1
|
Li H, Gao Y, Lin Y. Progress in molecular mechanisms of coronary microvascular dysfunction. Microcirculation 2023; 30:e12827. [PMID: 37608689 DOI: 10.1111/micc.12827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 06/23/2023] [Accepted: 08/03/2023] [Indexed: 08/24/2023]
Abstract
Coronary microvascular dysfunction is a high-risk factor for many cardiovascular events. However, because of multiple risk factors and limited understanding about its underlying pathophysiological mechanisms, it was easily misdiagnosed. Therefore, its clinical diagnosis and treatment were greatly restricted. Coronary microcirculation refers to microvessels that play an important role in the physiological regulation of myocardial perfusion and regulating blood flow distribution, fulfilling myocardial metabolic needs and moderating peripheral vascular resistance. In coronary microvascular dysfunction, vascular endothelial celldamage is a critical link. The main feature of early coronary microvascular dysfunction is the impairment of endothelial cell proliferation, adhesion, migration, apoptosis, and secretion. Moreover, coronary microvascular dysfunction risk factors include hyperglycemia, lipid metabolism disorders, ischemia-reperfusion injury, aging, and hypertension, similar to coronary atherosclerosis. There are various mechanisms by which these risk factors harm endothelial function and cause microcirculatory disturbances. Therefore, we reviewed coronary microvascular dysfunction's risk factors and pathogenesis in this article.
Collapse
Affiliation(s)
- Hao Li
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Yuping Gao
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Yuanyuan Lin
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| |
Collapse
|
2
|
Laidlaw TM, Buchheit KM, Cahill KN, Hacker J, Cho L, Cui J, Feng C, Chen CC, Le M, Israel E, Boyce JA. Trial of thromboxane receptor inhibition with ifetroban: TP receptors regulate eicosanoid homeostasis in aspirin-exacerbated respiratory disease. J Allergy Clin Immunol 2023; 152:700-710.e3. [PMID: 37068712 PMCID: PMC10524565 DOI: 10.1016/j.jaci.2023.03.030] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 03/27/2023] [Accepted: 03/30/2023] [Indexed: 04/19/2023]
Abstract
BACKGROUND Aspirin-exacerbated respiratory disease (AERD) is the triad of asthma, nasal polyposis, and respiratory reactions to COX-1 inhibitors. Overproduction of cysteinyl leukotrienes and underproduction of prostaglandin E2 (PGE2) are hallmarks of AERD. A mouse model predicted a key role for the thromboxane-prostanoid (TP) receptor in AERD. OBJECTIVE Our aim was to determine whether ifetroban, a TP receptor antagonist, attenuates aspirin-induced respiratory symptoms in patients with AERD. METHODS A total of 35 patients with AERD completed a 4-week double-blinded, placebo-controlled trial of ifetroban and underwent an oral aspirin challenge. The primary outcome was change in the provocative dose of aspirin that caused a 2-point increase in Total Nasal Symptom Score. Changes in lung function, eicosanoid levels, and platelet and mast cell activation were assessed. Cultured human nasal fibroblasts were stimulated with or without the TP agonist U46619 and assayed for prostanoid production. RESULTS Ifetroban was well tolerated in AERD and did not change the mean 2-point increase in Total Nasal Symptom Score (P = .763). Participants taking ifetroban had greater aspirin-induced nasal symptoms and a greater decline in FEV1 value than did participants receiving placebo (-18.8% ± 3.6% with ifetroban vs -8.4% ± 2.1% with placebo [P = .017]). Four weeks of ifetroban significantly increased urinary leukotriene E4 levels and decreased nasal PGE2 levels compared with placebo. Peak aspirin-induced urinary thromboxane levels correlated with peak urinary leukotriene E4 and prostaglandin D2 metabolite levels in participants taking ifetroban. U46119 significantly potentiated the production of PGE2 by cultured nasal fibroblasts from subjects with AERD but not by cultured nasal fibroblasts from controls without polypoid sinusitis. CONCLUSION Contrary to our hypothesis, TP receptor blockade worsened aspirin-induced reactions in AERD, possibly by exacerbating dysregulation of the eicosanoid system. TP signaling on stromal cells may be critical to maintaining PGE2 production when COX-2 function is low.
Collapse
Affiliation(s)
- Tanya M Laidlaw
- Department of Medicine, Harvard Medical School, Boston, Mass; Division of Allergy and Clinical Immunology, Brigham and Women's Hospital, Boston, Mass.
| | - Kathleen M Buchheit
- Department of Medicine, Harvard Medical School, Boston, Mass; Division of Allergy and Clinical Immunology, Brigham and Women's Hospital, Boston, Mass
| | - Katherine N Cahill
- Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, Tenn
| | - Jonathan Hacker
- Division of Allergy and Clinical Immunology, Brigham and Women's Hospital, Boston, Mass
| | - Laura Cho
- Division of Allergy and Clinical Immunology, Brigham and Women's Hospital, Boston, Mass
| | - Jing Cui
- Department of Medicine, Harvard Medical School, Boston, Mass; Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital, Boston, Mass
| | - Chunli Feng
- Division of Allergy and Clinical Immunology, Brigham and Women's Hospital, Boston, Mass
| | - Chongjia C Chen
- Department of Medicine, Harvard Medical School, Boston, Mass; Division of Allergy and Clinical Immunology, Brigham and Women's Hospital, Boston, Mass
| | - Meghan Le
- Division of Pulmonary and Critical Care, Brigham and Women's Hospital, Boston, Mass
| | - Elliot Israel
- Department of Medicine, Harvard Medical School, Boston, Mass; Division of Allergy and Clinical Immunology, Brigham and Women's Hospital, Boston, Mass; Division of Pulmonary and Critical Care, Brigham and Women's Hospital, Boston, Mass
| | - Joshua A Boyce
- Department of Medicine, Harvard Medical School, Boston, Mass; Division of Allergy and Clinical Immunology, Brigham and Women's Hospital, Boston, Mass
| |
Collapse
|
3
|
Bruno A, Contursi A, Tacconelli S, Sacco A, Hofling U, Mucci M, Lamolinara A, Del Pizzo F, Ballerini P, Di Gregorio P, Yu Y, Patrignani P. The specific deletion of cyclooxygenase-1 in megakaryocytes/platelets reduces intestinal polyposis in Apc Min/+ mice. Pharmacol Res 2022; 185:106506. [PMID: 36241001 DOI: 10.1016/j.phrs.2022.106506] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/26/2022] [Accepted: 10/09/2022] [Indexed: 10/31/2022]
Abstract
Clinical and experimental evidence sustain the role of cyclooxygenase (COX)-1 in intestinal tumorigenesis. However, the cell type expressing the enzyme involved and molecular mechanism(s) have not been clarified yet. We aimed to elucidate the role of platelet COX-1 (the target of low-dose aspirin in humans) in intestinal tumorigenesis of ApcMin/+ mice, considered a clinically relevant model. To realize this objective, we generated an ApcMin/+ mouse with a specific deletion of Ptgs1(COX-1 gene name) in megakaryocytes/platelets (ApcMin/+;pPtgs1-/-mice) characterized by profound inhibition of thromboxane(TX)A2 biosynthesis ex vivo (serum TXB2; by 99%) and in vivo [urinary 2,3-dinor-TXB2(TXM), by 79%]. ApcMin/+ mice with the deletion of platelet COX-1 showed a significantly reduced number (67%) and size (32%) of tumors in the small intestine. The intestinal adenomas of these mice had decreased proliferative index associated with reduced COX-2 expression and systemic prostaglandin(PG)E2 biosynthesis (urinary PGEM) vs. ApcMin/+mice. Extravasated platelets were detected in the intestine of ApcMin/+mice. Thus, we explored their contribution to COX-2 induction in fibroblasts, considered the primary polyp cell type expressing the protein. In the coculture of human platelets and myofibroblasts, platelet-derived TXA2 was involved in the induction of COX-2-dependent PGE2 in myofibroblasts since it was prevented by the selective inhibition of platelet COX-1 by aspirin or by a specific antagonist of TXA2 receptors. In conclusion, our results support the platelet hypothesis of intestinal tumorigenesis and provide experimental evidence that selective inhibition of platelet COX-1 can mitigate early events of intestinal tumorigenesis by restraining COX-2 induction.
Collapse
Affiliation(s)
- Annalisa Bruno
- Center for Advanced Studies and Technology (CAST), "G.d'Annunzio" University, 66100 Chieti, Italy; Department of Neuroscience, Imaging and Clinical Science, "G.d'Annunzio" University, 66100 Chieti, Italy
| | - Annalisa Contursi
- Center for Advanced Studies and Technology (CAST), "G.d'Annunzio" University, 66100 Chieti, Italy; Department of Neuroscience, Imaging and Clinical Science, "G.d'Annunzio" University, 66100 Chieti, Italy
| | - Stefania Tacconelli
- Center for Advanced Studies and Technology (CAST), "G.d'Annunzio" University, 66100 Chieti, Italy; Department of Neuroscience, Imaging and Clinical Science, "G.d'Annunzio" University, 66100 Chieti, Italy
| | - Angela Sacco
- Center for Advanced Studies and Technology (CAST), "G.d'Annunzio" University, 66100 Chieti, Italy; Department of Neuroscience, Imaging and Clinical Science, "G.d'Annunzio" University, 66100 Chieti, Italy
| | - Ulrika Hofling
- Center for Advanced Studies and Technology (CAST), "G.d'Annunzio" University, 66100 Chieti, Italy; Department of Neuroscience, Imaging and Clinical Science, "G.d'Annunzio" University, 66100 Chieti, Italy
| | - Matteo Mucci
- Center for Advanced Studies and Technology (CAST), "G.d'Annunzio" University, 66100 Chieti, Italy; Department of Neuroscience, Imaging and Clinical Science, "G.d'Annunzio" University, 66100 Chieti, Italy
| | - Alessia Lamolinara
- Center for Advanced Studies and Technology (CAST), "G.d'Annunzio" University, 66100 Chieti, Italy; Department of Neuroscience, Imaging and Clinical Science, "G.d'Annunzio" University, 66100 Chieti, Italy
| | - Francesco Del Pizzo
- Center for Advanced Studies and Technology (CAST), "G.d'Annunzio" University, 66100 Chieti, Italy
| | - Patrizia Ballerini
- Center for Advanced Studies and Technology (CAST), "G.d'Annunzio" University, 66100 Chieti, Italy; Department of Innovative Technologies in Medicine and Dentistry, "G.d'Annunzio" University, 66100 Chieti, Italy
| | - Patrizia Di Gregorio
- Institute of Transfusion Medicine, "Ss. Annunziata" Hospital, 66100 Chieti, Italy
| | - Ying Yu
- Department of Pharmacology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Paola Patrignani
- Center for Advanced Studies and Technology (CAST), "G.d'Annunzio" University, 66100 Chieti, Italy; Department of Neuroscience, Imaging and Clinical Science, "G.d'Annunzio" University, 66100 Chieti, Italy.
| |
Collapse
|
4
|
Berezin AE, Berezin AA. Extracellular Vesicles and Thrombogenicity in Atrial Fibrillation. Int J Mol Sci 2022; 23:1774. [PMID: 35163695 PMCID: PMC8836440 DOI: 10.3390/ijms23031774] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 01/30/2022] [Accepted: 02/02/2022] [Indexed: 12/13/2022] Open
Abstract
Extracellular vesicles (EVs) are defined as a heterogenic group of lipid bilayer vesicular structures with a size in the range of 30-4000 nm that are released by all types of cultured cells. EVs derived from platelets, mononuclears, endothelial cells, and adipose tissue cells significantly increase in several cardiovascular diseases, including in atrial fibrillation (AF). EVs are engaged in cell-to-cell cooperation, endothelium integrity, inflammation, and immune response and are a cargo for several active molecules, such as regulatory peptides, receptors, growth factors, hormones, and lipids. Being transductors of the intercellular communication, EVs regulate angiogenesis, neovascularization, coagulation, and maintain tissue reparation. There is a large amount of evidence regarding the fact that AF is associated with elevated levels of EVs derived from platelets and mononuclears and a decreased number of EVs produced by endothelial cells. Moreover, some invasive procedures that are generally performed for the treatment of AF, i.e., pulmonary vein isolation, were found to be triggers for elevated levels of platelet and mononuclear EVs and, in turn, mediated the transient activation of the coagulation cascade. The review depicts the role of EVs in thrombogenicity in connection with a risk of thromboembolic complications, including ischemic stroke and systemic thromboembolism, in patients with various forms of AF.
