1
|
Lu M, Wu J, Gao Q, Jin R, An C, Ma T. To cleave or not and how? The DNA exonucleases and endonucleases in immunity. Genes Dis 2025; 12:101219. [PMID: 39759116 PMCID: PMC11697192 DOI: 10.1016/j.gendis.2024.101219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 11/02/2023] [Accepted: 12/29/2023] [Indexed: 01/07/2025] Open
Abstract
DNA exonucleases and endonucleases are key executors of the genome during many physiological processes. They generate double-stranded DNA by cleaving damaged endogenous or exogenous DNA, triggering the activation of the innate immune pathways such as cGAS-STING-IFN, and enabling the body to produce anti-viral or anti-tumor immune responses. This is of great significance for maintaining the stability of the genome and improving the therapeutic efficacy of tumors. In addition, genomic instability caused by exonuclease mutations contributes to the development of various autoimmune diseases. This review summarizes the DNA exonucleases and endonucleases which have critical functions in immunity and associated diseases.
Collapse
Affiliation(s)
- Mingjun Lu
- Cancer Research Center, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing 101149, China
| | - Jinghong Wu
- Cancer Research Center, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing 101149, China
| | - Qing Gao
- Cancer Research Center, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing 101149, China
| | - Renjing Jin
- Cancer Research Center, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing 101149, China
| | - Changming An
- Department of Head and Neck Surgery, Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100021, China
| | - Teng Ma
- Cancer Research Center, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing 101149, China
| |
Collapse
|
2
|
Chen T, Xu ZG, Luo J, Manne RK, Wang Z, Hsu CC, Pan BS, Cai Z, Tsai PJ, Tsai YS, Chen ZZ, Li HY, Lin HK. NSUN2 is a glucose sensor suppressing cGAS/STING to maintain tumorigenesis and immunotherapy resistance. Cell Metab 2023; 35:1782-1798.e8. [PMID: 37586363 PMCID: PMC10726430 DOI: 10.1016/j.cmet.2023.07.009] [Citation(s) in RCA: 68] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 05/29/2023] [Accepted: 07/18/2023] [Indexed: 08/18/2023]
Abstract
Glucose metabolism is known to orchestrate oncogenesis. Whether glucose serves as a signaling molecule directly regulating oncoprotein activity for tumorigenesis remains elusive. Here, we report that glucose is a cofactor binding to methyltransferase NSUN2 at amino acid 1-28 to promote NSUN2 oligomerization and activation. NSUN2 activation maintains global m5C RNA methylation, including TREX2, and stabilizes TREX2 to restrict cytosolic dsDNA accumulation and cGAS/STING activation for promoting tumorigenesis and anti-PD-L1 immunotherapy resistance. An NSUN2 mutant defective in glucose binding or disrupting glucose/NSUN2 interaction abolishes NSUN2 activity and TREX2 induction leading to cGAS/STING activation for oncogenic suppression. Strikingly, genetic deletion of the glucose/NSUN2/TREX2 axis suppresses tumorigenesis and overcomes anti-PD-L1 immunotherapy resistance in those cold tumors through cGAS/STING activation to facilitate apoptosis and CD8+ T cell infiltration. Our study identifies NSUN2 as a direct glucose sensor whose activation by glucose drives tumorigenesis and immunotherapy resistance by maintaining TREX2 expression for cGAS/STING inactivation.
Collapse
Affiliation(s)
- Tingjin Chen
- Department of Cancer Biology, Wake Forest Baptist Medical Center, Wake Forest University, Winston-Salem, NC 27157, USA
| | - Zhi-Gang Xu
- Chongqing Engineering Laboratory of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, IATTI, Chongqing University of Arts and Sciences, Yongchuan, Chongqing 402160, China
| | - Jie Luo
- Department of Cancer Biology, Wake Forest Baptist Medical Center, Wake Forest University, Winston-Salem, NC 27157, USA
| | - Rajesh Kumar Manne
- Department of Cancer Biology, Wake Forest Baptist Medical Center, Wake Forest University, Winston-Salem, NC 27157, USA
| | - Zhengyu Wang
- University of Arkansas for Medical Sciences, College of Pharmacy, Division of Pharmaceutical Science, 200 South Cedar, Little Rock, AR 72202, USA
| | - Che-Chia Hsu
- Department of Cancer Biology, Wake Forest Baptist Medical Center, Wake Forest University, Winston-Salem, NC 27157, USA
| | - Bo-Syong Pan
- Department of Cancer Biology, Wake Forest Baptist Medical Center, Wake Forest University, Winston-Salem, NC 27157, USA
| | - Zhen Cai
- Department of Cancer Biology, Wake Forest Baptist Medical Center, Wake Forest University, Winston-Salem, NC 27157, USA
| | - Pei-Jane Tsai
- Department of Cancer Biology, Wake Forest Baptist Medical Center, Wake Forest University, Winston-Salem, NC 27157, USA
| | - Yau-Sheng Tsai
- Department of Cancer Biology, Wake Forest Baptist Medical Center, Wake Forest University, Winston-Salem, NC 27157, USA
| | - Zhong-Zhu Chen
- Chongqing Engineering Laboratory of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, IATTI, Chongqing University of Arts and Sciences, Yongchuan, Chongqing 402160, China
| | - Hong-Yu Li
- University of Arkansas for Medical Sciences, College of Pharmacy, Division of Pharmaceutical Science, 200 South Cedar, Little Rock, AR 72202, USA
| | - Hui-Kuan Lin
- Department of Cancer Biology, Wake Forest Baptist Medical Center, Wake Forest University, Winston-Salem, NC 27157, USA.
| |
Collapse
|
3
|
Du H, Kou M, Deng W, Zhou X, Zhang X, Huang Z, Ren B, Cai X, Xu S, Chen Y, Chen L, Chen C, Bao H, Chen Q, Li D. DWL-4-140: A allene small molecule targeting STING that alleviates lupus-like phenotype in Trex1 -/- mice. Biomed Pharmacother 2023; 165:115188. [PMID: 37480829 DOI: 10.1016/j.biopha.2023.115188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 07/14/2023] [Accepted: 07/18/2023] [Indexed: 07/24/2023] Open
Abstract
The innate immune system plays a critical role in the host response against pathogenic microbial infection. However, aberrant activation of the innate immune pathways is a characteristic feature of various diseases. Thus, targeted drugs must be developed based on the understanding of the innate immune signaling pathways. This study demonstrated that an allene small molecule (DWL-4-140) can efficiently and selectively exert regulatory effects on the stimulator of interferon genes (STING), resulting in the downregulation of DNA-induced interferon responses. Mechanistically, DWL-4-140 targeted the cyclized nucleotide-binding domain (CBD) of STING, inhibiting the assembly of the STING multimeric complex and the recruitment of downstream signaling mediators. In addition to downregulating the 10-carboxymethyl-9-acridanone-induced production of inflammatory factors, DWL-4-140 alleviated the pathological features of Trex1 deletion-induced lupus in mice. Thus, this study demonstrated that DWL-4-140 pharmacologically inhibits STING with potential therapeutic applications in auto-inflammatory diseases.
Collapse
Affiliation(s)
- Hekang Du
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Sciences, Fujian Normal University Qishan Campus, College Town, Fuzhou, Fujian Province 350117, PR China
| | - Meng Kou
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Sciences, Fujian Normal University Qishan Campus, College Town, Fuzhou, Fujian Province 350117, PR China; Cord Blood Bank Centre, Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, Guangzhou, PR China
| | - Weili Deng
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Sciences, Fujian Normal University Qishan Campus, College Town, Fuzhou, Fujian Province 350117, PR China; Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, PR China
| | - Xueyuan Zhou
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Sciences, Fujian Normal University Qishan Campus, College Town, Fuzhou, Fujian Province 350117, PR China
| | - Xiaoxiong Zhang
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Sciences, Fujian Normal University Qishan Campus, College Town, Fuzhou, Fujian Province 350117, PR China
| | - Zhengrong Huang
- Department of Integrative Medicine, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian Province 350117, PR China
| | - Bowen Ren
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Sciences, Fujian Normal University Qishan Campus, College Town, Fuzhou, Fujian Province 350117, PR China
| | - Xingting Cai
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Sciences, Fujian Normal University Qishan Campus, College Town, Fuzhou, Fujian Province 350117, PR China
| | - Shan Xu
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Sciences, Fujian Normal University Qishan Campus, College Town, Fuzhou, Fujian Province 350117, PR China
| | - Yu Chen
- Cancer Bio-immunotherapy Center, Clinical Oncology School of Fujian Medical University & Fujian Cancer Hospital, Fuzhou, Fujian Province, PR China; Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, Fujian Province, PR China
| | - Lizhu Chen
- Cancer Bio-immunotherapy Center, Clinical Oncology School of Fujian Medical University & Fujian Cancer Hospital, Fuzhou, Fujian Province, PR China; Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, Fujian Province, PR China
| | - Chuanben Chen
- Cancer Bio-immunotherapy Center, Clinical Oncology School of Fujian Medical University & Fujian Cancer Hospital, Fuzhou, Fujian Province, PR China; Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, Fujian Province, PR China.
| | - Hongli Bao
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, PR China.
| | - Qi Chen
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Sciences, Fujian Normal University Qishan Campus, College Town, Fuzhou, Fujian Province 350117, PR China.
| | - Daliang Li
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Sciences, Fujian Normal University Qishan Campus, College Town, Fuzhou, Fujian Province 350117, PR China.
| |
Collapse
|
4
|
Queiroz MAF, Moura TCF, Bichara CDA, Lima LLPD, Oliveira AQTD, Souza RGD, Gomes STM, Amoras EDSG, Vallinoto ACR. TREX1 531C/T Polymorphism and Autoantibodies Associated with the Immune Status of HIV-1-Infected Individuals. Int J Mol Sci 2023; 24:ijms24119660. [PMID: 37298611 DOI: 10.3390/ijms24119660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 05/23/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023] Open
Abstract
Autoimmune diseases can develop during HIV-1 infection, mainly related to the individual's immune competence. The study investigated the association of the TREX1 531C/T polymorphism and antinuclear antibodies (ANA) in HIV-1 infection and the time of antiretroviral therapy (ART) used. Cross-sectional and longitudinal assessments were carried out in 150 individuals, divided into three groups: ART-naïve, 5 years and 10 years on ART; ART-naïve individuals were evaluated for 2 years after initiation of treatment. The individuals' blood samples were submitted to indirect immunofluorescence tests, real-time PCR and flow cytometry. The TREX1 531C/T polymorphism was associated with higher levels of TCD4+ lymphocytes and IFN-α in individuals with HIV-1. Individuals on ART had a higher frequency of ANA, higher levels of T CD4+ lymphocytes, a higher ratio of T CD4+/CD8+ lymphocytes and higher levels of IFN-α than therapy-naïve individuals (p < 0.05). The TREX1 531C/T polymorphism was associated with better maintenance of the immune status of individuals with HIV-1 and ANA with immune restoration in individuals on ART, indicating the need to identify individuals at risk of developing an autoimmune disease.
