiramongkol
- School
of Chemistry, Faculty of Science, The University
of Sydney, Sydney, New South Wales 2006, Australia
- Charles
Perkins Centre, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Mark D. White
- School
of Chemistry, Faculty of Science, The University
of Sydney, Sydney, New South Wales 2006, Australia
| | - Lejla Hagimola
- School
of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Freda H. Passam
- School
of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Denise P. Tran
- Sydney
Mass Spectrometry, The University of Sydney, Camperdown, New South Wales 2006, Australia
| | - Xiaoming Liu
- School
of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Simone M. Schoenwaelder
- The
Heart Research Institute, The University
of Sydney, Newtown, New South Wales 2042, Australia
- School
of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Shaun P. Jackson
- The
Heart Research Institute, The University
of Sydney, Newtown, New South Wales 2042, Australia
- Charles
Perkins Centre, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Richard J. Payne
- School
of Chemistry, Faculty of Science, The University
of Sydney, Sydney, New South Wales 2006, Australia
- Australian
Research Council Centre of Excellence for Innovations in Peptide and
Protein Science, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Xuyu Liu
- School
of Chemistry, Faculty of Science, The University
of Sydney, Sydney, New South Wales 2006, Australia
- The
Heart Research Institute, The University
of Sydney, Newtown, New South Wales 2042, Australia
| |
Collapse
|
6
|
Kala C, Asif M, Gilani SJ, Imam SS, Khan NA, Taleuzzaman M, Zafar A, Ahmed MM, Alshehri S, Ghoneim MM. Formulation of Isopropyl Isothiocyanate Loaded Nano Vesicles Delivery Systems: In Vitro Characterization and In Vivo Assessment. Molecules 2022; 27:molecules27092876. [PMID: 35566224 PMCID: PMC9104827 DOI: 10.3390/molecules27092876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/24/2022] [Accepted: 04/25/2022] [Indexed: 11/22/2022] Open
Abstract
Isopropyl Isothiocyanate (IPI) is a poorly water-soluble drug used in different biological activities. So, the present work was designed to prepare and evaluate IPI loaded vesicles and evaluated for vesicle size, polydispersity index (PDI) and zeta potential, encapsulation efficiency, drug release, and drug permeation. The selected formulation was coated with chitosan and further assessed for the anti-platelet and anti-thrombotic activity. The prepared IPI vesicles (F3) exhibited a vesicle size of 298 nm ± 5.1, the zeta potential of −18.7 mV, encapsulation efficiency of 86.2 ± 5.3% and PDI of 0.33. The chitosan-coated IPI vesicles (F3C) exhibited an increased size of 379 ± 4.5 nm, a positive zeta potential of 23.5 ± 2.8 mV and encapsulation efficiency of 77.3 ± 4.1%. IPI chitosan vesicle (F3C) showed enhanced mucoadhesive property (2.7 folds) and intestinal permeation (~1.8-fold) higher than IPI vesicles (F3). There was a significant (p < 0.05) enhancement in size, muco-adhesion, and permeation flux achieved after coating with chitosan. The IPI chitosan vesicle (F3C) demonstrated an enhanced bleeding time of 525.33 ± 12.43 s, anti-thrombin activity of 59.72 ± 4.21, and inhibition of platelet aggregation 68.64 ± 3.99%, and anti-platelet activity of 99.47%. The results of the study suggest that IPI chitosan vesicles showed promising in vitro results, as well as improved anti-platelet and anti-thrombotic activity compared to pure IPI and IPI vesicles.
Collapse
Affiliation(s)
- Chandra Kala
- Department of Pharmacology, Faculty of Pharmacy, Maulana Azad University, Jodhpur 342802, Rajasthan, India
- Correspondence: (C.K.); (S.S.I.)
| | - Mohammad Asif
- Faculty of Pharmacy, Lachoo Memorial College of Science and Technology, Sector-A, Shastri Nagar, Jodhpur 342001, Rajasthan, India;
| | - Sadaf Jamal Gilani
- Department of Basic Health Sciences, Preparatory Year, Princess Nourah Bint Adbulrahman University, Riyadh 11671, Saudi Arabia;
| | - Syed Sarim Imam
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
- Correspondence: (C.K.); (S.S.I.)
| | - Najam Ali Khan
- GMS College of Pharmacy, Shakarpur, Rajabpur, Amroha 244236, Uttar Pradesh, India;
| | - Mohamad Taleuzzaman
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Maulana Azad University, Jodhpur 342802, Rajasthan, India;
| | - Ameeduzzafar Zafar
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka 72341, Al-Jouf, Saudi Arabia;
| | - Mohammed Muqtader Ahmed
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia;
| | - Sultan Alshehri
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Mohammed M. Ghoneim
- Department of Pharmacy Practice, College of Pharmacy, Almaarefa University, Ad Diriyah 13713, Saudi Arabia;
| |
Collapse
|
7
|
Bendas G, Schlesinger M. The GPIb-IX complex on platelets: insight into its novel physiological functions affecting immune surveillance, hepatic thrombopoietin generation, platelet clearance and its relevance for cancer development and metastasis. Exp Hematol Oncol 2022; 11:19. [PMID: 35366951 PMCID: PMC8976409 DOI: 10.1186/s40164-022-00273-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 03/19/2022] [Indexed: 12/13/2022] Open
Abstract
The glycoprotein (GP) Ib-IX complex is a platelet receptor that mediates the initial interaction with subendothelial von Willebrand factor (VWF) causing platelet arrest at sites of vascular injury even under conditions of high shear. GPIb-IX dysfunction or deficiency is the reason for the rare but severe Bernard-Soulier syndrome (BSS), a congenital bleeding disorder. Although knowledge on GPIb-IX structure, its basic functions, ligands, and intracellular signaling cascades have been well established, several advances in GPIb-IX biology have been made in the recent years. Thus, two mechanosensitive domains and a trigger sequence in GPIb were characterized and its role as a thrombin receptor was deciphered. Furthermore, it became clear that GPIb-IX is involved in the regulation of platelet production, clearance and thrombopoietin secretion. GPIb is deemed to contribute to liver cancer development and metastasis. This review recapitulates these novel findings highlighting GPIb-IX in its multiple functions as a key for immune regulation, host defense, and liver cancer development.
Collapse
Affiliation(s)
- Gerd Bendas
- Department of Pharmacy, Rheinische Friedrich-Wilhelms-University Bonn, An der Immenburg 4, 53121, Bonn, Germany
| | - Martin Schlesinger
- Department of Pharmacy, Rheinische Friedrich-Wilhelms-University Bonn, An der Immenburg 4, 53121, Bonn, Germany. .,Federal Institute for Drugs and Medical Devices (BfArM), Bonn, Germany.
| |
Collapse
|
8
|
Jimenez-Martin J, Las Heras K, Etxabide A, Uranga J, de la Caba K, Guerrero P, Igartua M, Santos-Vizcaino E, Hernandez RM. Green hemostatic sponge-like scaffold composed of soy protein and chitin for the treatment of epistaxis. Mater Today Bio 2022; 15:100273. [PMID: 35572855 PMCID: PMC9097720 DOI: 10.1016/j.mtbio.2022.100273] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 04/25/2022] [Accepted: 04/26/2022] [Indexed: 12/03/2022] Open
Abstract
Epistaxis is one of the most common otorhinolaryngology emergencies worldwide. Although there are currently several treatments available, they present several disadvantages. This, in addition to the increasing social need of being environmentally respectful, led us to investigate whether a sponge-like scaffold (SP–CH) produced from natural by-products of the food industry — soy protein and β-chitin — can be employed as a nasal pack for the treatment of epistaxis. To evaluate the potential of our material as a nasal pack, it was compared with two of the most commonly used nasal packs in the clinic: a basic gauze and the gold standard Merocel®. Our SP-CH presented great physicochemical and mechanical properties, lost weight in aqueous medium, and could even partially degrade when incubated in blood. It was shown to be both biocompatible and hemocompatible in vitro, clearing up any doubt about its safety. It showed increased blood clotting capacity in vitro, as well as increased capacity to bind both red blood cells and platelets, compared to the standard gauze and Merocel®. Finally, a rat-tail amputation model revealed that our SP-CH could even reduce bleeding time in vivo. This work, carried out from a circular economy approach, demonstrates that a green strategy can be followed to manufacture nasal packs using valorized by-products of the food industry, with equal or even better hemostatic properties than the gold standard in the clinic.
