1
|
Structure and activation mechanism of the yeast RNA Pol II CTD kinase CTDK-1 complex. Proc Natl Acad Sci U S A 2021; 118:2019163118. [PMID: 33431688 DOI: 10.1073/pnas.2019163118] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The C-terminal domain (CTD) kinase I (CTDK-1) complex is the primary RNA Polymerase II (Pol II) CTD Ser2 kinase in budding yeast. CTDK-1 consists of a cyclin-dependent kinase (CDK) Ctk1, a cyclin Ctk2, and a unique subunit Ctk3 required for CTDK-1 activity. Here, we present a crystal structure of CTDK-1 at 1.85-Å resolution. The structure reveals that, compared to the canonical two-component CDK-cyclin system, the third component Ctk3 of CTDK-1 plays a critical role in Ctk1 activation by stabilizing a key element of CDK regulation, the T-loop, in an active conformation. In addition, Ctk3 contributes to the assembly of CTDK-1 through extensive interactions with both Ctk1 and Ctk2. We also demonstrate that CTDK-1 physically and genetically interacts with the serine/arginine-like protein Gbp2. Together, the data in our work reveal a regulatory mechanism of CDK complexes.
Collapse
|
2
|
Duan J, Liu Q, Su S, Cha J, Zhou Y, Tang R, Liu X, Wang Y, Liu Y, He Q. The Neurospora RNA polymerase II kinase CTK negatively regulates catalase expression in a chromatin context-dependent manner. Environ Microbiol 2019; 22:76-90. [PMID: 31599077 DOI: 10.1111/1462-2920.14821] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 09/25/2019] [Accepted: 10/02/2019] [Indexed: 01/15/2023]
Abstract
Clearance and adaptation to reactive oxygen species (ROS) are crucial for cell survival. As in other eukaryotes, the Neurospora catalases are the main enzymes responsible for ROS clearance and their expression are tightly regulated by the growth and environmental conditions. The RNA polymerase II carboxyl terminal domain (RNAPII CTD) kinase complex (CTK complex) is known as a positive elongation factor for many inducible genes by releasing paused RNAPII near the transcription start site and promoting transcription elongation. However, here we show that deletion of CTK complex components in Neurospora led to high CAT-3 expression level and resistance to H2 O2 -induced ROS stress. The catalytic activity of CTK-1 is required for such a response. On the other hand, CTK-1 overexpression led to decreased expression of CAT-3. ChIP assays shows that CTK-1 phosphorylates the RNAPII CTD at Ser2 residues in the cat-3 ORF region during transcription elongation and deletion of CTK-1 led to dramatic decreases of SET-2 recruitment and H3K36me3 modification. As a result, histones at the cat-3 locus become hyperacetylated to promote its transcription. Together, these results demonstrate that the CTK complex is negative regulator of cat-3 expression by affecting its chromatin structure.
Collapse
Affiliation(s)
- Jiabin Duan
- State Key Laboratory of Agrobiotechnology and MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Qingqing Liu
- State Key Laboratory of Agrobiotechnology and MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Sodgerel Su
- State Key Laboratory of Agrobiotechnology and MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Joonseok Cha
- Department of Physiology, The University of Texas Southwestern Medical Center, Dallas, Texas, 75390, USA
| | - Yike Zhou
- State Key Laboratory of Agrobiotechnology and MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Ruiqi Tang
- State Key Laboratory of Agrobiotechnology and MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Xiao Liu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Ying Wang
- State Key Laboratory of Agrobiotechnology and MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Yi Liu
- Department of Physiology, The University of Texas Southwestern Medical Center, Dallas, Texas, 75390, USA
| | - Qun He
- State Key Laboratory of Agrobiotechnology and MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
3
|
Srivastava R, Duan R, Ahn SH. Multiple roles of CTDK-I throughout the cell. Cell Mol Life Sci 2019; 76:2789-2797. [PMID: 31037337 PMCID: PMC11105739 DOI: 10.1007/s00018-019-03118-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 04/08/2019] [Accepted: 04/24/2019] [Indexed: 11/27/2022]
Abstract
The heterotrimeric carboxy-terminal domain kinase I (CTDK-I) in yeast is a cyclin-dependent kinase complex that is evolutionally conserved throughout eukaryotes and phosphorylates the C-terminal domain of the largest subunit of RNA polymerase II (RNApII) on the second-position serine (Ser2) residue of YSPTSPS heptapeptide repeats. CTDK-I plays indispensable roles in transcription elongation and transcription-coupled processing, such as the 3'-end processing of nascent mRNA transcripts. However, recent studies have revealed additional roles of CTDK-I beyond its primary effect on transcription by RNApII. Here, we describe recent advances in the regulation of genomic stability and rDNA integrity by CTDK-I and highlight the previously underappreciated cellular roles of CTDK-I in rRNA synthesis by RNA polymerase I and translational initiation and elongation. These multiple roles of CTDK-I throughout the cell expand our understanding of how this complex functions to coordinate diverse cellular processes through gene expression and how the human orthologue exerts its roles in diseased states such as tumorigenesis.
