1
|
Kanjanapokin C, Thiravetyan P, Chonjoho N, Dolphen R, Treesubsuntorn C. Light-emitting plants development by inoculating of Vibrio campbellii RMT1 on the rhizospheric zone of Aglaonema cochinchinense. Photochem Photobiol Sci 2024; 23:973-985. [PMID: 38622375 DOI: 10.1007/s43630-024-00568-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 03/25/2024] [Indexed: 04/17/2024]
Abstract
The concept of utilizing light-emitting plants (LEPs) as an alternative to traditional electricity-based lighting has garnered interest. However, challenges persist due to the need for genetic modification or chemical infusion in current LEPs. To address this, researchers have investigated the interaction between plants and luminous bacteria, specifically Vibrio campbellii, which can efficiently be translocated into Aglaonema cochinchinense tissues through the roots to produce LEPs. This study concentrated on examining light intensity and enhancing luminescence by growing plants and spraying them with various media substances. The results indicated that V. campbellii successfully translocated into the plant tissue via the root system and accumulated a high number of bacteria in the stems, approximately 8.46 × 104 CFU/g, resulting in a light-emitting intensity increase of 12.13-fold at 48 h, and then decreased after 30 h. Interestingly, luminescence stimulation by spraying the growth medium managed to induce the highest light emission, reaching 14.84-fold at 48 h, though it had some negative effects on the plant. Conversely, spraying plants with CaCl2 on the leaves prolonged light emission for a longer duration (42 h after spraying) and had a positive effect on plant health, it maintained ion homeostasis and reduced-MDA content. This study highlights the potential of using V. campbellii and CaCl2 spraying for the future development of practical light-emitting plants.
Collapse
Affiliation(s)
- Chutipa Kanjanapokin
- School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkok, 10150, Thailand
| | - Paitip Thiravetyan
- School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkok, 10150, Thailand
| | - Nattida Chonjoho
- School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkok, 10150, Thailand
| | - Rujira Dolphen
- Pilot Plant Development and Training Institute, King Mongkut's University of Technology Thonburi, Bangkok, 10150, Thailand
| | - Chairat Treesubsuntorn
- School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkok, 10150, Thailand.
- Pilot Plant Development and Training Institute, King Mongkut's University of Technology Thonburi, Bangkok, 10150, Thailand.
- Research & Innovation for Sustainability Center (RISC), Magnolia Quality Development Corporation Limited (MQDC), Bangkok, 10330, Thailand.
| |
Collapse
|
2
|
Liu X, Zuo Z, Xie X, Gao S, Wu S, Gu W, Wang G. SLC24A-mediated calcium exchange as an indispensable component of the diatom cell density-driven signaling pathway. THE ISME JOURNAL 2024; 18:wrae039. [PMID: 38457651 PMCID: PMC10982851 DOI: 10.1093/ismejo/wrae039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/09/2024] [Accepted: 03/04/2024] [Indexed: 03/10/2024]
Abstract
Diatom bloom is characterized by a rapid increase of population density. Perception of population density and physiological responses can significantly influence their survival strategies, subsequently impacting bloom fate. The population density itself can serve as a signal, which is perceived through chemical signals or chlorophyll fluorescence signals triggered by high cell density, and their intracellular signaling mechanisms remain to be elucidated. In this study, we focused on the model diatom, Phaeodactylum tricornutum, and designed an orthogonal experiment involving varying cell densities and light conditions, to stimulate the release of chemical signals and light-induced chlorophyll fluorescence signals. Utilizing RNA-Seq and Weighted Gene Co-expression Network Analysis, we identified four gene clusters displaying density-dependent expression patterns. Within these, a potential hub gene, PtSLC24A, encoding a Na+/Ca2+ exchanger, was identified. Based on molecular genetics, cellular physiology, computational structural biology, and in situ oceanic data, we propose a potential intracellular signaling mechanism related to cell density in marine diatoms using Ca2+: upon sensing population density signals mediated by chemical cues, the membrane-bound PtSLC24A facilitates the efflux of Ca2+ to maintain specific intracellular calcium levels, allowing the transduction of intracellular density signals, subsequently regulating physiological responses, including cell apoptosis, ultimately affecting algal blooms fate. These findings shed light on the calcium-mediated intracellular signaling mechanism of marine diatoms to changing population densities, and enhances our understanding of diatom bloom dynamics and their ecological implications.
