1
|
Chen HH, Yu HI, Chang JJS, Li CW, Yang MH, Hung MC, Tarn WY. DDX3 regulates cancer immune surveillance via 3' UTR-mediated cell-surface expression of PD-L1. Cell Rep 2024; 43:113937. [PMID: 38489268 DOI: 10.1016/j.celrep.2024.113937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 02/06/2024] [Accepted: 02/23/2024] [Indexed: 03/17/2024] Open
Abstract
Programmed death-1 (PD-1)/PD ligand-1 (PD-L1)-mediated immune escape contributes to cancer development and has been targeted as an anti-cancer strategy. Here, we show that inhibition of the RNA helicase DDX3 increased CD8+ T cell infiltration in syngeneic oral squamous cell carcinoma tumors. DDX3 knockdown compromised interferon-γ-induced PD-L1 expression and, in particular, reduced the level of cell-surface PD-L1. DDX3 promoted surface PD-L1 expression by recruiting the adaptor protein 2 (AP2) complex to the 3' UTR of PD-L1 mRNA. DDX3 depletion or 3' UTR truncation increased the binding of the coatomer protein complexes to PD-L1, leading to its intracellular accumulation. Therefore, this 3' UTR-dependent mechanism may counteract cellular negative effects on surface trafficking of PD-L1. Finally, pharmaceutic disruption of DDX3's interaction with AP2 reduced surface PD-L1 expression, supporting that the DDX3-AP2 pathway routes PD-L1 to the cell surface. Targeting DDX3 to modulate surface trafficking of immune checkpoint proteins may provide a potential strategy for cancer immunotherapy.
Collapse
Affiliation(s)
- Hung-Hsi Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Hsin-I Yu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | | | - Chia-Wei Li
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Muh-Hwa Yang
- Institute of Clinical Medicine, School of Medicine, National Yang-Ming Chao-Tung University, Taipei, Taiwan
| | - Mien-Chie Hung
- Graduate Institute of Biomedical Sciences, Research Center for Cancer Biology and Center for Molecular Medicine, China Medical University, Taichung, Taiwan
| | - Woan-Yuh Tarn
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.
| |
Collapse
|
2
|
Isenberg JS, Montero E. Tolerating CD47. Clin Transl Med 2024; 14:e1584. [PMID: 38362603 PMCID: PMC10870051 DOI: 10.1002/ctm2.1584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 01/22/2024] [Accepted: 01/30/2024] [Indexed: 02/17/2024] Open
Abstract
Cluster of differentiation 47 (CD47) occupies the outer membrane of human cells, where it binds to soluble and cell surface receptors on the same and other cells, sculpting their topography and resulting in a pleiotropic receptor-multiligand interaction network. It is a focus of drug development to temper and accentuate CD47-driven immune cell liaisons, although consideration of on-target CD47 effects remain neglected. And yet, a late clinical trial of a CD47-blocking antibody was discontinued, existent trials were restrained, and development of CD47-targeting agents halted by some pharmaceutical companies. At this point, if CD47 can be exploited for clinical advantage remains to be determined. Herein an airing is made of the seemingly conflicting actions of CD47 that reflect its position as a junction connecting receptors and signalling pathways that impact numerous human cell types. Prospects of CD47 boosting and blocking are considered along with potential therapeutic implications for autoimmune diseases and cancer.
Collapse
Affiliation(s)
- Jeffrey S. Isenberg
- Department of Diabetes Complications & MetabolismArthur Riggs Diabetes & Metabolism Research InstituteCity of Hope National Medical CenterDuarteCaliforniaUSA
| | - Enrique Montero
- Department of Molecular & Cellular EndocrinologyArthur Riggs Diabetes & Metabolism Research InstituteCity of Hope National Medical CenterDuarteCaliforniaUSA
| |
Collapse
|
3
|
Chen H, Yang Y, Deng Y, Wei F, Zhao Q, Liu Y, Liu Z, Yu B, Huang Z. Delivery of CD47 blocker SIRPα-Fc by CAR-T cells enhances antitumor efficacy. J Immunother Cancer 2022; 10:jitc-2021-003737. [PMID: 35110357 PMCID: PMC8811602 DOI: 10.1136/jitc-2021-003737] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/08/2022] [Indexed: 12/14/2022] Open
Abstract
Background Chimeric antigen receptor (CAR) T cell therapy has been successfully applied in treating lymphoma malignancies, but not in solid tumors. CD47 is highly expressed on tumor cells and its overexpression is believed to inhibit phagocytosis by macrophages and dendritic cells. Given the antitumor activity against preclinical model of CD47-blocking to induce the innate and adaptive immune system in the tumor microenvironment, here we developed a CAR-T cell secreting CD47 blocker signal regulatory protein α (SIRPα)-Fc fusion protein (Sirf CAR-T) to boost CAR-T cell therapeutic effect in solid tumor therapy. Methods Murine T cells were transduced to express a conventional anti-Trop2 CAR and Sirf CAR. The expression of SIRPα-Fc fusion protein in the supernatant of CAR-T cells and its effect on macrophage phagocytosis were tested in vitro. In vivo antitumor efficacy of CAR-T cells was evaluated in immunocompetent mice and analysis of the tumor microenvironment in the tumor-bearing mice was performed. Results We found that Sirf CAR-T cells dramatically decreased tumor burden and significantly prolonged survival in several syngeneic immunocompetent tumor models. Furthermore, we found that Sirf CAR-T cells induced more central memory T cells (TCM) and improved the persistence of CAR-T cells in tumor tissue, as well as decreased PD-1 expression on the CAR-T cell surface. In addition, we demonstrated that Sirf CAR-T cells could modulate the tumor microenvironment by decreasing myeloid-derived stem cells as well as increasing CD11c+ dendritic cells and M1-type macrophages in tumor tissue. Conclusions In summary, our findings indicate that CD47 blocker SIRPα-Fc enhances the antitumor efficacy of CAR-T cells and propose to block CD47/SIRPα signaling effect on CAR-T cells function, which could provide a new strategy for successful cancer immunotherapy by rationalizing combination of CD47 blocker and CAR-T cell therapy.
Collapse
Affiliation(s)
- Huanpeng Chen
- BioResource Research Center, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China.,Institute of Human Virology, Sun Yat-sen University Zhongshan School of Medicine, Guangzhou, Guangdong, China
| | - Yuying Yang
- Institute of Human Virology, Sun Yat-sen University Zhongshan School of Medicine, Guangzhou, Guangdong, China.,Key Laboratory of Tropical Disease Control, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Yuqing Deng
- Faculty of Science, Monash University, Clayton, Victoria, Australia
| | - Fengjiao Wei
- Institute of Human Virology, Sun Yat-sen University Zhongshan School of Medicine, Guangzhou, Guangdong, China.,Key Laboratory of Tropical Disease Control, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Qingyu Zhao
- ICU, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Yongqi Liu
- Laboratory Animal Center, South China Agricultural University, Guangzhou, Guangdong, China
| | - Zhonghua Liu
- Laboratory Animal Center, South China Agricultural University, Guangzhou, Guangdong, China
| | - Bolan Yu
- BioResource Research Center, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Zhaofeng Huang
- Institute of Human Virology, Sun Yat-sen University Zhongshan School of Medicine, Guangzhou, Guangdong, China .,Key Laboratory of Tropical Disease Control, Sun Yat-Sen University, Guangzhou, Guangdong, China
| |
Collapse
|
4
|
Lin WC, Gowdy KM, Madenspacher JH, Zemans RL, Yamamoto K, Lyons-Cohen M, Nakano H, Janardhan K, Williams CJ, Cook DN, Mizgerd JP, Fessler MB. Epithelial membrane protein 2 governs transepithelial migration of neutrophils into the airspace. J Clin Invest 2020; 130:157-170. [PMID: 31550239 DOI: 10.1172/jci127144] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 09/18/2019] [Indexed: 02/06/2023] Open
Abstract
Whether respiratory epithelial cells regulate the final transit of extravasated neutrophils into the inflamed airspace or are a passive barrier is poorly understood. Alveolar epithelial type 1 (AT1) cells, best known for solute transport and gas exchange, have few established immune roles. Epithelial membrane protein 2 (EMP2), a tetraspan protein that promotes recruitment of integrins to lipid rafts, is highly expressed in AT1 cells but has no known function in lung biology. Here, we show that Emp2-/- mice exhibit reduced neutrophil influx into the airspace after a wide range of inhaled exposures. During bacterial pneumonia, Emp2-/- mice had attenuated neutrophilic lung injury and improved survival. Bone marrow chimeras, intravital neutrophil labeling, and in vitro assays suggested that defective transepithelial migration of neutrophils into the alveolar lumen occurs in Emp2-/- lungs. Emp2-/- AT1 cells had dysregulated surface display of multiple adhesion molecules, associated with reduced raft abundance. Epithelial raft abundance was dependent upon putative cholesterol-binding motifs in EMP2, whereas EMP2 supported adhesion molecule display and neutrophil transmigration through suppression of caveolins. Taken together, we propose that EMP2-dependent membrane organization ensures proper display on AT1 cells of a suite of proteins required to instruct paracellular neutrophil traffic into the alveolus.
