1
|
Li S, Xiong F, Zhang S, Liu J, Gao G, Xie J, Wang Y. Oligonucleotide therapies for nonalcoholic steatohepatitis. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102184. [PMID: 38665220 PMCID: PMC11044058 DOI: 10.1016/j.omtn.2024.102184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
Nonalcoholic steatohepatitis (NASH) represents a severe disease subtype of nonalcoholic fatty liver disease (NAFLD) that is thought to be highly associated with systemic metabolic abnormalities. It is characterized by a series of substantial liver damage, including hepatocellular steatosis, inflammation, and fibrosis. The end stage of NASH, in some cases, may result in cirrhosis and hepatocellular carcinoma (HCC). Nowadays a large number of investigations are actively under way to test various therapeutic strategies, including emerging oligonucleotide drugs (e.g., antisense oligonucleotide, small interfering RNA, microRNA, mimic/inhibitor RNA, and small activating RNA) that have shown high potential in treating this fatal liver disease. This article systematically reviews the pathogenesis of NASH/NAFLD, the promising druggable targets proven by current studies in chemical compounds or biological drug development, and the feasibility and limitations of oligonucleotide-based therapeutic approaches under clinical or pre-clinical studies.
Collapse
Affiliation(s)
- Sixu Li
- Department of Pathophysiology, West China College of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610066, China
| | - Feng Xiong
- Department of Cardiology, The Third People’s Hospital of Chengdu, Chengdu 610031, China
| | - Songbo Zhang
- Department of Breast Surgery, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu 610041, China
| | - Jinghua Liu
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Guangping Gao
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Li Weibo Institute for Rare Diseases Research, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Viral Vector Core, University of Massachusetts Chan Medical, School, Worcester, MA 01605, USA
| | - Jun Xie
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Viral Vector Core, University of Massachusetts Chan Medical, School, Worcester, MA 01605, USA
| | - Yi Wang
- Department of Pathophysiology, West China College of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610066, China
| |
Collapse
|
2
|
Chiang CC, Yeh H, Lim SN, Lin WR. Transcriptome analysis creates a new era of precision medicine for managing recurrent hepatocellular carcinoma. World J Gastroenterol 2023; 29:780-799. [PMID: 36816628 PMCID: PMC9932421 DOI: 10.3748/wjg.v29.i5.780] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/23/2022] [Accepted: 01/10/2023] [Indexed: 02/06/2023] Open
Abstract
The high incidence of hepatocellular carcinoma (HCC) recurrence negatively impacts outcomes of patients treated with curative intent despite advances in surgical techniques and other locoregional liver-targeting therapies. Over the past few decades, the emergence of transcriptome analysis tools, including real-time quantitative reverse transcription PCR, microarrays, and RNA sequencing, has not only largely contributed to our knowledge about the pathogenesis of recurrent HCC but also led to the development of outcome prediction models based on differentially expressed gene signatures. In recent years, the single-cell RNA sequencing technique has revolutionized our ability to study the complicated crosstalk between cancer cells and the immune environment, which may benefit further investigations on the role of different immune cells in HCC recurrence and the identification of potential therapeutic targets. In the present article, we summarized the major findings yielded with these transcriptome methods within the framework of a causal model consisting of three domains: primary cancer cells; carcinogenic stimuli; and tumor microenvironment. We provided a comprehensive review of the insights that transcriptome analyses have provided into diagnostics, surveillance, and treatment of HCC recurrence.
Collapse
Affiliation(s)
- Chun-Cheng Chiang
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA 15232, United States
| | - Hsuan Yeh
- School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, United States
| | - Siew-Na Lim
- Department of Neurology, Linkou Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Wey-Ran Lin
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
- Department of Gastroenterology and Hepatology, Linkou Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
| |
Collapse
|
3
|
Hu Q, Li LL, Peng Z, Yi P. Expression of hepatocyte nuclear factor 4 alpha, wingless-related integration site, and β-catenin in clinical gastric cancer. World J Clin Cases 2022; 10:7242-7255. [PMID: 36157990 PMCID: PMC9353908 DOI: 10.12998/wjcc.v10.i21.7242] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/17/2022] [Accepted: 06/03/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Gastric cancer (GC) is the second most common cause of cancer-related deaths worldwide. Hepatocyte nuclear factor 4 alpha (HNF4α) that belongs to the nuclear hormone receptor superfamily, is overexpressed in GC tissues, and might be involved in the development of GC by regulating its downstream wingless-related integration site (WNT)/β-catenin signaling.
AIM To clarify the expression of HNF4α/WNT5a/β-catenin signaling proteins in clinical GC tissues.
METHODS We immunohistochemically stained pathological blocks of GC and matched para-cancerous tissues. The intensity of HNF4α, WNT5a and β-catenin staining in the tumor cells was determined according to cell rates and staining intensity. The correlations between GC and HNF4α, WNT5a, and β-catenin expression using chi-square and paired chi-square tests. Relationships between double-positive HNF4α and WNT5a expression and types of gastric tumor tissues were assessed using regression analysis. Correlations between HNF4α and WNT5a expression at the RNA level in GC tissues found in the TCGA database were analyzed using Pearson correlation coefficients.
RESULTS We found more abundant HNF4α and WNT5a proteins in GC, especially in mucinous adenocarcinoma and mixed GC than in adjacent tissues (P < 0.001). Low and high levels of cytoplasmic β-catenin respectively expressed in GC and adjacent tissues (P < 0.001) were not significantly associated with pathological parameters.
CONCLUSION The expressions of HNF4α and WNT5a could serve as early diagnostic biomarkers for GC.
Collapse
Affiliation(s)
- Qian Hu
- Department of Integrated Traditional Chinese and Western Medicine, Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Ling-Li Li
- Department of Integrated Traditional Chinese and Western Medicine, Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Ze Peng
- Department of Integrated Traditional Chinese and Western Medicine, Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Ping Yi
- Department of Integrated Traditional Chinese and Western Medicine, Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| |
Collapse
|
4
|
H19 lncRNA alters methylation and expression of Hnf4α in the liver of metformin-exposed fetuses. Cell Death Dis 2017; 8:e3175. [PMID: 29215608 PMCID: PMC5827203 DOI: 10.1038/cddis.2017.392] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 06/20/2017] [Accepted: 07/02/2017] [Indexed: 12/28/2022]
Abstract
Metformin is the most widely used anti-diabetic medication worldwide. However, human and animal studies suggest that prenatal metformin exposure may increase the risk of metabolic disorders in adult offspring, yet the underpinning mechanism remains unclear. Here we report that metformin-exposed mouse fetuses exhibit elevated expression of the H19 long noncoding RNA, which induces hypomethylation and increased expression of hepatocyte nuclear factor 4α (HNF4α). As a transcription factor essential for morphological and functional differentiation of hepatocytes, HNF4α also has an indispensable role in the regulation of expression of gluconeogenic genes. Consistently, H19 overexpression in a human liver cell line leads to decreased methylation and increased expression of Hnf4α, with concomitant activation of the gluconeogenic program. Mechanistically, we show that the methylation change of Hnf4α is induced by H19-mediated regulation of S-adenosylhomocysteine hydrolase. We also provide evidence that altered H19 expression is a direct effect of metformin in the fetal liver. Our results suggest that metformin from the mother can directly act upon the fetal liver to modify Hnf4α expression, a key factor for both liver development and function, and that perturbation of this H19/Hnf4α-mediated pathway may contribute to the fetal origin of adult metabolic abnormalities.
Collapse
|
5
|
Ikubo K, Yamanishi K, Doe N, Hashimoto T, Sumida M, Watanabe Y, El-Darawish Y, Li W, Okamura H, Yamanishi H, Matsunaga H. Molecular analysis of the mouse brain exposed to chronic mild stress: The influence of hepatocyte nuclear factor 4α on physiological homeostasis. Mol Med Rep 2017; 16:301-309. [PMID: 28498421 DOI: 10.3892/mmr.2017.6577] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 02/27/2017] [Indexed: 11/05/2022] Open
Abstract
Major depressive disorder (MDD) is a prevalent disorder that causes considerable disability in social functioning and is a risk factor for physical diseases. Recent clinical reports have demonstrated a marked association between MDD and physiological dyshomeostasis induced by metabolic disorders, including diabetes, hormone abnormalities and autoimmune diseases. The authors of the present study have previously analyzed comparative gene expression profiles in the prefrontal cortex (PFC) of a chronic mild stress (CMS) animal model of MDD. Hepatocyte nuclear factor 4α (Hnf4α) was identified as a central regulator that exerted significant influence on genes associated with physiological homeostasis. The aim of the present study was to investigate: i) the molecular mechanism of the depressive state in the PFC, and ii) the involvement of genes extracted from the comparative gene expression profiles, particularly those applicable to MDD in clinical practice. Core analysis of the previous PFC microarray results was performed using Ingenuity Pathway Analysis (IPA). Subsequently, IPA was used to search for molecules that are regulated by Hnf4α, and exist in the PFC and serum. From the core analysis, 5 genes that are associated with cell death and are expressed in the cortex were selected. Four of the extracted genes, insulin‑like growth factor 1, transthyretin, serpin family A member 3 and plasminogen, were markedly affected by Hnf4α. S100 calcium‑binding protein A9 (S100a9) and α2-HS-glycoprotein (Ahsg) were also chosen as they exist in serum and are also affected by Hnf4α. A significant group difference in the expression of these two genes was detected in the PFC, thalamus and hippocampus. The protein levels of AHSG and S100A9 in the PFC and hippocampus of the CMS group increased significantly when compared with the control group. These findings support the close association of Hnf4α (through genes such as S100a9 and Ahsg) with the development of various diseases induced by deregulation of physiological homeostasis during the progression of MDD.
Collapse
Affiliation(s)
- Kaoru Ikubo
- Department of Neuropsychiatry, Hyōgo College of Medicine, Nishinomiya, Hyōgo 663‑8501, Japan
| | - Kyosuke Yamanishi
- Department of Neuropsychiatry, Hyōgo College of Medicine, Nishinomiya, Hyōgo 663‑8501, Japan
| | - Nobutaka Doe
- Laboratory of Neurogenesis and CNS Repair, Hyōgo College of Medicine, Nishinomiya, Hyōgo 663‑8501, Japan
| | - Takuya Hashimoto
- Department of Neuropsychiatry, Hyōgo College of Medicine, Nishinomiya, Hyōgo 663‑8501, Japan
| | - Miho Sumida
- Department of Psychology, Hyōgo University of Health Sciences, Kobe, Hyōgo 650‑8530, Japan
| | - Yuko Watanabe
- Hirakata General Hospital for Developmental Disorders, Hirakata, Osaka 573‑0122, Japan
| | - Yosif El-Darawish
- Laboratory of Tumor Immunology and Cell Therapy, Hyōgo College of Medicine, Nishinomiya, Hyōgo 663‑8501, Japan
| | - Wen Li
- Laboratory of Tumor Immunology and Cell Therapy, Hyōgo College of Medicine, Nishinomiya, Hyōgo 663‑8501, Japan
| | - Haruki Okamura
- Laboratory of Tumor Immunology and Cell Therapy, Hyōgo College of Medicine, Nishinomiya, Hyōgo 663‑8501, Japan
| | - Hiromichi Yamanishi
- Hirakata General Hospital for Developmental Disorders, Hirakata, Osaka 573‑0122, Japan
| | - Hisato Matsunaga
- Department of Neuropsychiatry, Hyōgo College of Medicine, Nishinomiya, Hyōgo 663‑8501, Japan
| |
Collapse
|
6
|
Cai WY, Lin LY, Hao H, Zhang SM, Ma F, Hong XX, Zhang H, Liu QF, Ye GD, Sun GB, Liu YJ, Li SN, Xie YY, Cai JC, Li BA. Yes-associated protein/TEA domain family member and hepatocyte nuclear factor 4-alpha (HNF4α) repress reciprocally to regulate hepatocarcinogenesis in rats and mice. Hepatology 2017; 65:1206-1221. [PMID: 27809333 DOI: 10.1002/hep.28911] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 10/15/2016] [Accepted: 10/19/2016] [Indexed: 12/11/2022]
Abstract
UNLABELLED Great progress has been achieved in the study of Hippo signaling in regulating tumorigenesis; however, the downstream molecular events that mediate this process have not been completely defined. Moreover, regulation of Hippo signaling during tumorigenesis in hepatocellular carcinoma (HCC) remains largely unknown. In the present study, we systematically investigated the relationship between Yes-associated protein/TEA domain family member (YAP-TEAD) and hepatocyte nuclear factor 4-alpha (HNF4α) in the hepatocarcinogenesis of HCC cells. Our results indicated that HNF4α expression was negatively regulated by YAP1 in HCC cells by a ubiquitin proteasome pathway. By contrast, HNF4α was found to directly associate with TEAD4 to compete with YAP1 for binding to TEAD4, thus inhibiting the transcriptional activity of YAP-TEAD and expression of their target genes. Moreover, overexpression of HNF4α was found to significantly compromise YAP-TEAD-induced HCC cell proliferation and stem cell expansion. Finally, we documented the regulatory mechanism between YAP-TEAD and HNF4α in rat and mouse tumor models, which confirmed our in vitro results. CONCLUSION There is a double-negative feedback mechanism that controls TEAD-YAP and HNF4α expression in vitro and in vivo, thereby regulating cellular proliferation and differentiation. Given that YAP acts as a dominant oncogene in HCC and plays a crucial role in stem cell homeostasis and tissue regeneration, manipulating the interaction between YAP, TEADs, and HNF4α may provide a new approach for HCC treatment and regenerative medicine. (Hepatology 2017;65:1206-1221).
