1
|
Matic Jelic I, Stokovic N, Ivanjko N, Pecina M, Kufner V, Bordukalo Niksic T, Vukicevic S. Systemic inhibition of bone morphogenetic protein 1.3 as a possible treatment for laminin-related congenital muscular dystrophy. INTERNATIONAL ORTHOPAEDICS 2025; 49:45-52. [PMID: 39621123 DOI: 10.1007/s00264-024-06389-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 11/26/2024] [Indexed: 01/07/2025]
Abstract
Congenital muscular dystrophy (CMD) is a group of rare neuromuscular disorders typically characterized by the onset of symptoms at birth or within the first two years of life. CMDs are relatively rare, but extremely severe pathological conditions currently without a safe and effective therapeutic solution. Merosin-deficient congenital muscular dystrophy type 1A (MDC1A) is among the most frequent CMDs and it is caused by mutations in the LAMA2 gene that encodes for the α2 chain of laminin-211 (merosin). Laminin-211 is a crucial constituent of the basement membrane that provides muscle fibre stability and signal transduction. Bone morphogenetic protein 1.3 (BMP1.3) is evolutionarily conserved and structurally related to mammalian Tolloid-like metalloproteinase (mTld) that is involved in the processing of procollagens, non-collagenous extracellular matrix proteins, and growth factor-related proteins. Recently, it has been shown that BMP1.3 is present in circulation and its levels are elevated in patients with chronic kidney failure, hepatic fibrosis, and acute myocardial infarction. It has been demonstrated that administering the BMP1.3 antibody ameliorated kidney, liver, and heart function in animal disease models. Furthermore, we observed highly enhanced BMP1.3 gene expression in the skeletal muscles of mice with congenital muscular dystrophy. Therefore, we hypothesize that BMP1.3 inhibition represents a novel therapeutic strategy for reversing the progression of CMD. The development of an anti-BMP1.3 therapy might lead to groundbreaking changes in CMD treatment and provide relief to numerous patients suffering from this disabling disease.
Collapse
Affiliation(s)
- Ivona Matic Jelic
- Laboratory for Mineralized Tissues, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Nikola Stokovic
- Laboratory for Mineralized Tissues, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Natalia Ivanjko
- Laboratory for Mineralized Tissues, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Marko Pecina
- Department of Orthopaedic Surgery, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Vera Kufner
- Laboratory for Mineralized Tissues, University of Zagreb School of Medicine, Zagreb, Croatia
| | | | - Slobodan Vukicevic
- Laboratory for Mineralized Tissues, University of Zagreb School of Medicine, Zagreb, Croatia.
| |
Collapse
|
2
|
Lorenzo-Gómez R, Miranda-Castro R, de Los Toyos JR, de-Los-Santos-Álvarez N, Lobo-Castañón MJ. Aptamers targeting a tumor-associated extracellular matrix component: The human mature collagen XIα1. Anal Chim Acta 2022; 1189:339206. [PMID: 34815029 DOI: 10.1016/j.aca.2021.339206] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 10/16/2021] [Accepted: 10/19/2021] [Indexed: 12/11/2022]
Abstract
The extracellular matrix (ECM) plays an essential role in tumor progression and invasion through its continuous remodeling. The growth of most carcinomas is associated with an excessive collagen deposition that provides the proper environment for tumor development and chemoresistance. The α1 chain of a minor human collagen, type XI, is overexpressed in some tumor stroma, but not found in normal stroma. To test the clinical utility of this collagen as a cancer biomarker, specific receptors are needed. Available antibodies do not show enough selectivity or are directed toward the propeptide region that is cleaved when the protein is released to the ECM. Here we show the selection of an aptamer for the specific C-telopeptide region using a 16-mer peptide as the target for the SELEX. The aptamer selected with a Kd of ∼25 nM was able to capture the collagen XI from cell lysates. It was also used for target detection in a mixed antibody-aptamer sandwich assay showing it can be useful for diagnostic purposes in biological fluids.
Collapse
Affiliation(s)
- Ramón Lorenzo-Gómez
- Departamento de Química Física y Analítica, Facultad de Química, Universidad de Oviedo, Av. Julián Clavería 8, 33006, Oviedo, Spain; Instituto de Investigación Sanitaria del Principado de Asturias, Avenida de Roma, 33011, Oviedo, Spain.
| | - Rebeca Miranda-Castro
- Departamento de Química Física y Analítica, Facultad de Química, Universidad de Oviedo, Av. Julián Clavería 8, 33006, Oviedo, Spain; Instituto de Investigación Sanitaria del Principado de Asturias, Avenida de Roma, 33011, Oviedo, Spain.
| | - Juan R de Los Toyos
- Instituto de Investigación Sanitaria del Principado de Asturias, Avenida de Roma, 33011, Oviedo, Spain; Departamento de Inmunología, Facultad de Medicina y Ciencias de La Salud, Universidad de Oviedo, Av. Julián Clavería 6, 33006, Oviedo, Spain.
| | - Noemí de-Los-Santos-Álvarez
- Departamento de Química Física y Analítica, Facultad de Química, Universidad de Oviedo, Av. Julián Clavería 8, 33006, Oviedo, Spain; Instituto de Investigación Sanitaria del Principado de Asturias, Avenida de Roma, 33011, Oviedo, Spain.
| | - María Jesús Lobo-Castañón
- Departamento de Química Física y Analítica, Facultad de Química, Universidad de Oviedo, Av. Julián Clavería 8, 33006, Oviedo, Spain; Instituto de Investigación Sanitaria del Principado de Asturias, Avenida de Roma, 33011, Oviedo, Spain.
| |
Collapse
|
3
|
Kruppa D, Peters F, Bornert O, Maler MD, Martin SF, Becker-Pauly C, Nyström A. Distinct contributions of meprins to skin regeneration after injury - Meprin α a physiological processer of pro-collagen VII. Matrix Biol Plus 2021; 11:100065. [PMID: 34435182 PMCID: PMC8377016 DOI: 10.1016/j.mbplus.2021.100065] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/28/2021] [Accepted: 05/03/2021] [Indexed: 02/07/2023] Open
Abstract
Meprins subtly support epidermal and dermal skin wound healing. Loss of both meprins reduces re-epithelialization and wound macrophage abundance. Meprin α is a physiological maturing proteinase of collagen VII. Meprins are reduced in recessive dystrophic epidermolysis bullosa skin.
Astacin-like proteinases (ALPs) are regulators of tissue and extracellular matrix (ECM) homeostasis. They convey this property through their ability to convert ECM protein pro-forms to functional mature proteins and by regulating the bioavailability of growth factors that stimulate ECM synthesis. The most studied ALPs in this context are the BMP-1/tolloid-like proteinases. The other subclass of ALPs in vertebrates – the meprins, comprised of meprin α and meprin β – are emerging as regulators of tissue and ECM homeostasis but have so far been only limitedly investigated. Here, we functionally assessed the roles of meprins in skin wound healing using mice genetically deficient in one or both meprins. Meprin deficiency did not change the course of macroscopic wound closure. However, subtle but distinct contributions of meprins to the healing process and dermal homeostasis were observed. Loss of both meprins delayed re-epithelialization and reduced macrophage infiltration. Abnormal dermal healing and ECM regeneration was observed in meprin deficient wounds. Our analyses also revealed meprin α as one proteinase responsible for maturation of pro-collagen VII to anchoring fibril-forming-competent collagen VII in vivo. Collectively, our study identifies meprins as subtle players in skin wound healing.