Collapse
Affiliation(s)
- Wan-Chi Lin
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | - Kymberly M Gowdy
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | - Jennifer H Madenspacher
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | - Rachel L Zemans
- Department of Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Kazuko Yamamoto
- Pulmonary Center, Boston University School of Medicine, Boston, Massachusetts, USA.,Second Department of Internal Medicine, Nagasaki University Hospital, Nagasaki, Japan.,Department of Clinical Research Center, National Hospital Organization Nagasaki Medical Center, Omura, Japan
| | - Miranda Lyons-Cohen
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | - Hideki Nakano
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | - Kyathanahalli Janardhan
- Cellular & Molecular Pathology Branch, National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA.,Integrated Laboratory Systems Inc., Research Triangle Park, North Carolina, USA
| | - Carmen J Williams
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | - Donald N Cook
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | - Joseph P Mizgerd
- Pulmonary Center, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Michael B Fessler
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| |
Collapse
|
5
|
Mordue KE, Hawley BR, Satchwell TJ, Toye AM. CD47 surface stability is sensitive to actin disruption prior to inclusion within the band 3 macrocomplex. Sci Rep 2017; 7:2246. [PMID: 28533511 PMCID: PMC5440412 DOI: 10.1038/s41598-017-02356-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 04/10/2017] [Indexed: 02/04/2023] Open
Abstract
CD47 is an important 'marker of self' protein with multiple isoforms produced though alternative splicing that exhibit tissue-specific expression. Mature erythrocytes express CD47 isoform 2 only, with membrane stability of this version dependent on inclusion within the band 3 macrocomplex, via protein 4.2. At present a paucity of information exists regarding the associations and trafficking of the CD47 isoforms during erythropoiesis. We show that CD47 isoform 2 is the predominant version maintained at the surface of expanding and terminally differentiating erythroblasts. CD47 isoforms 3 and 4 are expressed in all cell types tested except mature erythrocytes, but do not reach the plasma membrane in erythroblasts and are degraded by the orthochromatic stage of differentiation. To identify putative CD47 interactants, immunoprecipitation combined with Nano LC-MS/MS mass spectrometry was conducted on the erythroleukaemic K562 cell line, expanding and terminally differentiating primary erythroblasts and mature erythrocytes. Results indicate that prior to incorporation into the band 3 macrocomplex, CD47 associates with actin-binding proteins and we confirm that CD47 membrane stability is sensitive to actin disrupting drugs. Maintenance of CD47 at the cell surface was also influenced by dynamin, with sensitivity to dynamin disruption prolonged relative to that of actin during erythropoiesis.
Collapse
Affiliation(s)
- Kathryn E Mordue
- School of Biochemistry, Biomedical Sciences Building, University Walk, Bristol, BS8 1TD, United Kingdom
- Bristol Institute of Transfusion Sciences, NHSBT, Filton, BS34 7QH, United Kingdom
| | - Bethan R Hawley
- School of Biochemistry, Biomedical Sciences Building, University Walk, Bristol, BS8 1TD, United Kingdom
- Bristol Institute of Transfusion Sciences, NHSBT, Filton, BS34 7QH, United Kingdom
- National Institute for Health Research (NIHR) Blood and Transplant Unit in Red Blood Cell Products at the University of Bristol, Bristol, BS8 1TD, United Kingdom
| | - Timothy J Satchwell
- School of Biochemistry, Biomedical Sciences Building, University Walk, Bristol, BS8 1TD, United Kingdom
- Bristol Institute of Transfusion Sciences, NHSBT, Filton, BS34 7QH, United Kingdom
- National Institute for Health Research (NIHR) Blood and Transplant Unit in Red Blood Cell Products at the University of Bristol, Bristol, BS8 1TD, United Kingdom
| | - Ashley M Toye
- School of Biochemistry, Biomedical Sciences Building, University Walk, Bristol, BS8 1TD, United Kingdom.
- Bristol Institute of Transfusion Sciences, NHSBT, Filton, BS34 7QH, United Kingdom.
- National Institute for Health Research (NIHR) Blood and Transplant Unit in Red Blood Cell Products at the University of Bristol, Bristol, BS8 1TD, United Kingdom.
| |
Collapse
|
6
|
Soto-Pantoja DR, Kaur S, Roberts DD. CD47 signaling pathways controlling cellular differentiation and responses to stress. Crit Rev Biochem Mol Biol 2015; 50:212-30. [PMID: 25708195 DOI: 10.3109/10409238.2015.1014024] [Citation(s) in RCA: 131] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
CD47 is a widely expressed integral membrane protein that serves as the counter-receptor for the inhibitory phagocyte receptor signal-regulatory protein-α (SIRPα) and as a signaling receptor for the secreted matricellular protein thrombospondin-1. Recent studies employing mice and somatic cells lacking CD47 have revealed important pathophysiological functions of CD47 in cardiovascular homeostasis, immune regulation, resistance of cells and tissues to stress and chronic diseases of aging including cancer. With the emergence of experimental therapeutics targeting CD47, a more thorough understanding of CD47 signal transduction is essential. CD47 lacks a substantial cytoplasmic signaling domain, but several cytoplasmic binding partners have been identified, and lateral interactions of CD47 with other membrane receptors play important roles in mediating signaling resulting from the binding of thrombospondin-1. This review addresses recent advances in identifying the lateral binding partners, signal transduction pathways and downstream transcription networks regulated through CD47 in specific cell lineages. Major pathways regulated by CD47 signaling include calcium homeostasis, cyclic nucleotide signaling, nitric oxide and hydrogen sulfide biosynthesis and signaling and stem cell transcription factors. These pathways and other undefined proximal mediators of CD47 signaling regulate cell death and protective autophagy responses, mitochondrial biogenesis, cell adhesion and motility and stem cell self-renewal. Although thrombospondin-1 is the best characterized agonist of CD47, the potential roles of other members of the thrombospondin family, SIRPα and SIRPγ binding and homotypic CD47 interactions as agonists or antagonists of signaling through CD47 should also be considered.
Collapse
Affiliation(s)
- David R Soto-Pantoja
- a Laboratory of Pathology , Center for Cancer Research, National Cancer Institute, National Institutes of Health , Bethesda , MD , USA
| | | | | |
Collapse
|
7
|
Wong ASL, Mortin-Toth S, Sung M, Canty AJ, Gulban O, Greaves DR, Danska JS. Polymorphism in the innate immune receptor SIRPα controls CD47 binding and autoimmunity in the nonobese diabetic mouse. THE JOURNAL OF IMMUNOLOGY 2014; 193:4833-44. [PMID: 25305319 DOI: 10.4049/jimmunol.1401984] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The signal regulatory protein (SIRP) locus encodes a family of paired receptors that mediate both activating and inhibitory signals and is associated with type 1 diabetes (T1D) risk. The NOD mouse model recapitulates multiple features of human T1D and enables mechanistic analysis of the impact of genetic variations on disease. In this study, we identify Sirpa encoding an inhibitory receptor on myeloid cells as a gene in the insulin-dependent diabetes locus 13.2 (Idd13.2) that drives islet inflammation and T1D. Compared to T1D-resistant strains, the NOD variant of SIRPα displayed greater binding to its ligand CD47, as well as enhanced T cell proliferation and diabetogenic potency. Myeloid cell-restricted expression of a Sirpa transgene accelerated disease in a dose-dependent manner and displayed genetic and functional interaction with the Idd5 locus to potentiate insulitis progression. Our study demonstrates that variations in both SIRPα sequence and expression level modulate T1D immunopathogenesis. Thus, we identify Sirpa as a T1D risk gene and provide insight into the complex mechanisms by which disease-associated variants act in concert to drive defined stages in disease progression.
Collapse
Affiliation(s)
- Andrea Sut Ling Wong
- Department of Immunology, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S1A8, Canada; Program in Genetics and Genome Biology, The Hospital for Sick Children Research Institute, Toronto, Ontario M5G1X8, Canada
| | - Steven Mortin-Toth
- Program in Genetics and Genome Biology, The Hospital for Sick Children Research Institute, Toronto, Ontario M5G1X8, Canada
| | - Michael Sung
- Program in Genetics and Genome Biology, The Hospital for Sick Children Research Institute, Toronto, Ontario M5G1X8, Canada
| | - Angelo J Canty
- Department of Mathematics and Statistics, McMaster University, Hamilton, Ontario L8S4L8, Canada
| | - Omid Gulban
- Program in Genetics and Genome Biology, The Hospital for Sick Children Research Institute, Toronto, Ontario M5G1X8, Canada
| | - David R Greaves
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX13RE, United Kingdom; and
| | - Jayne S Danska
- Department of Immunology, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S1A8, Canada; Program in Genetics and Genome Biology, The Hospital for Sick Children Research Institute, Toronto, Ontario M5G1X8, Canada; Department of Medical Biophysics, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S1A8, Canada
| |
Collapse
|
8
|
Bergström SE, Bergdahl E, Sundqvist KG. A cytokine-controlled mechanism for integrated regulation of T-lymphocyte motility, adhesion and activation. Immunology 2014; 140:441-55. [PMID: 23866045 DOI: 10.1111/imm.12154] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Revised: 07/04/2013] [Accepted: 07/14/2013] [Indexed: 12/15/2022] Open
Abstract
The co-ordination of T-cell motility, adhesion and activation remains poorly understood. It is also unclear how these functions are co-ordinated with external stimuli. Here we unveil a series of molecular interactions in cis at the surface of T lymphocytes with potent effects on motility and adhesion in these cells, and communicating with proliferative responses. These interactions were controlled by the signature cytokines of T helper subsets interleukin-2 (IL-2) and IL-4. Low-density lipoprotein receptor-related protein 1 (LRP1) was found to play a key role for T-cell motility by promoting development of polarized cell shape and cell movement. Endogenous thrombospondin-1 (TSP-1) enhanced cell surface expression of LRP1 through CD47. Cell surface expressed LRP1 induced motility and processing of TSP-1 while inhibiting adhesion to intercellular adhesion molecule 1 and fibronectin. Interleukin-2, but not IL-4, stimulated synthesis of TSP-1 and motility through TSP-1 and LRP1. Stimulation of the T-cell receptor (TCR)/CD3 complex inhibited TSP-1 expression. Inhibitor studies indicated that LRP1 regulated TSP-1 expression and promoted motility through JAK signalling. This LRP1-mediated motogenic signalling was connected to CD47/Gi protein signalling and IL-2-induced signalling through TSP-1. The motogenic TSP-1/LRP1 mechanism antagonized TCR/CD3-induced T-cell proliferation. These results indicate that LRP1 in collaboration with TSP-1 directs a counter-adhesive and counter-proliferative motogenic cascade. T cells seem programmed to prioritize movement before adhesion through this cascade. In conclusion, vital decision-making in T lymphocytes regulating motility, adhesive interactions and proliferation, are integrated through a molecular mechanism connecting different cell surface receptors and their signalling pathways.