Collapse
Affiliation(s)
- Jon Jimenez-Martin
- NanoBioCel Research Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de La Universidad 7, 01006 Vitoria Gasteiz, Spain
| | - Kevin Las Heras
- NanoBioCel Research Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de La Universidad 7, 01006 Vitoria Gasteiz, Spain
- Bioaraba, NanoBioCel Research Group, Vitoria Gasteiz, Spain
| | - Alaitz Etxabide
- BIOMAT Research Group, University of the Basque Country (UPV/EHU), Escuela de Ingeniería de Gipuzkoa, Plaza de Europa 1, 20018 Donostia-San Sebastián, Spain
| | - Jone Uranga
- BIOMAT Research Group, University of the Basque Country (UPV/EHU), Escuela de Ingeniería de Gipuzkoa, Plaza de Europa 1, 20018 Donostia-San Sebastián, Spain
| | - Koro de la Caba
- BIOMAT Research Group, University of the Basque Country (UPV/EHU), Escuela de Ingeniería de Gipuzkoa, Plaza de Europa 1, 20018 Donostia-San Sebastián, Spain
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940, Leioa, Spain
| | - Pedro Guerrero
- BIOMAT Research Group, University of the Basque Country (UPV/EHU), Escuela de Ingeniería de Gipuzkoa, Plaza de Europa 1, 20018 Donostia-San Sebastián, Spain
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940, Leioa, Spain
- Proteinmat Materials SL, Avenida de Tolosa 72, 20018 Donostia-San Sebastian, Spain
| | - Manoli Igartua
- NanoBioCel Research Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de La Universidad 7, 01006 Vitoria Gasteiz, Spain
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, Madrid, Spain
- Bioaraba, NanoBioCel Research Group, Vitoria Gasteiz, Spain
| | - Edorta Santos-Vizcaino
- NanoBioCel Research Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de La Universidad 7, 01006 Vitoria Gasteiz, Spain
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, Madrid, Spain
- Bioaraba, NanoBioCel Research Group, Vitoria Gasteiz, Spain
- Corresponding author. NanoBioCel Research Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria Gasteiz, Spain.
| | - Rosa Maria Hernandez
- NanoBioCel Research Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de La Universidad 7, 01006 Vitoria Gasteiz, Spain
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, Madrid, Spain
- Bioaraba, NanoBioCel Research Group, Vitoria Gasteiz, Spain
- Corresponding author. NanoBioCel Research Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria Gasteiz, Spain.
| |
Collapse
|
9
|
Wan S, Cui S, Jiang M, Wu Q, Ji Y, Xu Y, Gong G. Dual-target synergistic antithrombotic mechanism of a Dabigatran etexilate analogue (HY023016). Clin Exp Pharmacol Physiol 2022; 49:567-576. [PMID: 35147244 DOI: 10.1111/1440-1681.13634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 12/26/2021] [Accepted: 01/24/2022] [Indexed: 11/30/2022]
Abstract
Thrombin has long been considered a desirable antithrombotic target, but anti-thrombin therapy without anti-platelet therapy has never achieved the ideal effect. HY023016, derived from dabigatran etexilate, exhibited a potent antithrombotic efficacy. In the present study, mechanisms underlying this effect were explored. HY023016 strongly decreased the binding of thrombin to recombinant GPIbα N-terminal sequence which was confirmed by surface plasmon resonance. Flow cytometry revealed that HY023016 selectively decreased the binding of antibody to GPIbα and inhibited the washed human platelet aggregation induced by thrombin. Fluorescence experiment showed that HY023016 remarkably inhibited exosite II by a loss of affinity for the γ'-peptide of fibrinogen. Using intravital microscopy, we observed and recorded the dynamic process of thrombus formation and found that HY023016 effectively prevented thrombus formation in rat arteriovenous shunt thrombosis model. On the basis of these findings, we propose that HY023016 provides a novel insight into the antithrombotic mechanism, which exerts synergistic anticoagulant and antiplatelet effects through thrombin and GPIbα.
Collapse
Affiliation(s)
- Sheng Wan
- Department of Pharmacology, China Pharmaceutical University, Nanjing, 211198, China
| | - Shuang Cui
- Department of Pharmacology, China Pharmaceutical University, Nanjing, 211198, China.,State Key Laboratory of Natural Medicines, Key Lab of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Tongjiaxiang 24, Nanjing, 21009, China
| | - Minrui Jiang
- Department of Pharmacology, China Pharmaceutical University, Nanjing, 211198, China
| | - Qian Wu
- Department of Pharmacology, China Pharmaceutical University, Nanjing, 211198, China
| | - Yingying Ji
- Department of Pharmacology, China Pharmaceutical University, Nanjing, 211198, China
| | - Yungen Xu
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing, 211198, China
| | - Guoqing Gong
- Department of Pharmacology, China Pharmaceutical University, Nanjing, 211198, China
| |
Collapse
|
10
|
Tyrosine-O-sulfation is a widespread affinity enhancer among thrombin interactors. Biochem Soc Trans 2022; 50:387-401. [PMID: 34994377 DOI: 10.1042/bst20210600] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 12/07/2021] [Accepted: 12/09/2021] [Indexed: 12/24/2022]
Abstract
Tyrosine-O-sulfation is a common post-translational modification (PTM) of proteins following the cellular secretory pathway. First described in human fibrinogen, tyrosine-O-sulfation has long been associated with the modulation of protein-protein interactions in several physiological processes. A number of relevant interactions for hemostasis are largely dictated by this PTM, many of which involving the serine proteinase thrombin (FIIa), a central player in the blood-clotting cascade. Tyrosine sulfation is not limited to endogenous FIIa ligands and has also been found in hirudin, a well-known and potent thrombin inhibitor from the medicinal leech, Hirudo medicinalis. The discovery of hirudin led to successful clinical application of analogs of leech-inspired molecules, but also unveiled several other natural thrombin-directed anticoagulant molecules, many of which undergo tyrosine-O-sulfation. The presence of this PTM has been shown to enhance the anticoagulant properties of these peptides from a range of blood-feeding organisms, including ticks, mosquitos and flies. Interestingly, some of these molecules display mechanisms of action that mimic those of thrombin's bona fide substrates.
Collapse
|
11
|
Platelet binding to polymerizing fibrin is avidity driven and requires activated αIIbβ3 but not fibrin cross-linking. Blood Adv 2021; 5:3986-4002. [PMID: 34647980 PMCID: PMC8945615 DOI: 10.1182/bloodadvances.2021005142] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 07/12/2021] [Indexed: 11/20/2022] Open
Abstract
Platelet interaction with polymerizing fibrin is avidity driven and requires activated αIIbβ3 but not fibrin cross-linking. The mechanism by which αIIbβ3 interacts with polymerizing fibrin differs subtly from the interaction of αIIbβ3 with fibrinogen.
The molecular basis of platelet-fibrin interactions remains poorly understood despite the predominance of fibrin in thrombi. We have studied the interaction of platelets with polymerizing fibrin by adding thrombin to washed platelets in the presence of the peptide RGDW, which inhibits the initial platelet aggregation mediated by fibrinogen binding to αIIbβ3 but leaves intact a delayed increase in light transmission (delayed wave; DW) as platelets interact with the polymerizing fibrin. The DW was absent in platelets from a patient with Glanzmann thrombasthenia, indicating a requirement for αIIbβ3. The DW required αIIbb3 activation and it was inhibited by the αIIbβ3 antagonists eptifibatide and the monoclonal antibody (mAb) 7E3, but only at much higher concentrations than needed to inhibit platelet aggregation initiated by a thrombin receptor activating peptide (T6). Surface plasmon resonance and scanning electron microscopy studies both supported fibrin having greater avidity for αIIbβ3 than fibrinogen rather than greater affinity, consistent with fibrin’s multivalency. mAb 10E5, a potent inhibitor of T6-induced platelet aggregation, did not inhibit the DW, suggesting that fibrin differs from fibrinogen in its mechanism of binding. Inhibition of factor XIII–mediated fibrin cross-linking by >95% reduced the DW by only 32%. Clot retraction showed a pattern of inhibition similar to that of the DW. We conclude that activated αIIbβ3 is the primary mediator of platelet-fibrin interactions leading to clot retraction, and that the interaction is avidity driven, does not require fibrin cross-linking, and is mediated by a mechanism that differs subtly from that of the interaction of αIIbβ3 with fibrinogen.
Collapse
|
12
|
Soslau G. Cardiovascular serotonergic system: Evolution, receptors, transporter, and function. JOURNAL OF EXPERIMENTAL ZOOLOGY PART 2021; 337:115-127. [PMID: 34662506 DOI: 10.1002/jez.2554] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 10/01/2021] [Accepted: 10/07/2021] [Indexed: 01/22/2023]
Abstract
The serotonergic system, serotonin (5HT), serotonin transporter (SERT), and serotonin receptors (5HT-x), is an evolutionarily ancient system that has clear physiological advantages to all life forms from bacteria to humans. This review focuses on the role of platelet/plasma serotonin and the cardiovascular system with minor references to its significant neurotransmitter function. Platelets transport and store virtually all plasma serotonin in dense granules. Stored serotonin is released from activated platelets and can bind to serotonin receptors on platelets and cellular components of the vascular wall to augment aggregation and induce vasoconstriction or vasodilation. The vascular endothelium is critical to the maintenance of cardiovascular homeostasis. While there are numerous ligands, neurological components, and baroreceptors that effect vascular tone it is proposed that serotonin and nitric oxide (an endothelium relaxing factor) are major players in the regulation of systemic blood pressure. Signals not fully defined, to date, that direct serotonin binding to one of the 15 identified 5HT receptors versus the transporter, and the role platelet/plasma serotonin plays in regulating hypertension within the cardiovascular system remain important issues to better understand many diseases and to develop new drugs. Also, expanded research of these pathways in lower life-forms may serve as important model systems to further our understanding of the evolution and mechanisms of action of serotonin.
Collapse
Affiliation(s)
- Gerald Soslau
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
13
|
Kaur J, Arsene C, Yadav SK, Ogundipe O, Malik A, Sule AA, Krishnamoorthy G. Risk Factors in Hospitalized Patients for Heparin-Induced Thrombocytopenia by Real World Database: A New Role for Primary Hypercoagulable States. J Hematol 2021; 10:171-177. [PMID: 34527113 PMCID: PMC8425805 DOI: 10.14740/jh876] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 07/06/2021] [Indexed: 11/11/2022] Open
Abstract
Background The aims of the study were to identify predictors of heparin-induced thrombocytopenia (HIT) in hospitalized adults, and to find additional factors associated with higher odds of HIT in primary hypercoagulable states. Methods A retrospective matched case-control study using discharge data from National Inpatient Sample database (2012 - 2014) was conducted. In primary outcome analysis, hospitalized patients with and without HIT were included as cases and controls, both matched for age and gender. In secondary outcome analysis, hospitalized patients with primary hypercoagulable states with and without HIT were included as cases and controls, both matched for age and gender. The statistical analyses were performed using Statistical Package for Social Sciences version 25. Results There are several predictors of HIT in hospitalized patients, such as obesity, malignancy, diabetes, renal failure, major surgery, congestive heart failure, and autoimmune diseases. In patients with primary hypercoagulable states, the presence of renal failure (odds ratio (OR) 2.955, 95% confidence interval (CI) 1.994 - 4.380), major surgery (OR 1.735, 95% CI 1.275 - 2.361), congestive heart failure (OR 4.497, 95% CI 2.466 - 8.202), or autoimmune diseases (OR 1.712, 95% CI 1.120 - 2.618) further increases the odds of HIT. Conclusions In hospitalized patients with primary hypercoagulable states, especially in association with renal failure, major surgery, congestive heart failure, or autoimmune diseases, unfractionated heparin should be used with caution.
