1
|
Shahmoradi Ghahe S, Drabikowski K, Stasiak M, Topf U. Identification of a Non-canonical Function of Prefoldin Subunit 5 in Proteasome Assembly. J Mol Biol 2024; 436:168838. [PMID: 39490918 DOI: 10.1016/j.jmb.2024.168838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 10/22/2024] [Accepted: 10/23/2024] [Indexed: 11/05/2024]
Abstract
The prefoldin complex is a heterohexameric, evolutionarily conserved co-chaperone that assists in folding of polypeptides downstream of the protein translation machinery. Loss of prefoldin function leads to impaired solubility of cellular proteins. The degradation of proteins by the proteasome is an integral part of protein homeostasis. Failure of regulated protein degradation can lead to the accumulation of misfolded and defective proteins. We show that prefoldin subunit 5 is required for proteasome activity by contributing to the assembly of the 26S proteasome. In particular, we found that absence of the prefoldin subunit 5 impairs formation of the Rpt ring subcomplex of the proteasome. Concomitant deletion of PFD5 and HSM3, a chaperone for assembly of the ATPase subunits comprising the Rpt ring, exacerbates this effect, suggesting a synergistic relationship between the two factors in proteasome assembly. Thus, our findings reveal a regulatory mechanism wherein prefoldin subunit 5 plays a crucial role in maintaining proteasome integrity, thereby influencing the degradation of proteins.
Collapse
Affiliation(s)
- Somayeh Shahmoradi Ghahe
- Laboratory of Molecular Basis of Aging and Rejuvenation, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland.
| | - Krzysztof Drabikowski
- Laboratory of Biological Chemistry of Metal Ions, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Monika Stasiak
- Laboratory of Molecular Basis of Aging and Rejuvenation, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Ulrike Topf
- Laboratory of Molecular Basis of Aging and Rejuvenation, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland.
| |
Collapse
|
2
|
Wang J, Kjellgren A, DeMartino GN. Differential Interactions of the Proteasome Inhibitor PI31 with Constitutive and Immuno-20S Proteasomes. Biochemistry 2024; 63:1000-1015. [PMID: 38577872 DOI: 10.1021/acs.biochem.3c00707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
PI31 (Proteasome Inhibitor of 31,000 Da) is a 20S proteasome binding protein originally identified as an in vitro inhibitor of 20S proteasome proteolytic activity. Recently reported cryo-electron microscopy structures of 20S-PI31 complexes have revealed that the natively disordered proline-rich C-terminus of PI31 enters the central chamber in the interior of the 20S proteasome and interacts directly with the proteasome's multiple catalytic threonine residues in a manner predicted to inhibit their enzymatic function while evading its own proteolysis. Higher eukaryotes express an alternative form of the 20S proteasome (termed "immuno-proteasome") that features genetically and functionally distinct catalytic subunits. The effect of PI31 on immuno-proteasome function is unknown. We examine the relative inhibitory effects of PI31 on purified constitutive (20Sc) and immuno-(20Si) 20S proteasomes in vitro and show that PI31 inhibits 20Si hydrolytic activity to a significantly lesser degree than that of 20Sc. Unlike 20Sc, 20Si hydrolyzes the carboxyl-terminus of PI31 and this effect contributes to the reduced inhibitory activity of PI31 toward 20Si. Conversely, loss of 20Sc inhibition by PI31 point mutants leads to PI31 degradation by 20Sc. These results demonstrate unexpected differential interactions of PI31 with 20Sc and 20Si and document their functional consequences.
Collapse
Affiliation(s)
- Jason Wang
- Department of Physiology, UT Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, Texas 75390-9040, United States
| | - Abbey Kjellgren
- Department of Physiology, UT Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, Texas 75390-9040, United States
| | - George N DeMartino
- Department of Physiology, UT Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, Texas 75390-9040, United States
| |
Collapse
|
3
|
Betancourt D, Lawal T, Tomko RJ. Wiggle and Shake: Managing and Exploiting Conformational Dynamics during Proteasome Biogenesis. Biomolecules 2023; 13:1223. [PMID: 37627288 PMCID: PMC10452565 DOI: 10.3390/biom13081223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/01/2023] [Accepted: 08/03/2023] [Indexed: 08/27/2023] Open
Abstract
The 26S proteasome is the largest and most complicated protease known, and changes to proteasome assembly or function contribute to numerous human diseases. Assembly of the 26S proteasome from its ~66 individual polypeptide subunits is a highly orchestrated process requiring the concerted actions of both intrinsic elements of proteasome subunits, as well as assistance by extrinsic, dedicated proteasome assembly chaperones. With the advent of near-atomic resolution cryo-electron microscopy, it has become evident that the proteasome is a highly dynamic machine, undergoing numerous conformational changes in response to ligand binding and during the proteolytic cycle. In contrast, an appreciation of the role of conformational dynamics during the biogenesis of the proteasome has only recently begun to emerge. Herein, we review our current knowledge of proteasome assembly, with a particular focus on how conformational dynamics guide particular proteasome biogenesis events. Furthermore, we highlight key emerging questions in this rapidly expanding area.
