1
|
Hydrogen/deuterium exchange-mass spectrometry of integral membrane proteins in native-like environments: current scenario and the way forward. Essays Biochem 2023; 67:187-200. [PMID: 36876893 PMCID: PMC10070480 DOI: 10.1042/ebc20220173] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/09/2023] [Accepted: 01/13/2023] [Indexed: 03/07/2023]
Abstract
Integral membrane proteins (IMPs) perform a range of diverse functions and their dysfunction underlies numerous pathological conditions. Consequently, IMPs constitute most drug targets, and the elucidation of their mechanism of action has become an intense field of research. Historically, IMP studies have relied on their extraction from membranes using detergents, which have the potential to perturbate their structure and dynamics. To circumnavigate this issue, an array of membrane mimetics has been developed that aim to reconstitute IMPs into native-like lipid environments that more accurately represent the biological membrane. Hydrogen/deuterium exchange-mass spectrometry (HDX-MS) has emerged as a versatile tool for probing protein dynamics in solution. The continued development of HDX-MS methodology has allowed practitioners to investigate IMPs using increasingly native-like membrane mimetics, and even pushing the study of IMPs into the in vivo cellular environment. Consequently, HDX-MS has come of age and is playing an ever-increasingly important role in the IMP structural biologist toolkit. In the present mini-review, we discuss the evolution of membrane mimetics in the HDX-MS context, focusing on seminal publications and recent innovations that have led to this point. We also discuss state-of-the-art methodological and instrumental advancements that are likely to play a significant role in the generation of high-quality HDX-MS data of IMPs in the future.
Collapse
|
2
|
Raghuraman H, Chatterjee S, Das A. Site-Directed Fluorescence Approaches for Dynamic Structural Biology of Membrane Peptides and Proteins. Front Mol Biosci 2019; 6:96. [PMID: 31608290 PMCID: PMC6774292 DOI: 10.3389/fmolb.2019.00096] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 09/11/2019] [Indexed: 12/31/2022] Open
Abstract
Membrane proteins mediate a number of cellular functions and are associated with several diseases and also play a crucial role in pathogenicity. Due to their importance in cellular structure and function, they are important drug targets for ~60% of drugs available in the market. Despite the technological advancement and recent successful outcomes in determining the high-resolution structural snapshot of membrane proteins, the mechanistic details underlining the complex functionalities of membrane proteins is least understood. This is largely due to lack of structural dynamics information pertaining to different functional states of membrane proteins in a membrane environment. Fluorescence spectroscopy is a widely used technique in the analysis of functionally-relevant structure and dynamics of membrane protein. This review is focused on various site-directed fluorescence (SDFL) approaches and their applications to explore structural information, conformational changes, hydration dynamics, and lipid-protein interactions of important classes of membrane proteins that include the pore-forming peptides/proteins, ion channels/transporters and G-protein coupled receptors.
Collapse
Affiliation(s)
- H. Raghuraman
- Crystallography and Molecular Biology Division, Saha Institute of Nuclear Physics, Homi Bhabha National Institute, Kolkata, India
| | | | | |
Collapse
|
3
|
Frick M, Schmidt C. Mass spectrometry—A versatile tool for characterising the lipid environment of membrane protein assemblies. Chem Phys Lipids 2019; 221:145-157. [DOI: 10.1016/j.chemphyslip.2019.04.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 03/28/2019] [Accepted: 04/01/2019] [Indexed: 01/02/2023]
|
4
|
Affiliation(s)
- Xiaolin Cheng
- Division of Medicinal Chemistry and Pharmacognosy, Biophysics Graduate Program, Translational Data Analytics Institute, The Ohio State University, Columbus, Ohio 43210, United States
| | - Jeremy C. Smith
- UT/ORNL Center for Molecular Biophysics, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6309, United States
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee 37996, United States
| |
Collapse
|
5
|
Patrick JW, Gamez RC, Russell DH. The Influence of Lipid Bilayer Physicochemical Properties on Gramicidin A Conformer Preferences. Biophys J 2017; 110:1826-1835. [PMID: 27119642 DOI: 10.1016/j.bpj.2016.03.020] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 02/11/2016] [Accepted: 03/07/2016] [Indexed: 11/19/2022] Open
Abstract
The conformational preferences adopted by gramicidin A (GA) dimers inserted into phospholipid bilayers are reported as a function of the bilayer cholesterol content, temperature, and incubation time. Through use of vesicle capture-freeze drying methodology, GA dimers were captured in lipid bilayers and the conformational preferences of the complex were analyzed using ion mobility-mass spectrometry. Perturbations that affect the physicochemical interactions in the lipid bilayer such as cholesterol incorporation, temperature, and incubation time directly alter the conformer preferences of the complex. Regardless of bilayer cholesterol concentration, the antiparallel double helix (ADH) conformation was observed to be most abundant for GA dimers in bilayers composed of lipids with 12 to 22 carbon acyl chains. Incorporation of cholesterol into lipid bilayers yields increased bilayer thickness and rigidity, and an increased abundance of parallel double helix (PDH) and single-stranded head-to-head (SSHH) dimers were observed. Bilayers prepared using 1,2-dilauroyl-sn-glycero-3-phosphocholine, a lipid with 12 carbon acyl chains, yielded a nascent conformer that decreased in abundance as a function of bilayer cholesterol content. High resolution ion mobility-mass spectrometry data revealed two peaks in the ADH region suggesting that ADH populations are composed of two distinct conformers. The conformer preferences of GA dimers from 1,2-distearoyl-sn-glycero-3-phosphocholine bilayers were significantly different for samples incubated at 4°C vs. 60°C; increased cholesterol content yielded more PDH and SSHH at 60°C. The addition of cholesterol as well as incubating samples of 1,2-distearoyl-sn-glycero-3-phosphocholine at 60°C for 24-72 h yielded an increase in PDH and SSHH abundance.
Collapse
Affiliation(s)
- John W Patrick
- Department of Chemistry, Texas A&M University, College Station, Texas
| | - Roberto C Gamez
- Department of Chemistry, Texas A&M University, College Station, Texas
| | - David H Russell
- Department of Chemistry, Texas A&M University, College Station, Texas.
| |
Collapse
|
6
|
Probing the dynamic regulation of peripheral membrane proteins using hydrogen deuterium exchange-MS (HDX-MS). Biochem Soc Trans 2016; 43:773-86. [PMID: 26517882 DOI: 10.1042/bst20150065] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Many cellular signalling events are controlled by the selective recruitment of protein complexes to membranes. Determining the molecular basis for how lipid signalling complexes are recruited, assembled and regulated on specific membrane compartments has remained challenging due to the difficulty of working in conditions mimicking native biological membrane environments. Enzyme recruitment to membranes is controlled by a variety of regulatory mechanisms, including binding to specific lipid species, protein-protein interactions, membrane curvature, as well as post-translational modifications. A powerful tool to study the regulation of membrane signalling enzymes and complexes is hydrogen deuterium exchange-MS (HDX-MS), a technique that allows for the interrogation of protein dynamics upon membrane binding and recruitment. This review will highlight the theory and development of HDX-MS and its application to examine the molecular basis of lipid signalling enzymes, specifically the regulation and activation of phosphoinositide 3-kinases (PI3Ks).
Collapse
|
7
|
Bechara C, Robinson CV. Different Modes of Lipid Binding to Membrane Proteins Probed by Mass Spectrometry. J Am Chem Soc 2015; 137:5240-7. [DOI: 10.1021/jacs.5b00420] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Chérine Bechara
- Department of Chemistry,
Physical and Theoretical Chemistry Laboratory, University of Oxford, Oxford OX1 3QZ, United Kingdom
| | - Carol V. Robinson
- Department of Chemistry,
Physical and Theoretical Chemistry Laboratory, University of Oxford, Oxford OX1 3QZ, United Kingdom
| |
Collapse
|
8
|
Parker CH, Morgan C, Rand KD, Engen JR, Jorgenson J, Stafford DW. A conformational investigation of propeptide binding to the integral membrane protein γ-glutamyl carboxylase using nanodisc hydrogen exchange mass spectrometry. Biochemistry 2014; 53:1511-20. [PMID: 24512177 PMCID: PMC3970815 DOI: 10.1021/bi401536m] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Revised: 02/07/2014] [Indexed: 01/16/2023]
Abstract
Gamma (γ)-glutamyl carboxylase (GGCX) is an integral membrane protein responsible for the post-translational catalytic conversion of select glutamic acid (Glu) residues to γ-carboxy glutamic acid (Gla) in vitamin K-dependent (VKD) proteins. Understanding the mechanism of carboxylation and the role of GGCX in the vitamin K cycle is of biological interest in the development of therapeutics for blood coagulation disorders. Historically, biophysical investigations and structural characterizations of GGCX have been limited due to complexities involving the availability of an appropriate model membrane system. In previous work, a hydrogen exchange mass spectrometry (HX MS) platform was developed to study the structural configuration of GGCX in a near-native nanodisc phospholipid environment. Here we have applied the nanodisc-HX MS approach to characterize specific domains of GGCX that exhibit structural rearrangements upon binding the high-affinity consensus propeptide (pCon; AVFLSREQANQVLQRRRR). pCon binding was shown to be specific for monomeric GGCX-nanodiscs and promoted enhanced structural stability to the nanodisc-integrated complex while maintaining catalytic activity in the presence of carboxylation co-substrates. Noteworthy modifications in HX of GGCX were prominently observed in GGCX peptides 491-507 and 395-401 upon pCon association, consistent with regions previously identified as sites for propeptide and glutamate binding. Several additional protein regions exhibited minor gains in solvent protection upon propeptide incorporation, providing evidence for a structural reorientation of the GGCX complex in association with VKD carboxylation. The results herein demonstrate that nanodisc-HX MS can be utilized to study molecular interactions of membrane-bound enzymes in the absence of a complete three-dimensional structure and to map dynamic rearrangements induced upon ligand binding.