Collapse
Affiliation(s)
- Sten-Erik Bergström
- Department of Medicine, Karolinska Institute, Huddinge, Sweden; Division of Clinical Immunology, Division of Therapeutic Immunology, Department of Laboratory Medicine, Karolinska Institute, Stockholm, Sweden; Astrid Lindgren Children's Hospital, Karolinska University Hospital, Stockholm, Sweden
| | | | | |
Collapse
|
9
|
Martinelli R, Newton G, Carman CV, Greenwood J, Luscinskas FW. Novel role of CD47 in rat microvascular endothelium: signaling and regulation of T-cell transendothelial migration. Arterioscler Thromb Vasc Biol 2013; 33:2566-76. [PMID: 23990210 DOI: 10.1161/atvbaha.113.301903] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
OBJECTIVE Although endothelial CD47, a member of the immunoglobulin superfamily, has been implicated in leukocyte diapedesis, its capacity for intracellular signaling and physical localization during this process has not been addressed in detail. This study examined endothelial CD47 spatiotemporal behavior and signaling pathways involved in regulating T-cell transendothelial migration. APPROACH AND RESULTS By biochemical methods, transmigration assays, and live-cell microscopy techniques, we show that endothelial CD47 engagement results in intracellular calcium mobilization, increased permeability, and activation of Src and AKT1/phosphoinositide 3-kinase in brain microvascular endothelial cells. These signaling pathways converge to induce cytoskeleton remodeling and vascular endothelial cadherin phosphorylation, which are necessary steps during T-cell transendothelial migration. In addition, during T-cell migration, transmigratory cups and podo-prints enriched in CD47 appear on the surface of the endothelium, indicating that the spatial distribution of CD47 changes after its engagement. Consistent with previous findings of intercellular adhesion molecule 1, blockade of CD47 results in decreased T-cell transmigration across microvascular endothelium. The overlapping effect of intercellular adhesion molecule 1 and CD47 suggests their involvement in different steps of the diapedesis process. CONCLUSIONS These data reveal a novel role for CD47-mediated signaling in the control of the molecular network governing endothelial-dependent T-cell diapedesis.
Collapse
Affiliation(s)
- Roberta Martinelli
- From the Department of Pathology, Center for Excellence in Vascular Biology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA (R.M., G.N., F.W.L.); Department of Medicine, Center for Vascular Biology Research, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA (R.M., C.V.C.); and Department of Cell Biology, Institute of Ophthalmology, UCL, London, United Kingdom (R.M., J.G.)
| | | | | | | | | |
Collapse
|
10
|
CD47: A Cell Surface Glycoprotein Which Regulates Multiple Functions of Hematopoietic Cells in Health and Disease. ISRN HEMATOLOGY 2013; 2013:614619. [PMID: 23401787 PMCID: PMC3564380 DOI: 10.1155/2013/614619] [Citation(s) in RCA: 175] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Accepted: 11/19/2012] [Indexed: 12/22/2022]
Abstract
Interactions between cells and their surroundings are important for proper function and homeostasis in a multicellular organism. These interactions can either be established between the cells and molecules in their extracellular milieu, but also involve interactions between cells. In all these situations, proteins in the plasma membranes are critically involved to relay information obtained from the exterior of the cell. The cell surface glycoprotein CD47 (integrin-associated protein (IAP)) was first identified as an important regulator of integrin function, but later also was shown to function in ways that do not necessarily involve integrins. Ligation of CD47 can induce intracellular signaling resulting in cell activation or cell death depending on the exact context. By binding to another cell surface glycoprotein, signal regulatory protein alpha (SIRPα), CD47 can regulate the function of cells in the monocyte/macrophage lineage. In this spotlight paper, several functions of CD47 will be reviewed, although some functions may be more briefly mentioned. Focus will be on the ways CD47 regulates hematopoietic cells and functions such as CD47 signaling, induction of apoptosis, and regulation of phagocytosis or cell-cell fusion.
Collapse
|
11
|
Van VQ, Baba N, Rubio M, Wakahara K, Panzini B, Richard C, Soucy G, Franchimont D, Fortin G, Torres ACM, Cabon L, Susin S, Sarfati M. CD47(low) status on CD4 effectors is necessary for the contraction/resolution of the immune response in humans and mice. PLoS One 2012; 7:e41972. [PMID: 22870271 PMCID: PMC3411572 DOI: 10.1371/journal.pone.0041972] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Accepted: 06/29/2012] [Indexed: 12/14/2022] Open
Abstract
How do effector CD4 T cells escape cell death during the contraction of the immune response (IR) remain largely unknown. CD47, through interactions with thrombospondin-1 (TSP-1) and SIRP-α, is implicated in cell death and phagocytosis of malignant cells. Here, we reported a reduction in SIRP-α-Fc binding to effector memory T cells (T(EM)) and in vitro TCR-activated human CD4 T cells that was linked to TSP-1/CD47-induced cell death. The reduced SIRP-α-Fc binding (CD47(low) status) was not detected when CD4 T cells were stained with two anti-CD47 mAbs, which recognize distinct epitopes. In contrast, increased SIRP-α-Fc binding (CD47(high) status) marked central memory T cells (T(CM)) as well as activated CD4 T cells exposed to IL-2, and correlated with resistance to TSP-1/CD47-mediated killing. Auto-aggressive CD4 effectors, which accumulated in lymph nodes and at mucosal sites of patients with Crohn's disease, displayed a CD47(high) status despite a high level of TSP-1 release in colonic tissues. In mice, CD47 (CD47(low) status) was required on antigen (Ag)-specific CD4 effectors for the contraction of the IR in vivo, as significantly lower numbers of Ag-specific CD47(+/+)CD4 T cells were recovered when compared to Ag-specific CD47(-/-) CD4 T cells. In conclusion, we demonstrate that a transient change in the status of CD47, i.e. from CD47(high) to CD47(low), on CD4 effectors regulates the decision-making process that leads to CD47-mediated cell death and contraction of the IR while maintenance of a CD47(high) status on tissue-destructive CD4 effectors prevents the resolution of the inflammatory response.
Collapse
Affiliation(s)
- Vu Quang Van
- Immunoregulation Laboratory, Centre Hospitalier de l’Université de Montréal, Research Center (CRCHUM), Notre-Dame Hospital, Montreal, Quebec, Canada
| | - Nobuyasu Baba
- Immunoregulation Laboratory, Centre Hospitalier de l’Université de Montréal, Research Center (CRCHUM), Notre-Dame Hospital, Montreal, Quebec, Canada
| | - Manuel Rubio
- Immunoregulation Laboratory, Centre Hospitalier de l’Université de Montréal, Research Center (CRCHUM), Notre-Dame Hospital, Montreal, Quebec, Canada
| | - Keiko Wakahara
- Immunoregulation Laboratory, Centre Hospitalier de l’Université de Montréal, Research Center (CRCHUM), Notre-Dame Hospital, Montreal, Quebec, Canada
| | - Benoit Panzini
- Department of Gastroenterology, Centre Hospitalier de l’Université de Montréal (CHUM), Notre-Dame Hospital, Montreal, Quebec, Canada
| | - Carole Richard
- Department of Digestive Tract Surgery, Centre Hospitalier de l’Université de Montréal (CHUM), Notre-Dame Hospital, Montreal, Quebec, Canada
| | - Genevieve Soucy
- Department of Pathology, Centre Hospitalier de l’Université de Montréal (CHUM), Notre-Dame Hospital, Montreal, Quebec, Canada
| | - Denis Franchimont
- Department de Gastroenterology, Erasme Hospital, Université Libre de Bruxelles (ULB), Bruxelles, Belgique
| | - Genevieve Fortin
- Research Institute of McGill University Health Centre, McGill University, Montreal, Quebec, Canada
| | - Ana Carolina Martinez Torres
- INSERM U872, Mort Cellulaire Programmée et Physiopathologie des Cellules Tumorales, Equipe 19, Centre de Recherche des Cordeliers, Paris, France
- Université Pierre et Marie Curie-Sorbonne Universités, UMRS 872, Paris, France
- Université Paris Descartes, Paris, France
| | - Lauriane Cabon
- INSERM U872, Mort Cellulaire Programmée et Physiopathologie des Cellules Tumorales, Equipe 19, Centre de Recherche des Cordeliers, Paris, France
- Université Pierre et Marie Curie-Sorbonne Universités, UMRS 872, Paris, France
- Université Paris Descartes, Paris, France
| | - Santos Susin
- INSERM U872, Mort Cellulaire Programmée et Physiopathologie des Cellules Tumorales, Equipe 19, Centre de Recherche des Cordeliers, Paris, France
- Université Pierre et Marie Curie-Sorbonne Universités, UMRS 872, Paris, France
- Université Paris Descartes, Paris, France
| | - Marika Sarfati
- Immunoregulation Laboratory, Centre Hospitalier de l’Université de Montréal, Research Center (CRCHUM), Notre-Dame Hospital, Montreal, Quebec, Canada
| |
Collapse
|
12
|
Azuma Y, Nakagawa H, Dote K, Higai K, Matsumoto K. Decreases in CD31 and CD47 levels on the cell surface during etoposide-induced Jurkat cell apoptosis. Biol Pharm Bull 2012; 34:1828-34. [PMID: 22130238 DOI: 10.1248/bpb.34.1828] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Engulfment of apoptotic cells is regulated by 'eat me' and 'don't eat me' signals on the cell surface. Alterations to the 'eat me' signals have been well described; however, very little is known about the 'don't eat me' signals on the cell surface during apoptosis. In the present study, apoptosis of Jurkat cells was induced by treatment with topoisomerase II inhibitor etoposide, and then the CD31 and CD47 levels on the apoptotic cell surface and in microparticles were estimated by flow cytometry and immunoblotting methods in the presence of caspase, metalloproteinase, and Rho-associated coiled-coil containing protein kinase 1 (ROCK1) inhibitors. The CD31 and CD47 levels on the cell surface of apoptotic Jurkat cells had decreased after treatment with etoposide. These decreases in CD31 and CD47 levels on the apoptotic cell surface were almost completely suppressed by the caspase 3 inhibitor, Ac-DEVD-CHO, and partially suppressed by caspase 8 (Ac-IETD-CHO) and caspase 9 (Ac-LEHE-CHO) inhibitors but not by the metalloproteinase inhibitors GM6001 and TAPI-0. Microparticle counts in culture supernatants were higher during etoposide-induced apoptosis. The ROCK1 inhibitor, Y27632, suppressed blebbing formation and microparticle release. Moreover, flow cytometry and immunoblotting revealed CD31 and CD47 in the microparticles. These results indicate that CD31 and CD47 were released by the apoptotic Jurkat cells into the culture supernatant in microparticles, but not in soluble forms, resulting in decreased levels on the apoptotic cell surface.
