1
|
Liu X, Lian M, Zhao M, Huang M. Advances in recombinant protease production: current state and perspectives. World J Microbiol Biotechnol 2024; 40:144. [PMID: 38532149 DOI: 10.1007/s11274-024-03957-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 03/13/2024] [Indexed: 03/28/2024]
Abstract
Proteases, enzymes that catalyze the hydrolysis of peptide bonds in proteins, are important in the food industry, biotechnology, and medical fields. With increasing demand for proteases, there is a growing emphasis on enhancing their expression and production through microbial systems. However, proteases' native hosts often fall short in high-level expression and compatibility with downstream applications. As a result, the recombinant production of proteases has become a significant focus, offering a solution to these challenges. This review presents an overview of the current state of protease production in prokaryotic and eukaryotic expression systems, highlighting key findings and trends. In prokaryotic systems, the Bacillus spp. is the predominant host for proteinase expression. Yeasts are commonly used in eukaryotic systems. Recent advancements in protease engineering over the past five years, including rational design and directed evolution, are also highlighted. By exploring the progress in both expression systems and engineering techniques, this review provides a detailed understanding of the current landscape of recombinant protease research and its prospects for future advancements.
Collapse
Affiliation(s)
- Xiufang Liu
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510641, China
- Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, Guangzhou, 510650, China
| | - Mulin Lian
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510641, China
- Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, Guangzhou, 510650, China
| | - Mouming Zhao
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510641, China
- Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, Guangzhou, 510650, China
| | - Mingtao Huang
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510641, China.
- Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, Guangzhou, 510650, China.
| |
Collapse
|
2
|
Zhang D, Dailey OR, Simon DJ, Roca-Datzer K, Jami-Alahmadi Y, Hennen MS, Wohlschlegel JA, Koehler CM, Dabir DV. Aim32 is a dual-localized 2Fe-2S mitochondrial protein that functions in redox quality control. J Biol Chem 2021; 297:101135. [PMID: 34461091 PMCID: PMC8482512 DOI: 10.1016/j.jbc.2021.101135] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 08/09/2021] [Accepted: 08/26/2021] [Indexed: 12/13/2022] Open
Abstract
Yeast is a facultative anaerobe and uses diverse electron acceptors to maintain redox-regulated import of cysteine-rich precursors via the mitochondrial intermembrane space assembly (MIA) pathway. With the growing diversity of substrates utilizing the MIA pathway, understanding the capacity of the intermembrane space (IMS) to handle different types of stress is crucial. We used MS to identify additional proteins that interacted with the sulfhydryl oxidase Erv1 of the MIA pathway. Altered inheritance of mitochondria 32 (Aim32), a thioredoxin-like [2Fe-2S] ferredoxin protein, was identified as an Erv1-binding protein. Detailed localization studies showed that Aim32 resided in both the mitochondrial matrix and IMS. Aim32 interacted with additional proteins including redox protein Osm1 and protein import components Tim17, Tim23, and Tim22. Deletion of Aim32 or mutation of conserved cysteine residues that coordinate the Fe-S center in Aim32 resulted in an increased accumulation of proteins with aberrant disulfide linkages. In addition, the steady-state level of assembled TIM22, TIM23, and Oxa1 protein import complexes was decreased. Aim32 also bound to several mitochondrial proteins under nonreducing conditions, suggesting a function in maintaining the redox status of proteins by potentially targeting cysteine residues that may be sensitive to oxidation. Finally, Aim32 was essential for growth in conditions of stress such as elevated temperature and hydroxyurea, and under anaerobic conditions. These studies suggest that the Fe-S protein Aim32 has a potential role in general redox homeostasis in the matrix and IMS. Thus, Aim32 may be poised as a sensor or regulator in quality control for a broad range of mitochondrial proteins.
Collapse
Affiliation(s)
- Danyun Zhang
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, California, USA
| | - Owen R Dailey
- Department of Biology, Loyola Marymount University, Los Angeles, California, USA
| | - Daniel J Simon
- Department of Biology, Loyola Marymount University, Los Angeles, California, USA
| | - Kamilah Roca-Datzer
- Department of Biology, Loyola Marymount University, Los Angeles, California, USA
| | | | - Mikayla S Hennen
- Department of Biology, Loyola Marymount University, Los Angeles, California, USA
| | | | - Carla M Koehler
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, California, USA; Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, California, USA
| | - Deepa V Dabir
- Department of Biology, Loyola Marymount University, Los Angeles, California, USA.
| |
Collapse
|
3
|
Uehara S, Sei A, Sada M, Ito-Inaba Y, Inaba T. Installation of authentic BicA and SbtA proteins to the chloroplast envelope membrane is achieved by the proteolytic cleavage of chimeric proteins in Arabidopsis. Sci Rep 2020; 10:2353. [PMID: 32047175 PMCID: PMC7012931 DOI: 10.1038/s41598-020-59190-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 01/24/2020] [Indexed: 11/09/2022] Open
Abstract
To improve the photosynthetic performance of C3 plants, installing cyanobacterial bicarbonate transporters to the chloroplast inner envelope membrane (IEM) has been proposed for years. In our previous study, we successfully introduced chimeric cyanobacterial sodium-dependent bicarbonate transporters, BicA or SbtA, to the chloroplast IEM of Arabidopsis. However, the installation of authentic BicA and SbtA to the chloroplast IEM has not been achieved yet. In this study, we examined whether or not tobacco etch virus (TEV) protease targeted within chloroplasts can cleave chimeric proteins and produce authentic bicarbonate transporters. To this end, we constructed a TEV protease that carried the transit peptide and expressed it with chimeric BicA or SbtA proteins containing a TEV cleavage site in planta. Chimeric proteins were cleaved only when the TEV protease was co-expressed. The authentic forms of hemagglutinin-tagged BicA and SbtA were detected in the chloroplast IEM. In addition, cleavage of chimeric proteins at the TEV recognition site seemed to occur after the targeting of chimeric proteins to the chloroplast IEM. We conclude that the cleavage of chimeric proteins within chloroplasts is an efficient way to install authentic bicarbonate transporters to the chloroplast IEM. Furthermore, a similar approach can be applied to other bacterial plasma membrane proteins.