Collapse
Affiliation(s)
- Wang-Yu Cai
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, China.,Zhongshan Hospital of Xiamen University, Xiamen, Fujian, China
| | - Ling-Yun Lin
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, China.,Engineering Research Center of Molecular Diagnostics, Ministry of Education, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Han Hao
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, China.,Engineering Research Center of Molecular Diagnostics, Ministry of Education, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Sai-Man Zhang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Fei Ma
- Zhongshan Hospital of Xiamen University, Xiamen, Fujian, China
| | - Xin-Xin Hong
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Hui Zhang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Qing-Feng Liu
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Guo-Dong Ye
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Guang-Bin Sun
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Yun-Jia Liu
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Sheng-Nan Li
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Yuan-Yuan Xie
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Jian-Chun Cai
- Zhongshan Hospital of Xiamen University, Xiamen, Fujian, China
| | - Bo-An Li
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, China.,Engineering Research Center of Molecular Diagnostics, Ministry of Education, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| |
Collapse
|
7
|
The integration of epigenetics and genetics in nutrition research for CVD risk factors. Proc Nutr Soc 2016; 76:333-346. [PMID: 27919301 DOI: 10.1017/s0029665116000823] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
There is increasing evidence documenting gene-by-environment (G × E) interactions for CVD related traits. However, the underlying mechanisms are still unclear. DNA methylation may represent one of such potential mechanisms. The objective of this review paper is to summarise the current evidence supporting the interplay among DNA methylation, genetic variants, and environmental factors, specifically (1) the association between SNP and DNA methylation; (2) the role that DNA methylation plays in G × E interactions. The current evidence supports the notion that genotype-dependent methylation may account, in part, for the mechanisms underlying observed G × E interactions in loci such asAPOE, IL6and ATP-binding cassette A1. However, these findings should be validated using intervention studies with high level of scientific evidence. The ultimate goal is to apply the knowledge and the technology generated by this research towards genetically based strategies for the development of personalised nutrition and medicine.
Collapse
|
8
|
Gene Network Analysis of Glucose Linked Signaling Pathways and Their Role in Human Hepatocellular Carcinoma Cell Growth and Survival in HuH7 and HepG2 Cell Lines. BIOMED RESEARCH INTERNATIONAL 2015; 2015:821761. [PMID: 26380295 PMCID: PMC4561296 DOI: 10.1155/2015/821761] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 03/06/2015] [Indexed: 12/14/2022]
Abstract
Cancer progression may be affected by metabolism. In this study, we aimed to analyze the effect of glucose on the proliferation and/or survival of human hepatocellular carcinoma (HCC) cells. Human gene datasets regulated by glucose were compared to gene datasets either dysregulated in HCC or regulated by other signaling pathways. Significant numbers of common genes suggested putative involvement in transcriptional regulations by glucose. Real-time proliferation assays using high (4.5 g/L) versus low (1 g/L) glucose on two human HCC cell lines and specific inhibitors of selected pathways were used for experimental validations. High glucose promoted HuH7 cell proliferation but not that of HepG2 cell line. Gene network analyses suggest that gene transcription by glucose could be mediated at 92% through ChREBP in HepG2 cells, compared to 40% in either other human cells or rodent healthy liver, with alteration of LKB1 (serine/threonine kinase 11) and NOX (NADPH oxidases) signaling pathways and loss of transcriptional regulation of PPARGC1A (peroxisome-proliferator activated receptors gamma coactivator 1) target genes by high glucose. Both PPARA and PPARGC1A regulate transcription of genes commonly regulated by glycolysis, by the antidiabetic agent metformin and by NOX, suggesting their major interplay in the control of HCC progression.
Collapse
|
9
|
Yamanishi K, Doe N, Sumida M, Watanabe Y, Yoshida M, Yamamoto H, Xu Y, Li W, Yamanishi H, Okamura H, Matsunaga H. Hepatocyte nuclear factor 4 alpha is a key factor related to depression and physiological homeostasis in the mouse brain. PLoS One 2015; 10:e0119021. [PMID: 25774879 PMCID: PMC4361552 DOI: 10.1371/journal.pone.0119021] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Accepted: 01/26/2015] [Indexed: 12/20/2022] Open
Abstract
Major depressive disorder (MDD) is a common psychiatric disorder that involves marked disabilities in global functioning, anorexia, and severe medical comorbidities. MDD is associated with not only psychological and sociocultural problems, but also pervasive physical dysfunctions such as metabolic, neurobiological and immunological abnormalities. Nevertheless, the mechanisms underlying the interactions between these factors have yet to be determined in detail. The aim of the present study was to identify the molecular mechanisms responsible for the interactions between MDD and dysregulation of physiological homeostasis, including immunological function as well as lipid metabolism, coagulation, and hormonal activity in the brain. We generated depression-like behavior in mice using chronic mild stress (CMS) as a model of depression. We compared the gene expression profiles in the prefrontal cortex (PFC) of CMS and control mice using microarrays. We subsequently categorized genes using two web-based bioinformatics applications: Ingenuity Pathway Analysis and The Database for Annotation, Visualization, and Integrated Discovery. We then confirmed significant group-differences by analyzing mRNA and protein expression levels not only in the PFC, but also in the thalamus and hippocampus. These web tools revealed that hepatocyte nuclear factor 4 alpha (Hnf4a) may exert direct effects on various genes specifically associated with amine synthesis, such as genes involved in serotonin metabolism and related immunological functions. Moreover, these genes may influence lipid metabolism, coagulation, and hormonal activity. We also confirmed the significant effects of Hnf4a on both mRNA and protein expression levels in the brain. These results suggest that Hnf4a may have a critical influence on physiological homeostasis under depressive states, and may be associated with the mechanisms responsible for the interactions between MDD and the dysregulation of physiological homeostasis in humans.
Collapse
Affiliation(s)
- Kyosuke Yamanishi
- Department of Neuropsychiatry, Hyogo College of Medicine, Nishinomiya, Hyogo, Japan
- Hirakata General Hospital for Developmental Disorders, Hirakata, Osaka, Japan
| | - Nobutaka Doe
- Laboratory of Neurogenesis and CNS Repair, Hyogo College of Medicine, Nishinomiya, Hyogo, Japan
- Section of Behavioral Science, Kouiken Co., Ltd., Akashi, Hyogo, Japan
| | - Miho Sumida
- Section of Behavioral Science, Kouiken Co., Ltd., Akashi, Hyogo, Japan
| | - Yuko Watanabe
- Hirakata General Hospital for Developmental Disorders, Hirakata, Osaka, Japan
| | - Momoko Yoshida
- Hirakata General Hospital for Developmental Disorders, Hirakata, Osaka, Japan
| | - Hideyuki Yamamoto
- Laboratory of Tumor Immunology and Cell Therapy, Hyogo College of Medicine, Nishinomiya, Hyogo, Japan
| | - Yunfeng Xu
- Laboratory of Tumor Immunology and Cell Therapy, Hyogo College of Medicine, Nishinomiya, Hyogo, Japan
| | - Wen Li
- Laboratory of Tumor Immunology and Cell Therapy, Hyogo College of Medicine, Nishinomiya, Hyogo, Japan
| | - Hiromichi Yamanishi
- Hirakata General Hospital for Developmental Disorders, Hirakata, Osaka, Japan
| | - Haruki Okamura
- Laboratory of Tumor Immunology and Cell Therapy, Hyogo College of Medicine, Nishinomiya, Hyogo, Japan
| | - Hisato Matsunaga
- Department of Neuropsychiatry, Hyogo College of Medicine, Nishinomiya, Hyogo, Japan
| |
Collapse
|
10
|
Could dysregulation of UPS be a common underlying mechanism for cancer and neurodegeneration? Lessons from UCHL1. Cell Biochem Biophys 2014; 67:45-53. [PMID: 23695785 DOI: 10.1007/s12013-013-9631-7] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Ubiquitin proteasome system (UPS) determines the timing and extent of protein turnover in cells, and it is one of the most strictly controlled cellular mechanisms. Lack of proper control over UPS is attributed to both cancer and to neurodegenerative diseases, yet in different context and direction. Cancerous cells have altered cellular metabolisms, uncontrolled cellular division, and increased proteasome activity. The specialized function prevent neurons from undergoing cellular division but allow them to extend an axon over long distances, establish connections, and to form stable neuronal circuitries. Neurons heavily depend on the proper function of the proteasome and the UPS for their proper function. Reduction of UPS function in vulnerable neurons results in protein aggregation, increased ER stress, and cell death. Identification of compounds that selectively block proteasome function in distinct set of malignancies added momentum to drug discovery efforts, and deubiquitinases (DUBs) gained much attention. This review will focus on ubiquitin carboxy-terminal hydrolase L1 (UCHL1), a DUB that is attributed to both cancer and neurodegeneration. The potential of developing effective treatment strategies for two major health problems by controlling the function of UPS opens up new avenues for innovative approaches and therapeutic interventions.
Collapse
|
11
|
McIntosh AL, Petrescu AD, Hostetler HA, Kier AB, Schroeder F. Liver-type fatty acid binding protein interacts with hepatocyte nuclear factor 4α. FEBS Lett 2013; 587:3787-91. [PMID: 24140341 DOI: 10.1016/j.febslet.2013.09.043] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2013] [Accepted: 09/01/2013] [Indexed: 10/26/2022]
Abstract
Hepatocyte nuclear factor 4α (HNF4α) regulates liver type fatty acid binding protein (L-FABP) gene expression. Conversely as shown herein, L-FABP structurally and functionally also interacts with HNF4α. Fluorescence resonance energy transfer (FRET) between Cy3-HNF4α (donor) and Cy5-L-FABP (acceptor) as well as FRET microscopy detected L-FABP in close proximity (~80 Å) to HNF4α, binding with high affinity Kd ~250-300 nM. Circular dichroism (CD) determined that the HNF4α/L-FABP interaction altered protein secondary structure. Finally, L-FABP potentiated transactivation of HNF4α in COS7 cells. Taken together, these data suggest that L-FABP provides a signaling path to HNF4α activation in the nucleus.
Collapse
Affiliation(s)
- Avery L McIntosh
- Department of Physiology and Pharmacology, Texas A&M University, TVMC, College Station, TX 77843-4466, United States
| | | | | | | | | |
Collapse
|
12
|
Yang M, Li SN, Anjum KM, Gui LX, Zhu SS, Liu J, Chen JK, Liu QF, Ye GD, Wang WJ, Wu JF, Cai WY, Sun GB, Liu YJ, Liu RF, Zhang ZM, Li BA. A double-negative feedback loop between Wnt-β-catenin signaling and HNF4α regulates epithelial-mesenchymal transition in hepatocellular carcinoma. J Cell Sci 2013; 126:5692-703. [PMID: 24101726 DOI: 10.1242/jcs.135053] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Wnt-β-catenin signaling participates in the epithelial-mesenchymal transition (EMT) in a variety of cancers; however, its involvement in hepatocellular carcinoma (HCC) and downstream molecular events is largely undefined. HNF4α is the most prominent and specific factor maintaining the differentiation of hepatic lineage cells and a potential EMT regulator in HCC cells. However, the molecular mechanisms by which HNF4α maintains the differentiated liver epithelium and inhibits EMT have not been completely defined. In this study, we systematically explored the relationship between Wnt-β-catenin signaling and HNF4α in the EMT process of HCC cells. Our results indicated that HNF4α expression was negatively regulated during Wnt-β-catenin signaling-induced EMT through Snail and Slug in HCC cells. In contrast, HNF4α was found to directly associate with TCF4 to compete with β-catenin but facilitate transcription co-repressor activities, thus inhibiting expression of EMT-related Wnt-β-catenin targets. Moreover, HNF4α may control the switch between the transcriptional and adhesion functions of β-catenin. Overexpression of HNF4α was found to completely compromise the Wnt-β-catenin-signaling-induced EMT phenotype. Finally, we determined the regulation pattern between Wnt-β-catenin signaling and HNF4α in rat tumor models. Our studies have identified a double-negative feedback mechanism controlling Wnt-β-catenin signaling and HNF4α expression in vitro and in vivo, which sheds new light on the regulation of EMT in HCC. The modulation of these molecular processes may be a method of inhibiting HCC invasion by blocking Wnt-β-catenin signaling or restoring HNF4α expression to prevent EMT.