Collapse
Affiliation(s)
- Alexander E. Berezin
- Internal Medicine Department, State Medical University, Zaporozhye 69035, Ukraine
| | - Alexander A. Berezin
- Internal Medicine Department, Medical Academy of Postgraduate Education, Zaporozhye 69096, Ukraine;
| |
Collapse
|
5
|
Vogelsang A, Eichler S, Huntemann N, Masanneck L, Böhnlein H, Schüngel L, Willison A, Loser K, Nieswandt B, Kehrel BE, Zarbock A, Göbel K, Meuth SG. Platelet Inhibition by Low-Dose Acetylsalicylic Acid Reduces Neuroinflammation in an Animal Model of Multiple Sclerosis. Int J Mol Sci 2021; 22:9915. [PMID: 34576080 PMCID: PMC8465626 DOI: 10.3390/ijms22189915] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/09/2021] [Accepted: 09/10/2021] [Indexed: 01/10/2023] Open
Abstract
Aside from the established immune-mediated etiology of multiple sclerosis (MS), compelling evidence implicates platelets as important players in disease pathogenesis. Specifically, numerous studies have highlighted that activated platelets promote the central nervous system (CNS)-directed adaptive immune response early in the disease course. Platelets, therefore, present a novel opportunity for modulating the neuroinflammatory process that characterizes MS. We hypothesized that the well-known antiplatelet agent acetylsalicylic acid (ASA) could inhibit neuroinflammation by affecting platelets if applied at low-dose and investigated its effect during experimental autoimmune encephalomyelitis (EAE) as a model to study MS. We found that oral administration of low-dose ASA alleviates symptoms of EAE accompanied by reduced inflammatory infiltrates and less extensive demyelination. Remarkably, the percentage of CNS-infiltrated CD4+ T cells, the major drivers of neuroinflammation, was decreased to 40.98 ± 3.28% in ASA-treated mice compared to 56.11 ± 1.46% in control animals at the disease maximum as revealed by flow cytometry. More interestingly, plasma levels of thromboxane A2 were decreased, while concentrations of platelet factor 4 and glycoprotein VI were not affected by low-dose ASA treatment. Overall, we demonstrate that low-dose ASA could ameliorate the platelet-dependent neuroinflammatory response in vivo, thus indicating a potential treatment approach for MS.
Collapse
Affiliation(s)
- Anna Vogelsang
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, 48149 Münster, Germany; (S.E.); (N.H.); (L.M.); (H.B.); (K.G.)
| | - Susann Eichler
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, 48149 Münster, Germany; (S.E.); (N.H.); (L.M.); (H.B.); (K.G.)
| | - Niklas Huntemann
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, 48149 Münster, Germany; (S.E.); (N.H.); (L.M.); (H.B.); (K.G.)
- Department of Neurology, University Hospital Düsseldorf, 40225 Düsseldorf, Germany;
| | - Lars Masanneck
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, 48149 Münster, Germany; (S.E.); (N.H.); (L.M.); (H.B.); (K.G.)
- Department of Neurology, University Hospital Düsseldorf, 40225 Düsseldorf, Germany;
| | - Hannes Böhnlein
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, 48149 Münster, Germany; (S.E.); (N.H.); (L.M.); (H.B.); (K.G.)
| | - Lisa Schüngel
- Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Münster, 48149 Münster, Germany; (L.S.); (B.E.K.); (A.Z.)
| | - Alice Willison
- The Northern Foundation School, Newcastle-upon-Tyne University Hospitals, Newcastle-upon-Tyne NE15 8NY, UK;
| | - Karin Loser
- Department of Human Medicine, Institute of Immunology, Carl von Ossietzky University Oldenburg, 26129 Oldenburg, Germany;
| | - Bernhard Nieswandt
- Rudolf Virchow Center, Research Center for Experimental Biomedicine, University of Würzburg, 97080 Würzburg, Germany;
| | - Beate E. Kehrel
- Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Münster, 48149 Münster, Germany; (L.S.); (B.E.K.); (A.Z.)
| | - Alexander Zarbock
- Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Münster, 48149 Münster, Germany; (L.S.); (B.E.K.); (A.Z.)
| | - Kerstin Göbel
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, 48149 Münster, Germany; (S.E.); (N.H.); (L.M.); (H.B.); (K.G.)
| | - Sven G. Meuth
- Department of Neurology, University Hospital Düsseldorf, 40225 Düsseldorf, Germany;
| |
Collapse
|
6
|
Alvarez MDL, Lorenzetti F. Role of eicosanoids in liver repair, regeneration and cancer. Biochem Pharmacol 2021; 192:114732. [PMID: 34411565 DOI: 10.1016/j.bcp.2021.114732] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 08/10/2021] [Accepted: 08/12/2021] [Indexed: 12/24/2022]
Abstract
Eicosanoids are lipid signaling molecules derived from the oxidation of ω-6 fatty acids, usually arachidonic acid. There are three major pathways, including the cyclooxygenase (COX), lipoxygenase (LOX), and P450 cytochrome epoxygenase (CYP) pathway. Prostanoids, which include prostaglandins (PG) and thromboxanes (Tx), are formed via the COX pathway, leukotrienes (LT) and lipoxins (LX) by the action of 5-LOX, and hydroxyeicosatetraenoic acids (HETEs) and epoxyeicosatrienoic acids (EETs) by CYP. Although eicosanoids are usually associated with pro-inflammatory responses, non-classic eicosanoids, as LX, have anti-inflammatory and pro-resolving properties. Eicosanoids like PGE2, LTB4 and EETs have been involved in promoting liver regeneration after partial hepatectomy. PGE2 and LTB4 have also been reported to participate in the regenerative phase after ischemia and reperfusion (I/R), while cysteinyl leukotrienes (Cys-LT) contribute to the inflammatory process associated with I/R and are also involved in liver fibrosis and cirrhosis. However, LX, another product of 5-LOX, have the opposite effect, acting as pro-resolving mediators in these pathologies. In liver cancer, most studies show that eicosanoids, with the exception of LX, promote the proliferation of hepatocellular carcinoma cells and favor metastasis. This review summarizes the synthesis of different eicosanoids in the liver and discusses key findings from basic research linking eicosanoids to liver repair, regeneration and cancer and the impact of targeting eicosanoid cascade. In addition, studies in patients are presented that explore the potential use of eicosanoids as biomarkers and show correlations between eicosanoid production and the course and prognosis of liver disease.
Collapse
Affiliation(s)
- María de Luján Alvarez
- Instituto de Fisiología Experimental (IFISE), Facultad de Ciencias Bioquímicas y Farmacéuticas, CONICET, UNR, Suipacha 570 (S2002LRL), Rosario, Argentina; Área Morfología, Facultad de Ciencias Bioquímicas y Farmacéuticas, UNR, Suipacha 570 (S2002LRL), Rosario, Argentina; Centro de Altos Estudios en Ciencias Humanas y de la Salud (CAECIHS) Sede Regional Rosario, Universidad Abierta Interamericana, Av. Pellegrini 1618 (S2000BUG), Rosario, Argentina.
| | - Florencia Lorenzetti
- Instituto de Fisiología Experimental (IFISE), Facultad de Ciencias Bioquímicas y Farmacéuticas, CONICET, UNR, Suipacha 570 (S2002LRL), Rosario, Argentina
| |
Collapse
|
7
|
Mustafa G, Cai CL, Bodkin D, Aranda JV, Beharry KD. Antioxidants and/or fish oil reduce intermittent hypoxia-induced inflammation in the neonatal rat terminal ileum. Prostaglandins Other Lipid Mediat 2021; 155:106565. [PMID: 34051366 DOI: 10.1016/j.prostaglandins.2021.106565] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 04/29/2021] [Accepted: 05/21/2021] [Indexed: 12/16/2022]
Abstract
Intermittent hypoxia (IH) is associated with the pathogenesis of necrotizing enterocolitis (NEC). We tested the hypothesis that early supplementation with antioxidants and/or fish oil protects the terminal ileum from oxidative injury induced by neonatal IH. Newborn rats were exposed to neonatal IH from birth (P0) until P14 during which they received daily fish oil, coenzyme Q10 (CoQ10), glutathione nanoparticles (nGSH), fish oil + CoQ10, or olive oil. Pups were then placed in room air from P14 to P21 with no further supplementation. Terminal ileum was assessed for IH-induced injury and inflammatory biomarkers. Neonatal IH induced severe damage consistent with NEC, and was associated with oxidative stress and elevations in PGE2, PGF2α, TxB2, NOS-2 and TLR-4, effects that were ameliorated with nGSH and combination CoQ10+fish oil. Early postnatal supplementation with antioxidants and/or fish oil during neonatal IH may be favorable for preserving gut integrity and reducing oxidative injury.
Collapse
Affiliation(s)
- Ghassan Mustafa
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, State University of New York, Downstate Medical Center, Brooklyn, NY, USA
| | - Charles L Cai
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, State University of New York, Downstate Medical Center, Brooklyn, NY, USA
| | - Darren Bodkin
- Department of Pediatrics, State University of New York, Downstate Medical Center, Brooklyn, NY, USA
| | - Jacob V Aranda
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, State University of New York, Downstate Medical Center, Brooklyn, NY, USA; Department of Ophthalmology, State University of New York, Downstate Medical Center, Brooklyn, NY, USA
| | - Kay D Beharry
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, State University of New York, Downstate Medical Center, Brooklyn, NY, USA; Department of Ophthalmology, State University of New York, Downstate Medical Center, Brooklyn, NY, USA.
| |
Collapse
|
8
|
Liu Z, Zhu H, Ma Y, Tang Z, Zhao N, Wang Y, Pan S. AGEs exacerbates coronary microvascular dysfunction in NoCAD by activating endoplasmic reticulum stress-mediated PERK signaling pathway. Metabolism 2021; 117:154710. [PMID: 33485865 DOI: 10.1016/j.metabol.2021.154710] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 12/18/2020] [Accepted: 01/20/2021] [Indexed: 12/14/2022]
Abstract
OBJECTIVE The current study was aimed to investigate the involvement of endoplasmic reticulum stress (ERS)-mediated protein kinase R-like endoplasmic reticulum kinase (PERK) signaling in advanced glycation end products (AGEs)-exacerbated coronary microvascular dysfunctions (CMD) in non-obstructive coronary artery disease (NoCAD). METHODS AND MATERIALS ob/ob-/- mice were used as NoCAD animal model which were exposed to AGEs by intraperitoneal injections. Animal CMD was evaluated by coronary flow velocity reserve (CFVR). A viral vector carrying perk-siRNA was used to silence PERK in vivo and in vitro studies. Cell apoptosis was detected by TUNEL. Immunofluorescent staining was used to assess CD42c-positive cell number in cardiac sections and NFATc4 translocation in CMECs. Real-time PCR and Western blotting were used to evaluate the gene expression levels. Cytokine and AGEs concentrations were determined by ELISA. Enzymatic activity of CaN was measured by a colorimetric method. A registered cross sectional study consisted of 77 patients diagnosed as NoCAD was used to analyze the association between diabetes and CMD which was measured by index of microvascular resistance (IMR) with a pressure wire system. RESULTS Significant CMD was found in NoCAD mice compared with healthy control. AGEs exposure exacerbated CMD in NoCAD animals which was improved by PERK silencing. Phosphorylation of PERK, nuclear translocation of nuclear factor of activated T-cells (NFAT)c4, enzymatic activity of calcineurin (CaN), expression levels of Fas/FasL, production of interleukin (IL)6, tumor necrosis factor (TNF)α, cyclooxygenase (COX)2, thromboxane B (TXB)2 as well as apoptosis were suppressed by PERK silencing in cardiac microcirculation endothelial cells (CMECs) isolated from AGEs-exposed NoCAD mice and AGEs-treated primary CMECs. PERK silencing also reduced CD42c-postive cells number in cardiac tissue from AGEs-exposed NoCAD mice. CONCLUSION Diabetes was associated with CMD in NoCAD. AGEs fostered in diabetes exacerbated CMD by activating ERS-mediated PERK/CaN/NFATc4 signaling in CMECs. IMR values increased significantly in NoCAD patients complicated with diabetes, which were significantly and positively correlated with serum AGEs concentrations.
Collapse
Affiliation(s)
- Zhongwei Liu
- Department of Cardiology, Affiliated Shaanxi Provincial People's Hospital, Northwestern Polytechnical University, Xi'an, Shaanxi Province 710072, China
| | - Haitao Zhu
- Department of Pediatrics, Northwest Women's and Children's Hospital, Xi'an, Shaanxi Province 710000, China
| | - Yanpeng Ma
- Department of Cardiology, Affiliated Shaanxi Provincial People's Hospital, Northwestern Polytechnical University, Xi'an, Shaanxi Province 710072, China
| | - Zhiguo Tang
- Department of Cardiology, Affiliated Shaanxi Provincial People's Hospital, Northwestern Polytechnical University, Xi'an, Shaanxi Province 710072, China
| | - Na Zhao
- Department of Cardiology, Affiliated Shaanxi Provincial People's Hospital, Northwestern Polytechnical University, Xi'an, Shaanxi Province 710072, China
| | - Yuan Wang
- Department of Preventive Medicine, Affiliated Shaanxi Provincial People's Hospital, Northwestern Polytechnical University, Xi'an, Shaanxi Province 710072, China.
| | - Shuo Pan
- Department of Cardiology, Affiliated Shaanxi Provincial People's Hospital, Northwestern Polytechnical University, Xi'an, Shaanxi Province 710072, China.
| |
Collapse
|
9
|
Krüger-Genge A, Hauser S, Neffe AT, Liu Y, Lendlein A, Pietzsch J, Jung F. Response of Endothelial Cells to Gelatin-Based Hydrogels. ACS Biomater Sci Eng 2021; 7:527-540. [PMID: 33496571 DOI: 10.1021/acsbiomaterials.0c01432] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The establishment of confluent endothelial cell (EC) monolayers on implanted materials has been identified as a concept to avoid thrombus formation but is a continuous challenge in cardiovascular device engineering. Here, material properties of gelatin-based hydrogels obtained by reacting gelatin with varying amounts of lysine diisocyanate ethyl ester were correlated with the functional state of hydrogel contacting venous EC (HUVEC) and HUVEC's ability to form a monolayer on these hydrogels. The density of adherent HUVEC on the softest hydrogel at 37 °C (G' = 1.02 kPa, E = 1.1 ± 0.3 kPa) was significantly lower (125 mm-1) than on the stiffer hydrogels (920 mm-1; G' = 2.515 and 5.02 kPa, E = 4.8 ± 0.8 and 10.3 ± 1.2 kPa). This was accompanied by increased matrix metalloprotease activity (9 pmol·min-2 compared to 0.6 pmol·min-2) and stress fiber formation, while cell-to-cell contacts were comparable. Likewise, release of eicosanoids (e.g., prostacyclin release of 1.7 vs 0.2 pg·mL-1·cell-1) and the pro-inflammatory cytokine MCP-1 (8 vs <1.5 pg·mL-1·cell-1) was higher on the softer than on the stiffer hydrogels. The expressions of pro-inflammatory markers COX-2, COX-1, and RAGE were slightly increased on all hydrogels on day 2 (up to 200% of the control), indicating a weak inflammation; however, the levels dropped to below the control from day 6. The study revealed that hydrogels with higher moduli approached the status of a functionally confluent HUVEC monolayer. The results indicate the promising potential especially of the discussed gelatin-based hydrogels with higher G' as biomaterials for implants foreseen for the venous system.
