1
|
He Z, Xie L, Liu J, Wei X, Zhang W, Mei Z. Novel insight into the role of A-kinase anchoring proteins (AKAPs) in ischemic stroke and therapeutic potentials. Biomed Pharmacother 2024; 175:116715. [PMID: 38739993 DOI: 10.1016/j.biopha.2024.116715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 05/03/2024] [Accepted: 05/06/2024] [Indexed: 05/16/2024] Open
Abstract
Ischemic stroke, a devastating disease associated with high mortality and disability worldwide, has emerged as an urgent public health issue. A-kinase anchoring proteins (AKAPs) are a group of signal-organizing molecules that compartmentalize and anchor a wide range of receptors and effector proteins and have a major role in stabilizing mitochondrial function and promoting neurodevelopmental development in the central nervous system (CNS). Growing evidence suggests that dysregulation of AKAPs expression and activity is closely associated with oxidative stress, ion disorder, mitochondrial dysfunction, and blood-brain barrier (BBB) impairment in ischemic stroke. However, the underlying mechanisms remain inadequately understood. This review provides a comprehensive overview of the composition and structure of A-kinase anchoring protein (AKAP) family members, emphasizing their physiological functions in the CNS. We explored in depth the molecular and cellular mechanisms of AKAP complexes in the pathological progression and risk factors of ischemic stroke, including hypertension, hyperglycemia, lipid metabolism disorders, and atrial fibrillation. Herein, we highlight the potential of AKAP complexes as a pharmacological target against ischemic stroke in the hope of inspiring translational research and innovative clinical approaches.
Collapse
Affiliation(s)
- Ziyu He
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese Medicine and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Letian Xie
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese Medicine and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Jiyong Liu
- Hunan Provincial Key Laboratory of Traditional Chinese Medicine Diagnostics, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Xuan Wei
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese Medicine and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Wenli Zhang
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China.
| | - Zhigang Mei
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese Medicine and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China; Third-Grade Pharmacological Laboratory on Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, College of Medicine and Health Sciences, China Three Gorges University, Yichang, Hubei 443002, China.
| |
Collapse
|
2
|
El-Tantawy WH, Soliman ND, El-naggar D, Shafei A. Investigation of antidiabetic action of Antidesma bunius extract in type 1 diabetes. Arch Physiol Biochem 2015; 121:116-22. [PMID: 26066546 DOI: 10.3109/13813455.2015.1038278] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
CONTEXT Antidesma bunius L (Phyllanthaceae) is commonly known to local people in North-east Thailand as a medicinal plant. OBJECTIVES To investigate hypoglycaemic activities of methanolic extract of A. bunius in type 1 diabetes. MATERIALS AND METHODS A daily dose of A. bunius extract (250 mg/kg body weight) was given orally to alloxan-induced diabetic rats for 28 days. Blood glucose, insulin, TC, TG, amylase, lipase, liver glycogen were analysed. RESULTS Extract revealed a significant reduction in blood glucose level (80.5%) along with an increase in serum insulin (134%), lipase (90.7%) and liver glycogen level (160%). Also amylase (28.2%) activity, TC (40.2%), and TG (28.8%) levels were significantly decreased when compared with diabetic control rats. A. bunius extract improved the histo-architectural of the β-cells. DISCUSSION AND CONCLUSION The results suggested that A. bunius extract possess anti-diabetic activity, through the enhancement of hepatic glycogen storage and regeneration of the islet of Langerhans.
Collapse
|
3
|
Antidiabetic along with antihyperlipidemic and antioxidant activity of aqueous extract of Platycladus orientalis in streptozotocin-induced diabetic rats. ACTA ACUST UNITED AC 2014. [DOI: 10.1016/j.cmrp.2014.11.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
4
|
Bouvy-Liivrand M, Heinäniemi M, John E, Schneider JG, Sauter T, Sinkkonen L. Combinatorial regulation of lipoprotein lipase by microRNAs during mouse adipogenesis. RNA Biol 2014; 11:76-91. [PMID: 24457907 PMCID: PMC3929427 DOI: 10.4161/rna.27655] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Revised: 12/20/2013] [Accepted: 12/23/2013] [Indexed: 11/19/2022] Open
Abstract
MicroRNAs (miRNAs) regulate gene expression directly through base pairing to their targets or indirectly through participating in multi-scale regulatory networks. Often miRNAs take part in feed-forward motifs where a miRNA and a transcription factor act on shared targets to achieve accurate regulation of processes such as cell differentiation. Here we show that the expression levels of miR-27a and miR-29a inversely correlate with the mRNA levels of lipoprotein lipase (Lpl), their predicted combinatorial target, and its key transcriptional regulator peroxisome proliferator-activated receptor gamma (Pparg) during 3T3-L1 adipocyte differentiation. More importantly, we show that Lpl, a key lipogenic enzyme, can be negatively regulated by the two miRNA families in a combinatorial fashion on the mRNA and functional level in maturing adipocytes. This regulation is mediated through the Lpl 3'UTR as confirmed by reporter gene assays. In addition, a small mathematical model captures the dynamics of this feed-forward motif and predicts the changes in Lpl mRNA levels upon network perturbations. The obtained results might offer an explanation to the dysregulation of LPL in diabetic conditions and could be extended to quantitative modeling of regulation of other metabolic genes under similar regulatory network motifs.