Collapse
Key Words
- ALP, astacin-like proteinase
- BSA, bovine serum albumine
- BTP, BMP-1/tolloid-like proteinase
- DAPI, 4′-,6-diamidino-2-phenylindole
- DEJ, dermal epidermal junction
- DMEM, Dulbecco’s modified Eagle’s medium
- Dystrophic epidermolysis bullosa
- ECM, extracellular matrix
- Extracellular matrix
- FA, formic acid
- FBS, fetal bovine serum
- Fibrosis
- Inflammation
- NC, non-collagenous
- PBS, phosphate-buffered saline
- TBS, tris-buffered saline
- WT, wild type
- Wound healing
- qPCR, quantitative polymerase chain reaction
- αSMA, α-smooth muscle actin
Collapse
Affiliation(s)
- Daniel Kruppa
- Department of Dermatology, Faculty of Medicine and Medical Center - University of Freiburg, Germany.,Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Florian Peters
- Biochemical Institute, Christian-Albrechts-University Kiel, Germany.,Laboratory for Retinal Cell Biology, Department of Ophthalmology, University Hospital Zurich, University of Schlieren / Zurich, Schlieren, Zurich, Switzerland
| | - Olivier Bornert
- Department of Dermatology, Faculty of Medicine and Medical Center - University of Freiburg, Germany
| | - Mareike D Maler
- Department of Dermatology, Faculty of Medicine and Medical Center - University of Freiburg, Germany.,Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Stefan F Martin
- Department of Dermatology, Faculty of Medicine and Medical Center - University of Freiburg, Germany
| | | | - Alexander Nyström
- Department of Dermatology, Faculty of Medicine and Medical Center - University of Freiburg, Germany
| |
Collapse
|
4
|
Pehrsson M, Mortensen JH, Manon-Jensen T, Bay-Jensen AC, Karsdal MA, Davies MJ. Enzymatic cross-linking of collagens in organ fibrosis - resolution and assessment. Expert Rev Mol Diagn 2021; 21:1049-1064. [PMID: 34330194 DOI: 10.1080/14737159.2021.1962711] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Introduction: Enzymatic cross-linking of the collagens within the extracellular matrix (ECM) catalyzed by enzymes such as lysyl oxidase (LOX) and lysyl oxidase like-enzymes 1-4 (LOXL), transglutaminase 2 (TG2), and peroxidasin (PXDN) contribute to fibrosis progression through extensive collagen cross-linking. Studies in recent years have begun elucidating the important role of collagen cross-linking in perpetuating progression of organ fibrosis independently of inflammation through an increasingly stiff and noncompliant ECM. Therefore, collagen cross-linking and the cross-linking enzymes have become new targets in anti-fibrotic therapy as well as targets of novel biomarkers to properly assess resolution of the fibrotic ECM.Areas covered: The enzymatic actions of enzymes catalyzing collagen cross-linking and their relevance in organ fibrosis. Potential biomarkers specifically quantifying proteolytic fragments of collagen cross-linking is discussed based on Pubmed search done in November 2020 as well as the authors knowledge.Expert opinion: Current methods for the assessment of fibrosis involve the use of invasive and/or cumbersome and expensive methods such as tissue biopsies. Thus, an unmet need exists for the development and validation of minimally invasive biomarkers of proteolytic fragments of cross-linked collagens. These biomarkers may aid in the development and proper assessment of fibrosis resolution in coming years.
Collapse
Affiliation(s)
- Martin Pehrsson
- Department of Biomedical Science, University of Copenhagen, Copenhagen, Denmark.,Biomarkers & Research, Nordic Bioscience A/S, Herlev, Denmark
| | | | | | | | | | | |
Collapse
|
5
|
BMP-1/tolloid-like proteinases synchronize matrix assembly with growth factor activation to promote morphogenesis and tissue remodeling. Matrix Biol 2015; 44-46:14-23. [DOI: 10.1016/j.matbio.2015.02.006] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 02/10/2015] [Accepted: 02/10/2015] [Indexed: 11/20/2022]
|
6
|
Mayilswami S, Krishnan K, Megharaj M, Naidu R. Chronic PFOS exposure alters the expression of neuronal development-related human homologues in Eisenia fetida. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2014; 110:288-297. [PMID: 25285771 DOI: 10.1016/j.ecoenv.2014.09.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Revised: 09/13/2014] [Accepted: 09/15/2014] [Indexed: 06/03/2023]
Abstract
PFOS is a toxic, persistent environmental pollutant which is widespread worldwide. PFOS contamination has entered the food chain and is interfering with normal development in man and is neurotoxic, hepatotoxic and tumorigenic. The earthworm, Eisenia fetida is one of the organisms which can help to diagnose soil health and contamination at lower levels in the food chain. Studying the chronic effects of sub-lethal PFOS exposure in such an organism is therefore appropriate. As PFOS bioaccumulates and is not easily biodegraded, it is biomagnified up the food chain. Gene expression studies will give us information to develop biomarkers for early diagnosis of soil contamination, well before this contaminant passes up the food chain. We have carried out mRNA sequencing of control and chronically PFOS exposed E. fetida and reconstructed the transcripts in silico and identified the differentially expressed genes. Our findings suggest that PFOS up/down regulates neurodegenerative-related human homologues and can cause neuronal damage in E. fetida. This information will help to understand the links between neurodegenerative disorders and environmental pollutants such as PFOS. Furthermore, these up/down regulated genes can be used as biomarkers to detect a sub-lethal presence of PFOS in soil. Neuronal calcium sensor-2, nucleoside diphosphate kinase, polyadenylate-binding protein-1 and mitochondrial Pyruvate dehydrogenase protein-X component, could be potential biomarkers for sub lethal concentrations of PFOS.
Collapse
Affiliation(s)
- Srinithi Mayilswami
- Centre for Environmental Risk Assessment and Remediation, University of South Australia & CRC CARE, Mawson Lakes, Adelaide 5095, SA, Australia
| | - Kannan Krishnan
- Centre for Environmental Risk Assessment and Remediation, University of South Australia & CRC CARE, Mawson Lakes, Adelaide 5095, SA, Australia.
| | - Mallavarapu Megharaj
- Centre for Environmental Risk Assessment and Remediation, University of South Australia & CRC CARE, Mawson Lakes, Adelaide 5095, SA, Australia
| | - Ravi Naidu
- Centre for Environmental Risk Assessment and Remediation, University of South Australia & CRC CARE, Mawson Lakes, Adelaide 5095, SA, Australia
| |
Collapse
|
7
|
Chun JS, Hong R, Kim JA. Osseous metaplasia with mature bone formation of the thyroid gland: Three case reports. Oncol Lett 2013; 6:977-979. [PMID: 24137448 PMCID: PMC3796393 DOI: 10.3892/ol.2013.1475] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Accepted: 07/10/2013] [Indexed: 11/06/2022] Open
Abstract
Nodular hyperplasia (nodular or multinodular goiter) is the most common form of thyroid disease. These nodules may undergo secondary changes in the form of hemorrhages, calcification and cystic degeneration. However, osseous metaplasia with mature bone formation rarely occurs. The present study reports the cases of three female patients with thyroid nodules diagnosed as nodular hyperplasia with osseous metaplasia and mature bone formation. The patients underwent right lobectomy, near total thyroidectomy and total thyroidectomy, respectively. The clinical course of the patients following resection were unremarkable.