Collapse
Affiliation(s)
- Susumu Uehara
- Department of Agricultural and Environmental Sciences, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuenkibanadai-nishi, Miyazaki, 889-2192, Japan
| | - Ayane Sei
- Department of Agricultural and Environmental Sciences, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuenkibanadai-nishi, Miyazaki, 889-2192, Japan
| | - Misaki Sada
- Department of Agricultural and Environmental Sciences, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuenkibanadai-nishi, Miyazaki, 889-2192, Japan
| | - Yasuko Ito-Inaba
- Department of Agricultural and Environmental Sciences, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuenkibanadai-nishi, Miyazaki, 889-2192, Japan
| | - Takehito Inaba
- Department of Agricultural and Environmental Sciences, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuenkibanadai-nishi, Miyazaki, 889-2192, Japan.
| |
Collapse
|
4
|
Singh R, Manivannan S, Krikken AM, de Boer R, Bordin N, Devos DP, van der Klei IJ. Hansenula polymorpha Pex37 is a peroxisomal membrane protein required for organelle fission and segregation. FEBS J 2019; 287:1742-1757. [PMID: 31692262 PMCID: PMC7318627 DOI: 10.1111/febs.15123] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 08/29/2019] [Accepted: 11/04/2019] [Indexed: 11/30/2022]
Abstract
Here, we describe a novel peroxin, Pex37, in the yeast Hansenula polymorpha. H. polymorpha Pex37 is a peroxisomal membrane protein, which belongs to a protein family that includes, among others, the Neurospora crassa Woronin body protein Wsc, the human peroxisomal membrane protein PXMP2, the Saccharomyces cerevisiae mitochondrial inner membrane protein Sym1, and its mammalian homologue MPV17. We show that deletion of H. polymorpha PEX37 does not appear to have a significant effect on peroxisome biogenesis or proliferation in cells grown at peroxisome‐inducing growth conditions (methanol). However, the absence of Pex37 results in a reduction in peroxisome numbers and a defect in peroxisome segregation in cells grown at peroxisome‐repressing conditions (glucose). Conversely, overproduction of Pex37 in glucose‐grown cells results in an increase in peroxisome numbers in conjunction with a decrease in their size. The increase in numbers in PEX37‐overexpressing cells depends on the dynamin‐related protein Dnm1. Together our data suggest that Pex37 is involved in peroxisome fission in glucose‐grown cells. Introduction of human PXMP2 in H. polymorpha pex37 cells partially restored the peroxisomal phenotype, indicating that PXMP2 represents a functional homologue of Pex37. H.polymorpha pex37 cells did not show aberrant growth on any of the tested carbon and nitrogen sources that are metabolized by peroxisomal enzymes, suggesting that Pex37 may not fulfill an essential function in transport of these substrates or compounds required for their metabolism across the peroxisomal membrane.
Collapse
Affiliation(s)
- Ritika Singh
- Molecular Cell Biology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, the Netherlands
| | - Selvambigai Manivannan
- Molecular Cell Biology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, the Netherlands
| | - Arjen M Krikken
- Molecular Cell Biology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, the Netherlands
| | - Rinse de Boer
- Molecular Cell Biology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, the Netherlands
| | - Nicola Bordin
- Centro Andaluz de Biología del Desarrollo, CSIC, Universidad Pablo de Olavide, Seville, Spain.,Structural and Molecular Biology, University College London, UK
| | - Damien P Devos
- Centro Andaluz de Biología del Desarrollo, CSIC, Universidad Pablo de Olavide, Seville, Spain
| | - Ida J van der Klei
- Molecular Cell Biology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, the Netherlands
| |
Collapse
|
5
|
Cesaratto F, Burrone OR, Petris G. Tobacco Etch Virus protease: A shortcut across biotechnologies. J Biotechnol 2016; 231:239-249. [PMID: 27312702 DOI: 10.1016/j.jbiotec.2016.06.012] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 05/31/2016] [Accepted: 06/10/2016] [Indexed: 11/29/2022]
Abstract
About thirty years ago, studies on the RNA genome of Tobacco Etch Virus revealed the presence of an efficient and specific protease, called Tobacco Etch Virus protease (TEVp), that was part of the Nuclear Inclusion a (NIa) enzyme. TEVp is an efficient and specific protease of 27kDa that has become a valuable biotechnological tool. Nowadays TEVp is a unique endopeptidase largely exploited in biotechnology from industrial applications to in vitro and in vivo cellular studies. A number of TEVp mutants with different rate of cleavage, stability and specificity have been reported. Similarly, a panel of different target cleavage sites, derived from the canonical ENLYFQ-G/S site, has been established. In this review we describe these aspects of TEVp and some of its multiple applications. A particular focus is on the use and molecular biology of TEVp in living cells and organisms.