Collapse
Affiliation(s)
- Xuehua Liu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266404, Shandong Province, China
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Chinese Academy of Sciences, Qingdao 266404, Shandong Province, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao 266237, Shandong Province, China
| | - Zhicheng Zuo
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
- Shanghai Frontiers Science Research Center for Druggability of Cardiovascular Noncoding RNA, Institute for Frontier Medical Technology, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Xiujun Xie
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266404, Shandong Province, China
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Chinese Academy of Sciences, Qingdao 266404, Shandong Province, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao 266237, Shandong Province, China
| | - Shan Gao
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266404, Shandong Province, China
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Chinese Academy of Sciences, Qingdao 266404, Shandong Province, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao 266237, Shandong Province, China
| | - Songcui Wu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266404, Shandong Province, China
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Chinese Academy of Sciences, Qingdao 266404, Shandong Province, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao 266237, Shandong Province, China
| | - Wenhui Gu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266404, Shandong Province, China
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Chinese Academy of Sciences, Qingdao 266404, Shandong Province, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao 266237, Shandong Province, China
| | - Guangce Wang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266404, Shandong Province, China
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Chinese Academy of Sciences, Qingdao 266404, Shandong Province, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao 266237, Shandong Province, China
| |
Collapse
|
3
|
Improvement of Lignocellulolytic Enzyme Production Mediated by Calcium Signaling in Bacillus subtilis Z2 under Graphene Oxide Stress. Appl Environ Microbiol 2022; 88:e0096022. [PMID: 36121214 PMCID: PMC9552604 DOI: 10.1128/aem.00960-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
An increase in exoenzyme production can be enhanced by environmental stresses such as graphene oxide (GO) stress, but the link between the two events is still unclear. In this work, the effect of GO as an environmental stress factor on exoenzyme (lignocellulolytic enzyme, amylase, peptidase, and protease) biosynthesis was investigated in Bacillus subtilis Z2, and a plausible mechanism by which cytosolic Ca2+ regulates lignocellulolytic enzyme production in B. subtilis Z2 subjected to GO stress was proposed. The filter paper-hydrolyzing (FPase [representing total cellulase]), carboxymethylcellulase (CMCase [representing endoglucanase]), and β-glucosidase activities and extracellular protein concentration of the wild-type strain under 10 μg/mL GO stress were 1.37-, 1.64-, 1.24-, and 1.16-fold those of the control (without GO stress), respectively. Correspondingly, the transcription levels of lignocellulolytic enzyme genes, cytosolic Ca2+ level, and biomass concentration of B. subtilis were all increased. With lignocellulolytic enzyme from B. subtilis used to hydrolyze alkali-pretreated rice straw, the released reducing sugar concentration reached 265.53 mg/g, and the removal rates of cellulose, hemicellulose, and lignin were 52.4%, 30.1%, and 7.5%, respectively. Furthermore, transcriptome data revealed that intracellular Ca2+ homeostasis played a key role in regulating the levels of gene transcription related to the synthesis of lignocellulolytic enzymes and exoenzymes. Finally, the use of Ca2+ inhibitors (LaCl3 and EDTA) and deletion of spcF (a calmodulin-like protein gene) further demonstrated that the overexpression of those genes was regulated via calcium signaling in B. subtilis subjected to GO stress. IMPORTANCE To effectively convert lignocellulose into fermentable sugars, high lignocellulolytic enzyme loading is needed. Graphene oxide (GO) has been shown to promote exoenzyme (lignocellulolytic enzyme, amylase, peptidase, and protease) production in some microorganisms; however, the regulatory mechanism of the biosynthesis of lignocellulolytic enzymes under GO stress remains unclear. In this work, the lignocellulolytic enzyme production of B. subtilis under GO stress was investigated, and the potential mechanism by which B. subtilis enhanced lignocellulolytic enzyme production through the calcium signaling pathway under GO stress was proposed. This work revealed the role of calcium signaling in the production of enzymes under external environmental stress and provided a direction to facilitate lignocellulolytic enzyme production by B. subtilis.
Collapse
|
4
|
The ctpF Gene Encoding a Calcium P-Type ATPase of the Plasma Membrane Contributes to Full Virulence of Mycobacterium tuberculosis. Int J Mol Sci 2022; 23:ijms23116015. [PMID: 35682696 PMCID: PMC9180918 DOI: 10.3390/ijms23116015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/22/2022] [Accepted: 05/24/2022] [Indexed: 12/04/2022] Open
Abstract
Identification of alternative attenuation targets of Mycobacterium tuberculosis (Mtb) is pivotal for designing new candidates for live attenuated anti-tuberculosis (TB) vaccines. In this context, the CtpF P-type ATPase of Mtb is an interesting target; specifically, this plasma membrane enzyme is involved in calcium transporting and response to oxidative stress. We found that a mutant of MtbH37Rv lacking ctpF expression (MtbΔctpF) displayed impaired proliferation in mouse alveolar macrophages (MH-S) during in vitro infection. Further, the levels of tumor necrosis factor and interferon-gamma in MH-S cells infected with MtbΔctpF were similar to those of cells infected with the parental strain, suggesting preservation of the immunogenic capacity. In addition, BALB/c mice infected with Mtb∆ctpF showed median survival times of 84 days, while mice infected with MtbH37Rv survived 59 days, suggesting reduced virulence of the mutant strain. Interestingly, the expression levels of ctpF in a mouse model of latent TB were significantly higher than in a mouse model of progressive TB, indicating that ctpF is involved in Mtb persistence in the dormancy state. Finally, the possibility of complementary mechanisms that counteract deficiencies in Ca2+ transport mediated by P-type ATPases is suggested. Altogether, our results demonstrate that CtpF could be a potential target for Mtb attenuation.