Collapse
Affiliation(s)
- Rakesh Srivastava
- Plant Molecular Biology and Genetic Engineering Division, CSIR-National Botanical Research Institute, Lucknow, U.P., 226001, India
| | - Ruxin Duan
- Department of Molecular and Life Science, College of Science and Convergence Technology, Hanyang University ERICA Campus, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan, Gyeonggi-do, 15588, Republic of Korea
| | - Seong Hoon Ahn
- Department of Molecular and Life Science, College of Science and Convergence Technology, Hanyang University ERICA Campus, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan, Gyeonggi-do, 15588, Republic of Korea.
| |
Collapse
|
4
|
Expression, purification and crystallization of the complex of RNA polymerase II carboxyl-terminal repeat domain kinase subunits CTK2-CTK3 from Saccharomyces cerevisiae. Protein Expr Purif 2018; 154:112-117. [PMID: 30240633 DOI: 10.1016/j.pep.2018.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 09/17/2018] [Accepted: 09/17/2018] [Indexed: 11/23/2022]
Abstract
Carboxyl-terminal repeat domain (CTD) of the largest subunit Rpb1 of RNA polymerace II is essential for transcription regulation. Heptapeptide repeat of CTD of Rpb1 is phosphorylated by carboxyl-terminal repeat domain kinase (CTDK-I), composed of CTK1, CTK2 and CTK3, in order to regulate transcription and transcription associated processes. The yeast specific protein CTK3 binds to cyclin CTK2 to form a heterodimer serving as a regulational factor to control CTK1 activity by binding to CTK1. Structural information of CTK2-CTK3 complex is yet to be elucidated. Here, we report the co-expression of CTK2-CTK3 complex from Saccharomyces cerevisiae with N-terminal His6-tag in CTK3 in Escherichia coli (E. coli), purification of the complex by four chromatographic steps and crystallization of the complex as well as the diffraction data collection and processing. This study provides some essential information and a guide for structural and functional study of CTK2-CTK3 complex and CTDK-I in the future.
Collapse
|
5
|
Mühlbacher W, Mayer A, Sun M, Remmert M, Cheung ACM, Niesser J, Soeding J, Cramer P. Structure of Ctk3, a subunit of the RNA polymerase II CTD kinase complex, reveals a noncanonical CTD-interacting domain fold. Proteins 2015. [PMID: 26219431 DOI: 10.1002/prot.24869] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
CTDK-I is a yeast kinase complex that phosphorylates the C-terminal repeat domain (CTD) of RNA polymerase II (Pol II) to promote transcription elongation. CTDK-I contains the cyclin-dependent kinase Ctk1 (homologous to human CDK9/CDK12), the cyclin Ctk2 (human cyclin K), and the yeast-specific subunit Ctk3, which is required for CTDK-I stability and activity. Here we predict that Ctk3 consists of a N-terminal CTD-interacting domain (CID) and a C-terminal three-helix bundle domain. We determine the X-ray crystal structure of the N-terminal domain of the Ctk3 homologue Lsg1 from the fission yeast Schizosaccharomyces pombe at 2.0 Å resolution. The structure reveals eight helices arranged into a right-handed superhelical fold that resembles the CID domain present in transcription termination factors Pcf11, Nrd1, and Rtt103. Ctk3 however shows different surface properties and no binding to CTD peptides. Together with the known structure of Ctk1 and Ctk2 homologues, our results lead to a molecular framework for analyzing the structure and function of the CTDK-I complex.