Collapse
Affiliation(s)
- Meng Yang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology Research, School of Life Sciences, Xiamen University, Xiamen, 361102, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Fraczek J, Bolleyn J, Vanhaecke T, Rogiers V, Vinken M. Primary hepatocyte cultures for pharmaco-toxicological studies: at the busy crossroad of various anti-dedifferentiation strategies. Arch Toxicol 2012; 87:577-610. [PMID: 23242478 DOI: 10.1007/s00204-012-0983-3] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Accepted: 11/19/2012] [Indexed: 01/24/2023]
Abstract
Continuously increasing understanding of the molecular triggers responsible for the onset of diseases, paralleled by an equally dynamic evolution of chemical synthesis and screening methods, offers an abundance of pharmacological agents with a potential to become new successful drugs. However, before patients can benefit of newly developed pharmaceuticals, stringent safety filters need to be applied to weed out unfavourable drug candidates. Cost effectiveness and the need to identify compound liabilities, without exposing humans to unnecessary risks, has stimulated the shift of the safety studies to the earliest stages of drug discovery and development. In this regard, in vivo relevant organotypic in vitro models have high potential to revolutionize the preclinical safety testing. They can enable automation of the process, to match the requirements of high-throughput screening approaches, while satisfying ethical considerations. Cultures of primary hepatocytes became already an inherent part of the preclinical pharmaco-toxicological testing battery, yet their routine use, particularly for long-term assays, is limited by the progressive deterioration of liver-specific features. The availability of suitable hepatic and other organ-specific in vitro models is, however, of paramount importance in the light of changing European legal regulations in the field of chemical compounds of different origin, which gradually restrict the use of animal studies for safety assessment, as currently witnessed in cosmetic industry. Fortunately, research groups worldwide spare no effort to establish hepatic in vitro systems. In the present review, both classical and innovative methodologies to stabilize the in vivo-like hepatocyte phenotype in culture of primary hepatocytes are presented and discussed.
Collapse
Affiliation(s)
- J Fraczek
- Department of Toxicology, Faculty of Medicine and Pharmacy, Centre for Pharmaceutical Research, Vrije Universiteit Brussel, Belgium.
| | | | | | | | | |
Collapse
|
14
|
Pathare PP, Lin A, Bornfeldt KE, Taubert S, Van Gilst MR. Coordinate regulation of lipid metabolism by novel nuclear receptor partnerships. PLoS Genet 2012; 8:e1002645. [PMID: 22511885 PMCID: PMC3325191 DOI: 10.1371/journal.pgen.1002645] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Accepted: 02/22/2012] [Indexed: 01/16/2023] Open
Abstract
Mammalian nuclear receptors broadly influence metabolic fitness and serve as popular targets for developing drugs to treat cardiovascular disease, obesity, and diabetes. However, the molecular mechanisms and regulatory pathways that govern lipid metabolism remain poorly understood. We previously found that the Caenorhabditis elegans nuclear hormone receptor NHR-49 regulates multiple genes in the fatty acid beta-oxidation and desaturation pathways. Here, we identify additional NHR-49 targets that include sphingolipid processing and lipid remodeling genes. We show that NHR-49 regulates distinct subsets of its target genes by partnering with at least two other distinct nuclear receptors. Gene expression profiles suggest that NHR-49 partners with NHR-66 to regulate sphingolipid and lipid remodeling genes and with NHR-80 to regulate genes involved in fatty acid desaturation. In addition, although we did not detect a direct physical interaction between NHR-49 and NHR-13, we demonstrate that NHR-13 also regulates genes involved in the desaturase pathway. Consistent with this, gene knockouts of these receptors display a host of phenotypes that reflect their gene expression profile. Our data suggest that NHR-80 and NHR-13's modulation of NHR-49 regulated fatty acid desaturase genes contribute to the shortened lifespan phenotype of nhr-49 deletion mutant animals. In addition, we observed that nhr-49 animals had significantly altered mitochondrial morphology and function, and that distinct aspects of this phenotype can be ascribed to defects in NHR-66– and NHR-80–mediated activities. Identification of NHR-49's binding partners facilitates a fine-scale dissection of its myriad regulatory roles in C. elegans. Our findings also provide further insights into the functions of the mammalian lipid-sensing nuclear receptors HNF4α and PPARα. Mammalian nuclear receptors are actively targeted for treatment of a range of cardiovascular diseases and obesity. However, effective drug development still depends on a more exhaustive characterization of how different nuclear receptors mediate their different physiological effects in vivo. Taking advantage of the roundworm Caenorhabditis elegans, we used a combination of genetic and biochemical approaches to characterize the gene network of the nuclear receptor NHR-49 and to explore the impact of the different target genes on physiology. This work has identified genes and pathways that were not previously known to be regulated by NHR-49. Importantly, we identified NHR-49 co-factors NHR-66 and NHR-80 that regulate specific subsets of NHR-49 target genes and that contribute to distinct phenotypes of nhr-49 animals. Taken together, our findings in C. elegans not only provide novel insights into how nuclear receptor transcriptional networks coordinate to regulate lipid metabolism, but also reveal the breadth of their influence on different aspects of animal physiology.
Collapse
Affiliation(s)
- Pranali P Pathare
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America.
| | | | | | | | | |
Collapse
|
15
|
Takagi S, Ohno M, Ohashi K, Utoh R, Tatsumi K, Okano T. Cell Shape Regulation Based on Hepatocyte Sheet Engineering Technologies. Cell Transplant 2012; 21:411-20. [DOI: 10.3727/096368911x605312] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The de novo engineering of a uniform hepatocyte sheet in vitro is considered as a novel approach for liver-directed therapeutics. Hepatocytes can be cultured on a temperature-responsive culture dishes coated with poly( N-isopropylacrylamide) (PIPAAm). Following multiple days of culturing, the hepatocytes can be easily harvested as a uniform sheet by decreasing temperature from 37°C to 20°C. By modifying the sheet harvesting protocol, we have noticed that two different forms of the hepatocyte sheets, “extended” and “shrinking,” were obtained. This study describes the methods for harvesting the two different forms of sheets, and their cellular structure and hepatocyte-specific functions. To obtain an “extended sheet” form, a cluster of hepatocytes covered with a support membrane was harvested by the temperature reduction. For the “shrinking sheet” form, the hepatocyte sheet was floated after reducing the culture temperature, and the floating process allowed the sheet to shrink spontaneously. Histological analysis revealed that the hepatocytes in the extended sheet form were predominantly flat, whereas the shrinking sheet contained cuboidal shaped hepatocytes. The preservation of hepatocyte-specific ultrastructures was confirmed in both types of sheets. To investigate hepatocyte-specific functionality, the harvested hepatocyte sheets were recultured on Matrigel-coated dishes. Assessment of protein production levels and chemical metabolizing activities showed the similar functionalities for each form. In contrast, the recalculation of these values per sheet versus per square centimeter of sheet surface demonstrated that the function of the shrinking sheet was significantly higher than that of the extended sheets. This study demonstrated that the hepatocyte sheets created on the PIPAAm dish could spontaneously shrink in size, but retain their hepatocyte functionality. This type of hepatocyte sheet could be utilized for the engineering of liver tissue in limited areas that are unable to give adequate transplant space.
Collapse
Affiliation(s)
- Soichi Takagi
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, Tokyo, Japan
| | - Maki Ohno
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, Tokyo, Japan
| | - Kazuo Ohashi
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, Tokyo, Japan
| | - Rie Utoh
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, Tokyo, Japan
| | - Kohei Tatsumi
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, Tokyo, Japan
| | - Teruo Okano
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, Tokyo, Japan
| |
Collapse
|
16
|
Zhang Y, Bonzo JA, Gonzalez FJ, Wang L. Diurnal regulation of the early growth response 1 (Egr-1) protein expression by hepatocyte nuclear factor 4alpha (HNF4alpha) and small heterodimer partner (SHP) cross-talk in liver fibrosis. J Biol Chem 2011; 286:29635-43. [PMID: 21725089 PMCID: PMC3191004 DOI: 10.1074/jbc.m111.253039] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2011] [Revised: 06/30/2011] [Indexed: 12/17/2022] Open
Abstract
Early growth response 1 (Egr-1) protein is a critical regulator of genes contributing to liver fibrosis; however, little is known about the upstream transcriptional factors that control its expression. Here we show that Egr-1 expression is tightly regulated by nuclear receptor signaling. Hepatocyte nuclear factor 4α (HNF4α) activated the Egr-1 promoter through three DR1 response elements as identified by trans-activation assays. Deletion of these response elements or knockdown of HNF4α using siRNA largely abrogated Egr-1 promoter activation. HNF4α activity, as well as its enrichment on the Egr-1 promoter, were markedly repressed by small heterodimer partner (SHP) co-expression. Egr-1 mRNA and protein were transiently induced by HNF4α. On the contrary, HNF4α siRNA reduced Egr-1 expression at both the mRNA and protein levels, and overexpression of SHP reversed these effects. Conversely, knockdown of SHP by siRNA elevated Egr-1 protein. Interestingly, Egr-1 mRNA exhibited diurnal fluctuation, which was synchronized to the cyclic expression of SHP and HNF4α after cells were released from serum shock. Unexpectedly, the levels of Egr-1 mRNA and protein were highly up-regulated in Hnf4α(-/-) mice. Both HNF4α and Egr-1 expression were dramatically increased in SHP(-/-) mice with bile duct ligation and in human cirrhotic livers, which was inversely correlated with diminished SHP expression. In conclusion, our study revealed control network for Egr-1 expression through a feedback loop between SHP and HNF4α.
Collapse
Affiliation(s)
- Yuxia Zhang
- From the Departments of Medicine and Oncological Sciences, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, Utah 84132 and
| | - Jessica A. Bonzo
- the Laboratory of Metabolism, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, Maryland 20892
| | - Frank J. Gonzalez
- the Laboratory of Metabolism, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, Maryland 20892
| | - Li Wang
- From the Departments of Medicine and Oncological Sciences, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, Utah 84132 and
| |
Collapse
|
17
|
Weltmeier F, Borlak J. A high resolution genome-wide scan of HNF4α recognition sites infers a regulatory gene network in colon cancer. PLoS One 2011; 6:e21667. [PMID: 21829439 PMCID: PMC3145629 DOI: 10.1371/journal.pone.0021667] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2011] [Accepted: 06/06/2011] [Indexed: 11/18/2022] Open
Abstract
The hepatic nuclear factor HNF4α is a versatile transcription factor and controls expression of many genes in development, metabolism and disease. To delineate its regulatory gene network in colon cancer and to define novel gene targets a comprehensive genome-wide scan was carried out at a resolution of 35 bp with chromatin IP DNA obtained from the human colon carcinoma cell line Caco-2 that is a particularly rich source of HNF4α. More than 90% of HNF4α binding sites were mapped as promoter distal sequences while enhancer elements could be defined to foster chromatin loops for interaction with other promoter-bound transcription factors. Sequence motif analysis by various genetic algorithms evidenced a unique enhanceosome that consisted of the nuclear proteins ERα, AP1, GATA and HNF1α as cooperating transcription factors. Overall >17,500 DNA binding sites were identified with a gene/binding site ratio that differed >6-fold between chromosomes and clustered in distinct chromosomal regions amongst >6600 genes targeted by HNF4α. Evidence is presented for nuclear receptor cross-talk of HNF4α and estrogen receptor α that is recapitulated at the sequence level. Remarkably, the Y-chromosome is devoid of HNF4α binding sites. The functional importance of enrichment sites was confirmed in genome-wide gene expression studies at varying HNF4α protein levels. Taken collectively, a genome-wide scan of HNF4α binding sites is reported to better understand basic mechanisms of transcriptional control of HNF4α targeted genes. Novel promoter distal binding sites are identified which form an enhanceosome thereby facilitating RNA processing events.