Collapse
Affiliation(s)
- Anne Krüger-Genge
- Institute of Active Polymers and Berlin-Brandenburg Centre for Regenerative Therapies (BCRT), Helmholtz-Zentrum Geesthacht, Kantstr. 55, 14513 Teltow, Germany
| | - Sandra Hauser
- Department of Radiopharmaceutical and Chemical Biology, Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstrasse 400, 01328 Dresden, Germany
| | - Axel T Neffe
- Institute of Active Polymers and Berlin-Brandenburg Centre for Regenerative Therapies (BCRT), Helmholtz-Zentrum Geesthacht, Kantstr. 55, 14513 Teltow, Germany.,Helmholtz Virtual Institute - Multifunctional Biomaterials for Medicine, Kantstr. 55, 14513 Teltow, Germany
| | - Yue Liu
- Institute of Active Polymers and Berlin-Brandenburg Centre for Regenerative Therapies (BCRT), Helmholtz-Zentrum Geesthacht, Kantstr. 55, 14513 Teltow, Germany
| | - Andreas Lendlein
- Institute of Active Polymers and Berlin-Brandenburg Centre for Regenerative Therapies (BCRT), Helmholtz-Zentrum Geesthacht, Kantstr. 55, 14513 Teltow, Germany.,Helmholtz Virtual Institute - Multifunctional Biomaterials for Medicine, Kantstr. 55, 14513 Teltow, Germany.,Institute of Chemistry, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam, Germany
| | - Jens Pietzsch
- Department of Radiopharmaceutical and Chemical Biology, Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstrasse 400, 01328 Dresden, Germany.,School of Science, Faculty of Chemistry and Food Chemistry, Technical University Dresden, 01062 Dresden, Germany
| | - Friedrich Jung
- Institute of Active Polymers and Berlin-Brandenburg Centre for Regenerative Therapies (BCRT), Helmholtz-Zentrum Geesthacht, Kantstr. 55, 14513 Teltow, Germany.,Helmholtz Virtual Institute - Multifunctional Biomaterials for Medicine, Kantstr. 55, 14513 Teltow, Germany
| |
Collapse
|
10
|
Nandi AA, Wadhwani NS, Joshi SR. Maternal vitamin D deficiency increases the thromboxane/prostacyclin ratio through alterations in the one-carbon cycle in Wistar rats. Biofactors 2019; 45:548-555. [PMID: 30985971 DOI: 10.1002/biof.1510] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 03/23/2019] [Indexed: 01/03/2023]
Abstract
This study aims to test the hypothesis that vitamin D deficiency can influence long-chain polyunsaturated fatty acid metabolism through alterations in the one-carbon cycle. Wistar rats (n = 8 per group) were given either a control (1,000 IU D3/kg diet) or a vitamin D deficient (VDD) (0 IU D3/kg diet) diet from pre-pregnancy to delivery. On day 20 of gestation, pregnant female rats were delivered by C-section to collect placenta and blood. VDD group demonstrated high serum parathyroid hormone, low serum phosphate, low plasma folate, higher plasma homocysteine, and higher plasma malondialdehyde levels (P < 0.05 for all) as compared to control. Lower protein levels of placental cystathionine-β-synthase enzyme (P < 0.05) were observed in the VDD group as compared to control. VDD group demonstrated higher placental mRNA levels of the enzymes phospholipase A2 and cyclooxygenase-2 (P < 0.05 for both) as compared to control. Protein levels of the enzymes phospholipase A2 and cyclooxygenase-2 were lower (P < 0.05 for both) in the VDD group as compared to the control group. The ratio of thromboxane B2 and 6-keto prostaglandin F1α in serum was higher (P < 0.05) in the VDD group as compared to control; although the serum levels of 6-keto prostaglandin F1α and thromboxane B2 were similar in both the groups. Our findings suggest that increased oxidative stress due to maternal vitamin D deficiency results in the imbalance between the vasoconstrictor (thromboxane B2 ) and vasodilator (6-keto prostaglandin F1α ) eicosanoids, which may lead to endothelial dysfunction and poor pregnancy outcome. © 2019 BioFactors, 45 (4):548-555, 2019.
Collapse
Affiliation(s)
- Anindita A Nandi
- Department of Nutritional Medicine, Mother and Child Health, Interactive Research School for Health Affairs (IRSHA), Bharati Vidyapeeth, Pune Satara Road, Pune, 411043, Maharashtra, India
| | - Nisha S Wadhwani
- Department of Nutritional Medicine, Mother and Child Health, Interactive Research School for Health Affairs (IRSHA), Bharati Vidyapeeth, Pune Satara Road, Pune, 411043, Maharashtra, India
| | - Sadhana R Joshi
- Department of Nutritional Medicine, Mother and Child Health, Interactive Research School for Health Affairs (IRSHA), Bharati Vidyapeeth, Pune Satara Road, Pune, 411043, Maharashtra, India
| |
Collapse
|
11
|
Mayne ES, Louw S. Good Fences Make Good Neighbors: Human Immunodeficiency Virus and Vascular Disease. Open Forum Infect Dis 2019; 6:ofz303. [PMID: 31737735 PMCID: PMC6847507 DOI: 10.1093/ofid/ofz303] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 06/25/2019] [Indexed: 01/08/2023] Open
Abstract
Cardiovascular disease, venous thrombosis, and microvascular disease in people with HIV (PWH) is predicted to increase in an aging HIV-infected population. Endothelial damage and dysfunction is a risk factor for cardiovascular events in PWH and is characterized by impaired vascular relaxation and decreased nitric oxide availability. Vascular disease has been attributed to direct viral effects, opportunistic infections, chronic inflammation, effects of antiretroviral therapy, and underlying comorbid conditions, like hypertension and use of tobacco. Although biomarkers have been examined to predict and prognosticate thrombotic and cardiovascular disease in this population, more comprehensive validation of risk factors is necessary to ensure patients are managed appropriately. This review examines the pathogenesis of vascular disease in PWH and summarizes the biomarkers used to predict vascular disease in this population.
Collapse
Affiliation(s)
- Elizabeth S Mayne
- Department of Immunology, Faculty of Health Sciences, University of the Witwatersrand and the National Health Laboratory Service
| | - Susan Louw
- Department of Molecular Medicine Faculty of Health Sciences, University of the Witwatersrand and the National Health Laboratory Service, Johannesburg, South Africa
| |
Collapse
|
12
|
Abstract
Several pieces of evidence support the role of activated platelets in the development of the chronic inflammation-related diseases, such as atherothrombosis and cancer, mainly via the release of soluble factors and microparticles (MPs). Platelets and MPs contain a repertoire of proteins and genetic material (i.e., mRNAs and microRNAs) which may be influenced by the clinical condition of the individuals. In fact, platelets are capable of up-taking proteins and genetic material during their lifespan. Moreover, the content of platelet-derived MPs can be delivered to other cells, including stromal, immune, epithelial, and cancer cells, to change their phenotype and functions, thus contributing to cancer promotion and its metastasization. Platelets and MPs can play an indirect role in the metastatic process by helping malignant cells to escape from immunological surveillance. Furthermore, platelets and their derived MPs represent a potential source for blood biomarker development in oncology. This review provides an updated overview of the roles played by platelets and MPs in cancer and metastasis formation. The possible analysis of platelet and MP molecular signatures for the detection of cancer and monitoring of anticancer treatments is discussed. Finally, the potential use of MPs as vectors for drug delivery systems to cancer cells is put forward.
Collapse
|
13
|
Elmasry K, Ibrahim AS, Abdulmoneim S, Al-Shabrawey M. Bioactive lipids and pathological retinal angiogenesis. Br J Pharmacol 2019; 176:93-109. [PMID: 30276789 PMCID: PMC6284336 DOI: 10.1111/bph.14507] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 08/14/2018] [Accepted: 08/22/2018] [Indexed: 12/22/2022] Open
Abstract
Angiogenesis, disruption of the retinal barrier, leukocyte-adhesion and oedema are cardinal signs of proliferative retinopathies that are associated with vision loss. Therefore, identifying factors that regulate these vascular dysfunctions is critical to target pathological angiogenesis. Given the conflicting role of bioactive lipids reported in the current literature, the goal of this review is to provide the reader a clear road map of what has been accomplished so far in the field with specific focus on the role of polyunsaturated fatty acids (PUFAs)-derived metabolites in proliferative retinopathies. This necessarily entails a description of the different retina cells, blood retina barriers and the role of (PUFAs)-derived metabolites in diabetic retinopathy, retinopathy of prematurity and age-related macular degeneration as the most common types of proliferative retinopathies.
Collapse
Affiliation(s)
- Khaled Elmasry
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA, USA
- Cellular Biology and Anatomy, MCG, Augusta University, Augusta, GA, USA
- Department of Anatomy, Faculty of Medicine, Mansoura University, Mansoura, Egypt
- Schepens Eye Research Institute/Massachusetts Eye and Ear & Department of ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Ahmed S Ibrahim
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA, USA
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
- Department of Ophthalmology and Culver Vision Discovery Institute, Medical College of Georgia (MCG), Augusta University, Augusta, GA, USA
| | - Samer Abdulmoneim
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA, USA
- Cellular Biology and Anatomy, MCG, Augusta University, Augusta, GA, USA
| | - Mohamed Al-Shabrawey
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA, USA
- Cellular Biology and Anatomy, MCG, Augusta University, Augusta, GA, USA
- Department of Anatomy, Faculty of Medicine, Mansoura University, Mansoura, Egypt
- Department of Ophthalmology and Culver Vision Discovery Institute, Medical College of Georgia (MCG), Augusta University, Augusta, GA, USA
| |
Collapse
|
14
|
Jakhar R, Sharma C, Paul S, Kang SC. Immunosuppressive potential of astemizole against LPS activated T cell proliferation and cytokine secretion in RAW macrophages, zebrafish larvae and mouse splenocytes by modulating MAPK signaling pathway. Int Immunopharmacol 2018; 65:268-278. [PMID: 30359933 DOI: 10.1016/j.intimp.2018.10.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Revised: 09/27/2018] [Accepted: 10/10/2018] [Indexed: 10/28/2022]
Abstract
In this study, the immunomodulatory effects of astemizole (AST) against lipopolysaccharide (LPS) mediated T cell proliferation and induction of inflammation in RAW macrophages (in vitro), and zebrafish larvae (in vivo) were determined. AST significantly suppressed the phagocytic activity of macrophages (3.303 ± 0.115) and inhibited lysosomal enzyme secretion (13.27 ± 2.52) induced by LPS (100 ng/ml). Moreover, AST subdued the morphological deformities such as yolk sac edema (YSE) and spinal curvature curving (SC) by inhibiting ROS generation in zebrafish larvae 24 h after microinjection of LPS (0.5 mg/ml). AST was also shown to inhibit the production of the major cytokines TNF-α (150.8 ± 0.6), IL-1β (276.5 ± 1.6), and PGE2 (194.6 ± 0.6) pg/ml in RAW macrophages. It also subdued the ROS induced iNOS and COX-2 generated in response to LPS mediated immune dysfunctions in zebrafish larvae. These results suggested the immunosuppression effect of AST. Furthermore, induction of immune-suppression due to AST resulted in significant down-regulation of innate immunity directed by MAPK (p38, ERK and JNK), which was found to be associated with decreased production of acute inflammatory mediators both in vitro and in vivo. To confirm its activity, splenocytes were prepared using BALB/c mice and a mitogen activated splenocyte proliferation assay was also performed. Our findings suggest that AST has the ability to inhibit T cell proliferation and cytokine secretion both in vitro and in vivo by interfering with MAPK signaling pathway. Taken together, our results showed the potential of AST as a countermeasure to immune dysfunction and suggest its use as immunosuppressant compound in inflammatory disease.
