1
|
Mao X, Liu T, Yu S, Wei Y, Zhou C, Kuai X. CEACAM6 facilitates gastric cancer progression through upregulating SLC27A2. Cancer Gene Ther 2025; 32:51-60. [PMID: 39562695 DOI: 10.1038/s41417-024-00846-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 10/01/2024] [Accepted: 10/09/2024] [Indexed: 11/21/2024]
Abstract
Gastric cancer (GC) is one of the most lethal cancers. However, the underlying mechanisms are not yet fully understood. Here, we investigated the role of carcinoembryonic antigen-related cell adhesion molecule 6 (CEACAM6) in tumor initiation and progression in GC and proposed therapeutic strategies for CEACAM6-positive patients. In this article, we found that CEACAM6 overexpression promoted GC initiation and progression by overactivating FAO. CEACAM6 promotes SLC27A2 expression, contributing to enhanced fatty acid incorporation. CEACAM6 interacts with both SLC27A2 and USP29, facilitating the deubiquitination of USP29 on SLC27A2. Pharmacological inhibition of SLC27A2 attenuates the tumor-initiating ability of GC. Taken together, CEACAM6 overexpression facilitates GC progression by upregulating fatty acid uptake through SLC27A2, thereby contributing to FAO. Genetic ablation of SLC27A2 is a promising therapeutic strategy for patients with CEACAM6-positive GC.
Collapse
Affiliation(s)
- Xiaqiong Mao
- Department of Gastroenterology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Tongtai Liu
- Department of Hepatobiliary and Pancreatic Surgery, Northern Jiangsu People's Hospital, Yangzhou, Jiangsu, China
| | - Shunying Yu
- Department of Gastroenterology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu, China
| | - Yuqi Wei
- Department of Gastroenterology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu, China
| | - Chunli Zhou
- Department of Gastroenterology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu, China.
| | - Xiaoyi Kuai
- Department of Gastroenterology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu, China.
| |
Collapse
|
2
|
Dery KJ, Najjar SM, Beauchemin N, Shively JE, Kupiec‐Weglinski JW. Mechanism and function of CEACAM1 splice isoforms. Eur J Clin Invest 2024; 54 Suppl 2:e14350. [PMID: 39674874 PMCID: PMC11646291 DOI: 10.1111/eci.14350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Accepted: 10/29/2024] [Indexed: 12/17/2024]
Abstract
BACKGROUND Alternative splicing is a fundamental mechanism in the post-transcriptional regulation of genes. The multifunctional transmembrane glycoprotein receptor carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1) undergoes extensive alternative splicing to allow for tunable functions in cell signalling, adhesion and modulation of immune and metabolic responses. Splice isoforms that differ in their ectodomain and short or long cytoplasmic tail (CEACAM1-S/CEACAM1-L) have distinct functional roles. The mechanisms that regulate CEACAM1 RNA splicing remain elusive. METHODS This narrative review summarizes the current knowledge of the mechanism and function of CEACAM1 splice isoforms. Historical perspectives address the biological significance of the glycosylated Ig domains, the variable exon 7, and phosphorylation events that dictate its signal transduction pathways. The use of small antisense molecules to target mis-spliced variable exon 7 is discussed. RESULTS The Ig variable-like N domain mediates cell adhesion and immune checkpoint inhibitory functions. Gly and Tyr residues in the transmembrane (TM) domain are essential for dimerization. Calmodulin, Calcium/Calmodulin-dependent protein kinase II delta (CamK2D), Actin and Annexin A2 are binding partners of CEACAM1-S. Homology studies of the muCEACAM1-S and huCEACAM1-S TM predict differences in their signal transduction pathways. Hypoxia-inducible factor 1-α (HIF-1-α) induces alternative splicing to produce CEACAM1-S under limited oxygen conditions. Antisense small molecules directed to exon 7 may correct faulty expression of the short and long cytoplasmic tail splicing isoforms. CONCLUSION More pre-clinical and clinical studies are needed to elucidate the precise mechanisms by which CEACAM1 RNA splicing may be exploited to develop targeted interventions towards novel therapeutic strategies.
Collapse
Affiliation(s)
- Kenneth J. Dery
- Department of SurgeryUniversity of California Los AngelesLos AngelesCaliforniaUSA
| | - Sonia M. Najjar
- Department of Biomedical Sciences, Heritage College of Osteopathic MedicineOhio UniversityAthensOhioUSA
| | - Nicole Beauchemin
- Rosalind and Morris Goodman Cancer InstituteMcGill UniversityMontrealQuebecCanada
| | - John E. Shively
- Department of Theranostics and Immunology, Arthur D. Riggs Diabetes and Metabolism Research Institute, Beckman Research InstituteCity of Hope National Medical CenterDuarteCaliforniaUSA
| | | |
Collapse
|
3
|
Götz L, Rueckschloss U, Najjar SM, Ergün S, Kleefeldt F. Carcinoembryonic antigen-related cell adhesion molecule 1 in cancer: Blessing or curse? Eur J Clin Invest 2024; 54 Suppl 2:e14337. [PMID: 39451132 DOI: 10.1111/eci.14337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 10/04/2024] [Indexed: 10/26/2024]
Abstract
The Carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1, also CD66a), a transmembrane glycoprotein of the immunoglobulin superfamily, is a pivotal mediator of various physiological and pathological processes, including oncologic disorders. However, its precise role in tumorigenicity is contradictory discussed by several clinical studies. This review aims to elucidate the clinical significance of CEACAM1 in different cancer entities focusing on tumour formation, progression and metastasis as well as on CEACAM1-mediated treatment resistance. Furthermore, we discuss the contribution of CEACAM1 to cancer immunity and modulation of the inflammatory microenvironment and finally provide a comprehensive review of treatment regimens targeting this molecule.
Collapse
Affiliation(s)
- Lisa Götz
- Institute of Anatomy and Cell Biology, University of Wuerzburg, Wuerzburg, Germany
| | - Uwe Rueckschloss
- Institute of Anatomy and Cell Biology, University of Wuerzburg, Wuerzburg, Germany
| | - Sonia M Najjar
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine Irvine Hall, Ohio University, Athens, Ohio, USA
| | - Süleyman Ergün
- Institute of Anatomy and Cell Biology, University of Wuerzburg, Wuerzburg, Germany
| | - Florian Kleefeldt
- Institute of Anatomy and Cell Biology, University of Wuerzburg, Wuerzburg, Germany
| |
Collapse
|
4
|
Fleckenstein JM, Najjar SM, Zimmermann W, Hauck CR, Nguyen Q, Mejias-Luque R, Bhattacharyya A, McCarthy AJ, Sarkar A, Kujawski M, Konieva A, Elyateem F, Kube-Golovin I, Wennemuth G, Kammerer R, Skubitz KM, Shively JE, Dery KJ, Dveksler G, Götz L, Kleefeldt F, Ergün S. Current investigation of carcinoembryonic antigen cell adhesion molecule (CEACAM) biology summary of the 32nd CEA symposium: 20-23 September 2024. Würzburg, Germany. Eur J Clin Invest 2024; 54 Suppl 2:e14355. [PMID: 39674873 PMCID: PMC11880994 DOI: 10.1111/eci.14355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 11/04/2024] [Indexed: 12/17/2024]
Affiliation(s)
| | - Sonia M. Najjar
- Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio, USA
| | | | | | | | | | - Asima Bhattacharyya
- School of Biological Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar, Bhubaneswar, India
| | | | - Arup Sarkar
- School of Biological Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar, Bhubaneswar, India
| | | | | | | | | | | | - Robert Kammerer
- Friedrich-Loeffler Institut, Greifswald – Insel Riems, Germany
| | | | | | - Kenneth J. Dery
- University of California, Los Angeles, Los Angeles, California, USA
| | - Gabriela Dveksler
- Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Lisa Götz
- Julius Maximilians Universität, Würzburg, Germany
| | | | | |
Collapse
|
5
|
Muturi HT, Ghadieh HE, Asalla S, Lester SG, Belew GD, Zaidi S, Abdolahipour R, Shrestha AP, Portuphy AO, Stankus HL, Helal RA, Verhulst S, Duarte S, Zarrinpar A, van Grunsven LA, Friedman SL, Schwabe RF, Hinds TD, Kumarasamy S, Najjar SM. Conditional deletion of CEACAM1 in hepatic stellate cells causes their activation. Mol Metab 2024; 88:102010. [PMID: 39168268 PMCID: PMC11403062 DOI: 10.1016/j.molmet.2024.102010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 07/24/2024] [Accepted: 08/09/2024] [Indexed: 08/23/2024] Open
Abstract
OBJECTIVES Hepatic CEACAM1 expression declines with advanced hepatic fibrosis stage in patients with metabolic dysfunction-associated steatohepatitis (MASH). Global and hepatocyte-specific deletions of Ceacam1 impair insulin clearance to cause hepatic insulin resistance and steatosis. They also cause hepatic inflammation and fibrosis, a condition characterized by excessive collagen production from activated hepatic stellate cells (HSCs). Given the positive effect of PPARγ on CEACAM1 transcription and on HSCs quiescence, the current studies investigated whether CEACAM1 loss from HSCs causes their activation. METHODS We examined whether lentiviral shRNA-mediated CEACAM1 donwregulation (KD-LX2) activates cultured human LX2 stellate cells. We also generated LratCre + Cc1fl/fl mutants with conditional Ceacam1 deletion in HSCs and characterized their MASH phenotype. Media transfer experiments were employed to examine whether media from mutant human and murine HSCs activate their wild-type counterparts. RESULTS LratCre + Cc1fl/fl mutants displayed hepatic inflammation and fibrosis but without insulin resistance or hepatic steatosis. Their HSCs, like KD-LX2 cells, underwent myofibroblastic transformation and their media activated wild-type HSCs. This was inhibited by nicotinic acid treatment which blunted the release of IL-6 and fatty acids, both of which activate the epidermal growth factor receptor (EGFR) tyrosine kinase. Gefitinib inhibition of EGFR and its downstream NF-κB/IL-6/STAT3 inflammatory and MAPK-proliferation pathways also blunted HSCs activation in the absence of CEACAM1. CONCLUSIONS Loss of CEACAM1 in HSCs provoked their myofibroblastic transformation in the absence of insulin resistance and hepatic steatosis. This response is mediated by autocrine HSCs activation of the EGFR pathway that amplifies inflammation and proliferation.
Collapse
Affiliation(s)
- Harrison T Muturi
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
| | - Hilda E Ghadieh
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA; Department of Biomedical Sciences, University of Balamand, Faculty of Medicine and Health Sciences, Al-Koura, Lebanon
| | - Suman Asalla
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
| | - Sumona G Lester
- Center for Diabetes and Endocrine Research, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
| | - Getachew D Belew
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
| | - Sobia Zaidi
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
| | - Raziyeh Abdolahipour
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
| | - Abhishek P Shrestha
- Department of Surgery, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Agnes O Portuphy
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
| | - Hannah L Stankus
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
| | - Raghd Abu Helal
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
| | - Stefaan Verhulst
- Liver Cell Biology Research Group, Vrije Universiteit Brussel, Brussel, Belgium
| | - Sergio Duarte
- Department of Surgery, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Ali Zarrinpar
- Department of Surgery, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Leo A van Grunsven
- Liver Cell Biology Research Group, Vrije Universiteit Brussel, Brussel, Belgium
| | - Scott L Friedman
- Division of Liver Diseases, Icahn School of Medicine at Mount Sinai, New York 10029, NY, USA
| | - Robert F Schwabe
- Department of Medicine and the Digestive and Liver Disease Research Center, Columbia University New York, NY, USA
| | - Terry D Hinds
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Sivarajan Kumarasamy
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
| | - Sonia M Najjar
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA; Diabetes Institute, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA.
| |
Collapse
|
6
|
Yadav M, Verma S, Tiwari P, Mugale MN. Unraveling the mechanisms of hepatogenous diabetes and its therapeutic perspectives. Life Sci 2024; 353:122934. [PMID: 39089644 DOI: 10.1016/j.lfs.2024.122934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/26/2024] [Accepted: 07/25/2024] [Indexed: 08/04/2024]
Abstract
The review focused mainly on the pathogenesis of hepatogenous diabetes (HD) in liver cirrhosis (LC). This review reveals parallels between the mechanisms of metabolic dysfunction observed in LC and type II diabetes (T2DM), suggesting a shared pathway leading to HD. It underscores the role of insulin in HD pathogenesis, highlighting key factors such as insulin signaling, glucose metabolism, insulin resistance (IR), and the influence of adipocytes. Furthermore, the impact of adipose tissue accumulation, fatty acid metabolism, and pro-inflammatory cytokines like Tumor necrosis factor-α (TNF-α) on IR are discussed in the context of HD. Altered signaling pathways, disruptions in the endocrine system, liver inflammation, changes in muscle mass and composition, and modifications to the gut microbiota collectively contribute to the complex interplay linking cirrhosis and HD. This study highlights how important it is to identify and treat this complex condition in cirrhotic patients by thoroughly analyzing the link between cirrhosis, IR, and HD. It also emphasizes the vitality of targeted interventions. Cellular and molecular investigations into IR have revealed potential therapeutic targets for managing and preventing HD.