Collapse
|
5
|
Trabalza S, Buonaurio R, Del Pino AM, Palmerini CA, van den Burg HA, Moretti C. A Spectrofluorophotometrical Method Based on Fura-2-AM Probe to Determine Cytosolic Ca 2+ Level in Pseudomonas syringae Complex Bacterial Cells. Bio Protoc 2021; 11:e3949. [PMID: 33855111 DOI: 10.21769/bioprotoc.3949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 01/13/2021] [Accepted: 01/14/2021] [Indexed: 11/02/2022] Open
Abstract
Calcium signaling is an emerging mechanism by which bacteria respond to environmental cues. To measure the intracellular free-calcium concentration in bacterial cells, [Ca2+]i, a simple spectrofluorometric method based on the chemical probe Fura 2-acetoxy methyl ester (Fura 2-AM) is here presented using Pseudomonad bacterial cells. This is an alternative and quantitative method that can be completed in a short period of time with low costs, and it does not require the induction of heterologously expressed protein-based probes like Aequorin. Furthermore, it is possible to verify the properties of membrane channels involved in Ca2+ entry from the extracellular matrix. This method is in particular valuable for measuring [Ca2+]i in the range of 0.1-39.8 µM in small cells like those of prokaryotes.
Collapse
Affiliation(s)
- Simone Trabalza
- Department of Agricultural, Food and Environmental Science, University of Perugia, Perugia, Italy.,Molecular Plant Pathology, Swammerdam Institute for Life Sciences (SILS), University of Amsterdam, Amsterdam, the Netherlands
| | - Roberto Buonaurio
- Department of Agricultural, Food and Environmental Science, University of Perugia, Perugia, Italy
| | - Alberto M Del Pino
- Department of Agricultural, Food and Environmental Science, University of Perugia, Perugia, Italy
| | - Carlo A Palmerini
- Department of Agricultural, Food and Environmental Science, University of Perugia, Perugia, Italy
| | - Harrold A van den Burg
- Molecular Plant Pathology, Swammerdam Institute for Life Sciences (SILS), University of Amsterdam, Amsterdam, the Netherlands
| | - Chiaraluce Moretti
- Department of Agricultural, Food and Environmental Science, University of Perugia, Perugia, Italy
| |
Collapse
|
6
|
Guo J, Yoshida K, Ikegame M, Okamura H. Quorum sensing molecule N-(3-oxododecanoyl)-l-homoserine lactone: An all-rounder in mammalian cell modification. J Oral Biosci 2020; 62:16-29. [DOI: 10.1016/j.job.2020.01.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 01/09/2020] [Accepted: 01/14/2020] [Indexed: 01/17/2023]
|
7
|
King MM, Kayastha BB, Franklin MJ, Patrauchan MA. Calcium Regulation of Bacterial Virulence. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1131:827-855. [PMID: 31646536 DOI: 10.1007/978-3-030-12457-1_33] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Calcium (Ca2+) is a universal signaling ion, whose major informational role shaped the evolution of signaling pathways, enabling cellular communications and responsiveness to both the intracellular and extracellular environments. Elaborate Ca2+ regulatory networks have been well characterized in eukaryotic cells, where Ca2+ regulates a number of essential cellular processes, ranging from cell division, transport and motility, to apoptosis and pathogenesis. However, in bacteria, the knowledge on Ca2+ signaling is still fragmentary. This is complicated by the large variability of environments that bacteria inhabit with diverse levels of Ca2+. Yet another complication arises when bacterial pathogens invade a host and become exposed to different levels of Ca2+ that (1) are tightly regulated by the host, (2) control host defenses including immune responses to bacterial infections, and (3) become impaired during diseases. The invading pathogens evolved to recognize and respond to the host Ca2+, triggering the molecular mechanisms of adhesion, biofilm formation, host cellular damage, and host-defense resistance, processes enabling the development of persistent infections. In this review, we discuss: (1) Ca2+ as a determinant of a host environment for invading bacterial pathogens, (2) the role of Ca2+ in regulating main events of host colonization and bacterial virulence, and (3) the molecular mechanisms of Ca2+ signaling in bacterial pathogens.