Collapse
Affiliation(s)
- Ji-Sun Chun
- Department of Plastic Surgery, College of Medicine, Chosun University, Gwangju, Donggu 501-759, South Korea
| | | | | |
Collapse
|
8
|
Skeletal diseases caused by mutations that affect collagen structure and function. Int J Biochem Cell Biol 2013; 45:1556-67. [DOI: 10.1016/j.biocel.2013.05.017] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Revised: 05/13/2013] [Accepted: 05/14/2013] [Indexed: 12/15/2022]
|
9
|
Yang C, Park AC, Davis NA, Russell JD, Kim B, Brand DD, Lawrence MJ, Ge Y, Westphall MS, Coon JJ, Greenspan DS. Comprehensive mass spectrometric mapping of the hydroxylated amino acid residues of the α1(V) collagen chain. J Biol Chem 2012; 287:40598-610. [PMID: 23060441 DOI: 10.1074/jbc.m112.406850] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND α1(V) is an extensively modified collagen chain important in disease. RESULTS Comprehensive mapping of α1(V) post-translational modifications reveals unexpectedly large numbers of X-position hydroxyprolines in Gly-X-Y amino acid triplets. CONCLUSION The unexpected abundance of X-position hydroxyprolines suggests a mechanism for differential modification of collagen properties. SIGNIFICANCE Positions, numbers, and occupancy of modified sites can provide insights into α1(V) biological properties. Aberrant expression of the type V collagen α1(V) chain can underlie the connective tissue disorder classic Ehlers-Danlos syndrome, and autoimmune responses against the α1(V) chain are linked to lung transplant rejection and atherosclerosis. The α1(V) collagenous COL1 domain is thought to contain greater numbers of post-translational modifications (PTMs) than do similar domains of other fibrillar collagen chains, PTMs consisting of hydroxylated prolines and lysines, the latter of which can be glycosylated. These types of PTMs can contribute to epitopes that underlie immune responses against collagens, and the high level of PTMs may contribute to the unique biological properties of the α1(V) chain. Here we use high resolution mass spectrometry to map such PTMs in bovine placental α1(V) and human recombinant pro-α1(V) procollagen chains. Findings include the locations of those PTMs that vary and those PTMs that are invariant between these α1(V) chains from widely divergent sources. Notably, an unexpectedly large number of hydroxyproline residues were mapped to the X-positions of Gly-X-Y triplets, contrary to expectations based on previous amino acid analyses of hydrolyzed α1(V) chains from various tissues. We attribute this difference to the ability of tandem mass spectrometry coupled to nanoflow chromatographic separations to detect lower-level PTM combinations with superior sensitivity and specificity. The data are consistent with the presence of a relatively large number of 3-hydroxyproline sites with less than 100% occupancy, suggesting a previously unknown mechanism for the differential modification of α1(V) chain and type V collagen properties.
Collapse
Affiliation(s)
- Chenxi Yang
- Department of Chemistry, University of Wisconsin, Madison, WI 53706, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Bijakowski C, Vadon-Le Goff S, Delolme F, Bourhis JM, Lécorché P, Ruggiero F, Becker-Pauly C, Yiallouros I, Stöcker W, Dive V, Hulmes DJS, Moali C. Sizzled is unique among secreted frizzled-related proteins for its ability to specifically inhibit bone morphogenetic protein-1 (BMP-1)/tolloid-like proteinases. J Biol Chem 2012; 287:33581-93. [PMID: 22825851 DOI: 10.1074/jbc.m112.380816] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
BMP-1/tolloid-like proteinases (BTPs) are major enzymes involved in extracellular matrix assembly and activation of bioactive molecules, both growth factors and anti-angiogenic molecules. Although the control of BTP activity by several enhancing molecules is well established, the possibility that regulation also occurs through endogenous inhibitors is still debated. Secreted frizzled-related proteins (sFRPs) have been studied as possible candidates, with highly contradictory results, after the demonstration that sizzled, a sFRP found in Xenopus and zebrafish, was a potent inhibitor of Xenopus and zebrafish tolloid-like proteases. In this study, we demonstrate that mammalian sFRP-1, -2, and -4 do not modify human BMP-1 activity on several of its known substrates including procollagen I, procollagen III, pN-collagen V, and prolysyl oxidase. In contrast, Xenopus sizzled appears as a tight binding inhibitor of human BMP-1, with a K(i) of 1.5 ± 0.5 nM, and is shown to strongly inhibit other human tolloid isoforms mTLD and mTLL-1. Because sizzled is the most potent inhibitor of human tolloid-like proteinases known to date, we have studied its mechanism of action in detail and shown that the frizzled domain of sizzled is both necessary and sufficient for inhibitory activity and that it acts directly on the catalytic domain of BMP-1. Residues in sizzled required for inhibition include Asp-92, which is shared by sFRP-1 and -2, and also Phe-94, Ser-43, and Glu-44, which are specific to sizzled, thereby providing a rational basis for the absence of inhibitory activity of human sFRPs.
Collapse
Affiliation(s)
- Cécile Bijakowski
- Institut de Biologie et Chimie des Protéines, CNRS/Université de Lyon FRE3310/FR3302, 69367 Lyon cedex 7, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Identification of binding partners interacting with the α1-N-propeptide of type V collagen. Biochem J 2011; 433:371-81. [PMID: 20979576 DOI: 10.1042/bj20101061] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The predominant form of type V collagen is the [α1(V)]₂α2(V) heterotrimer. Mutations in COL5A1 or COL5A2, encoding respectively the α1(V)- and α2(V)-collagen chain, cause classic EDS (Ehlers-Danlos syndrome), a heritable connective tissue disorder, characterized by fragile hyperextensible skin and joint hypermobility. Approximately half of the classic EDS cases remain unexplained. Type V collagen controls collagen fibrillogenesis through its conserved α1(V)-N-propeptide domain. To gain an insight into the role of this domain, a yeast two-hybrid screen among proteins expressed in human dermal fibroblasts was performed utilizing the N-propeptide as a bait. We identified 12 interacting proteins, including extracellular matrix proteins and proteins involved in collagen biosynthesis. Eleven interactions were confirmed by surface plasmon resonance and/or co-immunoprecipitation: α1(I)- and α2(I)-collagen chains, α1(VI)-, α2(VI)- and α3(VI)-collagen chains, tenascin-C, fibronectin, PCPE-1 (procollagen C-proteinase enhancer-1), TIMP-1 (tissue inhibitor of metalloproteinases-1), MMP-2 (matrix metalloproteinase 2) and TGF-β1 (transforming growth factor β1). Solid-phase binding assays confirmed the involvement of the α1(V)-N-propeptide in the interaction between native type V collagen and type VI collagen, suggesting a bridging function of this protein complex in the cell-matrix environment. Enzymatic studies showed that processing of the α1(V)-N-propeptide by BMP-1 (bone morphogenetic protein 1)/procollagen C-proteinase is enhanced by PCPE-1. These interactions are likely to be involved in extracellular matrix homoeostasis and their disruption could explain the pathogenetic mechanism in unresolved classic EDS cases.