Collapse
Affiliation(s)
- Christine H. Parker
- Department of Chemistry and Department of
Biology, University of North Carolina at
Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Christopher
R. Morgan
- Department
of Chemistry & Chemical Biology, Northeastern
University, Boston, Massachusetts 02115, United States
| | - Kasper D. Rand
- Department
of Chemistry & Chemical Biology, Northeastern
University, Boston, Massachusetts 02115, United States
| | - John R. Engen
- Department
of Chemistry & Chemical Biology, Northeastern
University, Boston, Massachusetts 02115, United States
| | - James
W. Jorgenson
- Department of Chemistry and Department of
Biology, University of North Carolina at
Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Darrel W. Stafford
- Department of Chemistry and Department of
Biology, University of North Carolina at
Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
9
|
Dunkelberger EB, Woys AM, Zanni MT. 2D IR cross peaks reveal hydrogen-deuterium exchange with single residue specificity. J Phys Chem B 2013; 117:15297-305. [PMID: 23659731 PMCID: PMC3812256 DOI: 10.1021/jp402942s] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A form of chemical exchange, hydrogen-deuterium exchange (HDX), has long been used as a method for studying the secondary and tertiary structure of peptides and proteins using mass spectrometry and NMR spectroscopy. Using two-dimensional infrared (2D IR) spectroscopy, we resolve cross peaks between the amide II band and a (13)C(18)O isotope-labeled amide I band, which we show measures HDX with site-specific resolution. By rapidly scanning 2D IR spectra using mid-IR pulse shaping, we monitor the kinetics of HDX exchange on-the-fly. For the antimicrobial peptide ovispirin bound to membrane bilayers, we find that the amide II peak decays with a biexponential with rate constants of 0.54 ± 0.02 and 0.12 ± 0.01 min(-1), which is a measure of the overall HDX in the peptide. The cross peaks between Ile-10-labeled ovispirin and the amide II mode, which specifically monitor HDX kinetics at Ile-10, decay with a single rate constant of 0.36 ± 0.1 min(-1). Comparing this exchange rate to theoretically determined exchange rates of Ile-10 for ovispirin in a solution random coil configuration, the exchange rate at Ile-10 is at least 100 times slower, consistent with the known α-helix structure of ovispirin in bilayers. Because backbone isotope labels produce only a very small shift of the amide II band, site-specific HDX cannot be measured with FTIR spectroscopy, which is why 2D IR spectroscopy is needed for these measurements.
Collapse
Affiliation(s)
| | - Ann Marie Woys
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706-1396
| | - Martin T. Zanni
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706-1396
| |
Collapse
|
10
|
de Jesus AJ, Allen TW. The role of tryptophan side chains in membrane protein anchoring and hydrophobic mismatch. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2012; 1828:864-76. [PMID: 22989724 DOI: 10.1016/j.bbamem.2012.09.009] [Citation(s) in RCA: 153] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Revised: 09/06/2012] [Accepted: 09/07/2012] [Indexed: 12/27/2022]
Abstract
Tryptophan (Trp) is abundant in membrane proteins, preferentially residing near the lipid-water interface where it is thought to play a significant anchoring role. Using a total of 3 μs of molecular dynamics simulations for a library of hydrophobic WALP-like peptides, a long poly-Leu α-helix, and the methyl-indole analog, we explore the thermodynamics of the Trp movement in membranes that governs the stability and orientation of transmembrane protein segments. We examine the dominant hydrogen-bonding interactions between the Trp and lipid carbonyl and phosphate moieties, cation-π interactions to lipid choline moieties, and elucidate the contributions to the thermodynamics that serve to localize the Trp, by ~4 kcal/mol, near the membrane glycerol backbone region. We show a striking similarity between the free energy to move an isolated Trp side chain to that found from a wide range of WALP peptides, suggesting that the location of this side chain is nearly independent of the host transmembrane segment. Our calculations provide quantitative measures that explain Trp's role as a modulator of responses to hydrophobic mismatch, providing a deeper understanding of how lipid composition may control a range of membrane active peptides and proteins.
Collapse
|
11
|
Erba EB, Zenobi R. Mass spectrometric studies of dissociation constants of noncovalent complexes. ACTA ACUST UNITED AC 2011. [DOI: 10.1039/c1pc90006d] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
12
|
Ziegler BE, McMahon TB. Energetics and Structural Elucidation of Mechanisms for Gas Phase H/D Exchange of Protonated Peptides. J Phys Chem A 2010; 114:11953-63. [DOI: 10.1021/jp105170f] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Blake E. Ziegler
- Department of Chemistry University of Waterloo Waterloo, Ontario
| | - Terry B. McMahon
- Department of Chemistry University of Waterloo Waterloo, Ontario
| |
Collapse
|
13
|
Hebling CM, Morgan CR, Stafford DW, Jorgenson JW, Rand KD, Engen JR. Conformational analysis of membrane proteins in phospholipid bilayer nanodiscs by hydrogen exchange mass spectrometry. Anal Chem 2010; 82:5415-9. [PMID: 20518534 PMCID: PMC2895417 DOI: 10.1021/ac100962c] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The study of membrane protein structure and enzymology has traditionally been hampered by the inherent insolubility of membrane proteins in aqueous environments and experimental challenges in emulating an in vivo lipid environment. Phospholipid bilayer nanodiscs have recently been shown to be of great use for the study of membrane proteins since they offer a controllable, stable, and monodisperse model membrane with a nativelike lipid bilayer. Here we report the integration of nanodiscs with hydrogen exchange (HX) mass spectrometry (MS) experiments, thereby allowing for analysis of the native conformation of membrane proteins. gamma-Glutamyl carboxylase (GGCX), an approximately 94 kDa transmembrane protein, was inserted into nanodiscs and labeled with deuterium oxide under native conditions. Analytical parameters including sample-handling and chromatographic separation were optimized to measure the incorporation of deuterium into GGCX. Coupling nanodisc technology with HX MS offers an effective approach for investigating the conformation and dynamics of membrane proteins in their native environment and is therefore capable of providing much needed insight into the function of membrane proteins.
Collapse
Affiliation(s)
- Christine M. Hebling
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Christopher R. Morgan
- Department of Chemistry & Chemical Biology, Northeastern University, Boston, MA 02115
| | - Darrel W. Stafford
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - James W. Jorgenson
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Kasper D. Rand
- The Barnett Institute for Chemical & Biological Analysis, Northeastern University, Boston, MA 02115
| | - John R. Engen
- Department of Chemistry & Chemical Biology, Northeastern University, Boston, MA 02115
- The Barnett Institute for Chemical & Biological Analysis, Northeastern University, Boston, MA 02115
| |
Collapse
|
14
|
Lam YH, Hung A, Norton RS, Separovic F, Watts A. Solid-state NMR and simulation studies of equinatoxin II N-terminus interaction with lipid bilayers. Proteins 2010; 78:858-72. [PMID: 19847922 DOI: 10.1002/prot.22612] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The interaction with model membranes of a peptide, EqtII(1-32), corresponding to the N-terminal region of the pore-forming toxin equinatoxin II (EqtII) has been studied using solid-state NMR and molecular dynamics (MD) simulations. The distances between specifically labeled nuclei in [(19)F-para]Phe16-[1-(13)C]Leu19 and [(19)F-para]Phe16-[(15)N]Leu23 analogs of EqtII(1-32) measured by REDOR in lyophilized peptide were in agreement with published crystal and solution structures. However, in both DMPC and mixed DMPC:SM membrane environments, significant changes in the distances between the labeled amino acid pairs were observed, suggesting changes in helical content around the experimentally studied region, 16-23, in the presence of bilayers. (19)F-(31)P REDOR experiments indicated that the aromatic ring of Phe16 is in contact with lipid headgroups in both membrane environments. For the DMPC:SM mixed bilayers, a closer interaction between Phe16 side chains and lipid headgroups was observed, but an increase in distances was observed for both labeled amino acid pairs compared with those measured for EqtII(1-32) in pure DMPC bilayers. The observed differences between DMPC and DMPC:SM bilayers may be due to the greater affinity of EqtII for the latter. MD simulations of EqtII(1-32) in water, on a pure DMPC bilayer, and on a mixed DMPC:SM bilayer indicate significant peptide secondary structural differences in the different environments, with the DMPC-bound peptide adopting helical formations at residues 16-24, whereas the DMPC:SM-bound peptide exhibits a longer helical stretch, which may contribute to its enhanced activity against PC:SM compared with pure PC bilayers. Proteins 2010. (c) 2009 Wiley-Liss, Inc.