Collapse
Affiliation(s)
- Maria Alice Freitas Queiroz
- Laboratory of Virology, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, Brazil
- Graduate Program in Biology of Infectious and Parasitic Agents, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, Brazil
| | - Tuane Carolina Ferreira Moura
- Laboratory of Virology, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, Brazil
- Graduate Program in Biology of Infectious and Parasitic Agents, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, Brazil
| | - Carlos David Araújo Bichara
- Laboratory of Virology, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, Brazil
- Graduate Program in Biology of Infectious and Parasitic Agents, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, Brazil
| | | | - Allysson Quintino Tenório de Oliveira
- Laboratory of Virology, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, Brazil
- Graduate Program in Biology of Infectious and Parasitic Agents, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, Brazil
| | - Ranilda Gama de Souza
- Laboratory of Virology, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, Brazil
| | | | | | - Antonio Carlos Rosário Vallinoto
- Laboratory of Virology, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, Brazil
- Graduate Program in Biology of Infectious and Parasitic Agents, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, Brazil
| |
Collapse
|
5
|
Ghosh M, Saha S, Li J, Montrose DC, Martinez LA. p53 engages the cGAS/STING cytosolic DNA sensing pathway for tumor suppression. Mol Cell 2023; 83:266-280.e6. [PMID: 36638783 PMCID: PMC9993620 DOI: 10.1016/j.molcel.2022.12.023] [Citation(s) in RCA: 72] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 10/31/2022] [Accepted: 12/20/2022] [Indexed: 01/13/2023]
Abstract
Tumor suppression by TP53 involves cell-autonomous and non-cell-autonomous mechanisms. TP53 can suppress tumor growth by modulating immune system functions; however, the mechanistic basis for this activity is not well understood. We report that p53 promotes the degradation of the DNA exonuclease TREX1, resulting in cytosolic dsDNA accumulation. We demonstrate that p53 requires the ubiquitin ligase TRIM24 to induce TREX1 degradation. The cytosolic DNA accumulation resulting from TREX1 degradation activates the cytosolic DNA-sensing cGAS/STING pathway, resulting in induction of type I interferons. TREX1 overexpression sufficed to block p53 activation of the cGAS/STING pathway. p53-mediated induction of type I interferon (IFNB1) is suppressed by cGAS/STING knockout, and p53's tumor suppressor activities are compromised by the loss of signaling through the cGAS/STING pathway. Thus, our study reveals that p53 utilizes the cGAS/STING innate immune system pathway for both cell-intrinsic and cell-extrinsic tumor suppressor activities.
Collapse
Affiliation(s)
- Monisankar Ghosh
- Department of Pathology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11790, USA; Stony Brook Cancer Center, Stony Brook, NY 11790, USA
| | - Suchandrima Saha
- Department of Pathology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11790, USA; Stony Brook Cancer Center, Stony Brook, NY 11790, USA
| | - Jinyu Li
- Department of Pathology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11790, USA; Stony Brook Cancer Center, Stony Brook, NY 11790, USA
| | - David C Montrose
- Department of Pathology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11790, USA; Stony Brook Cancer Center, Stony Brook, NY 11790, USA
| | - Luis A Martinez
- Department of Pathology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11790, USA; Stony Brook Cancer Center, Stony Brook, NY 11790, USA.
| |
Collapse
|
6
|
Manils J, Marruecos L, Soler C. Exonucleases: Degrading DNA to Deal with Genome Damage, Cell Death, Inflammation and Cancer. Cells 2022; 11:2157. [PMID: 35883600 PMCID: PMC9316158 DOI: 10.3390/cells11142157] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/30/2022] [Accepted: 07/07/2022] [Indexed: 01/27/2023] Open
Abstract
Although DNA degradation might seem an unwanted event, it is essential in many cellular processes that are key to maintaining genomic stability and cell and organism homeostasis. The capacity to cut out nucleotides one at a time from the end of a DNA chain is present in enzymes called exonucleases. Exonuclease activity might come from enzymes with multiple other functions or specialized enzymes only dedicated to this function. Exonucleases are involved in central pathways of cell biology such as DNA replication, repair, and death, as well as tuning the immune response. Of note, malfunctioning of these enzymes is associated with immune disorders and cancer. In this review, we will dissect the impact of DNA degradation on the DNA damage response and its links with inflammation and cancer.
Collapse
Affiliation(s)
- Joan Manils
- Serra Húnter Programme, Immunology Unit, Department of Pathology and Experimental Therapy, School of Medicine, Universitat de Barcelona, Feixa Llarga s/n, 08907 L’Hospitalet de Llobregat, Spain;
- Immunity, Inflammation and Cancer Group, Oncobell Program, Institut d’Investigació Biomèdica de Bellvitge—IDIBELL, 08907 L’Hospitalet de Llobregat, Spain
| | - Laura Marruecos
- Breast Cancer Laboratory, Cancer Biology and Stem Cells Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia;
| | - Concepció Soler
- Immunity, Inflammation and Cancer Group, Oncobell Program, Institut d’Investigació Biomèdica de Bellvitge—IDIBELL, 08907 L’Hospitalet de Llobregat, Spain
- Immunology Unit, Department of Pathology and Experimental Therapy, School of Medicine, Universitat de Barcelona, 08007 Barcelona, Spain
| |
Collapse
|
7
|
Yin J, Lu R, Xin C, Wang Y, Ling X, Li D, Zhang W, Liu M, Xie W, Kong L, Si W, Wei P, Xiao B, Lee HY, Liu T, Hu J. Cas9 exo-endonuclease eliminates chromosomal translocations during genome editing. Nat Commun 2022; 13:1204. [PMID: 35260581 PMCID: PMC8904484 DOI: 10.1038/s41467-022-28900-w] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 02/18/2022] [Indexed: 12/27/2022] Open
Abstract
The mechanism underlying unwanted structural variations induced by CRISPR-Cas9 remains poorly understood, and no effective strategy is available to inhibit the generation of these byproducts. Here we find that the generation of a high level of translocations is dependent on repeated cleavage at the Cas9-targeting sites. Therefore, we employ a strategy in which Cas9 is fused with optimized TREX2 to generate Cas9TX, a Cas9 exo-endonuclease, which prevents perfect DNA repair and thereby avoids repeated cleavage. In comparison with CRISPR-Cas9, CRISPR-Cas9TX greatly suppressed translocation levels and enhanced the editing efficiency of single-site editing. The number of large deletions associated with Cas9TX was also reduced to very low level. The application of CRISPR-Cas9TX for multiplex gene editing in chimeric antigen receptor T cells nearly eliminated deleterious chromosomal translocations. We report the mechanism underlying translocations induced by Cas9, and propose a general strategy for reducing chromosomal abnormalities induced by CRISPR-RNA-guided endonucleases.
Collapse
Affiliation(s)
- Jianhang Yin
- The MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Center for Life Sciences, Genome Editing Research Center, Peking University, 100871, Beijing, China
| | - Rusen Lu
- The MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Center for Life Sciences, Genome Editing Research Center, Peking University, 100871, Beijing, China
| | - Changchang Xin
- The MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Center for Life Sciences, Genome Editing Research Center, Peking University, 100871, Beijing, China
| | - Yuhong Wang
- The MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Center for Life Sciences, Genome Editing Research Center, Peking University, 100871, Beijing, China
| | - Xinyu Ling
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 100191, Beijing, China
| | - Dong Li
- The MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Center for Life Sciences, Genome Editing Research Center, Peking University, 100871, Beijing, China
| | - Weiwei Zhang
- The MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Center for Life Sciences, Genome Editing Research Center, Peking University, 100871, Beijing, China
| | - Mengzhu Liu
- The MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Center for Life Sciences, Genome Editing Research Center, Peking University, 100871, Beijing, China
| | - Wutao Xie
- The MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Center for Life Sciences, Genome Editing Research Center, Peking University, 100871, Beijing, China
| | - Lingyun Kong
- The MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Center for Life Sciences, Genome Editing Research Center, Peking University, 100871, Beijing, China
| | - Wen Si
- The MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Center for Life Sciences, Genome Editing Research Center, Peking University, 100871, Beijing, China
| | - Ping Wei
- The MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Center for Life Sciences, Genome Editing Research Center, Peking University, 100871, Beijing, China
| | - Bingbing Xiao
- Department of Obstetrics and Gynecology, Peking University First Hospital, 100034, Beijing, China
| | - Hsiang-Ying Lee
- The MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Center for Life Sciences, Genome Editing Research Center, Peking University, 100871, Beijing, China
| | - Tao Liu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 100191, Beijing, China
| | - Jiazhi Hu
- The MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Center for Life Sciences, Genome Editing Research Center, Peking University, 100871, Beijing, China.
| |
Collapse
|
8
|
Regulation of cGAS-STING pathway - Implications for systemic lupus erythematosus. RHEUMATOLOGY AND IMMUNOLOGY RESEARCH 2021; 2:173-184. [PMID: 36465073 PMCID: PMC9524788 DOI: 10.2478/rir-2021-0023] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 10/07/2021] [Indexed: 12/22/2022]
Abstract
Abstract
Type I interferon (IFN-I) is implicated in the pathogenesis of systemic lupus erythematosus (SLE) and the closely associated monogenic autoinflammatory disorders termed the “interferonopathies.” Recently, the cytosolic DNA sensor cyclic guanosine monophosphate-adenosine monophosphate synthase (cGAS) and its downstream signaling adaptor stimulator of interferon genes (STING) have been identified as having important, if not central, roles in driving IFN-I expression in response to self-DNA. This review highlights the many ways in which this pathway is regulated in order to prevent self-DNA recognition and underlines the importance of maintaining tight control in order to prevent autoimmune disease. We will discuss the murine and human studies that have implicated the cGAS-STING pathway as being an important contributor to breakdown in tolerance in SLE and highlight the potential therapeutic application of this knowledge for the treatment of SLE.
Collapse
|
9
|
Deoxyribonucleases and Their Applications in Biomedicine. Biomolecules 2020; 10:biom10071036. [PMID: 32664541 PMCID: PMC7407206 DOI: 10.3390/biom10071036] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/03/2020] [Accepted: 07/08/2020] [Indexed: 12/21/2022] Open
Abstract
Extracellular DNA, also called cell-free DNA, released from dying cells or activated immune cells can be recognized by the immune system as a danger signal causing or enhancing inflammation. The cleavage of extracellular DNA is crucial for limiting the inflammatory response and maintaining homeostasis. Deoxyribonucleases (DNases) as enzymes that degrade DNA are hypothesized to play a key role in this process as a determinant of the variable concentration of extracellular DNA. DNases are divided into two families-DNase I and DNase II, according to their biochemical and biological properties as well as the tissue-specific production. Studies have shown that low DNase activity is both, a biomarker and a pathogenic factor in systemic lupus erythematosus. Interventional experiments proved that administration of exogenous DNase has beneficial effects in inflammatory diseases. Recombinant human DNase reduces mucus viscosity in lungs and is used for the treatment of patients with cystic fibrosis. This review summarizes the currently available published data about DNases, their activity as a potential biomarker and methods used for their assessment. An overview of the experiments with systemic administration of DNase is also included. Whether low-plasma DNase activity is involved in the etiopathogenesis of diseases remains unknown and needs to be elucidated.
Collapse
|
10
|
Simpson SR, Hemphill WO, Hudson T, Perrino FW. TREX1 - Apex predator of cytosolic DNA metabolism. DNA Repair (Amst) 2020; 94:102894. [PMID: 32615442 DOI: 10.1016/j.dnarep.2020.102894] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Accepted: 06/03/2020] [Indexed: 12/13/2022]
Abstract
The cytosolic Three prime Repair EXonuclease 1 (TREX1) is a powerful DNA-degrading enzyme required for clearing cytosolic DNA to prevent aberrant inflammation and autoimmunity. In the absence of TREX1 activity, cytosolic DNA pattern recognition receptors of the innate immune system are constitutively activated by undegraded TREX1 substrates. This triggers a chronic inflammatory response in humans expressing mutant TREX1 alleles, eliciting a spectrum of rare autoimmune diseases dependent on the nature of the mutation. The precise origins of cytosolic DNA targeted by TREX1 continue to emerge, but DNA emerging from the nucleus or taken up by the cell could represent potential sources. In this Review, we explore the biochemical and immunological data supporting the role of TREX1 in suppressing cytosolic DNA sensing, and discuss the possibility that TREX1 may contribute to maintenance of genome integrity.