Collapse
Affiliation(s)
- Wolfgang Mühlbacher
- Max Planck Institute for Biophysical Chemistry, Department of Molecular Biology, Am Fassberg 11, Göttingen, 37077, Germany
| | - Andreas Mayer
- Gene Center Munich and Department of Biochemistry, Ludwig-Maximilians-Universität München, Feodor-Lynen-Str. 25, Munich, 81377, Germany
| | - Mai Sun
- Gene Center Munich and Department of Biochemistry, Ludwig-Maximilians-Universität München, Feodor-Lynen-Str. 25, Munich, 81377, Germany
| | - Michael Remmert
- Gene Center Munich and Department of Biochemistry, Ludwig-Maximilians-Universität München, Feodor-Lynen-Str. 25, Munich, 81377, Germany
| | - Alan C M Cheung
- Gene Center Munich and Department of Biochemistry, Ludwig-Maximilians-Universität München, Feodor-Lynen-Str. 25, Munich, 81377, Germany
| | - Jürgen Niesser
- Max Planck Institute for Biophysical Chemistry, Department of Molecular Biology, Am Fassberg 11, Göttingen, 37077, Germany
| | - Johannes Soeding
- Max Planck Institute for Biophysical Chemistry, Department of Molecular Biology, Am Fassberg 11, Göttingen, 37077, Germany
| | - Patrick Cramer
- Max Planck Institute for Biophysical Chemistry, Department of Molecular Biology, Am Fassberg 11, Göttingen, 37077, Germany
| |
Collapse
|
6
|
Bowman EA, Kelly WG. RNA polymerase II transcription elongation and Pol II CTD Ser2 phosphorylation: A tail of two kinases. Nucleus 2014; 5:224-36. [PMID: 24879308 DOI: 10.4161/nucl.29347] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The transition between initiation and productive elongation during RNA Polymerase II (Pol II) transcription is a well-appreciated point of regulation across many eukaryotes. Elongating Pol II is modified by phosphorylation of serine 2 (Ser2) on its carboxy terminal domain (CTD) by two kinases, Bur1/Ctk1 in yeast and Cdk9/Cdk12 in metazoans. Here, we discuss the roles and regulation of these kinases and their relationship to Pol II elongation control, and focus on recent data from work in C. elegans that point out gaps in our current understand of transcription elongation.
Collapse
Affiliation(s)
- Elizabeth A Bowman
- National Institute of Environmental Health Sciences; Research Triangle Park, NC USA
| | | |
Collapse
|
7
|
Abstract
The largest subunit of RNA polymerase II, Rpb1, contains an unusual C-terminal domain (CTD) composed of numerous repeats of the YSPTSPS consensus sequence. This sequence is the target of post-translational modifications such as phosphorylation, glycosylation, methylation and transitions between stereoisomeric states, resulting in a vast combinatorial potential referred to as the CTD code. In order to gain insight into the biological significance of this code, several studies recently reported the genome-wide distribution of some of these modified polymerases and associated factors in either fission yeast (Schizosaccharomyces pombe) or budding yeast (Saccharomyces cerevisiae). The resulting occupancy maps reveal that a general RNA polymerase II transcription complex exists and undergoes uniform transitions from initiation to elongation to termination. Nevertheless, CTD phosphorylation dynamics result in a gene-specific effect on mRNA expression. In this review, we focus on the gene-specific requirement of CTD phosphorylation and discuss in more detail the case of serine 2 phosphorylation (S2P) within the CTD, a modification that is dispensable for general transcription in fission yeast but strongly affects transcription reprogramming and cell differentiation in response to environmental cues. The recent discovery of Cdk12 as a genuine CTD S2 kinase and its requirement for gene-specific expression are discussed in the wider context of metazoa.