Collapse
|
12
|
The collagen V homotrimer [alpha1(V)](3) production is unexpectedly favored over the heterotrimer [alpha1(V)](2)alpha2(V) in recombinant expression systems. J Biomed Biotechnol 2010; 2010:376927. [PMID: 20625483 PMCID: PMC2896673 DOI: 10.1155/2010/376927] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2009] [Revised: 03/19/2010] [Accepted: 03/20/2010] [Indexed: 11/30/2022] Open
Abstract
Collagen V, a fibrillar collagen with important functions in tissues, assembles into distinct
chain associations. The most abundant and ubiquitous molecular form is the heterotrimer
[α1(V)]2α2(V). In the attempt to produce high levels of recombinant collagen V heterotrimer
for biomedical device uses, and to identify key factors that drive heterotrimeric chain
association, several cell expression systems (yeast, insect, and mammalian cells) have been
assayed by cotransfecting the human proα1(V) and proα2(V) chain cDNAs. Suprisingly, in
all recombinant expression systems, the formation of [α1(V)]3 homotrimers was considerably favored over the heterotrimer. In addition, pepsin-sensitive proα2(V) chains were found in HEK-293 cell media indicating that these cells lack quality control proteins preventing
collagen monomer secretion. Additional transfection with Hsp47 cDNA, encoding the
collagen-specific chaperone Hsp47, did not increase heterotrimer production. Double
immunofluorescence with antibodies against collagen V α-chains showed that, contrary to fibroblasts, collagen V α-chains did not colocalized intracellularly in transfected cells. Monensin treatment had no effect on the heterotrimer production. The heterotrimer production seems to require specific machinery proteins, which are not endogenously
expressed in the expression systems. The different constructs and transfected cells we have
generated represent useful tools to further investigate the mechanisms of collagen trimer
assembly.
Collapse
|
13
|
Maruhashi T, Kii I, Saito M, Kudo A. Interaction between periostin and BMP-1 promotes proteolytic activation of lysyl oxidase. J Biol Chem 2010; 285:13294-303. [PMID: 20181949 DOI: 10.1074/jbc.m109.088864] [Citation(s) in RCA: 214] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Intra- and intermolecular covalent cross-linking between collagen fibrils, catalyzed by lysyl oxidase (LOX), determines the mechanical properties of connective tissues; however, mechanisms that regulate the collagen cross-linking according to tissue specificity are not well understood. Here we show that periostin, a secretory protein in the dense connective tissues, promotes the activation of LOX. Previous studies showed that periostin null mice exhibit reduced collagen cross-linking in their femurs, periosteum, infarcted myocardium, and tendons. Presently, we showed that active LOX protein, formed by cleavage of its propeptide by bone morphogenetic protein-1 (BMP-1), was decreased in calvarial osteoblast cells derived from periostin null mice. Overexpression of periostin promoted the proteolytic cleavage of the propeptide, which increased the amount of active LOX protein. The results of co-immunoprecipitation and solid phase binding assays revealed that periostin interacted with BMP-1. Furthermore, this interaction probably resulted in enhanced deposition of BMP-1 on the extracellular matrix, suggesting that this enhanced deposition would lead to cleavage of the propeptide of LOX. Thus, we demonstrated that periostin supported BMP-1-mediated proteolytic activation of LOX on the extracellular matrix, which promoted collagen cross-linking.
Collapse
Affiliation(s)
- Takumi Maruhashi
- Department of Biological Information, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan
| | | | | | | |
Collapse
|
14
|
Hoffman GG, Branam AM, Huang G, Pelegri F, Cole WG, Wenstrup RM, Greenspan DS. Characterization of the six zebrafish clade B fibrillar procollagen genes, with evidence for evolutionarily conserved alternative splicing within the pro-alpha1(V) C-propeptide. Matrix Biol 2010; 29:261-75. [PMID: 20102740 DOI: 10.1016/j.matbio.2010.01.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2009] [Revised: 01/13/2010] [Accepted: 01/19/2010] [Indexed: 11/26/2022]
Abstract
Genes for tetrapod fibrillar procollagen chains can be divided into two clades, A and B, based on sequence homologies and differences in protein domain and gene structures. Although the major fibrillar collagen types I-III comprise only clade A chains, the minor fibrillar collagen types V and XI comprise both clade A chains and the clade B chains pro-alpha1(V), pro-alpha3(V), pro-alpha1(XI) and pro-alpha2(XI), in which defects can underlie various genetic connective tissue disorders. Here we characterize the clade B procollagen chains of zebrafish. We demonstrate that in contrast to the four tetrapod clade B chains, zebrafish have six clade B chains, designated here as pro-alpha1(V), pro-alpha3(V)a and b, pro-alpha1(XI)a and b, and pro-alpha2(XI), based on synteny, sequence homologies, and features of protein domain and gene structures. Spatiotemporal expression patterns are described, as are conserved and non-conserved features that provide insights into the function and evolution of the clade B chain types. Such features include differential alternative splicing of NH(2)-terminal globular sequences and the first case of a non-triple helical imperfection in the COL1 domain of a clade B, or clade A, fibrillar procollagen chain. Evidence is also provided for previously unknown and evolutionarily conserved alternative splicing within the pro-alpha1(V) C-propeptide, which may affect selectivity of collagen type V/XI chain associations in species ranging from zebrafish to human. Data presented herein provide insights into the nature of clade B procollagen chains and should facilitate their study in the zebrafish model system.
Collapse
Affiliation(s)
- Guy G Hoffman
- Department of Pathology and Laboratory Medicine, University of Wisconsin, Madison, WI 53706, USA
| | | | | | | | | | | | | |
Collapse
|
15
|
Bai Y, Zhou G, Nakamura M, Ozaki T, Mori I, Taniguchi E, Miyauchi A, Ito Y, Kakudo K. Survival impact of psammoma body, stromal calcification, and bone formation in papillary thyroid carcinoma. Mod Pathol 2009; 22:887-94. [PMID: 19305382 DOI: 10.1038/modpathol.2009.38] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The presence of calcification is the most significant ultrasonographic finding in evaluating thyroid nodules. Calcifications are more frequently detected in papillary thyroid carcinoma than in other thyroid lesions. However, the clinical significance of calcification, including clinical correlations and impact on survival, and the molecular mechanism responsible for calcification in papillary thyroid carcinoma remain uncertain. We performed a retrospective study of patients with primary common-type papillary thyroid carcinoma to determine the clinical correlations of calcification and its impact on survival. Histologically, calcification was classified as either psammoma bodies, stromal calcification, or bone formation. They were identified in 25, 47, and 13% of all 229 cases of papillary thyroid carcinoma, respectively. The presence of psammoma bodies was significantly correlated with gross lymph node metastasis and stage grouping. Both stromal calcification and bone formation were significantly correlated with patient age. In addition, stromal calcification was associated with pT classification and gross lymph node metastasis. Papillary thyroid carcinoma with, compared to that without, psammoma bodies was associated with poorer disease-free survival. We examined the quantitative expression of BMP-1, a metalloproteinase that is reported to be involved in bone and extracellular matrix formations, and found that its expression was significantly higher in tumors with psammoma bodies or with stromal calcification (P=0.0464 and 0.0272, respectively). These results suggest that the presence of psammoma bodies is a useful predictor of outcome for patients suffering from papillary thyroid carcinoma.