Collapse
Affiliation(s)
- Jasmeet Kaur
- Department of Internal Medicine, St. Joseph Mercy Oakland Hospital, Pontiac, MI, USA
| | - Camelia Arsene
- Department of Medical Education, St. Joseph Mercy Oakland Hospital, Pontiac, MI, USA
| | - Sumeet Kumar Yadav
- Department of Internal Medicine, St. Joseph Mercy Oakland Hospital, Pontiac, MI, USA
| | - Olusola Ogundipe
- Department of Infectious Diseases, William Beaumont Hospital, Royal Oak, MI, USA
| | - Ambreen Malik
- Department of Internal Medicine, St. Joseph Mercy Oakland Hospital, Pontiac, MI, USA
| | - Anupam Ashutosh Sule
- Department of Internal Medicine, St. Joseph Mercy Oakland Hospital, Pontiac, MI, USA
| | - Geetha Krishnamoorthy
- Department of Internal Medicine, St. Joseph Mercy Oakland Hospital, Pontiac, MI, USA
| |
Collapse
|
14
|
Agten SM, Watson EE, Ripoll‐Rozada J, Dowman LJ, Wu MCL, Alwis I, Jackson SP, Pereira PJB, Payne RJ. Potent Trivalent Inhibitors of Thrombin through Hybridization of Salivary Sulfopeptides from Hematophagous Arthropods. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202015127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Stijn M. Agten
- School of Chemistry and ARC Centre of Excellence for Innovations in Peptide and Protein Science The University of Sydney Sydney NSW 2006 Australia
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM) Maastricht University Universiteitssingel 50 6229 ER Maastricht The Netherlands
| | - Emma E. Watson
- School of Chemistry and ARC Centre of Excellence for Innovations in Peptide and Protein Science The University of Sydney Sydney NSW 2006 Australia
| | - Jorge Ripoll‐Rozada
- IBMC—Instituto de Biologia Molecular e Celular and Instituto de Investigação e Inovação em Saúde Universidade do Porto 4200-135 Porto Portugal
| | - Luke J. Dowman
- School of Chemistry and ARC Centre of Excellence for Innovations in Peptide and Protein Science The University of Sydney Sydney NSW 2006 Australia
| | - Mike C. L. Wu
- Charles Perkins Centre The University of Sydney Sydney NSW 2006 Australia
- Heart Research Institute Sydney NSW 2042 Australia
| | - Imala Alwis
- Charles Perkins Centre The University of Sydney Sydney NSW 2006 Australia
- Heart Research Institute Sydney NSW 2042 Australia
| | - Shaun P. Jackson
- Charles Perkins Centre The University of Sydney Sydney NSW 2006 Australia
- Heart Research Institute Sydney NSW 2042 Australia
| | - Pedro José Barbosa Pereira
- IBMC—Instituto de Biologia Molecular e Celular and Instituto de Investigação e Inovação em Saúde Universidade do Porto 4200-135 Porto Portugal
| | - Richard J. Payne
- School of Chemistry and ARC Centre of Excellence for Innovations in Peptide and Protein Science The University of Sydney Sydney NSW 2006 Australia
| |
Collapse
|
15
|
Agten SM, Watson EE, Ripoll-Rozada J, Dowman LJ, Wu MCL, Alwis I, Jackson SP, Pereira PJB, Payne RJ. Potent Trivalent Inhibitors of Thrombin through Hybridization of Salivary Sulfopeptides from Hematophagous Arthropods. Angew Chem Int Ed Engl 2021; 60:5348-5356. [PMID: 33345438 DOI: 10.1002/anie.202015127] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/14/2020] [Indexed: 12/20/2022]
Abstract
Blood feeding arthropods, such as leeches, ticks, flies and mosquitoes, provide a privileged source of peptidic anticoagulant molecules. These primarily operate through inhibition of the central coagulation protease thrombin by binding to the active site and either exosite I or exosite II. Herein, we describe the rational design of a novel class of trivalent thrombin inhibitors that simultaneously block both exosites as well as the active site. These engineered hybrids were synthesized using tandem diselenide-selenoester ligation (DSL) and native chemical ligation (NCL) reactions in one-pot. The most potent trivalent inhibitors possessed femtomolar inhibition constants against α-thrombin and were selective over related coagulation proteases. A lead hybrid inhibitor possessed potent anticoagulant activity, blockade of both thrombin generation and platelet aggregation in vitro and efficacy in a murine thrombosis model at 1 mg kg-1 . The rational engineering approach described here lays the foundation for the development of potent and selective inhibitors for a range of other enzymatic targets that possess multiple sites for the disruption of protein-protein interactions, in addition to an active site.
Collapse
Affiliation(s)
- Stijn M Agten
- School of Chemistry and ARC Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, 2006, NSW, Australia
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Universiteitssingel 50, 6229 ER, Maastricht, The Netherlands
| | - Emma E Watson
- School of Chemistry and ARC Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, 2006, NSW, Australia
| | - Jorge Ripoll-Rozada
- IBMC-Instituto de Biologia Molecular e Celular and Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135, Porto, Portugal
| | - Luke J Dowman
- School of Chemistry and ARC Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, 2006, NSW, Australia
| | - Mike C L Wu
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, 2006, Australia
- Heart Research Institute, Sydney, NSW, 2042, Australia
| | - Imala Alwis
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, 2006, Australia
- Heart Research Institute, Sydney, NSW, 2042, Australia
| | - Shaun P Jackson
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, 2006, Australia
- Heart Research Institute, Sydney, NSW, 2042, Australia
| | - Pedro José Barbosa Pereira
- IBMC-Instituto de Biologia Molecular e Celular and Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135, Porto, Portugal
| | - Richard J Payne
- School of Chemistry and ARC Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, 2006, NSW, Australia
| |
Collapse
|
16
|
Urs AP, Manjuprasanna VN, Rudresha GV, Hiremath V, Sharanappa P, Rajaiah R, Vishwanath BS. Thrombin-like serine protease, antiquorin from Euphorbia antiquorum latex induces platelet aggregation via PAR1-Akt/p38 signaling axis. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1868:118925. [PMID: 33333088 DOI: 10.1016/j.bbamcr.2020.118925] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 11/16/2020] [Accepted: 12/05/2020] [Indexed: 12/28/2022]
Abstract
Plant latex proteases (PLPs) are pharmacologically essential and are integral components of traditional medicine in the management of bleeding wounds. PLPs are known to promote blood coagulation and stop bleeding by interfering at various stages of hemostasis. There are a handful of scientific reports on thrombin-like enzymes characterized from plant latices. However, the role of plant latex thrombin-like enzymes in platelet aggregation is not well known. In the present study, we attempted to purify and characterize thrombin-like protease responsible for platelet aggregation. Among tested plant latices, Euphorbia genus latex protease fractions (LPFs) induced platelet aggregation. In Euphorbia genus, E. antiquorum LPF (EaLPF) strongly induced platelet aggregation and attenuated bleeding in mice. The purified thrombin-like serine protease, antiquorin (Aqn) is a glycoprotein with platelet aggregating activities that interfere in intrinsic and common pathways of blood coagulation cascade and alleviates bleeding and enhanced excision wound healing in mice. In continuation, the pharmacological inhibitor of PAR1 inhibited Aqn-induced phosphorylation of cPLA2, Akt, and P38 in human platelets. Moreover, Aqn-induced platelet aggregation was inhibited by pharmacological inhibitors of PAR1, PI3K, and P38. These data indicate that PAR1-Akt/P38 signaling pathways are involved in Aqn-induced platelet aggregation. The findings of the present study may open up a new avenue for exploiting Aqn in the treatment of bleeding wounds.
Collapse
Affiliation(s)
- Amog P Urs
- Department of Studies in Biochemistry, University of Mysore, Manasagangotri, Mysuru, Karnataka, India
| | | | - Gotravalli V Rudresha
- Department of Studies in Biochemistry, University of Mysore, Manasagangotri, Mysuru, Karnataka, India
| | - Vilas Hiremath
- Vijayashree Diagnostics, Specialized Coagulation Lab, Bengaluru, India
| | - P Sharanappa
- Department of Studies in Botany, University of Mysore, Hassan, Karnataka, India
| | - Rajesh Rajaiah
- Department of Studies in Molecular Biology, University of Mysore, Manasagangotri, Mysuru, Karnataka, India.
| | - Bannikuppe S Vishwanath
- Department of Studies in Biochemistry, University of Mysore, Manasagangotri, Mysuru, Karnataka, India; Department of Studies in Molecular Biology, University of Mysore, Manasagangotri, Mysuru, Karnataka, India.
| |
Collapse
|
17
|
Buitrago L, Zafar H, Zhang Y, Li J, Walz T, Coller BS. Dominant role of αIIbβ3 in platelet interactions with cross-linked fibrin fragment D-dimer. Blood Adv 2020; 4:2939-2949. [PMID: 32603423 PMCID: PMC7362365 DOI: 10.1182/bloodadvances.2020001545] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 05/23/2020] [Indexed: 12/14/2022] Open
Abstract
Although much is known about the interaction of fibrinogen with αIIbβ3, much less is known about the interaction of platelets with cross-linked fibrin. Fibrinogen residue Lys406 plays a vital role in the interaction of fibrinogen with αIIbβ3, but because it participates in fibrin cross-linking, it is not available for interacting with αIIbβ3. We studied the adhesion of platelets and HEK cells expressing normal and constitutively active αIIbβ3 to both immobilized fibrinogen and D-dimer, a proteolytic fragment of cross-linked fibrin, as well as platelet-mediated clot retraction. Nonactivated platelets and HEK cells expressing normal αIIbβ3 adhered to fibrinogen but not D-dimer, whereas activated platelets as well as HEK cells expressing activated αIIbβ3 both bound to D-dimer. Small-molecule antagonists of the αIIbβ3 RGD (Arg-Gly-Asp) binding pocket inhibited adhesion to D-dimer, and an Asp119Ala mutation that disrupts the β3 metal ion-dependent adhesion site inhibited αIIbβ3-mediated adhesion to D-dimer. D-dimer and a polyclonal antibody against D-dimer inhibited clot retraction. The monoclonal antibody (mAb) 10E5, directed at αIIb and a potent inhibitor of platelet interactions with fibrinogen, did not inhibit the interaction of activated platelets with D-dimer or clot retraction, whereas the mAb 7E3, directed at β3, inhibited both phenomena. We conclude that activated, but not nonactivated, αIIbβ3 mediates interactions between platelets and D-dimer, and by extrapolation, to cross-linked fibrin. Although the interaction of αIIbβ3 with D-dimer differs from that with fibrinogen, it probably involves contributions from regions on β3 that are close to, or that are affected by, changes in the RGD binding pocket.