Collapse
Affiliation(s)
- Rekha Jakhar
- Department of Biotechnology, Daegu University, Jillyang, Naeri-ri, Gyeongsan, Gyeongbuk 38453, Republic of Korea
| | - Chanchal Sharma
- Department of Biotechnology, Daegu University, Jillyang, Naeri-ri, Gyeongsan, Gyeongbuk 38453, Republic of Korea.
| | - Souren Paul
- Department of Biotechnology, Daegu University, Jillyang, Naeri-ri, Gyeongsan, Gyeongbuk 38453, Republic of Korea
| | - Sun Chul Kang
- Department of Biotechnology, Daegu University, Jillyang, Naeri-ri, Gyeongsan, Gyeongbuk 38453, Republic of Korea.
| |
Collapse
|
15
|
Abstract
Recently there has been considerable interest in the role of cyclooxygenase-2 (COX-2) in thrombosis and myocardial infarction. A large number of clinical and basic studies have focused on whether COX-2 inhibitors can induce a prothrombotic disorder and increase the risk of cardiovascular thrombosis. This article reviews (1) the roles of COX-2 in the metabolism of prostaglandins; (2) the influence of COX-2 inhibition in the platelet aggregation and the antithrombotic function of vascular endothelium; (3) the roles of COX-2 inhibition in atherothrombosis; and (4) clinical trials that examine COX-2 inhibition in relationship to the risk of myocardial infarction. Based on the published data, this review suggests that COX-2 plays varying and sometimes conflicting roles in thrombogenesis, in prostaglandins' metabolism of endothelium in healthy or dysfunctional conditions, and in atherothrombosis. Future investigations under different pathologic conditions are needed to fully understand the net effect of COX-2 inhibition on thrombogenesis. The roles of COX-2 in the pathophysiologic process of cardiovascular thrombosis are diverse and controversial, and need to be further studied to guide clinical practice.
Collapse
Affiliation(s)
- Wangde Dai
- The Heart Institute, Good Samaritan Hospital, University of Southern California, 1225 Wilshire Boulevard, Los Angeles, CA 90017, USA
| | | |
Collapse
|
16
|
Di Francesco L, Dovizio M, Trenti A, Marcantoni E, Moore A, O'Gaora P, McCarthy C, Tacconelli S, Bruno A, Alberti S, Gizzo S, Nardelli GB, Orso G, Belton O, Trevisi L, Dixon DA, Patrignani P. Dysregulated post-transcriptional control of COX-2 gene expression in gestational diabetic endothelial cells. Br J Pharmacol 2015; 172:4575-4587. [PMID: 26140661 DOI: 10.1111/bph.13241] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 06/02/2015] [Accepted: 06/25/2015] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND AND PURPOSE Hyperglycaemic memory describes the progression of diabetic complications during subsequent periods of improved glycaemia. We addressed the hypothesis that transient hyperglycaemia causes aberrant COX-2 expression in HUVEC in response to IL-1β through the induction of long-lasting epigenetic changes involving microRNA-16 (miR-16), a post-transcriptional modulator of COX-2 expression. EXPERIMENTAL APPROACH Studies were performed on HUVEC collected from women with gestational diabetes mellitus (GDM) (dHUVEC) and normal women (nHUVEC). KEY RESULTS In dHUVEC treated with IL-1β, the expression of COX-2 mRNA and protein was enhanced and generation of prostanoids increased (the most abundant was the promitogenic PGF2α ). COX-2 mRNA was more stable in dHUVEC and this was associated with miR-16 down-regulation and c-Myc induction (a suppressor of miR expression). dHUVEC showed increased proliferation in response to IL-1β, which was prevented by a COX-2 inhibitor and PGF2α receptor antagonist. Comparable changes in COX-2 mRNA, miR-16 and c-Myc detected in dHUVEC were produced in nHUVEC exposed to transient high glucose and then stimulated with IL-1β under physiological glucose levels; superoxide anion production was enhanced under these experimental conditions. CONCLUSIONS AND IMPLICATIONS Our results describe a possible mechanism operating in GDM that links the enhanced superoxide anion production and epigenetic changes, associated with hyperglycaemic memory, to endothelial dysfunction through dysregulated post-transcriptional control of COX-2 gene expression in response to inflammatory stimuli. The association of conventional therapy for glycaemic control with agents affecting inflammatory responses and oxidative stress might lead to a more effective prevention of the complications associated with GDM.
Collapse
Affiliation(s)
- Luigia Di Francesco
- Department of Neuroscience Imaging and Clinical Sciences, Center of Excellence on Aging (CeSI), G. d'Annunzio University, Chieti, Italy
| | - Melania Dovizio
- Department of Neuroscience Imaging and Clinical Sciences, Center of Excellence on Aging (CeSI), G. d'Annunzio University, Chieti, Italy
| | - Annalisa Trenti
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, Italy
| | - Emanuela Marcantoni
- Department of Neuroscience Imaging and Clinical Sciences, Center of Excellence on Aging (CeSI), G. d'Annunzio University, Chieti, Italy
| | - Ashleigh Moore
- Department of Cancer Biology, University of Kansas Cancer Center, Kansas City, KS, USA
| | - Peadar O'Gaora
- School of Biomolecular and Biomedical Science, Conway Institute, UCD, Dublin, Ireland
| | - Cathal McCarthy
- School of Biomolecular and Biomedical Science, Conway Institute, UCD, Dublin, Ireland
| | - Stefania Tacconelli
- Department of Neuroscience Imaging and Clinical Sciences, Center of Excellence on Aging (CeSI), G. d'Annunzio University, Chieti, Italy
| | - Annalisa Bruno
- Department of Neuroscience Imaging and Clinical Sciences, Center of Excellence on Aging (CeSI), G. d'Annunzio University, Chieti, Italy
| | - Sara Alberti
- Department of Neuroscience Imaging and Clinical Sciences, Center of Excellence on Aging (CeSI), G. d'Annunzio University, Chieti, Italy
| | - Salvatore Gizzo
- Department of Women's and Children's Health, University of Padua, Padua, Italy
| | | | - Genny Orso
- E. MEDEA Scientific Institute, Conegliano, Treviso, Italy
| | - Orina Belton
- School of Biomolecular and Biomedical Science, Conway Institute, UCD, Dublin, Ireland
| | - Lucia Trevisi
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, Italy
| | - Dan A Dixon
- Department of Cancer Biology, University of Kansas Cancer Center, Kansas City, KS, USA
| | - Paola Patrignani
- Department of Neuroscience Imaging and Clinical Sciences, Center of Excellence on Aging (CeSI), G. d'Annunzio University, Chieti, Italy
| |
Collapse
|
17
|
Kwong W, Liuni A, Zhou K, Parker JD. Cyclooxygenase inhibition and rosuvastatin-induced vascular protection in the setting of ischemia-reperfusion: A human in vivo study. Vascul Pharmacol 2015; 71:159-65. [PMID: 25869511 DOI: 10.1016/j.vph.2015.03.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 03/06/2015] [Accepted: 03/19/2015] [Indexed: 11/29/2022]
Abstract
The 3-hydroxy-3-methylglutaryl coenzyme A (HMG Co-A) reductase inhibitors have preconditioning effects involving up-regulation of cyclooxygenase (COX)-2. We investigated the effect of selective and non-selective COX inhibition on rosuvastatin-mediated protection against ischemia-reperfusion (IR)-induced endothelial dysfunction in the human forearm. Healthy volunteers (n=66) were allocated to placebo, acetylsalicylic acid (ASA) 81mg daily, ASA 325mg daily, celecoxib 200mg twice daily or 400mg ibuprofen four times daily, each administered for 5 to 7days. On the last day of study drug therapy, subjects received a single dose of 40mg rosuvastatin. Twenty-four hours later flow-mediated dilation (FMD) of the radial artery was evaluated before and after IR. In the placebo group, FMD was similar before and after IR (8.1±1.0 vs 7.2±0.8%; P=NS) indicating a significant protective effect of rosuvastatin. There was also no effect of IR on FMD in the ASA 81mg group (6.7±0.6 vs 6.1±0.7%; P=NS). In contrast, following IR there was a significant decrease in FMD in the ASA 325mg group (7.2±0.8 vs 3.3±0.7%, P<0.001), the celecoxib group (7.3±1.5 vs 2.6±1.5%, P<0.01) as well as the ibuprofen group (6.8±0.7 vs 2.6±0.8%; P<0.01). Therefore, nonselective COX inhibition with ASA 325mg and ibuprofen completely inhibit the protective effects of rosuvastatin in the setting of IR injury, as does therapy with the specific COX-2 antagonist celecoxib. In contrast, therapy with low dose ASA (81mg daily) does not have such inhibitory effects.
Collapse
Affiliation(s)
- Wilson Kwong
- Department of Pharmacology and Toxicology, University of Toronto, Ontario, Canada; Department of Medicine, Division of Cardiology, University of Toronto, Ontario, Canada
| | - Andrew Liuni
- Department of Pharmacology and Toxicology, University of Toronto, Ontario, Canada; Department of Medicine, Division of Cardiology, University of Toronto, Ontario, Canada
| | - Kangbin Zhou
- Department of Pharmacology and Toxicology, University of Toronto, Ontario, Canada; Department of Medicine, Division of Cardiology, University of Toronto, Ontario, Canada
| | - John D Parker
- Department of Pharmacology and Toxicology, University of Toronto, Ontario, Canada; Department of Medicine, Division of Cardiology, University of Toronto, Ontario, Canada
| |
Collapse
|
18
|
Perzborn E, Heitmeier S, Laux V. Effects of Rivaroxaban on Platelet Activation and Platelet-Coagulation Pathway Interaction: In Vitro and In Vivo Studies. J Cardiovasc Pharmacol Ther 2015; 20:554-62. [PMID: 25848131 PMCID: PMC4598653 DOI: 10.1177/1074248415578172] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 02/19/2015] [Indexed: 12/04/2022]
Abstract
Introduction: Activation of coagulation and platelets is closely linked, and arterial thrombosis involves coagulation activation as well as platelet activation and aggregation. In these studies, we investigated the possible synergistic effects of rivaroxaban in combination with antiplatelet agents on thrombin generation and platelet aggregation in vitro and on arterial thrombosis and hemostasis in rat models. Materials and Methods: Thrombin generation was measured by the Calibrated Automated Thrombogram method (0.5 pmol/L tissue factor) using human platelet-rich plasma (PRP) spiked with rivaroxaban (15, 30, or 60 ng/mL), ticagrelor (1.0 µg/mL), and acetylsalicylic acid (ASA; 100 µg/mL). Tissue factor-induced platelet aggregation was measured in PRP spiked with rivaroxaban (15 or 30 ng/mL), ticagrelor (1 or 3 µg/mL), or a combination of these. An arteriovenous (AV) shunt model in rats was used to determine the effects of rivaroxaban (0.01, 0.03, or 0.1 mg/kg), clopidogrel (1 mg/kg), ASA (3 mg/kg), and combinations on arterial thrombosis. Results: Rivaroxaban inhibited thrombin generation in a concentration-dependent manner and the effect was enhanced with ticagrelor and ticagrelor plus ASA. Rivaroxaban and ticagrelor also concentration-dependently inhibited tissue factor-induced platelet aggregation, and their combination increased the inhibition synergistically. In the AV shunt model, rivaroxaban dose-dependently reduced thrombus formation. Combining subefficacious or weakly efficacious doses of rivaroxaban with ASA or ASA plus clopidogrel increased the antithrombotic effect. Conclusion: These data indicate that the combination of rivaroxaban with single or dual antiplatelet agents works synergistically to reduce platelet activation, which may in turn lead to the delayed/reduced formation of coagulation complexes and vice versa, thereby enhancing antithrombotic potency.
Collapse
Affiliation(s)
| | - Stefan Heitmeier
- Acute Care Diseases Research, Bayer Pharma AG, Wuppertal, Germany
| | - Volker Laux
- Acute Care Diseases Research, Bayer Pharma AG, Wuppertal, Germany
| |
Collapse
|
19
|
Doscher JC, Volpe FN. Late postoperative hemorrhage in a patient with undiagnosed COX-1 deficiency after third molar extractions. J Oral Maxillofac Surg 2014; 72:660-5. [PMID: 24480756 DOI: 10.1016/j.joms.2013.11.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2013] [Revised: 11/07/2013] [Accepted: 11/11/2013] [Indexed: 11/27/2022]
Abstract
Oral maxillofacial surgeons direct invasive procedures that often cause significant bleeding. Uncontrolled hemorrhage is a rare, yet serious, complication that can be seen in patients with thrombocytopathy. Platelets have 3 distinct roles in coagulation: initial adhesion, phospholipid externalization, and platelet aggregation.(1) Several types of platelet deficiencies, including defects of adhesion (Bernard-Soulier syndrome), defects of aggregation (Glanzmann thrombasthenia), and disorders of platelet secretion due to a deficiency of adenosine diphosphate (ADP) or cyclooxygenase-1 (COX-1).(2-4) COX has 2 isoforms: COX-1 and COX-2.(5,6) COX-1 is expressed constitutively in most tissues, and COX-2 is induced primarily by inflammatory mediators.(7,8) Although both isoforms are present in platelets, COX-1 is the major isoform that contributes to coagulation, because it is critically important in the formation of thromboxane A2 (TXA2) by way of the arachidonic acid (AA) pathway.(9) AA is a potent inducer of platelet aggregation.(1,3,4) When AA is exposed to an activating agent, such as ADP, it undergoes a series of enzymatic reactions that culminates in the production of TXA2.(10) TXA2 is the predominant product of the COX-1 pathway and is a major metabolite of AA in platelets. TXA2 is necessary for normal platelet function. Therefore, the inhibition of, or a deficiency in, COX-1 will compromise the AA pathway, thereby reducing platelet secretion and altering normal platelet aggregatory function.(1,3) COX-1 deficiencies are usually caused by drug interactions with the enzyme itself. In addition, studies have identified genetic mutations that can result in COX-1 deficiency.(2) We present the hospital course, management, and diagnosis of a patient with an undiagnosed COX-1 deficiency who had had third molars removed in a private office. To our knowledge, this is the first case of COX-1 deficiency diagnosed after exodontia documented in English studies. In addition, we reviewed the published data of this rare disorder that has significant clinical implications.