Collapse
Affiliation(s)
| | | | - Robert J. Tomko
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL 32306, USA; (D.B.); (T.L.)
| |
Collapse
|
4
|
Wu DG, Wang YN, Zhou Y, Gao H, Zhao B. Inhibition of the Proteasome Regulator PA28 Aggravates Oxidized Protein Overload in the Diabetic Rat Brain. Cell Mol Neurobiol 2023; 43:2857-2869. [PMID: 36715894 PMCID: PMC11410126 DOI: 10.1007/s10571-023-01322-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 01/19/2023] [Indexed: 01/31/2023]
Abstract
Oxidized protein overloading caused by diabetes is one accelerating pathological pathway in diabetic encephalopathy development. To determine whether the PA28-regulated function of the proteasome plays a role in diabetes-induced oxidative damaged protein degradation, brain PA28α and PA28β interference experiments were performed in a high-fat diet (HFD) and streptozotocin (STZ)-induced rat model. The present results showed that proteasome activity was changed in the brains of diabetic rats, but the constitutive subunits were not. In vivo PA28α and PA28β inhibition via adeno-associated virus (AAV) shRNA infection successfully decreased PA28 protein levels and further exacerbated oxidized proteins load by regulating proteasome catalytic activity. These findings suggest that the proteasome plays a role in the elimination of oxidized proteins and that PA28 is functionally involved in the regulation of proteasome activity in vivo. This study suggests that abnormal protein turbulence occurring in the diabetic brain could be explained by the proteasome-mediated degradation pathway. Changes in proteasome activity regulator PA28 could be a reason to induce oxidative aggregation in diabetic brain. Proteasome regulator PA28 inhibition in vivo by AAV vector injection could aggravate oxidized proteins abundance in brain of HFD-STZ diabetic rat model.
Collapse
Affiliation(s)
- Dong-Gui Wu
- School of Basic Medicine Sciences, Dali University, 6th Snowman Road, Dali, 671000, Yunnan, People's Republic of China
- Zhuhai People's Hospital, 79th Kangning Road, Zhuhai, 519000, Guangdong, People's Republic of China
| | - Yu-Na Wang
- School of Basic Medicine Sciences, Dali University, 6th Snowman Road, Dali, 671000, Yunnan, People's Republic of China
| | - Ye Zhou
- School of Basic Medicine Sciences, Dali University, 6th Snowman Road, Dali, 671000, Yunnan, People's Republic of China
| | - Han Gao
- School of Basic Medicine Sciences, Dali University, 6th Snowman Road, Dali, 671000, Yunnan, People's Republic of China
| | - Bei Zhao
- School of Basic Medicine Sciences, Dali University, 6th Snowman Road, Dali, 671000, Yunnan, People's Republic of China.
- Li Yun-Qing Expert Workstation of Yunnan Province (No. 202005AF150014) based in Dali University, 6th Snowman Road, Dali, 671000, Yunnan, People's Republic of China.
| |
Collapse
|
5
|
Sekaran S, Park S. The penultimate step of proteasomal ATPase assembly is mediated by a switch dependent on the chaperone Nas2. J Biol Chem 2023; 299:102870. [PMID: 36621624 PMCID: PMC9922823 DOI: 10.1016/j.jbc.2023.102870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 12/21/2022] [Accepted: 12/28/2022] [Indexed: 01/07/2023] Open
Abstract
The proteasome holoenzyme is a complex molecular machine that degrades most proteins. In the proteasome holoenzyme, six distinct ATPase subunits (Rpt1 through Rpt6) enable protein degradation by injecting protein substrates into it. Individual Rpt subunits assemble into a heterohexameric "Rpt ring" in a stepwise manner, by binding to their cognate chaperones. Completion of the heterohexameric Rpt ring correlates with release of a specific chaperone, Nas2; however, it is unclear whether and how this event may ensure proper Rpt ring assembly. Here, we examined the action of Nas2 by capturing the poorly characterized penultimate step of heterohexameric Rpt ring assembly. For this, we used a heterologous Escherichia coli system coexpressing all Rpt subunits and assembly chaperones as well as Saccharomyces cerevisiae to track Nas2 actions during endogenous Rpt ring assembly. We show that Nas2 uses steric hindrance to block premature progression of the penultimate step into the final step of Rpt ring assembly. Importantly, Nas2 can activate an assembly checkpoint via its steric activity, when the last ATPase subunit, Rpt1, cannot be added in a timely manner. This checkpoint can be relieved via Nas2 release, when Nas2 recognizes proper addition of Rpt1 to one side of its cognate Rpt5, and ATP hydrolysis by Rpt4 on the other side of Rpt5, allowing completion of Rpt ring assembly. Our findings reveal dual criteria for Nas2 release, as a mechanism to ensure both the composition and functional competence of a newly assembled proteasomal ATPase, to generate the proteasome holoenzyme.