Collapse
Affiliation(s)
| | - Hina Zafar
- Laboratory of Blood and Vascular Biology and
| | - Yixiao Zhang
- Laboratory of Molecular Electron Microscopy, Rockefeller University, New York, NY
| | - Jihong Li
- Laboratory of Blood and Vascular Biology and
| | - Thomas Walz
- Laboratory of Molecular Electron Microscopy, Rockefeller University, New York, NY
| | | |
Collapse
|
18
|
Lordan R, Tsoupras A, Zabetakis I. Platelet activation and prothrombotic mediators at the nexus of inflammation and atherosclerosis: Potential role of antiplatelet agents. Blood Rev 2020; 45:100694. [PMID: 32340775 DOI: 10.1016/j.blre.2020.100694] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 03/22/2020] [Accepted: 04/07/2020] [Indexed: 12/20/2022]
Abstract
Platelets are central to inflammation-related manifestations of cardiovascular diseases (CVD) such as atherosclerosis. Platelet-activating factor (PAF), thrombin, thromboxane A2 (TxA2), and adenosine diphosphate (ADP) are some of the key agonists of platelet activation that are at the intersection between a plethora of inflammatory pathways that modulate pro-inflammatory and coagulation processes. The aim of this article is to review the role of platelets and the relationship between their structure, function, and the interactions of their constituents in systemic inflammation and atherosclerosis. Antiplatelet therapies are discussed with a view to primary prevention of CVD by the clinical reduction of platelet reactivity and inflammation. Current antiplatelet therapies are effective in reducing cardiovascular risk but increase bleeding risk. Novel therapeutic antiplatelet approaches beyond current pharmacological modalities that do not increase the risk of bleeding require further investigation. There is potential for specifically designed nutraceuticals that may become safer alternatives to pharmacological antiplatelet agents for the primary prevention of CVD but there is serious concern over their efficacy and regulation, which requires considerably more research.
Collapse
Affiliation(s)
- Ronan Lordan
- Department of Biological Sciences, University of Limerick, Limerick, Ireland; Health Research Institute (HRI), University of Limerick, Limerick, Ireland; Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-5158, USA.
| | - Alexandros Tsoupras
- Department of Biological Sciences, University of Limerick, Limerick, Ireland; Health Research Institute (HRI), University of Limerick, Limerick, Ireland
| | - Ioannis Zabetakis
- Department of Biological Sciences, University of Limerick, Limerick, Ireland; Health Research Institute (HRI), University of Limerick, Limerick, Ireland
| |
Collapse
|
19
|
Identification of unexplored substrates of the serine protease, thrombin, using N-terminomics strategy. Int J Biol Macromol 2019; 144:449-459. [PMID: 31862363 DOI: 10.1016/j.ijbiomac.2019.12.137] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 12/15/2019] [Accepted: 12/15/2019] [Indexed: 12/13/2022]
Abstract
The function and regulation of thrombin is a complex as well as an intriguing aspect of evolution and has captured the interest of many investigators over the years. The reported substrates of thrombin are coagulation factors V, VIII, XI, XIII, protein C and fibrinogen. However, these may not be all the substrate of thrombin and therefore its functional role(s), may not have been completely comprehended. The purpose of our study was to identify hitherto unreported substrates of thrombin from human plasma using a N-terminomics protease substrate identification method. We identified 54 putative substrates of thrombin of which 12 are already known and 42 are being reported for the first time. Amongst the proteins identified, recombinant siglec-6 and purified serum alpha-1-acid glycoprotein were validated by cleavage with thrombin. We have discussed the probable relevance of siglec-6 cleavage by thrombin in human placenta mostly because an upregulation in the expression of siglec-6 and thrombin has been reported in the placenta of preeclampsia patients. We also speculate the role of alpha-1-acid glycoprotein cleavage by thrombin in the acute phase as alpha-1-acid glycoprotein is known to be an inhibitor of platelet aggregation whereas thrombin is known to trigger platelet aggregation.
Collapse
|
20
|
Soslau G. The role of the red blood cell and platelet in the evolution of mammalian and avian endothermy. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2019; 334:113-127. [DOI: 10.1002/jez.b.22922] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 10/04/2019] [Accepted: 11/09/2019] [Indexed: 12/12/2022]
Affiliation(s)
- Gerald Soslau
- Department of Biochemistry and Molecular BiologyDrexel University College of MedicinePhiladelphia Pennsylvania
| |
Collapse
|
21
|
Synthesis of CC, CN coupled novel substituted dibutyl benzothiazepinone derivatives and evaluation of their thrombin inhibitory activity. Bioorg Chem 2019; 87:142-154. [PMID: 30884308 DOI: 10.1016/j.bioorg.2019.03.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 01/31/2019] [Accepted: 03/02/2019] [Indexed: 12/21/2022]
Abstract
The formation of a thrombus is a key event in thromboembolic disorders, that contribute to high mortality and morbidity in affected patients. In the present study, we synthesized a library of novel substituted 3,3-dibutyl-8-methoxy-2,3-dihydrobenzo [b] [1,4] thiazepin-4(5H)-one derivatives which were tested for their platelet aggregation and thrombin inhibitory activity. Among the tested compounds, 3,3-dibutyl-7-(2-chlorophenyl)-8-methoxy-2,3-dihydrobenzo[b] [1,4]thiazepin-4(5H)-one (DCT) displayed the maximum thrombin inhibition with an IC50 value of 3.85 μM and thus DCT was chosen for further studies. Next, the effect of DCT on primary hemostasis was evaluated using agonist-induced platelet aggregation model. The lead compound inhibited the collagen- or ADP- or thrombin-induced platelet aggregation in a dose-dependent manner. Furthermore, DCT prolonged the process of clot formation when evaluating plasma re-calcification time (320 ± 11 sec at 5 µg DCT), activated partial thromboplastin time (58.0 ± 0.01 sec at 2 µg), and prothrombin time (14.7 ± 0.01 sec at 5 µg). Molecular docking studies suggested that the benzothiazepinones evaluated here consistently display hydrogen bonding with Ser214 of thrombin, which is similar to that of the co-crystallized ligand (1-(2R)-2-amino-3-phenyl-propanoyl-N-(2,5dichlorophenyl)methylpyrrolidine-2-carboxamide). DCT displayed additional hydrogen bonding to Ser195 and π-π interactions between its methoxyphenyl groups and Trp60, thereby providing a structural rationale for the observed biological effect.
Collapse
|
22
|
Factor VIIa. Platelets 2019. [DOI: 10.1016/b978-0-12-813456-6.00063-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
23
|
Nurden AT. Acquired Antibodies to αIIbβ3 in Glanzmann Thrombasthenia: From Transfusion and Pregnancy to Bone Marrow Transplants and Beyond. Transfus Med Rev 2018; 32:S0887-7963(18)30037-3. [PMID: 29884513 DOI: 10.1016/j.tmrv.2018.05.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Revised: 05/14/2018] [Accepted: 05/20/2018] [Indexed: 11/23/2022]
Abstract
Patients with the inherited bleeding disorder Glanzmann thrombasthenia (GT) possess platelets that lack αIIbβ3 integrin and fail to aggregate, and have moderate to severe mucocutaneous bleeding. Many become refractory to platelet transfusions due to the formation of isoantibodies to αIIbβ3 with the rapid elimination of donor platelets and/or a block of function. Epitope characterization has shown isoantibodies to be polyclonal and to recognize different epitopes on the integrin with β3 a major site and αvβ3 on endothelial and vascular cells a newly recognized target. Pregnancy in GT can also lead to isoantibody formation when fetal cells with β3 integrins pass into the circulation of a mother lacking them; a consequence is neonatal thrombocytopenia and a high risk of mortality. Antibody removal prior to donor transfusions can provide transient relief, but all evidence points to recombinant FVIIa as the first choice for GT patients either to stop bleeding or as prophylaxis. Promoting thrombin generation by rFVIIa favors GT platelet interaction with fibrin, and the risk of deep vein thrombosis also associated with prolonged immobilization and catheter use requires surveillance. Although having a high risk, allogeneic bone marrow transplantation associated with different stem cell sources and conditioning regimens has proved successful in many cases of severe GT with antibodies, and often, the associated conditioning and immunosuppressive therapy leads to loss of isoantibody production. Animal models of gene therapy for GT show promising results, but isoantibody production can be stimulated and CRISPR/Cas9 technology has yet to be applied. Up-to-date consensus protocols for dealing with isoantibodies in GT are urgently required, and networks providing patient care should be expanded.