Collapse
Affiliation(s)
- Julie Drogat
- Namur Research College-NARC, Rue de Bruxelles 61, 5000 Namur, Belgium
| | | |
Collapse
|
8
|
Saberianfar R, Cunningham-Dunlop S, Karagiannis J. Global gene expression analysis of fission yeast mutants impaired in Ser-2 phosphorylation of the RNA pol II carboxy terminal domain. PLoS One 2011; 6:e24694. [PMID: 21931816 PMCID: PMC3171476 DOI: 10.1371/journal.pone.0024694] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Accepted: 08/15/2011] [Indexed: 12/29/2022] Open
Abstract
In Schizosaccharomyces pombe the nuclear-localized Lsk1p-Lsc1p cyclin dependent kinase complex promotes Ser-2 phosphorylation of the heptad repeats found within the RNA pol II carboxy terminal domain (CTD). Here, we first provide evidence supporting the existence of a third previously uncharacterized Ser-2 CTD kinase subunit, Lsg1p. As expected for a component of the complex, Lsg1p localizes to the nucleus, promotes Ser-2 phosphorylation of the CTD, and physically interacts with both Lsk1p and Lsc1p in vivo. Interestingly, we also demonstrate that lsg1Δ mutants – just like lsk1Δ and lsc1Δ strains – are compromised in their ability to faithfully and reliably complete cytokinesis. Next, to address whether kinase mediated alterations in CTD phosphorylation might selectively alter the expression of genes with roles in cytokinesis and/or the cytoskeleton, global gene expression profiles were analyzed. Mutants impaired in Ser-2 phosphorylation display little change with respect to the level of transcription of most genes. However, genes affecting cytokinesis – including the actin interacting protein gene, aip1 – as well as genes with roles in meiosis, are included in a small subset that are differentially regulated. Significantly, genetic analysis of lsk1Δ aip1Δ double mutants is consistent with Lsk1p and Aip1p acting in a linear pathway with respect to the regulation of cytokinesis.
Collapse
Affiliation(s)
- Reza Saberianfar
- Department of Biology, University of Western Ontario, London, Ontario, Canada
| | | | - Jim Karagiannis
- Department of Biology, University of Western Ontario, London, Ontario, Canada
- * E-mail:
| |
Collapse
|
9
|
Rigden DJ. Ab initio modeling led annotation suggests nucleic acid binding function for many DUFs. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2011; 15:431-8. [PMID: 21348639 DOI: 10.1089/omi.2010.0122] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Expansions of sequence databases driven by new sequencing technology continue apace. These result in a continuous supply of protein sequences and domains that cannot be straightforwardly annotated by simple homology methods. For these, structure-based function prediction may contribute to an improved annotation. Here, short Domains of Unknown Function (DUFs) are ab initio modeled with ROSETTA and screened for likely nucleic acid binding function. Thirty-two DUFs are thereby predicted to have a nucleic acid binding function. In most cases, additional evidence supporting that function could be obtained from structure comparison, domain architectures, distant evolutionary relationships, genome context or protein-protein interaction data. These predictions contribute to the function annotation of thousands of proteins.
Collapse
Affiliation(s)
- Daniel J Rigden
- University of Liverpool, Institute of Integrative Biology, United Kingdom.
| |
Collapse
|
10
|
McKay SL, Johnson TL. An investigation of a role for U2 snRNP spliceosomal components in regulating transcription. PLoS One 2011; 6:e16077. [PMID: 21283673 PMCID: PMC3025917 DOI: 10.1371/journal.pone.0016077] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2010] [Accepted: 12/04/2010] [Indexed: 11/18/2022] Open
Abstract
There is mounting evidence to suggest that the synthesis of pre-mRNA transcripts and their subsequent splicing are coordinated events. Previous studies have implicated the mammalian spliceosomal U2 snRNP as having a novel role in stimulating transcriptional elongation in vitro through interactions with the elongation factors P-TEFb and Tat-SF1; however, the mechanism remains unknown [1]. These factors are conserved in Saccharomyces cerevisiae, a fact that suggests that a similar interaction may occur in yeast to stimulate transcriptional elongation in vivo. To address this possibility we have looked for evidence of a role for the yeast Tat-SF1 homolog, Cus2, and the U2 snRNA in regulating transcription. Specifically, we have performed a genetic analysis to look for functional interactions between Cus2 or U2 snRNA and the P-TEFb yeast homologs, the Bur1/2 and Ctk1/2/3 complexes. In addition, we have analyzed Cus2-deleted or -overexpressing cells and U2 snRNA mutant cells to determine if they show transcription-related phenotypes similar to those displayed by the P-TEFb homolog mutants. In no case have we been able to observe phenotypes consistent with a role for either spliceosomal factor in transcription elongation. Furthermore, we did not find evidence for physical interactions between the yeast U2 snRNP factors and the P-TEFb homologs. These results suggest that in vivo, S. cerevisiae do not exhibit functional or physical interactions similar to those exhibited by their mammalian counterparts in vitro. The significance of the difference between our in vivo findings and the previously published in vitro results remains unclear; however, we discuss the potential importance of other factors, including viral proteins, in mediating the mammalian interactions.