Collapse
Affiliation(s)
- Yuen Han Lam
- Biomembrane Structure Unit, Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| | | | | | | | | |
Collapse
|
15
|
Thomas R, Vostrikov VV, Greathouse DV, Koeppe RE. Influence of proline upon the folding and geometry of the WALP19 transmembrane peptide. Biochemistry 2010; 48:11883-91. [PMID: 19891499 DOI: 10.1021/bi9016395] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The orientations, geometries, and lipid interactions of designed transmembrane (TM) peptides have attracted significant experimental and theoretical interest. Because the amino acid proline will introduce a known discontinuity into an alpha helix, we have sought to measure the extent of helix kinking caused by a single proline within the isolated TM helical domain of WALP19. For this purpose, we synthesized acetyl-GWWLALALAP(10)ALALALWWA-ethanolamide and included pairs of deuterated alanines by using 60-100% Fmoc-l-Ala-d(4) at selected sequence positions. Solid-state deuterium ((2)H) magnetic resonance spectra from oriented, hydrated samples (1/40, peptide/lipid; using several lipids) reveal signals from many of the alanine backbone C(alpha) deuterons as well as the alanine side-chain C(beta) methyl groups, whereas signals from C(alpha) deuterons generally have not been observed for similar peptides without proline. It is conceivable that altered peptide dynamics may be responsible for the apparent "unmasking" of the backbone resonances in the presence of the proline. Data analysis using the geometric analysis of labeled alanines (GALA) method reveals that the peptide helix is distorted due to the presence of the proline. To provide additional data points for evaluating the segmental tilt angles of the two halves of the peptide, we substituted selected leucines with l-Ala-d(4). Using this approach, we were able to deduce that the apparent average tilt of the C-terminal increases from approximately 4 degrees to approximately 12 degrees when Pro(10) is introduced. The segment N-terminal to proline is more complex and possibly is more dynamically flexible; Leu to Ala mutations within the N-terminal segment alter the average orientations of alanines in both segments. Nevertheless, in DOPC, we could estimate an apparent kink angle of approximately 19 degrees . Together, the results suggest that the central proline influences not only the geometry but also the dynamics of the membrane-spanning peptide. The results make up an important basis for understanding the functional role of proline in several families of membrane proteins.
Collapse
Affiliation(s)
- Rachel Thomas
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas 72701, USA
| | | | | | | |
Collapse
|
16
|
Holt A, Killian JA. Orientation and dynamics of transmembrane peptides: the power of simple models. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2009; 39:609-21. [PMID: 20020122 PMCID: PMC2841270 DOI: 10.1007/s00249-009-0567-1] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2009] [Revised: 11/17/2009] [Accepted: 11/19/2009] [Indexed: 02/02/2023]
Abstract
In this review we discuss recent insights obtained from well-characterized model systems into the factors that determine the orientation and tilt angles of transmembrane peptides in lipid bilayers. We will compare tilt angles of synthetic peptides with those of natural peptides and proteins, and we will discuss how tilt can be modulated by hydrophobic mismatch between the thickness of the bilayer and the length of the membrane spanning part of the peptide or protein. In particular, we will focus on results obtained on tryptophan-flanked model peptides (WALP peptides) as a case study to illustrate possible consequences of hydrophobic mismatch in molecular detail and to highlight the importance of peptide dynamics for the experimental determination of tilt angles. We will conclude with discussing some future prospects and challenges concerning the use of simple peptide/lipid model systems as a tool to understand membrane structure and function.
Collapse
Affiliation(s)
- Andrea Holt
- Biochemistry of Membranes, Bijvoet Center for Biomolecular Research, Utrecht University, 3584CH Utrecht, The Netherlands.
| | | |
Collapse
|
17
|
Chitta RK, Rempel DL, Gross ML. The gramicidin dimer shows both EX1 and EX2 mechanisms of H/D exchange. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2009; 20:1813-20. [PMID: 19631556 PMCID: PMC2767204 DOI: 10.1016/j.jasms.2009.05.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/07/2008] [Revised: 05/08/2009] [Accepted: 05/28/2009] [Indexed: 05/28/2023]
Abstract
We describe the use of H/D amide exchange and electrospray ionization mass spectrometry to study, in organic solvents, the pentadecapeptide gramicidin as a model for protein self association. In methanol-OD, all active H's in the peptide exchange for D within 5 min, indicating a monomer/dimer equilibrium that is shifted towards the fast-exchanging monomer. H/D exchange in n-propanol-OD, however, showed a partially protected gramicidin that slowly converts to a second species that exchanges nearly all the active hydrogens, indicating EX1 kinetics for the H/D exchange. We propose that this behavior is the result of the slower rate of unfolding in n-propanol compared with that in methanol. The rate constant for the unfolding of the dimer is the rate of disappearance of the partially protected species, and it agrees within a factor of two with a value reported in literature. The rate constant of dimer refolding can be determined from the ratio of the rate constant for unfolding and the affinity constant for the dimer, which we determined in an earlier study. The unfolding activation energy is 20 kcal mol(-1), determined by performing the exchange experiments as a function of temperature. To study gramicidin in an even more hydrophobic medium than n-propanol, we measured its H/D exchange kinetics in a phospholipids vesicle and found a different H/D amide exchange behavior. Gramicidin is an unusual peptide dimer that can exhibit both EX1 and EX2 mechanisms for its H/D exchange, depending on the solvent.
Collapse
Affiliation(s)
- Raghu K Chitta
- Department of Chemistry, Washington University in St. Louis, St. Louis, Missouri 63130, USA
| | | | | |
Collapse
|
18
|
Fahrner M, Muik M, Derler I, Schindl R, Fritsch R, Frischauf I, Romanin C. Mechanistic view on domains mediating STIM1-Orai coupling. Immunol Rev 2009; 231:99-112. [DOI: 10.1111/j.1600-065x.2009.00815.x] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
19
|
Langosch D, Arkin IT. Interaction and conformational dynamics of membrane-spanning protein helices. Protein Sci 2009; 18:1343-58. [PMID: 19530249 PMCID: PMC2775205 DOI: 10.1002/pro.154] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2009] [Revised: 04/19/2009] [Accepted: 04/20/2009] [Indexed: 12/23/2022]
Abstract
Within 1 or 2 decades, the reputation of membrane-spanning alpha-helices has changed dramatically. Once mostly regarded as dull membrane anchors, transmembrane domains are now recognized as major instigators of protein-protein interaction. These interactions may be of exquisite specificity in mediating assembly of stable membrane protein complexes from cognate subunits. Further, they can be reversible and regulatable by external factors to allow for dynamic changes of protein conformation in biological function. Finally, these helices are increasingly regarded as dynamic domains. These domains can move relative to each other in different functional protein conformations. In addition, small-scale backbone fluctuations may affect their function and their impact on surrounding lipid shells. Elucidating the ways by which these intricate structural features are encoded by the amino acid sequences will be a fascinating subject of research for years to come.
Collapse
Affiliation(s)
- Dieter Langosch
- Lehrstuhl Chemie der Biopolymere, Technische Universität München, Weihenstephaner Berg 3, 85354 Freising, Germany.
| | | |
Collapse
|
20
|
Poschner BC, Quint S, Hofmann MW, Langosch D. Sequence-specific conformational dynamics of model transmembrane domains determines their membrane fusogenic function. J Mol Biol 2009; 386:733-41. [PMID: 19154744 DOI: 10.1016/j.jmb.2008.12.077] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2008] [Accepted: 12/29/2008] [Indexed: 10/21/2022]
Abstract
The transmembrane domains of fusion proteins are known to be functionally important and display an overabundance of helix-destabilizing Ile and Val residues. In an effort to systematically study the relationship of fusogenicity and helix stability, we previously designed LV peptides, a low-complexity model system whose hydrophobic core consists of Leu and Val residues at different ratios. The ability of LV peptides to fuse membranes increases with the content of helix-destabilizing residues. Here, we monitored the kinetics of amide deuterium/hydrogen exchange of LV-peptide helices to probe their conformational dynamics. The kinetics indeed increases strongly with the content of helix-destabilizing residues and is likely to reflect local fluctuations of the helix backbones as all peptides exhibit uncorrelated exchange and contain subpopulations of amide deuterium atoms that exchange with different velocities. Interestingly, helices whose amide deuterium atoms are shifted from slower to faster subpopulations are more fusogenic. Novel peptide variants in which Val residues are concentrated at peripheral or central domains of the hydrophobic core were designed to map functionally relevant helix subdomains. Their structural and functional analysis suggests that dynamic domains close to the helix termini are more relevant for fusogenicity than central domains but cooperate with the latter to achieve strong fusogenicity.