Collapse
Affiliation(s)
- Suganya Sekaran
- Department of Molecular Cellular and Developmental Biology, University of Colorado Boulder, Boulder, Colorado, USA
| | - Soyeon Park
- Department of Molecular Cellular and Developmental Biology, University of Colorado Boulder, Boulder, Colorado, USA.
| |
Collapse
|
6
|
Nahar A, Sokolova V, Sekaran S, Orth JD, Park S. Assembly checkpoint of the proteasome regulatory particle is activated by coordinated actions of proteasomal ATPase chaperones. Cell Rep 2022; 39:110918. [PMID: 35675778 PMCID: PMC9214829 DOI: 10.1016/j.celrep.2022.110918] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 03/14/2022] [Accepted: 05/12/2022] [Indexed: 11/26/2022] Open
Abstract
The proteasome holoenzyme regulates the cellular proteome via degrading most proteins. In its 19-subunit regulatory particle (RP), a heterohexameric ATPase enables protein degradation by injecting protein substrates into the core peptidase. RP assembly utilizes "checkpoints," where multiple dedicated chaperones bind to specific ATPase subunits and control the addition of other subunits. Here, we find that the RP assembly checkpoint relies on two common features of the chaperones. Individual chaperones can distinguish an RP, in which their cognate ATPase persists in the ATP-bound state. Chaperones then together modulate ATPase activity to facilitate RP subunit rearrangements for switching to an active, substrate-processing state in the resulting proteasome holoenzyme. Thus, chaperones may sense ATP binding and hydrolysis as a readout for the quality of the RP complex to generate a functional proteasome holoenzyme. Our findings provide a basis to potentially exploit the assembly checkpoints in situations with known deregulation of proteasomal ATPase chaperones.
Collapse
Affiliation(s)
- Asrafun Nahar
- Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, 1945 Colorado Avenue, Boulder, CO 80309, USA
| | - Vladyslava Sokolova
- Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, 1945 Colorado Avenue, Boulder, CO 80309, USA
| | - Suganya Sekaran
- Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, 1945 Colorado Avenue, Boulder, CO 80309, USA
| | - James D Orth
- Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, 1945 Colorado Avenue, Boulder, CO 80309, USA
| | - Soyeon Park
- Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, 1945 Colorado Avenue, Boulder, CO 80309, USA.
| |
Collapse
|
7
|
Abstract
The 26S proteasome is the most complex ATP-dependent protease machinery, of ~2.5 MDa mass, ubiquitously found in all eukaryotes. It selectively degrades ubiquitin-conjugated proteins and plays fundamentally indispensable roles in regulating almost all major aspects of cellular activities. To serve as the sole terminal "processor" for myriad ubiquitylation pathways, the proteasome evolved exceptional adaptability in dynamically organizing a large network of proteins, including ubiquitin receptors, shuttle factors, deubiquitinases, AAA-ATPase unfoldases, and ubiquitin ligases, to enable substrate selectivity and processing efficiency and to achieve regulation precision of a vast diversity of substrates. The inner working of the 26S proteasome is among the most sophisticated, enigmatic mechanisms of enzyme machinery in eukaryotic cells. Recent breakthroughs in three-dimensional atomic-level visualization of the 26S proteasome dynamics during polyubiquitylated substrate degradation elucidated an extensively detailed picture of its functional mechanisms, owing to progressive methodological advances associated with cryogenic electron microscopy (cryo-EM). Multiple sites of ubiquitin binding in the proteasome revealed a canonical mode of ubiquitin-dependent substrate engagement. The proteasome conformation in the act of substrate deubiquitylation provided insights into how the deubiquitylating activity of RPN11 is enhanced in the holoenzyme and is coupled to substrate translocation. Intriguingly, three principal modes of coordinated ATP hydrolysis in the heterohexameric AAA-ATPase motor were discovered to regulate intermediate functional steps of the proteasome, including ubiquitin-substrate engagement, deubiquitylation, initiation of substrate translocation and processive substrate degradation. The atomic dissection of the innermost working of the 26S proteasome opens up a new era in our understanding of the ubiquitin-proteasome system and has far-reaching implications in health and disease.