Collapse
Affiliation(s)
- Susannah L. McKay
- Molecular Biology Section, Division of Biological Sciences, University of California San Diego, La Jolla, California, United States of America
| | - Tracy L. Johnson
- Molecular Biology Section, Division of Biological Sciences, University of California San Diego, La Jolla, California, United States of America
- * E-mail:
| |
Collapse
|
11
|
Affiliation(s)
- Michael Hampsey
- Department of Biochemistry, Division of Nucleic Acid Enzymology, University of Medicine and Dentistry of New Jersey-Robert Wood Johnson Medical School, Piscataway, New Jersey 08854, USA
| | | |
Collapse
|
12
|
Rubenstein EM, Schmidt MC. Mechanisms regulating the protein kinases of Saccharomyces cerevisiae. EUKARYOTIC CELL 2007; 6:571-83. [PMID: 17337635 PMCID: PMC1865659 DOI: 10.1128/ec.00026-07] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Eric M Rubenstein
- Department of Molecular Genetics and Biochemistry, University of Pittsburgh School of Medicine, W1247 Biomedical Science Tower, Pittsburgh, PA 15261, USA
| | | |
Collapse
|
13
|
Grenetier S, Bouchoux C, Goguel V. CTD kinase I is required for the integrity of the rDNA tandem array. Nucleic Acids Res 2006; 34:4996-5006. [PMID: 16984969 PMCID: PMC1635248 DOI: 10.1093/nar/gkl493] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2006] [Revised: 06/09/2006] [Accepted: 06/27/2006] [Indexed: 11/12/2022] Open
Abstract
The genomic stability of the rDNA tandem array is tightly controlled to allow sequence homogenization and to prevent deleterious rearrangements. In this report, we show that the absence of the yeast CTD kinase I (CTDK-I) complex in null mutant strains leads to a decrease in the number of tandem rDNA repeats. Reintroduction of the missing gene induces an increase of rDNA repeats to reach a copy number similar to that of the original strain. Interestingly, while expansion is dependent on Fob1, a protein required for replication fork blocking activity in rDNA, contraction occurs in the absence of Fob1. Furthermore, silencing of class II genes at the rDNA, a process connected to rDNA stability, is not affected. Ctk1, the kinase subunit of the CTDK-I complex is involved in various steps of mRNA synthesis. In addition, we have recently shown that Ctk1 is also implicated in rRNA synthesis. The results suggest that the RNA polymerase I transcription defect occurring in a ctk1 mutant strain causes rDNA contraction.
Collapse
Affiliation(s)
- Sabrina Grenetier
- Service de Biochimie et de Génétique Moléculaire, CEA/Saclay91191 Gif/Yvette, France
| | - Céline Bouchoux
- Service de Biochimie et de Génétique Moléculaire, CEA/Saclay91191 Gif/Yvette, France
| | - Valérie Goguel
- Service de Biochimie et de Génétique Moléculaire, CEA/Saclay91191 Gif/Yvette, France
| |
Collapse
|
14
|
Van Driessche B, Coddens S, Van Mullem V, Vandenhaute J. Glucose deprivation mediates interaction between CTDK-I and Snf1 in Saccharomyces cerevisiae. FEBS Lett 2005; 579:5318-24. [PMID: 16182287 DOI: 10.1016/j.febslet.2005.08.057] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2005] [Revised: 08/18/2005] [Accepted: 08/30/2005] [Indexed: 11/18/2022]
Abstract
Ctk1 is a kinase involved in transcriptional control. We show in the two-hybrid system that Ctk1 interacts with Snf1, a kinase regulating glucose-dependent genes. Co-purification experiments confirmed the two-hybrid interaction but only when cells were grown at low glucose concentrations. Deletion of Ctk1 or its associated partners, Ctk2 and Ctk3, conferred synthetic lethality with null mutants of Snf1 or Snf1-associated proteins. Northern blot analysis suggested that Ctk1 and Snf1 act together in vivo to regulate GSY2. These findings support the view that Ctk1 interacts with Snf1 in a functional module involved in the cellular response to glucose limitation.