Collapse
Affiliation(s)
- Jesse C Doscher
- Chief Resident, Division of Oral and Maxillofacial Surgery, Yale-New Haven Hospital, New Haven, CT.
| | - Fedele N Volpe
- Division of Oral and Maxillofacial Surgery, Yale-New Haven Hospital, New Haven, CT; and Private Practice, Milford, CT
| |
Collapse
|
20
|
Dovizio M, Alberti S, Guillem-Llobat P, Patrignani P. Role of Platelets in Inflammation and Cancer: Novel Therapeutic Strategies. Basic Clin Pharmacol Toxicol 2013; 114:118-27. [DOI: 10.1111/bcpt.12156] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Accepted: 10/06/2013] [Indexed: 12/12/2022]
Affiliation(s)
- Melania Dovizio
- Department of Neuroscience and Imaging; Section of Cardiovascular and Pharmacological Sciences, and Center of Excellence on Aging (CeSI), “G. d'Annunzio” University; Chieti Italy
| | - Sara Alberti
- Department of Neuroscience and Imaging; Section of Cardiovascular and Pharmacological Sciences, and Center of Excellence on Aging (CeSI), “G. d'Annunzio” University; Chieti Italy
| | - Paloma Guillem-Llobat
- Department of Neuroscience and Imaging; Section of Cardiovascular and Pharmacological Sciences, and Center of Excellence on Aging (CeSI), “G. d'Annunzio” University; Chieti Italy
| | - Paola Patrignani
- Department of Neuroscience and Imaging; Section of Cardiovascular and Pharmacological Sciences, and Center of Excellence on Aging (CeSI), “G. d'Annunzio” University; Chieti Italy
| |
Collapse
|
21
|
Huang RY, Li MY, Ng CS, Wan IY, Kong AW, Du J, Long X, Underwood MJ, Mok TS, Chen GG. Thromboxane A2 receptor α promotes tumor growth through an autoregulatory feedback pathway. J Mol Cell Biol 2013; 5:380-90. [DOI: 10.1093/jmcb/mjt038] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
|
22
|
Atukorala I, Hunter DJ. Valdecoxib: the rise and fall of a COX-2 inhibitor. Expert Opin Pharmacother 2013; 14:1077-86. [DOI: 10.1517/14656566.2013.783568] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
23
|
Floyd CN, Ferro A. The platelet fibrinogen receptor: from megakaryocyte to the mortuary. JRSM Cardiovasc Dis 2012; 1:10.1258_cvd.2012.012007. [PMID: 24175064 PMCID: PMC3738324 DOI: 10.1258/cvd.2012.012007] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Platelets are integral to normal haemostatic function and act to control vascular haemorrhage with the formation of a stable clot. The fibrinogen receptor (glycoprotein IIb/IIIa [GPIIb/IIIa]) is the most abundant platelet integrin and, by binding fibrinogen, facilitates irreversible binding of platelets to the exposed extracellular matrix and enables the cross-linking of adjacent platelets. The vital role of GPIIb/IIIa requires tight control of both its synthesis and function. After transcription from distinct domains on chromosome 17, the two subunits of the heterodimer are carefully directed through organelles with intricate regulatory steps designed to prevent the cellular expression of a dysfunctional receptor. Similarly, exquisite control of platelet activation via bidirectional signalling acts to limit the inappropriate and excessive formation of platelet-mediated thrombus. However, the enormous diversity of genetic mutations in the fibrinogen receptor has resulted in a number of allelic variants becoming established. The Pro33 polymorphism in GPIIIa is associated with increased cardiovascular risk due to a pathological persistence of outside-in signalling once fibrinogen has dissociated from the receptor. The polymorphism has also been associated with the phenomenon of aspirin resistance, although larger epidemiological studies are required to establish this conclusively. A failure of appropriate receptor function due to a diverse range of mutations in both structural and signalling domains, results in the bleeding diathesis Glanzmann's thrombasthaenia. GPIIb/IIIa inhibitors were the first rationally designed anti-platelet drugs and have proven to be a successful therapeutic option in high-risk primary coronary intervention. As our understanding of bidirectional signalling improves, more subtle and directed therapeutic strategies may be developed.
Collapse
Affiliation(s)
- Christopher N Floyd
- Department of Clinical Pharmacology, Cardiovascular Division, King's College London , London SE1 9NH , UK
| | | |
Collapse
|
24
|
Rossi A, Coccia M, Trotta E, Angelini M, Santoro MG. Regulation of cyclooxygenase-2 expression by heat: a novel aspect of heat shock factor 1 function in human cells. PLoS One 2012; 7:e31304. [PMID: 22347460 PMCID: PMC3275557 DOI: 10.1371/journal.pone.0031304] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2011] [Accepted: 01/06/2012] [Indexed: 11/18/2022] Open
Abstract
The heat-shock response, a fundamental defense mechanism against proteotoxic stress, is regulated by a family of heat-shock transcription factors (HSF). In humans HSF1 is considered the central regulator of heat-induced transcriptional responses. The main targets for HSF1 are specific promoter elements (HSE) located upstream of heat-shock genes encoding cytoprotective heat-shock proteins (HSP) with chaperone function. In addition to its cytoprotective function, HSF1 was recently hypothesized to play a more complex role, regulating the expression of non-HSP genes; however, the non-canonical role of HSF1 is still poorly understood. Herein we report that heat-stress promotes the expression of cyclooxygenase-2 (COX-2), a key regulator of inflammation controlling prostanoid and thromboxane synthesis, resulting in the production of high levels of prostaglandin-E(2) in human cells. We show that heat-induced COX-2 expression is regulated at the transcriptional level via HSF1-mediated signaling and identify, by in-vitro reporter gene activity assay and deletion-mutant constructs analysis, the COX-2 heat-responsive promoter region and a new distal cis-acting HSE located at position -2495 from the transcription start site. As shown by ChIP analysis, HSF1 is recruited to the COX-2 promoter rapidly after heat treatment; by using shRNA-mediated HSF1 suppression and HSE-deletion from the COX-2 promoter, we demonstrate that HSF1 plays a central role in the transcriptional control of COX-2 by heat. Finally, COX-2 transcription is also induced at febrile temperatures in endothelial cells, suggesting that HSF1-dependent COX-2 expression could contribute to increasing blood prostaglandin levels during fever. The results identify COX-2 as a human non-classical heat-responsive gene, unveiling a new aspect of HSF1 function.
Collapse
Affiliation(s)
- Antonio Rossi
- Institute of Translational Pharmacology, CNR, Rome, Italy
| | - Marta Coccia
- Institute of Translational Pharmacology, CNR, Rome, Italy
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Edoardo Trotta
- Institute of Translational Pharmacology, CNR, Rome, Italy
| | - Mara Angelini
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - M. Gabriella Santoro
- Institute of Translational Pharmacology, CNR, Rome, Italy
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
- * E-mail:
| |
Collapse
|
25
|
Abstract
Prostaglandins are lipid autacoids derived from arachidonic acid. They both sustain homeostatic functions and mediate pathogenic mechanisms, including the inflammatory response. They are generated from arachidonate by the action of cyclooxygenase isoenzymes, and their biosynthesis is blocked by nonsteroidal antiinflammatory drugs, including those selective for inhibition of cyclooxygenase-2. Despite the clinical efficacy of nonsteroidal antiinflammatory drugs, prostaglandins may function in both the promotion and resolution of inflammation. This review summarizes insights into the mechanisms of prostaglandin generation and the roles of individual mediators and their receptors in modulating the inflammatory response. Prostaglandin biology has potential clinical relevance for atherosclerosis, the response to vascular injury and aortic aneurysm.
Collapse
Affiliation(s)
- Emanuela Ricciotti
- Institute for Translational Medicine and Therapeutics, 153 Johnson Pavilion, School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | |
Collapse
|
26
|
Angiotensin II differentially modulates cyclooxygenase-2, microsomal prostaglandin E2 synthase-1 and prostaglandin I2 synthase expression in adventitial fibroblasts exposed to inflammatory stimuli. J Hypertens 2011; 29:529-36. [PMID: 21169864 DOI: 10.1097/hjh.0b013e328342b271] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
AIMS To assess whether angiotensin II (Ang II) modulates key enzymes of the cyclooxygenase (COX)-2/prostanoid pathway, including prostaglandin E synthase-1 (mPGES-1) and prostacyclin synthase (PGIS) in rat aortic adventitial fibroblasts in the presence or absence of an inflammatory stimulus [interleukin (IL)-1β]. METHODS AND RESULTS Fibroblasts stimulated with IL-1β (10 ng/ml, 24 h) and/or Ang II (0.1 μmol/l, 24 h) were used. IL-1β up-regulated COX-2 and mPGES-1 (protein and mRNA) and increased PGI2 and PGE2 release, without altering PGIS protein expression. Ang II did modify neither COX-2 and mPGES-1 expression nor prostanoid levels, but it induced PGIS expression. Interestingly, Ang II further enhanced IL-1β-induced COX-2 expression and PGI2 release and concomitantly reduced IL-1β-induced mPGES-1 expression. The AT1 receptor antagonist losartan prevented the effects of Ang II on IL-1β-induced COX-2 or mPGES-1 expression. IL-1β activated p38 mitogen-activated protein kinase (MAPK) and extracellular signal-regulated kinase (ERK)1/2 pathways, and coincubation with Ang II resulted in a higher and more sustained phosphorylation of both MAPK. Inhibition of either p38 MAPK (SB203580) or ERK1/2 (PD98059) reduced COX-2 and mPGES-1 expression in cells treated with IL-1β or the combination of IL-1β and Ang II. Ang II did not modify COX-2 transcriptional activity but increased COX-2 mRNA stability in IL-1β-treated cells; by contrast, it increased PGIS mRNA levels through a transcriptional mechanism. CONCLUSION Ang II differentially modulates key enzymes involved in prostanoid biosynthesis thereby altering the balance between PGI2/PGE2 in vascular cells exposed to inflammatory stimuli.
Collapse
|
27
|
Broos K, Feys HB, De Meyer SF, Vanhoorelbeke K, Deckmyn H. Platelets at work in primary hemostasis. Blood Rev 2011; 25:155-67. [PMID: 21496978 DOI: 10.1016/j.blre.2011.03.002] [Citation(s) in RCA: 314] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
When platelet numbers are low or when their function is disabled, the risk of bleeding is high, which on the one hand indicates that in normal life vascular damage is a rather common event and that hence the role of platelets in maintaining a normal hemostasis is a continuously ongoing physiological process. Upon vascular injury, platelets instantly adhere to the exposed extracellular matrix resulting in platelet activation and aggregation to form a hemostatic plug. This self-amplifying mechanism nevertheless requires a tight control to prevent uncontrolled platelet aggregate formation that eventually would occlude the vessel. Therefore endothelial cells produce inhibitory compounds such as prostacyclin and nitric oxide that limit the growth of the platelet thrombus to the damaged area. With this review, we intend to give an integrated survey of the platelet response to vascular injury in normal hemostasis.
Collapse
Affiliation(s)
- Katleen Broos
- Laboratory for Thrombosis Research, IRF Life Sciences, KU Leuven Campus Kortrijk, Belgium.
| | | | | | | | | |
Collapse
|
28
|
Huang RY, Chen GG. Cigarette smoking, cyclooxygenase-2 pathway and cancer. Biochim Biophys Acta Rev Cancer 2010; 1815:158-69. [PMID: 21147199 DOI: 10.1016/j.bbcan.2010.11.005] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2010] [Revised: 11/23/2010] [Accepted: 11/29/2010] [Indexed: 12/16/2022]
Abstract
Cigarette smoking is a major cause of mortality and morbidity worldwide. Cyclooxygenase (COX) and its derived prostanoids, mainly including prostaglandin E2 (PGE2), thromboxane A2 (TxA2) and prostacyclin (PGI2), have well-known roles in cardiovascular disease and cancer, both of which are associated with cigarette smoking. This article is focused on the role of COX-2 pathway in smoke-related pathologies and cancer. Cigarette smoke exposure can induce COX-2 expression and activity, increase PGE2 and TxA2 release, and lead to an imbalance in PGI2 and TxA2 production in favor of the latter. It exerts pro-inflammatory effects in a PGE2-dependent manner, which contributes to carcinogenesis and tumor progression. TxA2 mediates other diverse biologic effects of cigarette smoking, such as platelet activation, cell contraction and angiogenesis, which may facilitate tumor growth and metastasis in smokers. Among cigarette smoke components, nicotine and its derived nitrosamines 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) are the most potent carcinogens. COX-2 and PGE2 have been shown to play a pivotal role in many cancers associated with cigarette smoking, including cancers of lung, gastric and bladder, while the information for the role of TxA2 and PGI2 in smoke-associated cancers is limited. Recent findings from our group have revealed how NNK influences the TxA2 to promote the tumor growth. Better understanding in the above areas may help to generate new therapeutic protocols or to optimize the existing treatment strategy.