Collapse
Affiliation(s)
- Francesca Cesaratto
- International Centre for Genetic Engineering and Biotechnology, ICGEB, Trieste, Italy
| | - Oscar R Burrone
- International Centre for Genetic Engineering and Biotechnology, ICGEB, Trieste, Italy.
| | | |
Collapse
|
6
|
Abstract
Reverse genetics approaches require methods to inactivate a specific protein. One possibility is to modify the target protein with a degradation signal (degron). Degrons are short, transferable sequences that confer protein instability. They target proteins for degradation either constitutively or after activation, e.g., by phosphorylation, presence of a binding partner, or conformational rearrangements in the substrate. In this chapter, we describe a synthetic way to activate a degron. It employs the generation of an N-degron by cleavage of a substrate with the site-specific tobacco etch virus (TEV) protease. Subsequently, the substrate is targeted for degradation by the ubiquitin-proteasome system. This TEV protease-induced protein instability system provides a powerful approach to generate conditional mutants for synthetic biology or for the investigation of protein functions in a specific cellular context.
Collapse
Affiliation(s)
- Christof Taxis
- Philipps Universität Marburg, Fachbereich 17, Biologie - Genetik, Marburg, Germany
| | | |
Collapse
|
7
|
Saraya R, Krikken AM, Kiel JA, Baerends RJ, Veenhuis M, Klei IJ. Novel genetic tools for Hansenula polymorpha. FEMS Yeast Res 2011; 12:271-8. [DOI: 10.1111/j.1567-1364.2011.00772.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2011] [Revised: 11/23/2011] [Accepted: 11/24/2011] [Indexed: 11/28/2022] Open
Affiliation(s)
- Ruchi Saraya
- Molecular Cell Biology; Groningen Biomolecular Sciences and Biotechnology Institute; Kluyver Centre for Genomics of Industrial Fermentation; University of Groningen; Groningen; The Netherlands
| | - Arjen M. Krikken
- Molecular Cell Biology; Groningen Biomolecular Sciences and Biotechnology Institute; Kluyver Centre for Genomics of Industrial Fermentation; University of Groningen; Groningen; The Netherlands
| | - Jan A.K.W. Kiel
- Molecular Cell Biology; Groningen Biomolecular Sciences and Biotechnology Institute; Kluyver Centre for Genomics of Industrial Fermentation; University of Groningen; Groningen; The Netherlands
| | - Richard J.S. Baerends
- Molecular Cell Biology; Groningen Biomolecular Sciences and Biotechnology Institute; Kluyver Centre for Genomics of Industrial Fermentation; University of Groningen; Groningen; The Netherlands
| | - Marten Veenhuis
- Molecular Cell Biology; Groningen Biomolecular Sciences and Biotechnology Institute; Kluyver Centre for Genomics of Industrial Fermentation; University of Groningen; Groningen; The Netherlands
| | - Ida J. Klei
- Molecular Cell Biology; Groningen Biomolecular Sciences and Biotechnology Institute; Kluyver Centre for Genomics of Industrial Fermentation; University of Groningen; Groningen; The Netherlands
| |
Collapse
|
8
|
Abstract
The experimental problems associated with in vivo studies of essential proteins or integral membrane proteins have triggered geneticists to generate novel approaches that have often led to insights of general relevance (Shuman and Silhavy, 2003). In order to extend the experimental portfolio, we developed target-directed proteolysis (TDP), an in vivo method allowing structural and functional characterization of target proteins in living cells. TDP is based on the activity of the highly sequence-specific NIa protease from tobacco etch virus. When its recognition site of seven residues is engineered into target proteins and NIa protease is expressed under tight promoter control, substrates can be conditionally processed while other cellular proteins remain unaffected. Applications include conditional inactivation as well as functional characterization of target proteins.
Collapse
Affiliation(s)
- Markus Eser
- School of Biosciences, Cardiff University, Cardiff, Wales, UK
| | | | | | | |
Collapse
|
9
|
Lazarow PB. Chapter 3.1.7. The import receptor Pex7p and the PTS2 targeting sequence. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2006; 1763:1599-604. [PMID: 16996627 DOI: 10.1016/j.bbamcr.2006.08.011] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2006] [Revised: 07/25/2006] [Accepted: 08/18/2006] [Indexed: 10/24/2022]
Abstract
This chapter concerns one branch of the peroxisome import pathway for newly-synthesized peroxisomal proteins, specifically the branch for matrix proteins that contain a peroxisome targeting sequence type 2 (PTS2). The structure and utilization of the PTS2 are discussed, as well as the properties of the receptor, Pex7p, which recognizes the PTS2 sequence and conveys these proteins to the common translocation machinery in the peroxisome membrane. We also describe the recent evidence that this receptor recycles into the peroxisome matrix and back out to the cytosol in the course of its function. Pex7p is assisted in its functioning by several species-specific auxiliary proteins that are described in the following chapter.
Collapse
|
10
|
van der Klei IJ, Veenhuis M. Yeast and filamentous fungi as model organisms in microbody research. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2006; 1763:1364-73. [PMID: 17050005 DOI: 10.1016/j.bbamcr.2006.09.014] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2006] [Revised: 09/01/2006] [Accepted: 09/06/2006] [Indexed: 11/19/2022]
Abstract
Yeast and filamentous fungi are important model organisms in microbody research. The value of these organisms as models for higher eukaryotes is underscored by the observation that the principles of various aspects of microbody biology are strongly conserved from lower to higher eukaryotes. This has allowed to resolve various peroxisome-related functions, including peroxisome biogenesis disorders in man. This paper summarizes the major advances in microbody research using fungal systems and specifies specific properties and advantages/disadvantages of the major model organisms currently in use.