Collapse
Affiliation(s)
- Alan T Nurden
- Institut de Rhythmologie et de Modélisation Cardiaque, Plateforme Technologique d'Innovation Biomédicale, Hôpital Xavier Arnozan, Pessac, France.
| |
Collapse
|
24
|
Mehta AY, Mohammed BM, Martin EJ, Brophy DF, Gailani D, Desai UR. Allosterism-based simultaneous, dual anticoagulant and antiplatelet action: allosteric inhibitor targeting the glycoprotein Ibα-binding and heparin-binding site of thrombin. J Thromb Haemost 2016; 14:828-38. [PMID: 26748875 PMCID: PMC4828251 DOI: 10.1111/jth.13254] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 12/24/2015] [Indexed: 12/01/2022]
Abstract
BACKGROUND Allosteric inhibition is a promising approach for developing a new group of anticoagulants with potentially reduced bleeding consequences. Recently, we designed sulfated β-O4 lignin (SbO4L) as an allosteric inhibitor that targets exosite 2 of thrombin to reduce fibrinogen cleavage through allostery and compete with glycoprotein Ibα to reduce platelet activation. OBJECTIVE To assess: (i) the antithrombotic potential of a novel approach of simultaneous exosite 2-dependent allosteric inhibition of thrombin and competitive inhibition of platelet activation; and (ii) the promise of SbO4L as the first-in-class antithrombotic agent. METHODS A combination of whole blood thromboelastography, hemostasis analysis, mouse arterial thrombosis models and mouse tail bleeding studies were used to assess antithrombotic potential. RESULTS AND CONCLUSIONS SbO4L extended the clot initiation time, and reduced maximal clot strength, platelet contractile force, and the clot elastic modulus, suggesting dual anticoagulant and antiplatelet effects. These effects were comparable to those observed with enoxaparin. A dose of 1 mg of SbO4L per mouse prevented occlusion in 100% of arteries, and lower doses resulted in a proportionally reduced response. Likewise, the time to occlusion increased by ~ 70% with a 0.5-mg dose in the mouse Rose Bengal thrombosis model. Finally, tail bleeding studies demonstrated that SbO4L does not increase bleeding propensity. In comparison, a 0.3-mg dose of enoxaparin increased the bleeding time and blood volume loss. Overall, this study highlights the promise of the allosteric inhibition approach, and presents SbO4L as a novel anticoagulant with potentially reduced bleeding side effects.
Collapse
Affiliation(s)
- Akul Y. Mehta
- Department of Medicinal Chemistry and Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, VA 23219, USA
| | - Bassem M. Mohammed
- Department of Pharmacotherapy and Outcomes Science, Virginia Commonwealth University, Richmond, VA 23298, USA
- Department of Clinical Pharmacy, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Erika J. Martin
- Department of Pharmacotherapy and Outcomes Science, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Donald F. Brophy
- Department of Pharmacotherapy and Outcomes Science, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - David Gailani
- Department of Pathology, Immunology and Microbiology, Vanderbilt University Medical Center, Nashville, TN 37203
| | - Umesh R. Desai
- Department of Medicinal Chemistry and Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, VA 23219, USA
| |
Collapse
|
25
|
Lisman T, de Groot PG. The role of cell surfaces and cellular receptors in the mode of action of recombinant factor VIIa. Blood Rev 2015; 29:223-9. [DOI: 10.1016/j.blre.2014.12.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 12/08/2014] [Indexed: 11/27/2022]
|
26
|
Platelet glycoprotein VI binds to polymerized fibrin and promotes thrombin generation. Blood 2015; 126:683-91. [PMID: 25977585 DOI: 10.1182/blood-2015-02-629717] [Citation(s) in RCA: 177] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 04/27/2015] [Indexed: 11/20/2022] Open
Abstract
Fibrin, the coagulation end product, consolidates the platelet plug at sites of vascular injury and supports the recruitment of circulating platelets. In addition to integrin αIIbβ3, another as-yet-unidentified receptor is thought to mediate platelet interaction with fibrin. Platelet glycoprotein VI (GPVI) interacts with collagen and several other adhesive macromolecules. We evaluated the hypothesis that GPVI could be a functional platelet receptor for fibrin. Calibrated thrombin assays using platelet-rich plasma (PRP) showed that tissue factor-triggered thrombin generation was impaired in GPVI-deficient patients and reduced by the anti-GPVI Fab 9O12. Assays on reconstituted PRP and PRP from fibrinogen-deficient patients revealed a fibrinogen-dependent enhancement of thrombin generation, which relied on functional GPVI. The effect of GPVI was found to depend on fibrin polymerization. A binding assay showed a specific interaction between GPVI-Fc and fibrin, inhibited by the Fab 9O12. This Fab also reduced platelet adhesion to fibrin at low (300 s(-1)) and high (1500 s(-1)) wall shear rates. Platelets adherent to fibrin displayed shape change, exposure of procoagulant phospholipids, and the formation of small clots. When hirudinated blood was perfused at 1500 s(-1) over preformed fibrin-rich clots, the Fab 9O12 decreased the recruitment of platelets by up to 85%. This study identifies GPVI as a platelet receptor for polymerized fibrin with 2 major functions: (1) amplification of thrombin generation and (2) recruitment of circulating platelets to clots. These so-far-unrecognized properties of GPVI confer on it a key role in thrombus growth and stabilization.
Collapse
|
27
|
Plasminogen associates with phosphatidylserine-exposing platelets and contributes to thrombus lysis under flow. Blood 2015; 125:2568-78. [PMID: 25712989 DOI: 10.1182/blood-2014-09-599480] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Accepted: 02/01/2015] [Indexed: 11/20/2022] Open
Abstract
The interaction of plasminogen with platelets and their localization during thrombus formation and fibrinolysis under flow are not defined. Using a novel model of whole blood thrombi, formed under flow, we examine dose-dependent fibrinolysis using fluorescence microscopy. Fibrinolysis was dependent upon flow and the balance between fibrin formation and plasminogen activation, with tissue plasminogen activator-mediated lysis being more efficient than urokinase plasminogen activator-mediated lysis. Fluorescently labeled plasminogen radiates from platelet aggregates at the base of thrombi, primarily in association with fibrin. Hirudin attenuates, but does not abolish plasminogen binding, denoting the importance of fibrin. Flow cytometry revealed that stimulation of platelets with thrombin/convulxin significantly increased the plasminogen signal associated with phosphatidylserine (PS)-exposing platelets. Binding was attenuated by tirofiban and Gly-Pro-Arg-Pro amide, confirming a role for fibrin in amplifying plasminogen binding to PS-exposing platelets. Confocal microscopy revealed direct binding of plasminogen and fibrinogen to different platelet subpopulations. Binding of plasminogen and fibrinogen co-localized with PAC-1 in the center of spread platelets. In contrast, PS-exposing platelets were PAC-1 negative, and bound plasminogen and fibrinogen in a protruding "cap." These data show that different subpopulations of platelets harbor plasminogen by diverse mechanisms and provide an essential scaffold for the accumulation of fibrinolytic proteins that mediate fibrinolysis under flow.
Collapse
|
28
|
The sweeter aspects of platelet activation: A lectin-based assay reveals agonist-specific glycosylation patterns. Biochim Biophys Acta Gen Subj 2014; 1840:3423-33. [PMID: 25175560 DOI: 10.1016/j.bbagen.2014.08.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Revised: 08/17/2014] [Accepted: 08/21/2014] [Indexed: 01/28/2023]
|
29
|
Boknäs N, Faxälv L, Sanchez Centellas D, Wallstedt M, Ramström S, Grenegård M, Lindahl TL. Thrombin-induced platelet activation via PAR4: pivotal role for exosite II. Thromb Haemost 2014; 112:558-65. [PMID: 24990072 DOI: 10.1160/th13-12-1013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Accepted: 04/20/2014] [Indexed: 01/22/2023]
Abstract
Thrombin-induced platelet activation via PAR1 and PAR4 is an important event in haemostasis. Although the underlying mechanisms responsible for ensuring efficient PAR1 activation by thrombin have been extensively studied, the potential involvement of recognitions sites outside the active site of the protease in thrombin-induced PAR4 activation is largely unknown. In this study, we developed a new assay to assess the importance of exosite I and II for PAR4 activation with α - and γ-thrombin. Surprisingly, we found that exosite II is critical for activation of PAR4. We also show that this dependency on exosite II likely represents a new mechanism, as it is unaffected by blockage of the previously known interaction between thrombin and glycoprotein Ibα.
Collapse
Affiliation(s)
| | | | | | | | | | | | - T L Lindahl
- Tomas Lindahl, Department of Clinical and Experimental Medicine, Linköping University, SE-51885 Linköping, Sweden, Tel.: +46 101033227, Fax: +46 101033240, E-mail:
| |
Collapse
|
30
|
Schmid W, Vogelsang H, Papay P, Primas C, Eser A, Gratzer C, Handler M, Novacek G, Panzer S. Increased responsiveness to thrombin through protease-activated receptors (PAR)-1 and -4 in active Crohn's disease. J Crohns Colitis 2014; 8:495-503. [PMID: 24291018 DOI: 10.1016/j.crohns.2013.11.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2013] [Revised: 10/03/2013] [Accepted: 11/02/2013] [Indexed: 02/08/2023]
Abstract
BACKGROUND AND AIMS Platelets are essential in hemostasis and inflammation, thereby linking coagulation with inflammation. Abundant thrombin generation in association with inflammation is considered a major reason for the increased risk for thromboembolic events. We therefore investigated platelet responsiveness to thrombin. METHODS In this case-control study 85 patients with Crohn's disease (active CD 42, remission 43) and 30 sex- and age-matched controls were enrolled. Clinical disease activity (Harvey-Bradshaw-Index) was assessed and CD-related data were determined by chart review. Platelets' response to protease activated receptor-1 and -4 (PAR-1, -4) was assessed by whole blood platelet aggregometry (MEA), levels of platelets adhering to monocytes (PMA), and platelet surface P-selectin. RESULTS Platelets' aggregation after activation with the specific PAR-1 agonist (SFLLRN) and PAR-4 agonist (AYPGKF) was higher in patients with active CD compared to patients in remission and controls (p=0.0068 and p=0.0023 for SFLLRN, p=0.0019 and 0.0003 for AYPGKF). Likewise, levels of PMA after activation with PAR-1 and PAR-4 receptor agonists were higher in patients with active CD compared to patients in remission and controls (p=0.0001 and p<0.0001 for SFLLRN, p=0.0329 and p=0.0125 for AYPGKF). However, P-selectin expression on human platelets showed heterogeneous results. Only PAR-1 activation of platelets resulted in significant differences between CD patients and controls (p=0.0001 and p=0.0022 for active and inactive CD versus controls, respectively). CONCLUSIONS Our data suggest a new mechanism of platelet activation which has the potential to increase risk for thromboembolism in patients with active CD which might be due to platelets poised for thrombin-inducible activation.