Collapse
Affiliation(s)
- Run-Yue Huang
- Department of Surgery, The Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, NT, Hong Kong
| | | |
Collapse
|
29
|
Navarrete CM, Pérez M, de Vinuesa AG, Collado JA, Fiebich BL, Calzado MA, Muñoz E. Endogenous N-acyl-dopamines induce COX-2 expression in brain endothelial cells by stabilizing mRNA through a p38 dependent pathway. Biochem Pharmacol 2010; 79:1805-14. [PMID: 20206142 DOI: 10.1016/j.bcp.2010.02.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2009] [Revised: 02/23/2010] [Accepted: 02/24/2010] [Indexed: 01/31/2023]
Abstract
Cerebral microvascular endothelial cells play an active role in maintaining cerebral blood flow, microvascular tone and blood brain barrier (BBB) functions. Endogenous N-acyl-dopamines like N-arachidonoyl-dopamine (NADA) and N-oleoyl-dopamine (OLDA) have been recently identified as a new class of brain neurotransmitters sharing endocannabinoid and endovanilloid biological activities. Endocannabinoids are released in response to pathogenic insults and may play an important role in neuroprotection. In this study we demonstrate that NADA differentially regulates the release of PGE(2) and PGD(2) in the microvascular brain endothelial cell line, b.end5. We found that NADA activates a redox-sensitive p38 MAPK pathway that stabilizes COX-2 mRNA resulting in the accumulation of the COX-2 protein, which depends on the dopamine moiety of the molecule and that is independent of CB(1) and TRPV1 activation. In addition, NADA inhibits the expression of mPGES-1 and the release of PGE(2) and upregulates the expression of L-PGD synthase enhancing PGD(2) release. Hence, NADA and other molecules of the same family might be included in the group of lipid mediators that could prevent the BBB injury under inflammatory conditions and our findings provide new mechanistic insights into the anti-inflammatory activities of NADA in the central nervous system and its potential to design novel therapeutic strategies to manage neuroinflammatory diseases.
Collapse
Affiliation(s)
- Carmen M Navarrete
- Departamento de Biología Celular, Fisiología e Inmunología, Universidad de Córdoba. Facultad de Medicina. Avda de Menéndez Pidal s/n, 14004 Córdoba, Spain.
| | | | | | | | | | | | | |
Collapse
|
30
|
Sobotková A, Mášová-Chrastinová L, Suttnar J, Štikarová J, Májek P, Reicheltová Z, Kotlín R, Weisel JW, Malý M, Dyr JE. Antioxidants change platelet responses to various stimulating events. Free Radic Biol Med 2009; 47:1707-14. [PMID: 19766712 PMCID: PMC2854508 DOI: 10.1016/j.freeradbiomed.2009.09.015] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2009] [Revised: 09/11/2009] [Accepted: 09/14/2009] [Indexed: 11/15/2022]
Abstract
The role of platelets in hemostasis may be influenced by alteration of the platelet redox state-the presence of antioxidants and the formation of reactive oxygen and nitrogen species. We investigated the effects of two antioxidants, resveratrol and trolox, on platelet activation. Trolox and resveratrol inhibited aggregation of washed platelets and platelet-rich plasma activated by ADP, collagen, and thrombin receptor-activating peptide. Resveratrol was a more effective agent in reducing platelet static and dynamic adhesion in comparison with trolox. The antioxidant capacity of resveratrol was, however, the same as that of trolox. After incubation of platelets with antioxidants, the resveratrol intraplatelet concentration was about five times lower than the intracellular concentration of trolox. Although both antioxidants comparably lowered hydroxyl radical and malondialdehyde production in platelets stimulated with collagen, TxB(2) levels were decreased by resveratrol much more effectively than by trolox. Cyclooxygenase 1 was inhibited by resveratrol and not by trolox. Our data indicate that antioxidants, apart from nonspecific redox or radical-quenching mechanisms, inhibit platelet activation also by specific interaction with target proteins. The results also show the importance of studying platelet activation under conditions of real blood flow in contact with reactive surfaces, e.g., using dynamic adhesion experiments.
Collapse
Affiliation(s)
- Alžběta Sobotková
- Institute of Hematology and Blood Transfusion, U Nemocnice 1, 128 00 Prague 2, Czech Republic
| | - Leona Mášová-Chrastinová
- Institute of Hematology and Blood Transfusion, U Nemocnice 1, 128 00 Prague 2, Czech Republic
- Corresponding author. Fax: +42 0221977208. (L. Mášová-Chrastinová)
| | - Jiří Suttnar
- Institute of Hematology and Blood Transfusion, U Nemocnice 1, 128 00 Prague 2, Czech Republic
| | - Jana Štikarová
- Institute of Hematology and Blood Transfusion, U Nemocnice 1, 128 00 Prague 2, Czech Republic
| | - Pavel Májek
- Institute of Hematology and Blood Transfusion, U Nemocnice 1, 128 00 Prague 2, Czech Republic
| | - Zuzana Reicheltová
- Institute of Hematology and Blood Transfusion, U Nemocnice 1, 128 00 Prague 2, Czech Republic
| | - Roman Kotlín
- Institute of Hematology and Blood Transfusion, U Nemocnice 1, 128 00 Prague 2, Czech Republic
| | - John W. Weisel
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6058, USA
| | - Martin Malý
- Department of Cardiology, Motol University Hospital, V úvalu 84, 15006 Prague 5, Czech Republic
| | - Jan E. Dyr
- Institute of Hematology and Blood Transfusion, U Nemocnice 1, 128 00 Prague 2, Czech Republic
| |
Collapse
|
31
|
Sakariassen KS, Alberts P, Fontana P, Mann J, Bounameaux H, Sorensen AS. Effect of pharmaceutical interventions targeting thromboxane receptors and thromboxane synthase in cardiovascular and renal diseases. Future Cardiol 2009; 5:479-93. [DOI: 10.2217/fca.09.33] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The present review focuses on the roles of thromboxane A2 (TxA2) in arterial thrombosis, atherogenesis, vascular stent-related ischemic events and renal proteinuria. Particular emphasis is laid on therapeutic interventions targeting the TxA2 (TP) receptors and TxA2 synthase (TS), including dual TP-receptor antagonists and TS inhibitors. Their significant inhibitory efficacies on arterial thrombogenesis, atherogenesis, restenosis after stent placement, vasoconstriction and proteinuria indicate novel and improved treatments for cardiovascular and selected renal diseases. New therapeutic interventions of the TxA2 pathway may also be beneficial for patients with poor biological antiplatelet drug response, for example, to aspirin and/or clopidogrel. These new TP/TS agents offer novel improved treatments to efficiently and simultaneously interfere with thrombogenesis and atherogenesis, and to enlarge the existing panel of platelet inhibitors for efficient prophylaxis and treatment of arterial thrombosis and renal proteinuria.
Collapse
Affiliation(s)
| | | | - Pierre Fontana
- Division of Angiology & Haemostasis, Faculty of Medicine, University, Hospitals of Geneva, CH-1211 Geneva, Switzerland
| | - Jessica Mann
- Cardiovascular Development Consulting GmbH, Hirzbodenweg 5, CH-4052, Basel, Switzerland
| | - Henri Bounameaux
- Division of Angiology & Haemostasis, Faculty of Medicine, University, Hospitals of Geneva, CH-1211 Geneva, Switzerland
| | | |
Collapse
|
32
|
Cornwell DG, Ma J. Nutritional benefit of olive oil: the biological effects of hydroxytyrosol and its arylating quinone adducts. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2008; 56:8774-8786. [PMID: 18783241 DOI: 10.1021/jf8015877] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Olive oil is the essential component of the Mediterranean diet, a nutritional regimen gaining ever-increasing renown for its beneficial effects on inflammation, cardiovascular disease, and cancer. A unique characteristic of olive oil is its enrichment in oleuropein, a member of the secoiridoid family, which hydrolyzes to the catechol hydroxytyrosol and functions as a hydrophilic phenolic antioxidant that is oxidized to its catechol quinone during redox cycling. Little effort has been spent on exploring the biological properties of the catechol hydroxytyrosol quinone, a strong arylating electrophile that forms Michael adducts with thiol nucleophiles in glutathione and proteins. This study compares the chemical and biological characteristics of hydroxytyrosol with those of the tocopherol family in which Michael adducts of arylating desmethyltocopherol quinones have been identified and correlated with biologic properties including cytotoxicity and induction of endoplasmic reticulum stress. It is noted that hydroxytyrosol and desmethyltocopherols share many similarities, suggesting that Michael adduct formation by an arylating quinone electrophile may contribute to the biological properties of both families, including the unique nutritional benefit of olive oil.
Collapse
Affiliation(s)
- David G Cornwell
- Department of Molecular and Cellular Biochemistry, College of Medicine, The Ohio State University, Columbus, Ohio 43210, USA.
| | | |
Collapse
|
33
|
Meyer CH, Schmidt JC, Rodrigues EB, Mennel S. Risk of Retinal Vein Occlusions in Patients Treated with Rofecoxib (Vioxx). Ophthalmologica 2008; 219:243-7. [PMID: 16088245 DOI: 10.1159/000085735] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2004] [Accepted: 09/21/2004] [Indexed: 01/06/2023]
Abstract
AIMS To present patients with branch retinal vein occlusion (BRVO) and central retinal vein occlusion (CRVO) after application of rofecoxib (Vioxx), a cyclo-oxygenase (COX) 2 inhibitor. METHODS Three patients with sudden decrease in their vision were referred for evaluation and possible treatment. RESULTS A 72-year-old female with rheumatoid arthritis was treated with rofecoxib. When the dosage was doubled to 50 mg daily, she noticed a sudden painless decrease of vision in her right eye. Her visual acuity (VA) was 20/400 OD and 20/20 OS. Biomicroscopy OD demonstrated a CRVO with tortuous retinal veins and numerous flecked hemorrhages in the midperiphery. A 68-year-old female with severe osteoporosis developed a BRVO with flame-shaped hemorrhages in the superior hemisphere OS 1 day after taking rofecoxib (25 mg) daily. A 47-year-old American male took Vioxx for 1 week to relieve hip pain and noticed temporarily decreased vision OD. A month later, he resumed taking Vioxx and noticed a progressive decline in his VA with persistent cloudiness. Ophthalmic examination revealed a CRVO in his right eye. CONCLUSION Although COX-2 inhibitors are safe in the majority of patients, under certain conditions they may induce prothrombotic effects. Few patients with predisposed thrombosis may be at risk for cardiovascular and ocular thrombotic events.
Collapse
Affiliation(s)
- Carsten H Meyer
- Department of Ophthalmology, Philipps University, Marburg, Germany.
| | | | | | | |
Collapse
|
34
|
Lester SE, Proudman SM, Lee ATY, Hall CA, McWilliams L, James MJ, Cleland LG. Treatment-induced stable, moderate reduction in blood cell counts correlate to disease control in early rheumatoid arthritis. Intern Med J 2008; 39:296-303. [PMID: 19371393 DOI: 10.1111/j.1445-5994.2008.01737.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Treatment of rheumatoid arthritis (RA) has become more intensive, thereby raising concerns regarding toxicities, including leucopenia. The objective was to analyse cell counts obtained as routine surveillance for adverse effects to assess the effect of intensive treatment and treatment dosage and to examine correlations to disease activity scores. METHODS Patients with early RA were treated with combinations of disease-modifying anti-inflammatory drugs according to pre-defined rules, with dose adjustments contingent on residual disease activity and tolerance. RESULTS Mean leucocyte, neutrophil and platelet counts fell with levels that correlated to disease activity scores. The strongest correlation was between platelets and disease activity scores. There was a modest, inverse correlation between methotrexate dose and monocyte and lymphocyte counts. No serious toxicity associated with the therapy was seen. CONCLUSION Moderate reductions in cell counts are well tolerated in RA and appear to contribute to disease control.
Collapse
Affiliation(s)
- S E Lester
- Arthritis Research Laboratory, Hanson Research Institute, Adelaide, South Australia, Australia
| | | | | | | | | | | | | |
Collapse
|
35
|
Capone ML, Tacconelli S, Francesco LD, Petrelli M, Patrignani P. Cardiovascular effects of valdecoxib: transducing human pharmacology results into clinical read-outs. Expert Opin Drug Saf 2008; 7:29-42. [DOI: 10.1517/14740338.7.1.29] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Marta L Capone
- Universitàdi Chieti ‘G. d'Annunzio’, Sezione di Farmacologia, Dipartimento di Medicina e Scienze dell'Invecchiamento, Via dei Vestini, 31, 66013 Chieti, Italy ;
| | - Stefania Tacconelli
- Universitàdi Chieti ‘G. d'Annunzio’, Sezione di Farmacologia, Dipartimento di Medicina e Scienze dell'Invecchiamento, Via dei Vestini, 31, 66013 Chieti, Italy ;
| | - Luigia Di Francesco
- Universitàdi Chieti ‘G. d'Annunzio’, Sezione di Farmacologia, Dipartimento di Medicina e Scienze dell'Invecchiamento, Via dei Vestini, 31, 66013 Chieti, Italy ;
| | - Maria Petrelli
- Universitàdi Chieti ‘G. d'Annunzio’, Sezione di Farmacologia, Dipartimento di Medicina e Scienze dell'Invecchiamento, Via dei Vestini, 31, 66013 Chieti, Italy ;
| | - Paola Patrignani
- Universitàdi Chieti ‘G. d'Annunzio’, Sezione di Farmacologia, Dipartimento di Medicina e Scienze dell'Invecchiamento, Via dei Vestini, 31, 66013 Chieti, Italy ;
| |
Collapse
|
36
|
Park GY, Hu N, Wang X, Sadikot RT, Yull FE, Joo M, Peebles RS, Blackwell TS, Christman JW. Conditional regulation of cyclooxygenase-2 in tracheobronchial epithelial cells modulates pulmonary immunity. Clin Exp Immunol 2007; 150:245-54. [PMID: 17672868 PMCID: PMC2219354 DOI: 10.1111/j.1365-2249.2007.03478.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Cyclooxygenase-2 (COX-2) gene expression in the lung is induced in pathological conditions such as asthma and pneumonia; however, the exact impact of COX-2 gene expression in the airway in regulating inflammatory and immunological response in the lung is not understood. To define a physiological role of inducible COX-2 in airway epithelial cells, we developed a novel line of transgenic mice, referred to as CycloOxygenase-2 TransActivated (COTA) mice, that overexpress a COX-2 transgene in the distribution of the CC-10 promoter in response to doxycycline. In response to doxycycline treatment, COX-2 expression was increased in airway epithelium of COTA mice and whole lung tissue contained a three- to sevenfold increase in prostaglandin E(2) (PGE(2)), prostaglandin D(2) (PGD(2)) thromboxane B(2) (TXB(2)) and 6-Keto prostaglandin F(2alpha) (PGF(2alpha)) compared to wild-type and untreated COTA mice. Interestingly, primary mouse tracheal epithelial cells from COTA mice produced only PGE(2) by doxycycline-induced COX-2 activation, providing an indication of cellular specificity in terms of mediator production. In the ovalbumin model, in which doxycycline was given at the sensitization stage, there was an increase in interleukin (IL)-4 level in lung tissue from COTA mice compared to untreated COTA and wild-type mice. In addition, COTA mice that were treated with doxycycline had impaired clearance of Pseudomonas aeruginosa pneumonia compared to wild-type mice. COX-2 gene expression in airway epithelial cells has an important role in determining immunological response to infectious and allergic agents.