Collapse
Affiliation(s)
- Ida J van der Klei
- Eukaryotic Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, PO Box 14, 9750 AA Haren, The Netherlands.
| | | |
Collapse
|
11
|
Ishihara N, Fujita Y, Oka T, Mihara K. Regulation of mitochondrial morphology through proteolytic cleavage of OPA1. EMBO J 2006; 25:2966-77. [PMID: 16778770 PMCID: PMC1500981 DOI: 10.1038/sj.emboj.7601184] [Citation(s) in RCA: 696] [Impact Index Per Article: 36.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2005] [Accepted: 05/15/2006] [Indexed: 01/25/2023] Open
Abstract
The dynamin-like GTPase OPA1, a causal gene product of human dominant optic atrophy, functions in mitochondrial fusion and inner membrane remodeling. It has several splice variants and even a single variant is found as several processed forms, although their functional significance is unknown. In yeast, mitochondrial rhomboid protease regulates mitochondrial function and morphology through proteolytic cleavage of Mgm1, the yeast homolog of OPA1. We demonstrate that OPA1 variants are synthesized with a bipartite-type mitochondrial targeting sequence. During import, the matrix-targeting signal is removed and processed forms (L-isoforms) are anchored to the inner membrane in type I topology. L-isoforms undergo further processing in the matrix to produce S-isoforms. Knockdown of OPA1 induced mitochondrial fragmentation, whose network morphology was recovered by expression of L-isoform but not S-isoform, indicating that only L-isoform is fusion-competent. Dissipation of membrane potential, expression of m-AAA protease paraplegin, or induction of apoptosis stimulated this processing along with the mitochondrial fragmentation. Thus, mammalian mitochondrial function and morphology is regulated through processing of OPA1 in a DeltaPsi-dependent manner.
Collapse
Affiliation(s)
- Naotada Ishihara
- Department of Molecular Biology, Graduate School of Medical Science, Kyushu University, Fukuoka, Japan
| | - Yuu Fujita
- Department of Molecular Biology, Graduate School of Medical Science, Kyushu University, Fukuoka, Japan
| | - Toshihiko Oka
- Department of Molecular Biology, Graduate School of Medical Science, Kyushu University, Fukuoka, Japan
| | - Katsuyoshi Mihara
- Department of Molecular Biology, Graduate School of Medical Science, Kyushu University, Fukuoka, Japan
- Department of Molecular Biology, Graduate School of Medical Science, Kyushu University, Fukuoka 812-8582, Japan. Tel.: 81 92 642 6176; Fax: 81 92 642 6183; E-mail:
| |
Collapse
|
12
|
Krokowski D, Boguszewska A, Abramczyk D, Liljas A, Tchórzewski M, Grankowski N. Yeast ribosomal P0 protein has two separate binding sites for P1/P2 proteins. Mol Microbiol 2006; 60:386-400. [PMID: 16573688 DOI: 10.1111/j.1365-2958.2006.05117.x] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The ribosome has a distinct lateral protuberance called the stalk; in eukaryotes it is formed by the acidic ribosomal P-proteins which are organized as a pentameric entity described as P0-(P1-P2)(2). Bilateral interactions between P0 and P1/P2 proteins have been studied extensively, however, the region on P0 responsible for the binding of P1/P2 proteins has not been precisely defined. Here we report a study which takes the current knowledge of the P0 - P1/P2 protein interaction beyond the recently published information. Using truncated forms of P0 protein and several in vitro and in vivo approaches, we have defined the region between positions 199 and 258 as the P0 protein fragment responsible for the binding of P1/P2 proteins in the yeast Saccharomyces cerevisiae. We show two short amino acid regions of P0 protein located at positions 199-230 and 231-258, to be responsible for independent binding of two dimers, P1A-P2B and P1B-P2A respectively. In addition, two elements, the sequence spanning amino acids 199-230 and the P1A-P2B dimer were found to be essential for stalk formation, indicating that this process is dependent on a balance between the P1A-P2B dimer and the P0 protein.
Collapse
Affiliation(s)
- Dawid Krokowski
- Department of Molecular Biology, Institute of Microbiology and Biotechnology, Maria Curie-Skodowska University, Akademicka 19, 20-033 Lublin, Poland
| | | | | | | | | | | |
Collapse
|
13
|
Lorenz H, Hailey DW, Lippincott-Schwartz J. Fluorescence protease protection of GFP chimeras to reveal protein topology and subcellular localization. Nat Methods 2006; 3:205-10. [PMID: 16489338 DOI: 10.1038/nmeth857] [Citation(s) in RCA: 127] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2005] [Accepted: 01/20/2006] [Indexed: 11/08/2022]
Abstract
Understanding the cell biology of many proteins requires knowledge of their in vivo topological distribution. Here we describe a new fluorescence-based technique, fluorescence protease protection (FPP), for investigating the topology of proteins and for localizing protein subpopulations within the complex environment of the living cell. In the FPP assay, adapted from biochemical protease protection assays, GFP fusion proteins are used as noninvasive tools to obtain details of protein topology and localization within living cells in a rapid and straightforward manner. To demonstrate the broad applicability of FPP, we used the technique to define the topology of proteins localized to a wide range of organelles including the endoplasmic reticulum (ER), Golgi apparatus, mitochondria, peroxisomes and autophagosomes. The success of the FPP assay in characterizing the topology of the tested proteins within their appropriate compartments suggests this technique has wide applicability in studying protein topology and localization within the cell.