Collapse
Affiliation(s)
- Bernhard C Poschner
- Lehrstuhl für Chemie der Biopolymere, Technische Universität München, Weihenstephaner Berg 3, 85354 Freising, Germany
| | | | | | | |
Collapse
|
21
|
Monson de Souza B, Palma MS. Monitoring the positioning of short polycationic peptides in model lipid bilayers by combining hydrogen/deuterium exchange and electrospray ionization mass spectrometry. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2008; 1778:2797-805. [DOI: 10.1016/j.bbamem.2008.09.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2008] [Revised: 09/11/2008] [Accepted: 09/12/2008] [Indexed: 11/16/2022]
|
22
|
Partitioning of amino-acid analogues in a five-slab membrane model. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2008; 1778:2234-43. [DOI: 10.1016/j.bbamem.2008.06.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2007] [Revised: 05/15/2008] [Accepted: 06/17/2008] [Indexed: 11/20/2022]
|
23
|
Sequence-specific conformational flexibility of SNARE transmembrane helices probed by hydrogen/deuterium exchange. Biophys J 2008; 95:1326-35. [PMID: 18456822 DOI: 10.1529/biophysj.108.132928] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
SNARE proteins mediate fusion of intracellular eukaryotic membranes and their alpha-helical transmembrane domains are known to contribute to lipid bilayer mixing. Synthetic transmembrane domain peptides were previously shown to mimic the function of SNARE proteins in that they trigger liposome fusion in a sequence-specific fashion. Here, we performed a detailed investigation of the conformational dynamics of the transmembrane helices of the presynaptic SNAREs synaptobrevin II and syntaxin 1a. To this end, we recorded deuterium/hydrogen-exchange kinetics in isotropic solution as well as in the membrane-embedded state. In solution, the exchange kinetics of each peptide can be described by three different classes of amide deuteriums that exchange with different rate constants. These are likely to originate from exchange at different domains of the helices. Interestingly, the rate constants of each class vary with the TMD sequence. Thus, the exchange rate is position-specific and sequence-specific. Further, the rate constants correlate with the previously determined membrane fusogenicities. In membranes, exchange is retarded and a significant proportion of amide hydrogens are protected from exchange. We conclude that the conformational dynamics of SNARE TMD helices is mechanistically linked to their ability to drive lipid mixing.
Collapse
|
24
|
Abstract
The linear peptide gramicidin forms prototypical ion channels specific for monovalent cations and has been used extensively to study the organization, dynamics, and function of membrane-spanning channels. The tryptophan residues in gramicidin channels are crucial for maintaining the structure and function of the channel. We explored the structural basis for the reduction in channel conductance in the case of single-tryptophan analogs of gramicidin with three Trp --> hydrophobic substitutions using a combination of fluorescence approaches, which include red edge excitation shift and membrane penetration depth analysis, size-exclusion chromatography, and circular dichroism spectroscopy. We show here that the gramicidin analogs containing single-tryptophan residues adopt a mixture of nonchannel and channel conformations, as evident from analysis of membrane penetration depth, size-exclusion chromatography, and backbone circular dichroism data. These results are potentially useful in analyzing the effect of tryptophan substitution on the functioning of other ion channels and membrane proteins.
Collapse
|
25
|
Holt A, de Almeida RFM, Nyholm TKM, Loura LMS, Daily AE, Staffhorst RWHM, Rijkers DTS, Koeppe RE, Prieto M, Killian JA. Is there a preferential interaction between cholesterol and tryptophan residues in membrane proteins? Biochemistry 2008; 47:2638-49. [PMID: 18215073 PMCID: PMC2610026 DOI: 10.1021/bi702235k] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Recently, several indications have been found that suggest a preferential interaction between cholesterol and tryptophan residues located near the membrane-water interface. The aim of this study was to investigate by direct methods how tryptophan and cholesterol interact with each other and what the possible consequences are for membrane organization. For this purpose, we used cholesterol-containing model membranes of dimyristoylphosphatidylcholine (DMPC) in which a transmembrane model peptide with flanking tryptophans [acetyl-GWW(LA)8LWWA-amide], called WALP23, was incorporated to mimic interfacial tryptophans of membrane proteins. These model systems were studied with two complementary methods. (1) Steady-state and time-resolved Förster resonance energy transfer (FRET) experiments employing the fluorescent cholesterol analogue dehydroergosterol (DHE) in combination with a competition experiment with cholesterol were used to obtain information about the distribution of cholesterol in the bilayer in the presence of WALP23. The results were consistent with a random distribution of cholesterol which indicates that cholesterol and interfacial tryptophans are not preferentially located next to each other in these bilayer systems. (2) Solid-state 2H NMR experiments employing either deuterated cholesterol or indole ring-deuterated WALP23 peptides were performed to study the orientation and dynamics of both molecules. The results showed that the quadrupolar splittings of labeled cholesterol were not affected by an interaction with tryptophan-flanked peptides and, vice versa, that the quadrupolar splittings of labeled indole rings in WALP23 are not significantly influenced by addition of cholesterol to the bilayer. Therefore, both NMR and fluorescence spectroscopy results independently show that, at least in the model systems studied here, there is no evidence for a preferential interaction between cholesterol and tryptophans located at the bilayer interface.
Collapse
Affiliation(s)
- Andrea Holt
- Chemical Biology and Organic Chemistry, Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Yeast gain-of-function mutations reveal structure-function relationships conserved among different subfamilies of transient receptor potential channels. Proc Natl Acad Sci U S A 2007; 104:19607-12. [PMID: 18042709 DOI: 10.1073/pnas.0708584104] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Transient receptor potential (TRP) channels found in animals, protists, and fungi are primary chemo-, thermo-, or mechanosensors. Current research emphasizes the characteristics of individual channels in each animal TRP subfamily but not the mechanisms common across subfamilies. A forward genetic screen of the TrpY1, the yeast TRP channel, recovered gain-of-function (GOF) mutations with phenotype in vivo and in vitro. Single-channel patch-clamp analyses of these GOF-mutant channels show prominent aberrations in open probability and channel kinetics. These mutations revealed functionally important aromatic amino acid residues in four locations: at the intracellular end of the fifth transmembrane helix (TM5), at both ends of TM6, and at the immediate extension of TM6. These aromatics have counterparts in most TRP subfamilies. The one in TM5 (F380L) aligns precisely with an exceptional Drosophila mutant allele (F550I) that causes constitutive activity in the canonical TRP channel, resulting in rapid and severe retinal degeneration beyond mere loss of phototaxis. Thus, this phenylalanine maintains the balance of various functional states (conformations) of a channel for insect phototransduction as well as one for fungal mechanotransduction. This residue is among a small cluster of phenylalanines found in all known subfamilies of TRP channels. This unique case illustrates that GOF mutations can reveal structure-function principles that can be generalized across different TRP subfamilies. It appears that the conserved aromatics in the four locations have conserved functions in most TRP channels. The possible mechanistic roles of these aromatics and the further use of yeast genetics to dissect TRP channels are discussed.
Collapse
|
27
|
Özdirekcan S, Etchebest C, Killian JA, Fuchs PFJ. On the Orientation of a Designed Transmembrane Peptide: Toward the Right Tilt Angle? J Am Chem Soc 2007; 129:15174-81. [DOI: 10.1021/ja073784q] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Suat Özdirekcan
- Contribution from the Department of Chemical Biology and Organic Chemistry, Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands, and Equipe de Bioinformatique Génomique et Moléculaire INSERM UMR-S 726, Université Paris-Diderot-Paris 7, Case Courrier 7113, 2, place Jussieu, 75251 Paris Cedex 05, France
| | - Catherine Etchebest
- Contribution from the Department of Chemical Biology and Organic Chemistry, Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands, and Equipe de Bioinformatique Génomique et Moléculaire INSERM UMR-S 726, Université Paris-Diderot-Paris 7, Case Courrier 7113, 2, place Jussieu, 75251 Paris Cedex 05, France
| | - J. Antoinette Killian
- Contribution from the Department of Chemical Biology and Organic Chemistry, Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands, and Equipe de Bioinformatique Génomique et Moléculaire INSERM UMR-S 726, Université Paris-Diderot-Paris 7, Case Courrier 7113, 2, place Jussieu, 75251 Paris Cedex 05, France
| | - Patrick F. J. Fuchs
- Contribution from the Department of Chemical Biology and Organic Chemistry, Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands, and Equipe de Bioinformatique Génomique et Moléculaire INSERM UMR-S 726, Université Paris-Diderot-Paris 7, Case Courrier 7113, 2, place Jussieu, 75251 Paris Cedex 05, France
| |
Collapse
|
28
|
Affiliation(s)
- Kevin R Mackenzie
- Department of Biochemistry and Cell Biology, Rice University, Houston, Texas 77005, USA
| |
Collapse
|
29
|
Ozdirekcan S, Nyholm TKM, Raja M, Rijkers DTS, Liskamp RMJ, Killian JA. Influence of trifluoroethanol on membrane interfacial anchoring interactions of transmembrane alpha-helical peptides. Biophys J 2007; 94:1315-25. [PMID: 17905843 PMCID: PMC2212674 DOI: 10.1529/biophysj.106.101782] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Interfacial anchoring interactions between aromatic amino acid residues and the lipid-water interface are believed to be important determinants for membrane protein structure and function. Thus, it is possible that molecules that partition into the lipid-water interface can influence membrane protein activity simply by interfering with these anchoring interactions. Here we tested this hypothesis by investigating the effects of 2,2,2-trifluoroethanol (TFE) on the interaction of a Trp-flanked synthetic transmembrane peptide (acetyl-GW(2)(LA)(8)LW(2)A-NH(2)) with model membranes of dimyristoylphosphatidylcholine. Two striking observations were made. First, using (2)H nuclear magnetic resonance on acyl chain deuterated lipids, we found that addition of 4 or 8 vol % of TFE completely abolishes the ability of the peptide to order and stretch the lipid acyl chains in these relatively thin bilayers. Second, we observed that addition of 8 vol % TFE reduces the tilt angle of the peptide from 5.3 degrees to 2.5 degrees, as measured by (2)H NMR on Ala-d(4) labeled peptides. The "straightening" of the peptide was accompanied by an increased exposure of Trp to the aqueous phase, as shown by Trp-fluorescence quenching experiments using acrylamide. The observation of a reduced tilt angle was surprising because we also found that TFE partioning results in a significant thinning of the membrane, which would increase the extent of hydrophobic mismatch. In contrast to the Trp-flanked peptide, no effect of TFE was observed on the interaction of a Lys-flanked analog (acetyl-GK(2)(LA)(8)LK(2)A-NH(2)) with the lipid bilayer. These results emphasize the importance of interfacial anchoring interactions for membrane organization and provide new insights into how molecules such as TFE that can act as anesthetics may affect the behavior of membrane proteins that are enriched in aromatic amino acids at the lipid-water interface.