Collapse
Affiliation(s)
- Manisha Yadav
- Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute (CSIR-CDRI), Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Smriti Verma
- Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute (CSIR-CDRI), Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Purnima Tiwari
- Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute (CSIR-CDRI), Lucknow 226031, India
| | - Madhav Nilakanth Mugale
- Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute (CSIR-CDRI), Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
7
|
Zhang K. CEACAM1: Shielding the liver against fibrosis. Eur J Clin Invest 2024; 54:e14182. [PMID: 38424027 PMCID: PMC11250924 DOI: 10.1111/eci.14182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 02/10/2024] [Indexed: 03/02/2024]
Affiliation(s)
- Kezhong Zhang
- Center for Molecular Medicine & Genetics, Wayne State University School of Medicine, Detroit, Michigan, USA
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University School of Medicine, Detroit, Michigan, USA
| |
Collapse
|
8
|
Muturi HT, Ghadieh HE, Asalla S, Lester SG, Verhulst S, Stankus HL, Zaidi S, Abdolahipour R, Belew GD, van Grunsven LA, Friedman SL, Schwabe RF, Hinds TD, Najjar SM. Conditional deletion of CEACAM1 causes hepatic stellate cell activation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.02.586238. [PMID: 38617330 PMCID: PMC11014538 DOI: 10.1101/2024.04.02.586238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Objectives Hepatic CEACAM1 expression declines with advanced hepatic fibrosis stage in patients with MASH. Global and hepatocyte-specific deletions of Ceacam1 impair insulin clearance to cause hepatic insulin resistance and steatosis. They also cause hepatic inflammation and fibrosis, a condition characterized by excessive collagen production from activated hepatic stellate cells (HSCs). Given the positive effect of PPARγ on CEACAM1 transcriptoin and on HSCs quiescence, the current studies investigated whether CEACAM1 loss from HSCs causes their activation. Methods We examined whether lentiviral shRNA-mediated CEACAM1 donwregulation (KD-LX2) activates cultured human LX2 stellate cells. We also generated LratCre+Cc1 fl/fl mutants with conditional Ceacam1 deletion in HSCs and characterized their MASH phenotype. Media transfer experiments were employed to examine whether media from mutant human and murine HSCs activate their wild-type counterparts. Results LratCre+Cc1 fl/fl mutants displayed hepatic inflammation and fibrosis but without insulin resistance or hepatic steatosis. Their HSCs, like KD-LX2 cells, underwent myofibroblastic transformation and their media activated wild-type HDCs. This was inhibited by nicotinic acid treatment which stemmed the release of IL-6 and fatty acids, both of which activate the epidermal growth factor receptor (EGFR) tyrosine kinase. Gefitinib inhibition of EGFR and its downstream NF-κB/IL-6/STAT3 inflammatory and MAPK-proliferation pathways also blunted HSCs activation in the absence of CEACAM1. Conclusions Loss of CEACAM1 in HSCs provoked their myofibroblastic transformation in the absence of insulin resistance and hepatic steatosis. This response is mediated by autocrine HSCs activation of the EGFR pathway that amplifies inflammation and proliferation.
Collapse
|
9
|
Memaj P, Ouzerara Z, Jornayvaz FR. Role of Oxidative Stress and Carcinoembryonic Antigen-Related Cell Adhesion Molecule 1 in Nonalcoholic Fatty Liver Disease. Int J Mol Sci 2023; 24:11271. [PMID: 37511031 PMCID: PMC10379080 DOI: 10.3390/ijms241411271] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/06/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) has become a widely studied subject due to its increasing prevalence and links to diseases such as type 2 diabetes and obesity. It has severe complications, including nonalcoholic steatohepatitis, cirrhosis, hepatocellular carcinoma, and portal hypertension that can lead to liver transplantation in some cases. To better prevent and treat this pathology, it is important to understand its underlying physiology. Here, we identify two main factors that play a crucial role in the pathophysiology of NAFLD: oxidative stress and the key role of carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1). We discuss the pathophysiology linking these factors to NAFLD pathophysiology.
Collapse
Affiliation(s)
- Plator Memaj
- Division of Endocrinology, Diabetes, Nutrition and Therapeutic Patient Education, Department of Medicine, Geneva University Hospitals, 1205 Geneva, Switzerland
| | - Zayd Ouzerara
- Division of Endocrinology, Diabetes, Nutrition and Therapeutic Patient Education, Department of Medicine, Geneva University Hospitals, 1205 Geneva, Switzerland
| | - François R Jornayvaz
- Division of Endocrinology, Diabetes, Nutrition and Therapeutic Patient Education, Department of Medicine, Geneva University Hospitals, 1205 Geneva, Switzerland
- Diabetes Center, Faculty of Medicine, Geneva University, 1205 Geneva, Switzerland
- Department of Cell Physiology and Metabolism, Faculty of Medicine, Geneva University, 1205 Geneva, Switzerland
| |
Collapse
|
10
|
Walker E, van Niekerk S, Hanning K, Kelton W, Hicks J. Mechanisms of host manipulation by Neisseria gonorrhoeae. Front Microbiol 2023; 14:1119834. [PMID: 36819065 PMCID: PMC9935845 DOI: 10.3389/fmicb.2023.1119834] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 01/18/2023] [Indexed: 02/05/2023] Open
Abstract
Neisseria gonorrhoeae (also known as gonococcus) has been causing gonorrhoea in humans since ancient Egyptian times. Today, global gonorrhoea infections are rising at an alarming rate, in concert with an increasing number of antimicrobial-resistant strains. The gonococcus has concurrently evolved several intricate mechanisms that promote pathogenesis by evading both host immunity and defeating common therapeutic interventions. Central to these adaptations is the ability of the gonococcus to manipulate various host microenvironments upon infection. For example, the gonococcus can survive within neutrophils through direct regulation of both the oxidative burst response and maturation of the phagosome; a concerning trait given the important role neutrophils have in defending against invading pathogens. Hence, a detailed understanding of how N. gonorrhoeae exploits the human host to establish and maintain infection is crucial for combating this pathogen. This review summarizes the mechanisms behind host manipulation, with a central focus on the exploitation of host epithelial cell signaling to promote colonization and invasion of the epithelial lining, the modulation of the host immune response to evade both innate and adaptive defenses, and the manipulation of host cell death pathways to both assist colonization and combat antimicrobial activities of innate immune cells. Collectively, these pathways act in concert to enable N. gonorrhoeae to colonize and invade a wide array of host tissues, both establishing and disseminating gonococcal infection.
Collapse
Affiliation(s)
- Emma Walker
- Te Huataki Waiora, School of Health, University of Waikato, Hamilton, New Zealand
| | - Stacy van Niekerk
- Te Huataki Waiora, School of Health, University of Waikato, Hamilton, New Zealand
| | - Kyrin Hanning
- Te Huataki Waiora, School of Health, University of Waikato, Hamilton, New Zealand
| | - William Kelton
- Te Huataki Waiora, School of Health, University of Waikato, Hamilton, New Zealand
- Te Aka Mātuatua School of Science, University of Waikato, Hamilton, New Zealand
| | - Joanna Hicks
- Te Huataki Waiora, School of Health, University of Waikato, Hamilton, New Zealand
| |
Collapse
|
11
|
CEACAMS 1, 5, and 6 in disease and cancer: interactions with pathogens. Genes Cancer 2023; 14:12-29. [PMID: 36741860 PMCID: PMC9891707 DOI: 10.18632/genesandcancer.230] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 01/20/2023] [Indexed: 02/04/2023] Open
Abstract
The CEA family comprises 18 genes and 11 pseudogenes located at chromosome 19q13.2 and is divided into two main groups: cell surface anchored CEA-related cell adhesion molecules (CEACAMs) and the secreted pregnancy-specific glycoproteins (PSGs). CEACAMs are highly glycosylated cell surface anchored, intracellular, and intercellular signaling molecules with diverse functions, from cell differentiation and transformation to modulating immune responses associated with infection, inflammation, and cancer. In this review, we explore current knowledge surrounding CEACAM1, CEACAM5, and CEACAM6, highlight their pathological significance in the areas of cancer biology, immunology, and inflammatory disease, and describe the utility of murine models in exploring questions related to these proteins.
Collapse
|
12
|
DeAngelis AM, Malik M, Britten J, Driggers P, Catherino WH. Carcinoembryonic antigen-related cell adhesion molecule 1: a key regulatory protein involved in leiomyoma growth. F&S SCIENCE 2021; 2:396-406. [PMID: 35559862 DOI: 10.1016/j.xfss.2021.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/19/2021] [Accepted: 07/28/2021] [Indexed: 06/15/2023]
Abstract
OBJECTIVE To assess and characterize the role of carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1) in the development of uterine leiomyoma. DESIGN Laboratory study. SETTING Academic research center. PATIENT(S) Not applicable. INTERVENTION(S) Laboratory investigation. In vitro assessment of human leiomyoma and myometrial tissue specimens as well as immortalized leiomyoma and myometrial cell lines. MAIN OUTCOME MEASURE(S) Western blotting and immunohistochemical analyses were performed to assess differences in CEACAM1 content between leiomyoma and myometrial samples. Small interfering RNA silencing experiments and transient transfection experiments were performed to characterize the regulatory role of CEACAM1 on downstream signaling cascades. RESULT(S) Analysis of RNA sequencing data revealed decreased CEACAM1 expression in human uterine leiomyoma specimens compared with that in myometrial samples. This translated to a significant down-regulation in CEACAM1 protein content in human leiomyoma compared with patient-matched myometrial tissue samples (0.236 ± 0.05-fold). A similar decrease in CEACAM1 protein content was observed in matched immortalized leiomyoma cell (ILC) and immortalized myometrial cell lines (0.21 ± 0.07). Immunohistochemical analysis revealed decreased staining intensity in leiomyoma surgical specimens compared with the matched myometrium of placebo patients. Lower CEACAM1 levels in leiomyoma were associated with increased activation of both the mitogen-activated protein kinase (MAPK) and the phosphoinositide 3-kinase/protein kinase B pathways compared with that in myometrial cells. This is significant because activation of these pathways plays an important role in leiomyoma growth. Treatment of myometrial cells with CEACAM1 small interfering RNA resulted in a significant down-regulation of CEACAM1 at the protein level (0.272 ± 0.06-fold) and was associated with increased activation of the MAPK (1.62 ± 0.21-fold) and phosphoinositide 3-kinase/protein kinase B (1.79 ± 0.35-fold) pathways, as well as increased collagen production (2.1 ± 0.49-fold). Rescue of CEACAM1 expression in leiomyoma cells by transient transfection restored regulatory control and resulted in lower activation of the MAPK pathway (0.58 ± 0.37-fold). CONCLUSION(S) CEACAM1 is an important protein involved in regulating many signal transduction pathways. Decreased CEACAM1 expression in leiomyoma allows permissive uncontrolled overactivation and up-regulation of downstream pathways that may contribute to leiomyoma growth.