Collapse
Affiliation(s)
- Maria Bouvy-Liivrand
- Life Sciences Research Unit; University of Luxembourg; Luxembourg, Luxembourg
- Luxembourg Centre for Systems Biomedicine; University of Luxembourg; Esch-Sur-Alzette, Luxembourg
| | - Merja Heinäniemi
- Life Sciences Research Unit; University of Luxembourg; Luxembourg, Luxembourg
- Institute of Biomedicine; School of Medicine; University of Eastern Finland; Kuopio, Finland
| | - Elisabeth John
- Life Sciences Research Unit; University of Luxembourg; Luxembourg, Luxembourg
| | - Jochen G Schneider
- Luxembourg Centre for Systems Biomedicine; University of Luxembourg; Esch-Sur-Alzette, Luxembourg
- Saarland University Medical Center; Department of Medicine II; Homburg, Saar, Germany
| | - Thomas Sauter
- Life Sciences Research Unit; University of Luxembourg; Luxembourg, Luxembourg
| | - Lasse Sinkkonen
- Life Sciences Research Unit; University of Luxembourg; Luxembourg, Luxembourg
| |
Collapse
|
5
|
Thirumalaisamy B, Prabhakaran SG, Marimuthu K, Chatterjee TK. Antihyperlipidemic Activity of the Ethyl-acetate Fraction of Stereospermum Suaveolens in Streptozotocin-induced Diabetic Rats. J Pharmacopuncture 2013; 16:23-9. [PMID: 25780672 PMCID: PMC4331969 DOI: 10.3831/kpi.2013.16.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Accepted: 06/24/2013] [Indexed: 11/09/2022] Open
Abstract
OBJECTIVES Dyslipidemia in diabetes mellitus is a significant risk factor for the development of cardiovascular complications. The aim of this study was to evaluate the effect of the ethyl-acetate fraction of an ethanolic extract from Streospermum suaveolens on lipid metabolism in streptozotocin (STZ)-induced diabetic rats. METHODS Diabetes was induced by intraperitonial injection of STZ (50 mg/kg). Diabetic rats were treated with an ethyl-acetate fraction orally at doses of 200 and 400 mg/kg daily for 14 days. On the 15(th) day, serum lipid profiles, such as total cholesterol (TC), triglycerides (TG), low-density lipoprotein (LDL), and high-density lipoprotein (HDL), were estimated in experimental rats. The atherogenic (AI) and the coronary risk (CRI) indices were also evaluated. RESULTS The ethyl-acetate fraction at doses of 200 and 400 mg/kg significantly (P< 0.001) and dose-dependently reduced serum cholesterol, triglycerides and LDL, but increased HDL towards near normal levels as compared to diabetic control rats. The fraction also significantly (P< 0.001) lowered the atherogenic index (AI) and coronary risk index (CAI) in a dose-dependent manner. CONCLUSION The present study demonstrated that the ethyl-acetate fraction of Stereospermum suaveolens exhibits a potent antihyperlipidemic activity in hyperglycemic rats and suggests that the plant may have therapeutic value in treating the diabetic complication of hyperlipidemia.
Collapse
Affiliation(s)
| | | | | | - Tapan Kumar Chatterjee
- Division of Pharmacology, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, West Bengal, India
| |
Collapse
|
6
|
Li S, Nagothu K, Ranganathan G, Ali SM, Shank B, Gokden N, Ayyadevara S, Megyesi J, Olivecrona G, Chugh SS, Kersten S, Portilla D. Reduced kidney lipoprotein lipase and renal tubule triglyceride accumulation in cisplatin-mediated acute kidney injury. Am J Physiol Renal Physiol 2012; 303:F437-48. [PMID: 22622461 DOI: 10.1152/ajprenal.00111.2012] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Peroxisome proliferator-activated receptor-α (PPARα) activation attenuates cisplatin (CP)-mediated acute kidney injury by increasing fatty acid oxidation, but mechanisms leading to reduced renal triglyceride (TG) accumulation could also contribute. Here, we investigated the effects of PPARα and CP on expression and enzyme activity of kidney lipoprotein lipase (LPL) as well as on expression of angiopoietin protein-like 4 (Angptl4), glycosylphosphatidylinositol-anchored-HDL-binding protein (GPIHBP1), and lipase maturation factor 1 (Lmf1), which are recognized as important proteins that modulate LPL activity. CP caused a 40% reduction in epididymal white adipose tissue (WAT) mass, with a reduction of LPL expression and activity. CP also reduced kidney LPL expression and activity. Angptl4 mRNA levels were increased by ninefold in liver and kidney tissue and by twofold in adipose tissue of CP-treated mice. Western blots of two-dimensional gel electrophoresis identified increased expression of a neutral pI Angptl4 protein in kidney tissue of CP-treated mice. Immunolocalization studies showed reduced staining of LPL and increased staining of Angptl4 primarily in proximal tubules of CP-treated mice. CP also increased TG accumulation in kidney tissue, which was ameliorated by PPARα ligand. In summary, a PPARα ligand ameliorates CP-mediated nephrotoxicity by increasing LPL activity via increased expression of GPHBP1 and Lmf1 and by reducing expression of Angptl4 protein in the proximal tubule.
Collapse
Affiliation(s)
- Shenyang Li
- Division of Nephrology, Department of Internal Medicine, University of Arkansas for Medical Sciences and Central Arkansas Veterans Healthcare System, Little Rock, AR 72205, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Ranganathan G, Unal R, Pokrovskaya ID, Tripathi P, Rotter JI, Goodarzi MO, Kern PA. The lipoprotein lipase (LPL) S447X gain of function variant involves increased mRNA translation. Atherosclerosis 2011; 221:143-7. [PMID: 22244040 DOI: 10.1016/j.atherosclerosis.2011.12.028] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Revised: 12/16/2011] [Accepted: 12/19/2011] [Indexed: 11/18/2022]
Abstract
OBJECTIVE A common gain-of-function LPL variant, LPLS447X, has favorable clinical features and involves a C→G base change at nucleotide 1595 of the LPL cDNA, along with a haplotype, which includes other non-coding SNPs. The mechanism for the LPL gain-in-function is not clear. LPL translation is regulated by epinephrine by an RNA-protein complex, consisting of PKA subunits and an A kinase anchoring protein (AKAP), which targets the 3'UTR. METHODS To examine LPL translation of the LPLS447X variant, in vitro translation of LPL mRNA constructs was studied in the presence of cytoplasmic extracts from 3T3-F442A adipocytes treated with/without epinephrine. RESULTS When the C→G base change at nucleotide 1595 was introduced, LPL mRNA was less susceptible to inhibition by the adipocyte extract. Similarly, a lessened susceptibility to translation inhibition occurred when the complete haplotype was constructed in the full-length 3.6 kb LPL mRNA, when an irrelevant coding sequence was introduced into the LPL mRNA construct, and in response to the use of components of the RNA binding complex (PKA C and R subunits, and KH region of AKAP149). CONCLUSION These studies suggest that the LPLS447X gain of function may be due to the base change in the LPL mRNA resulting in a decreased susceptibility to translational inhibition.