Collapse
Affiliation(s)
- Yanhua Bai
- Department of Pathology, Wakayama Medical University, Wakayama, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Ruggiero F, Koch M. Making recombinant extracellular matrix proteins. Methods 2008; 45:75-85. [DOI: 10.1016/j.ymeth.2008.01.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2008] [Accepted: 01/30/2008] [Indexed: 11/16/2022] Open
|
17
|
Bonod-Bidaud C, Beraud M, Vaganay E, Delacoux F, Font B, Hulmes D, Ruggiero F. Enzymatic cleavage specificity of the proalpha1(V) chain processing analysed by site-directed mutagenesis. Biochem J 2007; 405:299-306. [PMID: 17407447 PMCID: PMC1904530 DOI: 10.1042/bj20070051] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The proteolytic processing of procollagen V is complex and depends on the activity of several enzymes among which the BMP-1 (bone morphogenetic protein-1)/tolloid metalloproteinase and the furin-like proprotein convertases. Few of these processing interactions could have been predicted by analysing the presence of conserved consensus sequences in the proalpha1(V) chain. In the present study we opted for a cell approach that allows a straightforward identification of processing interactions. A construct encompassing the complete N-terminal end of the proalpha1(V) chain, referred to as Nalpha1, was recombinantly expressed to be used for enzymatic assays and for antibody production. Structural analysis showed that Nalpha1 is a monomer composed of a compact globule and an extended tail, which correspond respectively to the non-collagenous Nalpha1 subdomains, TSPN-1 (thrombospondin-1 N-terminal domain-like) and the variable region. Nalpha1 was efficiently cleaved by BMP-1 indicating that the triple helix is not required for enzyme activity. By mutating residues flanking the cleavage site, we showed that the aspartate residue at position P2' is essential for BMP-1 activity. BMP-1 activity at the C-terminal end of the procollagen V was assessed by generating a furin double mutant (R1584A/R1585A). We showed that, in absence of furin activity, BMP-1 is capable of processing the C-propeptide even though less efficiently than furin. Altogether, our results provide new relevant information on this complex and poorly understood mechanism of enzymatic processing in procollagen V function.
Collapse
Affiliation(s)
- Christelle Bonod-Bidaud
- *Université de Lyon, Université Lyon 1, Lyon France
- †Institut de Biologie et Chimie des Protéines, UMR 5086 CNRS – Université Lyon 1, 7 passage du Vercors, 69367 Lyon Cedex 07, France
- ‡IFR 128 BioSciences Lyon-Gerland, 7 Passage du Vercors, 69367 Lyon Cedex 07, France
| | - Mickaël Beraud
- *Université de Lyon, Université Lyon 1, Lyon France
- †Institut de Biologie et Chimie des Protéines, UMR 5086 CNRS – Université Lyon 1, 7 passage du Vercors, 69367 Lyon Cedex 07, France
- ‡IFR 128 BioSciences Lyon-Gerland, 7 Passage du Vercors, 69367 Lyon Cedex 07, France
| | - Elisabeth Vaganay
- *Université de Lyon, Université Lyon 1, Lyon France
- †Institut de Biologie et Chimie des Protéines, UMR 5086 CNRS – Université Lyon 1, 7 passage du Vercors, 69367 Lyon Cedex 07, France
- ‡IFR 128 BioSciences Lyon-Gerland, 7 Passage du Vercors, 69367 Lyon Cedex 07, France
| | - Frédéric Delacoux
- *Université de Lyon, Université Lyon 1, Lyon France
- †Institut de Biologie et Chimie des Protéines, UMR 5086 CNRS – Université Lyon 1, 7 passage du Vercors, 69367 Lyon Cedex 07, France
- ‡IFR 128 BioSciences Lyon-Gerland, 7 Passage du Vercors, 69367 Lyon Cedex 07, France
| | - Bernard Font
- *Université de Lyon, Université Lyon 1, Lyon France
- †Institut de Biologie et Chimie des Protéines, UMR 5086 CNRS – Université Lyon 1, 7 passage du Vercors, 69367 Lyon Cedex 07, France
- ‡IFR 128 BioSciences Lyon-Gerland, 7 Passage du Vercors, 69367 Lyon Cedex 07, France
| | - David J. S. Hulmes
- *Université de Lyon, Université Lyon 1, Lyon France
- †Institut de Biologie et Chimie des Protéines, UMR 5086 CNRS – Université Lyon 1, 7 passage du Vercors, 69367 Lyon Cedex 07, France
- ‡IFR 128 BioSciences Lyon-Gerland, 7 Passage du Vercors, 69367 Lyon Cedex 07, France
| | - Florence Ruggiero
- *Université de Lyon, Université Lyon 1, Lyon France
- †Institut de Biologie et Chimie des Protéines, UMR 5086 CNRS – Université Lyon 1, 7 passage du Vercors, 69367 Lyon Cedex 07, France
- ‡IFR 128 BioSciences Lyon-Gerland, 7 Passage du Vercors, 69367 Lyon Cedex 07, France
- To whom correspondence should be addressed (email )
| |
Collapse
|
18
|
Abstract
Collagens are abundant proteins in higher organisms, and are formed by a complex biosynthetic pathway involving intracellular and extracellular post-translational modifications. Starting from simple soluble precursors, this interesting pathway produces insoluble functional fibrillar and non-fibrillar elements of the extracellular matrix. The present review highlights recent progress and new insights into biological regulation of extracellular procollagen processing, and some novel functions of byproducts of these extracellular enzymatic transformations. These findings underscore the notion that released propeptides and other proteolytic products of extracellular matrix proteins have important biological functions, and that structural proteins are multifunctional. An emerging concept is that a dynamic interplay exists between extracellular products and byproducts with cells that helps to maintain normal cellular phenotypes and tissue integrity.
Collapse
Affiliation(s)
- Philip C Trackman
- Boston University Goldman School of Dental Medicine, Division of Oral Biology, Boston, Massachusetts 02118, USA.
| |
Collapse
|
19
|
Colige A, Ruggiero F, Vandenberghe I, Dubail J, Kesteloot F, Van Beeumen J, Beschin A, Brys L, Lapière CM, Nusgens B. Domains and Maturation Processes That Regulate the Activity of ADAMTS-2, a Metalloproteinase Cleaving the Aminopropeptide of Fibrillar Procollagens Types I–III and V. J Biol Chem 2005; 280:34397-408. [PMID: 16046392 DOI: 10.1074/jbc.m506458200] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Processing of fibrillar collagens is required to generate collagen monomers able to self-assemble into elongated and cylindrical collagen fibrils. ADAMTS-2 belongs to the "A disintegrin and metalloproteinase with thrombospondin type 1 motifs" (ADAMTS) family. It is responsible for most of the processing of the aminopropeptide of type I procollagen in the skin, and it also cleaves type II and type III procollagens. ADAMTS are complex secreted enzymes that are implicated in various physiological and pathological processes. Despite accumulating evidence indicating that their activity is regulated by ancillary domains, additional information is required for a better understanding of the specific function of each domain. We have generated 17 different recombinant forms of bovine ADAMTS-2 and characterized their processing, activity, and cleavage specificity. The results indicated the following: (i) activation of the ADAMTS-2 zymogen involves several cleavages, by proprotein convertases and C-terminal processing, and generates at least seven distinct processed forms; (ii) the C-terminal domain negatively regulates enzyme activity, whereas two thrombospondin type 1 repeats are enhancer regulators; (iii) the 104-kDa form displays the highest aminoprocollagen peptidase activity on procollagen type I; (iv) ADAMTS-2 processes the aminopropeptide of alpha1 type V procollagen homotrimer at the end of the variable domain; and (v) the cleaved sequence (PA) is different from the previously described sites ((P/A)Q) for ADAMTS-2, redefining its cleavage specificity. This finding and the existence of multiple processed forms of ADAMTS-2 strongly suggest that ADAMTS-2 may be involved in function(s) other than processing of fibrillar procollagen types I-III.