Collapse
Affiliation(s)
- Fridtjof Weltmeier
- Department of Molecular Medicine and Medical Biotechnology, Fraunhofer Institute of Toxicology and Experimental Medicine, Hannover, Germany
| | - Juergen Borlak
- Department of Molecular Medicine and Medical Biotechnology, Fraunhofer Institute of Toxicology and Experimental Medicine, Hannover, Germany
- Centre for Pharmacology and Toxicology, Hannover Medical School, Hannover, Germany
- * E-mail:
| |
Collapse
|
18
|
Expression profile analysis of the inflammatory response regulated by hepatocyte nuclear factor 4α. BMC Genomics 2011; 12:128. [PMID: 21352552 PMCID: PMC3053261 DOI: 10.1186/1471-2164-12-128] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2010] [Accepted: 02/25/2011] [Indexed: 12/17/2022] Open
Abstract
Background Hepatocyte nuclear factor 4α (HNF4α), a liver-specific transcription factor, plays a significant role in liver-specific functions. However, its functions are poorly understood in the regulation of the inflammatory response. In order to obtain a genomic view of HNF4α in this context, microarray analysis was used to probe the expression profile of an inflammatory response induced by cytokine stimulation in a model of HNF4α knock-down in HepG2 cells. Results The expression of over five thousand genes in HepG2 cells is significantly changed with the dramatic reduction of HNF4α concentration compared to the cells with native levels of HNF4α. Over two thirds (71%) of genes that exhibit differential expression in response to cytokine treatment also reveal differential expression in response to HNF4α knock-down. In addition, we found that a number of HNF4α target genes may be indirectly mediated by an ETS-domain transcription factor ELK1, a nuclear target of mitogen-activated protein kinase (MAPK). Conclusion The results indicate that HNF4α has an extensive impact on the regulation of a large number of the liver-specific genes. HNF4α may play a role in regulating the cytokine-induced inflammatory response. This study presents a novel function for HNF4α, acting not only as a global player in many cellular processes, but also as one of the components of inflammatory response in the liver.
Collapse
|
19
|
Makino Y, Noguchi E, Takahashi N, Matsumoto Y, Kubo S, Yamada T, Imoto Y, Ito Y, Osawa Y, Shibasaki M, Uchida K, Meno K, Suzuki H, Okubo K, Arinami T, Fujieda S. Apolipoprotein A-IV is a candidate target molecule for the treatment of seasonal allergic rhinitis. J Allergy Clin Immunol 2010; 126:1163-9.e5. [PMID: 20810159 DOI: 10.1016/j.jaci.2010.06.031] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2010] [Revised: 06/18/2010] [Accepted: 06/28/2010] [Indexed: 11/25/2022]
Abstract
BACKGROUND Allergic rhinitis is a global health problem that causes major illnesses and disability worldwide. Allergen-specific immunotherapy (SIT) is the only available treatment that can alter the natural course of allergic disease. However, the precise mechanism underlying allergen-SIT is not well understood. OBJECTIVE The aim of the current study was to identify protein expression signatures reflective of allergen-SIT-more specifically, sublingual immunotherapy (SLIT). METHODS Serum was taken twice from patients with seasonal allergic rhinitis caused by Japanese cedar: once before the pollen season and once during the season. A total of 25 patients was randomly categorized into a placebo-treated group and an active-treatment group. Their serum protein profiles were analyzed by 2-dimensional electrophoresis. RESULTS Sixteen proteins were found to be differentially expressed during the pollen season. Among the differentially expressed proteins, the serum levels of complement C4A, apolipoprotein A-IV (apoA-IV), and transthyretin were significantly increased in SLIT-treated patients but not in placebo-treated patients. Among these proteins, the serum levels of apoA-IV correlated with the clinical symptom-medication scores (r = -0.635; P < .05) and with quality of life scores (r = -0.516; P < .05) in the case of SLIT-treated patients. The amount of histamine released from the basophils in vitro was greatly reduced after the addition of recombinant apoA-IV in the medium (P < .01). CONCLUSION Our data will increase the understanding of the mechanism of SLIT and may provide novel insights into the treatment of allergic rhinitis.
Collapse
MESH Headings
- Administration, Sublingual
- Adult
- Allergens/immunology
- Apolipoproteins A/blood
- Complement C4a/metabolism
- Cryptomeria/immunology
- Desensitization, Immunologic
- Disease Progression
- Female
- Gene Expression Profiling
- Humans
- Male
- Middle Aged
- Pollen/adverse effects
- Pollen/immunology
- Prealbumin/metabolism
- Quality of Life
- Rhinitis, Allergic, Seasonal/diagnosis
- Rhinitis, Allergic, Seasonal/drug therapy
- Rhinitis, Allergic, Seasonal/immunology
- Rhinitis, Allergic, Seasonal/physiopathology
- Seasons
Collapse
Affiliation(s)
- Yuka Makino
- Department of Medical Genetics, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Ibaraki, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Abstract
Schizophrenia is one of the most severe psychiatric disorders affecting 1% of the world population. There is yet no empirical method to validate the diagnosis of the disease. The identification of an underlying molecular alteration could lead to an improved disease understanding and may yield an objective panel of biomarkers to aid in the diagnosis of this devastating disease. Presented is the largest reported liquid chromatography-mass spectrometry-based proteomic profiling study investigating serum samples taken from first-onset drug-naive patients compared with samples collected from healthy volunteers. The results of this large-scale study are presented along with enzyme-linked immunosorbent assay-based validation data.
Collapse
|
21
|
Kawashima T, Okamoto K, Muraguchi T, Oku T, Shidoji Y. Downregulation of trefoil factor 3 gene expression in the colon of the senescence-accelerated mouse (SAM)-P6 revealed by oligonucleotide microarray analysis. ACTA ACUST UNITED AC 2010; 31:169-75. [PMID: 20622466 DOI: 10.2220/biomedres.31.169] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Global comparison of the colonic gene expression profiles between 14-month-old senescenceaccelerated mouse (SAM)-P6 mice and SAM-R1 mice, a wild-type control, was conducted with an oligonucleotide microarray containing more than 5,000 mouse genes. Eight genes were upregulated more than two-fold and 94 genes were downregulated more than two-fold in SAM-P6 mice. The three cell defense genes intelectin1 (Itln1), trefoil factor 3 (intestinal) (Tff3) and "deleted in malignant brain tumors 1" (Dmbt1) were among those extensively downregulated. Quantitative RT-PCR analysis confirmed that Itln1 mRNA was almost undetectable in SAM-P6 colon, whereas it was readily detected in SAM-R1 colon. Colonic expression of both Tff3 and Dmbt1 mRNA was also substantially decreased, to one third and two thirds of the levels in SAM-R1 mice, respectively. A 14 kDa Tff3 dimer was detected by Western blotting in the colon of all three SAM-R1 mice, but was not present in three SAM-P6 mice. No upregulation of 3 cell defense genes was detected in 3-month-old SAM-R1 as well as SAM-P6 mice. These results suggest that a diminution of the intestinal trefoil factor system may be involved in the acceleration of aging in SAM-P6 mice.
Collapse
Affiliation(s)
- Takaaki Kawashima
- Public Health and Nutrition, Graduate School of Human Health Science, Siebold University of Nagasaki
| | | | | | | | | |
Collapse
|
22
|
Role of hepatocyte nuclear factor 4α in controlling copper-responsive transcription. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2010; 1813:102-8. [PMID: 20875833 DOI: 10.1016/j.bbamcr.2010.09.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2010] [Revised: 09/07/2010] [Accepted: 09/16/2010] [Indexed: 01/04/2023]
Abstract
Previous global transcriptome and interactome analyses of copper-treated HepG2 cells identified hepatocyte nuclear factor 4α (HNF4α) as a potential master regulator of copper-responsive transcription. Copper exposure caused a decrease in the expression of HNF4α at both mRNA and protein levels, which was accompanied by a decrease in the level of HNF4α binding to its consensus DNA binding sequence. qRT-PCR and RNAi studies demonstrated that changes in HNF4α expression ultimately affected the expressions of its down-stream target genes. Analysis of upstream regulators of HNF4α expression, including p53 and ATF3, showed that copper caused an increase in the steady-state levels of these proteins. These results support a model for copper-responsive transcription in which the metal affects ATF3 expression and stabilizes p53 resulting in the down-regulation of HNF4α expression. In addition, copper may directly affect p53 protein levels. The suppression of HNF4α activity may contribute to the molecular mechanisms underlying the physiological and toxicological consequences of copper toxicity in hepatic-derived cells.
Collapse
|
23
|
Mosialou I, Zannis VI, Kardassis D. Regulation of human apolipoprotein m gene expression by orphan and ligand-dependent nuclear receptors. J Biol Chem 2010; 285:30719-30. [PMID: 20660599 DOI: 10.1074/jbc.m110.131771] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Apolipoprotein M (apoM) plays an important role in the biogenesis and the metabolism of anti-atherogenic HDL particles in plasma and is expressed primarily in the liver and the kidney. We investigated the role of hormone nuclear receptors in apoM gene regulation in hepatic cells. Overexpression via adenovirus-mediated gene transfer and siRNA-mediated gene silencing established that hepatocyte nuclear factor 4 (HNF-4) is an important regulator of apoM gene transcription in hepatic cells. apoM promoter deletion analysis combined with DNA affinity precipitation and chromatin immunoprecipitation assays revealed that HNF-4 binds to a hormone-response element (HRE) in the proximal apoM promoter (nucleotides -33 to -21). Mutagenesis of this HRE decreased basal hepatic apoM promoter activity to 10% of control and abolished the HNF4-mediated transactivation of the apoM promoter. In addition to HNF-4, homodimers of retinoid X receptor and heterodimers of retinoid X receptor with receptors for retinoic acid, thyroid hormone, fibrates (peroxisome proliferator-activated receptor), and oxysterols (liver X receptor) were shown to bind with different affinities to the proximal HRE in vitro and in vivo. Ligands of these receptors strongly induced human apoM gene transcription and apoM promoter activity in HepG2 cells, whereas mutations in the proximal HRE abolished this induction. These findings provide novel insights into the role of apoM in the regulation of HDL by steroid hormones and into the development of novel HDL-based therapies for diseases such as diabetes, obesity, metabolic syndrome, and coronary artery disease that affect a large proportion of the population in Western countries.
Collapse
Affiliation(s)
- Ioanna Mosialou
- Department of Biochemistry, University of Crete Medical School and Institute of Molecular Biology and Biotechnology, Foundation of Research and Technology-Hellas, Heraklion 71003, Greece
| | | | | |
Collapse
|
24
|
Leaver MJ, Taggart JB, Villeneuve L, Bron JE, Guy DR, Bishop SC, Houston RD, Matika O, Tocher DR. Heritability and mechanisms of n-3 long chain polyunsaturated fatty acid deposition in the flesh of Atlantic salmon. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2010; 6:62-9. [PMID: 20451480 DOI: 10.1016/j.cbd.2010.04.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2010] [Revised: 03/31/2010] [Accepted: 04/02/2010] [Indexed: 02/07/2023]
Abstract
n-3 long chain polyunsaturated fatty acids (n-3LC-PUFA) are essential components of vertebrate membrane lipids and are now at critically low levels in modern Western diets. The main human dietary source for n-3LC-PUFA is fish and seafood, and over 50% of global fish production is currently supplied by aquaculture. However, increasing pressure to include vegetable oils, which are devoid of n-3LC-PUFA, in aquaculture feeds reduces their content in farmed fish flesh. The aim of this study was to measure the heritability and infer mechanisms determining flesh n-3LC-PUFA content in Atlantic salmon. This was achieved by analysing flesh lipid parameters in 48 families of Atlantic salmon and by measuring differences, by high density microarray, in hepatic mRNA expression in families with high and low flesh n-3LC-PUFA. The results show that flesh n-3LC-PUFA composition is a highly heritable trait (h²=0.77±0.14). Gene ontology analysis of differentially expressed genes indicates increased hepatic lipid transport, likely as very low density lipoprotein (VLDL), and implicates family differences in transforming growth factor β1 (Tgfβ1) signalling, activities of a transcription factor Snai1, and considered together may indicate alterations in hepatic nuclear factor 4α (HNF4α), a master controller of lipid homeostasis. This study paves the way for identification of quantitative trait loci and gene interaction networks that are associated with flesh n-3LC-PUFA composition, which will assist the sustainable production of Atlantic salmon and provide optimal levels of critical nutrients for human consumers.