Collapse
Affiliation(s)
- Yutaro Azuma
- Department of Clinical Chemistry, Faculty of Pharmaceutical Sciences, Toho University, Funabashi, Chiba, Japan.
| | | | | | | | | |
Collapse
|
13
|
Sick E, Boukhari A, Deramaudt T, Rondé P, Bucher B, André P, Gies JP, Takeda K. Activation of CD47 receptors causes proliferation of human astrocytoma but not normal astrocytes via an Akt-dependent pathway. Glia 2011; 59:308-19. [PMID: 21125662 DOI: 10.1002/glia.21102] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
CD47 is a membrane receptor that plays pivotal roles in many pathophysiological processes, including infection, inflammation, cell spreading, proliferation, and apoptosis. We show that activation of CD47 increases proliferation of human U87 and U373 astrocytoma cells but not normal astrocytes. CD47 function-blocking antibodies inhibit proliferation of untreated U87 and U373 cells but not normal astrocytes, suggesting that CD47 may be constitutively activated in astrocytoma. CD47 expression levels were similar in our three cell types. CD47 couples to G-proteins in astrocytes and astrocytoma and especially to the Gβγ dimer. Downstream signaling following CD47 activation involves Gβγ dimer-dependent activation of the PI3K/Akt pathway in astrocytoma cells but not in normal astrocytes. This pathway is known to be deregulated in astrocytoma, leading to cell proliferation and enhanced survival signals. Putative PLIC-1 interaction with CD47 in astrocytoma cells but not astrocytes may contribute to the proliferative effect observed upon activation of CD47. Our data indicate that CD47 receptors have a stimulatory role in cell proliferation and demonstrate for the first time that CD47 signals via the PI3K/Akt pathway in cancerous cells but not normal cells.
Collapse
Affiliation(s)
- Emilie Sick
- Université de Strasbourg, CNRS UMR 7213-Pharmacologie, Faculté de Pharmacie, 74 rte du Rhin, Illkirch, France.
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Barbier S, Chatre L, Bras M, Sancho P, Roué G, Virely C, Yuste VJ, Baudet S, Rubio M, Esquerda JE, Sarfati M, Merle-Béral H, Susin SA. Caspase-independent type III programmed cell death in chronic lymphocytic leukemia: the key role of the F-actin cytoskeleton. Haematologica 2009; 94:507-17. [PMID: 19278964 DOI: 10.3324/haematol.13690] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Programmed cell death has been traditionally related with caspase activation. However, it is now accepted that caspase-independent forms of programmed cell death also regulate cell death. In chronic lymphocytic leukemia, CD47 ligation induces one of these alternative forms of cell death: type III programmed cell death. This poorly understood process is characterized by cytoplasmic hallmarks, such as mitochondrial damage. To gain insights into the molecular pathways regulating type III programmed cell death in chronic lymphocytic leukemia, we performed extensive biochemical and cell biology assessments. DESIGN AND METHODS After CD47 triggering, purified B-cells from 20 patients with chronic lymphocytic leukemia were studied by flow cytometry, immunofluorescence and three-dimensional imaging, immunoblotting, electron microscopy, and fibrillar/globular actin measurements. Finally, we subjected CD47-treated chronic lymphocytic leukemia cells to a phagocytosis assay. RESULTS We first confirmed that induction of type III programmed cell death is an efficient means of triggering cell death in chronic lymphocytic leukemia. Further, we demonstrated that the signaling events induced by CD47 ligation provoked a reduction in cell size. This alteration is related to F-actin disruption, as the two other cytoskeleton networks, microtubules and intermediate filaments, remain undisturbed in type III programmed cell death. Strikingly, we revealed that the pharmacological modulation of F-actin dynamics regulated this type of death. Finally, our data delineated a new programmed cell death pathway in chronic lymphocytic leukemia initiated by CD47 triggering, and followed by serine protease activation, F-actin rearrangement, mitochondrial damage, phosphatidylserine exposure, and cell clearance. CONCLUSIONS Our work reveals a key molecular tool in the modulation of cell death in chronic lymphocytic leukemia: F-actin. By assessing the regulation of F-actin and type III programmed cell death, this analysis provides new options for destroying chronic lymphocytic leukemia cells, such as a combination of therapies based on apoptosis regulators (e.g., caspases, Bcl-2, Bax) along with alternative therapies based on type III death effectors (e.g., F-actin).
Collapse
|
15
|
Abstract
Receptors carrying immunoreceptor tyrosine-based inhibition motifs (ITIMs) in their cytoplasmic tail control a vast array of cellular responses, ranging from autoimmunity, allergy, phagocytosis of red blood cells, graft versus host disease, to even neuronal plasticity in the brain. The inhibitory function of many receptors has been deduced on the basis of cytoplasmic ITIM sequences. Tight regulation of natural killer (NK) cell cytotoxicity and cytokine production by inhibitory receptors specific for major histocompatibility complex class I molecules has served as a model system to study the negative signaling pathway triggered by an ITIM-containing receptor in the physiological context of NK-target cell interactions. Advances in our understanding of the molecular details of inhibitory signaling in NK cells have provided a conceptual framework to address how ITIM-mediated regulation controls cellular reactivity in diverse cell types.
Collapse
Affiliation(s)
- Eric O Long
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA.
| |
Collapse
|
16
|
Bras M, Yuste VJ, Roué G, Barbier S, Sancho P, Virely C, Rubio M, Baudet S, Esquerda JE, Merle-Béral H, Sarfati M, Susin SA. Drp1 mediates caspase-independent type III cell death in normal and leukemic cells. Mol Cell Biol 2007; 27:7073-88. [PMID: 17682056 PMCID: PMC2168919 DOI: 10.1128/mcb.02116-06] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Ligation of CD47 triggers caspase-independent programmed cell death (PCD) in normal and leukemic cells. Here, we characterize the morphological and biochemical features of this type of death and show that it displays the hallmarks of type III PCD. A molecular and biochemical approach has led us to identify a key mediator of this type of death, dynamin-related protein 1 (Drp1). CD47 ligation induces Drp1 translocation from cytosol to mitochondria, a process controlled by chymotrypsin-like serine proteases. Once in mitochondria, Drp1 provokes an impairment of the mitochondrial electron transport chain, which results in dissipation of mitochondrial transmembrane potential, reactive oxygen species generation, and a drop in ATP levels. Surprisingly, neither the activation of the most representative proapoptotic members of the Bcl-2 family, such as Bax or Bak, nor the release of apoptogenic proteins AIF (apoptosis-inducing factor), cytochrome c, endonuclease G (EndoG), Omi/HtrA2, or Smac/DIABLO from mitochondria to cytosol is observed. Responsiveness of cells to CD47 ligation increases following Drp1 overexpression, while Drp1 downregulation confers resistance to CD47-mediated death. Importantly, in B-cell chronic lymphocytic leukemia cells, mRNA levels of Drp1 strongly correlate with death sensitivity. Thus, this previously unknown mechanism controlling caspase-independent type III PCD may provide the basis for novel therapeutic approaches to overcome apoptotic avoidance in malignant cells.
Collapse
Affiliation(s)
- Marlène Bras
- Apoptose et Système Immunitaire, CNRS-URA 1961, Institut Pasteur, 25 rue du Dr. Roux, 75015 Paris, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Abstract
Fas (CD95) mediates apoptosis of many cell types, but the susceptibility of cells to killing by Fas ligand and anti-Fas antibodies is highly variable. Jurkat T cells lacking CD47 (integrin-associated protein) are relatively resistant to Fas-mediated death but are efficiently killed by Fas ligand or anti-Fas IgM (CH11) upon expression of CD47. Lack of CD47 impairs events downstream of Fas activation including caspase activation, poly-(ADP-ribose) polymerase cleavage, cytochrome c release from mitochondria, loss of mitochondrial membrane potential, and DNA cleavage. Neither CD47 signaling nor raft association of CD47 is required to enable Fas apoptosis. CH11 induces association of Fas and CD47. Primary T cells from CD47-null mice are also protected from Fas-mediated killing relative to wild type T cells. Thus CD47 associates with Fas upon its activation and augments Fas-mediated apoptosis.