Collapse
Affiliation(s)
- Alain Colige
- Laboratory of Connective Tissues Biology, Center of Biomedical Integrative Genoproteomics, University of Liège, B-4000 SartTilman, Belgium
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Ivanova L, Brändli J, Saudan P, Bachmann MF. Hybrid Sindbis/Epstein-Barr virus episomal expression vector for inducible production of proteins. Biotechniques 2005; 39:209-12. [PMID: 16116794 DOI: 10.2144/05392st03] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Alphavirus vectors are attractive as recombinant protein expression systems due to the high level of gene expression achieved. The combination of two mutations in the viral replicase, which render the replicase noncytopathic and temperature-sensitive, allowed the generation of a DNA-based vector (CytTs) that shows temperature inducible expression. This vector is of significant value for the production of toxic protein. However, like for other stable expression systems, tedious screening of individual cell clones are required in order to get a high producer cell clone. To circumvent this, we generated an episomally replicating vector by introducing an Epstein-Barr virus mini-replicon unit into CytTs. This novel vector allowed rapid generation of cell populations that showed tight regulation of expression and comparable expression levels to the ones achieved with high producer cell clones with CytTs. Moreover, protein production with selected cell populations could easily be scaled-up to a fermentation process.
Collapse
|
21
|
Moali C, Font B, Ruggiero F, Eichenberger D, Rousselle P, François V, Oldberg A, Bruckner-Tuderman L, Hulmes DJS. Substrate-specific Modulation of a Multisubstrate Proteinase. J Biol Chem 2005; 280:24188-94. [PMID: 15834133 DOI: 10.1074/jbc.m501486200] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Members of the bone morphogenetic protein-1/tolloid (BMP-1/Tld) family of metalloproteinases, also known as procollagen C-proteinases (PCPs), control multiple biological events (including matrix assembly, cross-linking, cell adhesion/migration and pattern formation) through enzymatic processing of several extracellular substrates. PCP activities on fibrillar procollagens can be stimulated by another family of extracellular proteins, PCP enhancers (PCPE-1, PCPE-2), which lack intrinsic enzymatic activity. While PCPs have multiple substrates, the extent to which PCPEs is involved in the processing of proteins other than fibrillar procollagens is unknown. In the experiments reported here, PCPE-1 was found to have no effect on the in vitro BMP-1 processing of procollagen VII, the procollagen V N-propeptide, the laminin 5 gamma2 chain, osteoglycin, prolysyl oxidase, or chordin. In contrast, PCPE-1 enhanced C-terminal processing of human fibrillar procollagen III but only when this substrate was in its native, disulfide-bonded conformation. Surprisingly, processing of procollagen III continued to be enhanced when essentially all the triple-helical region was removed. These and previous results (Ricard-Blum, S., Bernocco, S., Font, B., Moali, C., Eichenberger, D., Farjanel, J., Burchardt, E. R., van der Rest, M., Kessler, E., and Hulmes, D. J. S. (2002) J. Biol. Chem. 277, 33864-33869; Bernocco, S., Steiglitz, B. M., Svergun, D. I., Petoukhov, M. V., Ruggiero, F., Ricard-Blum, S., Ebel, C., Geourjon, C., Deleage, G., Font, B., Eichenberger, D., Greenspan, D. S., and Hulmes, D. J. S. (2003) J. Biol. Chem. 278, 7199-7205) indicate that the mechanism of PCPE-1 action involves recognition sites in both the C-propeptide domain and in the C-telopeptide region of the procollagen molecule. PCPEs therefore define a new class of extracellular adaptor proteins that stimulate proteinase activity in a substrate-specific manner, thereby providing a new target for the selective regulation of PCP activity on fibrillar procollagen substrates.
Collapse
Affiliation(s)
- Catherine Moali
- IFR 128 Biosciences Lyon-Gerland, Institut de Biologie et Chimie des Protéines, CNRS/UCBL1 UMR 5086, 69367 Lyon cedex 7, France
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Hong HH, Pischon N, Santana RB, Palamakumbura AH, Chase HB, Gantz D, Guo Y, Uzel MI, Ma D, Trackman PC. A role for lysyl oxidase regulation in the control of normal collagen deposition in differentiating osteoblast cultures. J Cell Physiol 2004; 200:53-62. [PMID: 15137057 DOI: 10.1002/jcp.10476] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Differentiation of phenotypically normal osteoblast cultures leads to formation of a bone-like extracellular matrix in vitro. Maximum collagen synthesis occurs early in the life of these cultures, whereas insoluble collagen deposition occurs later and is accompanied by a diminished rate of collagen synthesis. The mechanisms that control collagen deposition seem likely to include regulation of extracellular collagen biosynthetic enzymes, but expression patterns of these enzymes in differentiating osteoblasts has received little attention. The present study determined the regulation of lysyl oxidase as a function of differentiation of phenotypically normal murine MC3T3-E1 cells at the level of RNA and protein expression and enzyme activity. In addition, the regulation of BMP-1/mTLD mRNA levels that encodes procollagen C-proteinases was assayed. The role of lysyl oxidase in controlling insoluble collagen accumulation was further investigated in inhibition studies utilizing beta-aminopropionitrile, a specific inhibitor of lysyl oxidase enzyme activity. Results indicate that lysyl oxidase is regulated as a function of differentiation of MC3T3-E1 cells, and that the maximum increase in lysyl oxidase activity precedes the most efficient phase of insoluble collagen accumulation. By contrast BMP-1/mTLD is more constitutively expressed. Inhibition of lysyl oxidase in these cultures increases the accumulation of abnormal collagen fibrils, as determined by solubility studies and by electron microscopy. Taken together, these data support that regulation of lysyl oxidase activity plays a key role in the control of collagen deposition by osteoblast cultures.