Collapse
|
15
|
Ostapenko D, Solomon MJ. Phosphorylation by Cak1 regulates the C-terminal domain kinase Ctk1 in Saccharomyces cerevisiae. Mol Cell Biol 2005; 25:3906-13. [PMID: 15870265 PMCID: PMC1087728 DOI: 10.1128/mcb.25.10.3906-3913.2005] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Ctk1 is a Saccharomyces cerevisiae cyclin-dependent protein kinase (CDK) that assembles with Ctk2 and Ctk3 to form an active protein kinase complex, CTDK-I. CTDK-I phosphorylates Ser2 within the RNA polymerase II C-terminal domain, an activity that is required for efficient transcriptional elongation and 3' RNA processing. Ctk1 contains a conserved T loop, which undergoes activating phosphorylation in other CDKs. We show that Ctk1 is phosphorylated on Thr-338 within the T loop. Mutation of this residue abolished Ctk1 kinase activity in vitro and resulted in a cold-sensitive phenotype. As with other yeast CDKs undergoing T-loop phosphorylation, Ctk1 phosphorylation on Thr-338 was dependent on the Cak1 protein kinase. Ctk1 isolated from cak1Delta cells was unphosphorylated and exhibited low protein kinase activity. Moreover, Cak1 directly phosphorylated Ctk1 in vitro. Unlike wild-type cells, cells expressing Ctk1(T338A) delayed growth at early stationary phase, did not show the increase in Ser2 phosphorylation that normally accompanies the transition from rapid growth to stationary phase, and had compromised transcriptional activation of two stationary-phase genes, CTT1 and SPI1. Therefore, Ctk1 phosphorylation on Thr-338 is carried out by Cak1 and is required for normal gene transcription during the transition into stationary phase.
Collapse
Affiliation(s)
- Denis Ostapenko
- Yale University School of Medicine, Department of Molecular Biophysics and Biochemistry, 333 Cedar Street, New Haven, CT 06520-8024, USA
| | | |
Collapse
|
16
|
Bouchoux C, Hautbergue G, Grenetier S, Carles C, Riva M, Goguel V. CTD kinase I is involved in RNA polymerase I transcription. Nucleic Acids Res 2004; 32:5851-60. [PMID: 15520468 PMCID: PMC528809 DOI: 10.1093/nar/gkh927] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
RNA polymerase II carboxy terminal domain (CTD) kinases are key elements in the control of mRNA synthesis. Yeast CTD kinase I (CTDK-I), is a non-essential complex involved in the regulation of mRNA synthesis at the level of transcription elongation, pre-mRNA 3' formation and nuclear export. Here, we report that CTDK-I is also involved in ribosomal RNA synthesis. We show that CTDK-I is localized in part in the nucleolus. In its absence, nucleolar structure and RNA polymerase I transcription are affected. In vitro experiments show an impairment of the Pol I transcription machinery. Remarkably, RNA polymerase I co-precipitates from cellular extracts with Ctk1, the kinase subunit of the CTDK-I complex. In vitro analysis further demonstrates a direct interaction between RNA polymerase I and Ctk1. The results suggest that CTDK-I might participate in the regulation of distinct nuclear transcriptional machineries, thus playing a role in the adaptation of the global transcriptional response to growth signalling.