Collapse
Affiliation(s)
- Suat Ozdirekcan
- Chemical Biology and Organic Chemistry, Bijvoet Center for Biomolecular Research, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | | | | | | | | | | |
Collapse
|
30
|
Zhou X, Su Z, Anishkin A, Haynes WJ, Friske EM, Loukin SH, Kung C, Saimi Y. Yeast screens show aromatic residues at the end of the sixth helix anchor transient receptor potential channel gate. Proc Natl Acad Sci U S A 2007; 104:15555-9. [PMID: 17878311 PMCID: PMC2000494 DOI: 10.1073/pnas.0704039104] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Transient receptor potential (TRP) channels are first elements in sensing chemicals, heat, and force and are widespread among protists and fungi as well as animals. Despite their importance, the arrangement and roles of the amino acids that constitute the TRP channel gate are unknown. The yeast TRPY1 is activated in vivo by osmotically induced vacuolar membrane deformation and by cytoplasmic Ca(2+). After a random mutagenesis, we isolated TRPY1 mutants that responded more strongly to mild osmotic upshocks. One such gain-of-function mutant has a Y458H substitution at the C terminus of the predicted sixth transmembrane helix. Direct patch-clamp examination of vacuolar membranes showed that Y458H channels were already active with little stimulus and showed marked flickers between the open and intraburst closed states. They remained responsive to membrane stretch force and to Ca(2+), indicating primary defects in the gate region but not in the sensing of gating principles. None of the other 18 amino acid replacements engineered here showed normal channel kinetics except the two aromatic substitutions, Y458F and Y458W. The Y458 of TRPY1 has its aromatic counterpart in mammalian TRPM. Furthermore, conserved aromatics one alpha-helical turn downstream from this point are also found in animal TRPC, TRPN, TRPP, and TRPML, suggesting that gate anchoring with aromatics may be common among many TRP channels. The possible roles of aromatics at the end of the sixth transmembrane helix are discussed.
Collapse
Affiliation(s)
- Xinliang Zhou
- Laboratory of Molecular Biology and Department of Genetics, University of Wisconsin, Madison, WI 53706, USA
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Sengupta D, Meinhold L, Langosch D, Ullmann GM, Smith JC. Understanding the energetics of helical peptide orientation in membranes. Proteins 2006; 58:913-22. [PMID: 15657932 DOI: 10.1002/prot.20383] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Understanding the energetic factors determining the positioning and orientation of single-helical peptides in membranes is of fundamental interest in structural biology. Here, a simple 5-slab continuum dielectric model for the membrane is examined that distinguishes between the solvent, headgroup, and core regions. An analytical solution for the electrostatic solvation of a single dipole and an all-atom model of N-methylacetamide are used to demonstrate the effect of the dielectric boundaries in the system on peptide dipole orientation. The dipole orientation energy is shown to dominate the electrostatic solvation energy of a polyalanine helix in the membrane. With an additional surface-area-dependent term to account for the cavity formation in the aqueous region, the continuum electrostatics description is used to examine several helical peptides, the atoms of which are explicitly represented with a molecular mechanics force field. The experimentally determined tilt angles of a number of peptides of alternating alanine and leucine residues, and of glycophorin and melittin, are accurately reproduced by the model. The factors determining the tilt angles and their fluctuations are analyzed. The tilt angles of the simpler peptides are found to increase approximately linearly with peptide length; this effect is also rationalized. The analysis and model presented here provide a step toward the prediction of helical membrane protein structure.
Collapse
Affiliation(s)
- Durba Sengupta
- IWR-Computational Molecular Biophysics, University of Heidelberg, Heidelberg, Germany
| | | | | | | | | |
Collapse
|
32
|
Yano Y, Ogura M, Matsuzaki K. Measurement of thermodynamic parameters for hydrophobic mismatch 2: intermembrane transfer of a transmembrane helix. Biochemistry 2006; 45:3379-85. [PMID: 16519532 DOI: 10.1021/bi052286w] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Hydrophobic matching between proteins and lipids is essential for the thermodynamic stability of integral membrane proteins. However, there is no direct thermodynamic information available about the intermembrane transfer of proteins between membranes with different hydrophobic thicknesses, which is crucial for understanding hydrophobic mismatch. This article reports the complete set of thermodynamic parameters (DeltaG, DeltaH, DeltaS, and DeltaC(p)) for the intermembrane transfer of the inert hydrophobic model transmembrane helix NBD-(AALALAA)(3)-NH(2) (NBD: 7-nitro-2-1,3-benzoxadiazol-4-yl), which is exchangeable between vesicles, from 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) to dimonounsaturated-phosphocholine lipid bilayers with different hydrophobic thicknesses (C14-C22) at 37-58 degrees C. The transfer free energies were calculated from equilibrium values of the extent of helix transfer from donor to acceptor lipid vesicles, as monitored by a decrease in fluorescence resonance energy transfer from the NBD group to a lipid-labeled Rhodamine in the donor upon transfer to the quencher-free acceptor. Under hydrophobic mismatch conditions up to approximately 7 A, the helix partitioning became unfavorable up to +7 kJ mol(-)(1), hampered by an increase in entropic (up to +20 kJ mol(-)(1)) and enthalpic (up to +66 kJ mol(-)(1)) terms in thinner and thicker membranes, respectively. Together with the results that H/D exchange at the membrane interface was accelerated in thinner membranes the obtained thermodynamic parameters were reasonably explained assuming that hydrophobic mismatch induces aqueous exposure or membrane burial of the helix termini, resulting in excess energies originating from the hydration of terminal hydrophobic residues or the unfavorable Born energy of terminal partial charges of the helix macrodipole.
Collapse
Affiliation(s)
- Yoshiaki Yano
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | | | | |
Collapse
|
33
|
Nymeyer H, Woolf TB, Garcia AE. Folding is not required for bilayer insertion: replica exchange simulations of an alpha-helical peptide with an explicit lipid bilayer. Proteins 2006; 59:783-90. [PMID: 15828005 DOI: 10.1002/prot.20460] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We implement the replica exchange molecular dynamics algorithm to study the interactions of a model peptide (WALP-16) with an explicitly represented DPPC membrane bilayer. We observe the spontaneous, unbiased insertion of WALP-16 into the DPPC bilayer and its folding into an alpha-helix with a transbilayer orientation. The free energy surface suggests that the insertion of the peptide into the DPPC bilayer precedes secondary structure formation. Although the peptide has some propensity to form a partially helical structure in the interfacial region of the DPPC/water system, this state is not a productive intermediate but rather an off-pathway trap for WALP-16 insertion. Equilibrium simulations show that the observed insertion/folding pathway mirrors the potential of mean force (PMF). Calculation of the enthalpic and entropic contributions to this PMF show that the surface bound conformation of WALP-16 is significantly lower in energy than other conformations, and that the insertion of WALP-16 into the bilayer without regular secondary structure is enthalpically unfavorable by 5-10 kcal/mol/residue. The observed insertion/folding pathway disagrees with the dominant conceptual model, which is that a surface-bound helix is an obligatory intermediate for the insertion of alpha-helical peptides into lipid bilayers. In our simulations, the observed insertion/folding pathway is favored because of a large (>100 kcal/mol) increase in system entropy that occurs when the unstructured WALP-16 peptide enters the lipid bilayer interior. The insertion/folding pathway that is lowest in free energy depends sensitively on the near cancellation of large enthalpic and entropic terms. This suggests the possibility that intrinsic membrane peptides may have a diversity of insertion/folding behaviors depending on the exact system of peptide and lipid under consideration.