Collapse
|
25
|
Krapivner S, Iglesias MJ, Silveira A, Tegnér J, Björkegren J, Hamsten A, van't Hooft FM. DGAT1 participates in the effect of HNF4A on hepatic secretion of triglyceride-rich lipoproteins. Arterioscler Thromb Vasc Biol 2010; 30:962-7. [PMID: 20167659 DOI: 10.1161/atvbaha.109.201426] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Hepatocyte nuclear factor-4alpha (HNF4A) is a transcription factor that influences plasma triglyceride metabolism via an as of yet unknown mechanism. In this study, we searched for the critical protein that mediates this effect using different human model systems. METHODS AND RESULTS Up- and downregulation of HNF4A in human hepatoma Huh7 and HepG2 cells was associated with marked changes in the secretion of triglyceride-rich lipoproteins (TRLs). Short interfering RNA (siRNA) inhibition of HNF4A influenced the expression of several genes, including acyl-CoA:diacylglycerol acyltransferase 1 (DGAT1). siRNA knockdown of DGAT1 reduced DGAT1 activity and decreased the secretion of TRLs. No additive effects of combined siRNA inhibition of HNF4A and DGAT1 were found on the secretion of TRLs, whereas the increase in TRL secretion induced by HNF4A overexpression was largely abolished by DGAT1 siRNA inhibition. A putative binding site for HNF4A was defined by in silico and in vitro methods. HNF4A and DGAT1 expressions were analyzed in 80 human liver samples, and significant relationships were observed between HNF4A and DGAT1 mRNA levels (r(2)=0.50, P<0.0001) and between DGAT1 mRNA levels and plasma triglyceride concentration (r(2)=0.09, P<0.01). CONCLUSION This study identified DGAT1 as an important protein that participates in the effect of HNF4A on hepatic secretion of TRLs.
Collapse
Affiliation(s)
- Sergey Krapivner
- Cardiovascular Genetics Group, Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
| | | | | | | | | | | | | |
Collapse
|
26
|
Hepatocyte nuclear factor 4alpha coordinates a transcription factor network regulating hepatic fatty acid metabolism. Mol Cell Biol 2009; 30:565-77. [PMID: 19933841 DOI: 10.1128/mcb.00927-09] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Adaptation of liver to nutritional signals is regulated by several transcription factors that are modulated by intracellular metabolites. Here, we demonstrate a transcription factor network under the control of hepatocyte nuclear factor 4alpha (HNF4alpha) that coordinates the reciprocal expression of fatty acid transport and metabolizing enzymes during fasting and feeding conditions. Hes6 is identified as a novel HNF4alpha target, which in normally fed animals, together with HNF4alpha, maintains PPARgamma expression at low levels and represses several PPARalpha-regulated genes. During fasting, Hes6 expression is diminished, and peroxisome proliferator-activated receptor alpha (PPARalpha) replaces the HNF4alpha/Hes6 complex on regulatory regions of target genes to activate transcription. Gene expression and promoter occupancy analyses confirmed that HNF4alpha is a direct activator of the Pparalpha gene in vivo and that its expression is subject to feedback regulation by PPARalpha and Hes6 proteins. These results establish the fundamental role of dynamic regulatory interactions between HNF4alpha, Hes6, PPARalpha, and PPARgamma in the coordinated expression of genes involved in fatty acid transport and metabolism.
Collapse
|
27
|
Sharma NS, Wallenstein EJ, Novik E, Maguire T, Schloss R, Yarmush ML. Enrichment of hepatocyte-like cells with upregulated metabolic and differentiated function derived from embryonic stem cells using S-NitrosoAcetylPenicillamine. Tissue Eng Part C Methods 2009; 15:297-306. [PMID: 19196121 DOI: 10.1089/ten.tec.2008.0303] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The generation of a large number of fully functional hepatocytes from a renewable cell source can provide an unlimited resource for bioartificial liver devices and cell replacement therapies. We have established a directed differentiation system using sodium butyrate treatment to generate an enriched population of hepatocyte-like cells from embryonic stem cells. A metabolic analysis of the hepatocyte populations revealed glycolytic and mitochondrial phenotypes similar to mouse hepatoma cells, implying that these cells represent an immature hepatocyte phenotype. To mediate further differentiation, S-NitrosoAcetylPenicillamine (SNAP), a nitric oxide donor, was utilized to induce mitochondrial development in the precursor populations. A comparative analysis of the different treated populations showed that 500microM SNAP treatment resulted in the generation of an enriched population of metabolically mature hepatocyte-like cells with increased differentiated function. Specifically, 500microM SNAP treatment increased glucose consumption, lactate production rates, mitochondrial mass, and potential as compared to untreated populations. In addition, functional analysis revealed that intracellular albumin content, urea secretion rates, and cytochrome P450 7a1 promoter activity were increased in the treated population. The methodology described here to generate an enriched population of metabolically and functionally mature hepatocyte-like cells may have potential implications in drug discovery and regenerative medicine.
Collapse
Affiliation(s)
- Nripen S Sharma
- Department of Chemical and Biochemical Engineering, Rutgers University, Piscataway, New Jersey, USA
| | | | | | | | | | | |
Collapse
|
28
|
Huang J, Levitsky LL, Rhoads DB. Novel P2 promoter-derived HNF4alpha isoforms with different N-terminus generated by alternate exon insertion. Exp Cell Res 2009; 315:1200-11. [PMID: 19353766 DOI: 10.1016/j.yexcr.2009.01.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Hepatocyte nuclear factor 4alpha (HNF4alpha) is a critical transcription factor for pancreas and liver development and functions in islet beta cells to maintain glucose homeostasis. Mutations in the human HNF4A gene lead to maturity onset diabetes of the young (MODY1) and polymorphisms are associated with increased risk for type 2 diabetes mellitus (T2DM). Expression of six HNF4alpha variants, three each from two developmentally regulated promoters, has been firmly established. We have now detected a new set of HNF4alpha variants designated HNF4alpha10-12 expressed from distal promoter P2. These variants, generated by inclusion of previously undetected exon 1E (human=222 nt, rodent=136 nt) following exon 1D have an altered N-terminus but identical remaining reading frame. HNF4alpha10-alpha12 are expressed in pancreatic islets (and liver) and exhibit transactivation potentials similar to the corresponding alpha7-alpha9 isoforms. DNA-binding analyses implied much higher protein levels of HNF4alpha10-alpha12 in liver than expected from the RT-PCR data. Our results provide evidence for a more complex expression pattern of HNF4alpha than previously appreciated. We recommend inclusion of exon 1E and nearby DNA sequences in screening for HNF4alpha mutations and polymorphisms in genetic analyses of MODY1 and T2DM.
Collapse
Affiliation(s)
- Jianmin Huang
- MassGeneral Hospital for Children, Harvard Medical School, Boston, Massachusetts 02114-2696, USA.
| | | | | |
Collapse
|
29
|
Guillén N, Navarro MA, Arnal C, Noone E, Arbonés-Mainar JM, Acín S, Surra JC, Muniesa P, Roche HM, Osada J. Microarray analysis of hepatic gene expression identifies new genes involved in steatotic liver. Physiol Genomics 2009; 37:187-98. [PMID: 19258494 PMCID: PMC2685506 DOI: 10.1152/physiolgenomics.90339.2008] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Trans-10, cis-12-conjugated linoleic acid (CLA)-enriched diets promote fatty liver in mice, while cis-9, trans-11-CLA ameliorates this effect, suggesting regulation of multiple genes. To test this hypothesis, apoE-deficient mice were fed a Western-type diet enriched with linoleic acid isomers, and their hepatic gene expression was analyzed with DNA microarrays. To provide an initial screening of candidate genes, only 12 with remarkably modified expression between both CLA isomers were considered and confirmed by quantitative RT-PCR. Additionally mRNA expression of 15 genes involved in lipid metabolism was also studied. Ten genes (Fsp27, Aqp4, Cd36, Ly6d, Scd1, Hsd3b5, Syt1, Cyp7b1, and Tff3) showed significant associations among their expressions and the degree of hepatic steatosis. Their involvement was also analyzed in other models of steatosis. In hyperhomocysteinemic mice lacking Cbs gene, only Fsp27, Cd36, Scd1, Syt1, and Hsd3b5 hepatic expressions were associated with steatosis. In apoE-deficient mice consuming olive-enriched diet displaying reduction of the fatty liver, only Fsp27 and Syt1 expressions were found associated. Using this strategy, we have shown that expression of these genes is highly associated with hepatic steatosis in a genetic disease such as Cbs deficiency and in two common situations such as Western diets containing CLA isomers or a Mediterranean-type diet. Conclusion: The results highlight new processes involved in lipid handling in liver and will help to understand the complex human pathology providing new proteins and new strategies to cope with hepatic steatosis.
Collapse
Affiliation(s)
- Natalia Guillén
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Veterinaria, Instituto Aragonés de Ciencias de la Salud (Universidad de Zaragoza-Salud del Gobierno de Aragón), Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Horiuchi SI, Ishida S, Hongo T, Ishikawa Y, Miyajima A, Sawada JI, Ohno Y, Nakazawa K, Ozawa S. Global gene expression changes including drug metabolism and disposition induced by three-dimensional culture of HepG2 cells-Involvement of microtubules. Biochem Biophys Res Commun 2008; 378:558-62. [PMID: 19056338 DOI: 10.1016/j.bbrc.2008.11.088] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2008] [Accepted: 11/17/2008] [Indexed: 11/18/2022]
Abstract
Constitutive upregulation and a higher degree of induction of drug metabolism and disposition-related genes were found in a three-dimensional HepG2 culture. The upregulated genes are believed to be regulated by different regulatory factors. Global gene expression analysis using the Affymetrix GeneChip indicated that altered expression of microtubule-related genes may change the expressed levels of drug metabolizing and disposition genes. Stabilization of microtubule molecules with docetaxel, a tubulin-stabilizing agent, in the two-dimensional culture showed gene expression patterns similar to those found in the three-dimensional culture, indicating that the culture environment affects drug metabolism functions in HepG2 cells.
Collapse
Affiliation(s)
- Shin-Ichiro Horiuchi
- Division of Pharmacology, National Institute of Health Sciences, Kamiyoga 1-18-1, Setagaya-ku, Tokyo 158-8501, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Saito S, Ojima H, Ichikawa H, Hirohashi S, Kondo T. Molecular background of alpha-fetoprotein in liver cancer cells as revealed by global RNA expression analysis. Cancer Sci 2008; 99:2402-9. [PMID: 19038010 PMCID: PMC11158806 DOI: 10.1111/j.1349-7006.2008.00973.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
alpha-Fetoprotein (AFP) is considered to be a diagnostic and prognostic biomarker in hepatocellular carcinoma (HCC). However, the role of AFP in the development of HCC is presently obscure. We hypothesized that a certain set of genes is expressed in a manner coordinate with AFP, and that these genes essentially contribute to the malignant characteristics of AFP-producing HCC. To address this hypothesis, we carried out global mRNA expression analysis of 21 liver cancer cell lines that produce varying levels of AFP. We identified 213 genes whose mRNA expression levels were significantly correlated with that of AFP (P < 0.0001). These included liver-specific transcription factors for AFP and other albumin family genes. Eighteen HCC-associated genes and 11 genes associated with malignancies other than HCC showed significant correlations with AFP production levels. Genes involved in lipid catabolism, blood coagulation, iron metabolism, angiogenesis, and the Wnt and mitogen-activated protein kinase pathways were also identified. Text data mining revealed that participation in the transcription factor network could explain the connection between 78 of the identified genes. Glypican 3, which is a component of the Wnt pathway and contributes to HCC development, had the fifth highest correlation coefficient with AFP. Reactivity to specific antibodies confirmed the significant correlation between AFP and glypican 3 expression in HCC tissues. These observations suggest that AFP-producing liver cancer cells may have a unique molecular background consisting of cancer-associated genes. From this genome-wide association study, novel aspects of the molecular background of AFP were revealed, and thus may lead to the identification of novel biomarker candidates.