Collapse
Affiliation(s)
- Michelle M King
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK, USA
| | - Biraj B Kayastha
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK, USA
| | - Michael J Franklin
- Department of Microbiology and Center for Biofilm Engineering, Montana State University, Bozeman, MT, USA
| | - Marianna A Patrauchan
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK, USA.
| |
Collapse
|
8
|
Chen H, De La Fuente L. Calcium transcriptionally regulates movement, recombination and other functions of Xylella fastidiosa under constant flow inside microfluidic chambers. Microb Biotechnol 2019; 13:548-561. [PMID: 31729188 PMCID: PMC7017821 DOI: 10.1111/1751-7915.13512] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 10/25/2019] [Accepted: 10/28/2019] [Indexed: 01/08/2023] Open
Abstract
Xylella fastidiosa is a xylem‐limited bacterial pathogen causing devastating diseases in many economically important crops. Calcium (Ca) is a major inorganic nutrient in xylem sap that influences virulence‐related traits of this pathogen, including biofilm formation and twitching motility. This study aimed to adapt a microfluidic system, which mimics the natural habitat of X. fastidiosa, for whole transcriptome analysis under flow conditions. A microfluidic chamber with two parallel channels was used, and RNA isolated from cells grown inside the system was analysed by RNA‐Seq. Ca transcriptionally regulated the machinery of type IV pili and other genes related to pathogenicity and host adaptation. Results were compared to our previous RNA‐Seq study in biofilm cells in batch cultures (Parker et al., 2016, Environ Microbiol 18, 1620). Ca‐regulated genes in both studies belonged to similar functional categories, but the number and tendencies (up‐/downregulation) of regulated genes were different. Recombination‐related genes were upregulated by Ca, and we proved experimentally that 2 mM Ca enhances natural transformation frequency. Taken together, our results suggest that the regulatory role of Ca in X. fastidiosa acts differently during growth in flow or batch conditions, and this can correlate to the different phases of growth (planktonic and biofilm) during the infection process.
Collapse
Affiliation(s)
- Hongyu Chen
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL, 36849, USA
| | - Leonardo De La Fuente
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL, 36849, USA
| |
Collapse
|
9
|
Dey DK, Koo BG, Sharma C, Kang SC. Characterization of Weissella confusa DD_A7 isolated from kimchi. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2019.05.089] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
10
|
Moretti C, Trabalza S, Granieri L, Caballo‐Ponce E, Devescovi G, Del Pino AM, Ramos C, Venturi V, van den Burg HA, Buonaurio R, Palmerini CA. A Na + /Ca 2+ exchanger of the olive pathogen Pseudomonas savastanoi pv. savastanoi is critical for its virulence. MOLECULAR PLANT PATHOLOGY 2019; 20:716-730. [PMID: 30912619 PMCID: PMC6637891 DOI: 10.1111/mpp.12787] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
In a number of compatible plant-bacterium interactions, a rise in apoplastic Ca2+ levels is observed, suggesting that Ca2+ represents an important environmental clue, as reported for bacteria infecting mammalians. We demonstrate that Ca2+ entry in Pseudomonas savastanoi pv. savastanoi (Psav) strain DAPP-PG 722 is mediated by a Na+ /Ca2+ exchanger critical for virulence. Using the fluorescent Ca2+ probe Fura 2-AM, we demonstrate that Ca2+ enters Psav cells foremost when they experience low levels of energy, a situation mimicking the apoplastic fluid. In fact, Ca2+ entry was suppressed in the presence of high concentrations of glucose, fructose, sucrose or adenosine triphosphate (ATP). Since Ca2+ entry was inhibited by nifedipine and LiCl, we conclude that the channel for Ca2+ entry is a Na+ /Ca2+ exchanger. In silico analysis of the Psav DAPP-PG 722 genome revealed the presence of a single gene coding for a Na+ /Ca2+ exchanger (cneA), which is a widely conserved and ancestral gene within the P. syringae complex based on gene phylogeny. Mutation of cneA compromised not only Ca2+ entry, but also compromised the Hypersensitive response (HR) in tobacco leaves and blocked the ability to induce knots in olive stems. The expression of both pathogenicity (hrpL, hrpA and iaaM) and virulence (ptz) genes was reduced in this Psav-cneA mutant. Complementation of the Psav-cneA mutation restored both Ca2+ entry and pathogenicity in olive plants, but failed to restore the HR in tobacco leaves. In conclusion, Ca2+ entry acts as a 'host signal' that allows and promotes Psav pathogenicity on olive plants.