Collapse
Affiliation(s)
- Hugh Nymeyer
- Theoretical Biology & Biophysics Group, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | | | | |
Collapse
|
34
|
Shank LP, Broughman JR, Takeguchi W, Cook G, Robbins AS, Hahn L, Radke G, Iwamoto T, Schultz BD, Tomich JM. Redesigning channel-forming peptides: amino acid substitutions that enhance rates of supramolecular self-assembly and raise ion transport activity. Biophys J 2005; 90:2138-50. [PMID: 16387776 PMCID: PMC1386792 DOI: 10.1529/biophysj.105.070078] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Three series of 22-residue peptides derived from the transmembrane M2 segment of the glycine receptor alpha1-subunit (M2GlyR) have been designed, synthesized, and tested to determine the plasticity of a channel-forming sequence and to define whether channel pores with enhanced conductive properties could be created. Sixteen sequences were examined for aqueous solubility, solution-association tendency, secondary structure, and half-maximal concentration for supramolecular assembly, channel activity, and ion transport properties across epithelial monolayers. All peptides interact strongly with membranes: associating with, inserting across, and assembling to form homooligomeric bundles when in micromolar concentrations. Single and double amino acid replacements involving arginine and/or aromatic amino acids within the final five C-terminal residues of the peptide cause dramatic effects on the concentration dependence, yielding a range of K1/2 values from 36 +/- 5 to 390 +/- 220 microM for transport activity. New water/lipid interfacial boundaries were established for the transmembrane segment using charged or aromatic amino acids, thus limiting the peptides' ability to move perpendicularly to the plane of the bilayer. Formation of discrete water/lipid interfacial boundaries appears to be necessary for efficient supramolecular assembly and high anion transport activity. A peptide sequence is identified that may show efficacy in channel replacement therapy for channelopathies such as cystic fibrosis.
Collapse
Affiliation(s)
- Lalida P Shank
- Department of Biochemistry, and Department of Anatomy and Physiology, Kansas State University, Manhattan, Kansas 66506, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Siegel DP, Cherezov V, Greathouse DV, Koeppe RE, Killian JA, Caffrey M. Transmembrane peptides stabilize inverted cubic phases in a biphasic length-dependent manner: implications for protein-induced membrane fusion. Biophys J 2005; 90:200-11. [PMID: 16214859 PMCID: PMC1367019 DOI: 10.1529/biophysj.105.070466] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
WALP peptides consist of repeating alanine-leucine sequences of different lengths, flanked with tryptophan "anchors" at each end. They form membrane-spanning alpha-helices in lipid membranes, and mimic protein transmembrane domains. WALP peptides of increasing length, from 19 to 31 amino acids, were incorporated into N-monomethylated dioleoylphosphatidylethanolamine (DOPE-Me) at concentrations up to 0.5 mol % peptide. When pure DOPE-Me is heated slowly, the lamellar liquid crystalline (L(alpha)) phase first forms an inverted cubic (Q(II)) phase, and the inverted hexagonal (H(II)) phase at higher temperatures. Using time-resolved x-ray diffraction and slow temperature scans (1.5 degrees C/h), WALP peptides were shown to decrease the temperatures of Q(II) and H(II) phase formation (T(Q) and T(H), respectively) as a function of peptide concentration. The shortest and longest peptides reduced T(Q) the most, whereas intermediate lengths had weaker effects. These findings are relevant to membrane fusion because the first step in the L(alpha)/Q(II) phase transition is believed to be the formation of fusion pores between pure lipid membranes. These results imply that physiologically relevant concentrations of these peptides could increase the susceptibility of biomembrane lipids to fusion through an effect on lipid phase behavior, and may explain one role of the membrane-spanning domains in the proteins that mediate membrane fusion.
Collapse
|
36
|
Chattopadhyay A, Arora A, Kelkar DA. Dynamics of a membrane-bound tryptophan analog in environments of varying hydration: a fluorescence approach. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2005; 35:62-71. [PMID: 16184387 DOI: 10.1007/s00249-005-0009-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2005] [Revised: 06/30/2005] [Accepted: 07/18/2005] [Indexed: 11/24/2022]
Abstract
Tryptophan octyl ester (TOE) represents an important model for membrane-bound tryptophan residues. In this article, we have employed a combination of wavelength-selective fluorescence and time-resolved fluorescence spectroscopies to monitor the effect of varying degrees of hydration on the dynamics of TOE in reverse micellar environments formed by sodium bis(2-ethylhexyl) sulfosuccinate (AOT) in isooctane. Our results show that TOE exhibits red edge excitation shift (REES) and other wavelength-selective fluorescence effects when bound to reverse micelles of AOT. Fluorescence parameters such as intensity, emission maximum, anisotropy, and lifetime of TOE in reverse micelles of AOT depend on [water]/[surfactant] molar ratio (w (o)). These results are relevant and potentially useful for analyzing dynamics of proteins or peptides bound to membranes or membrane-mimetic media under conditions of changing hydration.
Collapse
|
37
|
Nazabal A, Bonneu M, Saupe SJ, Schmitter JM. High-resolution H/D exchange studies on the HET-s218-295 prion protein. JOURNAL OF MASS SPECTROMETRY : JMS 2005; 40:580-590. [PMID: 15856424 DOI: 10.1002/jms.819] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
In a search for improved resolution of hydrogen/deuterium (H/D) exchange experiments analyzed by mass spectrometry (HXMS), we evaluated two methodologies for a detailed structural study of solvent accessibility in the case of the HET-s(218-295) prion protein. For the first approach, after incubation in the deuterated solvent, aggregated HET-s(218-295) was digested with pepsin and the generated peptides were analyzed by nanospray mass spectrometry in an ion trap, with and without collision-induced dissociation (CID). We compared deuterium incorporation in peptides as determined on peptide pseudomolecular ions and on b and y fragments produced by longer peptides under CID conditions. For both b and y fragment ions, an extensive H/D scrambling phenomenon was observed, in contrast with previous studies comparing CID-MS experiments and (1)H NMR data. Thus, the spatial resolution of HXMS experiments could not be improved by means of MS/MS data generated by an ion trap mass spectrometer. In a second approach, the incorporation of deuterium was analyzed by MS for 76 peptides of the HET-s(218-289) peptide mass fingerprint, and the use of shared boundaries among peptic peptides allowed us to determine deuteration levels of small regions ranging from one to four amino acids. This methodology led to evidence of highly protected regions along the HET-s(218-295) sequence.
Collapse
Affiliation(s)
- Alexis Nazabal
- Institut Européen de Chimie et de Biologie, UMR CNRS 5144, Pessac, France.
| | | | | | | |
Collapse
|
38
|
Busenlehner LS, Armstrong RN. Insights into enzyme structure and dynamics elucidated by amide H/D exchange mass spectrometry. Arch Biochem Biophys 2005; 433:34-46. [PMID: 15581564 DOI: 10.1016/j.abb.2004.09.002] [Citation(s) in RCA: 143] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2004] [Revised: 09/02/2004] [Indexed: 11/25/2022]
Abstract
Conformational changes and protein dynamics play an important role in the catalytic efficiency of enzymes. Amide H/D exchange mass spectrometry (H/D exchange MS) is emerging as an efficient technique to study the local and global changes in protein structure and dynamics due to ligand binding, protein activation-inactivation by modification, and protein-protein interactions. By monitoring the selective exchange of hydrogen for deuterium along a peptide backbone, this sensitive technique probes protein motions and structural elements that may be relevant to allostery and function. In this report, several applications of H/D exchange MS are presented which demonstrate the unique capability of amide hydrogen/deuterium exchange mass spectrometry for examining dynamic and structural changes associated with enzyme catalysis.
Collapse
Affiliation(s)
- Laura S Busenlehner
- Department of Biochemistry, Center in Molecular Toxicology, Vanderbilt University School of Medicine, Nashville, TN 37232-0416, USA.
| | | |
Collapse
|
39
|
Cheng CS, Samuel D, Liu YJ, Shyu JC, Lai SM, Lin KF, Lyu PC. Binding Mechanism of Nonspecific Lipid Transfer Proteins and Their Role in Plant Defense. Biochemistry 2004; 43:13628-36. [PMID: 15504025 DOI: 10.1021/bi048873j] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Plant nonspecific lipid transfer proteins (nsLTPs) are small basic proteins that transport phospholipids between membranes. On the basis of molecular mass, nsLTPs are subdivided into nsLTP1 and nsLTP2. NsLTPs are all helical proteins stabilized by four conserved disulfide bonds. The existence of an internal hydrophobic cavity, running through the molecule, is a typical characteristic of nsLTPs that serves as the binding site for lipid-like substrates. NsLTPs are known to participate in plant defense, but the exact mechanism of their antimicrobial action against fungi or bacteria is still unclear. To trigger plant defense responses, a receptor at the plant surface needs to recognize the complex of a fungal protein (elicitin) and ergosterol. NsLTPs share high structural similarities with elicitin and need to be associated with a hydrophobic ligand to stimulate a defense response. In this study, binding of sterol molecules with rice nsLTPs is analyzed using various biophysical methods. NsLTP2 can accommodate a planar sterol molecule, but nsLTP1 binds only linear lipid molecules. Although the hydrophobic cavity of rice nsLTP2 is smaller than that of rice nsLTP1, it is flexible enough to accommodate the voluminous sterol molecule. The dissociation constant for the nsLTP2/cholesterol complex is approximately 71.21 microM as measured by H/D exchange and mass spectroscopic detection. Schematic models of the nsLTP complex structure give interesting clues about the reason for differential binding modes. Comparisons of NMR spectra of the sterol/rice nsLTP2 complex and free nsLTP2 revealed the residues involved in binding.