Collapse
Affiliation(s)
- Hsiang-Hsi Hong
- Division of Oral Biology, Boston University Goldman School of Dental Medicine, Boston, Massachusetts 02118, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Medeck RJ, Sosa S, Morris N, Oxford JT. BMP-1-mediated proteolytic processing of alternatively spliced isoforms of collagen type XI. Biochem J 2003; 376:361-8. [PMID: 12962540 PMCID: PMC1223788 DOI: 10.1042/bj20030894] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2003] [Revised: 08/18/2003] [Accepted: 09/08/2003] [Indexed: 01/30/2023]
Abstract
Collagen type XI is a minor constituent of heterotypic collagen fibrils of developing cartilage and plays a regulatory role in fibril diameter. Collagen type XI is a heterotrimer composed of the alpha1, alpha2 and alpha3 chains. The mRNA encoding exons 6a, 6b and 8 of the alpha1 chain are expressed alternatively to generate six possible isoforms. The 6b-containing isoform has the most restricted distribution of all isoforms. It is first localized in the developing long bone, where mineralized tissue initially forms, and is later restricted to regions of cartilage that will be subsequently converted into bone. Bone morphogenetic protein 1 (BMP-1) and related proteins cleave procollagens I-III, V and VII, yielding triple-helical molecules that associate into collagen fibrils. The present study demonstrates that the alpha1 chain of collagen type XI can serve as a substrate for BMP-1. In addition, the efficiency with which BMP-1 processes different isoforms of the alpha1 chain varies. The amino acid sequence adjacent to the processing site influences the rate and extent of processing, as do sequences further away. Smaller fragments identified from cartilage extracts indicated that processing by BMP-1, in combination with other processing enzymes, generates small fragments of p6b-containing isoforms.
Collapse
Affiliation(s)
- Ryan J Medeck
- Department of Biology, Boise State University, 1910 University Drive, Boise, ID 83725, USA
| | | | | | | |
Collapse
|
24
|
Shalitin N, Schlesinger H, Levy MJ, Kessler E, Kessler-Icekson G. Expression of procollagen C-proteinase enhancer in cultured rat heart fibroblasts: Evidence for co-regulation with type I collagen. J Cell Biochem 2003; 90:397-407. [PMID: 14505355 DOI: 10.1002/jcb.10646] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Procollagen processing by procollagen C-proteinase (PCP) is an important step in collagen deposition. This reaction is stimulated by another glycoprotein, known as PCP enhancer. The objective of this study was to identify factors that regulate the expression of PCP enhancer in cardiac fibroblasts and examine possible correlation with collagen expression. Rat heart fibroblasts were cultured in the presence or absence of three known stimulators of collagen synthesis: ascorbic acid, TGF-beta, and aldosterone. The mRNA and protein levels of PCP enhancer and collagen type I were each assessed using Northern and Western blotting, respectively. Expression of PCP was assessed by RT-PCR and its activity in the culture media was determined using radioactive procollagen as the substrate. The levels of PCP enhancer mRNA increased 1.5- to 2-fold in response to ascorbate, TGF-beta, or aldosterone. This increase was paralleled by an up to fourfold increase in the level of the pro alpha1(I) collagen chain transcript and was accompanied by a marked increase in the levels of the respective proteins in the culture media. PCP activity in the culture media was also increased, apparently, without effect on its expression. These results indicate that expression of PCP enhancer in cultured rat heart fibroblasts is coordinated with that of collagen. The observed augmentation of PCP activity may be a consequence of the increase in the levels of PCP enhancer in the culture media.
Collapse
Affiliation(s)
- Noa Shalitin
- Basil and Gerald Felsenstein Medical Research Center, Rabin Medical Center, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | | | | | | | | |
Collapse
|
25
|
Bernocco S, Steiglitz BM, Svergun DI, Petoukhov MV, Ruggiero F, Ricard-Blum S, Ebel C, Geourjon C, Deleage G, Font B, Eichenberger D, Greenspan DS, Hulmes DJS. Low resolution structure determination shows procollagen C-proteinase enhancer to be an elongated multidomain glycoprotein. J Biol Chem 2003; 278:7199-205. [PMID: 12486138 DOI: 10.1074/jbc.m210857200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Procollagen C-proteinase enhancer (PCPE) is an extracellular matrix glycoprotein that can stimulate the action of tolloid metalloproteinases, such as bone morphogenetic protein-1, on a procollagen substrate, by up to 20-fold. The PCPE molecule consists of two CUB domains followed by a C-terminal NTR (netrin-like) domain. In order to obtain structural insights into the function of PCPE, the recombinant protein was characterized by a range of biophysical techniques, including analytical ultracentrifugation, transmission electron microscopy, and small angle x-ray scattering. All three approaches showed PCPE to be a rod-like molecule, with a length of approximately 150 A. Homology modeling of both CUB domains and the NTR domain was consistent with the low-resolution structure of PCPE deduced from the small angle x-ray scattering data. Comparison with the low-resolution structure of the procollagen C-terminal region supports a recently proposed model (Ricard-Blum, S., Bernocco, S., Font, B., Moali, C., Eichenberger, D., Farjanel, J., Burchardt, E. R., van der Rest, M., Kessler, E., and Hulmes, D. J. S. (2002) J. Biol. Chem. 277, 33864-33869) for the mechanism of action of PCPE.
Collapse
Affiliation(s)
- Simonetta Bernocco
- Institut de Biologie et Chimie des Protéines, UMR 5086 CNRS-UCBL1, 69367 Lyon cedex 07, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Garrigue-Antar L, Hartigan N, Kadler KE. Post-translational modification of bone morphogenetic protein-1 is required for secretion and stability of the protein. J Biol Chem 2002; 277:43327-34. [PMID: 12218058 DOI: 10.1074/jbc.m207342200] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Bone morphogenetic protein (BMP)-1 is a glycosylated metalloproteinase that is fundamental to the synthesis of a normal extracellular matrix because it cleaves type I procollagen, as well as other precursor proteins. Sequence analysis suggests that BMP-1 has six potential N-linked glycosylation sites (i.e. NXS/T) namely: Asn(91) (prodomain), Asn(142) (metalloproteinase domain), Asn(332) and Asn(363) (CUB1 domain), Asn(599) (CUB3 domain), and Asn(726) in the C-terminal-specific domain. In this study we showed that all these sites are N-glycosylated with complex-type oligosaccharides containing sialic acid, except Asn(726) presumably because proline occurs immediately C-terminal of threonine in the consensus sequence. Recombinant BMP-1 molecules lacking all glycosylation sites or the three CUB-specific sites were not secreted. BMP-1 lacking CUB glycosylation was translocated to the proteasome for degradation. BMP-1 molecules lacking individual glycosylation sites were efficiently secreted and exhibited full procollagen C-proteinase activity, but N332Q and N599Q exhibited a slower rate of cleavage. BMP-1 molecules lacking any one of the CUB-specific glycosylation sites were sensitive to thermal denaturation. The study showed that the glycosylation sites in the CUB domains of BMP-1 are important for secretion and stability of the molecule.