Collapse
Affiliation(s)
- Chiaraluce Moretti
- Department of Agricultural, Food and Environmental ScienceUniversity of PerugiaBorgo XX Giugno 74, Perugia06121Italy
| | - Simone Trabalza
- Department of Agricultural, Food and Environmental ScienceUniversity of PerugiaBorgo XX Giugno 74, Perugia06121Italy
| | - Letizia Granieri
- Department of Agricultural, Food and Environmental ScienceUniversity of PerugiaBorgo XX Giugno 74, Perugia06121Italy
| | - Eloy Caballo‐Ponce
- Instituto de Hortofruticultura Subtropical y Mediterránea La MayoraUniversidad de Málaga‐Consejo Superior de Investigaciones Científicas (IHSM‐UMACSIC)Área de GenéticaMálagaSpain
| | - Giulia Devescovi
- Bacteriology Group, International Centre for Genetic Engineering and BiotechnologyTriesteItaly
| | - Alberto Marco Del Pino
- Department of Agricultural, Food and Environmental ScienceUniversity of PerugiaBorgo XX Giugno 74, Perugia06121Italy
| | - Cayo Ramos
- Bacteriology Group, International Centre for Genetic Engineering and BiotechnologyTriesteItaly
| | - Vittorio Venturi
- Bacteriology Group, International Centre for Genetic Engineering and BiotechnologyTriesteItaly
| | - Harrold A. van den Burg
- Molecular Plant Pathology, Swammerdam Institute for Life Sciences (SILS)University of AmsterdamAmsterdamNetherlands
| | - Roberto Buonaurio
- Department of Agricultural, Food and Environmental ScienceUniversity of PerugiaBorgo XX Giugno 74, Perugia06121Italy
| | - Carlo Alberto Palmerini
- Department of Agricultural, Food and Environmental ScienceUniversity of PerugiaBorgo XX Giugno 74, Perugia06121Italy
| |
Collapse
|
11
|
Ca 2+-Induced Two-Component System CvsSR Regulates the Type III Secretion System and the Extracytoplasmic Function Sigma Factor AlgU in Pseudomonas syringae pv. tomato DC3000. J Bacteriol 2018; 200:JB.00538-17. [PMID: 29263098 DOI: 10.1128/jb.00538-17] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 12/12/2017] [Indexed: 11/20/2022] Open
Abstract
Two-component systems (TCSs) of bacteria regulate many different aspects of the bacterial life cycle, including pathogenesis. Most TCSs remain uncharacterized, with no information about the signal(s) or regulatory targets and/or role in bacterial pathogenesis. Here, we characterized a TCS in the plant-pathogenic bacterium Pseudomonas syringae pv. tomato DC3000 composed of the histidine kinase CvsS and the response regulator CvsR. CvsSR is necessary for virulence of P. syringae pv. tomato DC3000, since ΔcvsS and ΔcvsR strains produced fewer symptoms than the wild type (WT) and demonstrated reduced growth on multiple hosts. We discovered that expression of cvsSR is induced by Ca2+ concentrations found in leaf apoplastic fluid. Thus, Ca2+ can be added to the list of signals that promote pathogenesis of P. syringae pv. tomato DC3000 during host colonization. Through chromatin immunoprecipitation followed by next-generation sequencing (ChIP-seq) and global transcriptome analysis (RNA-seq), we discerned the CvsR regulon. CvsR directly activated expression of the type III secretion system regulators, hrpR and hrpS, that regulate P. syringae pv. tomato DC3000 virulence in a type III secretion system-dependent manner. CvsR also indirectly repressed transcription of the extracytoplasmic sigma factor algU and production of alginate. Phenotypic analysis determined that CvsSR inversely regulated biofilm formation, swarming motility, and cellulose production in a Ca2+-dependent manner. Overall, our results show that CvsSR is a key regulatory hub critical for interaction with host plants.IMPORTANCE Pathogenic bacteria must be able to react and respond to the surrounding environment, make use of available resources, and avert or counter host immune responses. Often, these abilities rely on two-component systems (TCSs) composed of interacting proteins that modulate gene expression. We identified a TCS in the plant-pathogenic bacterium Pseudomonas syringae that responds to the presence of calcium, which is an important signal during the plant defense response. We showed that when P. syringae is grown in the presence of calcium, this TCS regulates expression of factors contributing to disease. Overall, our results provide a better understanding of how bacterial pathogens respond to plant signals and control systems necessary for eliciting disease.