Collapse
Affiliation(s)
- Sean R Simpson
- Department of Biochemistry, Center for Structural Biology, Wake Forest School of Medicine, Winston-Salem, NC 27157, United States
| | - Wayne O Hemphill
- Department of Biochemistry, Center for Structural Biology, Wake Forest School of Medicine, Winston-Salem, NC 27157, United States
| | - Teesha Hudson
- Department of Biochemistry, Center for Structural Biology, Wake Forest School of Medicine, Winston-Salem, NC 27157, United States
| | - Fred W Perrino
- Department of Biochemistry, Center for Structural Biology, Wake Forest School of Medicine, Winston-Salem, NC 27157, United States.
| |
Collapse
|
11
|
Tajbakhsh A, Rezaee M, Barreto GE, Moallem SA, Henney NC, Sahebkar A. The role of nuclear factors as “Find-Me”/alarmin signals and immunostimulation in defective efferocytosis and related disorders. Int Immunopharmacol 2020; 80:106134. [DOI: 10.1016/j.intimp.2019.106134] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 12/16/2019] [Accepted: 12/16/2019] [Indexed: 12/22/2022]
|
12
|
Simpson SR, Rego SL, Harvey SE, Liu M, Hemphill WO, Venkatadri R, Sharma R, Grayson JM, Perrino FW. T Cells Produce IFN-α in the TREX1 D18N Model of Lupus-like Autoimmunity. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2020; 204:348-359. [PMID: 31826941 PMCID: PMC6946867 DOI: 10.4049/jimmunol.1900220] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 11/07/2019] [Indexed: 01/09/2023]
Abstract
Autoimmunity can result when cells fail to properly dispose of DNA. Mutations in the three-prime repair exonuclease 1 (TREX1) cause a spectrum of human autoimmune diseases resembling systemic lupus erythematosus. The cytosolic dsDNA sensor, cyclic GMP-AMP synthase (cGAS), and the stimulator of IFN genes (STING) are required for pathogenesis, but specific cells in which DNA sensing and subsequent type I IFN (IFN-I) production occur remain elusive. In this study, we demonstrate that TREX1 D18N catalytic deficiency causes dysregulated IFN-I signaling and autoimmunity in mice. Moreover, we show that bone marrow-derived cells drive this process. We identify both innate immune and, surprisingly, activated T cells as sources of pathological IFN-α production. These findings demonstrate that TREX1 enzymatic activity is crucial to prevent inappropriate DNA sensing and IFN-I production in immune cells, including normally low-level IFN-α-producing cells. These results expand our understanding of DNA sensing and innate immunity in T cells and may have relevance to the pathogenesis of human disease caused by TREX1 mutation.
Collapse
Affiliation(s)
- Sean R Simpson
- Department of Biochemistry, Center for Structural Biology, Wake Forest School of Medicine, Winston-Salem, NC 27157
| | - Stephen L Rego
- Department of Biochemistry, Center for Structural Biology, Wake Forest School of Medicine, Winston-Salem, NC 27157
| | - Scott E Harvey
- Department of Biochemistry, Center for Structural Biology, Wake Forest School of Medicine, Winston-Salem, NC 27157
| | - Mingyong Liu
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, NC 27157; and
| | - Wayne O Hemphill
- Department of Biochemistry, Center for Structural Biology, Wake Forest School of Medicine, Winston-Salem, NC 27157
| | - Rajkumar Venkatadri
- Center for Immunity, Inflammation and Regenerative Medicine, Division of Nephrology, Department of Medicine, University of Virginia School of Medicine, Charlottesville, VA 22908
| | - Rahul Sharma
- Center for Immunity, Inflammation and Regenerative Medicine, Division of Nephrology, Department of Medicine, University of Virginia School of Medicine, Charlottesville, VA 22908
| | - Jason M Grayson
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, NC 27157; and
| | - Fred W Perrino
- Department of Biochemistry, Center for Structural Biology, Wake Forest School of Medicine, Winston-Salem, NC 27157;
| |
Collapse
|
13
|
Increased Mortality and Vascular Phenotype in a Knock-In Mouse Model of Retinal Vasculopathy With Cerebral Leukoencephalopathy and Systemic Manifestations. Stroke 2020; 51:300-307. [DOI: 10.1161/strokeaha.119.025176] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Background and Purpose—
Retinal vasculopathy with cerebral leukoencephalopathy and systemic manifestations (RVCL-S) is an autosomal dominant small vessel disease caused by C-terminal frameshift mutations in the
TREX1
gene that encodes the major mammalian 3′ to 5′ DNA exonuclease. RVCL-S is characterized by vasculopathy, especially in densely vascularized organs, progressive retinopathy, cerebral microvascular disease, white matter lesions, and migraine, but the underlying mechanisms are unknown.
Methods—
Homozygous transgenic RVCL-S knock-in mice expressing a truncated Trex1 (three prime repair exonuclease 1) protein (similar to what is seen in patients) and wild-type littermates, of various age groups, were subjected to (1) a survival analysis, (2) in vivo postocclusive reactive hyperemia and ex vivo Mulvany myograph studies to characterize the microvascular and macrovascular reactivity, and (3) experimental stroke after transient middle cerebral artery occlusion with neurological deficit assessment.
Results—
The mutant mice show increased mortality starting at midlife (
P
=0.03 with hazard ratio, 3.14 [95% CI, 1.05–9.39]). The mutants also show a vascular phenotype as evidenced by attenuated postocclusive reactive hyperemia responses (across all age groups; F[1, 65]=5.7,
P
=0.02) and lower acetylcholine-induced relaxations in aortae (in 20- to 24-month-old mice; RVCL-S knock-in: E
max
: 37±8% versus WT: E
max
: 65±6%,
P
=0.01). A vascular phenotype is also suggested by the increased infarct volume seen in 12- to 14-month-old mutant mice at 24 hours after infarct onset (RVCL-S knock-in: 75.4±2.7 mm
3
versus WT: 52.9±5.6 mm
3
,
P
=0.01).
Conclusions—
Homozygous RVCL-S knock-in mice show increased mortality, signs of abnormal vascular function, and increased sensitivity to experimental stroke and can be instrumental to investigate the pathology seen in patients with RVCL-S.
Collapse
|
14
|
Abstract
Three-prime Repair Exonuclease (TREX1) degrades ssDNA and dsDNA. TREX1 localizes to the perinuclear space in cells and degrades cytosolic DNA to prevent aberrant nucleic acid sensing and immune activation in humans and mice. Mutations in the TREX1 gene cause a spectrum of human autoimmune diseases including Aicardi-Goutières syndrome, familial chilblain lupus, retinal vasculopathy with cerebral leukodystrophy, and are associated with systemic lupus erythematosus. More than 60 disease-causing TREX1 variants have been identified including dominant and recessive, missense, and frameshift mutations that map to the catalytic core region and to the C-terminal cell localization region. The TREX1-disease causing mutations affect exonuclease activity at varied levels. In this chapter, we describe methods to purify variant recombinant TREX1 enzymes and measure the exonuclease activity using ssDNA and dsDNA substrates. The relationships between TREX1 activities, types of TREX1 mutations, and TREX1-associated autoimmune diseases are considered.
Collapse
Affiliation(s)
- Wayne O Hemphill
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Fred W Perrino
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC, United States.
| |
Collapse
|
15
|
Weigel C, Chaisaingmongkol J, Assenov Y, Kuhmann C, Winkler V, Santi I, Bogatyrova O, Kaucher S, Bermejo JL, Leung SY, Chan TL, Lasitschka F, Bohrer MH, Marx A, Haußen RHV, Herold-Mende C, Dyckhoff G, Boukamp P, Delank KW, Hörmann K, Lippert BM, Baier G, Dietz A, Oakes CC, Plass C, Becher H, Schmezer P, Ramroth H, Popanda O. DNA methylation at an enhancer of the three prime repair exonuclease 2 gene (TREX2) is linked to gene expression and survival in laryngeal cancer. Clin Epigenetics 2019; 11:67. [PMID: 31053176 PMCID: PMC6499986 DOI: 10.1186/s13148-019-0666-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 04/15/2019] [Indexed: 12/23/2022] Open
Abstract
Background Genetic aberrations in DNA repair genes are linked to cancer, but less is reported about epigenetic regulation of DNA repair and functional consequences. We investigated the intragenic methylation loss at the three prime repair exonuclease 2 (TREX2) locus in laryngeal (n = 256) and colorectal cancer cases (n = 95) and in pan-cancer data from The Cancer Genome Atlas (TCGA). Results Significant methylation loss at an intragenic site of TREX2 was a frequent trait in both patient cohorts (p = 0.016 and < 0.001, respectively) and in 15 out of 22 TCGA studies. Methylation loss correlated with immunohistochemically staining for TREX2 (p < 0.0001) in laryngeal tumors and improved overall survival of laryngeal cancer patients (p = 0.045). Chromatin immunoprecipitation, demethylation experiments, and reporter gene assays revealed that the region of methylation loss can function as a CCAAT/enhancer binding protein alpha (CEBPA)-responsive enhancer element regulating TREX2 expression. Conclusions The data highlight a regulatory role of TREX2 DNA methylation for gene expression which might affect incidence and survival of laryngeal cancer. Altered TREX2 protein levels in tumors may affect drug-induced DNA damage repair and provide new tailored therapies. Electronic supplementary material The online version of this article (10.1186/s13148-019-0666-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Christoph Weigel
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.,Present Address: Division of Hematology Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
| | | | - Yassen Assenov
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Christine Kuhmann
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Volker Winkler
- Institute of Public Health, University of Heidelberg, Heidelberg, Germany
| | - Irene Santi
- Institute of Public Health, University of Heidelberg, Heidelberg, Germany
| | - Olga Bogatyrova
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Simone Kaucher
- Institute of Public Health, University of Heidelberg, Heidelberg, Germany
| | - Justo L Bermejo
- Institute of Medical Biometry and Informatics, University Hospital Heidelberg, Heidelberg, Germany
| | - Suet Y Leung
- Department of Pathology, The University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong, China
| | - Tsun L Chan
- Department of Pathology, The University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong, China.,Department of Pathology, Hong Kong Sanatorium and Hospital, Happy Valley, Hong Kong, China
| | - Felix Lasitschka
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | | | - Alexander Marx
- Institute of Pathology, University Medical Centre Mannheim, Mannheim, Germany
| | | | - Christel Herold-Mende
- Department of Otorhinolaryngology, Head and Neck Surgery, University of Heidelberg, Heidelberg, Germany.,Division of Neurosurgical Research, Neurosurgery, University of Heidelberg, Heidelberg, Germany
| | - Gerhard Dyckhoff
- Department of Otorhinolaryngology, Head and Neck Surgery, University of Heidelberg, Heidelberg, Germany
| | - Petra Boukamp
- Division of Genetics of Skin Carcinogenesis, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Institute for Environmental Medicine, IUF, Düsseldorf, Germany
| | - Klaus W Delank
- Medical Hospital, Head and Neck Surgery, Ludwigshafen, Germany
| | - Karl Hörmann
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital of Mannheim, Mannheim, Germany
| | - Burkhard M Lippert
- Department of Otorhinolaryngology, Head and Neck Surgery, Heilbronn, Germany
| | - Gerald Baier
- Department of Otorhinolaryngology, Head and Neck Surgery, Academic Teaching Hospital, Darmstadt, Germany
| | - Andreas Dietz
- Department of Otorhinolaryngology, Head and Neck Surgery, University of Leipzig, Leipzig, Germany
| | - Christopher C Oakes
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.,Present Address: Division of Hematology Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
| | - Christoph Plass
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.,German Cancer Research Consortium (DKTK), Heidelberg, Germany
| | - Heiko Becher
- Institute of Public Health, University of Heidelberg, Heidelberg, Germany.,Institute of Medical Biometry and Epidemiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Peter Schmezer
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Heribert Ramroth
- Institute of Public Health, University of Heidelberg, Heidelberg, Germany
| | - Odilia Popanda
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.