Collapse
Affiliation(s)
- Gouri Ranganathan
- The Central Arkansas Veterans Healthcare System and the Department of Medicine, Division of Endocrinology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States
| | | | | | | | | | | | | |
Collapse
|
8
|
Antidiabetic and anti-lipemic effects of Cassia siamea leaves extract in streptozotocin induced diabetic rats. ASIAN PAC J TROP MED 2010. [DOI: 10.1016/s1995-7645(10)60209-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
9
|
Bauer S, Weigert J, Neumeier M, Wanninger J, Schäffler A, Luchner A, Schnitzbauer AA, Aslanidis C, Buechler C. Low-abundant adiponectin receptors in visceral adipose tissue of humans and rats are further reduced in diabetic animals. Arch Med Res 2010; 41:75-82. [PMID: 20470935 DOI: 10.1016/j.arcmed.2010.02.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2009] [Accepted: 01/12/2010] [Indexed: 12/22/2022]
Abstract
BACKGROUND AND AIMS Adipose tissue is an endocrine organ that releases various proteins that may also exert autocrine/paracrine effects. The antidiabetic adipokine adiponectin acts through two receptors, AdipoR1 and AdipoR2, but so far mainly mRNA expression has been measured in adipocytes and adipose tissues. Therefore, we aimed to analyze AdipoR1 and AdipoR2 proteins in adipocytes and paired samples of subcutaneous and visceral adipocytes/adipose tissue. METHODS AdipoR1 and AdipoR2 mRNA and protein expression were determined in adipocytes and paired samples of subcutaneous and visceral adipose tissue of humans and rats. RESULTS AdipoR1 and AdipoR2 proteins were similarly abundant in preadipocytes and mature adipocytes despite an induction of mRNA expression during differentiation. Differentiation of 3T3-L1 cells in the presence of palmitic acid did not alter adiponectin receptor proteins but metformin and fenofibrate upregulated AdipoR2 within 24 h of incubation. AdipoR2 protein was significantly lower in human visceral compared to subcutaneous fat, and both receptors were reduced in visceral adipocytes. In rat tissues both receptors were reduced in visceral fat. In diabetic animals AdipoR2 protein, but not mRNA, was lower in both fat depots compared to similarly obese rats with normal glucose disposal. AdipoR1 was only reduced in subcutaneous adipose tissue of diabetic animals where mRNA expression was induced. CONCLUSIONS These data indicate that mRNA expression is not suitable to predict adiponectin receptor protein. Low adiponectin receptors in visceral adipocytes and adipose tissue and further suppression in adipose tissue of insulin-resistant animals indicate disturbed adiponectin bioactivity.
Collapse
Affiliation(s)
- Sabrina Bauer
- Department of Internal Medicine I, Regensburg University Hospital, D-93042 Regensburg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Abstract
Lipoprotein lipase (LPL) is a multifunctional enzyme produced by many tissues, including adipose tissue, cardiac and skeletal muscle, islets, and macrophages. LPL is the rate-limiting enzyme for the hydrolysis of the triglyceride (TG) core of circulating TG-rich lipoproteins, chylomicrons, and very low-density lipoproteins (VLDL). LPL-catalyzed reaction products, fatty acids, and monoacylglycerol are in part taken up by the tissues locally and processed differentially; e.g., they are stored as neutral lipids in adipose tissue, oxidized, or stored in skeletal and cardiac muscle or as cholesteryl ester and TG in macrophages. LPL is regulated at transcriptional, posttranscriptional, and posttranslational levels in a tissue-specific manner. Nutrient states and hormonal levels all have divergent effects on the regulation of LPL, and a variety of proteins that interact with LPL to regulate its tissue-specific activity have also been identified. To examine this divergent regulation further, transgenic and knockout murine models of tissue-specific LPL expression have been developed. Mice with overexpression of LPL in skeletal muscle accumulate TG in muscle, develop insulin resistance, are protected from excessive weight gain, and increase their metabolic rate in the cold. Mice with LPL deletion in skeletal muscle have reduced TG accumulation and increased insulin action on glucose transport in muscle. Ultimately, this leads to increased lipid partitioning to other tissues, insulin resistance, and obesity. Mice with LPL deletion in the heart develop hypertriglyceridemia and cardiac dysfunction. The fact that the heart depends increasingly on glucose implies that free fatty acids are not a sufficient fuel for optimal cardiac function. Overall, LPL is a fascinating enzyme that contributes in a pronounced way to normal lipoprotein metabolism, tissue-specific substrate delivery and utilization, and the many aspects of obesity and other metabolic disorders that relate to energy balance, insulin action, and body weight regulation.
Collapse
Affiliation(s)
- Hong Wang
- Division of Endocrinology, Metabolism and Diabetes, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado 80045, USA
| | | |
Collapse
|
11
|
Banga A, Unal R, Tripathi P, Pokrovskaya I, Owens RJ, Kern PA, Ranganathan G. Adiponectin translation is increased by the PPARgamma agonists pioglitazone and omega-3 fatty acids. Am J Physiol Endocrinol Metab 2009; 296:E480-9. [PMID: 19088251 PMCID: PMC2660148 DOI: 10.1152/ajpendo.90892.2008] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Adiponectin, made exclusively by adipocytes, is a 30-kDa secretory protein assembled posttranslationally into low-molecular weight, middle-molecular weight, and high-molecular weight homo-oligomers. PPARgamma ligand thiozolidinediones, which are widely used in the treatment of type II diabetes, increase adiponectin levels. PPARgamma also has several putative ligands that include fatty acid derivatives. Overnight treatment of rat adipocytes with pioglitazone, docosahexaenoic acid (DHA), or eicosapentaenoic acid (EPA) triggered a twofold increase in the synthesis and secretion of HMW adiponectin, and this increase was blocked by the addition of PPARgamma inhibitor GW-9662. Inhibition of glycosylation using 2,2'-dipyridyl decreased the synthesis of high-molecular weight adiponectin by pioglitazone, EPA, and DHA, but there was increased secretion of trimeric adiponectin resulting from increased translation. Although pioglitazone, DHA, and EPA increased adiponectin synthesis by more than 60%, there was no increase in total protein synthesis and no corresponding change in adiponectin mRNA expression, indicating the upregulation of translation. We examined the possibility of transacting factors in the cytoplasmic extracts from adipocytes treated with pioglitazone or DHA. In vitro translation of adiponectin mRNA was inhibited by S-100 fraction of control adipocytes and increased by S-100 extracts from adipocytes treated with pioglitazone or DHA. Consistent with this observation, both pioglitazone and DHA treatments increased the association of adiponectin mRNA with the heavier polysome fractions. Together, these data suggest that pioglitazone and the fish oils DHA or EPA are PPARgamma agonists in adipocytes with regard to adiponectin expression, and the predominant mode of adiponectin stimulation is via an increase in translation.