Collapse
Affiliation(s)
- Youdong Mao
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, 02215, Massachusetts, USA. .,School of Physics, Center for Quantitative Biology, Peking University, Beijing, 100871, China.
| |
Collapse
|
8
|
Nahar A, Fu X, Polovin G, Orth JD, Park S. Two alternative mechanisms regulate the onset of chaperone-mediated assembly of the proteasomal ATPases. J Biol Chem 2019; 294:6562-6577. [PMID: 30814255 DOI: 10.1074/jbc.ra118.006298] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 01/23/2019] [Indexed: 01/03/2023] Open
Abstract
The proteasome holoenzyme is a molecular machine that degrades most proteins in eukaryotes. In the holoenzyme, its heterohexameric ATPase injects protein substrates into the proteolytic core particle, where degradation occurs. The heterohexameric ATPase, referred to as 'Rpt ring', assembles through six ATPase subunits (Rpt1-Rpt6) individually binding to specific chaperones (Rpn14, Nas6, Nas2, and Hsm3). Here, our findings suggest that the onset of Rpt ring assembly can be regulated by two alternative mechanisms. Excess Rpt subunits relative to their chaperones are sequestered into multiple puncta specifically during early-stage Rpt ring assembly. Sequestration occurs during stressed conditions, for example heat, which transcriptionally induce Rpt subunits. When the free Rpt pool is limited experimentally, Rpt subunits are competent for proteasome assembly even without their cognate chaperones. These data suggest that sequestration may regulate amounts of individual Rpt subunits relative to their chaperones, allowing for proper onset of Rpt ring assembly. Indeed, Rpt subunits in the puncta can later resume their assembly into the proteasome. Intriguingly, when proteasome assembly resumes in stressed cells or is ongoing in unstressed cells, excess Rpt subunits are recognized by an alternative mechanism-degradation by the proteasome holoenzyme itself. Rpt subunits undergo proteasome assembly until the holoenzyme complex is generated at a sufficient level. The fully-formed holoenzyme can then degrade any remaining excess Rpt subunits, thereby regulating its own Rpt ring assembly. These two alternative mechanisms, degradation and sequestration of Rpt subunits, may help control the onset of chaperone-mediated Rpt ring assembly, thereby promoting proper proteasome holoenzyme formation.
Collapse
Affiliation(s)
- Asrafun Nahar
- From the Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, Colorado 80309
| | - Xinyi Fu
- From the Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, Colorado 80309
| | - George Polovin
- From the Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, Colorado 80309
| | - James D Orth
- From the Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, Colorado 80309
| | - Soyeon Park
- From the Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, Colorado 80309
| |
Collapse
|
9
|
Lu Y, Wu J, Dong Y, Chen S, Sun S, Ma YB, Ouyang Q, Finley D, Kirschner MW, Mao Y. Conformational Landscape of the p28-Bound Human Proteasome Regulatory Particle. Mol Cell 2017; 67:322-333.e6. [PMID: 28689658 PMCID: PMC5580496 DOI: 10.1016/j.molcel.2017.06.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 04/14/2017] [Accepted: 06/07/2017] [Indexed: 10/19/2022]
Abstract
The proteasome holoenzyme is activated by its regulatory particle (RP) consisting of two subcomplexes, the lid and the base. A key event in base assembly is the formation of a heterohexameric ring of AAA-ATPases, which is guided by at least four RP assembly chaperones in mammals: PAAF1, p28/gankyrin, p27/PSMD9, and S5b. Using cryogenic electron microscopy, we analyzed the non-AAA structure of the p28-bound human RP at 4.5 Å resolution and determined seven distinct conformations of the Rpn1-p28-AAA subcomplex within the p28-bound RP at subnanometer resolutions. Remarkably, the p28-bound AAA ring does not form a channel in the free RP and spontaneously samples multiple "open" and "closed" topologies at the Rpt2-Rpt6 and Rpt3-Rpt4 interfaces. Our analysis suggests that p28 assists the proteolytic core particle to select a specific conformation of the ATPase ring for RP engagement and is released in a shoehorn-like fashion in the last step of the chaperone-mediated proteasome assembly.
Collapse
Affiliation(s)
- Ying Lu
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Jiayi Wu
- State Key Laboratory for Artificial Microstructures and Mesoscopic Physics, Institute of Condensed Matter Physics, School of Physics, Center for Quantitative Biology, Peking University, Beijing 100871, China
| | - Yuanchen Dong
- Intel Parallel Computing Center for Structural Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Shuobing Chen
- State Key Laboratory for Artificial Microstructures and Mesoscopic Physics, Institute of Condensed Matter Physics, School of Physics, Center for Quantitative Biology, Peking University, Beijing 100871, China
| | - Shuangwu Sun
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Yong-Bei Ma
- State Key Laboratory for Artificial Microstructures and Mesoscopic Physics, Institute of Condensed Matter Physics, School of Physics, Center for Quantitative Biology, Peking University, Beijing 100871, China
| | - Qi Ouyang
- State Key Laboratory for Artificial Microstructures and Mesoscopic Physics, Institute of Condensed Matter Physics, School of Physics, Center for Quantitative Biology, Peking University, Beijing 100871, China; Peking-Tsinghua Joint Center for Life Science, Peking University, Beijing 100871, China
| | - Daniel Finley
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Marc W Kirschner
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA.