| |
Collapse
|
16
|
Kothari PH, Kolar GR, Jen JC, Hajj‐Ali R, Bertram P, Schmidt RE, Atkinson JP. TREX1 is expressed by microglia in normal human brain and increases in regions affected by ischemia. Brain Pathol 2018; 28:806-821. [PMID: 30062819 PMCID: PMC6404532 DOI: 10.1111/bpa.12626] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 05/28/2018] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Mutations in the three-prime repair exonuclease 1 (TREX1) gene have been associated with neurological diseases, including Retinal Vasculopathy with Cerebral Leukoencephalopathy (RVCL). However, the endogenous expression of TREX1 in human brain has not been studied. METHODS We produced a rabbit polyclonal antibody (pAb) to TREX1 to characterize TREX1 by Western blotting (WB) of cell lysates from normal controls and subjects carrying an RVCL frame-shift mutation. Dual staining was performed to determine cell types expressing TREX1 in human brain tissue. TREX1 distribution in human brain was further evaluated by immunohistochemical analyses of formalin-fixed, paraffin-embedded samples from normal controls and patients with RVCL and ischemic stroke. RESULTS After validating the specificity of our anti-TREX1 rabbit pAb, WB analysis was utilized to detect the endogenous wild-type and frame-shift mutant of TREX1 in cell lysates. Dual staining in human brain tissues from patients with RVCL and normal controls localized TREX1 to a subset of microglia and macrophages. Quantification of immunohistochemical staining of the cerebral cortex revealed that TREX1+ microglia were primarily in the gray matter of normal controls (22.7 ± 5.1% and 5.5 ± 1.9% of Iba1+ microglia in gray and white matter, respectively) and commonly in association with the microvasculature. In contrast, in subjects with RVCL, the TREX1+ microglia were predominantly located in the white matter of normal appearing cerebral cortex (11.8 ± 3.1% and 38.9 ± 5.8% of Iba1+ microglia in gray and white matter, respectively). The number of TREX1+ microglia was increased in ischemic brain lesions in central nervous system of RVCL and stroke patients. CONCLUSIONS TREX1 is expressed by a subset of microglia in normal human brain, often in close proximity to the microvasculature, and increases in the setting of ischemic lesions. These findings suggest a role for TREX1+ microglia in vessel homeostasis and response to ischemic injury.
Collapse
Affiliation(s)
- Parul H. Kothari
- Department of Biology and Biomedical Sciences Human & Statistical Genetics ProgramWashington University School of MedicineSt. LouisMO
- Division of Rheumatology, Immunology and Allergy, Department of MedicineBrigham and Women's Hospital, Harvard Medical SchoolBostonMA
- Channing Division of Network Medicine, Department of MedicineBrigham and Women's Hospital, Harvard Medical SchoolBostonMA
| | - Grant R. Kolar
- Department of Pathology & ImmunologyWashington University School of MedicineSt. LouisMO
- Department of Pathology and Department of OphthalmologySaint Louis University School of MedicineSt. LouisMO
| | - Joanna C. Jen
- Departments of Neurology and NeurobiologyUCLA School of MedicineLos AngelesCA
- Departments of Neurology, Otolaryngology, NeurosurgeryIcahn School of Medicine at Mount SinaiNew YorkNY
| | - Rula Hajj‐Ali
- Center for Vasculitis Care and ResearchCleveland Clinic Lerner College of Medicine, Orthopaedic and Rheumatologic InstituteClevelandOH
| | - Paula Bertram
- Department of Medicine, Division of RheumatologyWashington University School of MedicineSt. LouisMO
| | - Robert E. Schmidt
- Department of Pathology and Immunology, Division of NeuropathologyWashington University School of MedicineSt. LouisMO
| | - John P. Atkinson
- Department of Medicine, Division of RheumatologyWashington University School of MedicineSt. LouisMO
| |
Collapse
|
17
|
HIV-1 Activation of Innate Immunity Depends Strongly on the Intracellular Level of TREX1 and Sensing of Incomplete Reverse Transcription Products. J Virol 2018; 92:JVI.00001-18. [PMID: 29769349 DOI: 10.1128/jvi.00001-18] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Accepted: 05/14/2018] [Indexed: 01/18/2023] Open
Abstract
TREX1 has been reported to degrade cytosolic immune-stimulatory DNA, including viral DNA generated during HIV-1 infection; but the dynamic range of its capacity to suppress innate immune stimulation is unknown, and its full role in the viral life cycle remains unclear. A main purpose of our study was to determine how the intracellular level of TREX1 affects HIV-1 activation and avoidance of innate immunity. Using stable overexpression and CRISPR-mediated gene disruption, we engineered a range of TREX1 levels in human THP-1 monocytes. Increasing the level of TREX1 dramatically suppressed HIV-1 induction of interferon-stimulated genes (ISGs). Productive infection and integrated proviruses were equal or increased. Knocking out TREX1 impaired viral infectivity, increased early viral cDNA, and caused 10-fold or greater increases in HIV-1 ISG induction. Knockout of cyclic GMP-AMP synthase (cGAS) abrogated all ISG induction. Moreover, cGAS knockout produced no increase in single-cycle infection, establishing that HIV-1 DNA-triggered signaling is not rapid enough to impair the initial ISG-triggering infection cycle. Disruption of the HIV-1 capsid by PF74 also induced ISGs, and this was TREX1 level dependent, required reverse transcriptase catalysis, and was eliminated by cGAS gene knockout. Thus, the intracellular level of TREX1 pivotally modulates innate immune induction by HIV-1. Partial HIV-1 genomes are the TREX1 target and are sensed by cGAS. The nearly complete lack of innate immune induction despite equal or increased viral integration observed when the TREX1 protein level is experimentally elevated indicates that integration-competent genomes are shielded from cytosolic sensor-effectors during uncoating and transit to the nucleus.IMPORTANCE Much remains unknown about how TREX1 influences HIV-1 replication: whether it targets full-length viral DNA versus partial intermediates, how intracellular TREX1 protein levels correlate with ISG induction, and whether TREX1 digestion of cytoplasmic DNA and subsequent cGAS pathway activation affects both initial and subsequent cycles of infection. To answer these questions, we experimentally varied the intracellular level of TREX1 and showed that this strongly determines the innate immunogenicity of HIV-1. In addition, several lines of evidence, including time-of-addition experiments with drugs that impair reverse transcription or capsid integrity, showed that the pathogen-associated molecular patterns sensed after viral entry contain DNA, are TREX1 and cGAS substrates, and are derived from incomplete reverse transcriptase (RT) products. In contrast, the experiments demonstrate that full-length integration-competent viral DNA is immune to TREX1. Treatment approaches that reduce TREX1 levels or facilitate release of DNA intermediates may advantageously combine enhanced innate immunity with antiviral effects.
Collapse
|
18
|
Li P, Du J, Goodier JL, Hou J, Kang J, Kazazian HH, Zhao K, Yu XF. Aicardi-Goutières syndrome protein TREX1 suppresses L1 and maintains genome integrity through exonuclease-independent ORF1p depletion. Nucleic Acids Res 2017; 45:4619-4631. [PMID: 28334850 PMCID: PMC5416883 DOI: 10.1093/nar/gkx178] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 03/11/2017] [Indexed: 12/22/2022] Open
Abstract
Maintaining genome integrity is important for cells and damaged DNA triggers autoimmunity. Previous studies have reported that Three-prime repair exonuclease 1(TREX1), an endogenous DNA exonuclease, prevents immune activation by depleting damaged DNA, thus preventing the development of certain autoimmune diseases. Consistently, mutations in TREX1 are linked with autoimmune diseases such as systemic lupus erythematosus, Aicardi–Goutières syndrome (AGS) and familial chilblain lupus. However, TREX1 mutants competent for DNA exonuclease activity are also linked to AGS. Here, we report a nuclease-independent involvement of TREX1 in preventing the L1 retrotransposon-induced DNA damage response. TREX1 interacted with ORF1p and altered its intracellular localization. Furthermore, TREX1 triggered ORF1p depletion and reduced the L1-mediated nicking of genomic DNA. TREX1 mutants related to AGS were deficient in inducing ORF1p depletion and could not prevent L1-mediated DNA damage. Therefore, our findings not only reveal a new mechanism for TREX1-mediated L1 suppression and uncover a new function for TREX1 in protein destabilization, but they also suggest a novel mechanism for TREX1-mediated suppression of innate immune activation through maintaining genome integrity.
Collapse
Affiliation(s)
- Peng Li
- Institute of Virology and AIDS Research, First Hospital of Jilin University, Changchun, Jilin 130061, China
| | - Juan Du
- Institute of Virology and AIDS Research, First Hospital of Jilin University, Changchun, Jilin 130061, China
| | - John L Goodier
- Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Jingwei Hou
- Institute of Virology and AIDS Research, First Hospital of Jilin University, Changchun, Jilin 130061, China
| | - Jian Kang
- Institute of Virology and AIDS Research, First Hospital of Jilin University, Changchun, Jilin 130061, China
| | - Haig H Kazazian
- Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Ke Zhao
- Institute of Virology and AIDS Research, First Hospital of Jilin University, Changchun, Jilin 130061, China
| | - Xiao-Fang Yu
- Institute of Virology and AIDS Research, First Hospital of Jilin University, Changchun, Jilin 130061, China.,Bloomberg School of Public Health, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
19
|
Maciejowski J, de Lange T. Telomeres in cancer: tumour suppression and genome instability. Nat Rev Mol Cell Biol 2017; 18:175-186. [PMID: 28096526 PMCID: PMC5589191 DOI: 10.1038/nrm.2016.171] [Citation(s) in RCA: 500] [Impact Index Per Article: 62.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The shortening of human telomeres has two opposing effects during cancer development. On the one hand, telomere shortening can exert a tumour-suppressive effect through the proliferation arrest induced by activating the kinases ATM and ATR at unprotected chromosome ends. On the other hand, loss of telomere protection can lead to telomere crisis, which is a state of extensive genome instability that can promote cancer progression. Recent data, reviewed here, provide new evidence for the telomere tumour suppressor pathway and has revealed that telomere crisis can induce numerous cancer-relevant changes, including chromothripsis, kataegis and tetraploidization.