Collapse
Affiliation(s)
- Anannya Banga
- The Central Arkansas Veterans Healthcare System, Little Rock, AR 72205, USA
| | | | | | | | | | | | | |
Collapse
|
12
|
Translational regulation of lipoprotein lipase in adipocytes: depletion of cellular protein kinase Calpha activates binding of the C subunit of protein kinase A to the 3'-untranslated region of the lipoprotein lipase mRNA. Biochem J 2008; 413:315-22. [PMID: 18387001 DOI: 10.1042/bj20071559] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Adipose LPL (lipoprotein lipase) plays an important role in regulating plasma triacylglycerols and lipid metabolism. We have previously demonstrated that PKCalpha (protein kinase Calpha) depletion inhibits LPL translation in 3T3-F442A adipocytes. Using in vitro translation experiments, the minimum essential region on the 3'UTR (3'-untranslated region) of LPL mRNA required for the inhibition of translation was identified as the proximal 39 nt. These results were confirmed by RNase protection analysis using cytoplasmic proteins isolated from the adipocytes treated with PKCalpha antisense oligomers and the LPL 3'UTR transcript (LPL 3'UTR nt: 1512-1640). The protein components involved in this RNA-binding interaction from PKCalpha depletion were passed through an affinity column containing a sequence of the LPL 3'UTR and, after Western blotting, the RNA-binding proteins were identified as the catalytic and the regulatory subunits of PKA (protein kinase A), Calpha and RIIbeta, and AKAP (A-kinase-anchoring protein) 121. This RNA inhibitory complex consisted of the same RNA-binding proteins that have been identified previously as mediators of LPL translational inhibition by PKA activation, suggesting that PKCalpha depletion inhibits LPL translation through PKA activation. In additional experiments, PKC depletion by prolonged PMA treatment or PKCalpha antisense oligomers resulted in an increase in PKA activity in 3T3-F442A adipocytes, comparable with PKA activation with adrenaline (epinephrine) treatment. These results demonstrate that LPL translational inhibition occurs through an RNA-binding complex involving PKA subunits and AKAP121, and this complex can be activated either through traditional PKA activation methods or through the depletion of PKCalpha.
Collapse
|
13
|
Chen Q, Razzaghi H, Demirci FY, Kamboh MI. Functional significance of lipoprotein lipase HindIII polymorphism associated with the risk of coronary artery disease. Atherosclerosis 2008; 200:102-8. [PMID: 18242618 DOI: 10.1016/j.atherosclerosis.2007.12.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2007] [Revised: 11/30/2007] [Accepted: 12/17/2007] [Indexed: 10/22/2022]
Abstract
Lipoprotein lipase (LPL) plays a pivotal role in lipid metabolism by hydrolyzing triglyceride (TG)-rich lipoprotein particles. Abnormalities in normal LPL function are associated with the risk of coronary artery disease (CAD). A number of genetic variants have been identified in the LPL gene that affects different functions of the LPL protein. A common HindIII polymorphism in intron 8 (T/G) of the LPL gene has been found to be associated with altered plasma TG and HDL-cholesterol, and CAD risk in several studies, but its functional significance is unknown. It has been shown that certain intronic sequence contain regulatory elements that are important for transcription and translational regulation of a gene. In this study we tested the hypothesis that this polymorphism affects the binding site of a transcription factor that regulates the transcription of LPL gene. Electrophoretic mobility shift assays (EMSAs) revealed that the HindIII site binds to a transcription factor and that the mutant allele has lower binding affinity than the wild type allele. Transcription assays containing the entire intron 8 sequence along with full-length human LPL promoter were carried out in COS-1 and human vascular smooth muscle cells. The mutant allele was associated with significantly decreased luciferase expression level compared to the wild type allele in both the muscle (3.394+/-0.022 vs. 4.184+/-0.028; P=4.7 x 10(-6)) and COS-1 (11.603+/-0.409 vs. 14.373+/-1.096; P<0.0001) cells. In conclusion, this study demonstrates for the first time that the polymorphic HindIII site in the LPL gene is functional because it affects the binding of a transcription factor and it also has an impact on LPL expression.
Collapse
Affiliation(s)
- Qi Chen
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | | | | | | |
Collapse
|
14
|
Bell LN, Ward JL, Degawa-Yamauchi M, Bovenkerk JE, Jones R, Cacucci BM, Gupta CE, Sheridan C, Sheridan K, Shankar SS, Steinberg HO, March KL, Considine RV. Adipose tissue production of hepatocyte growth factor contributes to elevated serum HGF in obesity. Am J Physiol Endocrinol Metab 2006; 291:E843-8. [PMID: 16757549 DOI: 10.1152/ajpendo.00174.2006] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Serum HGF is elevated in obese individuals. This study examined the contribution of excess adipose tissue to increased circulating HGF levels in obesity. Serum HGF was measured by ELISA before and after weight loss due to bariatric surgery or a 24-h fast. At 6.1 +/- 0.1 mo following surgery, BMI (50.6 +/- 1.6 vs. 35.1 +/- 1.3 kg/m(2); P < 0.0001) and serum HGF were significantly decreased (1,164 +/- 116 vs. 529 +/- 39 pg/ml, P < 0.001). A 24-h fast did not change serum HGF, but serum leptin was significantly reduced (67.7 +/- 7.1 vs. 50.3 +/- 8.3 ng/ml, P = 0.02). HGF secretion in vitro from adipocytes of obese (BMI 40.3 +/- 2.8 kg/m(2)) subjects was significantly greater (80.9 +/- 10.4 vs. 21.5 +/- 4.0 pg/10(5) cells, P = 0.008) than release from adipocytes of lean (BMI 23.3 +/- 1.4 kg/m(2)) subjects. HGF mRNA levels determined by real-time RT-PCR were not different in adipocytes from lean (BMI 24.0 +/- 0.8 kg/m(2)) and obese (45.7 +/- 3.0 kg/m(2)) subjects, but serum HGF was significantly elevated in the obese individuals studied (787 +/- 61 vs. 489 +/- 49 pg/ml, P = 0.001). TNF-alpha (24 h treatment) significantly increased HGF release from subcutaneous adipocytes 23.6 +/- 8.3% over control (P = 0.02). These data suggest that elevated serum HGF in obesity is in part attributable to excess adipose tissue and that this effect can be reversed by reducing adipose tissue mass through weight loss. Increased HGF secretion from adipocytes of obese subjects may be due to posttranscriptional events possibly related to adipocyte size and stimulation by elevated TNF-alpha in the adipose tissue of obese individuals.