Collapse
Affiliation(s)
- Holger Lorenz
- Cell Biology and Metabolism Branch, National Institute of Child Health and Human Development, National Institutes of Health, Bldg. 18T Library Drive, Bethesda, Maryland 20892, USA
| | | | | |
Collapse
|
14
|
Haan GJ, Baerends RJS, Krikken AM, Otzen M, Veenhuis M, van der Klei IJ. Reassembly of peroxisomes in Hansenula polymorpha pex3 cells on reintroduction of Pex3p involves the nuclear envelope. FEMS Yeast Res 2006; 6:186-94. [PMID: 16487342 DOI: 10.1111/j.1567-1364.2006.00037.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The reassembly of peroxisomes in Hansenula polymorpha pex3 cells on reintroduction of Pex3p was examined. Using a Pex3-green fluorescent protein (Pex3-GFP) fusion protein, expressed under the control of an inducible promoter, it was observed that, initially on induction of Pex3-GFP synthesis, GFP fluorescence was localized to the endoplasmic reticulum and the nuclear envelope. Subsequently, a single organelle developed per cell that increased in size and multiplied by division. At these stages, GFP fluorescence was confined to peroxisomes. Fractionation experiments on homogenates of pex3 cells, in which the endoplasmic reticulum and nuclear envelope were marked with GFP, identified a small amount of GFP in peroxisomes present in the initial stage of peroxisome reassembly. Our data suggest a crucial role for the endoplasmic reticulum/nuclear envelope in peroxisome reintroduction on complementation of pex3 cells by the PEX3 gene.
Collapse
Affiliation(s)
- Gert-Jan Haan
- Eukaryotic Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Haren, the Netherlands
| | | | | | | | | | | |
Collapse
|
15
|
Yang X, Gregan J, Lindner K, Young H, Kearsey SE. Nuclear distribution and chromatin association of DNA polymerase alpha-primase is affected by TEV protease cleavage of Cdc23 (Mcm10) in fission yeast. BMC Mol Biol 2005; 6:13. [PMID: 15941470 PMCID: PMC1182370 DOI: 10.1186/1471-2199-6-13] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2005] [Accepted: 06/07/2005] [Indexed: 10/25/2022] Open
Abstract
BACKGROUND Cdc23/Mcm10 is required for the initiation and elongation steps of DNA replication but its biochemical function is unclear. Here, we probe its function using a novel approach in fission yeast, involving Cdc23 cleavage by the TEV protease. RESULTS Insertion of a TEV protease cleavage site into Cdc23 allows in vivo removal of the C-terminal 170 aa of the protein by TEV protease induction, resulting in an S phase arrest. This C-terminal fragment of Cdc23 is not retained in the nucleus after cleavage, showing that it lacks a nuclear localization signal and ability to bind to chromatin. Using an in situ chromatin binding procedure we have determined how the S phase chromatin association of DNA polymerase alpha-primase and the GINS (Sld5-Psf1-Psf2-Psf3) complex is affected by Cdc23 inactivation. The chromatin binding and sub-nuclear distribution of DNA primase catalytic subunit (Spp1) is affected by Cdc23 cleavage and also by inactivation of Cdc23 using a degron allele, implying that DNA polymerase alpha-primase function is dependent on Cdc23. In contrast to the effect on Spp1, the chromatin association of the Psf2 subunit of the GINS complex is not affected by Cdc23 inactivation. CONCLUSION An important function of Cdc23 in the elongation step of DNA replication may be to assist in the docking of DNA polymerase alpha-primase to chromatin.
Collapse
Affiliation(s)
- Xiaowen Yang
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX13PS UK
- Current address: Structural Genomics Consortium, Nuffield Department of Clinical Medicine, Botnar Research Centre, University of Oxford, Oxford OX3 7LD, UK
| | - Juraj Gregan
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX13PS UK
- Current address: IMP, Dr. Bohr-Gasse 7, A-1030, Austria
| | - Karola Lindner
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX13PS UK
| | - Hedi Young
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX13PS UK
| | - Stephen E Kearsey
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX13PS UK
| |
Collapse
|
16
|
Henrichs T, Mikhaleva N, Conz C, Deuerling E, Boyd D, Zelazny A, Bibi E, Ban N, Ehrmann M. Target-directed proteolysis at the ribosome. Proc Natl Acad Sci U S A 2005; 102:4246-51. [PMID: 15784745 PMCID: PMC555484 DOI: 10.1073/pnas.0408520102] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Target directed proteolysis allows specific processing of proteins in vivo. This method uses tobacco etch virus (TEV) NIa protease that recognizes a seven-residue consensus sequence. Because of its specificity, proteins engineered to contain a cleavage site are proteolysed, whereas other proteins remain unaffected. Therefore, this approach can be used to study the structure and function of target proteins in their natural environment within living cells. One application is the conditional inactivation of essential proteins, which is based on the concept that a target containing a recognition site can be inactivated by coexpressed TEV protease. We have previously identified one site in the secretion factor SecA that tolerated a TEV protease site insert. Coexpression of TEV protease in the cytoplasm led to incomplete cleavage and a mild secretion defect. To improve the efficiency of proteolysis, TEV protease was attached to the ribosome. We show here that cleaving SecA under these conditions is one way of increasing the efficiency of target directed proteolysis. The implications of recruiting novel biological activities to ribosomes are discussed.