Collapse
Affiliation(s)
- Laure Garrigue-Antar
- Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, School of Biological Sciences, Stopford Building 2.205, Oxford Road, Manchester M13 9PT, United Kingdom.
| | | | | |
Collapse
|
27
|
Ricard-Blum S, Bernocco S, Font B, Moali C, Eichenberger D, Farjanel J, Burchardt ER, van der Rest M, Kessler E, Hulmes DJS. Interaction properties of the procollagen C-proteinase enhancer protein shed light on the mechanism of stimulation of BMP-1. J Biol Chem 2002; 277:33864-9. [PMID: 12105202 DOI: 10.1074/jbc.m205018200] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Procollagen C-proteinase enhancer (PCPE) is an extracellular matrix glycoprotein that binds to the C-propeptide of procollagen I and can enhance the activities of procollagen C-proteinases up to 20-fold. To determine the molecular mechanism of PCPE activity, the interactions of the recombinant protein with the procollagen molecule as well as with its isolated C-propeptide domain were studied using surface plasmon resonance (BIAcore) technology. Binding required the presence of divalent metal cations such as calcium and manganese. By ligand blotting, calcium was found to bind to the C-propeptide domains of procollagens I and III but not to PCPE. By chemical cross-linking, the stoichiometry of the PCPE/C-propeptide interaction was found to be 1:1 in accordance with enzyme kinetic data. The use of a monoclonal antibody directed against the N-terminal region of the C-propeptide suggested that this region is probably not involved in binding to PCPE. Association and dissociation kinetics of the C-propeptide domains of procollagens I and III on immobilized PCPE were rapid. Extrapolation to saturation equilibrium yielded apparent equilibrium dissociation constants in the range 150-400 nM. In contrast, the association/dissociation kinetics of intact procollagen molecules on immobilized PCPE were relatively slow, corresponding to a dissociation constant of 1 nM. Finally, pN-collagen (i.e. procollagen devoid of the C-terminal propeptide domain) was also found to bind to immobilized PCPE, suggesting that PCPE binds to sites on either side of the procollagen cleavage site, thereby facilitating the action of procollagen C-proteinases.
Collapse
Affiliation(s)
- Sylvie Ricard-Blum
- Laboratoire d'Ingénierie des Macromolécules, Institut de Biologie Structurale, CNRS UMR 5075, 38027 Grenoble cedex 1, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Rattenholl A, Pappano WN, Koch M, Keene DR, Kadler KE, Sasaki T, Timpl R, Burgeson RE, Greenspan DS, Bruckner-Tuderman L. Proteinases of the bone morphogenetic protein-1 family convert procollagen VII to mature anchoring fibril collagen. J Biol Chem 2002; 277:26372-8. [PMID: 11986329 DOI: 10.1074/jbc.m203247200] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Collagen VII is the major structural component of the anchoring fibrils at the dermal-epidermal junction in the skin. It is secreted by keratinocytes as a precursor, procollagen VII, and processed into mature collagen during polymerization of the anchoring fibrils. We show that bone morphogenetic protein-1 (BMP-1), which exhibits procollagen C-proteinase activity, cleaves the C-terminal propeptide from human procollagen VII. The cleavage occurs at the BMP-1 consensus cleavage site SYAA/DTAG within the NC-2 domain. Mammalian tolloid-like (mTLL)-1 and -2, two other proteases of the astacin enzyme family, were able to process procollagen VII at the same site in vitro. Immunohistochemical and genetic evidence supported the involvement of these enzymes in cleaving type VII procollagen in vivo. Both BMP-1 and mTLL-1 are expressed in the skin and in cultured cutaneous cells. A naturally occurring deletion in the human COL7A1 gene, 8523del14, which is associated with dystrophic epidermolysis bullosa and eliminates the BMP-1 consensus sequence, abolished processing of procollagen VII, and in mutant skin procollagen VII accumulated at the dermal-epidermal junction. On the other hand, deficiency of BMP-1 in the skin of knockout mouse embryos did not prevent processing of procollagen VII to mature collagen, suggesting that mTLL-1 and/or mTLL-2 can substitute for BMP-1 in the processing of procollagen VII in situ.
Collapse
Affiliation(s)
- Anke Rattenholl
- Department of Dermatology, University of Münster, 48149 Münster, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Unsöld C, Pappano WN, Imamura Y, Steiglitz BM, Greenspan DS. Biosynthetic processing of the pro-alpha 1(V)2pro-alpha 2(V) collagen heterotrimer by bone morphogenetic protein-1 and furin-like proprotein convertases. J Biol Chem 2002; 277:5596-602. [PMID: 11741999 DOI: 10.1074/jbc.m110003200] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The low abundance fibrillar collagen type V is incorporated into and regulates the diameters of type I collagen fibrils. Bone morphogenetic protein-1 (BMP-1) is a metalloprotease that plays key roles in regulating formation of vertebrate extracellular matrix; it cleaves the C-propeptides of the major fibrillar procollagens I-III and processes precursors to produce the mature forms of the cross-linking enzyme prolysyl oxidase, the proteoglycan biglycan, and the basement membrane protein laminin 5. Here we have successfully produced recombinant pro-alpha1(V)(2)pro-alpha2(V) heterotrimers, and we have used these to characterize biosynthetic processing of the most prevalent in vivo form of type V procollagen. In addition, we have compared the processing of endogenous pro-alpha1(V) chains by wild type mouse embryo fibroblasts and by fibroblasts derived from embryos doubly homozygous null for the Bmp-1 gene and for a gene encoding the closely related metalloprotease mammalian Tolloid-like 1. Together, results presented herein indicate that within pro-alpha1(V)(2)pro-alpha2(V) heterotrimers, pro-alpha1(V) N-propeptides and pro-alpha2(V) C-propeptides are processed by BMP-1-like enzymes, and pro-alpha1(V) C-propeptides are processed by furin-like proprotein convertases in vivo.
Collapse
Affiliation(s)
- Christine Unsöld
- Department of Pathology, University of Wisconsin, Madison, Wisconsin 53706, USA
| | | | | | | | | |
Collapse
|
30
|
Borel A, Eichenberger D, Farjanel J, Kessler E, Gleyzal C, Hulmes DJ, Sommer P, Font B. Lysyl oxidase-like protein from bovine aorta. Isolation and maturation to an active form by bone morphogenetic protein-1. J Biol Chem 2001; 276:48944-9. [PMID: 11684696 DOI: 10.1074/jbc.m109499200] [Citation(s) in RCA: 110] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Recently several cDNAs have been described encoding lysyl oxidase-like proteins. Their deduced amino acid sequences are characterized by a strong similarity in the C-terminal region, corresponding to the lysyl oxidase family catalytic domain, and by marked differences in the N-terminal regions. Different biological functions have been described for lysyl oxidases in addition to their traditionally assumed cross-linking role. To answer the question of whether these different functions are carried out by different lysyl oxidases, purified and active forms of these enzymes are required. At present only the classical form of lysyl oxidase has been purified and characterized. The purpose of this study was to isolate and characterize the lysyl oxidase-like protein. In view of the strong sequence homology with the C-terminal domain of other lysyl oxidases, we chose to purify the protein from bovine aorta using antibodies specific to the N-terminal domain of the proenzyme. We have isolated a 56-kDa protein identified by amino acid sequencing as the bovine lysyl oxidase-like precursor, which is cleaved at the Arg-Arg-Arg sequence at positions 89-91 by a furin-like activity, as revealed after deblocking of the N-terminal residue. The immunopurified protein was largely inactive, but further processing in vitro by bone morphogenetic protein-1 led to an enzyme that was active on elastin and collagen substrates.
Collapse
Affiliation(s)
- A Borel
- Institut de Biologie et Chimie des Protéines CNRS UMR 5086, Université Claude Bernard Lyon I, 69367 Lyon Cedex 07, France
| | | | | | | | | | | | | | | |
Collapse
|