Collapse
|
12
|
Parker JK, Chen H, McCarty SE, Liu LY, De La Fuente L. Calcium transcriptionally regulates the biofilm machinery of Xylella fastidiosa to promote continued biofilm development in batch cultures. Environ Microbiol 2016; 18:1620-34. [PMID: 26913481 DOI: 10.1111/1462-2920.13242] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 01/21/2016] [Indexed: 11/29/2022]
Abstract
The functions of calcium (Ca) in bacteria are less characterized than in eukaryotes, where its role has been studied extensively. The plant-pathogenic bacterium Xylella fastidiosa has several virulence features that are enhanced by increased Ca concentrations, including biofilm formation. However, the specific mechanisms driving modulation of this feature are unclear. Characterization of biofilm formation over time showed that 4 mM Ca supplementation produced denser biofilms that were still developing at 96 h, while biofilm in non-supplemented media had reached the dispersal stage by 72 h. To identify changes in global gene expression in X. fastidiosa grown in supplemental Ca, RNA-Seq of batch culture biofilm cells was conducted at three 24-h time intervals. Results indicate that a variety of genes are differentially expressed in response to Ca, including genes related to attachment, motility, exopolysaccharide synthesis, biofilm formation, peptidoglycan synthesis, regulatory functions, iron homeostasis, and phages. Collectively, results demonstrate that Ca supplementation induces a transcriptional response that promotes continued biofilm development, while biofilm cells in nonsupplemented media are driven towards dispersion of cells from the biofilm structure. These results have important implications for disease progression in planta, where xylem sap is the source of Ca and other nutrients for X. fastidiosa.
Collapse
Affiliation(s)
- Jennifer K Parker
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL
| | - Hongyu Chen
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL
| | - Sara E McCarty
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL
| | - Lawrence Y Liu
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL
| | | |
Collapse
|
13
|
Calcium binding proteins and calcium signaling in prokaryotes. Cell Calcium 2014; 57:151-65. [PMID: 25555683 DOI: 10.1016/j.ceca.2014.12.006] [Citation(s) in RCA: 136] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 12/08/2014] [Accepted: 12/09/2014] [Indexed: 11/20/2022]
Abstract
With the continued increase of genomic information and computational analyses during the recent years, the number of newly discovered calcium binding proteins (CaBPs) in prokaryotic organisms has increased dramatically. These proteins contain sequences that closely resemble a variety of eukaryotic calcium (Ca(2+)) binding motifs including the canonical and pseudo EF-hand motifs, Ca(2+)-binding β-roll, Greek key motif and a novel putative Ca(2+)-binding domain, called the Big domain. Prokaryotic CaBPs have been implicated in diverse cellular activities such as division, development, motility, homeostasis, stress response, secretion, transport, signaling and host-pathogen interactions. However, the majority of these proteins are hypothetical, and only few of them have been studied functionally. The finding of many diverse CaBPs in prokaryotic genomes opens an exciting area of research to explore and define the role of Ca(2+) in organisms other than eukaryotes. This review presents the most recent developments in the field of CaBPs and novel advancements in the role of Ca(2+) in prokaryotes.
Collapse
|
14
|
Clementi EA, Marks LR, Roche-Håkansson H, Håkansson AP. Monitoring changes in membrane polarity, membrane integrity, and intracellular ion concentrations in Streptococcus pneumoniae using fluorescent dyes. J Vis Exp 2014:e51008. [PMID: 24637356 DOI: 10.3791/51008] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Membrane depolarization and ion fluxes are events that have been studied extensively in biological systems due to their ability to profoundly impact cellular functions, including energetics and signal transductions. While both fluorescent and electrophysiological methods, including electrode usage and patch-clamping, have been well developed for measuring these events in eukaryotic cells, methodology for measuring similar events in microorganisms have proven more challenging to develop given their small size in combination with the more complex outer surface of bacteria shielding the membrane. During our studies of death-initiation in Streptococcus pneumoniae (pneumococcus), we wanted to elucidate the role of membrane events, including changes in polarity, integrity, and intracellular ion concentrations. Searching the literature, we found that very few studies exist. Other investigators had monitored radioisotope uptake or equilibrium to measure ion fluxes and membrane potential and a limited number of studies, mostly in Gram-negative organisms, had seen some success using carbocyanine or oxonol fluorescent dyes to measure membrane potential, or loading bacteria with cell-permeant acetoxymethyl (AM) ester versions of ion-sensitive fluorescent indicator dyes. We therefore established and optimized protocols for measuring membrane potential, rupture, and ion-transport in the Gram-positive organism S. pneumoniae. We developed protocols using the bis-oxonol dye DiBAC4(3) and the cell-impermeant dye propidium iodide to measure membrane depolarization and rupture, respectively, as well as methods to optimally load the pneumococci with the AM esters of the ratiometric dyes Fura-2, PBFI, and BCECF to detect changes in intracellular concentrations of Ca(2+), K(+), and H(+), respectively, using a fluorescence-detection plate reader. These protocols are the first of their kind for the pneumococcus and the majority of these dyes have not been used in any other bacterial species. Though our protocols have been optimized for S. pneumoniae, we believe these approaches should form an excellent starting-point for similar studies in other bacterial species.