Collapse
Affiliation(s)
- G Y Park
- Department of Medicine, Section of Pulmonary, Critical Care and Sleep Medicine, University of Illinois, Chicago, IL, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Wei J, Yan W, Li X, Chang WC, Tai HH. Activation of thromboxane receptor alpha induces expression of cyclooxygenase-2 through multiple signaling pathways in A549 human lung adenocarcinoma cells. Biochem Pharmacol 2007; 74:787-800. [PMID: 17632087 PMCID: PMC1995664 DOI: 10.1016/j.bcp.2007.06.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2007] [Revised: 06/07/2007] [Accepted: 06/07/2007] [Indexed: 11/22/2022]
Abstract
Human lung adenocarcinoma A549 cells stably transfected with TPalpha (A549-TPalpha) were used to study agonist I-BOP-induced expression of cyclooxygenase-2 (COX-2) and the related mechanisms of induced expression. I-BOP, a TP agonist, induced a time- and dose-dependent expression of COX-2 in A549-TPalpha cells. The signaling pathways of I-BOP-induced COX-2 expression were elucidated by using various inhibitors of the signaling molecules. The effects of these inhibitors were assessed at protein level, enzyme activity and promoter activity of COX-2. Within MAPK family, both ERK and p38 MAPK but not JNK/SAPK pathways were involved in the induction. Other pathways such as JAK/Stat3 pathway and beta-catenin/TCF/LEF pathway also participated in the induction. The activation of key signaling molecules, ERK, p38 MAPK, CREB and NF-kappaB, involved in the COX-2 transcription was further studied at the phosphorylation step. Activation of ERK and p38 MAPK appeared to be mediated primarily by transactivation of EGFR, whereas activation of CREB and NF-kappaB was mediated by PKA, PKC and ERK. The role of CREB and NF-kappaB in I-BOP-induced COX-2 expression was further explored at the promoter level. Studies on promoter fragments and mutation of responsive motifs indicated that CRE and NF-kappaB sites are critical for the COX-2 induction. Distal NF-kappaB site is essential for the basal induction of the COX-2 transcription, whereas CRE and proximal NF-kappaB sites are important for the induced transcription. These results indicate that I-BOP-induced COX-2 expression through multiple signaling pathways.
Collapse
Affiliation(s)
- Jingyan Wei
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536-0082, United States
| | | | | | | | | |
Collapse
|
38
|
James MJ, Cook-Johnson RJ, Cleland LG. Selective COX-2 inhibitors, eicosanoid synthesis and clinical outcomes: a case study of system failure. Lipids 2007; 42:779-85. [PMID: 17541796 DOI: 10.1007/s11745-007-3069-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2006] [Accepted: 04/02/2007] [Indexed: 10/23/2022]
Abstract
Elucidation of differences between the active sites of COX-1 and COX-2 allowed the targeted design of the selective COX-2 inhibitors known as coxibs. They were marketed as non-steroidal anti-inflammatory drugs (NSAIDs) that had improved upper gastrointestinal (GI) safety compared with older non-selective NSAIDs such as diclofenac and naproxen. Two GI safety studies conducted with arthritis patients demonstrated that in terms of upper GI safety, celecoxib was not superior to diclofenac (CLASS study) but rofecoxib was superior to naproxen (VIGOR study). However, the VIGOR study revealed also that rofecoxib had increased cardiovascular (CV) risk compared with naproxen. This clinical outcome was supported by the existence of plausible eicosanoid-based biological mechanisms whereby selective COX-2 inhibition could increase CV risk. Nevertheless, the existence of CV risk with rofecoxib was successfully discounted by its pharmaceutical company owner, Merck & Co, with the assistance of specialist opinion leaders and rofecoxib achieved widespread clinical use for 4-5 years. Rofecoxib was withdrawn from the market when several clinical trials in colorectal cancer and post-operative pain revealed increased CV risk with not only rofecoxib, but also coxibs. The commercial success of rofecoxib provides a case-study of failure of the medical journal literature to guide drug usage. Attention to ethical issues may have provided a more useful guide for prescribers.
Collapse
Affiliation(s)
- M J James
- Rheumatology Unit, Royal Adelaide Hospital, North Terrace, Adelaide, SA, 5000, Australia.
| | | | | |
Collapse
|
39
|
Errasti AE, Luciani LI, Cesio CE, Tramontano J, Boveris D, Daray FM, Nowak W, Pelorosso FG, Rothlin RP. Potentiation of adrenaline vasoconstrictor response by sub-threshold concentrations of U-46619 in human umbilical vein: Involvement of smooth muscle prostanoid TPα receptor isoform. Eur J Pharmacol 2007; 562:227-35. [PMID: 17362923 DOI: 10.1016/j.ejphar.2007.01.085] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2006] [Revised: 01/13/2007] [Accepted: 01/29/2007] [Indexed: 10/23/2022]
Abstract
Considering the potential physiological, pharmacological and therapeutic relevance of synergistic interaction of thromboxane A(2) with adrenaline at postjunctional receptor sites, we examined whether sub-threshold concentrations of thromboxane A(2) mimetic U-46619 (9,11-dideoxy-9alpha, 11alpha-methanoepoxy prostaglandin F(2alpha)) could amplify adrenaline-induced contraction in human umbilical vein. The receptor involved in U-46619-induced potentiation of adrenaline contractility was also investigated. Umbilical cords (n=125) from healthy patients after full-term vaginal or caesarean deliveries were employed. The vein was dissected out of cords and rings used for isolated organ bath experiments or reverse transcription-polymerase chain reaction (RT-PCR) and Western blot. Presence of endothelium did not modify U-46619-induced contraction in human umbilical vein. Prostanoid TP-selective receptor antagonist, SQ-29548 (7-[3-[[2-[(phenylamino)carbonyl]hydrazino]methyl]-7-oxabicyclo[2.2.1]hept-2-yl]-[1S(1alpha,2alpha(Z),3alpha,4alpha)]-5-Heptenoic acid), inhibited U-46619-induced contraction (pA(2)=8.22+/-0.11). U-46619 sub-threshold concentrations (0.1-0.3 nM) potentiated adrenaline-vasoconstriction response in a concentration-dependent manner. SQ-29548 (0.1 microM) abolished this potentiation. Using RT-PCR, we found that human umbilical vein rings with or without endothelium express the prostanoid TP(alpha), but not the prostanoid TP(beta) receptor isoform. Western blot allowed the identification of proteins with an electrophoretic mobility (47- and 55-kDa) indistinguishable from human platelet prostanoid TP receptor, a rich source of prostanoid TP(alpha) receptor isoform. Collectively, present results demonstrate that prostanoid TP(alpha) is the major receptor isoform localized on smooth muscle cells which participate in both direct vasoconstriction and potentiating effects of U-46619 on adrenaline contractions in human umbilical vein. These results suggest that thromboxane A(2) may interact synergistically with adrenaline in pathophysiological situations that lead to an increase of its umbilical venous levels (e.g. preeclampsia associated with fetal distress) raising the possibility of vasoconstriction affecting fetal blood flow.
Collapse
MESH Headings
- 15-Hydroxy-11 alpha,9 alpha-(epoxymethano)prosta-5,13-dienoic Acid/pharmacology
- Blotting, Western
- Bridged Bicyclo Compounds, Heterocyclic
- Dose-Response Relationship, Drug
- Drug Synergism
- Endothelium, Vascular/metabolism
- Epinephrine/pharmacology
- Fatty Acids, Unsaturated
- Female
- Humans
- Hydrazines
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Protein Isoforms/metabolism
- Receptors, Thromboxane/drug effects
- Receptors, Thromboxane/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Umbilical Veins/drug effects
- Umbilical Veins/metabolism
- Vasoconstriction/drug effects
- Vasoconstrictor Agents/pharmacology
Collapse
Affiliation(s)
- Andrea Emilse Errasti
- Departamento de Farmacología, Universidad de Buenos Aires, Paraguay 2155, Piso 9, 1121, Ciudad Autónoma de Buenos Aires, Argentina
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Kaufman J, Spinelli SL, Schultz E, Blumberg N, Phipps RP. Release of biologically active CD154 during collection and storage of platelet concentrates prepared for transfusion. J Thromb Haemost 2007; 5:788-96. [PMID: 17403203 DOI: 10.1111/j.1538-7836.2007.02412.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND Millions of platelet transfusions are given each year. Transfusion reactions occur in as many as 30% of patients receiving unmodified platelet transfusions. The cause of some transfusion reactions remains unclear. The current paradigm suggests that platelet concentrates (PC) contain proinflammatory mediators that are released by white blood cells during collection, processing and storage. CD154 (CD40 ligand, CD40L) is a potent inflammatory mediator, normally sequestered inside the resting platelet, that is known to translocate to the platelet membrane and be shed into plasma in response to agonist activation. We hypothesized that platelet-soluble CD154 (sCD154) is 'spontaneously' released by transfused platelets and plays a major role in transfusion reactions. OBJECTIVES To determine the time course and biological properties of CD154 translocation and release during collection and storage of platelets for transfusion. METHODS We measured surface and sCD154 in platelets prepared by the platelet-rich plasma method or apheresis by fluorescence-activated cell sorting and enzyme-linked immunosorbent assay, respectively. The specific biological activity of platelet sCD154 was assayed by stimulation of the CD154/CD40 pathway in known CD40-positive cells with PC-derived supernatants. RESULTS AND CONCLUSIONS We demonstrate that PCs prepared for transfusion have high levels of membrane-bound CD154 and sCD154, with maximum levels being seen 72 h after platelet collection. Importantly, we show that platelet-derived sCD154 potently stimulates CD40-positive cells. We propose that platelet-derived CD154 is a key 'cytokine' responsible for adverse reactions associated with platelet transfusions. Improved methods of platelet collection and/or storage, which limit CD154 expression, could reduce the risks of transfusion reaction.
Collapse
Affiliation(s)
- J Kaufman
- Laboratory of Molecular Neuroocology, The Rockefeller University, New York, NY, USA
| | | | | | | | | |
Collapse
|
41
|
Kang YJ, Mbonye UR, DeLong CJ, Wada M, Smith WL. Regulation of intracellular cyclooxygenase levels by gene transcription and protein degradation. Prog Lipid Res 2007; 46:108-25. [PMID: 17316818 PMCID: PMC3253738 DOI: 10.1016/j.plipres.2007.01.001] [Citation(s) in RCA: 229] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cyclooxygenases-1 and -2 (COX-1 and -2) catalyze the committed step in prostaglandin formation. Each isozyme subserves different biological functions. This is, at least in part, a consequence of differences in patterns of COX-1 and COX-2 expression. COX-1 is induced during development, and COX-1 mRNA and COX-1 protein are very stable. These latter properties can explain why COX-1 protein levels usually remain constant in those cells that express this isozyme. COX-2 is usually expressed inducibly in association with cell replication or differentiation. Both COX-2 mRNA and COX-2 protein have short half-lives relative to those of COX-1. Therefore, COX-2 protein is typically present for only a few hours after its synthesis. Here we review and develop the concepts that (a) COX-2 gene transcription can involve at least six different cis-acting promoter elements interacting with trans-acting factors generated by multiple, different signaling pathways, (b) the relative contribution of each cis-acting COX-2 promoter element depends on the cell type, the stimulus and the time following the stimulus and (c) a unique 27 amino acid instability element located just upstream of the C-terminus of COX-2 targets this isoform to the ER-associated degradation system and proteolysis by the cytosolic 26S proteasome.