Collapse
MESH Headings
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/metabolism
- Carcinoma, Hepatocellular/pathology
- Cell Line, Tumor
- DNA, Complementary/biosynthesis
- Gene Expression Regulation, Neoplastic
- Glypicans/metabolism
- Humans
- Immunohistochemistry
- Liver Neoplasms/genetics
- Liver Neoplasms/metabolism
- Liver Neoplasms/pathology
- Oligonucleotide Array Sequence Analysis
- RNA, Messenger/analysis
- RNA, Neoplasm/analysis
- RNA, Neoplasm/genetics
- RNA, Neoplasm/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- alpha-Fetoproteins/analysis
- alpha-Fetoproteins/genetics
- alpha-Fetoproteins/metabolism
Collapse
Affiliation(s)
- Shigeru Saito
- Proteome Bioinformatics Project, National Cancer Center Research Institute, Tsukiji, Chuo-ku, Tokyo, Japan
| | | | | | | | | |
Collapse
|
32
|
Differentiation of Mouse Hepatic Progenitor Cells Induced by Hepatocyte Nuclear Factor-4 and Cell Transplantation in Mice With Liver Fibrosis. Transplantation 2008; 86:1178-86. [DOI: 10.1097/tp.0b013e31818a8233] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
33
|
Yin C, Lin Y, Zhang X, Chen YX, Zeng X, Yue HY, Hou JL, Deng X, Zhang JP, Han ZG, Xie WF. Differentiation therapy of hepatocellular carcinoma in mice with recombinant adenovirus carrying hepatocyte nuclear factor-4alpha gene. Hepatology 2008; 48:1528-39. [PMID: 18925631 DOI: 10.1002/hep.22510] [Citation(s) in RCA: 155] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
UNLABELLED Previous studies have shown that hepatocyte nuclear factor-4alpha (HNF4alpha) is a central regulator of differentiated hepatocyte phenotype and forced expression of HNF4alpha could promote reversion of tumors toward a less invasive phenotype. However, the effect of HNF4alpha on cancer stem cells (CSCs) and the treatment of hepatocellular carcinoma (HCC) with HNF4alpha have not been reported. In this study, an adenovirus-mediated gene delivery system, which could efficiently transfer and express HNF4alpha, was generated to determine its effect on hepatoma cells (Hep3B and HepG2) in vitro and investigate the anti-tumor effect of HNF4alpha in mice. Our results demonstrated that forced re-expression of HNF4alpha induced the differentiation of hepatoma cells into hepatocytes, dramatically decreased "stemness" gene expression and the percentage of CD133(+) and CD90(+) cells, which are considered as cancer stem cells in HCC. Meanwhile, HNF4alpha reduced cell viability through inducing apparent apoptosis in Hep3B, while it induced cell cycle arrest and cellular senescence in HepG2. Moreover, infection of hepatoma cells by HNF4alpha abolished their tumorigenesis in mice. Most interestingly, systemic administration of adenovirus carrying the HNF4alpha gene protected mice from liver metastatic tumor formation, and intratumoral injection of HNF4alpha also displayed significant antitumor effects on transplanted tumor models. CONCLUSION The striking suppression effect of HNF4alpha on tumorigenesis and tumor development is attained by inducing the differentiation of hepatoma cells--especially CSCs--into mature hepatocytes, suggesting that differentiation therapy with HNF4alpha may be an effective treatment for HCC patients. Our study also implies that differentiation therapy may present as one of the best strategies for cancer treatment through the induction of cell differentiation by key transcription factors.
Collapse
Affiliation(s)
- Chuan Yin
- Department of Gastroenterology, Changzheng Hospital, Shanghai, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Lazarevich NL, Fleishman DI. Tissue-specific transcription factors in progression of epithelial tumors. BIOCHEMISTRY (MOSCOW) 2008; 73:573-91. [PMID: 18605982 DOI: 10.1134/s0006297908050106] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Dedifferentiation and epithelial-mesenchymal transition are important steps in epithelial tumor progression. A central role in the control of functional and morphological properties of different cell types is attributed to tissue-specific transcription factors which form regulatory cascades that define specification and differentiation of epithelial cells during embryonic development. The main principles of the action of such regulatory systems are reviewed on an example of a network of hepatocyte nuclear factors (HNFs) which play a key role in establishment and maintenance of hepatocytes--the major functional type of liver cells. HNFs, described as proteins binding to promoters of most hepatospecific genes, not only control expression of functional liver genes, but are also involved in regulation of proliferation, morphogenesis, and detoxification processes. One of the central components of the hepatospecific regulatory network is nuclear receptor HNF4alpha. Derangement of the expression of this gene is associated with progression of rodent and human hepatocellular carcinomas (HCCs) and contributes to increase of proliferation, loss of epithelial morphology, and dedifferentiation. Dysfunction of HNF4alpha during HCC progression can be either caused by structural changes of this gene or occurs due to modification of up-stream regulatory signaling pathways. Investigations preformed on a model system of the mouse one-step HCC progression have shown that the restoration of HNF4alpha function in dedifferentiated cells causes partial reversion of malignant phenotype both in vitro and in vivo. Derangement of HNFs function was also described in other tumors of epithelial origin. We suppose that tissue-specific factors that underlie the key steps in differentiation programs of certain tissues and are able to receive or modulate signals from the cell environment might be considered as promising candidates for the role of tumor suppressors in the tissue types where they normally play the most significant role.
Collapse
Affiliation(s)
- N L Lazarevich
- Institute of Carcinogenesis, Blokhin Russian Cancer Research Center, Russian Academy of Medical Sciences, Moscow 115478, Russia.
| | | |
Collapse
|
35
|
Abstract
To know the precise mechanisms underlying the life or death and the regeneration or differentiation of cells would be relevant and useful for the development of a regenerative therapy for organ failure. Liver-specific gene expression is controlled primarily at a transcriptional level. Studies on the transcriptional regulatory elements of genes expressed in hepatocytes have identified several liver-enriched transcriptional factors, including hepatocyte nuclear factor (HNF)-1, HNF-3, HNF-4, HNF-6 and CCAAT/enhancer binding protein families, which are key components of the differentiation process for the fully functional liver. The transcriptional regulation by these HNFs, which form a hierarchical and cooperative network, is both essential for hepatocyte differentiation during mammalian liver development and also crucial for metabolic regulation and liver function. Among these liver-enriched transcription factors, HNF-4 is likely to act the furthest upstream as a master gene in transcriptional cascade and interacts with other liver-enriched transcriptional factors to stimulate hepatocyte-specific gene transcription. A link between the extracellular matrix, changes in cytoskeletal filament assembly and hepatocyte differentiation via HNF-4 has been shown to be involved in the transcriptional regulation of liver-specific gene expression. This review provides an overview of the roles of liver-enriched transcription factors in liver function.
Collapse
Affiliation(s)
- Masahito Nagaki
- Department of Gastroenterology, Gifu University Graduate School of Medicine, Yanagido, Gifu, Japan
| | | |
Collapse
|
36
|
Martin GG, Atshaves BP, McIntosh AL, Mackie JT, Kier AB, Schroeder F. Liver fatty acid-binding protein gene-ablated female mice exhibit increased age-dependent obesity. J Nutr 2008; 138:1859-65. [PMID: 18806093 PMCID: PMC2835297 DOI: 10.1093/jn/138.10.1859] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Previous work conducted in our laboratory suggested a role for liver fatty acid-binding protein (L-FABP) in obesity that develops in aging female L-FABP gene-ablated (-/-) mice. To examine this possibility in more detail, cohorts of wild-type (+/+) and L-FABP (-/-) female mice were fed a standard, low-fat, nonpurified rodent diet for up to 18 mo. Various obesity-related parameters were examined, including body weight and fat and lean tissue mass. Obesity in (-/-) mice was associated with increased expression of nuclear receptors that induce PPARalpha (e.g. hepatocyte nuclear factor 1alpha, genotype effect) and of PPARalpha-regulated proteins involved in uptake of free (lipoprotein lipase and fatty acid transport protein, genotype, and/or age effect) and esterified (scavenger receptor class B type 1, genotype effect) long-chain fatty acids (LCFA). Hepatic total lipid and neutral lipid levels were not affected by age or genotype, consistent with absence of gross and histologic steatosis. There was increased mRNA expression of liver proteins involved in LCFA oxidation [mitochondrial 3-oxoacyl-CoA thiolase (genotype effect) and butyryl-CoA dehydrogenase (genotype and/or age effect)], increased expression of LCFA esterification enzymes [glycerol-3-phosphate acyltransferase (age x genotype effect) and acyl-CoA:cholesterol acyltransferase-2 (genotype and/or age effect)], and increased expression of proteins involved in intracellular transfer and secretion of esterified LCFA [liver microsomal triacylglycerol transfer protein (genotype effect), serum apolipoprotein (apo) B (genotype or age effect), and liver apoB (age and age x genotype effect)]. The data support a working model in which obesity development in these mice results from shifts toward reduced energy expenditure and/or more efficient energy uptake in the gut.
Collapse
Affiliation(s)
- Gregory G. Martin
- Department of Physiology and Pharmacology, Texas A&M University, TVMC, College Station, TX 77843-4467
| | - Barbara P. Atshaves
- Department of Physiology and Pharmacology, Texas A&M University, TVMC, College Station, TX 77843-4467
| | - Avery L. McIntosh
- Department of Physiology and Pharmacology, Texas A&M University, TVMC, College Station, TX 77843-4467
| | - John T. Mackie
- Department of Pathobiology, Texas A&M University, TVMC, College Station, TX 77843-4467
| | - Ann B. Kier
- Department of Pathobiology, Texas A&M University, TVMC, College Station, TX 77843-4467
| | - Friedhelm Schroeder
- Department of Physiology and Pharmacology, Texas A&M University, TVMC, College Station, TX 77843-4467,To whom correspondence should be addressed: Department of Physiology & Pharmacology, Texas A&M University, TVMC, College Station, TX 77843-4466. Phone: 979-862-1433, Fax: 979-862-4929,
| |
Collapse
|
37
|
Quasdorff M, Hösel M, Odenthal M, Zedler U, Bohne F, Gripon P, Dienes HP, Drebber U, Stippel D, Goeser T, Protzer U. A concerted action of HNF4α and HNF1α links hepatitis B virus replication to hepatocyte differentiation. Cell Microbiol 2008; 10:1478-90. [DOI: 10.1111/j.1462-5822.2008.01141.x] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
38
|
Grigo K, Wirsing A, Lucas B, Klein-Hitpass L, Ryffel GU. HNF4 alpha orchestrates a set of 14 genes to down-regulate cell proliferation in kidney cells. Biol Chem 2008; 389:179-87. [PMID: 18163890 DOI: 10.1515/bc.2008.011] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Abstract Few genes are known to be involved in renal cell carcinoma (RCC) development and progression. The cell-specific transcription factor hepatocyte nuclear factor 4 alpha (HNF4 alpha) is down-regulated in RCC and we have shown that HNF4 alpha inhibits cell proliferation in the embryonic kidney cell line HEK293. To clarify the possible tumor suppressor activity of HNF4 alpha we analyzed the whole human expression profile in HEK293 cells upon HNF4 alpha induction. By comparing induced and uninduced cells, we identified 1411 differentially expressed genes. Using RNA interference, we screened 56 HNF4 alpha-regulated genes for their possible role in mediating inhibition of cell proliferation triggered by HNF4 alpha. We demonstrate that 14 of these regulated genes are able to contribute to the inhibitory effect of HNF4 alpha on cell proliferation, including well-known cancer genes, such as CDKN1A (p21), TGFA, MME (NEP) and ADAMTS1. In addition, the genes SEPP1, THEM2, BPHL, DSC2, ANK3, ALDH6A1, EPHX2, NELL2, EFHD1 and PROS1 are also part of the network of HNF4 alpha target genes that regulate proliferation in HEK293 cells. Therefore, we postulate that HNF4 alpha orchestrates, at least, these 14 genes to regulate cell proliferation in HEK293 cells and that down-regulation of HNF4 alpha could contribute to the progression of kidney cancer.