Collapse
Affiliation(s)
- Partha P Manna
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | |
Collapse
|
18
|
Chen X, Zuckerman ST, Kao WJ. Intracellular protein phosphorylation in adherent U937 monocytes mediated by various culture conditions and fibronectin-derived surface ligands. Biomaterials 2005; 26:873-82. [PMID: 15353198 PMCID: PMC5746422 DOI: 10.1016/j.biomaterials.2004.04.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2004] [Accepted: 04/06/2004] [Indexed: 11/16/2022]
Abstract
Macrophages play a central role in the normal healing process after tissue injury and the host response to foreign objects such as biomaterials. The process leading to macrophage adhesion and activation on protein-adsorbed substrates is complex and unresolved. While the use of primary cells offers clinical relevancy, macrophage cell lines offer unique advantages such as availability and relatively homogeneous phenotype as models to probe the molecular mechanism of cell-surface interaction. Our goal was to better characterize the effect of the culture condition and surface-associated ligands on the extent of U937 adhesion. Tyrosine phosphorylation of intracellular proteins was surveyed as a basis to seek a greater understanding of the molecular mechanism involved in mediating U937 adhesion on various ligand-adsorbed surfaces. U937 viability and adhesion on tissue culture polystyrene (TCPS) increased with (i) increasing serum level, (ii) decreasing tyrosine phosphorylation inhibitor AG18 concentration, or (iii) increasing culture time. The adsorption of various adhesion proteins such as fibronectin and peptide ligands (i.e., RGD, PHSRN) on TCPS did not significantly increase the adherent density of U937 when compared with albumin and PBS ligand controls. However, ligand identity and the presence of phorbol myristate acetate dramatically affected the extent (i.e., increase or decrease) and the identity (i.e., molecular weight) of phosphotyrosine proteins in adherent U937 in a time-dependent manner. The extent and identity of phosphotyrosine proteins did not exhibit a clear AG18 dose dependency, rather the level of tyrosine phosphorylation for a distinct group of proteins was either increased or decreased for a given AG18 concentration.
Collapse
Affiliation(s)
- Xiuxu Chen
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Sean T. Zuckerman
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Weiyuan John Kao
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53705, USA
- Corresponding author. 777 Highland Ave., University of Wisconsin-Madison, Madison, WI 53705, USA. Tel: +1608-263-2998; fax: +1608-262-5345. (W.J. Kao)
| |
Collapse
|
19
|
del Rio R, Rincón M, Layseca-Espinosa E, Fierro NA, Rosenstein Y, Pedraza-Alva G. PKCtheta is required for the activation of human T lymphocytes induced by CD43 engagement. Biochem Biophys Res Commun 2005; 325:133-43. [PMID: 15522211 DOI: 10.1016/j.bbrc.2004.10.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2004] [Indexed: 12/12/2022]
Abstract
The turnover of phosphoinositides leading to PKC activation constitutes one of the principal axes of intracellular signaling. In T lymphocytes, the enhanced and prolonged PKC activation resulting from the engagement of the TcR and co-receptor molecules ensures a productive T cell response. The CD43 co-receptor promotes activation and proliferation, by inducing IL-2 secretion and CD69 expression. CD43 engagement has been shown to promote phosphoinositide turnover and DAG production. Moreover, PKC activation was found to be required for the activation of the MAP kinase pathway in response to CD43 ligation. Here we show that CD43 engagement led to the membrane translocation and enzymatic activity of specific PKC isoenzymes: cPKC (alpha/beta), nPKC (epsilon and theta;), aPKC (zeta) and PKCmu. We also show that activation of PKCtheta; resulting from CD43 ligation induced CD69 expression through an ERK-dependent pathway leading to AP-1, NF-kappaB activation and an ERK independent pathway promoting NFAT activation. Together, these data suggest that PKCtheta; plays a critical role in the co-stimulatory functions of CD43 in human T cells.
Collapse
Affiliation(s)
- Roxana del Rio
- Instituto de Biotecnología/Universidad Nacional Autónoma de México, AP 510-3 Cuernavaca, Mor. 62250, Mexico
| | | | | | | | | | | |
Collapse
|
20
|
Rebres RA, Kajihara K, Brown EJ. Novel CD47-dependent intercellular adhesion modulates cell migration. J Cell Physiol 2005; 205:182-93. [PMID: 15880429 DOI: 10.1002/jcp.20379] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
CD47 is a ubiquitously expressed plasma membrane protein, also known as Integrin Associated Protein, that modulates cell adhesion both through alteration of the avidity of integrin binding and through interaction with its own ligands, the extracellular matrix protein thrombospondin (TSP) and the plasma membrane response regulator SIRPalpha1. We now show that CD47 expression on fibroblasts can induce intercellular adhesion resulting in cell aggregation in the absence of active integrins, SIRPalpha1 binding, and detectable TSP. CD47-expressing cells preferentially bind to other CD47-expressing cells, and intercellular adhesion requires stimulation by serum or a CD47-binding peptide from TSP. Cell-cell adhesion is inhibited by pertussis toxin and C. difficile toxin B, and both adherent and aggregating CD47-expressing fibroblasts have more rac in the GTP bound state than CD47-deficient cells. Spontaneous migration of Jurkat lymphocytes through a fibroblast monolayer is decreased by fibroblast expression of CD47, consistent with an increased barrier function of the CD47 expressing cells. The lymphocyte chemoattractant SDF-1alpha stimulates migration of Jurkat cells through this monolayer only if both the lymphocytes and fibroblasts express CD47, and the inhibition of migration by a CD47-interacting peptide from TSP similarly requires CD47 expression on both cell types. Thus, signaling dependent on both heterotrimeric and rho family GTPases can induce CD47 to participate in cell-cell interactions independent of known ligands that enhance intercellular adhesion and modulate cell migration.
Collapse
Affiliation(s)
- Robert A Rebres
- Program in Microbial Pathogenesis and Host Defense, University of California, San Francisco, California, USA
| | | | | |
Collapse
|
21
|
McDonald JF, Zheleznyak A, Frazier WA. Cholesterol-independent Interactions with CD47 Enhance αvβ3 Avidity. J Biol Chem 2004; 279:17301-11. [PMID: 14966135 DOI: 10.1074/jbc.m312782200] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Expression in OV10 cells of either wild-type CD47 or its extracellular IgV domain linked to a glycosylphosphatidylinositol anchor-(IgV-GPI) enhanced ligand-induced alpha(v)beta(3) activation as detected by the binding of LIBS1 and LIBS6 mAbs. The amplitude of LIBS binding was greater with both CD47 and IgV-GPI expression, indicating an increase in the population of "activable" integrin molecules. Expression of either CD47 species also increased alpha(v)beta(3)-mediated adhesion to vitronectin, and to surfaces coated with the anti-beta(3) antibody AP3, because of enhanced clustering of alpha(v)beta(3) as confirmed by chemical cross-linking. Cholesterol depletion with methyl-beta-cyclodextrin did not prevent the increase in anti-LIBS binding, but reduced cell adhesion to vitronectin and AP3. However, cells expressing CD47 were partially insulated against this disruption, and IgV-GPI was even more effective. Both CD47 and IgV-GPI were found in cholesterol-rich rafts prepared in the absence of detergent, but only CD47 could recruit alpha(v)beta(3) and its associated signaling molecules to these domains. Thus CD47-alpha(v)beta(3) complexes in cholesterol-rich raft domains appear to engage in G(i)-dependent signaling whereas CD47-alpha(v)beta(3) interactions that lead to integrin clustering are also detergent resistant, but are insensitive to cholesterol depletion and do not require the transmembrane region of CD47.
Collapse
Affiliation(s)
- John F McDonald
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | |
Collapse
|
22
|
N'Diaye EN, Brown EJ. The ubiquitin-related protein PLIC-1 regulates heterotrimeric G protein function through association with Gbetagamma. ACTA ACUST UNITED AC 2004; 163:1157-65. [PMID: 14662753 PMCID: PMC2173627 DOI: 10.1083/jcb.200307155] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
PLIC-1, a newly described ubiquitin-related protein, inhibited both Jurkat migration toward SDF-1alpha and A431 wound healing, but the closely related PLIC-2 did not. PLIC-1 prevented the SDF-1alpha-induced activation of phospholipase C, decreased ligand-induced internalization of SDF-1alpha receptor CXCR4 and inhibited chemotaxis signaled by a transfected Gi-coupled receptor. However, PLIC-1 had no effect on Gs-mediated adenylyl cyclase activation, and inhibited only the Gbetagamma-dependent component of Gq-initiated increase in [Ca2+]i, which is consistent with selective inhibition of Gbetagamma function. PLIC-1 colocalized with G proteins in lamellae and pseudopods, and precipitated Gbetagamma in pull downs. Interaction with Gbetagamma did not require PLIC-1's ubiquitin-like or ubiquitin-associated domains, and proteasome inhibition had no effect on SDF-1alpha activation of phospholipase C, indicating that PLIC-1's inhibition of Gbetagamma did not result from effects on proteasome function. Thus, PLIC-1 inhibits Gi signaling by direct association with Gbetagamma; because it also interacts with CD47, a modulator of integrin function, it likely has a role integrating adhesion and signaling components of cell migration.
Collapse
Affiliation(s)
- Elsa-Noah N'Diaye
- Program in Host-Pathogen Interactions, University of California, San Francisco, Campus Box 2140, 600 16th St., San Francisco, CA 94143-2140, USA
| | | |
Collapse
|
23
|
Tada K, Tanaka M, Hanayama R, Miwa K, Shinohara A, Iwamatsu A, Nagata S. Tethering of Apoptotic Cells to Phagocytes through Binding of CD47 to Src Homology 2 Domain-Bearing Protein Tyrosine Phosphatase Substrate-1. THE JOURNAL OF IMMUNOLOGY 2003; 171:5718-26. [PMID: 14634079 DOI: 10.4049/jimmunol.171.11.5718] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Apoptotic cells are swiftly phagocytosed by macrophages and immature dendritic cells. In this study, we found that one mouse macrophage cell line (BAM3) engulfed apoptotic thymocytes, but not a lymphoma cell line (WR19L). mAbs that inhibited the phagocytosis of apoptotic thymocytes by BAM3 were identified. Purification of the Ag revealed that it was Src homology 2 domain-bearing protein tyrosine phosphatase substrate-1 (SHPS-1). CD47, the ligand for SHPS-1, was expressed in mouse thymocytes, but not in WR19L. When WR19L was transformed with CD47, the transformants, after induction of apoptosis, could be phagocytosed by BAM3. The WR19L transformants expressing CD47 were more efficiently engulfed in vivo by splenic dendritic cells than the parental WR19L. Masking of the phosphatidylserine exposed on apoptotic thymocytes inhibited the engulfment, whereas the anti-SHPS-1 mAb inhibited not only the engulfment, but also the binding of apoptotic cells to phagocytes. These results indicate that macrophages require CD47 and phosphatidylserine on apoptotic cells for engulfment, and suggest that the interaction between CD47 and SHPS-1 works as a tethering step in the phagocytosis.