Collapse
Affiliation(s)
- Yeon-Joo Kang
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan 48109
| | - Uri R. Mbonye
- Department of Biochemistry and Molecular Biology, Michigan State University, MI 48824
| | - Cynthia J. DeLong
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan 48109
| | - Masayuki Wada
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan 48109
| | - William L. Smith
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan 48109
- To whom correspondence should be addressed: William L. Smith, 1150 W. Medical Center Drive, 5301 Medical Science Research Building III, Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan 48109; Tel: 734-647-6180; Fax:734-764-3509;
| |
Collapse
|
42
|
Kawka DW, Ouellet M, Hétu PO, Singer II, Riendeau D. Double-label expression studies of prostacyclin synthase, thromboxane synthase and COX isoforms in normal aortic endothelium. Biochim Biophys Acta Mol Cell Biol Lipids 2007; 1771:45-54. [PMID: 17189713 DOI: 10.1016/j.bbalip.2006.09.015] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2006] [Revised: 09/29/2006] [Accepted: 09/29/2006] [Indexed: 12/22/2022]
Abstract
We have performed double-label immunofluorescence microscopy studies to evaluate the extent of co-localization of prostacyclin synthase (PGIS) and thromboxane synthase (TXS) with cyclooxygenase (COX)-1 and COX-2 in normal aortic endothelium. In dogs, COX-2 expression was found to be restricted to small foci of endothelial cells while COX-1, PGIS and TXS were widely distributed throughout the endothelium. Quantification of the total cross-sectioned aortic endothelium revealed a 6- to 7-fold greater expression of COX-1 relative to COX-2 (55 vs. 8%) and greater co-distribution of PGIS with COX-1 compared to COX-2 (19 vs. 3%). These results are in contrast to the extensive co-localization of PGIS and COX-2 in bronchiolar epithelium. In rat and human aortas, immunofluorescence studies also showed significant COX-1 and PGIS co-localization in the endothelium. Only minor focal COX-2 expression was detected in rat endothelium, similar to the dog, while COX-2 was not detected in human specimens. Inhibition studies in rats showed that selective COX-1 inhibition caused a marked reduction of 6-keto-PGF(1alpha) and TXB(2) aortic tissue levels, while COX-2 inhibition had no significant effect, providing further evidence for a functionally larger contribution of COX-1 to the synthesis of prostacyclin and thromboxane in aortic tissue. The data suggest a major role for COX-1 in the production of both prostacyclin and thromboxane in normal aortic tissue. The extensive co-localization of PGIS and COX-2 in the lung also indicates significant tissue differences in the co-expression patterns of these two enzymes.
Collapse
Affiliation(s)
- Douglas W Kawka
- Departments of Immunology and Rheumatology, Merck Research Laboratories, Rahway, NJ 07065, USA
| | | | | | | | | |
Collapse
|
43
|
|
44
|
Abstract
PURPOSE OF REVIEW This review describes the biology underpinning the development of selective cyclooxygenase-2 inhibitors, documenting the clinical experience from the pivotal gastrointestinal safety trials to their eventual withdrawal or labelling with cardiovascular safety warnings. RECENT FINDINGS The elucidation of differences between the active sites of cyclooxygenase-1 and cyclooxygenase-2 allowed the targeted design of the selective cyclooxygenase-2 inhibitors known as coxibs. These were developed and marketed as non-steroidal anti-inflammatory drugs (NSAIDs) that had improved upper gastrointestinal safety compared with older non-selective NSAIDs. A large-scale study with arthritis patients to evaluate upper gastrointestinal safety, however, demonstrated that celecoxib was not superior in terms of upper gastrointestinal safety compared with the older non-selective NSAIDs that were used as comparators. In an equally large study with arthritis patients, a more selective cyclooxygenase-2 inhibitor, rofecoxib, did have improved upper gastrointestinal safety compared with the non-selective non-steroidal anti-inflammatory drug naproxen. Although concomitant clinical trial evidence emerged that rofecoxib increased cardiovascular risk, this was discounted by its pharmaceutical company owner. Despite the lack of improved upper gastrointestinal safety with celecoxib and the evidence of cardiovascular risk with rofecoxib, both agents had widespread clinical use for 4-5 years. This was not diminished by the publication of plausible eicosanoid-based biological mechanisms whereby selective cyclooxygenase-2 inhibition could increase cardiovascular risk. Finally, clinical trials involving patients with colorectal cancer and post-operative pain revealed increased cardiovascular risk with all members of this class of drug. SUMMARY These events provide a case study of a failure of the medical journal literature to guide drug usage.
Collapse
Affiliation(s)
- Michael J James
- Rheumatology Unit, Royal Adelaide Hospital, Adelaide, South Australia, Australia.
| | | |
Collapse
|
45
|
Affiliation(s)
- Domenico Praticò
- Department of Pharmacology, University of Pennsylvania, School of Medicine, Philadelphia, USA.
| | | |
Collapse
|
46
|
Krüll M, Kramp J, Petrov T, Klucken AC, Hocke AC, Walter C, Schmeck B, Seybold J, Maass M, Ludwig S, Kuipers JG, Suttorp N, Hippenstiel S. Differences in cell activation by Chlamydophila pneumoniae and Chlamydia trachomatis infection in human endothelial cells. Infect Immun 2004; 72:6615-21. [PMID: 15501794 PMCID: PMC523009 DOI: 10.1128/iai.72.11.6615-6621.2004] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Seroepidemiological studies and demonstration of viable bacteria in atherosclerotic plaques have linked Chlamydophila pneumoniae infection to the development of chronic vascular lesions and coronary heart disease. In this study, we characterized C. pneumoniae-mediated effects on human endothelial cells and demonstrated enhanced phosphorylation and activation of the endothelial mitogen-activated protein kinase (MAPK) family members extracellular receptor kinase (ERK1/2), p38-MAPK, and c-Jun-NH2 kinase (JNK). Subsequent interleukin-8 (IL-8) expression was dependent on p38-MAPK and ERK1/2 activation as demonstrated by preincubation of endothelial cells with specific inhibitors for the p38-MAPK (SB202190) or ERK (U0126) pathway. Inhibition of either MAPK had almost no effect on intercellular cell adhesion molecule 1 (ICAM-1) expression. While Chlamydia trachomatis was also able to infect endothelial cells, it did not induce the expression of endothelial IL-8 or ICAM-1. These effects were specific for a direct stimulation with viable C. pneumoniae and independent of paracrine release of endothelial cell-derived mediators like platelet-activating factor, NO, prostaglandins, or leukotrienes. Thus, C. pneumoniae triggers an early signal transduction cascade in target cells that could lead to endothelial cell activation, inflammation, and thrombosis, which in turn may result in or promote atherosclerosis.
Collapse
Affiliation(s)
- M Krüll
- Department of Internal Medicine/Infectious Diseases, Charité, University Medicine Berlin, Augustenburger Platz 1, 13353, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Akbiyik F, Ray DM, Gettings KF, Blumberg N, Francis CW, Phipps RP. Human bone marrow megakaryocytes and platelets express PPARgamma, and PPARgamma agonists blunt platelet release of CD40 ligand and thromboxanes. Blood 2004; 104:1361-8. [PMID: 15130939 DOI: 10.1182/blood-2004-03-0926] [Citation(s) in RCA: 162] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Peroxisome proliferator-activated receptor gamma (PPARgamma) is a ligand-activated transcription factor important in lipid metabolism, diabetes, and inflammation. We evaluated whether human platelets and megakaryocytes express PPARgamma and whether PPARgamma agonists influence platelet release of bioactive mediators. Although PPARgamma is mainly considered a nuclear receptor, we show that enucleate platelets highly express PPARgamma protein as shown by Western blotting, flow cytometry, and immunocytochemistry. Meg-01 megakaryocyte cells and human bone marrow megakaryocytes also express PPARgamma. Platelet and Meg-01 PPARgamma bound the PPARgamma DNA consensus sequence, and this was enhanced by PPARgamma agonists. Platelets are essential not only for clotting, but have an emerging role in inflammation in part due to their release or production of the proinflammatory and proatherogenic mediators CD40 ligand (CD40L) and thromboxanes (TXs). Platelet incubation with a natural PPARgamma agonist, 15d-PGJ(2), or with a potent synthetic PPARgamma ligand, rosiglitazone, prevented thrombin-induced CD40L surface expression and release of CD40L and thromboxane B(2) (TXB(2)). 15d-PGJ(2) also inhibited platelet aggregation and adenosine triphosphate (ATP) release. Our results show that human platelets express PPARgamma and that PPARgamma agonists such as the thiazolidinedione class of antidiabetic drugs have a new target cell, the platelet. This may represent a novel mechanism for treatment of inflammation, thrombosis, and vascular disease in high-risk patients.
Collapse
Affiliation(s)
- Filiz Akbiyik
- Box 850, Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, 601 Elmwood Ave, Rochester, NY 14642, USA
| | | | | | | | | | | |
Collapse
|
48
|
Zhou ZG, Yan WW, Chen YQ, Chen YD, Zheng XL, Peng XH. Effect of Inducible Cyclooxygenase Expression on Local Microvessel Blood Flow in Acute Interstitial Pancreatitis. Asian J Surg 2004; 27:93-8. [PMID: 15140659 DOI: 10.1016/s1015-9584(09)60320-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE To investigate the role of inducible cyclooxygenase (COX-2) mRNA expression in local microvessels in rats with acute interstitial pancreatitis (AIP) induced by caerulein injection. METHODS The reverse transcription polymerase chain reaction (RT-PCR) was used to detect COX-2 gene expression in pancreatic tissue. Parameters of acute pancreatitis, such as serum amylase (AMS) and plasma myeloperoxidase (MPO) activities, were assayed using spectrophotometry. Intravital fluorescence microscopy with fluorescein isothiocyanate-labelled erythrocytes was used to study the pancreatic microvessels of rats with AIP and normal control rats. RESULTS Highly significant increases in COX-2 expression and AMS and MPO activity were seen in rats with AIP compared with controls. After caerulein injection, pancreatic capillary blood flow was decreased (4 hours, p > 0.05; 8 hours, p < 0.001), functional capillary density was reduced (4 hours, p > 0.05; 8 hours, p < 0.001), and there was irregular and intermittent capillary perfusion at 8 hours. There was also a positive correlation between the level of COX-2 expression and MPO activity (plasma, r = 0.5449, p < 0.05; tissue, r = 0.5698, p < 0.05). CONCLUSIONS The correlations between increased COX-2 expression and decreased capillary perfusion and blood flow and increased oedema following AIP may show that COX-2 expression can induce neutrophil sequestration to the pancreas, which may be one of the cascading inflammatory factors in the development of AIP.
Collapse
Affiliation(s)
- Zong-Guang Zhou
- Department of Pancreatic Surgery, West China Hospital, Sichuan University, Sichuan, Chengdu 610041, China
| | | | | | | | | | | |
Collapse
|
49
|
Demasi M, Cleland LG, Cook-Johnson RJ, James MJ. Effects of hypoxia on the expression and activity of cyclooxygenase 2 in fibroblast-like synoviocytes: Interactions with monocyte-derived soluble mediators. ACTA ACUST UNITED AC 2004; 50:2441-9. [PMID: 15334456 DOI: 10.1002/art.20429] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
OBJECTIVE Rheumatoid synovium is characterized by hyperplasia of fibroblast-like (type B) synoviocytes (FLS), infiltration with mononuclear leukocytes, and tissue hypoxia. Although the latter is well documented, it has received little attention in dissection of the biochemical events that mediate the inflammatory lesion in rheumatoid arthritis (RA). Therefore, this study was designed to assess the effect of hypoxia on FLS responses to the monokine interleukin-1beta (IL-1beta) and to monocyte conditioned medium. METHODS FLS obtained from serial cultures of synovial fluid aspirates were treated with IL-1beta or monocyte conditioned medium, under normoxia and hypoxia. RESULTS In hypoxia, transcription of cyclooxygenase 2 (COX-2), expression of COX-2 protein, and production of COX-2-derived eicosanoids and matrix metalloproteinase (MMP) activity by FLS were all increased in response to IL-1beta. In contrast to our recent observations concerning monocytes, there was no change in COX-2 message stability and cytosolic phospholipase A2 activity in the FLS under hypoxia. Treatment of monocyte conditioned medium with an IL-1beta blocking antibody showed that most of the effect of the conditioned medium was attributable to IL-1beta. CONCLUSION The findings suggest that hypoxia is an important factor in aggravating the inflammatory lesion in RA, through increased production of COX-2-derived nociceptive eicosanoids and increased release of tissue-damaging MMPs.
Collapse
Affiliation(s)
- Maryanne Demasi
- Rheumatology Unit, Royal Adelaide Hospital, Adelaide, South Australia, Australia.
| | | | | | | |
Collapse
|
50
|
Miceli F, Tringali G, Tropea A, Minici F, Orlando MT, Lanzone A, Navarra P, Apa R. The effects of nitric oxide on prostanoid production and release by human umbilical vein endothelial cells. Life Sci 2003; 73:2533-42. [PMID: 12967678 DOI: 10.1016/s0024-3205(03)00659-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Human umbilical vein endothelial cells (HUVEC) express and synthesize both constitutive and inducible nitric oxide synthase (NOS) and cyclo-oxygenase (COX) enzymes, and have been extensively used as an in vitro model to investigate the role of these enzymes in the patho-physiology of placenta-fetal circulation. In this study we investigated the role of NO in regulating prostanoid production and release from HUVEC. Both untreated and IL-1beta-treated HUVEC were exposed to various NOS inhibitors and NO donors in short-term (1 or 3 hours) experiments, and the effects on prostanoid production were evaluated through the measurement of prostaglandins (PG) I2, E2 and F2alpha released in the incubation medium. We found that the inhibition of inducible NOS but not endothelial NOS antagonizes the IL-1beta-induced increase in PGI2 release. However, NOS inhibitors do not modify baseline PGI2 production. Pharmacological levels of NO, obtained with various NO donors, inhibit basal and IL-1beta-stimulated PG release.
Collapse
Affiliation(s)
- Fiorella Miceli
- Department of Obstetrics and Gynecology, Catholic University Medical School, Largo Francesco Vito 1, 00168 Rome, Italy
| | | | | | | | | | | | | | | |
Collapse
|