Collapse
Affiliation(s)
- John Maciejowski
- Laboratory for Cell Biology and Genetics, The Rockefeller University, 1230 York Avenue, New York, New York 10065, USA
| | - Titia de Lange
- Laboratory for Cell Biology and Genetics, The Rockefeller University, 1230 York Avenue, New York, New York 10065, USA
| |
Collapse
|
20
|
A 31-Year-Old Man With a Ring-Enhancing Brain Lesion. J Neuroophthalmol 2017; 37:172-175. [PMID: 28079760 DOI: 10.1097/wno.0000000000000469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
21
|
Feng J, Lan R, Cai G, Lin J, Wang X, Lin J, Han D. Verification of TREX1 as a promising indicator of judging the prognosis of osteosarcoma. J Orthop Surg Res 2016; 11:150. [PMID: 27881153 PMCID: PMC5122164 DOI: 10.1186/s13018-016-0487-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 10/31/2016] [Indexed: 01/09/2023] Open
Abstract
Background The study aimed to explore the correlation between the expression of TREX1 and the metastasis and the survival time of patients with osteosarcoma as well as biological characteristics of osteosarcoma cells for the prognosis judgment of osteosarcoma. Method The correlation between the expression of TREX1 protein and the occurrence of pulmonary metastasis in 45 cases of osteosarcoma was analyzed. The CD133+ and CD133− cell subsets of osteosarcoma stem cells were sorted by the flow cytometry. The tumorsphere culture, clone formation, growth curve, osteogenic and adipogenic differentiation, tumor-formation ability in nude mice, sensitivity of chemotherapeutic drugs, and other cytobiology behaviors were compared between the cell subsets in two groups; the expressions of stem cell-related genes Nanog and Oct4 were compared; The expressions of TREX1 protein and mRNA were compared between the cell subsets in two groups. The data was statistically analyzed. The measurement data between the two groups were compared using t test. The count data between the two groups were compared using χ2 test and Kaplan–Meier survival analysis. A P value <0.05 indicated that the difference was statistically significant. Results The expression of TREX1 protein in patients with osteosarcoma in the metastasis group was significantly lower than that in the non-metastasis group. The difference was statistically significant (P < 0.05). Up to the last follow-up visit, the former average survival time was significantly lower than that of the latter, and the difference was statistically significant (P < 0.05). The expression of TREX1 in human osteosarcoma CD133+ cell subsets was significantly lower than that in CD133- cell subsets. Stemness-related genes Nanog and Oct4 were highly expressed in human osteosarcoma CD133+ cell subsets with lower expression of TREX1; the biological characteristics identification experiment showed that human CD133+ cell subsets with low TREX1 expression could form tumorspheres, the number of colony forming was more, the cell proliferation ability was strong, the osteogenic and adipogenic differentiation potential was big, the tumor-forming ability in nude mice was strong, and the sensibility of chemotherapeutics drugs on cisplatin was low. Conclusions The expression of TREX1 may be related to metastasis in patients with osteosarcoma. The expression of TREX1 was closely related to the cytobiology characteristics of osteosarcoma stem cell. TREX1 can play an important role in the occurrence and development processes. And, TREX1 is expected to become an effective new index for the evaluation of the prognosis.
Collapse
Affiliation(s)
- Jinyi Feng
- Department of Central Laboratory, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Ruilong Lan
- Department of Central Laboratory, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China.,Fujian Key Laboratory of Radiation Biology, Fujian Medical University, Fuzhou, Fujian, China.,Fujian Key Laboratory of Individualized Active Immunotherapy, Fujian Medical University, Fuzhou, Fujian, China
| | - Guanxiong Cai
- Department of Central Laboratory, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Jinluan Lin
- Department of Orthopaedics, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Xinwen Wang
- Department of Central Laboratory, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Jianhua Lin
- Department of Central Laboratory, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China. .,Department of Orthopaedics, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China.
| | - Deping Han
- Department of Central Laboratory, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China.
| |
Collapse
|
22
|
Relle M, Weinmann-Menke J, Scorletti E, Cavagna L, Schwarting A. Genetics and novel aspects of therapies in systemic lupus erythematosus. Autoimmun Rev 2015; 14:1005-18. [PMID: 26164648 DOI: 10.1016/j.autrev.2015.07.003] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 07/06/2015] [Indexed: 02/06/2023]
Abstract
Autoimmune diseases, such as rheumatoid arthritis, multiple sclerosis, autoimmune hepatitis and inflammatory bowel disease, have complex pathogeneses and the factors which cause these disorders are not well understood. But all have in common that they arise from a dysfunction of the immune system, interpreting self components as foreign antigens. Systemic lupus erythematosus (SLE) is one of these complex inflammatory disorders that mainly affects women and can lead to inflammation and severe damage of virtually any tissue and organ. Recently, the application of advanced techniques of genome-wide scanning revealed more genetic information about SLE than previously possible. These case-control or family-based studies have provided evidence that SLE susceptibility is based (with a few exceptions) on an individual accumulation of various risk alleles triggered by environmental factors and also help to explain the discrepancies in SLE susceptibility between different populations or ethnicities. Moreover, during the past years new therapies (autologous stem cell transplantation, B cell depletion) and improved conventional treatment options (corticosteroids, traditional and new immune-suppressants like mycophenolate mofetile) changed the perspective in SLE therapeutic approaches. Thus, this article reviews genetic aspects of this autoimmune disease, summarizes clinical aspects of SLE and provides a general overview of conventional and new therapeutic approaches in SLE.
Collapse
Affiliation(s)
- Manfred Relle
- First Department of Medicine, University Medical Center of the Johannes-Gutenberg University Mainz, Mainz, Germany
| | - Julia Weinmann-Menke
- First Department of Medicine, University Medical Center of the Johannes-Gutenberg University Mainz, Mainz, Germany
| | - Eva Scorletti
- Division of Rheumatology, IRCCS Fondazione Policlinico San Matteo, Lombardy, Pavia, Italy
| | - Lorenzo Cavagna
- Division of Rheumatology, IRCCS Fondazione Policlinico San Matteo, Lombardy, Pavia, Italy
| | - Andreas Schwarting
- First Department of Medicine, University Medical Center of the Johannes-Gutenberg University Mainz, Mainz, Germany; Acura Centre of Rheumatology Rhineland-Palatinate, Bad Kreuznach, Germany.
| |
Collapse
|
23
|
Deng H, Zheng W, Jankovic J. Genetics and molecular biology of brain calcification. Ageing Res Rev 2015; 22:20-38. [PMID: 25906927 DOI: 10.1016/j.arr.2015.04.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 04/14/2015] [Accepted: 04/15/2015] [Indexed: 01/01/2023]
Abstract
Brain calcification is a common neuroimaging finding in patients with neurological, metabolic, or developmental disorders, mitochondrial diseases, infectious diseases, traumatic or toxic history, as well as in otherwise normal older people. Patients with brain calcification may exhibit movement disorders, seizures, cognitive impairment, and a variety of other neurologic and psychiatric symptoms. Brain calcification may also present as a single, isolated neuroimaging finding. When no specific cause is evident, a genetic etiology should be considered. The aim of the review is to highlight clinical disorders associated with brain calcification and provide summary of current knowledge of diagnosis, genetics, and pathogenesis of brain calcification.
Collapse
Affiliation(s)
- Hao Deng
- Department of Neurology, Third Xiangya Hospital, Central South University, Changsha, China; Center for Experimental Medicine, Third Xiangya Hospital, Central South University, Changsha, China.
| | - Wen Zheng
- Department of Neurology, Third Xiangya Hospital, Central South University, Changsha, China; Center for Experimental Medicine, Third Xiangya Hospital, Central South University, Changsha, China
| | - Joseph Jankovic
- Department of Neurology, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
24
|
Yuan F, Dutta T, Wang L, Song L, Gu L, Qian L, Benitez A, Ning S, Malhotra A, Deutscher MP, Zhang Y. Human DNA Exonuclease TREX1 Is Also an Exoribonuclease That Acts on Single-stranded RNA. J Biol Chem 2015; 290:13344-53. [PMID: 25855793 DOI: 10.1074/jbc.m115.653915] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Indexed: 01/22/2023] Open
Abstract
3' repair exonuclease 1 (TREX1) is a known DNA exonuclease involved in autoimmune disorders and the antiviral response. In this work, we show that TREX1 is also a RNA exonuclease. Purified TREX1 displays robust exoribonuclease activity that degrades single-stranded, but not double-stranded, RNA. TREX1-D200N, an Aicardi-Goutieres syndrome disease-causing mutant, is defective in degrading RNA. TREX1 activity is strongly inhibited by a stretch of pyrimidine residues as is a bacterial homolog, RNase T. Kinetic measurements indicate that the apparent Km of TREX1 for RNA is higher than that for DNA. Like RNase T, human TREX1 is active in degrading native tRNA substrates. Previously reported TREX1 crystal structures have revealed that the substrate binding sites are open enough to accommodate the extra hydroxyl group in RNA, further supporting our conclusion that TREX1 acts on RNA. These findings indicate that its RNase activity needs to be taken into account when evaluating the physiological role of TREX1.
Collapse
Affiliation(s)
- Fenghua Yuan
- From the Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, Florida 33136
| | - Tanmay Dutta
- From the Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, Florida 33136
| | - Ling Wang
- the Department of Medicine, Center for Inflammation, Infectious Diseases, and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee 37614, and
| | - Lei Song
- From the Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, Florida 33136
| | - Liya Gu
- the Graduate Center for Toxicology, University of Kentucky College of Medicine, Lexington, Kentucky 40536
| | - Liangyue Qian
- From the Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, Florida 33136
| | - Anaid Benitez
- From the Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, Florida 33136
| | - Shunbin Ning
- the Department of Medicine, Center for Inflammation, Infectious Diseases, and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee 37614, and
| | - Arun Malhotra
- From the Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, Florida 33136
| | - Murray P Deutscher
- From the Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, Florida 33136
| | - Yanbin Zhang
- From the Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, Florida 33136,
| |
Collapse
|
25
|
Exonuclease TREX1 degrades double-stranded DNA to prevent spontaneous lupus-like inflammatory disease. Proc Natl Acad Sci U S A 2015; 112:5117-22. [PMID: 25848017 DOI: 10.1073/pnas.1423804112] [Citation(s) in RCA: 130] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The TREX1 gene encodes a potent DNA exonuclease, and mutations in TREX1 cause a spectrum of lupus-like autoimmune diseases. Most lupus patients develop autoantibodies to double-stranded DNA (dsDNA), but the source of DNA antigen is unknown. The TREX1 D18N mutation causes a monogenic, cutaneous form of lupus called familial chilblain lupus, and the TREX1 D18N enzyme exhibits dysfunctional dsDNA-degrading activity, providing a link between dsDNA degradation and nucleic acid-mediated autoimmune disease. We determined the structure of the TREX1 D18N protein in complex with dsDNA, revealing how this exonuclease uses a novel DNA-unwinding mechanism to separate the polynucleotide strands for single-stranded DNA (ssDNA) loading into the active site. The TREX1 D18N dsDNA interactions coupled with catalytic deficiency explain how this mutant nuclease prevents dsDNA degradation. We tested the effects of TREX1 D18N in vivo by replacing the TREX1 WT gene in mice with the TREX1 D18N allele. The TREX1 D18N mice exhibit systemic inflammation, lymphoid hyperplasia, vasculitis, and kidney disease. The observed lupus-like inflammatory disease is associated with immune activation, production of autoantibodies to dsDNA, and deposition of immune complexes in the kidney. Thus, dysfunctional dsDNA degradation by TREX1 D18N induces disease in mice that recapitulates many characteristics of human lupus. Failure to clear DNA has long been linked to lupus in humans, and these data point to dsDNA as a key substrate for TREX1 and a major antigen source in mice with dysfunctional TREX1 enzyme.
Collapse
|
26
|
Brégnard C, Benkirane M, Laguette N. DNA damage repair machinery and HIV escape from innate immune sensing. Front Microbiol 2014; 5:176. [PMID: 24795708 PMCID: PMC4001025 DOI: 10.3389/fmicb.2014.00176] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2014] [Accepted: 03/31/2014] [Indexed: 01/11/2023] Open
Abstract
Viruses have been long known to perturb cell cycle regulators and key players of the DNA damage response to benefit their life cycles. In the case of the human immunodeficiency virus (HIV), the viral auxiliary protein Vpr activates the structure-specific endonuclease SLX4 complex to promote escape from innate immune sensing and, as a side effect, induces replication stress in cycling cells and subsequent cell cycle arrest at the G2/M transition. This novel pathway subverted by HIV to prevent accumulation of viral reverse transcription by-products adds up to facilitating effects of major cellular exonucleases that degrade pathological DNA species. Within this review we discuss the impact of this finding on our understanding of the interplay between HIV replication and nucleic acid metabolism and its implications for cancer-related chronic inflammation.