Collapse
Affiliation(s)
- Tanja Henrichs
- School of Biosciences, Cardiff University, Cardiff CF10 3US, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Monastyrska I, van der Heide M, Krikken AM, Kiel JAKW, van der Klei IJ, Veenhuis M. Atg8 is Essential for Macropexophagy in Hansenula polymorpha. Traffic 2005; 6:66-74. [PMID: 15569246 DOI: 10.1111/j.1600-0854.2004.00252.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We have isolated a peroxisome-degradation-deficient (pdd) mutant of the methylotrophic yeast Hansenula polymorpha via gene tagging mutagenesis. Sequencing revealed that the mutant was affected in the HpATG8 gene. HpAtg8 is a protein with high sequence similarity to both Pichia pastoris and Saccharomyces cerevisiae Atg8 and appeared to be essential for selective peroxisome degradation (macropexophagy) and nitrogen-limitation induced microautophagy. Fluorescence microscopy revealed that a GFP.Atg8 fusion protein was located close to the vacuole. After induction of macropexophagy, the GFP.Atg8 containing spot extended to engulf an individual peroxisome. In cells of a constructed deletion strain, sequestration of individual organelles was never completed; analysis of series of serial sections revealed that invariably a minor diaphragm-like opening remained. We hypothesize that H. polymorpha Atg8 facilitates sealing of the sequestering membranes during selective peroxisome degradation.
Collapse
Affiliation(s)
- Iryna Monastyrska
- Eukaryotic Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, PO Box 14, 9750 AA Haren, the Netherlands
| | | | | | | | | | | |
Collapse
|
18
|
Nair DM, Purdue PE, Lazarow PB. Pex7p translocates in and out of peroxisomes in Saccharomyces cerevisiae. ACTA ACUST UNITED AC 2004; 167:599-604. [PMID: 15545321 PMCID: PMC2172567 DOI: 10.1083/jcb.200407119] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Pex7p is the soluble receptor responsible for importing into peroxisomes newly synthesized proteins bearing a type 2 peroxisomal targeting sequence. We observe that appending GFP to Pex7p's COOH terminus shifts Pex7p's intracellular distribution from predominantly cytosolic to predominantly peroxisomal in Saccharomyces cerevisiae. Cleavage of the link between Pex7p and GFP within peroxisomes liberates GFP, which remains inside the organelle, and Pex7p, which exits to the cytosol. The reexported Pex7p is functional, resulting in import of thiolase into peroxisomes and improved growth of the yeast on oleic acid. These results support the “extended shuttle” model of peroxisome import receptor function and open the way to future studies of receptor export.
Collapse
Affiliation(s)
- Devi M Nair
- Mount Sinai School of Medicine, New York, NY 10029, USA
| | | | | |
Collapse
|
19
|
Gunkel K, van Dijk R, Veenhuis M, van der Klei IJ. Routing of Hansenula polymorpha alcohol oxidase: an alternative peroxisomal protein-sorting machinery. Mol Biol Cell 2004; 15:1347-55. [PMID: 14699075 PMCID: PMC363140 DOI: 10.1091/mbc.e03-04-0258] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2003] [Revised: 11/05/2003] [Accepted: 11/07/2003] [Indexed: 01/20/2023] Open
Abstract
Import of Hansenula polymorpha alcohol oxidase (AO) into peroxisomes is dependent on the PTS1 receptor, HpPex5p. The PTS1 of AO (-LARF) is sufficient to direct reporter proteins to peroxisomes. To study AO sorting in more detail, strains producing mutant AO proteins were constructed. AO containing a mutation in the FAD binding fold was mislocalized to the cytosol. This indicates that the PTS1 of AO is not sufficient for import of AO. AO protein in which the PTS1 was destroyed (-LARA) was normally sorted to peroxisomes. Moreover, C-terminal deletions of up to 16 amino acids did not significantly affect AO import, indicating that the PTS1 was not necessary for targeting. Consistent with these observations we found that AO import occurred independent from the C-terminal TPR-domain of HpPex5p, known to bind PTS1 peptides. Synthesis of the N-terminal domain (amino acids 1-272) of HpPex5p in pex5 cells restored AO import, whereas other PTS1 proteins were mislocalized to the cytosol. These data indicate that AO is imported via a novel HpPex5p-dependent protein translocation pathway, which does not require the PTS1 of AO and the C-terminal TPR domains of HpPex5p, but involves FAD binding and the N-terminus of HpPex5p.