Collapse
Affiliation(s)
- Lauren N Bell
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, 541 North Clinical Drive, Rm. CL455, Indianapolis, IN 46202-5111, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Brenet F, Dussault N, Delfino C, Boudouresque F, Chinot O, Martin PM, Ouafik LH. Identification of secondary structure in the 5′-untranslated region of the human adrenomedullin mRNA with implications for the regulation of mRNA translation. Oncogene 2006; 25:6510-9. [PMID: 16715138 DOI: 10.1038/sj.onc.1209672] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Adrenomedullin (AM) is a multifunctional regulatory peptide with important angiogenic and mitogenic properties. Here we identify a region of stable secondary structure in the 5'-untranslated region (5' UTR) of human AM mRNA. Reverse transcriptase-polymerase chain reaction of the 5' UTR consistently resulted, in addition to the product with the expected size of 155 base pair (bp), in a second product with an approximately 65-bp deletion from the central region of the 5' UTR, suggesting the presence of a secondary structure. The presence of a stem-loop structure was confirmed by probing the 5' UTR with RNases with selectivity for single- or double-stranded RNA. We investigated the role of this stem-loop structure in expression of luciferase reporter gene in cultured cell lines. Reporter assays using a chimeric mRNA that combined luciferase and the 5' UTR of AM mRNA demonstrated a dramatic decrease of the reporter activity owing to a decreased translation, whereas the deletion of the stem-loop structure localized between nt +31 and +95 from the cap site led to the recovery of activity. Gel migration shift assays using cytosolic extracts from mammalian cell lines demonstrate a specific binding of a cytosolic protein to riboprobes containing the 5' UTR of AM but not to riboprobes either corresponding to other areas of the message or containing the 5' UTR but lacking the region of secondary structure. Although we conclude that the 5' UTR of the human AM mRNA can modulate the translation of AM mRNA in vivo, and that the predicted stem-loop structure is necessary for this inhibition, the functional consequences of the cis element-binding activity remain to be determined.
Collapse
Affiliation(s)
- F Brenet
- Laboratoire de Cancérologie Expérimentale, Inserm EMI 0359, Université de la Méditerranée, Aix-Marseille II, Marseille Cedex 20, France
| | | | | | | | | | | | | |
Collapse
|
16
|
Kandasamy K, Joseph K, Subramaniam K, Raymond JR, Tholanikunnel BG. Translational control of beta2-adrenergic receptor mRNA by T-cell-restricted intracellular antigen-related protein. J Biol Chem 2004; 280:1931-43. [PMID: 15536087 DOI: 10.1074/jbc.m405937200] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cellular expression of the beta(2)-adrenergic receptor (beta(2)-AR) is suppressed at the translational level by 3'-untranslated region (UTR) sequences. To test the possible role of 3'-UTR-binding proteins in translational suppression of beta(2)-AR mRNA, we expressed the full-length 3'-UTR or the adenylate/uridylate-rich (A+U-rich element (ARE)) RNA from the 3'-UTR sequences of beta(2)-AR in cell lines that endogenously express this receptor. Reversal of beta(2)-adrenergic receptor translational repression by retroviral expression of 3'-UTR sequences suggested that ARE RNA-binding proteins are involved in translational suppression of beta(2)-adrenergic receptor expression. Using a 20-nucleotide ARE RNA from the receptor 3'-UTR as an affinity ligand, we purified the proteins that bind to these sequences. T-cell-restricted intracellular antigen-related protein (TIAR) was one of the strongly bound proteins identified by this method. UV-catalyzed cross-linking experiments using in vitro transcribed 3'-UTR RNA and glutathione S-transferase-TIAR demonstrated multiple binding sites for this protein on beta(2)-AR 3'-UTR sequences. The distal 340-nucleotide region of the 3'-UTR was identified as a target RNA motif for TIAR binding by both RNA gel shift analysis and immunoprecipitation experiments. Overexpression of TIAR resulted in suppression of receptor protein synthesis and a significant shift in endogenously expressed beta(2)-AR mRNA toward low molecular weight fractions in sucrose gradient polysome fractionation. Taken together, our results provide the first evidence for translational control of beta(2)-AR mRNA by TIAR.
Collapse
Affiliation(s)
- Karthikeyan Kandasamy
- Department of Medicine and Division of Nephrology, Medical University of South Carolina, Charleston, South Carolina 29425-2221, USA
| | | | | | | | | |
Collapse
|
17
|
Eskandari HG, Cimen MYB, Tamer L, Kanik A, Atik U. Short term effects of L-carnitine on serum lipids in STZ-induced diabetic rats. Diabetes Res Clin Pract 2004; 66:129-32. [PMID: 15533579 DOI: 10.1016/j.diabres.2004.03.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Revised: 03/09/2004] [Accepted: 03/11/2004] [Indexed: 11/30/2022]
Abstract
The aim of this study was to evaluate the effects of L-carnitine supplementation on serum triglyceride and total cholesterol levels in streptozotocin (STZ)-induced diabetic rats. Thirty-two male Wistar rats were divided into diabetic and diabetic-L-carnitine-supplemented groups. Diabetes was induced by injection of a single dose of streptozotocin (40 mg/kg, intraperitoneally) in citrate buffer. L-Carnitine was supplemented by IM injection of 100 mg/kg per day for 10 days. Serum glucose, triglyceride and total cholesterol levels were determined at days 0, 5 and 10. Rats receiving L-carnitine had lower triglyceride levels at both days 5 and 10 (P < 0.05). Total cholesterol levels in the carnitine-supplemented group were lower, but statistical significance was achieved only at day 10 (P < 0.05). These results suggest that L-carnitine exhibits hypotriglyceridemic and hypocholesterolemic effects in streptozotocin-induced diabetic rats. Clinical trials of L-carnitine supplementation on patients with diabetes induced hyperlipidemia must be further evaluated.