Collapse
Affiliation(s)
- Christelle Brégnard
- Laboratoire de Virologie Moléculaire, Institut de Génétique Humaine CNRS UPR1142, Montpellier, France
| | - Monsef Benkirane
- Laboratoire de Virologie Moléculaire, Institut de Génétique Humaine CNRS UPR1142, Montpellier, France
| | - Nadine Laguette
- Laboratoire de Virologie Moléculaire, Institut de Génétique Humaine CNRS UPR1142, Montpellier, France
| |
Collapse
|
27
|
Fye JM, Coffin SR, Orebaugh CD, Hollis T, Perrino FW. The Arg-62 residues of the TREX1 exonuclease act across the dimer interface contributing to catalysis in the opposing protomers. J Biol Chem 2014; 289:11556-11565. [PMID: 24616097 DOI: 10.1074/jbc.m114.559252] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
TREX1 is a 3'-deoxyribonuclease that degrades single- and double-stranded DNA (ssDNA and dsDNA) to prevent inappropriate nucleic acid-mediated immune activation. More than 40 different disease-causing TREX1 mutations have been identified exhibiting dominant and recessive genetic phenotypes in a spectrum of autoimmune disorders. Mutations in TREX1 at positions Asp-18 and Asp-200 to His and Asn exhibit dominant autoimmune phenotypes associated with the clinical disorders familial chilblain lupus and Aicardi-Goutières syndrome. Our previous biochemical studies showed that the TREX1 dominant autoimmune disease phenotype depends upon an intact DNA-binding process coupled with dysfunctional active site chemistry. Studies here show that the TREX1 Arg-62 residues extend across the dimer interface into the active site of the opposing protomer to coordinate substrate DNA and to affect catalysis in the opposing protomer. The TREX1(R62A/R62A) homodimer exhibits ∼50-fold reduced ssDNA and dsDNA degradation activities relative to TREX1(WT). The TREX1 D18H, D18N, D200H, and D200N dominant mutant enzymes were prepared as compound heterodimers with the TREX1 R62A substitution in the opposing protomer. The TREX1(D18H/R62A), TREX1(D18N/R62A), TREX1(D200H/R62A), and TREX1(D200N/R62A) compound heterodimers exhibit higher levels of ss- and dsDNA degradation activities than the homodimers demonstrating the requirement for TREX1 Arg-62 residues to provide necessary structural elements for full catalytic activity in the opposing TREX1 protomer. This concept is further supported by the loss of dominant negative effects in the TREX1 D18H, D18N, D200H, and D200N compound heterodimers. These data provide compelling evidence for the required TREX1 dimeric structure for full catalytic function.
Collapse
Affiliation(s)
- Jason M Fye
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157
| | - Stephanie R Coffin
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157
| | - Clinton D Orebaugh
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157
| | - Thomas Hollis
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157
| | - Fred W Perrino
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157.
| |
Collapse
|
28
|
Behrendt R, Roers A. Mouse models for Aicardi-Goutières syndrome provide clues to the molecular pathogenesis of systemic autoimmunity. Clin Exp Immunol 2014; 175:9-16. [PMID: 23713592 DOI: 10.1111/cei.12147] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/22/2013] [Indexed: 12/31/2022] Open
Abstract
Aicardi-Goutières syndrome (AGS) is a hereditary autoimmune disease which overlaps clinically and pathogenetically with systemic lupus erythematosus (SLE), and can be regarded as a monogenic variant of SLE. Both conditions are characterized by chronic activation of anti-viral type I interferon (IFN) responses. AGS can be caused by mutations in one of several genes encoding intracellular enzymes all involved in nucleic acid metabolism. Mouse models of AGS-associated defects yielded distinct phenotypes and reproduced important features of the disease. Analysis of these mutant mouse lines stimulated a new concept of autoimmunity caused by intracellular accumulations of nucleic acids, which trigger a chronic cell-intrinsic antiviral type I IFN response and thereby autoimmunity. This model is of major relevance for our understanding of SLE pathogenesis. Findings in gene-targeted mice deficient for AGS associated enzymes are summarized in this review.
Collapse
Affiliation(s)
- R Behrendt
- Institute for Immunology, Medical Faculty Carl Gustav Carus, University of Technology Dresden, Dresden, Germany
| | | |
Collapse
|
29
|
Pereira-Lopes S, Celhar T, Sans-Fons G, Serra M, Fairhurst AM, Lloberas J, Celada A. The exonuclease Trex1 restrains macrophage proinflammatory activation. THE JOURNAL OF IMMUNOLOGY 2013; 191:6128-35. [PMID: 24218451 DOI: 10.4049/jimmunol.1301603] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The three-prime repair exonuclease 1 (TREX1) is the most abundant exonuclease in mammalian cells. Mutations in Trex1 gene are being linked to the development of Aicardi-Goutières syndrome, an inflammatory disease of the brain, and systemic lupus erythematosus. In clinical cases and in a Trex1-deficient murine model, chronic production of type I IFN plays a pathogenic role. In this study, we demonstrate that Trex1(-/-) mice present inflammatory signatures in many different organs, including the brain. Trex1 is highly induced in macrophages in response to proinflammatory stimuli, including TLR7 and TLR9 ligands. Our findings show that, in the absence of Trex1, macrophages displayed an exacerbated proinflammatory response. More specifically, following proinflammatory stimulation, Trex1(-/-) macrophages exhibited an increased TNF-α and IFN-α production, higher levels of CD86, and increased Ag presentation to CD4(+) T cells, as well as an impaired apoptotic T cell clearance. These results evidence an unrevealed function of the Trex1 as a negative regulator of macrophage inflammatory activation and demonstrate that macrophages play a major role in diseases associated with Trex1 mutations, which contributes to the understanding of inflammatory signature in these diseases.
Collapse
Affiliation(s)
- Selma Pereira-Lopes
- Grupo Biología del Macrófago, Departamento de Fisiología e Inmunología, Universitat de Barcelona, 08028 Barcelona, Spain
| | | | | | | | | | | | | |
Collapse
|
30
|
Shrivastav M, Niewold TB. Nucleic Acid sensors and type I interferon production in systemic lupus erythematosus. Front Immunol 2013; 4:319. [PMID: 24109483 PMCID: PMC3791549 DOI: 10.3389/fimmu.2013.00319] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Accepted: 09/20/2013] [Indexed: 12/24/2022] Open
Abstract
The characteristic serologic feature of systemic lupus erythematosus (SLE) is autoantibodies against one’s own nucleic acid or nucleic acid-binding proteins – DNA and RNA-binding nuclear proteins. Circulating autoantibodies can deposit in the tissue, causing inflammation and production of cytokines such as type 1 interferon (IFN). Investigations in human patients and animal models have implicated environmental as well as genetic factors in the biology of the SLE autoimmune response. Viral/Bacterial nucleic acid is a potent stimulant of innate immunity by both toll-like receptor (TLR) and non-TLR signaling cascades. Additionally, foreign DNA may act as an immunogen to drive an antigen-specific antibody response. Self nucleic acid is normally restricted to the nucleus or the mitochondria, away from the DNA/RNA sensors, and mechanisms exist to differentiate between foreign and self nucleic acid. In normal immunity, a diverse range of DNA and RNA sensors in different cell types form a dynamic and integrated molecular network to prevent viral infection. In SLE, pathologic activation of these sensors occurs via immune complexes consisting of autoantibodies bound to DNA or to nucleic acid-protein complexes. In this review, we will discuss recent studies outlining how mismanaged nucleic acid sensing networks promote autoimmunity and result in the over-production of type I IFN. This information is critical for improving therapeutic strategies for SLE disease.
Collapse
|
31
|
Orebaugh CD, Fye JM, Harvey S, Hollis T, Wilkinson JC, Perrino FW. The TREX1 C-terminal region controls cellular localization through ubiquitination. J Biol Chem 2013; 288:28881-92. [PMID: 23979357 DOI: 10.1074/jbc.m113.503391] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
TREX1 is an autonomous 3'-exonuclease that degrades DNA to prevent inappropriate immune activation. The TREX1 protein is composed of 314 amino acids; the N-terminal 242 amino acids contain the catalytic domain, and the C-terminal region (CTR) localizes TREX1 to the cytosolic compartment. In this study, we show that TREX1 modification by ubiquitination is controlled by a highly conserved sequence in the CTR to affect cellular localization. Transfection of TREX1 deletion constructs into human cells demonstrated that this sequence is required for ubiquitination at multiple lysine residues through a "non-canonical" ubiquitin linkage. A proteomic approach identified ubiquilin 1 as a TREX1 CTR-interacting protein, and this interaction was verified in vitro and in vivo. Cotransfection studies indicated that ubiquilin 1 localizes TREX1 to cytosolic punctate structures dependent upon the TREX1 CTR and lysines within the TREX1 catalytic core. Several TREX1 mutants linked to the autoimmune diseases Aicardi-Goutières syndrome and systemic lupus erythematosus that exhibit full catalytic function were tested for altered ubiquitin modification and cellular localization. Our data show that these catalytically competent disease-causing TREX1 mutants exhibit differential levels of ubiquitination relative to WT TREX1, suggesting a novel mechanism of dysfunction. Furthermore, these differentially ubiquitinated disease-causing mutants also exhibit altered ubiquilin 1 co-localization. Thus, TREX1 post-translational modification indicates an additional mechanism by which mutations disrupt TREX1 biology, leading to human autoimmune disease.
Collapse
Affiliation(s)
- Clinton D Orebaugh
- From the Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157
| | | | | | | | | | | |
Collapse
|
32
|
Atianand MK, Fitzgerald KA. Molecular basis of DNA recognition in the immune system. THE JOURNAL OF IMMUNOLOGY 2013; 190:1911-8. [PMID: 23417527 DOI: 10.4049/jimmunol.1203162] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Recognition of microbial nucleic acids is one strategy by which mammalian hosts respond to infectious agents. Intracellular DNA that is introduced into cells during infection elicits potent inflammatory responses by triggering the induction of antiviral type I IFNs and the maturation and secretion of inflammatory cytokines, such as TNF-α, IL-1β, and IL-18. In addition, if nucleases, such as DNase II or DNase III (Trex1), fail to clear self-DNA, accumulated DNA gains access to intracellular compartments where it drives inflammatory responses leading to autoimmune disease. In this review, we discuss a rapidly evolving view of how cytosolic DNA-sensing machineries coordinate antimicrobial immunity and, if unchecked, lead to autoimmune disease.
Collapse
Affiliation(s)
- Maninjay K Atianand
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | | |
Collapse
|
33
|
Mason PA, Cox LS. The role of DNA exonucleases in protecting genome stability and their impact on ageing. AGE (DORDRECHT, NETHERLANDS) 2012; 34:1317-1340. [PMID: 21948156 PMCID: PMC3528374 DOI: 10.1007/s11357-011-9306-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2011] [Accepted: 08/19/2011] [Indexed: 05/30/2023]
Abstract
Exonucleases are key enzymes involved in many aspects of cellular metabolism and maintenance and are essential to genome stability, acting to cleave DNA from free ends. Exonucleases can act as proof-readers during DNA polymerisation in DNA replication, to remove unusual DNA structures that arise from problems with DNA replication fork progression, and they can be directly involved in repairing damaged DNA. Several exonucleases have been recently discovered, with potentially critical roles in genome stability and ageing. Here we discuss how both intrinsic and extrinsic exonuclease activities contribute to the fidelity of DNA polymerases in DNA replication. The action of exonucleases in processing DNA intermediates during normal and aberrant DNA replication is then assessed, as is the importance of exonucleases in repair of double-strand breaks and interstrand crosslinks. Finally we examine how exonucleases are involved in maintenance of mitochondrial genome stability. Throughout the review, we assess how nuclease mutation or loss predisposes to a range of clinical diseases and particularly ageing.