Collapse
Affiliation(s)
- Céline Bouchoux
- Service de Biochimie et Génétique Moléculaire, CEA/Saclay, 91191 Gif/Yvette, France
| | | | | | | | | | | |
Collapse
|
17
|
Llano M, Delgado S, Vanegas M, Poeschla EM. Lens epithelium-derived growth factor/p75 prevents proteasomal degradation of HIV-1 integrase. J Biol Chem 2004; 279:55570-7. [PMID: 15475359 DOI: 10.1074/jbc.m408508200] [Citation(s) in RCA: 129] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The transcriptional coactivator lens epithelium-derived growth factor (LEDGF)/p75 acts as a chromatin tethering factor for human immunodeficiency virus type 1 (HIV-1) integrase protein, determining its nuclear localization and its tight association with nuclear DNA. Here we identify a second function for the LEDGF/p75-integrase interaction. We observed that stable introduction of HIV-1 integrase (IN) transcription units into cells made stringently LEDGF/p75-deficient by RNAi resulted in much lower steady state levels of IN protein than introduction into LEDGF/p75 wild type cells. The same LEDGF/p75-dependent disparity was observed for feline immunodeficiency virus IN. However, IN mRNA levels were equivalent in the presence and absence of LEDGF/p75. A post-translational mechanism was confirmed when the half-life of HIV-1 IN protein was found to be much shorter in LEDGF/p75-deficient cells. Proteasome inhibition fully countered this extreme instability, increasing IN protein levels to those seen in LEDGF/p75 wild type cells and implicating proteasomal destruction as the main cause of IN instability. Consistent with these data, increased ubiquitinated HIV-1 IN was found in the LEDGF/p75 knock-down cells. Moreover, restoration of LEDGF/p75 to knocked down clones rescued HIV-1 IN stability. Subcellular fractionation showed that HIV-1 IN is exclusively cytoplasmic in LEDGF/p75-deficient cells, but mainly nuclear in LEDGF/p75 wild type cells, and that cytoplasmic HIV-1 IN has a shorter half-life than nuclear HIV-1 IN. However, using LEDGF proteins defective for nuclear localization and IN interaction, we further determined that protection of HIV-1 IN from the proteasome requires neither chromatin tethering nor nuclear residence. Protection requires only interaction with LEDGF/p75, and it is independent of the subcellular localization of the IN-LEDGF complex.
Collapse
Affiliation(s)
- Manuel Llano
- Molecular Medicine Program and Department of Immunology, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN 55905, USA
| | | | | | | |
Collapse
|
18
|
Michels AA, Nguyen VT, Fraldi A, Labas V, Edwards M, Bonnet F, Lania L, Bensaude O. MAQ1 and 7SK RNA interact with CDK9/cyclin T complexes in a transcription-dependent manner. Mol Cell Biol 2003; 23:4859-69. [PMID: 12832472 PMCID: PMC162212 DOI: 10.1128/mcb.23.14.4859-4869.2003] [Citation(s) in RCA: 190] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2003] [Revised: 04/08/2003] [Accepted: 04/24/2003] [Indexed: 11/20/2022] Open
Abstract
Positive transcription elongation factor b (P-TEFb) comprises a cyclin (T1 or T2) and a kinase, cyclin-dependent kinase 9 (CDK9), which phosphorylates the carboxyl-terminal domain of RNA polymerase II. P-TEFb is essential for transcriptional elongation in human cells. A highly specific interaction among cyclin T1, the viral protein Tat, and the transactivation response (TAR) element RNA determines the productive transcription of the human immunodeficiency virus genome. In growing HeLa cells, half of P-TEFb is kinase inactive and binds to the 7SK small nuclear RNA. We now report on a novel protein termed MAQ1 (for ménage à quatre) that is also present in this complex. Since 7SK RNA is required for MAQ1 to associate with P-TEFb, a structural role for 7SK RNA is proposed. Inhibition of transcription results in the release of both MAQ1 and 7SK RNA from P-TEFb. Thus, MAQ1 cooperates with 7SK RNA to form a novel type of CDK inhibitor. According to yeast two-hybrid analysis and immunoprecipitations from extracts of transfected cells, MAQ1 binds directly to the N-terminal cyclin homology region of cyclins T1 and T2. Since Tat also binds to this cyclin T1 N-terminal domain and since the association between 7SK RNA/MAQ1 and P-TEFb competes with the binding of Tat to cyclin T1, we speculate that the TAR RNA/Tat lentivirus system has evolved to subvert the cellular 7SK RNA/MAQ1 system.