Collapse
Affiliation(s)
- Werner Schmid
- Department of Anesthesiology, General Intensive Care and Pain Medicine, Division of Cardiothoracic and Vascular Anesthesia and Intensive Care, Medical University of Vienna, Vienna, Austria
| | - Harald Vogelsang
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Pavol Papay
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Christian Primas
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Alexander Eser
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Cornelia Gratzer
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Michael Handler
- Department of Anesthesiology, General Intensive Care and Pain Medicine, Division of Cardiothoracic and Vascular Anesthesia and Intensive Care, Medical University of Vienna, Vienna, Austria
| | - Gottfried Novacek
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Simon Panzer
- Department for Blood Group Serology and Transfusion Medicine, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
31
|
Mehta AY, Thakkar JN, Mohammed BM, Martin EJ, Brophy DF, Kishimoto T, Desai UR. Targeting the GPIbα binding site of thrombin to simultaneously induce dual anticoagulant and antiplatelet effects. J Med Chem 2014; 57:3030-9. [PMID: 24635452 PMCID: PMC4203406 DOI: 10.1021/jm4020026] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
![]()
Exosite 2 of human thrombin contributes
to two opposing pathways, the anticoagulant pathway and the platelet
aggregation pathway. We reasoned that an exosite 2 directed allosteric
thrombin inhibitor should simultaneously induce anticoagulant and
antiplatelet effects. To assess this, we synthesized SbO4L based on
the sulfated tyrosine-containing sequence of GPIbα. SbO4L was
synthesized in three simple steps in high yield and found to be a
highly selective, direct inhibitor of thrombin. Michelis–Menten
kinetic studies indicated a noncompetitive mechanism of inhibition.
Competitive inhibition studies suggested ideal competition with heparin
and glycoprotein Ibα, as predicted. Studies with site-directed
mutants of thrombin indicated that SbO4L binds to Arg233, Lys235,
and Lys236 of exosite 2. SbO4L prevented thrombin-mediated platelet
activation and aggregation as expected on the basis of competition
with GPIbα. SbO4L presents a novel paradigm of simultaneous
dual anticoagulant and antiplatelet effects achieved through the GPIbα
binding site of thrombin.
Collapse
Affiliation(s)
- Akul Y Mehta
- Department of Medicinal Chemistry and Institute for Structural Biology and Drug Discovery, Virginia Commonwealth University , Richmond, Virginia 23219, United States
| | | | | | | | | | | | | |
Collapse
|
32
|
Badr Eslam R, Posch F, Lang IM, Gremmel T, Eichelberger B, Ay C, Panzer S. Association of Thrombin Generation Potential with Platelet PAR-1 Regulation and P-Selectin Expression in Patients on Dual Antiplatelet Therapy. J Cardiovasc Transl Res 2014; 7:126-32. [DOI: 10.1007/s12265-013-9531-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Accepted: 12/10/2013] [Indexed: 12/21/2022]
|
33
|
Kim MS, Park SH, Han SY, Kim YH, Lee EJ, Yoon Park JH, Kang YH. Phloretin suppresses thrombin-mediated leukocyte-platelet-endothelial interactions. Mol Nutr Food Res 2013; 58:698-708. [DOI: 10.1002/mnfr.201300267] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Revised: 09/19/2013] [Accepted: 09/25/2013] [Indexed: 01/18/2023]
Affiliation(s)
- Min Soo Kim
- Department of Food and Nutrition; Hallym University; Chuncheon Republic of Korea
| | - Sin-Hye Park
- Department of Food and Nutrition; Hallym University; Chuncheon Republic of Korea
| | - Seon-Young Han
- Department of Food and Nutrition; Hallym University; Chuncheon Republic of Korea
| | - Yun-Ho Kim
- Department of Food and Nutrition; Hallym University; Chuncheon Republic of Korea
| | - Eun-Jung Lee
- Department of Food and Nutrition; Hallym University; Chuncheon Republic of Korea
| | - Jung Han Yoon Park
- Department of Food and Nutrition; Hallym University; Chuncheon Republic of Korea
| | - Young-Hee Kang
- Department of Food and Nutrition; Hallym University; Chuncheon Republic of Korea
| |
Collapse
|
34
|
Podolnikova NP, Yakovlev S, Yakubenko VP, Wang X, Gorkun OV, Ugarova TP. The interaction of integrin αIIbβ3 with fibrin occurs through multiple binding sites in the αIIb β-propeller domain. J Biol Chem 2013; 289:2371-83. [PMID: 24338009 DOI: 10.1074/jbc.m113.518126] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The currently available antithrombotic agents target the interaction of platelet integrin αIIbβ3 (GPIIb-IIIa) with fibrinogen during platelet aggregation. Platelets also bind fibrin formed early during thrombus growth. It was proposed that inhibition of platelet-fibrin interactions may be a necessary and important property of αIIbβ3 antagonists; however, the mechanisms by which αIIbβ3 binds fibrin are uncertain. We have previously identified the γ370-381 sequence (P3) in the γC domain of fibrinogen as the fibrin-specific binding site for αIIbβ3 involved in platelet adhesion and platelet-mediated fibrin clot retraction. In the present study, we have demonstrated that P3 can bind to several discontinuous segments within the αIIb β-propeller domain of αIIbβ3 enriched with negatively charged and aromatic residues. By screening peptide libraries spanning the sequence of the αIIb β-propeller, several sequences were identified as candidate contact sites for P3. Synthetic peptides duplicating these segments inhibited platelet adhesion and clot retraction but not platelet aggregation, supporting the role of these regions in fibrin recognition. Mutant αIIbβ3 receptors in which residues identified as critical for P3 binding were substituted for homologous residues in the I-less integrin αMβ2 exhibited reduced cell adhesion and clot retraction. These residues are different from those that are involved in the coordination of the fibrinogen γ404-411 sequence and from auxiliary sites implicated in binding of soluble fibrinogen. These results map the binding of fibrin to multiple sites in the αIIb β-propeller and further indicate that recognition specificity of αIIbβ3 for fibrin differs from that for soluble fibrinogen.
Collapse
|
35
|
Gremmel T, Xhelili E, Steiner S, Koppensteiner R, Kopp CW, Panzer S. Response to antiplatelet therapy and platelet reactivity to thrombin receptor activating peptide-6 in cardiovascular interventions: Differences between peripheral and coronary angioplasty. Atherosclerosis 2013; 232:119-24. [PMID: 24401225 DOI: 10.1016/j.atherosclerosis.2013.10.027] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2013] [Revised: 10/14/2013] [Accepted: 10/24/2013] [Indexed: 11/29/2022]
Abstract
BACKGROUND The long-term prognosis of patients with peripheral arterial disease (PAD) is significantly worse than the prognosis of coronary artery disease (CAD) patients. Detrimental platelet activation could contribute to the increased rate of adverse cardiovascular events in PAD. We therefore investigated whether response to antiplatelet therapy and thrombin inducible platelet activation differ between patients with best medical therapy undergoing angioplasty and stenting for symptomatic PAD (n = 166) or CAD (n = 104). METHODS Adenosine diphosphate (ADP), arachidonic acid (AA) and thrombin receptor activating peptide (TRAP)-6 inducible platelet reactivity was measured by multiple electrode aggregometry (MEA). Platelet surface expression of P-selectin and activated glycoprotein IIb/IIIa (GPIIb/IIIa) in response to ADP, AA, and TRAP-6, and the formation of monocyte-platelet aggregates (MPA) in response to ADP and TRAP-6 were assessed by flow cytometry. RESULTS Patients with PAD had significantly higher platelet reactivity in response to ADP and AA by MEA compared to CAD patients. Likewise, the expression of P-selectin and GPIIb/IIIa following stimulation with ADP and AA, and MPA formation in response to ADP were significantly higher in PAD patients than in CAD patients. In response to TRAP-6, patients with PAD showed a significantly increased platelet aggregation by MEA, higher expression of activated GPIIb/IIIa, and more pronounced formation of MPA than CAD patients. CONCLUSION Following angioplasty and stenting, PAD patients exhibit a significantly diminished response to dual antiplatelet therapy and an increased susceptibility to TRAP-6 inducible platelet activation compared to CAD patients.