Collapse
Affiliation(s)
- Katja Gunkel
- Eukaryotic Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9750 AA Haren, The Netherlands
| | | | | | | |
Collapse
|
20
|
Kondo-Okamoto N, Shaw JM, Okamoto K. Mmm1p spans both the outer and inner mitochondrial membranes and contains distinct domains for targeting and foci formation. J Biol Chem 2003; 278:48997-9005. [PMID: 12972421 DOI: 10.1074/jbc.m308436200] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In the yeast Saccharomyces cerevisiae, the integral membrane protein Mmm1p is required for maintenance of mitochondrial morphology and retention of mitochondrial DNA (mtDNA). Mmm1p localizes to discrete foci on mitochondria that are adjacent to mtDNA nucleoids in the matrix, raising the possibility that this protein plays a direct role in organizing, replicating, or segregating mtDNA. Although Mmm1p has been shown to cross the outer membrane with its C terminus facing the cytoplasm, the location of the N terminus has not been resolved. Here we show that Mmm1p spans both the outer and inner mitochondrial membranes, exposing its N terminus to the matrix. Surprisingly, deletion of the N-terminal extension decreased steady-state levels of the Mmm1 protein but did not affect mitochondrial morphology or mtDNA maintenance. Moreover, expression of Neurospora crassa MMM1, which naturally lacks a long N-terminal extension, substituted for loss of Mmm1p in budding yeast. These results indicate that the matrix-exposed portion of Mmm1p is not essential for mtDNA nucleoid maintenance. Additional studies revealed that the transmembrane segment and C-terminal domain of Mmm1p are required for foci formation and mitochondrial targeting, respectively. Our data suggest that the double membrane-spanning topology of Mmm1p at the membrane contact site is critical for formation of tubular mitochondria.
Collapse
|
21
|
Sparkes IA, Brandizzi F, Slocombe SP, El-Shami M, Hawes C, Baker A. An Arabidopsis pex10 null mutant is embryo lethal, implicating peroxisomes in an essential role during plant embryogenesis. PLANT PHYSIOLOGY 2003; 133:1809-19. [PMID: 14576288 PMCID: PMC300734 DOI: 10.1104/pp.103.031252] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Peroxisomes participate in many important functions in plants, including seed reserve mobilization, photorespiration, defense against oxidative stress, and auxin and jasmonate signaling. In mammals, defects in peroxisome biogenesis result in multiple system abnormalities, severe developmental delay, and death, whereas in unicellular yeasts, peroxisomes are dispensable unless required for growth of specific substrates. PEX10 encodes an integral membrane protein required for peroxisome biogenesis in mammals and yeast. To investigate the importance of PEX10 in plants, we characterized a Ds insertion mutant in the PEX10 gene of Arabidopsis (AtPEX10). Heterozygous AtPEX10::dissociation element mutants show normal vegetative phenotypes under optimal growth conditions, but produce about 20% abnormal seeds. The embryos in the abnormal seeds are predominantly homozygous for the disruption allele. They show retarded development and some morphological abnormalities. No viable homozygous mutant plants were obtained. AtPEX10 fused to yellow fluorescent protein colocalized with green fluorescent protein-serine-lysine-leucine, a well-documented peroxisomal marker, suggesting that AtPEX10 encodes a peroxisomal protein that is essential for normal embryo development and viability.
Collapse
Affiliation(s)
- Imogen A Sparkes
- Centre for Plant Sciences, University of Leeds, Leeds LS2 9JT United Kingdom
| | | | | | | | | | | |
Collapse
|
22
|
Tsunenari T, Sun H, Williams J, Cahill H, Smallwood P, Yau KW, Nathans J. Structure-function analysis of the bestrophin family of anion channels. J Biol Chem 2003; 278:41114-25. [PMID: 12907679 PMCID: PMC2885917 DOI: 10.1074/jbc.m306150200] [Citation(s) in RCA: 170] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The bestrophins are a newly described family of anion channels unrelated in primary sequence to any previously characterized channel proteins. The human genome codes for four bestrophins, each of which confers a distinctive plasma membrane conductance on transfected 293 cells. Extracellular treatment with methanethiosulfonate ethyltrimethylammonium (MTSET) of a series of substitution mutants that eliminate one or more cysteines from human bestrophin1 demonstrates that cysteine 69 is the single endogenous cysteine responsible for MTSET inhibition of whole-cell current. Cysteines introduced between positions 78-99 and 223-226 are also accessible to external MTSET, with MTSET modification at positions 79, 80, 83, and 90 producing a 2-6-fold increase in whole-cell current. The latter set of four cysteine-substitution mutants define a region that appears to mediate allosteric control of channel activity. Mapping of transmembrane topography by insertion of N-linked glycosylation sites and tobacco etch virus protease cleavage sites provides evidence for cytosolic N and C termini and an unexpected transmembrane topography with at least three extracellular loops that include positions 60-63, 212-227, and 261-267. These experiments provide the first structural analysis of the bestrophin channel family.