Collapse
Affiliation(s)
- H Gulcin Eskandari
- Medical Faculty, Department of Biochemistry and Biostatistics, Mersin University, Tip Fak. Hastanesi, Biyokimya AD., Zeytinlibahce Cad., 33079 Mersin, Turkey.
| | | | | | | | | |
Collapse
|
18
|
Subramaniam K, Chen K, Joseph K, Raymond JR, Tholanikunnel BG. The 3′-Untranslated Region of the β2-Adrenergic Receptor mRNA Regulates Receptor Synthesis. J Biol Chem 2004; 279:27108-15. [PMID: 15107422 DOI: 10.1074/jbc.m401352200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
beta(2)-Adrenergic receptors (beta(2)-ARs) are low abundance integral membrane proteins that mediate the effects of catecholamines at the cell surface. Post-transcriptional regulation of beta(2)-AR is dependent, in part, on sequences within the 5'- and 3'-untranslated regions (UTRs) of the receptor mRNA. In this work, we demonstrate that 3'-UTR sequences regulate the translation of the receptor mRNA. Deletion of the 3'-UTR sequences resulted in 2-2.5-fold increases in receptor expression. The steadystate levels of beta(2)-AR mRNA did not change significantly in the presence or absence of the 3'-UTR, suggesting that the translation of the receptor mRNA is suppressed by 3'-UTR sequences. Introduction of the receptor 3'-UTR sequences into the 3'-UTR of a heterologous reporter gene (luciferase) resulted in a 70% decrease in reporter gene expression without significant changes in luciferase mRNA levels. Sucrose density gradient fractionation of cytoplasmic extracts from Chinese hamster ovary cells transfected with full-length receptor cDNA demonstrated that the receptor transcripts were distributed between polysomal and non-polysomal fractions. Deletion of 3'-UTR sequences from the receptor cDNA resulted in a clear shift in the distribution of receptor mRNA toward the polysomal fractions, favoring increased translation. The 3'-UTR sequences of the receptor mRNA were sufficient to shift the distribution of luciferase mRNA from predominantly polysomal fractions toward non-polysomal fractions in cells transfected with the chimeric luciferase construct. Taken together, our results provide the first evidence for translational control of beta(2)-AR expression by 3'-UTR sequences. Presumably, this occurs by affecting the receptor mRNA localization.
Collapse
Affiliation(s)
- Kothandharaman Subramaniam
- Department of Medicine and the Division of Nephrology, Medical University of South Carolina, Charleston, South Carolina 29425-2221, USA
| | | | | | | | | |
Collapse
|
19
|
Shao Y, Ismail-Beigi F. Control of Na+-K+-ATPase beta 1-subunit expression: role of 3'-untranslated region. Am J Physiol Cell Physiol 2004; 286:C580-5. [PMID: 14761885 DOI: 10.1152/ajpcell.00117.2003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Using in vitro translation and cell transfection assays, we previously demonstrated that the Na+ -K+ -ATPase beta1 mRNA species containing its longest 3'-untranslated region (UTR) exhibited the lowest translational efficiency. Here, employing deletions and in vivo expression assays, using direct injection of plasmids into rat ventricular myocardium, we identified a 143-nt segment located in the distal 3'-UTR of beta1 mRNA that was associated with decreased luciferase expression; interestingly, this segment contains three AUUUA motifs. Using RNA-protein binding assays and UV cross-linking of cRNA with cytosolic proteins of rat heart, we identified an approximately 38-kDa protein that specifically bound to the cRNA encoding the 143-nt segment of beta1 mRNA 3'-UTR. Mutation of three nucleotides located in the middle region of the 143-nt segment, which was predicted to greatly disrupt a putative stem-loop structure of the cRNA in this region, was associated with reduced binding of the mutated cRNA to the protein migrating at approximately 38 kDa. The cRNA encoding a segment of cyclooxygenase-2 mRNA 3'-UTR containing six AUUUA sequences did not bind the protein migrating at approximately 38 kDa and did not compete with the binding of the wild-type 143-nt beta(1) cRNA to the protein. The above results suggest that the 143-nt segment in the distal segment of the 3'-UTR of beta1 mRNA may play an important role in the control of beta1-subunit expression.
Collapse
Affiliation(s)
- Yvonne Shao
- Departments of Medicine and Physiology and Biophysics, Case Western Reserve University, Cleveland, Ohio 44106-4951, USA
| | | |
Collapse
|
20
|
Yague E, Armesilla AL, Harrison G, Elliott J, Sardini A, Higgins CF, Raguz S. P-glycoprotein (MDR1) expression in leukemic cells is regulated at two distinct steps, mRNA stabilization and translational initiation. J Biol Chem 2003; 278:10344-52. [PMID: 12525496 DOI: 10.1074/jbc.m211093200] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Multidrug resistance in acute myeloid leukemia is often conferred by overexpression of P-glycoprotein, encoded by the MDR1 gene. We have characterized the key regulatory steps in the development of multidrug resistance in K562 myelogenous leukemic cells. Unexpectedly, up-regulation of MDR1 levels was not due to transcriptional activation but was achieved at two distinct post-transcriptional steps, mRNA turnover and translational regulation. The short-lived (half-life 1 h) MDR1 mRNA of naive cells (not exposed to drugs) was stabilized (half-life greater than 10 h) following short-term drug exposure. However, this stabilized mRNA was not associated with translating polyribosomes and did not direct P-glycoprotein synthesis. Selection for drug resistance, by long-term exposure to drug, led to resistant lines in which the translational block was overcome such that the stabilized mRNA was translated and P-glycoprotein expressed. The absence of a correlation between steady-state MDR1 mRNA and P-glycoprotein levels was not restricted to K562 cells but was found in other lymphoid cell lines. These findings have implications for the avoidance or reversal of multidrug resistance in the clinic.