Collapse
Affiliation(s)
- Anthony M DeAngelis
- Department of Gynecologic Surgery and Obstetrics, Uniformed Services University of the Health Sciences, Bethesda, Maryland; Program in Reproductive Endocrinology and Gynecology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland
| | - Minnie Malik
- Department of Gynecologic Surgery and Obstetrics, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Joy Britten
- Department of Gynecologic Surgery and Obstetrics, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Paul Driggers
- Department of Gynecologic Surgery and Obstetrics, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - William H Catherino
- Department of Gynecologic Surgery and Obstetrics, Uniformed Services University of the Health Sciences, Bethesda, Maryland; Program in Reproductive Endocrinology and Gynecology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland.
| |
Collapse
|
13
|
Muturi HT, Khuder SS, Ghadieh HE, Esakov EL, Noh H, Kang H, McInerney MF, Kim JK, Lee AD, Najjar SM. Insulin Sensitivity Is Retained in Mice with Endothelial Loss of Carcinoembryonic Antigen Cell Adhesion Molecule 1. Cells 2021; 10:2093. [PMID: 34440862 PMCID: PMC8394790 DOI: 10.3390/cells10082093] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/10/2021] [Accepted: 08/11/2021] [Indexed: 12/24/2022] Open
Abstract
CEACAM1 regulates endothelial barrier integrity. Because insulin signaling in extrahepatic target tissues is regulated by insulin transport through the endothelium, we aimed at investigating the metabolic role of endothelial CEACAM1. To this end, we generated endothelial cell-specific Ceacam1 null mice (VECadCre+Cc1fl/fl) and carried out their metabolic phenotyping and mechanistic analysis by comparison to littermate controls. Hyperinsulinemic-euglycemic clamp analysis showed intact insulin sensitivity in VECadCre+Cc1fl/fl mice. This was associated with the absence of visceral obesity and lipolysis and normal levels of circulating non-esterified fatty acids, leptin, and adiponectin. Whereas the loss of endothelial Ceacam1 did not affect insulin-stimulated receptor phosphorylation, it reduced IRS-1/Akt/eNOS activation to lower nitric oxide production resulting from limited SHP2 sequestration. It also reduced Shc sequestration to activate NF-κB and increase the transcription of matrix metalloproteases, ultimately inducing plasma IL-6 and TNFα levels. Loss of endothelial Ceacam1 also induced the expression of the anti-inflammatory CEACAM1-4L variant in M2 macrophages in white adipose tissue. Together, this could cause endothelial barrier dysfunction and facilitate insulin transport, sustaining normal glucose homeostasis and retaining fat accumulation in adipocytes. The data assign a significant role for endothelial cell CEACAM1 in maintaining insulin sensitivity in peripheral extrahepatic target tissues.
Collapse
Affiliation(s)
- Harrison T. Muturi
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA; (H.T.M.); (H.E.G.)
| | - Saja S. Khuder
- Center for Diabetes and Endocrine Research, College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43606, USA; (S.S.K.); (E.L.E.); (M.F.M.)
| | - Hilda E. Ghadieh
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA; (H.T.M.); (H.E.G.)
| | - Emily L. Esakov
- Center for Diabetes and Endocrine Research, College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43606, USA; (S.S.K.); (E.L.E.); (M.F.M.)
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, Toledo, OH 43606, USA
| | - Hyelim Noh
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA; (H.N.); (H.K.); (J.K.K.)
| | - Heejoon Kang
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA; (H.N.); (H.K.); (J.K.K.)
- Department of Breast-Endocrine Surgery, Dongtan Sacred Heart Hospital, Hallym University College of Medicine, Hwaseong 18450, Korea
| | - Marcia F. McInerney
- Center for Diabetes and Endocrine Research, College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43606, USA; (S.S.K.); (E.L.E.); (M.F.M.)
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, Toledo, OH 43606, USA
| | - Jason K. Kim
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA; (H.N.); (H.K.); (J.K.K.)
- Division of Endocrinology, Metabolism and Diabetes, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Abraham D. Lee
- Department of Rehabilitation Sciences, Judith Herb College of Education, Human Science and Human Service, The University of Toledo, Toledo, OH 43606, USA;
| | - Sonia M. Najjar
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA; (H.T.M.); (H.E.G.)
- Center for Diabetes and Endocrine Research, College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43606, USA; (S.S.K.); (E.L.E.); (M.F.M.)
- Diabetes Institute, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA
| |
Collapse
|
14
|
Ghadieh HE, Abu Helal R, Muturi HT, Issa DD, Russo L, Abdallah SL, Najjar JA, Benencia F, Vazquez G, Li W, Najjar SM. Loss of Hepatic Carcinoembryonic Antigen-Related Cell Adhesion Molecule 1 Links Nonalcoholic Steatohepatitis to Atherosclerosis. Hepatol Commun 2020; 4:1591-1609. [PMID: 33163831 PMCID: PMC7603529 DOI: 10.1002/hep4.1590] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/23/2020] [Accepted: 07/31/2020] [Indexed: 12/11/2022] Open
Abstract
Patients with nonalcoholic fatty liver disease/steatohepatitis (NAFLD/NASH) commonly develop atherosclerosis through a mechanism that is not well delineated. These diseases are associated with steatosis, inflammation, oxidative stress, and fibrosis. The role of insulin resistance in their pathogenesis remains controversial. Albumin (Alb)Cre+Cc1flox(fl)/fl mice with the liver‐specific null deletion of the carcinoembryonic antigen‐related cell adhesion molecule 1 (Ceacam1; alias Cc1) gene display hyperinsulinemia resulting from impaired insulin clearance followed by hepatic insulin resistance, elevated de novo lipogenesis, and ultimately visceral obesity and systemic insulin resistance. We therefore tested whether this mutation causes NAFLD/NASH and atherosclerosis. To this end, mice were propagated on a low‐density lipoprotein receptor (Ldlr)−/− background and at 4 months of age were fed a high‐cholesterol diet for 2 months. We then assessed the biochemical and histopathologic changes in liver and aortae. Ldlr−/−AlbCre+Cc1fl/fl mice developed chronic hyperinsulinemia with proatherogenic hypercholesterolemia, a robust proinflammatory state associated with visceral obesity, elevated oxidative stress (reduced NO production), and an increase in plasma and tissue endothelin‐1 levels. In parallel, they developed NASH (steatohepatitis, apoptosis, and fibrosis) and atherosclerotic plaque lesions. Mechanistically, hyperinsulinemia caused down‐regulation of the insulin receptor followed by inactivation of the insulin receptor substrate 1–protein kinase B–endothelial NO synthase pathway in aortae, lowering the NO level. This also limited CEACAM1 phosphorylation and its sequestration of Shc‐transforming protein (Shc), activating the Shc–mitogen‐activated protein kinase–nuclear factor kappa B pathway and stimulating endothelin‐1 production. Thus, in the presence of proatherogenic dyslipidemia, hyperinsulinemia and hepatic insulin resistance driven by liver‐specific deletion of Ceacam1 caused metabolic and vascular alterations reminiscent of NASH and atherosclerosis. Conclusion: Altered CEACAM1‐dependent hepatic insulin clearance pathways constitute a molecular link between NASH and atherosclerosis.
Collapse
Affiliation(s)
- Hilda E Ghadieh
- Center for Diabetes and Endocrine Research University of Toledo College of Medicine and Life Sciences Toledo OH USA.,Department of Physiology and Pharmacology University of Toledo College of Medicine and Life Sciences Toledo OH USA.,Department of Biomedical Sciences Ohio University Athens OH USA
| | - Raghd Abu Helal
- Department of Biomedical Sciences Ohio University Athens OH USA
| | - Harrison T Muturi
- Center for Diabetes and Endocrine Research University of Toledo College of Medicine and Life Sciences Toledo OH USA.,Department of Biomedical Sciences Ohio University Athens OH USA
| | - Daniella D Issa
- Department of Biomedical Sciences Ohio University Athens OH USA
| | - Lucia Russo
- Center for Diabetes and Endocrine Research University of Toledo College of Medicine and Life Sciences Toledo OH USA.,Department of Physiology and Pharmacology University of Toledo College of Medicine and Life Sciences Toledo OH USA
| | - Simon L Abdallah
- Center for Diabetes and Endocrine Research University of Toledo College of Medicine and Life Sciences Toledo OH USA.,Department of Physiology and Pharmacology University of Toledo College of Medicine and Life Sciences Toledo OH USA
| | - John A Najjar
- Center for Diabetes and Endocrine Research University of Toledo College of Medicine and Life Sciences Toledo OH USA
| | - Fabian Benencia
- Department of Biomedical Sciences Ohio University Athens OH USA
| | - Guillermo Vazquez
- Center for Diabetes and Endocrine Research University of Toledo College of Medicine and Life Sciences Toledo OH USA.,Department of Physiology and Pharmacology University of Toledo College of Medicine and Life Sciences Toledo OH USA
| | - Wei Li
- Department of Biomedical Sciences Marshall University Joan C. Edwards School of Medicine Huntington WV USA
| | - Sonia M Najjar
- Center for Diabetes and Endocrine Research University of Toledo College of Medicine and Life Sciences Toledo OH USA.,Department of Physiology and Pharmacology University of Toledo College of Medicine and Life Sciences Toledo OH USA.,Department of Biomedical Sciences Ohio University Athens OH USA.,Diabetes Institute Heritage College of Osteopathic Medicine Ohio University Athens OH USA
| |
Collapse
|
15
|
Liu J, Muturi HT, Khuder SS, Helal RA, Ghadieh HE, Ramakrishnan SK, Kaw MK, Lester SG, Al-Khudhair A, Conran PB, Chin KV, Gatto-Weis C, Najjar SM. Loss of Ceacam1 promotes prostate cancer progression in Pten haploinsufficient male mice. Metabolism 2020; 107:154215. [PMID: 32209360 PMCID: PMC7283002 DOI: 10.1016/j.metabol.2020.154215] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 03/10/2020] [Accepted: 03/19/2020] [Indexed: 02/07/2023]
Abstract
OBJECTIVE PTEN haploinsufficiency plays an important role in prostate cancer development in men. However, monoallelic deletion of Pten gene failed to induce high prostate intraepithelial neoplasia (PIN) until Pten+/- mice aged or fed a high-calorie diet. Because CEACAM1, a cell adhesion molecule with a potential tumor suppression activity, is induced in Pten+/- prostates, the study aimed at examining whether the rise of CEACAM1 limited neoplastic progression in Pten+/- prostates. METHODS Pten+/- were crossbred with Cc1-/- mice harboring a null deletion of Ceacam1 gene to produce Pten+/-/Cc1-/- double mutants. Prostates from 7-month old male mice were analyzed histologically and biochemically for PIN progression. RESULTS Deleting Ceacam1 in Pten+/- mice caused an early development of high-grade PIN in parallel to hyperactivation of PI3 kinase/Akt and Ras/MAP kinase pathways, with an increase in cell proliferation, epithelial-to-mesenchymal transition, angiogenesis and inflammation relative to Pten+/- and Cc1-/- individual mutants. It also caused a remarkable increase in lipogenesis in prostate despite maintaining insulin sensitivity. Concomitant Ceacam1 deletion with Pten+/- activated the IL-6/STAT3 signaling pathways to suppress Irf-8 transcription that in turn, led to a decrease in the expression level of promyelocytic leukemia gene, a well characterized tumor suppressor in prostate. CONCLUSIONS Ceacam1 deletion accelerated high-grade prostate intraepithelial neoplasia in Pten haploinsufficient mice while preserving insulin sensitivity. This demonstrated that the combined loss of Ceacam1 and Pten advanced prostate cancer by increasing lipogenesis and modifying the STAT3-dependent inflammatory microenvironment of prostate.
Collapse
Affiliation(s)
- Jehnan Liu
- Center for Diabetes and Endocrine Research, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA; Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - Harrison T Muturi
- Center for Diabetes and Endocrine Research, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA; Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA; Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA
| | - Saja S Khuder
- Center for Diabetes and Endocrine Research, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA; Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - Raghd Abu Helal
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA
| | - Hilda E Ghadieh
- Center for Diabetes and Endocrine Research, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA; Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA; Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA
| | - Sadeesh K Ramakrishnan
- Center for Diabetes and Endocrine Research, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA; Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - Meenakshi K Kaw
- Center for Diabetes and Endocrine Research, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA; Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - Sumona Ghosh Lester
- Center for Diabetes and Endocrine Research, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA; Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - Ahmed Al-Khudhair
- Center for Diabetes and Endocrine Research, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA; Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH, 43614, USA
| | - Philip B Conran
- Department of Pathology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - Khew-Voon Chin
- Center for Diabetes and Endocrine Research, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA; Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH, 43614, USA
| | - Cara Gatto-Weis
- Center for Diabetes and Endocrine Research, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA; Department of Pathology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - Sonia M Najjar
- Center for Diabetes and Endocrine Research, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA; Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA; Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA; Diabetes Institute, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, 45701, USA.
| |
Collapse
|
16
|
Muenzner P, Hauck CR. Neisseria gonorrhoeae Blocks Epithelial Exfoliation by Nitric-Oxide-Mediated Metabolic Cross Talk to Promote Colonization in Mice. Cell Host Microbe 2020; 27:793-808.e5. [PMID: 32289262 DOI: 10.1016/j.chom.2020.03.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 12/19/2019] [Accepted: 03/17/2020] [Indexed: 12/18/2022]
Abstract
Several pathogens suppress exfoliation, a key defense of epithelia against microbial colonization. Common among these pathogens, exemplified by Neisseria gonorrhoeae, is their ability to bind carcinoembryonic antigen-related cell adhesion molecules (CEACAMs). Gonococcal CEACAM engagement triggers the expression of CD105, which is necessary to block epithelial exfoliation, whereas homotypic CEACAM-CEACAM interactions or antibody-mediated CEACAM clustering does not lead to CD105 expression. Here, we show that CEACAM-associated bacteria release nitric oxide (NO) during anaerobic respiration, and membrane-permeable NO initiates a eukaryotic signaling pathway involving soluble guanylate cyclase (sGC), protein kinase G, and the transcription factor CREB to upregulate CD105 expression. A murine vaginal infection model with N. gonorrhoeae reveals this metabolic cross communication allows bacterial suppression of epithelial exfoliation to facilitate mucosal colonization. Disrupting NO-initiated responses in host cells re-establishes epithelial exfoliation and inhibits mouse genital tract colonization by N. gonorrhoeae, suggesting a host-directed approach to prevent bacterial infections.