Collapse
Affiliation(s)
- Karen Grigo
- Institut für Zellbiologie (Tumorforschung), Universitätsklinikum Essen, Universität Duisburg-Essen, D-45122 Essen, Germany
| | | | | | | | | |
Collapse
|
39
|
Iizuka N, Hamamoto Y, Tsunedomi R, Oka M. Translational microarray systems for outcome prediction of hepatocellular carcinoma. Cancer Sci 2008; 99:659-65. [PMID: 18377418 PMCID: PMC11159982 DOI: 10.1111/j.1349-7006.2008.00751.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
DNA microarray technology has revolutionized our understanding of the molecular basis of hepatocellular carcinoma (HCC), one of the most fatal human cancers with a high recurrence rate. Many researchers have used DNA microarray technology to reclassify HCC with respect to metastatic potential and to develop predictors for the outcome of HCC. However, developed predictors have reached the level only of small retrospective studies, and their current status is far from that required for clinical use. This is due to the lack of transparent data, the high cost and data instability associated with the high dimensionality of the technique, the infancy of bioinformatics, and the complicated nature of recurrent HCC. This comprehensive review summarizes: (i) class comparison studies to identify genes or pathways involved in HCC metastasis (ii) class discovery studies that have resulted in the identification of a new molecular subclass of HCC with respect to metastasis, and (iii) class prediction studies to develop multidimensional predictors for HCC outcome. We also discuss issues that need to be addressed so that the power of array-based predictors can be estimated prospectively in large independent cohorts of HCC patients.
Collapse
Affiliation(s)
- Norio Iizuka
- Departments of Surgery II, Yamaguchi University Graduate School of Medicine, 10101 Minami-Kogushi, Ube, Yamaguchi 755-8505, Japan
| | | | | | | |
Collapse
|
40
|
Kel AE, Niehof M, Matys V, Zemlin R, Borlak J. Genome wide prediction of HNF4alpha functional binding sites by the use of local and global sequence context. Genome Biol 2008; 9:R36. [PMID: 18291023 PMCID: PMC2374721 DOI: 10.1186/gb-2008-9-2-r36] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2007] [Revised: 11/09/2007] [Accepted: 02/21/2008] [Indexed: 11/16/2022] Open
Abstract
An application of machine learning algorithms enables prediction of the functional context of transcription factor binding sites in the human genome. We report an application of machine learning algorithms that enables prediction of the functional context of transcription factor binding sites in the human genome. We demonstrate that our method allowed de novo identification of hepatic nuclear factor (HNF)4α binding sites and significantly improved an overall recognition of faithful HNF4α targets. When applied to published findings, an unprecedented high number of false positives were identified. The technique can be applied to any transcription factor.
Collapse
Affiliation(s)
- Alexander E Kel
- BIOBASE GmbH, Halchtersche Str, 38304 Wolfenbüttel, Germany.
| | | | | | | | | |
Collapse
|
41
|
Hwang-Verslues WW, Sladek FM. Nuclear receptor hepatocyte nuclear factor 4alpha1 competes with oncoprotein c-Myc for control of the p21/WAF1 promoter. Mol Endocrinol 2007; 22:78-90. [PMID: 17885207 PMCID: PMC2194635 DOI: 10.1210/me.2007-0298] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The dichotomy between cellular differentiation and proliferation is a fundamental aspect of both normal development and tumor progression; however, the molecular basis of this opposition is not well understood. To address this issue, we investigated the mechanism by which the nuclear receptor hepatocyte nuclear factor 4alpha1 (HNF4alpha1) regulates the expression of the human cyclin-dependent kinase inhibitor gene p21/WAF1 (CDKN1A). We found that HNF4alpha1, a transcription factor that plays a central role in differentiation in the liver, pancreas, and intestine, activates the expression of p21 primarily by interacting with promoter-bound Sp1 at both the proximal promoter region and at newly identified sites in a distal region (-2.4 kb). Although HNF4alpha1 also binds two additional regions containing putative HNF4alpha binding sites, HNF4alpha1 mutants deficient in DNA binding activate the p21 promoter to the same extent as wild-type HNF4alpha1, indicating that direct DNA binding by HNF4alpha1 is not necessary for p21 activation. We also observed an in vitro and in vivo interaction between HNF4alpha1 and c-Myc as well as a competition between these two transcription factors for interaction with promoter-bound Sp1 and regulation of p21. Finally, we show that c-Myc competes with HNF4alpha1 for control of apolipoprotein C3 (APOC3), a gene associated with the differentiated hepatic phenotype. These results suggest a general model by which a differentiation factor (HNF4alpha1) and a proliferation factor (c-Myc) may compete for control of genes involved in cell proliferation and differentiation.
Collapse
Affiliation(s)
- Wendy W Hwang-Verslues
- Environmental Toxicology Graduate Program, University of California, Riverside, California 92521, USA
| | | |
Collapse
|
42
|
Abstract
BACKGROUND Most of the knowledge about lipid parameters in acute hepatitis is originated from adult studies. In this study, the authors investigated lipid profile of children with acute hepatitis A (AVH) at diagnosis and recovery in order to observe the behavior of lipid parameters in such children. METHODS A total of 28 children (mean age, 8.2 +/- 2.7 years) with AVH and 20 gender and age-matched healthy children were included. In addition to the routine tests, triglyceride, cholesterol, low-density lipoprotein (LDL), high-density lipoprotein (HDL), plasma apo A-I and apo B were studied at diagnosis and recovery. RESULTS Serum triglyceride and apo B level was higher, and apo A-I level was lower in patients compared to healthy children (P < 0.01, <0.05 and <0.01, respectively). On admission, three children had fulminant hepatic failure (FHF). Serum lipid parameters were evaluated in respect with the presence of icterus and FHF, and found that apo A-I level was lower in icteric children and LDL and apo A-I were lower in FHF compared to others (P < 0.05, P < 0.01 and P < 0.05, respectively). At recovery, while triglyceride, cholesterol, LDL, and apo B decreased (P < 0.01), HDL and apo A-I increased (P < 0.01). Serum apo A-I level was inversely correlated with serum ammonia level but was positively correlated with serum albumin (P < 0.05). CONCLUSIONS It was shown that serum triglyceride and apo B level increased, but apo A-I level decreased in patients with AVH. While cholestasis lowers apo A-I level, severe hepatic damage lowers both apo A-I and LDL. These parameters return to normal levels within 30 days. An interesting relationship between ammonia and apo A-I deserves further investigations, speculatively focused on hepatocyte nuclear factor 4 alpha.
Collapse
Affiliation(s)
- Mukadder Ayse Selimoglu
- Department of Pediatric Gastroenterology, Hepatology and Nutrition, Faculty of Medicine, Atatürk University, Erzurum, Turkey.
| | | | | |
Collapse
|
43
|
Gebhardt R, Baldysiak-Figiel A, Krügel V, Ueberham E, Gaunitz F. Hepatocellular expression of glutamine synthetase: an indicator of morphogen actions as master regulators of zonation in adult liver. ACTA ACUST UNITED AC 2007; 41:201-66. [PMID: 17368308 DOI: 10.1016/j.proghi.2006.12.001] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Glutamine synthetase (GS) has long been known to be expressed exclusively in pericentral hepatocytes most proximal to the central veins of liver lobuli. This enzyme as well as its peculiar distribution complementary to the periportal compartment for ureogenesis plays an important role in nitrogen metabolism, particularly in homeostasis of blood levels of ammonium ions and glutamine. Despite this fact and intensive studies in vivo and in vitro, many aspects of the regulation of its activity on the protein and on the genetic level remained enigmatic. Recent experimental advances using transgenic mice and new analytic tools have revealed the fundamental role of morphogens such as wingless-type MMTV integration site family member signals (Wnt), beta-catenin, and adenomatous polyposis coli in the regulation of this particular enzyme. In addition, novel information concerning the structure of transcription factor binding sites within regulatory regions of the GS gene and their interactions with signalling pathways could be collected. In this review we focus on all aspects of the regulation of GS in the liver and demonstrate how the new findings have changed our view of the determinants of liver zonation. What appeared as a simple response of hepatocytes to blood-derived factors and local cellular interactions must now be perceived as a fundamental mechanism of adult tissue patterning by morphogens that were considered mainly as regulators of developmental processes. Though GS may be the most obvious indicator of morphogen action among many other targets, elucidation of the complex regulation of the expression of the GS gene could pave the road for a better understanding of the mechanisms involved in patterning of liver parenchyma. Based on current knowledge we propose a new concept of how morphogens, hormones and other factors may act in concert, in order to restrict gene expression to small subpopulations of one differentiated cell type, the hepatocyte, in different anatomical locations. Although many details of this regulatory network are still missing, and an era of exciting new discoveries is still about to come, it can already be envisioned that similar mechanisms may well be active in other organs contributing to the fine-tuning of organ-specific functions.
Collapse
Affiliation(s)
- Rolf Gebhardt
- Institut für Biochemie, Medizinische Fakultät, Universität Leipzig, Johannisallee 30, 04103 Leipzig, Germany.
| | | | | | | | | |
Collapse
|
44
|
Shackel NA, Seth D, Haber PS, Gorrell MD, McCaughan GW. The hepatic transcriptome in human liver disease. COMPARATIVE HEPATOLOGY 2006; 5:6. [PMID: 17090326 PMCID: PMC1665460 DOI: 10.1186/1476-5926-5-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/08/2005] [Accepted: 11/07/2006] [Indexed: 02/07/2023]
Abstract
The transcriptome is the mRNA transcript pool in a cell, organ or tissue with the liver transcriptome being amongst the most complex of any organ. Functional genomics methodologies are now being widely utilized to study transcriptomes including the hepatic transcriptome. This review outlines commonly used methods of transcriptome analysis, especially gene array analysis, focusing on publications utilizing these methods to understand human liver disease. Additionally, we have outlined the relationship between transcript and protein expressions as well as summarizing what is known about the variability of the transcriptome in non-diseased liver tissue. The approaches covered include gene array analysis, serial analysis of gene expression, subtractive hybridization and differential display. The discussion focuses on primate whole organ studies and in-vitro cell culture systems utilized. It is now clear that there are a vast number research opportunities for transcriptome analysis of human liver disease as we attempt to better understand both non-diseased and disease hepatic mRNA expression. We conclude that hepatic transcriptome analysis has already made significant contributions to the understanding of human liver pathobiology.
Collapse
Affiliation(s)
- Nicholas A Shackel
- AW Morrow Gastroenterology and Liver Centre, Centenary Institute of Cancer Medicine and Cell Biology, Royal Prince Alfred Hospital and The University of Sydney, Sydney, Australia
| | - Devanshi Seth
- AW Morrow Gastroenterology and Liver Centre, Centenary Institute of Cancer Medicine and Cell Biology, Royal Prince Alfred Hospital and The University of Sydney, Sydney, Australia
| | - Paul S Haber
- AW Morrow Gastroenterology and Liver Centre, Centenary Institute of Cancer Medicine and Cell Biology, Royal Prince Alfred Hospital and The University of Sydney, Sydney, Australia
| | - Mark D Gorrell
- AW Morrow Gastroenterology and Liver Centre, Centenary Institute of Cancer Medicine and Cell Biology, Royal Prince Alfred Hospital and The University of Sydney, Sydney, Australia
| | - Geoffrey W McCaughan
- AW Morrow Gastroenterology and Liver Centre, Centenary Institute of Cancer Medicine and Cell Biology, Royal Prince Alfred Hospital and The University of Sydney, Sydney, Australia
| |
Collapse
|
45
|
Mashek DG, Li LO, Coleman RA. Rat long-chain acyl-CoA synthetase mRNA, protein, and activity vary in tissue distribution and in response to diet. J Lipid Res 2006; 47:2004-10. [PMID: 16772660 DOI: 10.1194/jlr.m600150-jlr200] [Citation(s) in RCA: 153] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Distinct isoforms of long-chain acyl-CoA synthetases (ACSLs) may partition fatty acids toward specific metabolic cellular pathways. For each of the five members of the rat ACSL family, we analyzed tissue mRNA distributions, and we correlated the mRNA, protein, and activity of ACSL1 and ACSL4 after fasting and refeeding a 69% sucrose diet. Not only did quantitative real-time PCR analyses reveal unique tissue expression patterns for each ACSL isoform, but expression varied markedly in different adipose depots. Fasting increased ACSL4 mRNA abundance in liver, muscle, and gonadal and inguinal adipose tissues, and refeeding decreased ACSL4 mRNA. A similar pattern was observed for ACSL1, but both fasting and refeeding decreased ACSL1 mRNA in gonadal adipose. Fasting also decreased ACSL3 and ACSL5 mRNAs in liver and ACSL6 mRNA in muscle. Surprisingly, in nearly every tissue measured, the effects of fasting and refeeding on the mRNA abundance of ACSL1 and ACSL4 were discordant with changes in protein abundance. These data suggest that the individual ACSL isoforms are distinctly regulated across tissues and show that mRNA expression may not provide useful information about isoform function. They further suggest that translational or posttranslational modifications are likely to contribute to the regulation of ACSL isoforms.