Collapse
Affiliation(s)
- Takashi Tsunenari
- Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Hui Sun
- Department of Molecular Biology and Genetics, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
- Howard Hughes Medical Institute, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - John Williams
- Department of Molecular Biology and Genetics, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
- Howard Hughes Medical Institute, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Hugh Cahill
- Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Philip Smallwood
- Department of Molecular Biology and Genetics, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
- Howard Hughes Medical Institute, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - King-Wai Yau
- Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
- Department of Ophthalmology, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Jeremy Nathans
- Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
- Department of Molecular Biology and Genetics, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
- Department of Ophthalmology, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
- Howard Hughes Medical Institute, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| |
Collapse
|
23
|
Jenny RJ, Mann KG, Lundblad RL. A critical review of the methods for cleavage of fusion proteins with thrombin and factor Xa. Protein Expr Purif 2003; 31:1-11. [PMID: 12963335 DOI: 10.1016/s1046-5928(03)00168-2] [Citation(s) in RCA: 192] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Expression and purification of proteins in recombinant DNA systems is a powerful and widely used technique. Frequently there is the need to express the protein of interest as a fusion protein or chimeric protein. Fusion protein technology is frequently used to attach a "signal" which can be used for subsequent localization of the protein or a "carrier" which can be used to deliver a "therapeutic" such as a radioactive molecule to a specific site. In addition to these applications, fusion protein technology can be employed for several other useful purposes. Of these, the most frequent reason is to provide a 'tag' or 'handle' which will aid in the purification of the protein. Another useful purpose is to improve the expression or folding of the protein of interest. In these latter two situations, it is often necessary to remove the fusion partner before the recombinant protein of interest can be used for further studies. This removal process involves the insertion of a unique amino acid sequence that is susceptible to cleavage by a highly specific protease. Thrombin and factor Xa are the most frequently used proteases for this application. The purpose of this review is to discuss the application of thrombin and factor Xa for the cleavage of fusion proteins. It is emphasized that while these enzymes are quite specific for cleavage at the inserted cleavage site, proteolysis can frequently occur at other site(s) in the protein of interest. It is necessary to characterize the protein of interest after cleavage from the affinity label to assure that there are no changes in the covalent structure of the protein of interest. Examples are presented which describe the proteolysis of the protein of interest by either factor Xa or thrombin.
Collapse
|
24
|
Wong ED, Wagner JA, Scott SV, Okreglak V, Holewinske TJ, Cassidy-Stone A, Nunnari J. The intramitochondrial dynamin-related GTPase, Mgm1p, is a component of a protein complex that mediates mitochondrial fusion. J Cell Biol 2003; 160:303-11. [PMID: 12566426 PMCID: PMC2172654 DOI: 10.1083/jcb.200209015] [Citation(s) in RCA: 190] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
A balance between fission and fusion events determines the morphology of mitochondria. In yeast, mitochondrial fission is regulated by the outer membrane-associated dynamin-related GTPase, Dnm1p. Mitochondrial fusion requires two integral outer membrane components, Fzo1p and Ugo1p. Interestingly, mutations in a second mitochondrial-associated dynamin-related GTPase, Mgm1p, produce similar phenotypes to fzo1 and ugo cells. Specifically, mutations in MGM1 cause mitochondrial fragmentation and a loss of mitochondrial DNA that are suppressed by abolishing DNM1-dependent fission. In contrast to fzo1ts mutants, blocking DNM1-dependent fission restores mitochondrial fusion in mgm1ts cells during mating. Here we show that blocking DNM1-dependent fission in Deltamgm1 cells fails to restore mitochondrial fusion during mating. To examine the role of Mgm1p in mitochondrial fusion, we looked for molecular interactions with known fusion components. Immunoprecipitation experiments revealed that Mgm1p is associated with both Ugo1p and Fzo1p in mitochondria, and that Ugo1p and Fzo1p also are associated with each other. In addition, genetic analysis of specific mgm1 alleles indicates that Mgm1p's GTPase and GTPase effector domains are required for its ability to promote mitochondrial fusion and that Mgm1p self-interacts, suggesting that it functions in fusion as a self-assembling GTPase. Mgm1p's localization within mitochondria has been controversial. Using protease protection and immuno-EM, we have shown previously that Mgm1p localizes to the intermembrane space, associated with the inner membrane. To further test our conclusions, we have used a novel method using the tobacco etch virus protease and confirm that Mgm1p is present in the intermembrane space compartment in vivo. Taken together, these data suggest a model where Mgm1p functions in fusion to remodel the inner membrane and to connect the inner membrane to the outer membrane via its interactions with Ugo1p and Fzo1p, thereby helping to coordinate the behavior of the four mitochondrial membranes during fusion.
Collapse
Affiliation(s)
- Edith D Wong
- Section of Molecular and Cellular Biology, University of California, Davis, Davis, California, 95616, USA
| | | | | | | | | | | | | |
Collapse
|
25
|
Haan GJ, Faber KN, Baerends RJS, Koek A, Krikken A, Kiel JAKW, van der Klei IJ, Veenhuis M. Hansenula polymorpha Pex3p is a peripheral component of the peroxisomal membrane. J Biol Chem 2002; 277:26609-17. [PMID: 12011037 DOI: 10.1074/jbc.m108569200] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Hansenula polymorpha Pex3p plays an essential role in the biogenesis and maintenance of the peroxisomal membrane. In the initial report, bakers' yeast Pex3p was suggested to represent an integral component of the peroxisomal membrane, containing one membrane-spanning region that exposes the N terminus of the protein into the organellar matrix. Biochemically, HpPex3p behaved like an integral membrane protein as it was resistant toward high salt and carbonate treatment. However, urea fully removed Pex3p from the membrane under conditions in which the integral membrane protein Pex10p was resistant to this treatment. Additional experiments, including protease protection assays and pre-embedding labeling experiments on purified organellar fractions from cells that produced Pex3ps carrying Myc epitopes at various selected locations in the protein, revealed that invariably all Myc tags were accessible for externally added proteases and antibodies, independent of the presence of detergents. Also, overproduction of Pex3p failed to demonstrate the typical integral membrane protein structures in fracture faces of freeze-fractured peroxisomes. Taken together, our data suggest that HpPex3p does not span the peroxisomal membrane but instead is tightly associated to the cytosolic face of the organelle where it may be present in focal protein clusters.
Collapse
Affiliation(s)
- Gert Jan Haan
- Eukaryotic Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, P. O. Box 14, 9750 AA Haren, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|