Collapse
Affiliation(s)
- Annemieke A Michels
- UMR 8541 CNRS, Ecole Normale Supérieure, Laboratoire de Régulation de l'Expression Génétique, 75230 Paris Cedex 05, France
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Narita T, Yamaguchi Y, Yano K, Sugimoto S, Chanarat S, Wada T, Kim DK, Hasegawa J, Omori M, Inukai N, Endoh M, Yamada T, Handa H. Human transcription elongation factor NELF: identification of novel subunits and reconstitution of the functionally active complex. Mol Cell Biol 2003; 23:1863-73. [PMID: 12612062 PMCID: PMC149481 DOI: 10.1128/mcb.23.6.1863-1873.2003] [Citation(s) in RCA: 167] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The multisubunit transcription elongation factor NELF (for negative elongation factor) acts together with DRB (5,6-dichloro-1-beta-D-ribofuranosylbenzimidazole) sensitivity-inducing factor (DSIF)/human Spt4-Spt5 to cause transcriptional pausing of RNA polymerase II (RNAPII). NELF activity is associated with five polypeptides, A to E. NELF-A has sequence similarity to hepatitis delta antigen (HDAg), the viral protein that binds to and activates RNAPII, whereas NELF-E is an RNA-binding protein whose RNA-binding activity is critical for NELF function. To understand the interactions of DSIF, NELF, and RNAPII at a molecular level, we identified the B, C, and D proteins of human NELF. NELF-B is identical to COBRA1, recently reported to associate with the product of breast cancer susceptibility gene BRCA1. NELF-C and NELF-D are highly related or identical to the protein called TH1, of unknown function. NELF-B and NELF-C or NELF-D are integral subunits that bring NELF-A and NELF-E together, and coexpression of these four proteins in insect cells resulted in the reconstitution of functionally active NELF. Detailed analyses using mutated recombinant complexes indicated that the small region of NELF-A with similarity to HDAg is critical for RNAPII binding and for transcriptional pausing. This study defines several important protein-protein interactions and opens the way for understanding the mechanism of DSIF- and NELF-induced transcriptional pausing.
Collapse
Affiliation(s)
- Takashi Narita
- Graduate School of Bioscience and Biotechnolog, Tokyo Institute of Technology, 4259 Nagatsuka, Yokohama 226-8503, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Xiao T, Hall H, Kizer KO, Shibata Y, Hall MC, Borchers CH, Strahl BD. Phosphorylation of RNA polymerase II CTD regulates H3 methylation in yeast. Genes Dev 2003; 17:654-63. [PMID: 12629047 PMCID: PMC196010 DOI: 10.1101/gad.1055503] [Citation(s) in RCA: 340] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Histone methylation is now realized to be a pivotal regulator of gene transcription. Although recent studies have shed light on a trans-histone regulatory pathway that controls H3 Lys 4 and H3 Lys 79 methylation in Saccharomyces cerevisiae, the regulatory pathway that affects Set2-mediated H3 Lys 36 methylation is unknown. To determine the functions of Set2, and identify factors that regulate its site of methylation, we genomically tagged Set2 and identified its associated proteins. Here, we show that Set2 is associated with Rbp1 and Rbp2, the two largest subunits of RNA polymerase II (RNA pol II). Moreover, we find that this association is specific for the interaction of Set2 with the hyperphosphorylated form of RNA pol II. We further show that deletion of the RNA pol II C-terminal domain (CTD) kinase Ctk1, or partial deletion of the CTD, results in a selective abolishment of H3 Lys 36 methylation, implying a pathway of Set2 recruitment to chromatin and a role for H3 Lys 36 methylation in transcription elongation. In support, chromatin immunoprecipitation assays demonstrate the presence of Set2 methylation in the coding regions, as well as promoters, of genes regulated by Ctk1 or Set2. These data document a new link between histone methylation and the transcription apparatus and uncover a regulatory pathway that is selective for H3 Lys 36 methylation.
Collapse
Affiliation(s)
- Tiaojiang Xiao
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599, USA
| | | | | | | | | | | | | |
Collapse
|