Collapse
Affiliation(s)
- Douglas G Mashek
- Department of Nutrition, University of North Carolina, Chapel Hill, NC 27599, USA
| | | | | |
Collapse
|
46
|
Nyirenda MJ, Dean S, Lyons V, Chapman KE, Seckl JR. Prenatal programming of hepatocyte nuclear factor 4alpha in the rat: A key mechanism in the 'foetal origins of hyperglycaemia'? Diabetologia 2006; 49:1412-20. [PMID: 16570165 DOI: 10.1007/s00125-006-0188-5] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2005] [Accepted: 12/02/2005] [Indexed: 11/27/2022]
Abstract
AIMS/HYPOTHESIS Prenatal glucocorticoid exposure causes lifelong hyperglycaemia in rat offspring, associated with permanently increased hepatic phosphoenolpyruvate carboxykinase 2 (PCK2), the rate-controlling enzyme of gluconeogenesis. To elucidate the mechanisms underlying the 'programming' of PCK2, this study examined the effect of prenatal dexamethasone treatment on expression of transcription factors that regulate Pck2. MATERIALS AND METHODS Real-time RT-PCR and in situ hybridisation were used to measure and localise hepatic mRNA transcribed from the genes for PCK2, hepatocyte nuclear factor 4, alpha (HNF4A), transcription factor 1 (TCF1), CCAAT/enhancer binding protein, alpha (CEBPA), CEBPB, the glucocorticoid receptor (NR3C1) and peroxisome proliferative activated receptor, gamma, coactivator 1 alpha (PPARGC1A) in foetal and adult offspring of dams treated with dexamethasone or vehicle during the last week of gestation. RESULTS Prenatal dexamethasone exposure significantly elevated Hnf4a mRNA expression in foetal and adult liver. This resulted from increased expression of isoforms derived from the 'adult' (P1) Hnf4a promoter. In contrast, isoforms from the 'foetal' (P2) promoter were markedly suppressed by dexamethasone. Like Pck2, the increase in hepatic Hnf4a mRNA occurred exclusively in the periportal zone. Foetal Tcf1 expression was also increased by dexamethasone treatment, but this did not persist into adulthood. Prenatal dexamethasone did not affect the amounts of foetal and/or adult Cebpa, Cebpb, Nr3c1 or Ppargc1a mRNA. CONCLUSIONS/INTERPRETATION Prenatal dexamethasone exposure caused a permanent increase in hepatic Hnf4a mRNA. This increase, which was associated with a premature switch from foetal to adult promoter predominance, was congruent with changes in Pck2 expression. These data suggest that HNF4A might mediate Pck2 overexpression and subsequent hyperglycaemia.
Collapse
Affiliation(s)
- M J Nyirenda
- Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK.
| | | | | | | | | |
Collapse
|
47
|
Battle MA, Konopka G, Parviz F, Gaggl AL, Yang C, Sladek FM, Duncan SA. Hepatocyte nuclear factor 4alpha orchestrates expression of cell adhesion proteins during the epithelial transformation of the developing liver. Proc Natl Acad Sci U S A 2006; 103:8419-24. [PMID: 16714383 PMCID: PMC1482507 DOI: 10.1073/pnas.0600246103] [Citation(s) in RCA: 195] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Epithelial formation is a central facet of organogenesis that relies on intercellular junction assembly to create functionally distinct apical and basal cell surfaces. How this process is regulated during embryonic development remains obscure. Previous studies using conditional knockout mice have shown that loss of hepatocyte nuclear factor 4alpha (HNF4alpha) blocks the epithelial transformation of the fetal liver, suggesting that HNF4alpha is a central regulator of epithelial morphogenesis. Although HNF4alpha-null hepatocytes do not express E-cadherin (also called CDH1), we show here that E-cadherin is dispensable for liver development, implying that HNF4alpha regulates additional aspects of epithelial formation. Microarray and molecular analyses reveal that HNF4alpha regulates the developmental expression of a myriad of proteins required for cell junction assembly and adhesion. Our findings define a fundamental mechanism through which generation of tissue epithelia during development is coordinated with the onset of organ function.
Collapse
Affiliation(s)
- Michele A. Battle
- *Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226-0509
| | - Genevieve Konopka
- *Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226-0509
| | - Fereshteh Parviz
- *Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226-0509
| | - Alexandra Lerch Gaggl
- *Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226-0509
| | - Chuhu Yang
- Department of Cell Biology and Neuroscience, University of California, Riverside, CA 92521; and
- WiCell Research Institute, Madison, WI 53707
| | - Frances M. Sladek
- Department of Cell Biology and Neuroscience, University of California, Riverside, CA 92521; and
| | - Stephen A. Duncan
- *Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226-0509
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
48
|
Arbonés-Mainar JM, Navarro MA, Acín S, Guzmán MA, Arnal C, Surra JC, Carnicer R, Roche HM, Osada J. Trans-10, cis-12- and cis-9, trans-11-conjugated linoleic acid isomers selectively modify HDL-apolipoprotein composition in apolipoprotein E knockout mice. J Nutr 2006; 136:353-9. [PMID: 16424111 DOI: 10.1093/jn/136.2.353] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Trans-10, cis-12-conjugated linoleic acid (CLA)-enriched diets promote atherosclerosis in mice despite increasing blood concentrations of HDL cholesterol. This suggests that under these conditions, the HDL apolipoproteins (apo) produced are abnormal. To test this hypothesis, apoE-deficient mice were fed a Western-type diet enriched with linoleic acid (control), cis-9, trans-11-CLA or trans-10, cis-12-CLA (1.0% wt/wt) for 12 wk, and the effects on HDL metabolism and apoC-III levels recorded. Compared with the control and cis-9, trans-11-CLA mice, those fed the trans-10, cis-12-CLA diet had significantly higher HDL cholesterol concentrations, and had a higher incidence of hypertriglyceridemia and hepatic steatosis. Plasma apoA-I and paraoxonase concentrations were significantly lower in the trans-10, cis-12-CLA group than in the cis-9, trans-11-CLA group. These reductions were associated with decreased hepatic expression of these proteins and a shift toward lipid-poor apolipoprotein particles. The plasma apoA-II concentration increased with its corresponding mRNA concentration in the liver, and was preferentially bound to HDL in the trans-10, cis-12-CLA mice, thus explaining the increased HDL cholesterol concentrations in this group. Significant, positive associations were found between apoA-II and C-III (r=0.883, P<0.001) and between apoA-II and atherosclerosis (r=0.68, P<0.001). These results indicate that trans-10, cis-12-CLA intake modifies HDL to form a proatherogenic apoA-II containing particle and promotes phenotypic changes compatible with metabolic syndrome. Cis-9, trans-11-CLA does not promote this detrimental effect.
Collapse
Affiliation(s)
- José M Arbonés-Mainar
- Departmento de Bioquímica y Biología Molecular y Celular, Trinity College, Dublin, Ireland
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Tanaka T, Jiang S, Hotta H, Takano K, Iwanari H, Sumi K, Daigo K, Ohashi R, Sugai M, Ikegame C, Umezu H, Hirayama Y, Midorikawa Y, Hippo Y, Watanabe A, Uchiyama Y, Hasegawa G, Reid P, Aburatani H, Hamakubo T, Sakai J, Naito M, Kodama T. Dysregulated expression of P1 and P2 promoter-driven hepatocyte nuclear factor-4α in the pathogenesis of human cancer. J Pathol 2006; 208:662-72. [PMID: 16400631 DOI: 10.1002/path.1928] [Citation(s) in RCA: 143] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Hepatocyte nuclear factor-4alpha (HNF4alpha) exists in multiple isoforms that are generated by alternative promoter (P1 and P2) usage and splicing. Here we establish monoclonal antibodies (mAbs) for detecting P1 and P2 promoter-driven HNF4alpha, and evaluate their expression in normal adult human tissues and surgically resected carcinomas of different origins. Using immunohistochemical analysis, we demonstrate that, while P1 promoter-driven HNF4alpha is expressed in hepatocytes, small intestine, colon, kidney and epididymis, P2 promoter-driven HNF4alpha is expressed in bile duct, pancreas, stomach, small intestine, colon and epididymis. Altered expression patterns of P1 and P2 promoter-driven HNF4alpha were observed in gastric, hepatocellular and colorectal carcinomas. HNF4alpha was expressed in lung metastases from renal cell, hepatocellular and colorectal carcinoma but was not observed in lung tumours. The P1 and P2 promoter-driven HNF4alpha expression pattern of tumour metastases correlated with the primary site of origin. P1 promoter-driven HNF4alpha was also found in intestinal metaplasia of the stomach. These data provide evidence for the tissue distribution of P1 and P2 promoter-driven HNF4alpha at the protein level and suggest that HNF4alpha may be a novel diagnostic marker for metastases of unknown primary. We propose that the dysregulation of alternative promoter usage of HNF4alpha is associated with the pathogenesis of certain cancers.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/immunology
- Antibody Specificity
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/immunology
- Biomarkers, Tumor/metabolism
- Cell Transformation, Neoplastic/genetics
- Female
- Gene Expression Regulation, Neoplastic
- Hepatocyte Nuclear Factor 4/genetics
- Hepatocyte Nuclear Factor 4/immunology
- Hepatocyte Nuclear Factor 4/metabolism
- Humans
- Lung Neoplasms/metabolism
- Lung Neoplasms/secondary
- Male
- Neoplasm Proteins/genetics
- Neoplasm Proteins/immunology
- Neoplasm Proteins/metabolism
- Neoplasms/genetics
- Neoplasms/metabolism
- Precancerous Conditions/metabolism
- Promoter Regions, Genetic
- RNA, Messenger/genetics
- RNA, Neoplasm/genetics
- Reverse Transcriptase Polymerase Chain Reaction/methods
- Stomach Neoplasms/metabolism
- Tissue Distribution
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- T Tanaka
- Laboratory for Systems Biology and Medicine, Research Center for Advanced Science and Technology, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Shakib K, Norman JT, Fine LG, Brown LR, Godovac-Zimmermann J. Proteomics profiling of nuclear proteins for kidney fibroblasts suggests hypoxia, meiosis, and cancer may meet in the nucleus. Proteomics 2005; 5:2819-38. [PMID: 15942958 DOI: 10.1002/pmic.200401108] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Proteomics methods were used to characterize proteins that change their form or abundance in the nucleus of NRK49F rat kidney fibroblasts during prolonged hypoxia (1% O(2), 12 h). Of the 791 proteins that were monitored, about 20% showed detectable changes. The 51 most abundant proteins were identified by mass spectrometry. Changes in nuclear receptor transcription factors (THRalpha1, RORalpha4, HNF4alpha, NUR77), other transcription factors (GATA1, AP-2alpha, OCT1, ATF6alpha, ZFP161, ZNF354A, PDCD2), and transcription cofactors (PC4, PCAF, MTA1, TCEA1, JMY) are indicative of major, co-ordinated changes in transcription. Proteins involved in DNA repair/recombination, ribosomal RNA synthesis, RNA processing, nuclear transport, nuclear organization, protein translation, glycolysis, lipid metabolism, several protein kinases (PKCdelta, MAP3K4, GRK3), as well as proteins with no established functional role were also observed. The observed proteins suggest nuclear regulatory roles for proteins involved in cytosolic processes such as glycolysis and fatty acid metabolism, and roles in overall nuclear structure/organization for proteins previously associated with meiosis and/or spermatogenesis (synaptonemal complex proteins 1 and 2 (SYCP1, SYCP2), meiosis-specific nuclear structural protein 1 (MNS1), LMNC2, zinc finger protein 99 (ZFP99)). Proteins associated with cytoplasmic membrane functions (ACTN4, hyaluronan mediated motility receptor (RHAMM), VLDLR, GRK3) and/or endocytosis (DNM2) were also seen. For 30% of the identified proteins, new isoforms indicative of alternative transcription were detected (e.g., GATA1, ATF6alpha, MTA1, MLH1, MYO1C, UBF, SYCP2, EIF3S10, MAP3K4, ZFP99). Comparison with proteins involved in cell death, cancer, and testis/meiosis/spermatogenesis suggests commonalities, which may reflect fundamental mechanisms for down-regulation of cellular function.
Collapse
Affiliation(s)
- Kaveh Shakib
- Department of Medicine, Rayne Institute, University College London, London, UK
| | | | | | | | | |
Collapse
|