Collapse
Affiliation(s)
- Penelope A. Mason
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU UK
| | - Lynne S. Cox
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU UK
| |
Collapse
|
34
|
Genetic variability at the TREX1 locus is not associated with natural resistance to HIV-1 infection. AIDS 2012; 26:1443-5. [PMID: 22526516 DOI: 10.1097/qad.0b013e328354b3c2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Three prime repair exonuclease 1 (TREX1) degrades excess HIV-1 DNA, thereby preventing recognition by innate immunity receptors and type I interferon responses. Analyses performed in two HIV-exposed seronegative (HESN) cohorts did not show any differences in TREX1 sequence, single nucleotide polymorphisms frequency, or expression in HESN compared to controls, suggesting that, despite its central role in the HIV-1 infection process, genetic diversity at TREX1 is not a major determinant of susceptibility to infection in humans.
Collapse
|
35
|
Prinz M, Knobeloch KP. Type I interferons as ambiguous modulators of chronic inflammation in the central nervous system. Front Immunol 2012; 3:67. [PMID: 22566948 PMCID: PMC3342377 DOI: 10.3389/fimmu.2012.00067] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Accepted: 03/19/2012] [Indexed: 12/25/2022] Open
Abstract
Type I interferons (IFNs) were originally identified as antiviral effector molecules that exert pleiotropic physiological processes ranging from immune modulation, control of proliferation, apoptosis to antitumor activity. However, type I IFNs were recently also shown to apply both beneficial and detrimental effects to the central nervous system (CNS) and a tightly balanced equilibrium between cellular activation and inhibition seems to be essential to maintain homeostasis within the CNS. In inflammatory pathologies affecting the CNS, type I IFNs are in the center of attention not only because interferon beta (IFN-β) is used as a standard therapeutic in the treatment of relapsing–remitting multiple sclerosis (MS), but also as type I IFN expression is associated with distinct pathologies. Despite the great efficiency of IFN-β in reducing MS relapses and attenuation of novel inflammatory lesions is well documented, underlying molecular mechanisms and cellular target specificities are just beginning to emerge. In contrast to the curative effects, aberrant activation of the type I IFN response were also recently shown to be associated with detrimental effects exemplified by the Aicardi–Goutières syndrome (AGS), a severe disabling autoimmune inflammatory encephalopathy. This review will highlight the dual role of type I interferons during chronic CNS inflammation. Recently uncovered molecular and cellular mechanisms in the etiology of AGS and experimental autoimmune encephalomyelitis (EAE), the murine model of MS will be highlighted.
Collapse
Affiliation(s)
- Marco Prinz
- Department of Neuropathology, University Clinic Freiburg Freiburg, Germany
| | | |
Collapse
|
36
|
Belot A, Cochat P. Les syndromes lupiques monogéniques. Nephrol Ther 2012; 8:1-4. [DOI: 10.1016/j.nephro.2011.05.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2011] [Revised: 05/26/2011] [Accepted: 05/29/2011] [Indexed: 12/25/2022]
|
37
|
Hegde ML, Hegde PM, Rao KS, Mitra S. Oxidative genome damage and its repair in neurodegenerative diseases: function of transition metals as a double-edged sword. J Alzheimers Dis 2011; 24 Suppl 2:183-98. [PMID: 21441656 DOI: 10.3233/jad-2011-110281] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The neurons in the central nervous system (CNS) with high O2 consumption and prolonged life span are chronically exposed to high levels of reactive oxygen species (ROS). Accumulation of ROS-induced genome damage in the form of oxidized bases and single-strand breaks (SSBs) as well as their defective or reduced repair in the brain has been implicated in the etiology of various neurological disorders including Alzheimer's/Parkinson's diseases (AD/PD). Although inactivating mutations in some DNA repair genes have been linked to hereditary neurodegenerative diseases, the underlying mechanisms of repair deficiencies for the sporadic diseases is not understood. The ROS-induced DNA damage is predominantly repaired via the highly conserved and regulated base excision/SSB repair (BER/SSBR) pathway. We recently made an interesting discovery that the transition metals iron and copper, which accumulate excessively in the brains of AD, PD, and other neurodegenerative diseases, act as a 'double-edged sword' by inducing genotoxic ROS and inhibiting DNA damage repair at the same time. These metals inhibit the base excision activity of NEIL family DNA glycosylases by oxidizing them, changing their structure, and inhibiting their binding to downstream repair proteins. Metal chelators and reducing agents partially reverse the inhibition, while curcumin with both chelating and reducing activities reverses the inhibition nearly completely. In this review, we have discussed the possible etiological linkage of BER/SSBR defects to neurodegenerative diseases and the therapeutic potential of metal chelators in restoring DNA repair capacity.
Collapse
Affiliation(s)
- Muralidhar L Hegde
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555-1079, USA.
| | | | | | | |
Collapse
|
38
|
Orebaugh CD, Fye JM, Harvey S, Hollis T, Perrino FW. The TREX1 exonuclease R114H mutation in Aicardi-Goutières syndrome and lupus reveals dimeric structure requirements for DNA degradation activity. J Biol Chem 2011; 286:40246-54. [PMID: 21937424 DOI: 10.1074/jbc.m111.297903] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mutations in the TREX1 gene cause Aicardi-Goutières syndrome (AGS) and are linked to the autoimmune disease systemic lupus erythematosus. The TREX1 protein is a dimeric 3' DNA exonuclease that degrades DNA to prevent inappropriate immune activation. One of the most common TREX1 mutations, R114H, causes AGS as a homozygous and compound heterozygous mutation and is found as a heterozygous mutation in systemic lupus erythematosus. The TREX1 proteins containing R114H and the insertion mutations aspartate at position 201 (D201ins) and alanine at position 124 (A124ins), found in compound heterozygous AGS with R114H, were prepared and the DNA degradation activities were tested. The homodimer TREX1(R114H/R114H) exhibits a 23-fold reduced single-stranded DNA (ssDNA) exonuclease activity relative to TREX1(WT). The TREX1(D201ins/D201ins) and TREX1(A124ins/A124ins) exhibit more than 10,000-fold reduced ssDNA degradation activities. However, the TREX1(R114H/D201ins) and TREX1(R114H/A124ins) compound heterodimers exhibit activities 10-fold greater than the TREX1(R114H/R114H) homodimer during ssDNA and double-stranded DNA (dsDNA) degradation. These higher levels of activities measured in the TREX1(R114H/D201ins) and TREX1(R114H/A124ins) compound heterodimers are attributed to Arg-114 residues of TREX1(D201ins) and TREX1(A124ins) positioned at the dimer interface contributing to the active sites of the opposing TREX1(R114H) protomer. This interpretation is further supported by exonuclease activities measured for TREX1 enzymes containing R114A and R114K mutations. These biochemical data provide direct evidence for TREX1 residues in one protomer contributing to DNA degradation catalyzed in the opposing protomer and help to explain the dimeric TREX1 structure required for full catalytic competency.
Collapse
Affiliation(s)
- Clinton D Orebaugh
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157, USA
| | | | | | | | | |
Collapse
|
39
|
Fye JM, Orebaugh CD, Coffin SR, Hollis T, Perrino FW. Dominant mutation of the TREX1 exonuclease gene in lupus and Aicardi-Goutieres syndrome. J Biol Chem 2011; 286:32373-82. [PMID: 21808053 DOI: 10.1074/jbc.m111.276287] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
TREX1 is a potent 3' → 5' exonuclease that degrades single- and double-stranded DNA (ssDNA and dsDNA). TREX1 mutations at amino acid positions Asp-18 and Asp-200 in familial chilblain lupus and Aicardi-Goutières syndrome elicit dominant immune dysfunction phenotypes. Failure to appropriately disassemble genomic DNA during normal cell death processes could lead to persistent DNA signals that trigger the innate immune response and autoimmunity. We tested this concept using dsDNA plasmid and chromatin and show that the TREX1 exonuclease locates 3' termini generated by endonucleases and degrades the nicked DNA polynucleotide. A competition assay was designed using TREX1 dominant mutants and variants to demonstrate that an intact DNA binding process, coupled with dysfunctional chemistry in the active sites, explains the dominant phenotypes in TREX1 D18N, D200N, and D200H alleles. The TREX1 residues Arg-174 and Lys-175 positioned adjacent to the active sites act with the Arg-128 residues positioned in the catalytic cores to facilitate melting of dsDNA and generate ssDNA for entry into the active sites. Metal-dependent ssDNA binding in the active sites of the catalytically inactive dominant TREX1 mutants contributes to DNA retention and precludes access to DNA 3' termini by active TREX1 enzyme. Thus, the dominant disease genetics exhibited by the TREX1 D18N, D200N, and D200H alleles parallel precisely the biochemical properties of these TREX1 dimers during dsDNA degradation of plasmid and chromatin DNA in vitro. These results support the concept that failure to degrade genomic dsDNA is a principal pathway of immune activation in TREX1-mediated autoimmune disease.
Collapse
Affiliation(s)
- Jason M Fye
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157, USA
| | | | | | | | | |
Collapse
|
40
|
Coffin SR, Hollis T, Perrino FW. Functional consequences of the RNase H2A subunit mutations that cause Aicardi-Goutieres syndrome. J Biol Chem 2011; 286:16984-91. [PMID: 21454563 DOI: 10.1074/jbc.m111.228833] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mutations in the three genes encoding the heterotrimeric RNase H2 complex cause Aicardi-Goutières Syndrome (AGS). Our mouse RNase H2 structure revealed that the catalytic RNase H2A subunit interfaces mostly with the RNase H2C subunit that is intricately interwoven with the RNase H2B subunit. We mapped the positions of AGS-causing RNase H2A mutations using the mouse RNase H2 structure and proposed that these mutations cause varied effects on catalytic potential. To determine the functional consequences of these mutations, heterotrimeric human RNase H2 complexes containing the RNase H2A subunit mutations were prepared, and catalytic efficiencies and nucleic acid binding properties were compared with the wild-type (WT) complex. These analyses reveal a dramatic range of effects with mutations at conserved positions G37S, R186W, and R235Q, reducing enzymatic activities and substrate binding affinities by as much as a 1000-fold, whereas mutations at non-conserved positions R108W, N212I, F230L, T240M, and R291H reduced activities and binding modestly or not at all. All mutants purify as three-subunit complexes, further supporting the required heterotrimeric structure in eukaryotic RNase H2. These kinetic properties reveal varied functional consequences of AGS-causing mutations in the catalytic RNase H2A subunit and reflect the complex mechanisms of nuclease dysfunction that include catalytic deficiencies and altered protein-nucleic acid interactions relevant in AGS.
Collapse
Affiliation(s)
- Stephanie R Coffin
- Department of Biochemistry, Wake Forest University Health Sciences, Winston-Salem, North Carolina 27157, USA
| | | | | |
Collapse
|
41
|
Abstract
Systemic lupus erythematosus (SLE) is a prototypic autoimmune disorder with a complex pathogenesis in which genetic, hormonal and environmental factors have a role. Rare mutations in the TREX1 gene, the major mammalian 3'-5' exonuclease, have been reported in sporadic SLE cases. Some of these mutations have also been identified in a rare pediatric neurological condition featuring an inflammatory encephalopathy known as Aicardi-Goutières syndrome (AGS). We sought to investigate the frequency of these mutations in a large multi-ancestral cohort of SLE cases and controls. A total of 40 single-nucleotide polymorphisms (SNPs), including both common and rare variants, across the TREX1 gene, were evaluated in ∼8370 patients with SLE and ∼7490 control subjects. Stringent quality control procedures were applied, and principal components and admixture proportions were calculated to identify outliers for removal from analysis. Population-based case-control association analyses were performed. P-values, false-discovery rate q values, and odds ratios (OR) with 95% confidence intervals (CI) were calculated. The estimated frequency of TREX1 mutations in our lupus cohort was 0.5%. Five heterozygous mutations were detected at the Y305C polymorphism in European lupus cases but none were observed in European controls. Five African cases incurred heterozygous mutations at the E266G polymorphism and, again, none were observed in the African controls. A rare homozygous R114H mutation was identified in one Asian SLE patient, whereas all genotypes at this mutation in previous reports for SLE were heterozygous. Analysis of common TREX1 SNPs (minor allele frequency (MAF)>10%) revealed a relatively common risk haplotype in European SLE patients with neurological manifestations, especially seizures, with a frequency of 58% in lupus cases compared with 45% in normal controls (P=0.0008, OR=1.73, 95% CI=1.25-2.39). Finally, the presence or absence of specific autoantibodies in certain populations produced significant genetic associations. For example, a strong association with anti-nRNP was observed in the European cohort at a coding synonymous variant rs56203834 (P=2.99E-13, OR=5.2, 95% CI=3.18-8.56). Our data confirm and expand previous reports and provide additional support for the involvement of TREX1 in lupus pathogenesis.