Collapse
Affiliation(s)
- Petra Muenzner
- Lehrstuhl Für Zellbiologie, Fachbereich Biologie, Universität Konstanz, 78457 Konstanz, Germany
| | - Christof R Hauck
- Lehrstuhl Für Zellbiologie, Fachbereich Biologie, Universität Konstanz, 78457 Konstanz, Germany; Konstanz Research School Chemical Biology, Universität Konstanz, 78457 Konstanz, Germany.
| |
Collapse
|
17
|
Luebke AM, Ricken W, Kluth M, Hube-Magg C, Schroeder C, Büscheck F, Möller K, Dum D, Höflmayer D, Weidemann S, Fraune C, Hinsch A, Wittmer C, Schlomm T, Huland H, Heinzer H, Graefen M, Haese A, Minner S, Simon R, Sauter G, Wilczak W, Meiners J. Loss of the adhesion molecule CEACAM1 is associated with early biochemical recurrence in TMPRSS2:ERG fusion-positive prostate cancers. Int J Cancer 2020; 147:575-583. [PMID: 32150281 DOI: 10.1002/ijc.32957] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 02/12/2020] [Accepted: 03/02/2020] [Indexed: 12/16/2022]
Abstract
Altered expression of the carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1) has been linked to adverse tumor features in various cancer types. To better understand the role of CEACAM1 in prostate cancer, we analyzed a tissue microarray containing tumor spots from 17,747 prostate cancer patients by means of immunohistochemistry. Normal prostate glands showed intense membranous CEACAM1 positivity. Immunostaining was interpretable in 13,625 cancers and was considered high in 28%, low in 43% and absent in 29% of tumors. Low and lost CEACAM1 expression was strongly linked to adverse tumor features including high classical and quantitative Gleason grade, lymph node metastasis, advanced tumor stage, positive surgical margin, a high number of genomic deletions and early biochemical recurrence (p < 0.0001 each). Subset analysis of molecularly defined cancer subsets revealed that these associations were strongest in V-ets avian erythroblastosis virus E26 oncogene homolog (ERG) fusion-positive cancers and that CEACAM1 loss was prognostic even in tumors harboring genomic deletions of the phosphatase and tensin homolog tumor suppressor (p < 0.0001). Multivariate analysis suggested that CEACAM1 analysis can provide independent prognostic information beyond established prognosis parameters at the stage of the initial biopsy when therapy decisions must be taken. In conclusion, loss of CEACAM1 expression predicts poor prognosis in prostate cancer and might provide clinically useful prognostic information particularly in cancers harboring the TMPRSS2:ERG fusion.
Collapse
Affiliation(s)
- Andreas M Luebke
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Wiebke Ricken
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Martina Kluth
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Claudia Hube-Magg
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Cornelia Schroeder
- General, Visceral and Thoracic Surgery Department and Clinic, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Franziska Büscheck
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Katharina Möller
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - David Dum
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Doris Höflmayer
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sören Weidemann
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christoph Fraune
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Andrea Hinsch
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Corinna Wittmer
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Thorsten Schlomm
- Department of Urology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Hartwig Huland
- Martini-Clinic, Prostate Cancer Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Hans Heinzer
- Martini-Clinic, Prostate Cancer Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Markus Graefen
- Martini-Clinic, Prostate Cancer Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Alexander Haese
- Martini-Clinic, Prostate Cancer Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sarah Minner
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ronald Simon
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Guido Sauter
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Waldemar Wilczak
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jan Meiners
- General, Visceral and Thoracic Surgery Department and Clinic, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
18
|
Bergman RN, Piccinini F, Kabir M, Kolka CM, Ader M. Hypothesis: Role of Reduced Hepatic Insulin Clearance in the Pathogenesis of Type 2 Diabetes. Diabetes 2019; 68:1709-1716. [PMID: 31431441 PMCID: PMC6702636 DOI: 10.2337/db19-0098] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 06/02/2019] [Indexed: 12/19/2022]
Abstract
There is wide variance among individuals in the fraction of insulin cleared by the liver (20% to 80%). Hepatic insulin clearance is 67% lower in African Americans than European Americans. Clearance is also lower in African American children 7-13 years of age. Lower hepatic insulin clearance will result in peripheral hyperinsulinemia: this exacerbates insulin resistance, which stresses the β-cells, possibly resulting in their ultimate failure and onset of type 2 diabetes. We hypothesize that lower insulin clearance can be a primary cause of type 2 diabetes in at-risk individuals.
Collapse
Affiliation(s)
- Richard N Bergman
- Diabetes and Obesity Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Francesca Piccinini
- Diabetes and Obesity Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Morvarid Kabir
- Diabetes and Obesity Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Cathryn M Kolka
- Diabetes and Obesity Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Marilyn Ader
- Diabetes and Obesity Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA
| |
Collapse
|
19
|
Najjar SM, Perdomo G. Hepatic Insulin Clearance: Mechanism and Physiology. Physiology (Bethesda) 2019; 34:198-215. [PMID: 30968756 DOI: 10.1152/physiol.00048.2018] [Citation(s) in RCA: 137] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Upon its secretion from pancreatic β-cells, insulin reaches the liver through the portal circulation to exert its action and eventually undergo clearance in the hepatocytes. In addition to insulin secretion, hepatic insulin clearance regulates the homeostatic level of insulin that is required to reach peripheral insulin target tissues to elicit proper insulin action. Receptor-mediated insulin uptake followed by its degradation constitutes the basic mechanism of insulin clearance. Upon its phosphorylation by the insulin receptor tyrosine kinase, carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1) takes part in the insulin-insulin receptor complex to increase the rate of its endocytosis and targeting to the degradation pathways. This review summarizes how this process is regulated and how it is associated with insulin-degrading enzyme in the liver. It also discusses the physiological implications of impaired hepatic insulin clearance: Whereas reduced insulin clearance cooperates with increased insulin secretion to compensate for insulin resistance, it can also cause hepatic insulin resistance. Because chronic hyperinsulinemia stimulates hepatic de novo lipogenesis, impaired insulin clearance also causes hepatic steatosis. Thus impaired insulin clearance can underlie the link between hepatic insulin resistance and hepatic steatosis. Delineating these regulatory pathways should lead to building more effective therapeutic strategies against metabolic syndrome.
Collapse
Affiliation(s)
- Sonia M Najjar
- Department of Biomedical Sciences, Ohio University , Athens, Ohio.,Diabetes Institute, Heritage College of Osteopathic Medicine, Ohio University , Athens, Ohio
| | - Germán Perdomo
- Departamento de Ciencias de la Salud, Universidad de Burgos , Burgos , Spain
| |
Collapse
|
20
|
Kuhn J, Smirnov A, Criss AK, Columbus L. Quantifying Carcinoembryonic Antigen-like Cell Adhesion Molecule-Targeted Liposome Delivery Using Imaging Flow Cytometry. Mol Pharm 2019; 16:2354-2363. [PMID: 30995063 DOI: 10.1021/acs.molpharmaceut.8b01274] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Carcinoembryonic antigen-like cell adhesion molecules (CEACAMs) are human cell-surface proteins that can exhibit increased expression on tumor cells and are thus a potential target for novel tumor-seeking therapeutic delivery methods. We hypothesize that engineered nanoparticles containing a known interaction partner of CEACAM, Neisseria gonorrhoeae outer membrane protein Opa, can be used to deliver cargo to specific cellular targets. In this study, the cell association and uptake of protein-free liposomes and Opa proteoliposomes into CEACAM-expressing cells were measured using imaging flow cytometry. A size-dependent internalization of liposomes into HeLa cells was observed through endocytic pathways. Opa-dependent, CEACAM1-mediated uptake of liposomes into HeLa cells was observed, with limited colocalization with endosomal and lysosomal trafficking compartments. Given the overexpression of CEACAM1 on several distinct cancers and interest in using CEACAM1 as a component in treatment strategies, these results support further pursuit of investigating Opa-dependent specificity and the internalization mechanism for therapeutic delivery.
Collapse
|
21
|
Villa-Pérez P, Merino B, Fernández-Díaz CM, Cidad P, Lobatón CD, Moreno A, Muturi HT, Ghadieh HE, Najjar SM, Leissring MA, Cózar-Castellano I, Perdomo G. Liver-specific ablation of insulin-degrading enzyme causes hepatic insulin resistance and glucose intolerance, without affecting insulin clearance in mice. Metabolism 2018; 88:1-11. [PMID: 30098324 PMCID: PMC6185772 DOI: 10.1016/j.metabol.2018.08.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 07/24/2018] [Accepted: 08/06/2018] [Indexed: 11/23/2022]
Abstract
UNLABELLED The role of insulin-degrading enzyme (IDE), a metalloprotease with high affinity for insulin, in insulin clearance remains poorly understood. OBJECTIVE This study aimed to clarify whether IDE is a major mediator of insulin clearance, and to define its role in the etiology of hepatic insulin resistance. METHODS We generated mice with liver-specific deletion of Ide (L-IDE-KO) and assessed insulin clearance and action. RESULTS L-IDE-KO mice exhibited higher (~20%) fasting and non-fasting plasma glucose levels, glucose intolerance and insulin resistance. This phenotype was associated with ~30% lower plasma membrane insulin receptor levels in liver, as well as ~55% reduction in insulin-stimulated phosphorylation of the insulin receptor, and its downstream signaling molecules, AKT1 and AKT2 (reduced by ~40%). In addition, FoxO1 was aberrantly distributed in cellular nuclei, in parallel with up-regulation of the gluconeogenic genes Pck1 and G6pc. Surprisingly, L-IDE-KO mice showed similar plasma insulin levels and hepatic insulin clearance as control mice, despite reduced phosphorylation of the carcinoembryonic antigen-related cell adhesion molecule 1, which upon its insulin-stimulated phosphorylation, promotes receptor-mediated insulin uptake to be degraded. CONCLUSION IDE is not a rate-limiting regulator of plasma insulin levels in vivo.
Collapse
Affiliation(s)
- Pablo Villa-Pérez
- Instituto de Biología y Genética Molecular, University of Valladolid-CSIC, Valladolid, Spain
| | - Beatriz Merino
- Instituto de Biología y Genética Molecular, University of Valladolid-CSIC, Valladolid, Spain
| | | | - Pilar Cidad
- Instituto de Biología y Genética Molecular, University of Valladolid-CSIC, Valladolid, Spain
| | - Carmen D Lobatón
- Instituto de Biología y Genética Molecular, University of Valladolid-CSIC, Valladolid, Spain
| | - Alfredo Moreno
- Instituto de Biología y Genética Molecular, University of Valladolid-CSIC, Valladolid, Spain
| | - Harrison T Muturi
- Department of Biomedical Sciences, Ohio University, USA; Diabetes Institute, Heritage College of Osteopathic Medicine, Ohio University, USA
| | - Hilda E Ghadieh
- Department of Biomedical Sciences, Ohio University, USA; Diabetes Institute, Heritage College of Osteopathic Medicine, Ohio University, USA
| | - Sonia M Najjar
- Department of Biomedical Sciences, Ohio University, USA; Diabetes Institute, Heritage College of Osteopathic Medicine, Ohio University, USA
| | - Malcolm A Leissring
- Institute for Memory Impairments and Neurological Disorders, University of California, UCI MIND, Irvine, CA, USA
| | - Irene Cózar-Castellano
- Instituto de Biología y Genética Molecular, University of Valladolid-CSIC, Valladolid, Spain
| | - Germán Perdomo
- Departamento de Ciencias de la Salud, Universidad de Burgos, Burgos, Spain.
| |
Collapse
|
22
|
Horst AK, Najjar SM, Wagener C, Tiegs G. CEACAM1 in Liver Injury, Metabolic and Immune Regulation. Int J Mol Sci 2018; 19:ijms19103110. [PMID: 30314283 PMCID: PMC6213298 DOI: 10.3390/ijms19103110] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 10/02/2018] [Accepted: 10/04/2018] [Indexed: 02/06/2023] Open
Abstract
Carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1) is a transmembrane glycoprotein that is expressed on epithelial, endothelial and immune cells. CEACAM1 is a differentiation antigen involved in the maintenance of epithelial polarity that is induced during hepatocyte differentiation and liver regeneration. CEACAM1 regulates insulin sensitivity by promoting hepatic insulin clearance, and controls liver tolerance and mucosal immunity. Obese insulin-resistant humans with non-alcoholic fatty liver disease manifest loss of hepatic CEACAM1. In mice, deletion or functional inactivation of CEACAM1 impairs insulin clearance and compromises metabolic homeostasis which initiates the development of obesity and hepatic steatosis and fibrosis with other features of non-alcoholic steatohepatitis, and adipogenesis in white adipose depot. This is followed by inflammation and endothelial and cardiovascular dysfunctions. In obstructive and inflammatory liver diseases, soluble CEACAM1 is shed into human bile where it can serve as an indicator of liver disease. On immune cells, CEACAM1 acts as an immune checkpoint regulator, and deletion of Ceacam1 gene in mice causes exacerbation of inflammation and hyperactivation of myeloid cells and lymphocytes. Hence, hepatic CEACAM1 resides at the central hub of immune and metabolic homeostasis in both humans and mice. This review focuses on the regulatory role of CEACAM1 in liver and biliary tract architecture in health and disease, and on its metabolic role and function as an immune checkpoint regulator of hepatic inflammation.