Collapse
Affiliation(s)
- Thomas Gremmel
- Division of Angiology, Department of Internal Medicine II, Medical University of Vienna, Waehringer Guertel 18-20, Vienna 1090, Austria.
| | - Endri Xhelili
- Division of Angiology, Department of Internal Medicine II, Medical University of Vienna, Waehringer Guertel 18-20, Vienna 1090, Austria
| | - Sabine Steiner
- Division of Angiology, Department of Internal Medicine II, Medical University of Vienna, Waehringer Guertel 18-20, Vienna 1090, Austria
| | - Renate Koppensteiner
- Division of Angiology, Department of Internal Medicine II, Medical University of Vienna, Waehringer Guertel 18-20, Vienna 1090, Austria
| | - Christoph W Kopp
- Division of Angiology, Department of Internal Medicine II, Medical University of Vienna, Waehringer Guertel 18-20, Vienna 1090, Austria
| | - Simon Panzer
- Department of Blood Group Serology and Transfusion Medicine, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
36
|
Soslau G, Mason C, Lynch S, Benjamin J, Ashak D, Prakash JM, Moore A, Bagsiyao P, Albert T, Mathew LM, Jost M. Intracellular matrix metalloproteinase-2 (MMP-2) regulates human platelet activation via hydrolysis of talin. Thromb Haemost 2013; 111:140-53. [PMID: 24136115 DOI: 10.1160/th13-03-0248] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Accepted: 09/09/2013] [Indexed: 12/22/2022]
Abstract
Matrix metalloproteinase (MMP) activity is generally associated with normal or pathological extracellular processes such as tissue remodelling in growth and development or in tumor metastasis and angiogenesis. Platelets contain at least three MMPs, 1, 2 and 9 that have been reported to stimulate or inhibit agonist-induced platelet aggregation via extracellular signals. The non-selective Zn+2 chelating MMP inhibitor, 1,10-phenanthroline, and the serine protease inhibitor, AEBSF, were found to inhibit all tested agonist-induced platelet aggregation reactions. In vitro analysis demonstrated that 1,10-phenanthroline completely inhibited MMP-1,2,and 9 but had little to no effect on calpain activity while the converse was true with AEBSF. We now demonstrate that MMP-2 functions intracellularly to regulate agonist-induced platelet aggregations via the hydrolytic activation of talin, the presumed final activating factor of glycoprotein (GP)IIb/IIIa integrin (the inside-out signal). Once activated GPIIb/IIIa binds the dimeric fibrinogen molecule required for platelet aggregation. The active intracellular MMP-2 molecule is complexed with JAK 2/STAT 3, as demonstrated by the fact that all three proteins are co-immunoprecipitated with either anti-JAK 2, or anti-STAT 3 antibodies and by immunofluorescence studies. The MMP-2 platelet activation pathway can be synergistically inhibited with the non-selective MMP inhibitor, 1,10-phenanthroline, plus a JAK 2 inhibitor. This activation pathway is distinct from the previously reported calpain-talin activating pathway. The identification of a new central pathway for platelet aggregation presents new potential targets for drug regulation and furthers our understanding of the complexity of platelet activation mechanisms.
Collapse
Affiliation(s)
- Gerald Soslau
- Gerald Soslau, PhD, Office of Professional Studies in the Health Sciences, Drexel University College of Medicine, 245 N 15th Street, Philadelphia, PA 19102, USA, Tel.: +1 215 762 7831, Fax: +1 215 762 7434, E-mail:
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Sheikh AY, Hill CC, Goodnough LT, Leung LL, Fischbein MP. Open aortic valve replacement in a patient with Glanzmann's thrombasthenia: a multidisciplinary strategy to minimize perioperative bleeding. Transfusion 2013; 54:300-5. [PMID: 23710629 DOI: 10.1111/trf.12275] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Accepted: 04/17/2013] [Indexed: 11/30/2022]
Abstract
BACKGROUND Glanzmann thrombasthenia (GT) is an autosomal recessive disorder in which the platelet (PLT) glycoprotein IIb/IIIa complex is either deficient or dysfunctional. In its most severe form, GT may result in spontaneous bleeding, although most cases are first detected in the setting of an invasive procedure. CASE REPORT A 59-year-old male with Type I GT and a history of transfusion reactions to PLT infusions developed severe aortic stenosis secondary to bicuspid valve disease. He successfully underwent open aortic valve replacement with cardiopulmonary bypass without perioperative bleeding complications. RESULTS A multidisciplinary team (anesthesia, hematology, cardiac surgery, and transfusion medicine) was established to optimize perioperative hematologic management. Bleeding risk was assessed given the patient's prior history and a dosing timeline for administration of blood products and recombinant clotting factors was established. Successful management was achieved during the operation by prophylactic administration of HLA-matched PLTs and Factor VIIa. Prophylactic PLT administration was continued through the immediate postoperative period and no bleeding complications occurred. Thromboelastograms (TEGs) were used in conjunction with traditional hematologic laboratory analysis to optimize clinical management. CONCLUSION Patients with GT requiring cardiac surgical procedures are at high risk for perioperative bleeding complications. This case report illustrates the importance of multidisciplinary planning, TEG analysis, and the judicious use of recombinant factors to minimize operative bleeding risk.
Collapse
Affiliation(s)
- Ahmad Y Sheikh
- Departments of Cardiac Surgery, Anesthesiology, Pathology, and Medicine, Stanford University, Stanford, California
| | | | | | | | | |
Collapse
|
38
|
Badr Eslam R, Lang IM, Kaider A, Panzer S. Human platelet protease-activated receptor-1 responsiveness to thrombin related to P2Y12 inhibition. Transl Res 2013; 161:414-20. [PMID: 23313628 DOI: 10.1016/j.trsl.2012.12.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Revised: 11/20/2012] [Accepted: 12/13/2012] [Indexed: 11/17/2022]
Abstract
Dual antiplatelet therapy with aspirin and adenosine diphosphate (ADP) receptor inhibitors significantly improves the outcome of patients with stable coronary heart disease. However, abundant thrombin generation, which is not influenced by this dual antiplatelet therapy, is a major reason for recurrent thromboembolic disease in these patients. We, therefore, assessed in a hypothesis generating study in patients with stable coronary artery disease specifically the relation of responsiveness of the platelet thrombin receptor protease-activated receptor (PAR)-1 to the magnitude of the inhibition of the ADP receptor. PAR-1 regulation was studied prospectively in 86 consecutive patients with stable coronary artery disease treated with aspirin and clopidogrel (67 patients) or prasugrel (19 patients) and correlated the data to ADP inducible platelet reactivity by impedance aggregometry. PAR-1 expression did not differ between patients on aspirin and clopidogrel vs patients on aspirin and prasugrel (P > 0.5). PAR-1 levels were correlated to P-selectin expression (P < 0.0001). The higher the PAR-1 expression the more profound was the in vitro thrombin-inducible platelet activation. However, neither ex vivo PAR-1 expression nor in vitro thrombin-inducible PAR-1 were correlated to ADP-inducible platelet aggregation (P > 0.5). Thus, like in a real life scenario, patients with stable ischemic heart disease on dual antiplatelet therapy may express high levels of PAR-1, which are associated with profound thrombin-inducible platelet activation. This responsiveness cannot be predicted by the magnitude of ADP responsiveness.
Collapse
Affiliation(s)
- Roza Badr Eslam
- Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | | | | | | |
Collapse
|
39
|
White H. Targeting Therapy to the Fibrin-Mediated Pathophysiology of Acute Coronary Syndrome. Clin Appl Thromb Hemost 2013; 20:516-23. [DOI: 10.1177/1076029612472551] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Acute coronary syndrome (ACS) encompasses a spectrum of diseases, ranging from ST-elevation myocardial infarction to non-ST-elevation myocardial infarction and unstable angina. A key initiating event in the pathology of ACS is atheromatous plaque disruption, in which the exposure of thrombogenic material triggers simultaneous activation of primary and secondary hemostatic pathways. Targeting platelet-mediated thrombus formation with dual antiplatelet therapy comprising acetylsalicylic acid and a P2Y12 antagonist is the current mainstay for management of ACS. However, a significant proportion of patients remain at risk of cardiovascular events. Fibrin is an important contributor to thrombogenesis and may account for the residual event rates. This review examines evidence for the role of the coagulation cascade in thrombus formation in ACS, which provides a rationale for the use of anticoagulation therapy. The current status of research with novel oral anticoagulants in combination with dual antiplatelet therapy for the secondary prevention of ACS is also discussed.
Collapse
Affiliation(s)
- Harvey White
- Green Lane Cardiovascular Service, Auckland City Hospital, New Zealand
| |
Collapse
|
40
|
Factor VIIa. Platelets 2013. [DOI: 10.1016/b978-0-12-387837-3.00061-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
41
|
|
42
|
Frattani FS, Coriolano EO, Lima LM, Barreiro EJ, Zingali RB. Oral antithrombotic effects of acylhydrazone derivatives. J Atheroscler Thromb 2012. [PMID: 23182978 DOI: 10.5551/jat.14886] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
AIM In the search for new antithrombotic drug candidates, the synthesis and anti-platelet activity of a new series of N-acylhydrazones that were designed as thrombin inhibitors has been previously described. The aim of this work was to further characterize the effects of these compounds on thrombin-induced platelet aggregation and induced thrombosis in vivo. METHODS In this work, four compounds were tested, LASSBio-693, 694, 743 and 752, on platelet aggregation induced by thrombin, ADP and TRAP-4A. These compounds were further tested using a mouse pulmonary thromboembolism model induced by collagen (500 µg/kg) and norepinephrine (80 µg/kg) or thrombin (2,000 UI), and a deep venous thrombosis model. RESULTS At 200 µM, the compounds showed between 36% and 82% inhibition (for L-743 and L-752, respectively) of thrombin-induced platelet aggregation. The receptor agonist of PAR-4, TRAP-4A (250 µM), was used and inhibition between 43% and 77% was observed for each compound (200 µM).Compounds LASSBio-752 and 743 were the most effective in the venous thrombosis model, increasing the survival of the treated animals to 63% and 46%, respectively, in the model of collagen-induced thromboembolism and increasing to 80% (both) in the thrombin-induced model. LASSBio 743 was more effective for deep vein thrombosis, reducing the weight of the thrombus by approximately 70%. CONCLUSION All compounds were administered orally and have shown effective antithrombotic action independently of the thrombotic stimulus. These results indicate that compounds LASSBio-743 and 752 are potential candidates for the treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Flávia Serra Frattani
- Laboratório de Hemostase e Venenos LabHemoVen, Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | | | | |
Collapse
|
43
|
Residual platelet activation through protease-activated receptors (PAR)-1 and -4 in patients on P2Y12 inhibitors. Int J Cardiol 2012; 168:403-6. [PMID: 23041015 DOI: 10.1016/j.ijcard.2012.09.103] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Revised: 09/08/2012] [Accepted: 09/16/2012] [Indexed: 11/23/2022]
Abstract
BACKGROUND Dual antiplatelet therapy with aspirin and thienopyridines has improved outcomes of patients after coronary stent implantation. However, current knowledge suggests that thrombin generation is not affected by inhibition of the P2Y12 receptor, and therefore, platelet activation may still occur. METHODS The response to agonists specific for protease-activated receptors (PAR)-1 and -4 was tested by multiple electrode impedance aggregometry in 82 patients on stable doses of clopidogrel or prasugrel, and in 55 healthy controls. RESULTS Based on the consensus cut-off value for adenosine diphosphate (ADP) responsiveness, only one out of 19 patients on prasugrel, but 22 out of 63 patients on clopidogrel had high on-treatment residual platelet reactivity in response to exogenous ADP (p=0.01). Among the patients with adequate ADP P2Y12 receptor inhibition (n=59), we still observed 32 patients (54.2%) with normal response to the PAR-1 activator SFLLRN (26 patients on clopidogrel, 81.2%; 6 patients on prasugrel, 18.8%), and 37 patients (63.8%) with a normal response to the PAR-4 activator AYPGKF (29 patients on clopidogrel, 78.4%; 8 patients on prasugrel, 21.6%). The degree of PAR-agonists inducible platelet activation was directly correlated with the activation induced by ADP (r>0.5 and p<0.001 for both agonists). Moreover, SFLLRN and AYPGKF inducible platelet reactivities were strongly correlated (r=0.75, p<0.001). CONCLUSION PAR responsiveness is preserved in the majority of patients with adequate clopidogrel-mediated inhibition of the platelet P2Y12 receptor, and still in about 20% of those with adequate inhibition by prasugrel.