Collapse
Affiliation(s)
- Kazutoshi Tada
- Department of Genetics, Osaka University Medical School, Osaka, Japan
| | | | | | | | | | | | | |
Collapse
|
24
|
Murphy SC, Samuel BU, Harrison T, Speicher KD, Speicher DW, Reid ME, Prohaska R, Low PS, Tanner MJ, Mohandas N, Haldar K. Erythrocyte detergent-resistant membrane proteins: their characterization and selective uptake during malarial infection. Blood 2003; 103:1920-8. [PMID: 14592818 DOI: 10.1182/blood-2003-09-3165] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Infection of human erythrocytes by the apicomplexan malaria parasite Plasmodium falciparum results in endovacuolar uptake of 4 host proteins that reside in erythrocyte detergent-resistant membranes (DRMs). Whether this vacuolar transport reflects selective uptake of host DRM proteins remains unknown. A further complication is that DRMs of vastly different protein and cholesterol contents have been isolated from erythrocytes. Here we show that isolated DRMs containing the highest cholesterol-to-protein ratio have low protein mass. Liquid chromatography, mass spectrometry, and antibody-based studies reveal that the major DRM proteins are band 3, flotillin-1 and -2, peroxiredoxin-2, and stomatin. Band 3 and stomatin, which reflect the bulk mass of erythrocyte DRM proteins, and all tested non-DRM proteins are excluded from the vacuolar parasite. In contrast, flotillin-1 and -2 and 8 minor DRM proteins are recruited to the vacuole. These data suggest that DRM association is necessary but not sufficient for vacuolar recruitment and there is active, vacuolar uptake of a subset of host DRM proteins. Finally, the 10 internalized DRM proteins show varied lipid and peptidic anchors indicating that, contrary to the prevailing model of apicomplexan vacuole formation, DRM association, rather than lipid anchors, provides the preferred criteria for protein recruitment to the malarial vacuole.
Collapse
Affiliation(s)
- Sean C Murphy
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Vallejo AN, Yang H, Klimiuk PA, Weyand CM, Goronzy JJ. Synoviocyte-mediated expansion of inflammatory T cells in rheumatoid synovitis is dependent on CD47-thrombospondin 1 interaction. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 171:1732-40. [PMID: 12902472 DOI: 10.4049/jimmunol.171.4.1732] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Fibroblast-like synoviocytes (FLS) from patients with rheumatoid arthritis elicit spontaneous proliferation of autologous T cells in an HLA-DR and CD47 costimulation-dependent manner. T cell costimulation through CD47 is attributed to specific interaction with thrombospondin-1 (TSP1), a CD47 ligand displayed on FLS. CD47 binding by FLS has broad biological impact that includes adhesion and the triggering of specific costimulatory signals. TSP1(+) FLS are highly adhesive to T cells and support their aggregation and growth in situ. Long-term cultures of T cells and FLS form heterotypic foci that are amenable to propagation without exogenous growth factors. T cell adhesion and aggregate formation on TSP1(+) FLS substrates are inhibited by CD47-binding peptides. In contrast, FLS from arthroscopy controls lack adhesive or T cell growth-promoting activities. CD47 stimulation transduces a costimulatory signal different from that of CD28, producing a gene expression profile that included induction of ferritin L chain, a component of the inflammatory response. Ferritin L chain augments CD3-induced proliferation of T cells. Collectively, these results demonstrate the active role of FLS in the recruitment, activation, and expansion of T cells in a CD47-dependent manner. Because TSP1 is abundantly expressed in the rheumatoid synovium, CD47-TSP1 interaction is proposed to be a key component of an FLS/T cell regulatory circuit that perpetuates the inflammatory process in the rheumatoid joint.
Collapse
Affiliation(s)
- Abbe N Vallejo
- Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | | | | | | | | |
Collapse
|
26
|
Lamy L, Ticchioni M, Rouquette-Jazdanian AK, Samson M, Deckert M, Greenberg AH, Bernard A. CD47 and the 19 kDa interacting protein-3 (BNIP3) in T cell apoptosis. J Biol Chem 2003; 278:23915-21. [PMID: 12690108 DOI: 10.1074/jbc.m301869200] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
CD47 is a surface receptor that induces either coactivation or apoptosis in lymphocytes, depending on the ligand(s) bound. Interestingly, the apoptotic pathway is independent of caspase activation and cytochrome c release and is accompanied by early mitochondrial dysfunction with suppression of mitochondrial membrane potential (Deltapsim). Using CD47 as bait in a yeast two-hybrid system, we identified the Bcl-2 homology 3 (BH3)-only protein 19 kDa interacting protein-3 (BNIP3), a pro-apoptotic member of the Bcl-2 family, as a novel partner. Interaction between CD47 and the BH3-only protein was confirmed by immunoprecipitation analysis, and CD47-induced apoptosis was inhibited by attenuating BNIP3 expression with antisense oligonucleotides. Finally, we showed that the C-terminal domain of thrombospondin-1 (TSP-1), but not signal-regulatory protein (SIRPalpha1), is the ligand for CD47 involved in inducing cell death. Immunofluorescence analysis of CD47 and BNIP3 revealed a partial colocalization of both molecules under basal conditions. After T cell stimulation via CD47, BNIP3 translocates to the mitochondria to induce apoptosis. These results show that the BH3-dependent apoptotic pathways, previously shown to be activated by intracellular pro-apoptotic events, can also be turned on by surface receptors. This new pathway results in a fast induction of cell death resembling necrosis, which is likely to play an important role in lymphocyte regulation at inflammatory sites and/or in the vicinity of thrombosis.
Collapse
Affiliation(s)
- Laurence Lamy
- Unité INSERM 576 et Laboratoire d'Immunologie, 06202 Nice cedex 3, France
| | | | | | | | | | | | | |
Collapse
|
27
|
Abstract
The distinct protein kinase C (PKC) multigene family (PKC gene module) is known to be the 'classic' intracellular receptor for mitogenic phorbol esters, and it is widely accepted in the scientific community that the 'PKC effect' is essential in activation, differentiation, adhesion and motility, as well as in cellular survival, of T cells. Nevertheless, the first concepts about PKC isotype heterogeneity of cellular localization and function emerged only recently, when the PKC-theta pathways were mapped to critical signaling networks that control T cell receptor (TCR)/CD3-dependent interleukin (IL)-2 production and proliferation in T lymphocytes. This review summarizes the current knowledge about T cell expressed PKC gene products, their known and/or suspected regulation and cellular effector pathways, as well as physiological functions in T lymphocytes (as determined by molecular cell biology and ongoing mouse genetic studies). Given PKCs integral role in T cell function but today's very fragmentary molecular understanding of directly PKC-mediated effector functions in transmembrane signaling, a 'molecular biosystematics' approach is suggested to resolve the isotype-selective functions of this PKC gene family. Such an approach has to be based not only on genomic/cytogenetic analysis to establish its genetic relationships but also on biochemical/cell biology and genetic studies to resolve its functional diversity and, ultimately, nonredundant roles in real T cell physiology.
Collapse
Affiliation(s)
- Gottfried Baier
- Institute of Medical Biology and Human Genetics, University of Innsbruck, Austria.
| |
Collapse
|
28
|
O'Reilly PJ, Hickman-Davis JM, Davis IC, Matalon S. Hyperoxia impairs antibacterial function of macrophages through effects on actin. Am J Respir Cell Mol Biol 2003; 28:443-50. [PMID: 12654633 DOI: 10.1165/rcmb.2002-0153oc] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Oxidative stress may impair alveolar macrophage function in patients with inflammatory lung diseases or those exposed to high concentrations of oxygen. We investigated putative mechanisms of injury to macrophages by oxidative stress, using RAW 264.7 cells exposed to 95% oxygen for 48 h. Hyperoxia-exposed macrophages were less able to phagocytose and kill Klebsiella pneumoniae than normoxic controls, despite increased production of nitric oxide, a free radical important in pathogen killing. Exposure of macrophages to hyperoxia had marked effects on the actin cytoskeleton, including increased actin polymerization, loss of cortical actin, formation of stress fibers, de novo synthesis of actin, and actin oxidation. Hyperoxia induced changes in cell morphology, with increased cell size and pseudopod formation. Exposure of macrophages to jasplakinolide, an agent that increases actin polymerization, also impaired their ability to phagocytose Klebsiella. Alveolar macrophages isolated from mice exposed to 100% oxygen for 84 h also demonstrated impaired phagocytic function, as well as similar effects on the actin cytoskeleton and cell morphology to macrophages exposed to hyperoxia in vitro. We conclude that oxidative stress in vitro and in vivo impairs macrophage antibacterial function through effects on actin.