| | - Youdong Mao
- State Key Laboratory for Artificial Microstructures and Mesoscopic Physics, Institute of Condensed Matter Physics, School of Physics, Center for Quantitative Biology, Peking University, Beijing 100871, China; Intel Parallel Computing Center for Structural Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
10
|
Budenholzer L, Cheng CL, Li Y, Hochstrasser M. Proteasome Structure and Assembly. J Mol Biol 2017; 429:3500-3524. [PMID: 28583440 DOI: 10.1016/j.jmb.2017.05.027] [Citation(s) in RCA: 264] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 05/22/2017] [Accepted: 05/30/2017] [Indexed: 10/19/2022]
Abstract
The eukaryotic 26S proteasome is a large multisubunit complex that degrades the majority of proteins in the cell under normal conditions. The 26S proteasome can be divided into two subcomplexes: the 19S regulatory particle and the 20S core particle. Most substrates are first covalently modified by ubiquitin, which then directs them to the proteasome. The function of the regulatory particle is to recognize, unfold, deubiquitylate, and translocate substrates into the core particle, which contains the proteolytic sites of the proteasome. Given the abundance and subunit complexity of the proteasome, the assembly of this ~2.5MDa complex must be carefully orchestrated to ensure its correct formation. In recent years, significant progress has been made in the understanding of proteasome assembly, structure, and function. Technical advances in cryo-electron microscopy have resulted in a series of atomic cryo-electron microscopy structures of both human and yeast 26S proteasomes. These structures have illuminated new intricacies and dynamics of the proteasome. In this review, we focus on the mechanisms of proteasome assembly, particularly in light of recent structural information.
Collapse
Affiliation(s)
- Lauren Budenholzer
- Department of Molecular Biophysics & Biochemistry, Yale University, 266 Whitney Avenue, New Haven, CT 06520, USA
| | - Chin Leng Cheng
- Department of Molecular Biophysics & Biochemistry, Yale University, 266 Whitney Avenue, New Haven, CT 06520, USA
| | - Yanjie Li
- Department of Molecular Biophysics & Biochemistry, Yale University, 266 Whitney Avenue, New Haven, CT 06520, USA
| | - Mark Hochstrasser
- Department of Molecular Biophysics & Biochemistry, Yale University, 266 Whitney Avenue, New Haven, CT 06520, USA.
| |
Collapse
|
11
|
Snoberger A, Anderson RT, Smith DM. The Proteasomal ATPases Use a Slow but Highly Processive Strategy to Unfold Proteins. Front Mol Biosci 2017; 4:18. [PMID: 28421184 PMCID: PMC5378721 DOI: 10.3389/fmolb.2017.00018] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 03/16/2017] [Indexed: 01/23/2023] Open
Abstract
All domains of life have ATP-dependent compartmentalized proteases that sequester their peptidase sites on their interior. ATPase complexes will often associate with these compartmentalized proteases in order to unfold and inject substrates into the protease for degradation. Significant effort has been put into understanding how ATP hydrolysis is used to apply force to proteins and cause them to unfold. The unfolding kinetics of the bacterial ATPase, ClpX, have been shown to resemble a fast motor that traps unfolded intermediates as a strategy to unfold proteins. In the present study, we sought to determine if the proteasomal ATPases from eukaryotes and archaea exhibit similar unfolding kinetics. We found that the proteasomal ATPases appear to use a different kinetic strategy for protein unfolding, behaving as a slower but more processive and efficient translocation motor, particularly when encountering a folded domain. We expect that these dissimilarities are due to differences in the ATP binding/exchange cycle, the presence of a trans-arginine finger, or the presence of a threading ring (i.e., the OB domain), which may be used as a rigid platform to pull folded domains against. We speculate that these differences may have evolved due to the differing client pools these machines are expected to encounter.