Collapse
|
42
|
Hegde ML, Hazra TK, Mitra S. Functions of disordered regions in mammalian early base excision repair proteins. Cell Mol Life Sci 2010; 67:3573-87. [PMID: 20714778 DOI: 10.1007/s00018-010-0485-5] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2010] [Accepted: 07/28/2010] [Indexed: 11/30/2022]
Abstract
Reactive oxygen species, generated endogenously and induced as a toxic response, produce several dozen oxidized or modified bases and/or single-strand breaks in mammalian and other genomes. These lesions are predominantly repaired via the conserved base excision repair (BER) pathway. BER is initiated with excision of oxidized or modified bases by DNA glycosylases leading to formation of abasic (AP) site or strand break at the lesion site. Structural analysis by experimental and modeling approaches shows the presence of a disordered segment commonly localized at the N- or C-terminus as a characteristic signature of mammalian DNA glycosylases which is absent in their bacterial prototypes. Recent studies on unstructured regions in DNA metabolizing proteins have indicated their essential role in interaction with other proteins and target DNA recognition. In this review, we have discussed the unique presence of disordered segments in human DNA glycosylases, and AP endonuclease involved in the processing of glycosylase products, and their critical role in regulating repair functions. These disordered segments also include sites for posttranslational modifications and nuclear localization signal. The teleological basis for their structural flexibility is discussed.
Collapse
Affiliation(s)
- Muralidhar L Hegde
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555-1079, USA
| | | | | |
Collapse
|
43
|
Christmann M, Tomicic MT, Aasland D, Berdelle N, Kaina B. Three prime exonuclease I (TREX1) is Fos/AP-1 regulated by genotoxic stress and protects against ultraviolet light and benzo(a)pyrene-induced DNA damage. Nucleic Acids Res 2010; 38:6418-32. [PMID: 20511593 PMCID: PMC2965218 DOI: 10.1093/nar/gkq455] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Cells respond to genotoxic stress with the induction of DNA damage defence functions. Aimed at identifying novel players in this response, we analysed the genotoxic stress-induced expression of DNA repair genes in mouse fibroblasts proficient and deficient for c-Fos or c-Jun. The experiments revealed a clear up-regulation of the three prime exonuclease I (trex1) mRNA following ultraviolet (UV) light treatment. This occurred in the wild-type but not c-fos and c-jun null cells, indicating the involvement of AP-1 in trex1 induction. Trex1 up-regulation was also observed in human cells and was found on promoter, RNA and protein level. Apart from UV light, TREX1 is induced by other DNA damaging agents such as benzo(a)pyrene and hydrogen peroxide. The mouse and human trex1 promoter harbours an AP-1 binding site that is recognized by c-Fos and c-Jun, and its mutational inactivation abrogated trex1 induction. Upon genotoxic stress, TREX1 is not only up-regulated but also translocated into the nucleus. Cells deficient in TREX1 show reduced recovery from the UV and benzo(a)pyrene-induced replication inhibition and increased sensitivity towards the genotoxins compared to the isogenic control. The data revealed trex1 as a novel DNA damage-inducible repair gene that plays a protective role in the genotoxic stress response.
Collapse
Affiliation(s)
- Markus Christmann
- Department of Toxicology, University Medical Center, Obere Zahlbacher Strasse 67, D-55131 Mainz, Germany.
| | | | | | | | | |
Collapse
|
44
|
Crow YJ, Rehwinkel J. Aicardi-Goutieres syndrome and related phenotypes: linking nucleic acid metabolism with autoimmunity. Hum Mol Genet 2009; 18:R130-6. [PMID: 19808788 DOI: 10.1093/hmg/ddp293] [Citation(s) in RCA: 243] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Aicardi-Goutières syndrome (AGS) is a genetically determined encephalopathy demonstrating phenotypic overlap both with the sequelae of congenital infection and with systemic lupus erythematosus (SLE). Recent molecular advances have revealed that AGS can be caused by mutations in any one of five genes, most commonly on a recessive basis but occasionally as a dominant trait. Like AGS, SLE is associated with a perturbation of type I interferon metabolism. Interestingly then, heterozygous mutations in the AGS1 gene TREX1 underlie a cutaneous subtype of SLE-called familial chilblain lupus, and mutations in TREX1 represent the single most common cause of monogenic SLE identified to date. Evidence is emerging to show that the nucleases defective in AGS are involved in removing endogenously produced nucleic acid (NA) species, and that a failure of this removal results in activation of the immune system. This hypothesis explains the phenotypic overlap of AGS with congenital infection and some aspects of SLE, where an equivalent type I interferon-mediated innate immune response is triggered by viral and self NAs, respectively. The combined efforts of clinicians, geneticists, immunologists and cell biologists are producing rapid progress in the understanding of AGS and overlapping autoimmune disorders. These studies provide important insights into the pathogenesis of SLE and beg urgent questions about the development and use of immunosuppressive therapies in AGS and related phenotypes.
Collapse
Affiliation(s)
- Yanick J Crow
- Academic Unit of Medical Genetics, Manchester Academic Health Science Centre, Central Manchester Foundation Trust, St Mary's Hospital, University of Manchester, Oxford Road, Manchester M13 9WL, UK.
| | | |
Collapse
|
45
|
Biochemical properties of mammalian TREX1 and its association with DNA replication and inherited inflammatory disease. Biochem Soc Trans 2009; 37:535-8. [PMID: 19442247 DOI: 10.1042/bst0370535] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The major DNA-specific 3'-5' exonuclease of mammalian cells is TREX1 (3' repair exonuclease 1; previously called DNase III). The human enzyme is encoded by a single exon and, like many 3' exonucleases, exists as a homodimer. TREX1 degrades ssDNA (single-stranded DNA) more efficiently than dsDNA (double-stranded DNA), and its catalytic properties are similar to those of Escherichia coli exonuclease X. However, TREX1 is only found in mammals and has an extended C-terminal domain containing a leucine-rich sequence required for its association with the endoplasmic reticulum. In normal S-phase and also in response to genotoxic stress, TREX1 at least partly redistributes to the cell nucleus. In a collaborative project, we have demonstrated TREX1 enzyme deficiency in Aicardi-Goutières syndrome. Subsequently, we have shown that AGS1 cells exhibit chronic ATM (ataxia telangiectasia mutated)-dependent checkpoint activation, and these TREX1-deficient cells accumulate ssDNA fragments of a distinct size generated during DNA replication. Other groups have shown that the syndromes of familial chilblain lupus as well as systemic lupus erythematosus, and the distinct neurovascular disorder retinal vasculopathy with cerebral leukodystrophy, can be caused by dominant mutations at different sites within the TREX1 gene.
Collapse
|
46
|
|
47
|
Vilaysane A, Muruve DA. The innate immune response to DNA. Semin Immunol 2009; 21:208-14. [DOI: 10.1016/j.smim.2009.05.006] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2009] [Accepted: 05/06/2009] [Indexed: 12/25/2022]
|
48
|
Wang CJ, Lam W, Bussom S, Chang HM, Cheng YC. TREX1 acts in degrading damaged DNA from drug-treated tumor cells. DNA Repair (Amst) 2009; 8:1179-89. [PMID: 19617005 DOI: 10.1016/j.dnarep.2009.06.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2009] [Revised: 06/03/2009] [Accepted: 06/05/2009] [Indexed: 12/15/2022]
Abstract
The major mammalian exonuclease TREX1 has been proposed to play a role in DNA repair and drug resistance. However, no cellular evidence substantiates this claim. Recent reports indicate TREX1's involvement in autoimmunity. To further understand its role, we studied TREX1 expression and functionality in anticancer drug-treated tumor cells. We report that the expression and localization of TREX1 are cell-type dependent. Camptothecin and other DNA damaging agents induced both TREX1 protein and its mRNA in a dose- and time-dependent manner. Using a TREX1-inducible cell line, we performed clonogenic assays and found no change in sensitivity of the cells to the agents upon TREX1 induction, suggesting that TREX1 may not play a role in DNA repair or drug sensitivity. Nevertheless, TREX1 serves as a key enzyme in the degradation of DNA from dying cells leading to less cellular DNA. Ubiquitously expressed in normal tissues, TREX1 may act in degrading DNA in all cell types undergoing a dying process before phagocytosis occurs.
Collapse
Affiliation(s)
- Chuan-Jen Wang
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA
| | | | | | | | | |
Collapse
|
49
|
Lehtinen DA, Harvey S, Mulcahy MJ, Hollis T, Perrino FW. The TREX1 double-stranded DNA degradation activity is defective in dominant mutations associated with autoimmune disease. J Biol Chem 2008; 283:31649-56. [PMID: 18805785 PMCID: PMC2581595 DOI: 10.1074/jbc.m806155200] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2008] [Revised: 09/18/2008] [Indexed: 01/03/2023] Open
Abstract
Mutations in TREX1 have been linked to a spectrum of human autoimmune diseases including Aicardi-Goutières syndrome (AGS), familial chilblain lupus (FCL), systemic lupus erythematosus, and retinal vasculopathy and cerebral leukodystrophy. A common feature in these conditions is the frequent detection of antibodies to double-stranded DNA (dsDNA). TREX1 participates in a cell death process implicating this major 3' --> 5' exonuclease in genomic DNA degradation to minimize potential immune activation by persistent self DNA. The TREX1 D200N and D18N dominant heterozygous mutations were identified in AGS and FCL, respectively. TREX1 enzymes containing the D200N and D18N mutations were compared using nicked dsDNA and single-stranded DNA (ssDNA) degradation assays. The TREX1WT/D200N and TREX1WT/D18N heterodimers are completely deficient at degrading dsDNA and degrade ssDNA at an expected approximately 2-fold lower rate than TREX1WT enzyme. Further, the D200N- and D18N-containing TREX1 homo- and heterodimers inhibit the dsDNA degradation activity of TREX1WT enzyme, providing a likely explanation for the dominant phenotype of these TREX1 mutant alleles in AGS and FCL. By comparison, the TREX1 R114H homozygous mutation causes AGS and is found as a heterozygous mutation in systemic lupus erythematosus. The TREX1R114H/R114H homodimer has dysfunctional dsDNA and ssDNA degradation activities and does not detectibly inhibit the TREX1WT enzyme, whereas the TREX1WT/R114H heterodimer has a functional dsDNA degradation activity, supporting the recessive genetics of TREX1 R114H in AGS. The dysfunctional dsDNA degradation activities of these disease-related TREX1 mutants could account for persistent dsDNA from dying cells leading to an aberrant immune response in these clinically related disorders.
Collapse
Affiliation(s)
- Duane A Lehtinen
- Department of Biochemistry, Wake Forest University Health Sciences, Winston-Salem, North Carolina 27157, USA
| | | | | | | | | |
Collapse
|
50
|
|