Collapse
Affiliation(s)
- Andrea Kristina Horst
- Institute of Experimental Immunology and Hepatology, Center for Experimental Medicine, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20251 Hamburg, Germany.
| | - Sonia M Najjar
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Irvine Hall, 1 Ohio University, Athens, OH 45701-2979, USA.
- The Diabetes Institute, Heritage College of Osteopathic Medicine, Irvine Hall, 1 Ohio University, Athens, OH 45701-2979, USA.
| | - Christoph Wagener
- University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20251 Hamburg, Germany.
| | - Gisa Tiegs
- Institute of Experimental Immunology and Hepatology, Center for Experimental Medicine, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20251 Hamburg, Germany.
| |
Collapse
|
23
|
Dankner M, Gray-Owen SD, Huang YH, Blumberg RS, Beauchemin N. CEACAM1 as a multi-purpose target for cancer immunotherapy. Oncoimmunology 2017; 6:e1328336. [PMID: 28811966 PMCID: PMC5543821 DOI: 10.1080/2162402x.2017.1328336] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 05/03/2017] [Accepted: 05/05/2017] [Indexed: 02/06/2023] Open
Abstract
CEACAM1 is an extensively studied cell surface molecule with established functions in multiple cancer types, as well as in various compartments of the immune system. Due to its multi-faceted role as a recently appreciated immune checkpoint inhibitor and tumor marker, CEACAM1 is an attractive target for cancer immunotherapy. Herein, we highlight CEACAM1's function in various immune compartments and cancer types, including in the context of metastatic disease. This review outlines CEACAM1's role as a therapeutic target for cancer treatment in light of these properties.
Collapse
Affiliation(s)
- Matthew Dankner
- Goodman Cancer Research Centre, McGill University, Montreal, QC, Canada
| | - Scott D Gray-Owen
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Yu-Hwa Huang
- Division of Gastroenterology, Hepatology, and Endoscopy, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Richard S Blumberg
- Division of Gastroenterology, Hepatology, and Endoscopy, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Nicole Beauchemin
- Goodman Cancer Research Centre, McGill University, Montreal, QC, Canada
| |
Collapse
|
24
|
CEACAM1 is overexpressed in oral tumors and related to tumorigenesis. Med Mol Morphol 2016; 50:42-51. [PMID: 27464654 DOI: 10.1007/s00795-016-0147-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2016] [Accepted: 07/19/2016] [Indexed: 10/21/2022]
Abstract
Carcinoembryonic antigen-related adhesion molecule 1 (CEACAM1) is a type 1 transmembrane glycoprotein belonging to the CEA family, which has been known to exist as either soluble forms in body fluids or membrane-bound forms on the cell surface. Aberrant CEACAM1 expression is associated with tumorigenesis and has been reported in a variety of human tumors, especially malignancies. The aim of this study is to determine the expression of CEACAM1 in oral tumors, trying to study CEACAM1 different expressions as a function of histotype. CEACAM1 expression was observed by immunohistochemistry (IHC) with mouse anti-human antibody for CEACAM1. IHC was performed using avidin-biotin-diaminobenzidine staining. The results were expressed as average score ± SD (0 = negative/8 = highest) for each histotype. Oral tumors expressed more CEACAM1 than normal tissues including squamous and salivary epithelia (P < 0.05). In malignancies, the squamous cell carcinoma overexpressed CEACAM1, compared to well-differentiated squamous cell with more membranous expression; the intermediately and poorly differentiated squamous cell carcinoma showed more cytoplasmic expression (P < 0.05). In addition, the salivary tumors significantly expressed more CEACAM1 than squamous cell carcinoma (P < 0.05). So, we thought oral tumors overexpressed CEACAM1 and the cytoplasmic CEACAM1 might be involved in tumorigenesis, and also CEACAM1 might be regarded as a marker of salivary glandular tumors.
Collapse
|
25
|
Ma C, Shuai B, Shen L, Yang YP, Xu XJ, Li CG. Serum carcinoembryonic antigen-related cell adhesion molecule 1 level in postmenopausal women: correlation with β-catenin and bone mineral density. Osteoporos Int 2016; 27:1529-1535. [PMID: 26572758 DOI: 10.1007/s00198-015-3408-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 11/05/2015] [Indexed: 11/26/2022]
Abstract
UNLABELLED Many epidemiological studies have shown that in some tumors carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1) and β-catenin appear to be related. However, it remains to be established whether CEACAM1 is related to β-catenin in osteoporosis. Here, we reveal that CEACAM1 might influence the canonical Wnt/β-catenin pathway to modulate bone metabolism in postmenopausal osteoporosis. INTRODUCTION The aim of this study is to assess the serum level of CEACAM1 in postmenopausal women and its correlation with β-catenin and bone mineral density (BMD). METHODS The BMD was measured at the lumbar spine (L1-L4) or the femoral neck using dual-energy X-ray absorptiometry (DXA). Serum CEACAM1, β-catenin, receptor activator of nuclear factor kappa-B (RANKL), osteoprotegerin (OPG), β-isomerized C-terminal crosslinking of type I collagen (β-CTX), intact N-terminal propeptide of type I collagen (PINP), estradiol, and insulin were measured in 350 postmenopausal women. Patients were divided according to lumbar spine or femur neck T-scores into osteoporosis (group I), osteopenia (group II), and normal bone mineral density, the latter serving as control. RESULTS Serum CEACAM1 levels were significantly lower in group I and II compared to those in control subjects (P < 0.001). Serum CEACAM1 levels correlated positively with β-catenin and BMD, but correlated negatively to the ratio between RANKL and OPG. CONCLUSION This study provides evidence that decreased serum CEACAM1 levels are related to low BMD in postmenopausal women, and that serum CEACAM1 levels correlated positively to β-catenin. It suggests that CEACAM1 might influence the canonical Wnt/β-catenin pathway to modulate bone metabolism.
Collapse
Affiliation(s)
- C Ma
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - B Shuai
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - L Shen
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China.
| | - Y P Yang
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - X J Xu
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - C G Li
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| |
Collapse
|
26
|
Li C, Culver SA, Quadri S, Ledford KL, Al-Share QY, Ghadieh HE, Najjar SM, Siragy HM. High-fat diet amplifies renal renin angiotensin system expression, blood pressure elevation, and renal dysfunction caused by Ceacam1 null deletion. Am J Physiol Endocrinol Metab 2015; 309:E802-10. [PMID: 26374765 PMCID: PMC4628940 DOI: 10.1152/ajpendo.00158.2015] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Accepted: 08/12/2015] [Indexed: 02/07/2023]
Abstract
Carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAMl), a substrate of the insulin receptor tyrosine kinase, regulates insulin action by promoting insulin clearance. Global null mutation of Ceacam1 gene (Cc1(-/-)) results in features of the metabolic syndrome, including insulin resistance, hyperinsulinemia, visceral adiposity, elevated blood pressure, and albuminuria. It also causes activation of the renal renin-angiotensin system (RAS). In the current study, we tested the hypothesis that high-fat diet enhances the expression of RAS components. Three-month-old wild-type (Cc1(+/+)) and Cc1(-/-) mice were fed either a regular or a high-fat diet for 8 wk. At baseline under regular feeding conditions, Cc1(-/-) mice exhibited higher blood pressure, urine albumin-to-creatinine ratio (UACR), and renal expression of angiotensinogen, renin/prorenin, angiotensin-converting enzyme, (pro)renin receptor, angiotensin subtype AT1 receptor, angiotensin II, and elevated PI3K phosphorylation, as detected by p85α (Tyr(508)) immunostaining, inflammatory response, and the expression of collagen I and collagen III. In Cc1(+/+) mice, high-fat diet increased blood pressure, UACR, the expression of angiotensin-converting enzyme and angiotensin II, PI3K phosphorylation, inflammatory response, and the expression of collagen I and collagen III. In Cc1(-/-) mice, high-fat intake further amplified these parameters. Immunohistochemical staining showed increased p-PI3K p85α (Tyr(508)) expression in renal glomeruli, proximal, distal, and collecting tubules of Cc1(-/-) mice fed a high-fat diet. Together, this demonstrates that high-fat diet amplifies the permissive effect of Ceacam1 deletion on renal expression of all RAS components, PI3K phosphorylation, inflammation, and fibrosis.
Collapse
Affiliation(s)
- Caixia Li
- Division of Endocrinology and Metabolism, University of Virginia Health System, Charlottesville, Virginia; and
| | - Silas A Culver
- Division of Endocrinology and Metabolism, University of Virginia Health System, Charlottesville, Virginia; and
| | - Syed Quadri
- Division of Endocrinology and Metabolism, University of Virginia Health System, Charlottesville, Virginia; and
| | - Kelly L Ledford
- Center for Diabetes and Endocrinology Research, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio
| | - Qusai Y Al-Share
- Center for Diabetes and Endocrinology Research, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio
| | - Hilda E Ghadieh
- Center for Diabetes and Endocrinology Research, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio
| | - Sonia M Najjar
- Center for Diabetes and Endocrinology Research, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio
| | - Helmy M Siragy
- Division of Endocrinology and Metabolism, University of Virginia Health System, Charlottesville, Virginia; and
| |
Collapse
|
27
|
Li N, Yang JY, Wang XY, Wang HT, Guan BX, Zhou CJ. Carcinoembryonic antigen-related cell adhesion molecule 1 is expressed and as a function histotype in ovarian tumors. Ann Diagn Pathol 2015; 20:7-12. [PMID: 26653024 DOI: 10.1016/j.anndiagpath.2015.10.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 10/12/2015] [Indexed: 10/22/2022]
Abstract
Carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1) is a cell-cell adhesion receptor and is implicated in several cellular functions. It is rarely reported in ovarian tumors. The aim of this study is to determine the expression of CEACAM1 in ovarian tumors, trying to see whether CEACAM1 has different expression patterns as a function of histotype. Antigen expression was examined by immunohistochemistry with mouse anti-human antibody for CEACAM1. Immunohistochemistry was performed using avidin-biotin-diaminobenzide staining. The results were expressed as average score ± SD (0, negative; 8, highest) for each histotype. In ovarian tumors, the benign serous and mucinous cystadenoma negatively or weakly expressed CEACAM1, the malignant epithelial tumors strongly expressed CEACAM1, and there was significant difference between benign epithelial tumor and adenocarcinoma (P < .05). The well-differentiated serous adenocarcinoma expressed CEACAM1 mainly with membrane pattern, and the intermediately and poorly differentiated serous adenocarcinomas expressed CEACAM1 mainly with cytoplasmic pattern (P < .05). In addition, CEACAM1 expression is elevated in solid tumors of ovary but variable as a function of histotype. Compared with membranous expression, the cytoplasmic expression was observed almost in metastatic carcinoma that might decrease the adhesive interactions of the carcinoma cells with the surrounding cells, especially with tumor cells, and this could facilitate the tumor cells to metastasize to distant regions. So, we thought that cytoplasmic CEACAM1 might play an important role in tumor progression, especially in tumor metastasis.