Collapse
Affiliation(s)
- Aaron Snoberger
- Department of Biochemistry, West Virginia University School of MedicineMorgantown, WV, USA
| | - Raymond T Anderson
- Department of Biochemistry, West Virginia University School of MedicineMorgantown, WV, USA
| | - David M Smith
- Department of Biochemistry, West Virginia University School of MedicineMorgantown, WV, USA
| |
Collapse
|
12
|
Howell LA, Tomko RJ, Kusmierczyk AR. Putting it all together: intrinsic and extrinsic mechanisms governing proteasome biogenesis. ACTA ACUST UNITED AC 2017. [DOI: 10.1007/s11515-017-1439-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
13
|
Nucleotide-dependent switch in proteasome assembly mediated by the Nas6 chaperone. Proc Natl Acad Sci U S A 2017; 114:1548-1553. [PMID: 28137839 DOI: 10.1073/pnas.1612922114] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The proteasome is assembled via the nine-subunit lid, nine-subunit base, and 28-subunit core particle (CP). Previous work has shown that the chaperones Rpn14, Nas6, Hsm3, and Nas2 each bind a specific ATPase subunit of the base and antagonize base-CP interaction. Here, we show that the Nas6 chaperone also obstructs base-lid association. Nas6 alternates between these two inhibitory modes according to the nucleotide state of the base. When ATP cannot be hydrolyzed, Nas6 interferes with base-lid, but not base-CP, association. In contrast, under conditions of ATP hydrolysis, Nas6 obstructs base-CP, but not base-lid, association. Modeling of Nas6 into cryoelectron microscopy structures of the proteasome suggests that Nas6 controls both base-lid affinity and base-CP affinity through steric hindrance; Nas6 clashes with the lid in the ATP-hydrolysis-blocked proteasome, but clashes instead with the CP in the ATP-hydrolysis-competent proteasome. Thus, Nas6 provides a dual mechanism to control assembly at both major interfaces of the proteasome.
Collapse
|
14
|
Huang X, Luan B, Wu J, Shi Y. An atomic structure of the human 26S proteasome. Nat Struct Mol Biol 2016; 23:778-85. [PMID: 27428775 DOI: 10.1038/nsmb.3273] [Citation(s) in RCA: 168] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 07/08/2016] [Indexed: 12/12/2022]
Abstract
We report the cryo-EM structure of the human 26S proteasome at an average resolution of 3.5 Å, allowing atomic modeling of 28 subunits in the core particle (CP) and 18 subunits in the regulatory particle (RP). The C-terminal residues of Rpt3 and Rpt5 subunits in the RP can be seen inserted into surface pockets formed between adjacent α subunits in the CP. Each of the six Rpt subunits contains a bound nucleotide, and the central gate of the CP α-ring is closed despite RP association. The six pore 1 loops in the Rpt ring are arranged similarly to a spiral staircase along the axial channel of substrate transport, which is constricted by the pore 2 loops. We also determined the cryo-EM structure of the human proteasome bound to the deubiquitinating enzyme USP14 at 4.35-Å resolution. Together, our structures provide a framework for mechanistic understanding of eukaryotic proteasome function.
Collapse
Affiliation(s)
- Xiuliang Huang
- Ministry of Education Key Laboratory of Protein Science, School of Life Sciences, Tsinghua University, Beijing, China.,Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China.,Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Bai Luan
- Ministry of Education Key Laboratory of Protein Science, School of Life Sciences, Tsinghua University, Beijing, China.,Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China.,Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Jianping Wu
- Ministry of Education Key Laboratory of Protein Science, School of Life Sciences, Tsinghua University, Beijing, China.,Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China.,Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Yigong Shi
- Ministry of Education Key Laboratory of Protein Science, School of Life Sciences, Tsinghua University, Beijing, China.,Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China.,Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| |
Collapse
|
15
|
Tomko RJ, Taylor DW, Chen ZA, Wang HW, Rappsilber J, Hochstrasser M. A Single α Helix Drives Extensive Remodeling of the Proteasome Lid and Completion of Regulatory Particle Assembly. Cell 2016; 163:432-44. [PMID: 26451487 PMCID: PMC4601081 DOI: 10.1016/j.cell.2015.09.022] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Revised: 06/19/2015] [Accepted: 08/19/2015] [Indexed: 11/11/2022]
Abstract
Most short-lived eukaryotic proteins are degraded by the proteasome. A proteolytic core particle (CP) capped by regulatory particles (RPs) constitutes the 26S proteasome complex. RP biogenesis culminates with the joining of two large subcomplexes, the lid and base. In yeast and mammals, the lid appears to assemble completely before attaching to the base, but how this hierarchical assembly is enforced has remained unclear. Using biochemical reconstitutions, quantitative cross-linking/mass spectrometry, and electron microscopy, we resolve the mechanistic basis for the linkage between lid biogenesis and lid-base joining. Assimilation of the final lid subunit, Rpn12, triggers a large-scale conformational remodeling of the nascent lid that drives RP assembly, in part by relieving steric clash with the base. Surprisingly, this remodeling is triggered by a single Rpn12 α helix. Such assembly-coupled conformational switching is reminiscent of viral particle maturation and may represent a commonly used mechanism to enforce hierarchical assembly in multisubunit complexes. First in vitro reconstitution of RP assembly with completely recombinant components Electron microscopy and cross-linking reveal massive remodeling of a lid precursor Remodeling of the lid relieves steric clash with the RP base to promote RP assembly Lid remodeling can be triggered by a single C-terminal α helix in the Rpn12 subunit
Collapse
Affiliation(s)
- Robert J Tomko
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520-8114, USA.