Collapse
Affiliation(s)
- Chao-Sheng Cheng
- Department of Life Sciences, National Tsing Hua University, Hsinchu 30043, Taiwan
| | | | | | | | | | | | | |
Collapse
|
40
|
Hanson CL, Ilag LL, Malo J, Hatters DM, Howlett GJ, Robinson CV. Phospholipid complexation and association with apolipoprotein C-II: insights from mass spectrometry. Biophys J 2004; 85:3802-12. [PMID: 14645070 PMCID: PMC1303682 DOI: 10.1016/s0006-3495(03)74795-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The interactions between phospholipid molecules in suspensions have been studied by using mass spectrometry. Electrospray mass spectra of homogeneous preparations formed from three different phospholipid molecules demonstrate that under certain conditions interactions between 90 and 100 lipid molecules can be preserved. In the presence of apolipoprotein C-II, a phospholipid binding protein, a series of lipid molecules and the protein were observed in complexes. The specificity of binding was demonstrated by proteolysis; the resulting mass spectra reveal lipid-bound peptides that encompass the proposed lipid-binding domain. The mass spectra of heterogeneous suspensions and their complexes with apolipoprotein C-II demonstrate that the protein binds simultaneously to two different phospholipids. Moreover, when apolipoprotein C-II is added to lipid suspensions formed with local concentrations of the same lipid molecule, the protein is capable of remodeling the distribution to form one that is closer to a statistical arrangement. These observations demonstrate a capacity for apolipoprotein C-II to change the topology of the phospholipid surface. More generally, these results highlight the fact that mass spectrometry can be used to probe lipid interactions in both homogeneous and heterogeneous suspensions and demonstrate reorganization of the distribution of lipids upon surface binding of apolipoprotein C-II.
Collapse
Affiliation(s)
- Charlotte L Hanson
- University Chemistry Department, University of Cambridge, Cambridge CB2 1EW, UK
| | | | | | | | | | | |
Collapse
|
41
|
Zhu MM, Rempel DL, Zhao J, Giblin DE, Gross ML. Probing Ca2+-induced conformational changes in porcine calmodulin by H/D exchange and ESI-MS: effect of cations and ionic strength. Biochemistry 2004; 42:15388-97. [PMID: 14690449 DOI: 10.1021/bi035188o] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We applied a new method, "protein-ligand interaction using mass spectrometry, titration, and H/D exchange" (PLIMSTEX) [Zhu, M. M. (2003) J. Am. Chem. Soc. 125, 5252-5253], to determine the conformational changes, binding stoichiometry, and binding constants for Ca(2+) interactions with calmodulin (CaM) under varying conditions of electrolyte identity and ionic strength. The outcome shows that CaM becomes less solvent-accessible and more compact upon Ca(2+)-binding, as revealed by the PLIMSTEX curve. The formation of CaM-4Ca species is the biggest contributor to the shape of the titration curve, indicating that the formation of this species accounts for the largest conformational change in the stepwise Ca(2+) binding. The Ca(2+)-binding constants, when comparisons permit, agree with those in the literature within a factor of 3. The binding is influenced by ionic strength and the presence of other cations, although many of these cations do not cause conformational change in apo-CaM. Furthermore, Ca(2+)-saturated CaM exhibits larger protection and higher Ca(2+) affinity in media of low rather than high ionic strength. Both Ca(2+) and Mg(2+) bind to CaM with different affinities, causing different conformational changes. K(+), if it does bind, causes no detectable conformational change, and interactions of Ca(2+) with CaM in the presence of Li(+), Na(+), and K(+) occur with similar affinities and associated changes in solvent accessibility. These metal ion effects point to nonspecific rather than competitive binding of alkali-metal ions. The rates of deuterium uptake by the various CaM-xCa species follow a three-group (fast, intermediate, slow), pseudo-first-order kinetics model. Calcium binding causes the number of amide hydrogens to shift from the fast to the slow group. The results taken together not only provide new insight into CaM but also indicate that both PLIMSTEX and kinetic modeling of H/D exchange data may become general methods for probing protein conformations and quantifying protein-ligand interactions.
Collapse
Affiliation(s)
- Mei M Zhu
- Department of Chemistry, Washington University, St. Louis, Missouri 63130, USA
| | | | | | | | | |
Collapse
|
42
|
Lengqvist J, Svensson R, Evergren E, Morgenstern R, Griffiths WJ. Observation of an Intact Noncovalent Homotrimer of Detergent-solubilized Rat Microsomal Glutathione Transferase-1 by Electrospray Mass Spectrometry. J Biol Chem 2004; 279:13311-6. [PMID: 14726533 DOI: 10.1074/jbc.m310958200] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Microsomal glutathione transferase-1 (MGST1) is a membrane-bound enzyme involved in the detoxification of xenobiotics and the protection of cells against oxidative stress. The proposed active form of the enzyme is a noncovalently associated homotrimer that binds one substrate glutathione molecule/trimer. In this study, this complex has been directly observed by electrospray mass spectrometry analysis of active rat liver MGST1 reconstituted in a minimum amount of detergent. The measured mass of the homotrimer is 53 kDa, allowing for the mass of three MGST molecules in complex with one glutathione molecule. Collision-induced dissociation of the trimer complex resulted in the formation of monomer and homodimer ion species. Two distinct species of homodimer were observed, one unliganded and one identified as a homodimer.glutathione complex. Activation of the enzyme by N-ethylmaleimide through modification of Cys(49) (Svensson, R., Rinaldi, R., Swedmark, S., and Morgenstern, R. (2000) Biochemistry 39, 15144-15149) was monitored by the observation of an appropriate increase in mass in both the denatured monomeric and native trimeric forms of MGST1. Together, the data correspond well with the proposed functional organization of MGST1. These results also represent the first example of direct electrospray mass spectrometry analysis of a detergent-solubilized multimeric membrane protein complex in its native state.
Collapse
Affiliation(s)
- Johan Lengqvist
- Department of Medical Biochemistry and Biophysics, Lüdwig Institute for Cancer Research, Stockholm, Sweden
| | | | | | | | | |
Collapse
|
43
|
Zhu MM, Rempel DL, Gross ML. Modeling data from titration, amide H/D exchange, and mass spectrometry to obtain protein-ligand binding constants. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2004; 15:388-397. [PMID: 14998541 DOI: 10.1016/j.jasms.2003.11.007] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2003] [Revised: 10/22/2003] [Accepted: 11/04/2003] [Indexed: 05/24/2023]
Abstract
We recently reported a new method for quantification of protein-ligand interaction by mass spectrometry, titration and H/D exchange (PLIMSTEX) for determining the binding stoichiometry and affinity of a wide range of protein-ligand interactions. Here we describe the method for analyzing the PLIMSTEX titration curves and evaluate the effect of various models on the precision and accuracy for determining binding constants using H/D exchange and a titration. The titration data were fitted using a 1:n protein:ligand sequential binding model, where n is the number of binding sites for the same ligand. An ordinary differential equation was used for the first time in calculating the free ligand concentration from the total ligand concentration. A nonlinear least squares regression method was applied to minimize the error between the calculated and the experimentally measured deuterium shift by varying the unknown parameters. A resampling method and second-order statistics were used to evaluate the uncertainties of the fitting parameters. The interaction of intestinal fatty-acid-binding protein (IFABP) with a fatty-acid carboxylate and that of calmodulin with Ca(2+) are used as two tests. The modeling process described here not only is a new tool for analyzing H/D exchange data acquired by ESI-MS, but also possesses novel aspects in modeling experimental titration data to determine the affinity of ligand binding.
Collapse
Affiliation(s)
- Mei M Zhu
- Department of Chemistry, Washington University, St, Louis, Missouri 63130, USA
| | | | | |
Collapse
|
44
|
Kol MA, de Kroon AIPM, Killian JA, de Kruijff B. Transbilayer Movement of Phospholipids in Biogenic Membranes. Biochemistry 2004; 43:2673-81. [PMID: 15005602 DOI: 10.1021/bi036200f] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Biogenic membranes contain the enzymes that synthesize the cell's membrane lipids, of which the phospholipids are the most widespread throughout nature. Being synthesized at and inserted into the cytoplasmic leaflet of biogenic membranes, the phospholipids must migrate to the opposite leaflet to ensure balanced growth of the membrane. In this review, the current knowledge of transbilayer movement of phospholipids in biogenic membranes is summarized and the available data are compared to what is known about lipid translocation in other membranes. On the basis of this, a mechanism is proposed, in which phospholipid translocation in biogenic membranes is mediated via membrane-spanning segments of a subset of proteins, characterized by a small number of transmembrane helices. We speculate that proteins of this subset facilitate lipid translocation via the protein-lipid interface, because they display more dynamic behavior and engage in less stable protein-lipid interactions than larger membrane proteins.