Collapse
Affiliation(s)
- Philip J O'Reilly
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, University of Alabama at Birmingham, 35205-3703, USA
| | | | | | | |
Collapse
|
29
|
Giurisato E, McIntosh DP, Tassi M, Gamberucci A, Benedetti A. T cell receptor can be recruited to a subset of plasma membrane rafts, independently of cell signaling and attendantly to raft clustering. J Biol Chem 2003; 278:6771-8. [PMID: 12499387 DOI: 10.1074/jbc.m210758200] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The constitutive/inducible association of the T cell receptor (TCR) with isolated detergent-resistant, lipid raft-derived membranes has been studied in Jurkat T lymphocytes. Membranes resistant to 1% Triton X-100 contained virtually no CD3epsilon, part of the TCR complex, irrespective of cell stimulation. On the other hand, membranes resistant either to a lower Triton X-100 concentration (i.e. 0.2%) or to the less hydrophobic detergent Brij 58 (1%) contained (i) a low CD3epsilon amount (approximate 2.7% of total) in resting cells and (ii) a several times higher amount of the TCR component, after T cell stimulation with either antigen-presenting cells or with phytohemagglutinin. It appeared that CD3/TCR was constitutively associated with and recruited to a raft-derived membrane subset because (i) all three membrane preparations contained a similar amount of the raft marker tyrosine kinase Lck but no detectable amounts of the conventional membrane markers, CD45 phosphatase and transferrin receptor; (ii) a larger amount of particulate membranes were resistant to solubilization with 0.2% Triton X-100 and Brij 58 than to solubilization with 1% Triton X-100; and (iii) higher cholesterol levels were present in membranes resistant to either the lower Triton X-100 concentration or to Brij 58, as compared with those resistant to 1% Triton X-100. The recruitment of CD3 to the raft-derived membrane subset appeared (i) to occur independently of cell signaling events, such as protein-tyrosine phosphorylation and Ca(2+) mobilization/influx, and (ii) to be associated with clustering of plasma membrane rafts induced by multiple cross-linking of either TCR or the raft component, ganglioside GM(1). We suggest that during T cell stimulation a lateral reorganization of rafts into polarized larger domains can determine the recruitment of TCR into these domains, which favors a polarization of the signaling cascade.
Collapse
Affiliation(s)
- Emanuele Giurisato
- Dipartimento di Fisiopatologia e Medicina Sperimentale, Università degli Studi di Siena, Viale Aldo Moro No. 1, 53100-Siena, Italy
| | | | | | | | | |
Collapse
|
30
|
Abstract
Detergent-resistant membrane microdomains enriched in sphingolipids, cholesterol and glycosylphosphatidylinositol-anchored proteins play essential roles in T cell receptor (TCR) signaling. These 'membrane rafts' accumulate several cytoplasmic lipid-modified molecules, including Src-family kinases, coreceptors CD4 and CD8 and transmembrane adapters LAT and PAG/Cbp, essential for either initiation or amplification of the signaling process, while most other abundant transmembrane proteins are excluded from these structures. TCRs in various T cell subpopulations may differ in their use of membrane rafts. Membrane rafts also seem to be involved in many other aspects of T cell biology, such as functioning of cytokine and chemokine receptors, adhesion molecules, antigen presentation, establishing cell polarity or interaction with important pathogens. Although the concept of membrane rafts explains several diverse biological phenomena, many basic issues, such as composition, size and heterogeneity, under native conditions, as well as the dynamics of their interactions with TCRs and other immunoreceptors, remain unclear, partially because of technical problems.
Collapse
Affiliation(s)
- Václav Horejsí
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Praha, Czech Republic.
| |
Collapse
|
31
|
Barazi HO, Li Z, Cashel JA, Krutzsch HC, Annis DS, Mosher DF, Roberts DD. Regulation of integrin function by CD47 ligands. Differential effects on alpha vbeta 3 and alpha 4beta1 integrin-mediated adhesion. J Biol Chem 2002; 277:42859-66. [PMID: 12218055 DOI: 10.1074/jbc.m206849200] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We examined the regulation of alpha4beta1 integrin function in melanoma cells and T cells by ligands of CD47. A CD47 antibody (B6H12) that inhibited alphavbeta3-mediated adhesion of melanoma cells induced by CD47-binding peptides from thrombospondin-1 directly stimulated alpha4beta1-mediated adhesion of the same cells to vascular cell adhesion molecule-1 and N-terminal regions of thrombospondin-1 or thrombospondin-2. B6H12 also stimulated alpha4beta1- as well as alpha2beta1- and alpha5beta1-mediated adhesion of CD47-expressing T cells but not of CD47-deficient T cells. alpha4beta1 and CD47 co-purified as a detergent-stable complex on a CD47 antibody affinity column. CD47-binding peptides based on C-terminal sequences of thrombospondin-1 also specifically enhanced adhesion of melanoma cells and T cells to alpha4beta1 ligands. Unexpectedly, activation of alpha4beta1 function by the thrombospondin-1 CD47-binding peptides also occurred in CD47-deficient T cells. CD47-independent activation of alpha4beta1 required the Val-Val-Met (VVM) motif of the peptides and was sensitive to inhibition by pertussis toxin. These results indicate that activation of alpha4beta1 by the CD47 antibody B6H12 and by VVM peptides occurs by different mechanisms. The antibody directly activates a CD47-alpha4beta1 complex, whereas VVM peptides may target an unidentified Gi-linked receptor that regulates alpha4beta1.
Collapse
Affiliation(s)
- Heba O Barazi
- Laboratory of Pathology, NCI, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | |
Collapse
|
32
|
Abstract
A diverse group of plasma membrane proteins have been found associated with integrins in supramolecular complexes. These associated plasma membrane molecules can modulate virtually all integrin functions by altering signal transduction arising from integrin ligation. In the past two years, new examples of signaling through heterotrimeric G proteins and regulation by membrane rafts have emphasized their importance in the function of integrin-containing supramolecular complexes.
Collapse
Affiliation(s)
- Eric J Brown
- Program in Host--Pathogen Interactions, University of California, San Francisco, CA 94143, USA.
| |
Collapse
|
33
|
Abstract
The novel protein kinase C (PKC) isoform, PKC theta, is selectively expressed in T lymphocytes and is a sine qua non for T cell antigen receptor (TCR)-triggered activation of mature T cells. Productive engagement of T cells by antigen-presenting cells (APCs) results in recruitment of PKC theta to the T cell-APC contact area--the immunological synapse--where it interacts with several signaling molecules to induce activation signals essential for productive T cell activation and IL-2 production. The transcription factors NF-kappa B and AP-1 are the primary physiological targets of PKC theta, and efficient activation of these transcription factors by PKC theta requires integration of TCR and CD28 costimulatory signals. PKC theta cooperates with the protein Ser/Thr phosphatase, calcineurin, in transducing signals leading to activation of JNK, NFAT, and the IL-2 gene. PKC theta also promotes T cell cycle progression and regulates programmed T cell death. The exact mode of regulation and immediate downstream substrates of PKC theta are still largely unknown. Identification of these molecules and determination of their mode of operation with respect to the function of PKC theta will provide essential information on the mechanism of T cell activation. The selective expression of PKC theta in T cells and its essential role in mature T cell activation establish it as an attractive drug target for immunosuppression in transplantation and autoimmune diseases.
Collapse
Affiliation(s)
- Noah Isakov
- Department of Microbiology and Immunology, Faculty of Health Sciences, and the Cancer Research Center, Ben Gurion University of the Negev, Beer Sheva 84105, Israel.
| | | |
Collapse
|
34
|
de Vries HE, Hendriks JJA, Honing H, De Lavalette CR, van der Pol SMA, Hooijberg E, Dijkstra CD, van den Berg TK. Signal-regulatory protein alpha-CD47 interactions are required for the transmigration of monocytes across cerebral endothelium. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 168:5832-9. [PMID: 12023387 DOI: 10.4049/jimmunol.168.11.5832] [Citation(s) in RCA: 110] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Monocyte infiltration into inflamed tissue requires their initial arrest onto the endothelial cells (ECs), followed by firm adhesion and subsequent transmigration. Although several pairs of adhesion molecules have been shown to play a role in the initial adhesion of monocytes to ECs, the mechanism of transendothelial migration is poorly defined. In this study, we have investigated the role of signal-regulatory protein (SIRP)alpha-CD47 interactions in monocyte transmigration across brain ECs. CD47 expression was observed in vivo on cerebral endothelium of both control animals and animals suffering from experimental allergic encephalomyelitis. To investigate whether SIRPalpha-CD47 interactions are instrumental in the trafficking of monocytes across cerebral EC monolayers, in vitro assays were conducted in which the migration of monocytes, but not adhesion, was found to be effectively diminished by blocking SIRPalpha and CD47 on monocytes and ECs, respectively. In this process, SIRPalpha was found to interact solely with its counterligand CD47 on ECs. Overexpression of the CD47 molecule on brain ECs significantly enhanced monocytic transmigration, but did not affect adhesion. SIRPalpha-CD47-mediated transendothelial migration involved Gi protein activity, a known signaling component of CD47. Finally, cross-linking of CD47 on brain ECs induced cytoskeletal reorganization of the endothelium, a process that was Gi protein independent. These data provide the first evidence that the interaction of CD47 with its monocytic counterligand SIRPalpha is of importance in the final step of monocyte trafficking into the brain, a critical event in the development of neuroinflammatory diseases.
Collapse
Affiliation(s)
- Helga E de Vries
- Department of Molecular Cell Biology, Vrije Universiteit Medical Center, Amsterdam, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Bauer B, Baier G. Protein kinase C and AKT/protein kinase B in CD4+ T-lymphocytes: new partners in TCR/CD28 signal integration. Mol Immunol 2002; 38:1087-99. [PMID: 12044776 DOI: 10.1016/s0161-5890(02)00011-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
T-cell biological responses appear to involve the complex interaction of T-cell surface receptors, intracellular signaling molecules and the cytoskeleton. Both the serine/threonine protein kinase families protein kinase C (PKC) and protein kinase B or RAC-PK (AKT/PKB) have been implicated in signal transmission leading to activation, differentiation as well as cellular survival of T-lymphocytes. The PKC gene family consists of nine diverse isotypes (PKC alpha, beta, gamma, delta, epsilon, xi, eta, theta; and iota), the AKT/PKB gene family includes three kinases (AKT1/PKB alpha, AKT2/PKB beta, AKT3/PKB gamma). Here, we attempt to summarize the regulation as well as downstream signaling pathways of PKC and AKT/PKB isotypes, that may act additive in TCR/CD28 induced proliferation and survival of peripheral CD4+ T-lymphocytes.