| | - David W Taylor
- California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA 94720-3200, USA
| | - Zhuo A Chen
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Michael Swann Building, King's Buildings, Max Born Crescent, Mayfield Road, Edinburgh EH9 3BF, Scotland
| | - Hong-Wei Wang
- Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, PRC
| | - Juri Rappsilber
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Michael Swann Building, King's Buildings, Max Born Crescent, Mayfield Road, Edinburgh EH9 3BF, Scotland; Department of Bioanalytics, Institute of Biotechnology, Technische Universität Berlin, 13355 Berlin, Germany
| | - Mark Hochstrasser
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520-8114, USA.
| |
Collapse
|
16
|
The Role of Proteases in Hippocampal Synaptic Plasticity: Putting Together Small Pieces of a Complex Puzzle. Neurochem Res 2015; 41:156-82. [DOI: 10.1007/s11064-015-1752-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 10/26/2015] [Accepted: 10/27/2015] [Indexed: 12/17/2022]
|
17
|
Alpha-ring Independent Assembly of the 20S Proteasome. Sci Rep 2015; 5:13130. [PMID: 26286114 PMCID: PMC4541365 DOI: 10.1038/srep13130] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 07/20/2015] [Indexed: 12/17/2022] Open
Abstract
Archaeal proteasomes share many features with their eukaryotic counterparts and serve as important models for assembly. Proteasomes are also found in certain bacterial lineages yet their assembly mechanism is thought to be fundamentally different. Here we investigate α-ring formation using recombinant proteasomes from the archaeon Methanococcus maripaludis. Through an engineered disulfide cross-linking strategy, we demonstrate that double α-rings are structurally analogous to half-proteasomes and can form independently of single α-rings. More importantly, via targeted mutagenesis, we show that single α-rings are not required for the efficient assembly of 20S proteasomes. Our data support updating the currently held "α-ring first" view of assembly, initially proposed in studies of archaeal proteasomes, and present a way to reconcile the seemingly separate bacterial assembly mechanism with the rest of the proteasome realm. We suggest that a common assembly network underpins the absolutely conserved architecture of proteasomes across all domains of life.
Collapse
|
18
|
Inobe T, Genmei R. N-Terminal Coiled-Coil Structure of ATPase Subunits of 26S Proteasome Is Crucial for Proteasome Function. PLoS One 2015. [PMID: 26208326 PMCID: PMC4514846 DOI: 10.1371/journal.pone.0134056] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The proteasome is an essential proteolytic machine in eukaryotic cells, where it removes damaged proteins and regulates many cellular activities by degrading ubiquitinated proteins. Its heterohexameric AAA+ ATPase Rpt subunits play a central role in proteasome activity by the engagement of substrate unfolding and translocation for degradation; however, its detailed mechanism remains poorly understood. In contrast to AAA+ ATPase domains, their N-terminal regions of Rpt subunits substantially differ from each other. Here, to investigate the requirements and roles of the N-terminal regions of six Rpt subunits derived from Saccharomyces cerevisiae, we performed systematic mutational analysis using conditional knockdown yeast strains for each Rpt subunit and bacterial heterologous expression system of the base subcomplex. We showed that the formation of the coiled-coil structure was the most important for the N-terminal region of Rpt subunits. The primary role of coiled-coil structure would be the maintenance of the ring structure with the defined order. However, the coiled-coil region would be also be involved in substrate recognition and an interaction between lid and base subcomplexes.
Collapse
Affiliation(s)
- Tomonao Inobe
- Frontier Research Core for Life Sciences, University of Toyama, 3190 Gofuku, Toyma-shi, Toyama, 930-8555, Japan
| | - Reiko Genmei
- Frontier Research Core for Life Sciences, University of Toyama, 3190 Gofuku, Toyma-shi, Toyama, 930-8555, Japan
| |
Collapse
|
19
|
Base-CP proteasome can serve as a platform for stepwise lid formation. Biosci Rep 2015; 35:BSR20140173. [PMID: 26182356 PMCID: PMC4438304 DOI: 10.1042/bsr20140173] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Accepted: 01/26/2015] [Indexed: 12/14/2022] Open
Abstract
26S proteasome, a major regulatory protease in eukaryotes, consists of a 20S proteolytic core particle (CP) capped by a 19S regulatory particle (RP). The 19S RP is divisible into base and lid sub-complexes. Even within the lid, subunits have been demarcated into two modules: module 1 (Rpn5, Rpn6, Rpn8, Rpn9 and Rpn11), which interacts with both CP and base sub-complexes and module 2 (Rpn3, Rpn7, Rpn12 and Rpn15) that is attached mainly to module 1. We now show that suppression of RPN11 expression halted lid assembly yet enabled the base and 20S CP to pre-assemble and form a base-CP. A key role for Regulatory particle non-ATPase 11 (Rpn11) in bridging lid module 1 and module 2 subunits together is inferred from observing defective proteasomes in rpn11–m1, a mutant expressing a truncated form of Rpn11 and displaying mitochondrial phenotypes. An incomplete lid made up of five module 1 subunits attached to base-CP was identified in proteasomes isolated from this mutant. Re-introducing the C-terminal portion of Rpn11 enabled recruitment of missing module 2 subunits. In vitro, module 1 was reconstituted stepwise, initiated by Rpn11–Rpn8 heterodimerization. Upon recruitment of Rpn6, the module 1 intermediate was competent to lock into base-CP and reconstitute an incomplete 26S proteasome. Thus, base-CP can serve as a platform for gradual incorporation of lid, along a proteasome assembly pathway. Identification of proteasome intermediates and reconstitution of minimal functional units should clarify aspects of the inner workings of this machine and how multiple catalytic processes are synchronized within the 26S proteasome holoenzymes. Defective proteasome 19S regulatory particles (RPs) were identified in rpn11f–m1, a proteasomal mutant with mitochondrial phenotypes. The Rpn11 subunit initiates assembly of a five-subunit lid module competent to integrate into pre-assembled base-20S core particle (CP), with subsequent recruitment of remaining lid subunits.