Collapse
Affiliation(s)
- Matthijs A Kol
- Department of Biochemistry of Membranes, Centre for Biomembranes and Lipid Enzymology, Institute of Biomembranes, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | | | | | | |
Collapse
|
45
|
Whitelegge JP, Gómez SM, Faull KF. Proteomics of membrane proteins. ADVANCES IN PROTEIN CHEMISTRY 2004; 65:271-307. [PMID: 12964373 DOI: 10.1016/s0065-3233(03)01023-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Affiliation(s)
- Julian P Whitelegge
- Pasarow Mass Spectrometry Laboratory, Department of Psychiatry and Biobehavioral Sciences, Department of Chemistry and Biochemistry, Neuropsychiatric Institute, University of California Los Angeles, Los Angeles, California 90095, USA
| | | | | |
Collapse
|
46
|
Yan X, Watson J, Ho PS, Deinzer ML. Mass Spectrometric Approaches Using Electrospray Ionization Charge States and Hydrogen-Deuterium Exchange for Determining Protein Structures and Their Conformational Changes. Mol Cell Proteomics 2004; 3:10-23. [PMID: 14623985 DOI: 10.1074/mcp.r300010-mcp200] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Electrospray ionization (ESI) mass spectrometry (MS) is a powerful analytical tool for elucidating structural details of proteins in solution especially when coupled with amide hydrogen/deuterium (H/D) exchange analysis. ESI charge-state distributions and the envelopes of charges they form from proteins can provide an abundance of information on solution conformations that is not readily available through other biophysical techniques such as near ultraviolet circular dichroism (CD) and tryptophan fluorescence. The most compelling reason for the use of ESI-MS over nuclear magnetic resonance (NMR) for measuring H/D after exchange is that larger proteins and lesser amounts of samples can be studied. In addition, MS can provide structural details on transient or folding intermediates that may not be accessible by CD, fluorescence, and NMR because these techniques measure the average properties of large populations of proteins in solution. Correlations between measured H/D and calculated parameters that are often available from crystallographic data can be used to extend the range of structural details obtained on proteins. Molecular dynamics and energy minimization by simulation techniques such as assisted model building with energy refinement (AMBER) force field can be very useful in providing structural models of proteins that rationalize the experimental H/D exchange results. Charge-state envelopes and H/D exchange information from ESI-MS data used complementarily with NMR and CD data provides the most powerful approach available to understanding the structures and dynamics of proteins in solution.
Collapse
Affiliation(s)
- Xuguang Yan
- Department of Chemistry, Oregon State University, Corvallis, OR 97331, USA
| | | | | | | |
Collapse
|
47
|
Abstract
There are many ways in which lipids can modulate the activity of membrane proteins. Simply a change in hydrophobic thickness of the lipid bilayer, for example, already can have various consequences for membrane protein organization and hence for activity. By using synthetic transmembrane peptides, it could be established that these consequences include peptide oligomerization, tilt of transmembrane segments, and reorientation of side chains, depending on the specific properties of the peptides and lipids used. The results illustrate the potential of the use of synthetic model peptides to establish general principles that govern interactions between membrane proteins and surrounding lipids.
Collapse
Affiliation(s)
- J Antoinette Killian
- Department of Biochemistry of Membranes, Center for Biomembranes and Lipid Enzymology, Institute of Biomembranes, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands.
| |
Collapse
|
48
|
Basyn F, Spies B, Bouffioux O, Thomas A, Brasseur R. Insertion of X-ray structures of proteins in membranes. J Mol Graph Model 2003; 22:11-21. [PMID: 12798387 DOI: 10.1016/s1093-3263(03)00122-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Few structures of membrane proteins are known and their relationships with the membrane are unclear. In a previous report, 20 X-ray structures of transmembrane proteins were analyzed in silico for their orientation in a 36A-thick membrane [J. Mol. Graph. Model. 20 (2001) 235]. In this paper, we use the same approach to analyze how the insertion of the X-ray structures varies with the bilayer thickness. The protein structures are kept constant and, at each membrane thickness, the protein is allowed to tilt and rotate in order to accommodate at their best. The conditions are said to be optimal when the energy of insertion is minimal. The results show that most helix bundles require thicker membranes than porin barrels. Moreover, in a few instances, the ideal membrane thickness is unrealistic with respect to natural membranes supporting that the X-ray structure requires adaptation to stabilize in membrane. For instance, the squalene cyclase could adapt by bending the side chains of its ring of lysine and arginine in order to increase the hydrophobic surface in contact with membranes. We analyzed the distribution of amino acids in the water, interface and acyl chain layers of the membrane and compared with the literature.
Collapse
Affiliation(s)
- Frederic Basyn
- Centre de Biophysique Moléculaire Numérique, Faculté Agronomique, 2 Passage des déportés, FSAGX, 5030, Gembloux, Belgium.
| | | | | | | | | |
Collapse
|
49
|
Demmers JAA, van Dalen A, de Kruijff B, Heck AJR, Killian JA. Interaction of the K+ channel KcsA with membrane phospholipids as studied by ESI mass spectrometry. FEBS Lett 2003; 541:28-32. [PMID: 12706814 DOI: 10.1016/s0014-5793(03)00282-5] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In this study we have used electrospray ionization mass spectrometry (ESI-MS) to investigate interactions between the bacterial K(+) channel KcsA and membrane phospholipids. KcsA was reconstituted into lipid vesicles of variable lipid composition. These vesicles were directly analyzed by ESI-MS or mixed with trifluoroethanol (TFE) before analysis. In the resulting mass spectra, non-covalent complexes of KcsA and phospholipids were observed with an interesting lipid specificity. The anionic phosphatidylglycerol (PG), and, to a lesser extent, the zwitterionic phosphatidylethanolamine (PE), which both are abundant bacterial lipids, were found to preferentially associate with KcsA as compared to the zwitterionic phosphatidylcholine (PC). These preferred interactions may reflect the differences in affinity of these phospholipids for KcsA in the membrane.
Collapse
Affiliation(s)
- Jeroen A A Demmers
- Department of Biochemistry of Membranes, Center for Biomembranes and Lipid Enzymology, Institute of Biomembranes, Utrecht University, The Netherlands.
| | | | | | | | | |
Collapse
|
50
|
Caputo GA, London E. Cumulative effects of amino acid substitutions and hydrophobic mismatch upon the transmembrane stability and conformation of hydrophobic alpha-helices. Biochemistry 2003; 42:3275-85. [PMID: 12641459 DOI: 10.1021/bi026697d] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The effects of amino acid substitutions upon the behavior of poly(Leu)-rich alpha-helices inserted into model membrane vesicles were investigated. One or two consecutive Leu residues in the hydrophobic core of the helix were substituted with A, F, G, S, D, K, H, P, GG, SS, PG, PP, KK, or DD residues. A Trp placed at the center of the sequence allowed assessment of peptide behavior via fluorescence emission lambda(max) and dual quenching analysis of Trp depth [Caputo, G. A., and London, E. (2003) Biochemistry 42, 3265-3274]. In vesicles composed of dioleoylphosphatidylcholine (DOPC), all of the peptides with single substitutions adopted a transmembrane (TM) state. Experiments were also performed in thicker bilayers composed of dierucoylphosphatidylcholine (DEuPC). In DEuPC vesicles TM states were destabilized by mismatch between helix length and bilayer thickness. Nevertheless, in DEuPC vesicles TM states were still prevalent for peptides with single substitutions, although less so for peptides with P, K, H, or D substitutions. In contrast to single substitutions, certain consecutive double substitutions strongly interfered with formation of TM states. In both DOPC and DEuPC vesicles DD and KK substitutions abolished the normal TM state, but GG and SS substitutions had little effect. In even wider bilayers, a SS substitution reduced the formation of a TM state. A peptide with a PP substitution maintained the TM state in DOPC vesicles, but in DEuPC vesicles the level of formation of the TM state was significantly reduced. Upon disruption of normal TM insertion peptides moved close to the bilayer surface, with the exception of the KK-substituted peptide in DOPC vesicles, which formed a truncated TM segment. These studies begin to provide a detailed relationship between sequence and the stability of TM insertion and show that the influence of insertion-destabilizing residues upon hydrophobic helices can be strongly modulated by properties such as mismatch. For certain helix-forming hydrophobic sequences, sensitivity to lipid structure may be sufficient to induce large conformational changes in vivo.
Collapse
Affiliation(s)
- Gregory A Caputo
- Department of Biochemistry and Cell Biology, Stony Brook University, State University of New York, Stony Brook, New York 11794-5215, USA
| | | |
Collapse
|