Collapse
Affiliation(s)
- Birgit Bauer
- Institute for Medical Biology and Human Genetics, University of Innsbruck, Schoepfstr. 41, A-6020 Innsbruck, Austria
| | | |
Collapse
|
36
|
Mitchell JS, Kanca O, McIntyre BW. Lipid microdomain clustering induces a redistribution of antigen recognition and adhesion molecules on human T lymphocytes. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 168:2737-44. [PMID: 11884440 DOI: 10.4049/jimmunol.168.6.2737] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The study of lipid microdomains in the plasma membrane is a topic of recent interest in leukocyte biology. Many T cell activation and signaling molecules are found to be associated with lipid microdomains and have been implicated in normal T cell function. It has been proposed that lipid microdomains with their associated molecules move by lateral diffusion to areas of cellular interactions to initiate signaling pathways. Using sucrose density gradients we have found that human T cell beta(1) integrins are not normally associated with lipid microdomains. However, cross-linking of GM1 through cholera toxin B-subunit (CTB) causes an enrichment of beta(1) integrins in microdomain fractions, suggesting that cross-linking lipid microdomains causes a reorganization of molecular associations. Fluorescent microscopy was used to examine the localization of various lymphocyte surface molecules before and after lipid microdomain cross-linking. Lymphocytes treated with FITC-CTB reveal an endocytic vesicle that is enriched in TCR and CD59, while beta(1) integrin, CD43, and LFA-3 were not localized in the vesicle. However, when anti-CTB Abs are used to cross-link lipid microdomains, the microdomains are not internalized but are clustered on the cell surface. In this study, CD59, CD43, and beta(1) integrin are all seen to colocalize in a new lipid microdomain from which LFA-3 remains excluded and the TCR is now dissociated. These findings show that cross-linking lipid microdomains can cause a dynamic rearrangement of the normal order of T lymphocyte microdomains into an organization where novel associations are created and signaling pathways may be initiated.
Collapse
Affiliation(s)
- Jason S Mitchell
- Department of Immunology, University of Texas, M. D. Anderson Cancer Center, Houston, TX 77030, USA
| | | | | |
Collapse
|
37
|
Maile LA, Imai Y, Clarke JB, Clemmons DR. Insulin-like growth factor I increases alpha Vbeta 3 affinity by increasing the amount of integrin-associated protein that is associated with non-raft domains of the cellular membrane. J Biol Chem 2002; 277:1800-5. [PMID: 11707450 DOI: 10.1074/jbc.m108380200] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Insulin-like growth factor I (IGF-I) stimulates an increase in alpha(V)beta(3) ligand binding. Stimulation of smooth muscle cells by IGF-I requires alpha(V)beta(3) ligand occupancy, and enhanced alpha(V)beta(3) ligand occupancy augments IGF-I actions. Therefore, IGF-I-induced changes in alpha(V)beta(3) ligand binding may act to further enhance IGF-I actions. Integrin-associated protein (IAP) has been shown to be associated with alpha(V)beta(3) and is required for the binding of alpha(V)beta(3) to vitronectin-coated beads. We therefore investigated whether IGF-I could stimulate IAP-alpha(V)beta(3) association resulting in enhanced ligand binding. IGF-I stimulated an increase in IAP-alpha(V)beta(3) association. This was due, at least in part, to an IGF-I-stimulated redistribution of IAP from the Triton-insoluble fraction of the cell to the Triton-soluble fraction of the cell, where most of the alpha(V)beta(3) was located. Inhibition of the phosphatidylinositol 3-kinase pathway blocked both the redistribution of IAP and the increase in IAP-alpha(V)beta(3) association, providing further evidence that the redistribution of IAP is essential for the increase in association. An anti-IAP monoclonal antibody, blocked both the IGF-I-stimulated increase in IAP-alpha(V)beta(3) complex formation and cell migration. IGF-I-stimulated translocation of IAP and increase in IAP-alpha(V)beta(3) association represent an important process by which IGF-I modulates alpha(V)beta(3) ligand binding and cellular responses.
Collapse
Affiliation(s)
- Laura A Maile
- University of North Carolina, Chapel Hill, North Carolina 27599-7170, USA
| | | | | | | |
Collapse
|
38
|
Rebres RA, Vaz LE, Green JM, Brown EJ. Normal ligand binding and signaling by CD47 (integrin-associated protein) requires a long range disulfide bond between the extracellular and membrane-spanning domains. J Biol Chem 2001; 276:34607-16. [PMID: 11454874 DOI: 10.1074/jbc.m106107200] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
CD47 is a unique member of the Ig superfamily with a single extracellular Ig domain followed by a multiply membrane-spanning (MMS) domain with five transmembrane segments, implicated in both integrin-dependent and -independent signaling cascades. Essentially all functions of CD47 require both the Ig and MMS domains, raising the possibility that interaction between the two domains is required for normal function. Conservation of Cys residues among CD47 homologues suggested the existence of a disulfide bond between the Ig and MMS domains that was confirmed by chemical digestion and mapped to Cys(33) and Cys(263). Subtle changes in CD47 conformation in the absence of the disulfide were suggested by decreased binding of two anti-Ig domain monoclonal antibodies, decreased SIRPalpha1 binding, and reduced CD47/SIRPalpha1-mediated cell adhesion. Mutagenesis to prevent formation of this disulfide completely disrupted CD47 signaling independent of effects on ligand binding, as assessed by T cell interleukin-2 secretion and Ca(2+) responses. Loss of the disulfide did not affect membrane raft localization of CD47 or its association with alpha(v)beta(3) integrin. Thus, a disulfide bond between the Ig and MMS domains of CD47 is required for normal ligand binding and signal transduction.
Collapse
Affiliation(s)
- R A Rebres
- Program in Microbial Pathogenesis and Host Defense and Department of Medicine, University of California, San Francisco, California 94143, USA
| | | | | | | |
Collapse
|
39
|
Latour S, Tanaka H, Demeure C, Mateo V, Rubio M, Brown EJ, Maliszewski C, Lindberg FP, Oldenborg A, Ullrich A, Delespesse G, Sarfati M. Bidirectional negative regulation of human T and dendritic cells by CD47 and its cognate receptor signal-regulator protein-alpha: down-regulation of IL-12 responsiveness and inhibition of dendritic cell activation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 167:2547-54. [PMID: 11509594 DOI: 10.4049/jimmunol.167.5.2547] [Citation(s) in RCA: 192] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Proinflammatory molecules, including IFN-gamma and IL-12, play a crucial role in the elimination of causative agents. To allow healing, potent anti-inflammatory processes are required to down-regulate the inflammatory response. In this study, we first show that CD47/integrin-associated protein, a ubiquitous multispan transmembrane protein highly expressed on T cells, interacts with signal-regulator protein (SIRP)-alpha, an immunoreceptor tyrosine-based inhibition motif-containing molecule selectively expressed on myelomonocytic cells, and next demonstrate that this pair of molecules negatively regulates human T and dendritic cell (DC) function. CD47 ligation by CD47 mAb or L-SIRP-alpha transfectants inhibits IL-12R expression and down-regulates IL-12 responsiveness of activated CD4(+) and CD8(+) adult T cells without affecting their response to IL-2. Human CD47-Fc fusion protein binds SIRP-alpha expressed on immature DC and mature DC. SIRP-alpha engagement by CD47-Fc prevents the phenotypic and functional maturation of immature DC and still inhibits cytokine production by mature DC. Finally, in allogeneic MLR between mDC and naive T cells, CD47-Fc decreases IFN-gamma production after priming and impairs the development of a Th1 response. Therefore, CD47 on T cells and its cognate receptor SIRP-alpha on DC define a novel regulatory pathway that may be involved in the maintenance of homeostasis by preventing the escalation of the inflammatory immune response.
Collapse
Affiliation(s)
- S Latour
- McGill Cancer Center, McGill University and Institut de Recherches Cliniques, Montréal, Québec, Canada
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Caroni P. New EMBO members' review: actin cytoskeleton regulation through modulation of PI(4,5)P(2) rafts. EMBO J 2001; 20:4332-6. [PMID: 11500359 PMCID: PMC125564 DOI: 10.1093/emboj/20.16.4332] [Citation(s) in RCA: 229] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The phosphoinositide lipid PI(4,5)P(2) is now established as a key cofactor in signaling to the actin cytoskeleton and in vesicle trafficking. PI(4,5)P(2) accumulates at membrane rafts and promotes local co-recruitment and activation of specific signaling components at the cell membrane. PI(4,5)P(2) rafts may thus be platforms for local regulation of morphogenetic activity at the cell membrane. Raft PI(4,5)P(2) is regulated by lipid kinases (PI5-kinases) and lipid phosphatases (e.g. synaptojanin). In addition, GAP43-like proteins have recently emerged as a group of PI(4,5)P(2) raft-modulating proteins. These locally abundant proteins accumulate at inner leaflet plasmalemmal rafts where they bind to and co-distribute with PI(4,5)P(2), and promote actin cytoskeleton accumulation and dynamics. In keeping with their proposed role as positive modulators of PI(4,5)P(2) raft function, GAP43-like proteins confer competence for regulated morphogenetic activity on cells that express them. Their function has been investigated extensively in the nervous system, where their expression promotes neurite outgrowth, anatomical plasticity and nerve regeneration. Extrinsic signals and intrinsic factors may thus converge to modulate PI(4,5)P(2) rafts, upstream of regulated activity at the cell surface.
Collapse
Affiliation(s)
- P Caroni
- Friedrich Miescher Institut, Maulbeerstrasse 66, CH-4058 Basel, Switzerland.
| |
Collapse
|
41
|
Brown E. Integrin-associated protein (CD47): an unusual activator of G protein signaling. J Clin Invest 2001; 107:1499-500. [PMID: 11413154 PMCID: PMC200200 DOI: 10.1172/jci13315] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Affiliation(s)
- E Brown
- Program in Host-Pathogen Interactions, University of California San Francisco, Campus Box 0654, 513 Parnassus Avenue, San Francisco, California 94143, USA.
| |
Collapse
|