Collapse
Affiliation(s)
- Ernesto Yague
- Medical Research Council Clinical Sciences Centre, Imperial College Faculty of Medicine, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
21
|
Thekkumkara TJ, Linas SL. Evidence for involvement of 3'-untranslated region in determining angiotensin II receptor coupling specificity to G-protein. Biochem J 2003; 370:631-9. [PMID: 12431186 PMCID: PMC1223184 DOI: 10.1042/bj20020960] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2002] [Revised: 11/04/2002] [Accepted: 11/13/2002] [Indexed: 11/17/2022]
Abstract
The mRNA 3'-untranslated region (3'-UTR) of many genes has been identified as an important regulator of the mRNA transcript itself as well as the translated product. Previously, we demonstrated that Chinese-hamster ovary-K1 cells stably expressing angiotensin receptor subtypes (AT(1A)) with and without 3'-UTR differed in AT(1A) mRNA content and its coupling with intracellular signalling pathways. Moreover, RNA mobility-shift assay and UV cross-linking studies using the AT(1A) 3'-UTR probe identified a major mRNA-binding protein complex of 55 kDa in Chinese-hamster ovary-K1 cells. In the present study, we have determined the functional significance of the native AT(1A) receptor 3'-UTR in rat liver epithelial (WB) cell lines by co-expressing the AT(1A) 3'-UTR sequence 'decoy' to compete with the native receptor 3'-UTR for its mRNA-binding proteins. PCR analysis using specific primers for the AT(1A) receptor and [(125)I]angiotensin II (AngII)-binding studies demonstrated the expression of the native AT(1A) receptors in WB (B(max)=2.7 pmol/mg of protein, K(d)=0.56 nM). Northern-blot analysis showed a significant increase in native receptor mRNA expression in 3'-UTR decoy-expressing cells, confirming the role of 3'-UTR in mRNA destabilization. Compared with vehicle control, AngII induced DNA and protein synthesis in wild-type WB as measured by [(3)H]thymidine and [(3)H]leucine incorporation respectively. Activation of [(3)H]thymidine and [(3)H]leucine correlated with a significant increase in cell number (cellular hyperplasia). In these cells, AngII stimulated GTPase activity by AT(1) receptor coupling with G-protein alpha i. We also delineated that functional coupling of AT(1A) receptor with G-protein alpha i is an essential mechanism for AngII-mediated cellular hyperplasia in WB by specifically blocking G-protein alpha i activation. In contrast with wild-type cells, stable expression of the 3'-UTR 'decoy' produced AngII-stimulated protein synthesis and cellular hypertrophy as demonstrated by a significant increase in [(3)H]leucine incorporation and no increase in [(3)H]thymidine incorporation and cell number. Furthermore, [(125)I]AngII cross-linking and immunoprecipitation studies using specific G-protein alpha antibodies showed that in wild-type cells, the AT(1A) receptor coupled with G-protein alpha i, whereas in cells expressing the 3'-UTR 'decoy', the AT(1A) receptor coupled with G-protein alpha q. These findings indicate that the 3'-UTR-mediated changes in receptor function may be mediated in part by a switch from G-protein alpha i to G-protein alpha q coupling of the receptor. Our results suggest that the 3'-UTR-mediated post-transcriptional modification of the AT(1A) receptor is critical for regulating tissue-specific receptor functions.
Collapse
Affiliation(s)
- Thomas J Thekkumkara
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA.
| | | |
Collapse
|
22
|
Newton DC, Bevan SC, Choi S, Robb GB, Millar A, Wang Y, Marsden PA. Translational regulation of human neuronal nitric-oxide synthase by an alternatively spliced 5'-untranslated region leader exon. J Biol Chem 2003; 278:636-44. [PMID: 12403769 DOI: 10.1074/jbc.m209988200] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Expression of the neuronal nitric-oxide synthase (nNOS) mRNA is subject to complex cell-specific transcriptional regulation, which is mediated by alternative promoters. Unexpectedly, we identified a 89-nucleotide alternatively spliced exon located in the 5'-untranslated region between exon 1 variants and a common exon 2 that contains the translational initiation codon. Alternative splicing events that do not affect the open reading frame are distinctly uncommon in mammals; therefore, we assessed its functional relevance. Transient transfection of reporter RNAs performed in a variety of cell types revealed that this alternatively spliced exon acts as a potent translational repressor. Stably transfected cell lines confirmed that the alternatively spliced exon inhibited translation of the native nNOS open reading frame. Reverse transcription-PCR and RNase protection assays indicated that nNOS mRNAs containing this exon are common and expressed in both a promoter-specific and tissue-restricted fashion. Mutational analysis identified the functional cis-element within this novel exon, and a secondary structure prediction revealed that it forms a putative stem-loop. RNA electrophoretic mobility shift assay techniques revealed that a specific cytoplasmic RNA-binding complex interacts with this motif. Hence, a unique splicing event within a 5'-untranslated region is demonstrated to introduce a translational control element. This represents a newer model for the translational control of a mammalian mRNA.
Collapse
Affiliation(s)
- Derek C Newton
- Renal Division and the Department of Medicine, St. Michael's Hospital and University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | | | | | | | | | | | | |
Collapse
|
23
|
Apletalina EV, Li HC, Waxman DJ. Evaluation of thyroid hormone effects on liver P450 reductase translation. Arch Biochem Biophys 2003; 409:172-9. [PMID: 12464256 DOI: 10.1016/s0003-9861(02)00417-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The expression of NADPH cytochrome P450 oxidoreductase (P450R) in rat liver is positively regulated by thyroid hormone (T3), at both the transcriptional and post-transcriptional levels. Here we investigate the effects of T3-induced hyperthyroidism on the regulation of P450R protein synthesis. T3 treatment of adult male rats led to a strong induction (up to approximately 10-fold) of liver P450R mRNA but little or no change in P450R protein and activity. Investigation of this discrepancy revealed that the association of hepatic P450R mRNA with polysomes was not altered by T3 treatment, suggesting that the discoordinate changes in P450R mRNA and protein levels do not reflect decreased recruitment of T3-induced P450R mRNA into polysomes. Moreover, polysome size distribution analysis of P450R mRNA did not show any T3-dependent changes. When assayed in an in vitro translation system, T3-induced and uninduced P450R mRNAs were translated with similar efficiencies. Moreover, liver cell extract from T3-treated rats did not selectively inhibit in vitro translation of T3-induced P450R mRNA. Thus, neither structural changes in P450R mRNA nor trans-acting binding proteins in liver cytosol were found to control translation of P450R mRNA in response to T3 treatment. Taken together, these data suggest that P450R may in part be regulated at the level of protein stability in hyperthyroid rat liver.