Collapse
Affiliation(s)
- Ning Li
- Department of Anatomy, College of Basic Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355 Shandong, PR China.
| | - Jing-Yan Yang
- Department of Pathology, The Second Hospital, Shandong University, Jinan, Shandong 250033, PR China.
| | - Xiao-Ying Wang
- Department of Pathology, The Second Hospital, Shandong University, Jinan, Shandong 250033, PR China.
| | - Hai-Tao Wang
- Department of Pathology, The Second Hospital, Shandong University, Jinan, Shandong 250033, PR China.
| | - Bing-Xin Guan
- Department of Pathology, The Second Hospital, Shandong University, Jinan, Shandong 250033, PR China.
| | - Cheng-Jun Zhou
- Department of Pathology, The Second Hospital, Shandong University, Jinan, Shandong 250033, PR China.
| |
Collapse
|
28
|
Kaneko S, Nakatani Y, Takezaki T, Hide T, Yamashita D, Ohtsu N, Ohnishi T, Terasaka S, Houkin K, Kondo T. Ceacam1L Modulates STAT3 Signaling to Control the Proliferation of Glioblastoma-Initiating Cells. Cancer Res 2015; 75:4224-34. [PMID: 26238781 DOI: 10.1158/0008-5472.can-15-0412] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 06/27/2015] [Indexed: 11/16/2022]
Abstract
Glioblastoma-initiating cells (GIC) are a tumorigenic cell subpopulation resistant to radiotherapy and chemotherapy, and are a likely source of recurrence. However, the basis through which GICs are maintained has yet to be elucidated in detail. We herein demonstrated that the carcinoembryonic antigen-related cell adhesion molecule Ceacam1L acts as a crucial factor in GIC maintenance and tumorigenesis by activating c-Src/STAT3 signaling. Furthermore, we showed that monomers of the cytoplasmic domain of Ceacam1L bound to c-Src and STAT3 and induced their phosphorylation, whereas oligomerization of this domain ablated this function. Our results suggest that Ceacam1L-dependent adhesion between GIC and surrounding cells play an essential role in GIC maintenance and proliferation, as mediated by signals transmitted by monomeric forms of the Ceacam1L cytoplasmic domain.
Collapse
Affiliation(s)
- Sadahiro Kaneko
- Division of Stem Cell Biology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Hokkaido, Japan. Department of Neurosurgery, Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido, Japan
| | - Yuka Nakatani
- Laboratory for Cell Lineage Modulation, Center for Developmental Biology, RIKEN, Kobe, Hyogo, Japan
| | - Tatsuya Takezaki
- Laboratory for Cell Lineage Modulation, Center for Developmental Biology, RIKEN, Kobe, Hyogo, Japan. Department of Neurosurgery, Kumamoto University Graduate School of Medical Science, Kumamoto, Kumamoto, Japan
| | - Takuichiro Hide
- Laboratory for Cell Lineage Modulation, Center for Developmental Biology, RIKEN, Kobe, Hyogo, Japan. Department of Neurosurgery, Kumamoto University Graduate School of Medical Science, Kumamoto, Kumamoto, Japan
| | - Daisuke Yamashita
- Department of Neurosurgery, Ehime University Graduate School of Medicine, To-on, Ehime, Japan
| | - Naoki Ohtsu
- Division of Stem Cell Biology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Takanori Ohnishi
- Department of Neurosurgery, Ehime University Graduate School of Medicine, To-on, Ehime, Japan
| | - Shunsuke Terasaka
- Department of Neurosurgery, Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido, Japan
| | - Kiyohiro Houkin
- Department of Neurosurgery, Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido, Japan
| | - Toru Kondo
- Division of Stem Cell Biology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Hokkaido, Japan. Laboratory for Cell Lineage Modulation, Center for Developmental Biology, RIKEN, Kobe, Hyogo, Japan.
| |
Collapse
|
29
|
Ling Y, Wang J, Wang L, Hou J, Qian P, Xiang-dong W. Roles of CEACAM1 in cell communication and signaling of lung cancer and other diseases. Cancer Metastasis Rev 2015; 34:347-57. [DOI: 10.1007/s10555-015-9569-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
30
|
Lee KA, Bae EA, Song YC, Kim EK, Lee YS, Kim TG, Kang CY. A multimeric carcinoembryonic antigen signal inhibits the activation of human T cells by a SHP-independent mechanism: a potential mechanism for tumor-mediated suppression of T-cell immunity. Int J Cancer 2015; 136:2579-87. [PMID: 25379865 DOI: 10.1002/ijc.29314] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2013] [Accepted: 10/11/2014] [Indexed: 01/21/2023]
Abstract
Carcinoembryonic antigen (CEA) is a well-known tumor antigen that is found in the serum of patients with various cancers and is correlated with an increased risk of cancer recurrence and metastasis. To understand the tumor environment and to develop antitumor therapies, CEA has been studied as an antigen to activate/tolerate specific T cells. In this study, we show that CEA can function as a coinhibitory molecule and can inhibit the activation of human peripheral blood mononucleated cell-derived T cells. The addition of CEA-overexpressing tumor cells or immobilized CEA dampened both cell proliferation and the expression of IL-2 and CD69 expression in T cells after TCR stimulation. The phosphorylation of ERK and translocation of NFAT were hampered in these cells, whereas the phosphorylation of proximal TCR signaling molecules such as ZAP70 and phospholipase Cγ was not affected by immobilized CEA. To determine the relevance of carcinoembryonic antigen-related cell adhesion molecule-1 and Src homology region 2 domain-containing phosphatase (SHP) molecules to CEA-mediated suppression, we tested the effect of the SHP inhibitor, NSC-87877, on CEA-mediated suppression of T cells; however, it did not reverse the effect of CEA. Collectively, these results indicate that CEA can function as a modulator of T-cell responses suggesting a novel mechanism of tumor evasion.
Collapse
Affiliation(s)
- Kyoo-A Lee
- Laboratory of Immunology, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Korea
| | | | | | | | | | | | | |
Collapse
|
31
|
Ortenberg R, Galore-Haskel G, Greenberg I, Zamlin B, Sapoznik S, Greenberg E, Barshack I, Avivi C, Feiler Y, Zan-Bar I, Besser MJ, Azizi E, Eitan F, Schachter J, Markel G. CEACAM1 promotes melanoma cell growth through Sox-2. Neoplasia 2014; 16:451-60. [PMID: 24931667 PMCID: PMC4198694 DOI: 10.1016/j.neo.2014.05.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The prognostic value of the carcinoembryonic antigen cell adhesion molecule 1 (CEACAM1) in melanoma was demonstrated more than a decade ago as superior to Breslow score. We have previously shown that intercellular homophilic CEACAM1 interactions protect melanoma cells from lymphocyte-mediated elimination. Here, we study the direct effects of CEACAM1 on melanoma cell biology. By employing tissue microarrays and low-passage primary cultures of metastatic melanoma, we show that CEACAM1 expression gradually increases from nevi to metastatic specimens, with a strong dominance of the CEACAM1-Long tail splice variant. Using experimental systems of CEACAM1 knockdown and overexpression of selective variants or truncation mutants, we prove that only the full-length long tail variant enhances melanoma cell proliferation in vitro and in vivo. This effect is not reversed with a CEACAM1-blocking antibody, suggesting that it is not mediated by intercellular homophilic interactions. Downstream, CEACAM1-Long increases the expression of Sox-2, which we show to be responsible for the CEACAM1-mediated enhanced proliferation. Furthermore, analysis of the CEACAM1 promoter reveals two single-nucleotide polymorphisms (SNPs) that significantly enhance the promoter's activity compared with the consensus nucleotides. Importantly, case-control genetic SNP analysis of 134 patients with melanoma and matched healthy donors show that patients with melanoma do not exhibit the Hardy-Weinberg balance and that homozygous SNP genotype enhances the hazard ratio to develop melanoma by 35%. These observations shed new mechanistic light on the role of CEACAM1 in melanoma, forming the basis for development of novel therapeutic and diagnostic technologies.
Collapse
Affiliation(s)
- Rona Ortenberg
- Ella Institute of Melanoma, Sheba Medical Center, Ramat-Gan, Israel; Department of Clinical Microbiology and Immunology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Gilli Galore-Haskel
- Ella Institute of Melanoma, Sheba Medical Center, Ramat-Gan, Israel; Department of Clinical Microbiology and Immunology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ilanit Greenberg
- Ella Institute of Melanoma, Sheba Medical Center, Ramat-Gan, Israel
| | - Bella Zamlin
- Ella Institute of Melanoma, Sheba Medical Center, Ramat-Gan, Israel; Department of Clinical Microbiology and Immunology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Sivan Sapoznik
- Ella Institute of Melanoma, Sheba Medical Center, Ramat-Gan, Israel
| | - Eyal Greenberg
- Ella Institute of Melanoma, Sheba Medical Center, Ramat-Gan, Israel; Department of Clinical Microbiology and Immunology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Iris Barshack
- Institute of Pathology, Sheba Medical Center, Ramat-Gan 526260, Israel
| | - Camila Avivi
- Institute of Pathology, Sheba Medical Center, Ramat-Gan 526260, Israel
| | - Yulia Feiler
- Cancer Research Center, Sheba Medical Center, Ramat-Gan, Israel
| | - Israel Zan-Bar
- Department of Clinical Microbiology and Immunology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Michal J Besser
- Ella Institute of Melanoma, Sheba Medical Center, Ramat-Gan, Israel; Department of Clinical Microbiology and Immunology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ester Azizi
- Department of Dermatology, Sheba Medical Center, Ramat-Gan, Israel
| | - Friedman Eitan
- The Susanne-Levy Gertner Oncogenetics Unit, Danek Gertner Institute of Human Genetics, Ramat-Gan, Israel
| | - Jacob Schachter
- Ella Institute of Melanoma, Sheba Medical Center, Ramat-Gan, Israel
| | - Gal Markel
- Ella Institute of Melanoma, Sheba Medical Center, Ramat-Gan, Israel; Department of Clinical Microbiology and Immunology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; Talpiot Medical Leadership Program, Sheba Medical Center, Ramat-Gan, Israel.
| |
Collapse
|
32
|
Abstract
The insulin receptor (IR) is an important hub in insulin signaling and its activation is tightly regulated. Upon insulin stimulation, IR is activated through autophosphorylation, and consequently phosphorylates several insulin receptor substrate (IRS) proteins, including IRS1-6, Shc and Gab1. Certain adipokines have also been found to activate IR. On the contrary, PTP, Grb and SOCS proteins, which are responsible for the negative regulation of IR, are characterized as IR inhibitors. Additionally, many other proteins have been identified as IR substrates and participate in the insulin signaling pathway. To provide a more comprehensive understanding of the signals mediated through IR, we reviewed the upstream and downstream signal molecules of IR, summarized the positive and negative modulators of IR, and discussed the IR substrates and interacting adaptor proteins. We propose that the molecular events associated with IR should be integrated to obtain a better understanding of the insulin signaling pathway and diabetes.
Collapse
Affiliation(s)
- Yipeng Du
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | | |
Collapse
|
33
|
Beauchemin N, Arabzadeh A. Carcinoembryonic antigen-related cell adhesion molecules (CEACAMs) in cancer progression and metastasis. Cancer Metastasis Rev 2013; 32:643-71. [DOI: 10.1007/s10555-013-9444-6] [Citation(s) in RCA: 288] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
34
|
Abstract
The carcinoembryonic antigen (CEA) family comprises a large number of cellular surface molecules, the CEA-related cell adhesion molecules (CEACAMs), which belong to the Ig superfamily. CEACAMs exhibit a complex expression pattern in normal and malignant tissues. The majority of the CEACAMs are cellular adhesion molecules that are involved in a great variety of distinct cellular processes, for example in the integration of cellular responses through homo- and heterophilic adhesion and interaction with a broad selection of signal regulatory proteins, i.e., integrins or cytoskeletal components and tyrosine kinases. Moreover, expression of CEACAMs affects tumor growth, angiogenesis, cellular differentiation, immune responses, and they serve as receptors for commensal and pathogenic microbes. Recently, new insights into CEACAM structure and function became available, providing further elucidation of their kaleidoscopic functions.
Collapse
|
35
|
LeBlanc S, Arabzadeh A, Benlolo S, Breton V, Turbide C, Beauchemin N, Nouvion AL. CEACAM1 deficiency delays important wound healing processes. Wound Repair Regen 2012; 19:745-52. [PMID: 22092845 DOI: 10.1111/j.1524-475x.2011.00742.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cutaneous wound healing is a complex process that requires the coordination of many cell types to achieve proper tissue repair. Four major overlapping processes have been identified in wound healing: hemostasis, inflammation, reepithelialization and granulation tissue formation, and tissue remodeling. Carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1) is a glycoprotein expressed in epithelial, endothelial, lymphoid, and myeloid cells. Given its known roles in angiogenesis, cell migration, and immune functions, we hypothesized that CEACAM1 might also be involved in cutaneous wound healing and that a number of relevant CEACAM1-positive cell types might contribute to wound healing. To evaluate the role of CEACAM1 in these processes, 6-mm-diameter skin wounds were inflicted on Ceacam1(-/-) and wild-type mice. Herein, we demonstrate that CEACAM1 deletion indeed affects wound healing in three key ways. Infiltration of F4/80(+) macrophages was decreased in Ceacam1(-/-) wounds, altering inflammatory processes. Reepithelialization in Ceacam1(-/-) wounds was delayed. Furthermore, the vascular density of the granulation tissue in Ceacam1(-/-) wounds was significantly diminished. These results confirm CEACAM1's role as an important regulator of key processes in cutaneous wound healing, although whether this works via a specific cell type or alterations in the functioning of multiple processes remains to be determined.