Collapse
Affiliation(s)
- Emily A Clementi
- Department of Microbiology and Immunology, University at Buffalo, State University of New York
| | - Laura R Marks
- Department of Microbiology and Immunology, University at Buffalo, State University of New York
| | | | - Anders P Håkansson
- Department of Microbiology and Immunology, University at Buffalo, State University of New York; Witebsky Center for Microbial Pathogenesis and Immunology, University at Buffalo, State University of New York; New York State Center of Excellence in Bioinformatics and Life Sciences, University at Buffalo, State University of New York;
| |
Collapse
|
15
|
Involvement of minerals in adherence of Legionella pneumophila to surfaces. Curr Microbiol 2013; 66:437-42. [PMID: 23292133 DOI: 10.1007/s00284-012-0295-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Accepted: 12/07/2012] [Indexed: 02/05/2023]
Abstract
Legionella pneumophila is the causative agent of 90 % of Legionnaires' disease cases. This bacterium lives naturally in fresh water and can colonize biofilms, which play an important role in the protection of Legionella against environmental stress factors. Relationship between the presence of minerals in water and Legionella adherence to surfaces is not well-known. In this study, we studied influence of minerals on bacterial adherence. For the first time, to our knowledge, this report shows that calcium and magnesium in a less extent, enhances the adherence of Legionella to surfaces compared to the bacteria behavior in distilled water. Treatment with proteinase K of live cells showed that surface proteins do not seem to play a crucial role in bacteria adherence to surfaces. Our results represent a first step in understanding effect of ions on Legionella adherence to surfaces. Such field of research could be helpful to better understand biofilm colonization by this bacterium to improve Legionella risk management in water networks.
Collapse
|
16
|
Clementi EA, Marks LR, Duffey ME, Hakansson AP. A novel initiation mechanism of death in Streptococcus pneumoniae induced by the human milk protein-lipid complex HAMLET and activated during physiological death. J Biol Chem 2012; 287:27168-82. [PMID: 22700972 DOI: 10.1074/jbc.m112.371070] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
To cause colonization or infection, most bacteria grow in biofilms where differentiation and death of subpopulations is critical for optimal survival of the whole population. However, little is known about initiation of bacterial death under physiological conditions. Membrane depolarization has been suggested, but never shown to be involved, due to the difficulty of performing such studies in bacteria and the paucity of information that exists regarding ion transport mechanisms in prokaryotes. In this study, we performed the first extensive investigation of ion transport and membrane depolarization in a bacterial system. We found that HAMLET, a human milk protein-lipid complex, kills Streptococcus pneumoniae (the pneumococcus) in a manner that shares features with activation of physiological death from starvation. Addition of HAMLET to pneumococci dissipated membrane polarity, but depolarization per se was not enough to trigger death. Rather, both HAMLET- and starvation-induced death of pneumococci specifically required a sodium-dependent calcium influx, as shown using calcium and sodium transport inhibitors. This mechanism was verified under low sodium conditions, and in the presence of ionomycin or monensin, which enhanced pneumococcal sensitivity to HAMLET- and starvation-induced death. Pneumococcal death was also inhibited by kinase inhibitors, and indicated the involvement of Ser/Thr kinases in these processes. The importance of this activation mechanism was made evident, as dysregulation and manipulation of physiological death was detrimental to biofilm formation, a hallmark of bacterial colonization. Overall, our findings provide novel information on the role of ion transport during bacterial death, with the potential to uncover future antimicrobial targets.
Collapse
Affiliation(s)
- Emily A Clementi
- Department of Microbiology and Immunology, University at Buffalo, State University of New York, Buffalo, New York 14214, USA
| | | | | | | |
Collapse
|
17
|
Song S, Jia Z, Xu J, Zhang Z, Bian Z. N-butyryl-homoserine lactone, a bacterial quorum-sensing signaling molecule, induces intracellular calcium elevation in Arabidopsis root cells. Biochem Biophys Res Commun 2011; 414:355-60. [DOI: 10.1016/j.bbrc.2011.09.076] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2011] [Accepted: 09/14/2011] [Indexed: 11/26/2022]
|
18
|
Lin YP, Raman R, Sharma Y, Chang YF. Calcium binds to leptospiral immunoglobulin-like protein, LigB, and modulates fibronectin binding. J Biol Chem 2008; 283:25140-25149. [PMID: 18625711 DOI: 10.1074/jbc.m801350200] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Pathogenic Leptospira spp. express immunoglobulin-like proteins, LigA and LigB, which serve as adhesins to bind to extracellular matrices and mediate their attachment on host cells. However, nothing is known about the mechanism by which these proteins are involved in pathogenesis. We demonstrate that LigBCen2 binds Ca(2+), as evidenced by inductively coupled plasma optical emission spectrometry, energy dispersive spectrometry, (45)Ca overlay, and mass spectrometry, although there is no known motif for Ca(2+) binding. LigBCen2 binds four Ca(2+) as determined by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. The dissociation constant, K(D), for Ca(2+) binding is 7 mum, as measured by isothermal titration calorimetry and calcium competition experiments. The nature of the Ca(2+)-binding site in LigB is possibly similar to that seen in the betagamma-crystallin superfamily, since structurally, both families of proteins possess the Greek key type fold. The conformation of LigBCen2 was significantly influenced by Ca(2+) binding as shown by far- and near-UV CD and by fluorescence spectroscopy. In the apo form, the protein appears to be partially unfolded, as seen in the far-UV CD spectrum, and upon Ca(2+) binding, the protein acquires significant beta-sheet conformation. Ca(2+) binding stabilizes the protein as monitored by thermal unfolding by CD (50.7-54.8 degrees C) and by differential scanning calorimetry (50.0-55.7 degrees C). Ca(2+) significantly assists the binding of LigBCen2 to the N-terminal domain of fibronectin and perturbs the secondary structure, suggesting the involvement of Ca(2+) in adhesion. We demonstrate that LigB is a novel bacterial Ca(2+)-binding protein and suggest that Ca(2+) binding plays a pivotal role in the pathogenesis of leptospirosis.