Collapse
|
24
|
Ranganathan G, Phan D, Pokrovskaya ID, McEwen JE, Li C, Kern PA. The translational regulation of lipoprotein lipase by epinephrine involves an RNA binding complex including the catalytic subunit of protein kinase A. J Biol Chem 2002; 277:43281-7. [PMID: 12218046 DOI: 10.1074/jbc.m202560200] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The balance of lipid flux in adipocytes is controlled by the opposing actions of lipolysis and lipogenesis, which are controlled primarily by hormone-sensitive lipase and lipoprotein lipase (LPL), respectively. Catecholamines stimulate adipocyte lipolysis through reversible phosphorylation of hormone-sensitive lipase, and simultaneously inhibit LPL activity. However, LPL regulation is complex and previous studies have described translational regulation of LPL in response to catecholamines because of an RNA-binding protein that interacts with the 3'-untranslated region of LPL mRNA. In this study, we identified several protein components of an LPL RNA binding complex. Using an LPL RNA affinity column, we identified two of the RNA-binding proteins as the catalytic (C) subunit of cAMP-dependent protein kinase (PKA), and A kinase anchoring protein (AKAP) 121/149, one of the PKA anchoring proteins, which has known RNA binding activity. To determine whether the C subunit was involved in LPL translation inhibition, the C subunit was depleted from the cytoplasmic extract of epinephrine-stimulated adipocytes by immunoprecipitation. This resulted in the loss of LPL translation inhibition activity of the extract, along with decreased RNA binding activity in a gel shift assay. To demonstrate the importance of the AKAPs, inhibition of PKA-AKAP binding with a peptide competitor (HT31) prevented epinephrine-mediated inhibition of LPL translation. C subunit kinase activity was necessary for LPL RNA binding and translation inhibition, suggesting that the phosphorylation of AKAP121/149 or other proteins was an important part of RNA binding complex formation. The hormonal activation of PKA results in the reversible phosphorylation of hormone-sensitive lipase, which is the primary mediator of adipocyte lipolysis. These studies demonstrate a dual role for PKA to simultaneously inhibit LPL-mediated lipogenesis through inhibition of LPL translation.
Collapse
Affiliation(s)
- Gouri Ranganathan
- Central Arkansas Veterans HealthCare System, and Department of Medicine, Division of Endocrinology, and the Department of Geriatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, USA
| | | | | | | | | | | |
Collapse
|
25
|
Ranganathan G, Song W, Dean N, Monia B, Barger SW, Kern PA. Regulation of lipoprotein lipase by protein kinase C alpha in 3T3-F442A adipocytes. J Biol Chem 2002; 277:38669-75. [PMID: 12149272 DOI: 10.1074/jbc.m206917200] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Lipoprotein lipase (LPL) is an important enzyme in adipocyte and lipid metabolism with complex cellular regulation. Previous studies demonstrated an inhibition of LPL activity and synthesis following depletion of protein kinase C (PKC) isoforms with long term treatment of 3T3-F442A adipocytes with 12-O-tetradecanoylphorbol-13-acetate. To identify the specific PKC isoforms involved, we treated cells with antisense oligonucleotides that block expression of specific PKC isoforms. An antisense oligonucleotide to PKC alpha inhibited LPL activity by 78 +/- 8%, whereas antisense oligonucleotides directed against PKC delta or PKC epsilon had no effect on LPL activity. The change in LPL activity was maximal at 72 h and was accompanied by a decrease in LPL protein and LPL synthetic rate but no change in LPL mRNA, suggesting regulation at the level of translation. However, PKC depletion resulted in no change in the polysome profile, indicating that translation initiation was not affected. However, the addition of cytoplasmic extracts from adipocytes treated with 12-O-tetradecanoylphorbol-13-acetate or PKC alpha antisense oligomers inhibited LPL translation in vitro. This inhibition of LPL translation in vitro was lost when the LPL mRNA transcript did not contain nucleotides 1599-3200, thus implicating the 3'-untranslated region of LPL in the regulation of translation by PKC depletion. Both LPL activity and Raf1 activity were decreased in parallel following depletion of either total PKC or specific inhibition of PKC alpha. An antisense oligonucleotide to RAF1, which inhibited RAF1 activity, also inhibited LPL activity by 48 +/- 10%, and this decrease in LPL activity was not accompanied by a change in LPL mRNA. Cells were treated with U0126, a specific inhibitor of the ERK-activating kinases MEK1 and MEK2. Although U0126 inhibited ERK1 and ERK2 phosphorylation, U0126 had no effect on LPL activity, indicating that MEK/ERK pathways were not involved in this mechanism of LPL regulation. Together, these data indicate that PKC alpha and RAF1 are important in the translational regulation of LPL in adipocytes and that the mechanism of regulation is probably through an ERK-independent pathway.
Collapse
Affiliation(s)
- Gouri Ranganathan
- Central Arkansas Veterans HealthCare System and Department of Medicine, Division of Endocrinology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, USA.
| | | | | | | | | | | |
Collapse
|
26
|
Preiss-Landl K, Zimmermann R, Hämmerle G, Zechner R. Lipoprotein lipase: the regulation of tissue specific expression and its role in lipid and energy metabolism. Curr Opin Lipidol 2002; 13:471-81. [PMID: 12352010 DOI: 10.1097/00041433-200210000-00002] [Citation(s) in RCA: 175] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
PURPOSE OF REVIEW The aim of this review is to summarize and discuss recent advances in the understanding of the physiological role of lipoprotein lipase in lipid and energy metabolism. RECENT FINDINGS Studies on the transcriptional and the posttranscriptional level of lipoprotein lipase expression have provided new insights into the complex mechanisms that are involved in the regulation of the enzyme. Additionally a large body of evidence from both human studies and animal models suggests that the level of lipoprotein lipase expression in a given tissue is the rate limiting process for the uptake of triglyceride derived fatty acids. Imbalances in the partitioning of fatty acids among peripheral tissues have major metabolic consequences. For example, in mice both decreased lipoprotein lipase activities in adipose tissue and increased activity in muscle are associated with resistance to obesity; lack of lipoprotein lipase activity in macrophages is correlated with a decreased susceptibility to develop atherosclerotic lesions and overexpression of the enzyme in muscle is associated with increased blood glucose levels and insulin resistance. SUMMARY Considering the central role of lipoprotein lipase in energy metabolism it is a reasonable goal to discover and develop new drugs that affect the tissue specific expression pattern of the enzyme.
Collapse
Affiliation(s)
- Karina Preiss-Landl
- Institute of Molecular Bioloogy, Biochemistry and Microbiology, Karl-Frasnzens-University, Graz, Heinrichstrasse 31a, A-8010 Graz, Austria
| | | | | | | |
Collapse
|