Collapse
Affiliation(s)
- Sarah LeBlanc
- Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montreal, Quebec, Canada
| | | | | | | | | | | | | |
Collapse
|
36
|
Gupta S, Yan Y, Malhotra D, Liu J, Xie Z, Najjar SM, Shapiro JI. Ouabain and insulin induce sodium pump endocytosis in renal epithelium. Hypertension 2012; 59:665-72. [PMID: 22311908 DOI: 10.1161/hypertensionaha.111.176727] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cardiotonic steroids signaling through the basolateral sodium pump (Na/K-ATPase) have been shown to alter renal salt handling in intact animals. Because the relationship between renal salt handling and blood pressure is a key determinant of hypertension, and patients with insulin resistance are frequently hypertensive, we chose to examine whether there might be competition for resources necessary for receptor-mediated endocytosis. In LLC-PK1 cells, the Na/K-ATPase-α1 and carcinoembryonic antigen cell adhesion molecule 1, a plasma membrane protein that promotes receptor-mediated endocytosis, colocalized in the plasma membranes and translocated to the intracellular region in response to ouabain. Either ouabain or insulin alone caused accumulation of and carcinoembryonic antigen cell adhesion molecule, as well as insulin receptor-β, and epidermal growth factor receptor in early endosomes, but no synergy was demonstrable. Like ouabain, insulin also caused c-Src activation. When caveolin or Na/K-ATPase-α1 expression was knocked down with small interfering RNA, insulin but not ouabain induced carcinoembryonic antigen cell adhesion molecule 1, insulin receptor-β, and epidermal growth factor receptor endocytosis. To determine whether this might be relevant to salt handling in vivo, we examined salt loading in mice with null renal carcinoembryonic antigen cell adhesion molecule 2 expression. The null renal carcinoembryonic antigen cell adhesion molecule 2 animals demonstrated greater increases in blood pressure with increases in dietary salt than control animals. These data demonstrate that cardiotonic steroids and insulin compete for cellular endocytosis resources and suggest that, under conditions where circulating insulin concentrations are high, cardiotonic steroid-mediated natriuresis could be impaired.
Collapse
Affiliation(s)
- Shalini Gupta
- Department of Medicine, University of Toledo College of Medicine, Toledo, OH 43614-2598, USA
| | | | | | | | | | | | | |
Collapse
|
37
|
Vitamin D inhibits CEACAM1 to promote insulin/IGF-I receptor signaling without compromising anti-proliferative action. J Transl Med 2011; 91:147-56. [PMID: 20714323 DOI: 10.1038/labinvest.2010.144] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Population studies suggest putative links between vitamin D (VD)-deficiency and risk of cancer and diabetes. The insulin/IGF-I receptor represents a signaling target of the carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1) that is implicated in both diabetes and cancer, therefore we hypothesized that VD actions may be mediated through this adhesion molecule. In this study, we show that 1,25 vitamin D3 and its analogues EB1089 and KH1060 potently inhibit CEACAM1 expression in cancer cells. This effect was associated with significant reductions in mRNA and protein levels, resulting from transcriptional and posttranslational actions respectively. Insulin/IGF-I-mediated IRS-1 and Akt activation were enhanced by VD treatment. Similarly, CEACAM1 downregulation significantly upregulated the insulin and IGF-I receptors and mimicked the effect of VD-mediated enhanced insulin/IGF-I receptor signaling. Despite improved insulin/IGF-I signaling, the anti-proliferative actions of VD were preserved in the absence or presence of forced CEACAM1 expression. Forced CEACAM1, however, abrogated the anti-invasive actions of VD. Our findings highlight CEACAM1 as a target of VD action. The resulting inhibition of CEACAM1 has potentially beneficial effects on metabolic disorders without necessarily compromising the anticancer properties of this vitamin.
Collapse
|
38
|
Lobo EO, Zhang Z, Shively JE. Pivotal advance: CEACAM1 is a negative coreceptor for the B cell receptor and promotes CD19-mediated adhesion of B cells in a PI3K-dependent manner. J Leukoc Biol 2009; 86:205-18. [PMID: 19454653 DOI: 10.1189/jlb.0109037] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Upon antigen binding, the BCR transduces a signal culminating in proliferation or in AICD of the B cell. Coreceptor engagement and subsequent modification of the BCR signal pathway are mechanisms that guide the B cell to its appropriate fate. For example, in the absence of coreceptor engagement, anti-sIgM antibodies induce apoptosis in the human Daudi B cell lymphoma cell line. ITIM-bearing B cell coreceptors that potentially may act as negative coreceptors include FcRgammaIIb, CD22, CD72, and CEACAM1 (CD66a). Although the role of CEACAM1 as an inhibitory coreceptor in T cells has been established, its role in B cells is poorly defined. We show that anti-sIgM antibody and PI3K inhibitor LY294002-induced apoptosis are reduced significantly in CEACAM1 knock-down clones compared with WT Daudi cells and that anti-sIgM treatment induced CEACAM1 tyrosine phosphorylation and association with SHP-1 in WT cells. In contrast, treatment of WT Daudi cells with anti-CD19 antibodies does not induce apoptosis and has reduced tyrosine phosphorylation and SHP-1 recruitment to CEACAM1. Thus, similar to its function in T cells, CEACAM1 may act as an inhibitory B cell coreceptor, most likely through recruitment of SHP-1 and inhibition of a PI3K-promoted activation pathway. Activation of B cells by anti-sIgM or anti-CD19 antibodies also leads to cell aggregation that is promoted by CEACAM1, also in a PI3K-dependent manner.
Collapse
Affiliation(s)
- Elizabeth O Lobo
- Division of Immunology, Beckman Research Institute at City of Hope, Duarte, CA 91010, USA
| | | | | |
Collapse
|
39
|
Chen Z, Chen L, Qiao SW, Nagaishi T, Blumberg RS. Carcinoembryonic antigen-related cell adhesion molecule 1 inhibits proximal TCR signaling by targeting ZAP-70. THE JOURNAL OF IMMUNOLOGY 2008; 180:6085-93. [PMID: 18424730 DOI: 10.4049/jimmunol.180.9.6085] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The long cytoplasmic tail (CT) isoforms of carcinoembryonic Ag-related cell adhesion molecule 1 (CEACAM1) are expressed on activated human T cells and possess two ITIM motifs in the CT. These isoforms of CEACAM1 are inhibitory for T cell responses initiated by the TCR/CD3 complex with the inhibition dependent upon the ITIMs of CEACAM1 and Src homology 2 domain-containing phosphatase 1 (SHP-1). However, the mechanism by which this inhibition occurs in T cells is unknown. We demonstrate here that the Src family kinase, Lck, and the ability of CEACAM1 to bind homophilically are required for the ITIM phosphorylation of CEACAM1 that is a prerequisite for CEACAM1 association with SHP-1. We further show that CEACAM1 associates with and recruits SHP-1 to the TCR/CD3 complex leading to decreased phosphorylation of CD3-zeta and ZAP-70 and consequently decreased activation of the elements downstream of ZAP-70. This is physiologically relevant because extinction of SHP-1 expression or blockade of homophilic binding by CEACAM1 using a Fab that specifically recognizes the homophilic binding region of human CEACAM1 increases the cytolytic function initiated by the TCR/CD3 complex. These studies show that long CT isoforms of CEACAM1 orchestrate an inhibitory program that abrogates extremely proximal events downstream of the TCR/CD3 complex by focusing on the activation of ZAP-70.
Collapse
Affiliation(s)
- Zhangguo Chen
- Gastroenterology Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA
| | | | | | | | | |
Collapse
|
40
|
Gaur S, Shively JE, Yen Y, Gaur RK. Altered splicing of CEACAM1 in breast cancer: identification of regulatory sequences that control splicing of CEACAM1 into long or short cytoplasmic domain isoforms. Mol Cancer 2008; 7:46. [PMID: 18507857 PMCID: PMC2490704 DOI: 10.1186/1476-4598-7-46] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2008] [Accepted: 05/28/2008] [Indexed: 01/28/2023] Open
Abstract
Background Carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1), a cell adhesion molecule expressed in a variety of cell types is a putative tumor suppressor gene. Alternative splicing of CEACAM1 generates 11 different splice variants, which include 1–4 ectodomains with either short or long cytoplasmic domain generated by the exclusion (CEACAM1-S) or inclusion (CEACAM1-L) of exon 7. Studies in rodents indicate that optimal ratios of CEACAM1 splice variants are required to inhibit colonic tumor cell growth. Results We show that CEACAM1 is expressed in a tissue specific manner with significant differences in the ratios of its short (CEACAM1-S) and long (CEACAM1-L) cytoplasmic domain splice variants. Importantly, we find dramatic differences between the ratios of S:L isoforms in normal breast tissues versus breast cancer specimens, suggesting that altered splicing of CEACAM1 may play an important role in tumorogenesis. Furthermore, we have identified two regulatory cis-acting elements required for the alternative splicing of CEACAM1. Replacement of these regulatory elements by human β-globin exon sequences resulted in exon 7-skipped mRNA as the predominant product. Interestingly, while insertion of exon 7 in a β-globin reporter gene resulted in its skipping, exon 7 along with the flanking intron sequences recapitulated the alternative splicing of CEACAM1. Conclusion Our results indicate that a network of regulatory elements control the alternative splicing of CEACAM1. These findings may have important implications in therapeutic modalities of CEACAM1 linked human diseases.
Collapse
Affiliation(s)
- Shikha Gaur
- Division of Molecular Biology, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA.
| | | | | | | |
Collapse
|
41
|
Intestinal tumor progression is promoted by decreased apoptosis and dysregulated Wnt signaling in Ceacam1-/- mice. Oncogene 2008; 27:4943-53. [PMID: 18454175 DOI: 10.1038/onc.2008.136] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The carcinoembryonic antigen cell adhesion molecule 1 (CEACAM1) is downregulated in colonic and intestinal hyperplastic lesions as well as in other cancers, where it functions as a tumor suppressor. To investigate the functions of CEACAM1 in the normal intestine and in intestinal tumors, we generated a compound knockout mouse model and examined both Ceacam1(-/-) and Apc(1638N/+):Ceacam1(-/-) mice. Ceacam1(-/-) intestinal cells exhibited a significant decrease in apoptosis, with no change in proliferation or migration, however. Compound Apc(1638N/+):Ceacam1(-/-) mice demonstrated an increase in intestinal tumor multiplicity and tumor progression. Increases in intussusceptions and desmoid lesions were also observed. We have shown that CEACAM1-L associates with beta-catenin by co-immunoprecipitation and colocalization in CEACAM1-L-transfected CT26 and CT51 mouse colon carcinoma cells. Ceacam1(-/-) enterocytes displayed decreased glycogen synthase kinase 3-beta activity with corresponding nuclear localization of beta-catenin. Increased T-cell factor/Lef transcriptional activity was observed in CEACAM1-null CT51 colonic cells and in Caco2 colon cancer cells in which CEACAM1 was downregulated. A significant increased expression in c-Myc and cyclin D1 targets of the Wnt signaling pathway was also revealed in the Ceacam1(-/-) intestine. CEACAM1 therefore actively participates in Wnt signaling in intestinal cells and its downregulation in intestinal tissue contributes to malignancy by augmenting tumor multiplicity and progression.
Collapse
|
42
|
George R, Schuller AC, Harris R, Ladbury JE. A phosphorylation-dependent gating mechanism controls the SH2 domain interactions of the Shc adaptor protein. J Mol Biol 2007; 377:740-7. [PMID: 18279888 DOI: 10.1016/j.jmb.2007.12.040] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2007] [Revised: 12/18/2007] [Accepted: 12/19/2007] [Indexed: 11/26/2022]
Abstract
The Shc (Src homology collagen-like) adaptor protein plays a crucial role in linking stimulated receptors to mitogen-activated protein kinase activation through the formation of dynamic signalling complexes. Shc comprises an N-terminal phosphotyrosine binding (PTB) domain, a C-terminal Src homology 2 (SH2) domain and a central proline-rich collagen homology 1 domain. The latter domain contains three tyrosine residues that are known to become phosphorylated. We have expressed and purified the human p52Shc isoform and characterised its binding to different ligands. CD spectra revealed that some parts of the Shc protein are not fully folded, remaining largely unaffected by the binding of ligands. The PTB domain binds peptide and Ins-1,4,5-P(3) (but not Ins-1,3,5-P(3)) independently, suggesting two distinct sites of interaction. In the unphosphorylated Shc, the SH2 domain is non-functional. Ligand binding to the PTB domain does not affect this. However, phosphorylation of the three tyrosine residues promotes binding to the SH2 domain. Thus, Shc has an intrinsic phosphorylation-dependent gating mechanism where the SH2 domain adopts an open conformation only when tyrosine phosphorylation has occurred.