Collapse
|
44
|
Diesel exhaust particles impair platelet response to collagen and are associated with GPIbα shedding. Toxicol In Vitro 2012; 26:930-8. [DOI: 10.1016/j.tiv.2012.04.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2011] [Revised: 04/03/2012] [Accepted: 04/05/2012] [Indexed: 02/06/2023]
|
45
|
Lynch S, Soslau G. Iron levels found in hemochromatosis patients inhibitγ-thrombin-induced platelet aggregation. Platelets 2011; 23:611-6. [DOI: 10.3109/09537104.2011.634933] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
46
|
Chu AJ. Tissue factor, blood coagulation, and beyond: an overview. Int J Inflam 2011; 2011:367284. [PMID: 21941675 PMCID: PMC3176495 DOI: 10.4061/2011/367284] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2011] [Revised: 06/16/2011] [Accepted: 06/18/2011] [Indexed: 12/18/2022] Open
Abstract
Emerging evidence shows a broad spectrum of biological functions of tissue factor (TF). TF classical role in initiating the extrinsic blood coagulation and its direct thrombotic action in close relation to cardiovascular risks have long been established. TF overexpression/hypercoagulability often observed in many clinical conditions certainly expands its role in proinflammation, diabetes, obesity, cardiovascular diseases, angiogenesis, tumor metastasis, wound repairs, embryonic development, cell adhesion/migration, innate immunity, infection, pregnancy loss, and many others. This paper broadly covers seminal observations to discuss TF pathogenic roles in relation to diverse disease development or manifestation. Biochemically, extracellular TF signaling interfaced through protease-activated receptors (PARs) elicits cellular activation and inflammatory responses. TF diverse biological roles are associated with either coagulation-dependent or noncoagulation-mediated actions. Apparently, TF hypercoagulability refuels a coagulation-inflammation-thrombosis circuit in “autocrine” or “paracrine” fashions, which triggers a wide spectrum of pathophysiology. Accordingly, TF suppression, anticoagulation, PAR blockade, or general anti-inflammation offers an array of therapeutical benefits for easing diverse pathological conditions.
Collapse
Affiliation(s)
- Arthur J Chu
- Division of Biological and Physical Sciences, Delta State University, Cleveland, MS 38733, USA
| |
Collapse
|
47
|
Abstract
Vascular endothelium is a key regulator of homeostasis. In physiological conditions it mediates vascular dilatation, prevents platelet adhesion, and inhibits thrombin generation. However, endothelial dysfunction caused by physical injury of the vascular wall, for example during balloon angioplasty, acute or chronic inflammation, such as in atherothrombosis, creates a proinflammatory environment which supports leukocyte transmigration toward inflammatory sites. At the same time, the dysfunction promotes thrombin generation, fibrin deposition, and coagulation. The serine protease thrombin plays a pivotal role in the coagulation cascade. However, thrombin is not only the key effector of coagulation cascade; it also plays a significant role in inflammatory diseases. It shows an array of effects on endothelial cells, vascular smooth muscle cells, monocytes, and platelets, all of which participate in the vascular pathophysiology such as atherothrombosis. Therefore, thrombin can be considered as an important modulatory molecule of vascular homeostasis. This review summarizes the existing evidence on the role of thrombin in vascular inflammation.
Collapse
|
48
|
Protease-activated receptor 1 (PAR1) signalling desensitization is counteracted via PAR4 signalling in human platelets. Biochem J 2011; 436:469-80. [PMID: 21391917 DOI: 10.1042/bj20101360] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
PARs (protease-activated receptors) 1 and 4 belong to the family of G-protein-coupled receptors which induce both G(α12/13) and G(αq) signalling. By applying the specific PAR1- and PAR4-activating hexapeptides, SFLLRN and AYPGKF respectively, we found that aggregation of isolated human platelets mediated via PAR1, but not via PAR4, is abolished upon homologous receptor activation in a concentration- and time-dependent fashion. This effect was not due to receptor internalization, but to a decrease in Ca²⁺ mobilization, PKC (protein kinase C) signalling and α-granule secretion, as well as to a complete lack of dense granule secretion. Interestingly, subthreshold PAR4 activation rapidly abrogated PAR1 signalling desensitization by differentially reconstituting these affected signalling events and functional responses, which was sufficient to re-establish aggregation. The lack of ADP release and P2Y₁₂ receptor-induced G(αi) signalling accounted for the loss of the aggregation response, as mimicking G(αi/z) signalling with 2-MeS-ADP (2-methylthioadenosine-5'-O-diphosphate) or epinephrine (adrenaline) could substitute for intermediate PAR4 activation. Finally, we found that the re-sensitization of PAR1 signalling-induced aggregation via PAR4 relied on PKC-mediated release of both ADP from dense granules and fibrinogen from α-granules. The present study elucidates further differences in human platelet PAR signalling regulation and provides evidence for a cross-talk in which PAR4 signalling counteracts mechanisms involved in PAR1 signalling down-regulation.
Collapse
|
49
|
Chaves DSA, Frattani FS, Assafim M, de Almeida AP, Zingali RB, Costa SS. Phenolic Chemical Composition of Petroselinum Crispum Extract and Its Effect on Haemostasis. Nat Prod Commun 2011. [DOI: 10.1177/1934578x1100600709] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
From the aqueous extract (Pc) of Petroselinum crispum (Mill) flat leaves specimens were isolated and identified the flavonoids apigenin (1), apigenin-7- O-glucoside or cosmosiin (2), apigenin-7- O-apiosyl-(1→2)- O-glucoside or apiin (3) and the coumarin 2″,3″-dihydroxy-furanocoumarin or oxypeucedanin hydrate (4). The inhibitory activity toward clotting formation and platelet aggregation was assessed for Pc flavonoids (1) and (2), and the coumarin (4). Pc showed no inhibition on clotting activity when compared with the control. On the other hand, a strong antiplatelet aggregation activity was observed for Pc (IC50 = 1.81 mg/mL), apigenin (IC50 = 0.036 mg/mL) and cosmosiin (IC50 = 0.18 mg/mL). In all cases ADP was used as inductor of platelet aggregation. Our results showed that Pc, apigenin and cosmosiin interfere on haemostasis inhibiting platelet aggregation. To the best of our knowledge this is the first report for the cosmosiin antiplatelet aggregation in vitro activity.
Collapse
Affiliation(s)
- Douglas S. A. Chaves
- Núcleo de Pesquisas de Produtos Naturais, Universidade Federal do Rio de Janeiro, 21 941-902, Rio de Janeiro, RJ, Brazil
- Instituto de Ciências Exatas, Departamento de Química, Universidade Federal Rural do Rio de Janeiro, 23890-000, Seropédica, RJ, Brazil
| | - Flávia S. Frattani
- Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, 21 941-902, Rio de Janeiro, RJ, Brazil
| | - Mariane Assafim
- Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, 21 941-902, Rio de Janeiro, RJ, Brazil
| | - Ana Paula de Almeida
- Departamento de Ciências Químicas, Laboratório de Química Orgânica e Farmacêutica, Faculdade de Farmácia, Universidade do Porto, 4050-047, Porto, Portugal
- Centro de Química Medicinal da Universidade do Porto (CEQUIMED-UP), 4050-047, Porto, Portugal
- Laboratório de Estudo Químico e Farmacológico de Produtos Naturais, Universidade Severino Sombra, 27 700-000, Vassouras, RJ, Brazil
| | - Russolina B. Zingali
- Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, 21 941-902, Rio de Janeiro, RJ, Brazil
| | - Sônia S. Costa
- Núcleo de Pesquisas de Produtos Naturais, Universidade Federal do Rio de Janeiro, 21 941-902, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
50
|
Ferraris V, Ferraris S. Thrombin and cardiopulmonary bypass – A paradigm for evaluation of the regulation of hemostasis. Int J Angiol 2011. [DOI: 10.1007/s00547-005-2016-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|