Collapse
Affiliation(s)
- Yi-Pin Lin
- College of Veterinary Medicine, Cornell University, Ithaca, New York 14853 and the
| | - Rajeev Raman
- Centre for Cellular and Molecular Biology (Council of Scientific and Industrial Research), Uppal Road, Hyderabad 500 007, India
| | - Yogendra Sharma
- Centre for Cellular and Molecular Biology (Council of Scientific and Industrial Research), Uppal Road, Hyderabad 500 007, India
| | - Yung-Fu Chang
- College of Veterinary Medicine, Cornell University, Ithaca, New York 14853 and the.
| |
Collapse
|
19
|
|
20
|
Torrecilla I, Leganés F, Bonilla I, Fernández-Piñas F. A calcium signal is involved in heterocyst differentiation in the cyanobacterium Anabaena sp. PCC7120. Microbiology (Reading) 2004; 150:3731-3739. [PMID: 15528659 DOI: 10.1099/mic.0.27403-0] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The impact of calcium signals in virtually all cells has led to the study of their role in prokaryotic organisms as stress response modulators. Cell differentiation in adverse conditions is a common Ca2+-requiring response. Nitrogen starvation induces the differentiation of N2-fixing heterocysts in the filamentous cyanobacterium Anabaena sp. PCC7120. This paper reports the use of a recombinant strain of this organism expressing the photoprotein aequorin to monitor the intracellular free-calcium concentration during the course of heterocyst differentiation. A specific calcium signature that is triggered exclusively when cells are deprived of combined nitrogen and generated by intracellular calcium stores was identified. The intracellular calcium signal was manipulated by treatment with specific calcium drugs, and the effect of such manipulation on the process of heterocyst differentiation was subsequently assessed. Suppression, magnification or poor regulation of this signal prevented the process of heterocyst differentiation, thereby suggesting that a calcium signal with a defined set of kinetic parameters may be required for differentiation. A hetR mutant of Anabaena sp. PCC7120 that cannot differentiate into heterocysts retains, however, the capacity to generate the calcium transient in response to nitrogen deprivation, strongly suggesting that Ca2+ may be involved in a very early step of the differentiation process.
Collapse
Affiliation(s)
- I Torrecilla
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid 28049, Spain
| | - F Leganés
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid 28049, Spain
| | - I Bonilla
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid 28049, Spain
| | - F Fernández-Piñas
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid 28049, Spain
| |
Collapse
|
21
|
Michiels J, Xi C, Verhaert J, Vanderleyden J. The functions of Ca(2+) in bacteria: a role for EF-hand proteins? Trends Microbiol 2002; 10:87-93. [PMID: 11827810 DOI: 10.1016/s0966-842x(01)02284-3] [Citation(s) in RCA: 137] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In bacteria, Ca(2+) is implicated in a wide variety of cellular processes, including the cell cycle and cell division. Dedicated influx and efflux systems tightly control the low cytoplasmic Ca(2+) levels in prokaryotes. Additionally, the growing number of proteins containing various Ca(2+)-binding motifs supports the importance of Ca(2+), which controls various protein functions by affecting protein stability, enzymatic activity or signal transduction. The existence of calmodulin-like proteins (containing EF-hand motifs) in bacteria is a long-standing hypothesis. Analysis of the prokaryotic protein sequences available in the databases has revealed the presence of several calmodulin-like proteins containing two or more authentic EF-hand motifs, suggesting that calmodulin-like proteins could be involved in Ca(2+) regulation in bacteria.
Collapse
Affiliation(s)
- Jan Michiels
- Centre of Microbial and Plant Genetics, Kasteelpark Arenberg 20, B-3001, Heverlee, Belgium
| | | | | | | |
Collapse
|