Collapse
Affiliation(s)
- Roger George
- Department of Biochemistry and Molecular Biology, University College London, Gower Street, London WC1E 6BT, UK
| | | | | | | |
Collapse
|
43
|
Muenzner P, Bachmann V, Kuespert K, Hauck CR. The CEACAM1 transmembrane domain, but not the cytoplasmic domain, directs internalization of human pathogens via membrane microdomains. Cell Microbiol 2007; 10:1074-92. [PMID: 18081725 DOI: 10.1111/j.1462-5822.2007.01106.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Several bacterial pathogens exploit carcinoembryonic antigen-related cell adhesion molecules (CEACAMs) to promote attachment and uptake into eukaryotic host cells. The widely expressed isoform CEACAM1 is involved in cell-cell adhesion, regulation of cell proliferation, insulin homeostasis, and neo-angiogenesis, processes that depend on the cytoplasmic domain of CEACAM1. By analysing the molecular requirements for CEACAM1-mediated internalization of bacteria, we surprisingly find that the CEACAM1 cytoplasmic domain is completely obsolete for bacterial uptake. Accordingly, CEACAM1-4L as well as a CEACAM1 mutant with a complete deletion of the cytoplasmic domain (CEACAM1 DeltaCT) promote equivalent internalization of several human pathogens. CEACAM1-4L- and CEACAM1 DeltaCT-mediated uptake proceeds in the presence of inhibitors of actin microfilament dynamics, which is in contrast to CEACAM3-mediated internalization. Bacteria-engaged CEACAM1-4L and CEACAM1 DeltaCT, but not CEACAM3, localize to a gangliosid GM1- and GPI-anchored protein-containing portion of the plasma membrane. In addition, interference with cholesterol-rich membrane microdomains severely blocks bacterial uptake via CEACAM1-4L and CEACAM1 DeltaCT, but not CEACAM3. Similar to GPI-anchored CEACAM6, both CEACAM1-4L as well as CEACAM1 DeltaCT partition into a low-density, Triton-insoluble membrane fraction upon receptor clustering, whereas CEACAM3 is not detected in this fraction. Bacterial uptake by truncated CEACAM1 or chimeric CEACAM1/CEACAM3 molecules reveals that the transmembrane domain of CEACAM1 is responsible for its association with membrane microdomains. Together, these data argue for a functional role of lipid rafts in CEACAM1-mediated endocytosis that is promoted by the transmembrane domain of the receptor and that might be relevant for CEACAM1 function in physiologic settings.
Collapse
Affiliation(s)
- Petra Muenzner
- Lehrstuhl für Zellbiologie, Universität Konstanz, Postfach X908, D-78457 Konstanz, Germany
| | | | | | | |
Collapse
|
44
|
Rougeaux C, Berger CN, Servin AL. hCEACAM1-4L downregulates hDAF-associated signalling after being recognized by the Dr adhesin of diffusely adhering Escherichia coli. Cell Microbiol 2007; 10:632-54. [PMID: 17979980 DOI: 10.1111/j.1462-5822.2007.01072.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Human decay accelerating factor (hDAF, CD55) and members of the carcinoembryonic-antigen-related cell-adhesion molecules (hCEACAMs) family are recognized as receptors by Gram-negative, diffusely adhering Escherichia coli (DAEC) strains expressing Afa/Dr adhesins. We report here that hCEACAM1-4L has a key function in downregulating the protein tyrosine Src kinase associated with hDAF signalling. After infecting HeLa epithelial cells stably transfected with hCEACAM1-4L cDNA with Dr adhesin-positive E. coli, the amount of the pTyr(416)-active form of the Src protein decreased, whereas that of the pTyr(527)-inactive form of Src protein did not increase. This downregulation of the Src protein implies that part of the hCEACAM1-4L protein had been translocated into lipid rafts, the protein was phosphorylated at Tyr residues in the cytoplasmic domain, and it was physically associated with the protein tyrosine phosphatase, SHP-2. Finally, we found that the hCEACAM1-4L-associated SHP-2 was not phosphorylated and lacked phosphatase activity, suggesting that the downregulation of Src protein associated with hDAF signalling results from the absence of dephosphorylation of the pTyr(527)-inactive form necessary for Src kinase activation.
Collapse
Affiliation(s)
- Clémence Rougeaux
- INSERM, UMR756 Signalisation et Physiopathologie des Cellules Epithéliales, Châtenay-Malabry, France, and Université Paris-Sud XI, Faculté de Pharmacie, Châtenay-Malabry, France
| | | | | |
Collapse
|
45
|
Deng Y, Xu H, Riedel H. PSM/SH2-B distributes selected mitogenic receptor signals to distinct components in the PI3-kinase and MAP kinase signaling pathways. J Cell Biochem 2007; 100:557-73. [PMID: 16960871 DOI: 10.1002/jcb.21030] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The Pro-rich, PH, and SH2 domain containing mitogenic signaling adapter PSM/SH2-B has been implicated as a cellular partner of various mitogenic receptor tyrosine kinases and related signaling mechanisms. Here, we report in a direct comparison of three peptide hormones, that PSM participates in the assembly of distinct mitogenic signaling complexes in response to insulin or IGF-I when compared to PDGF in cultured normal fibroblasts. The complex formed in response to insulin or IGF-I involves the respective peptide hormone receptor and presumably the established components leading to MAP kinase activation. However, our data suggest an alternative link from the PDGF receptor via PSM directly to MEK1/2 and consequently also to p44/42 activation, possibly through a scaffold protein. At least two PSM domains participate, the SH2 domain anticipated to link PSM to the respective receptor and the Pro-rich region in an association with an unidentified downstream component resulting in direct MEK1/2 and p44/42 regulation. The PDGF receptor signaling complex formed in response to PDGF involves PI 3-kinase in addition to the same components and interactions as described for insulin or IGF-I. PSM associates with PI 3-kinase via p85 and in addition the PSM PH domain participates in the regulation of PI 3-kinase activity, presumably through membrane interaction. In contrast, the PSM Pro-rich region appears to participate only in the MAP kinase signal. Both pathways contribute to the mitogenic response as shown by cell proliferation, survival, and focus formation. PSM regulates p38 MAP kinase activity in a pathway unrelated to the mitogenic response.
Collapse
Affiliation(s)
- Youping Deng
- Department of Biological Sciences, The University of Southern Mississippi, Hattiesburg, MS 39406, USA
| | | | | |
Collapse
|
46
|
Kuespert K, Pils S, Hauck CR. CEACAMs: their role in physiology and pathophysiology. Curr Opin Cell Biol 2006; 18:565-71. [PMID: 16919437 PMCID: PMC7127089 DOI: 10.1016/j.ceb.2006.08.008] [Citation(s) in RCA: 272] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2006] [Accepted: 08/03/2006] [Indexed: 12/24/2022]
Abstract
Carcinoembryonic antigen-related cell adhesion molecules (CEACAMs) belong to a group of mammalian immunoglobulin-related glycoproteins. They are involved in cell–cell recognition and modulate cellular processes that range from the shaping of tissue architecture and neovascularization to the regulation of insulin homeostasis and T-cell proliferation. CEACAMs have also been identified as receptors for host-specific viruses and bacteria in mice and humans, respectively, making these proteins an interesting example of pathogen–host co-evolution. Forward and reverse genetics in the mouse now provide powerful novel models to elucidate the action of CEACAM family members in vivo.
Collapse
|
47
|
Hauck CR, Agerer F, Muenzner P, Schmitter T. Cellular adhesion molecules as targets for bacterial infection. Eur J Cell Biol 2006; 85:235-42. [PMID: 16546567 DOI: 10.1016/j.ejcb.2005.08.002] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
A large number of bacterial pathogens targets cell adhesion molecules to establish an intimate contact with host cells and tissues. Members of the integrin, cadherin and immunoglobulin-related cell adhesion molecule (IgCAM) families are frequently recognized by specific bacterial surface proteins. Binding can trigger bacterial internalization following cytoskeletal rearrangements that are initiated upon receptor clustering. Moreover, signals emanating from the occupied receptors can result in cellular responses such as gene expression events that influence the phenotype of the infected cell. This review will address recent advances in our understanding of bacterial engagement of cellular adhesion molecules by discussing the binding of integrins by Staphylococcus aureus as well as the exploitation of IgCAMs by pathogenic Neisseria species.
Collapse
Affiliation(s)
- Christof R Hauck
- Zentrum für Infektionsforschung, Universität Würzburg, Röntgenring 11, D-97070 Würzburg, Germany.
| | | | | | | |
Collapse
|
48
|
|
49
|
Najjar SM, Yang Y, Fernström MA, Lee SJ, Deangelis AM, Rjaily GAA, Al-Share QY, Dai T, Miller TA, Ratnam S, Ruch RJ, Smith S, Lin SH, Beauchemin N, Oyarce AM. Insulin acutely decreases hepatic fatty acid synthase activity. Cell Metab 2005; 2:43-53. [PMID: 16054098 DOI: 10.1016/j.cmet.2005.06.001] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2004] [Revised: 04/06/2005] [Accepted: 06/06/2005] [Indexed: 10/25/2022]
Abstract
Insulin is viewed as a positive regulator of fatty acid synthesis by increasing fatty acid synthase (FAS) mRNA transcription. We uncover a new mechanism by which insulin acutely reduces hepatic FAS activity by inducing phosphorylation of the carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1) and its interaction with FAS. Ceacam1 null mice (Cc1(-/-)) show loss of insulin's ability to acutely decrease hepatic FAS activity. Moreover, adenoviral delivery of wild-type, but not the phosphorylation-defective Ceacam1 mutant, restores the acute effect of insulin on FAS activity in Cc1(-/-) primary hepatocytes. Failure of insulin to acutely reduce hepatic FAS activity in hyperinsulinemic mice, including L-SACC1 transgenics with liver inactivation of CEACAM1, and Ob/Ob obese mice, suggests that the acute effect of insulin on FAS activity depends on the prior insulinemic state. We propose that this mechanism acts to reduce hepatic lipogenesis incurred by insulin pulses during refeeding.
Collapse
Affiliation(s)
- Sonia M Najjar
- Department of Pharmacology, Cardiovascular Biology and Metabolic Diseases, The Medical University of Ohio, 3035 Arlington Avenue, HSci Building, Room 270, Toledo, OH 43614, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Kirshner J, Hardy J, Wilczynski S, Shively JE. Cell-cell adhesion molecule CEACAM1 is expressed in normal breast and milk and associates with beta1 integrin in a 3D model of morphogenesis. J Mol Histol 2005; 35:287-99. [PMID: 15339048 PMCID: PMC7087591 DOI: 10.1023/b:hijo.0000032360.01976.81] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
CEA cell adhesion molecule-1 (CEACAM1) is a cell–cell adhesion molecule that, paradoxically, is expressed in an apical location in normal breast epithelium. Strong lumenal membrane staining is observed in 100% of normal glands (11/11), low in atypical hyperplasia (2/6), high in cribiform ductal carcinoma in situ (DCIS) (8/8), but low in other types of DCIS (2/15). Although most invasive ductal carcinomas express CEACAM1 (21/26), the staining pattern tends to be weak and cytoplasmic in tumours with minimal lumena formation (grades 2–3), while there is membrane staining in well-differentiated tumours (grade 1). The 'normal' breast epithelial line MCF10F forms acini with lumena in Matrigel with apical membrane expression of CEACAM1. MCF7 cells that do not express CEACAM1 and fail to form lumena in Matrigel, revert to a lumen forming phenotype when transfected with the CEACAM1-4S but not the -4L isoform. CEACAM1 directly associates with and down-regulates the expression of β1-integrin. Immuno-electron microscopy reveals numerous vesicles coated with CEACAM1 within the lumena, and as predicted by this finding, CEACAM1 is found in the lipid fraction of breast milk. Thus, CEACAM1 is a critical molecule in mammary morphogenesis and may play a role in the absorption of the lipid vesicles of milk in the infant intestinal tract.
Collapse
Affiliation(s)
- Julia Kirshner
- Graduate School of the City of Hope Land Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
| | | | | | | |
Collapse
|