Collapse
|
20
|
Gu ZC, Enenkel C. Proteasome assembly. Cell Mol Life Sci 2014; 71:4729-45. [PMID: 25107634 PMCID: PMC11113775 DOI: 10.1007/s00018-014-1699-8] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 07/30/2014] [Accepted: 07/31/2014] [Indexed: 10/24/2022]
Abstract
In eukaryotic cells, proteasomes are highly conserved protease complexes and eliminate unwanted proteins which are marked by poly-ubiquitin chains for degradation. The 26S proteasome consists of the proteolytic core particle, the 20S proteasome, and the 19S regulatory particle, which are composed of 14 and 19 different subunits, respectively. Proteasomes are the second-most abundant protein complexes and are continuously assembled from inactive precursor complexes in proliferating cells. The modular concept of proteasome assembly was recognized in prokaryotic ancestors and applies to eukaryotic successors. The efficiency and fidelity of eukaryotic proteasome assembly is achieved by several proteasome-dedicated chaperones that initiate subunit incorporation and control the quality of proteasome assemblies by transiently interacting with proteasome precursors. It is important to understand the mechanism of proteasome assembly as the proteasome has key functions in the turnover of short-lived proteins regulating diverse biological processes.
Collapse
Affiliation(s)
- Zhu Chao Gu
- Department of Biochemistry, University of Toronto, Medical Sciences Building, 1 King’s College Circle, Toronto, ON M5S 1A8 Canada
| | - Cordula Enenkel
- Department of Biochemistry, University of Toronto, Medical Sciences Building, 1 King’s College Circle, Toronto, ON M5S 1A8 Canada
| |
Collapse
|
21
|
Chondrogianni N, Sakellari M, Lefaki M, Papaevgeniou N, Gonos ES. Proteasome activation delays aging in vitro and in vivo. Free Radic Biol Med 2014; 71:303-320. [PMID: 24681338 DOI: 10.1016/j.freeradbiomed.2014.03.031] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 03/18/2014] [Accepted: 03/18/2014] [Indexed: 02/02/2023]
Abstract
Aging is a natural biological process that is characterized by a progressive accumulation of macromolecular damage. In the proteome, aging is accompanied by decreased protein homeostasis and function of the major cellular proteolytic systems, leading to the accumulation of unfolded, misfolded, or aggregated proteins. In particular, the proteasome is responsible for the removal of normal as well as damaged or misfolded proteins. Extensive work during the past several years has clearly demonstrated that proteasome activation by either genetic means or use of compounds significantly retards aging. Importantly, this represents a common feature across evolution, thereby suggesting proteasome activation to be an evolutionarily conserved mechanism of aging and longevity regulation. This review article reports on the means of function of these proteasome activators and how they regulate aging in various species.
Collapse
Affiliation(s)
- Niki Chondrogianni
- National Hellenic Research Foundation, Institute of Biology, Medicinal Chemistry, and Biotechnology, 116 35 Athens, Greece.
| | - Marianthi Sakellari
- National Hellenic Research Foundation, Institute of Biology, Medicinal Chemistry, and Biotechnology, 116 35 Athens, Greece; Örebro University Medical School, Örebro, Sweden
| | - Maria Lefaki
- National Hellenic Research Foundation, Institute of Biology, Medicinal Chemistry, and Biotechnology, 116 35 Athens, Greece
| | - Nikoletta Papaevgeniou
- National Hellenic Research Foundation, Institute of Biology, Medicinal Chemistry, and Biotechnology, 116 35 Athens, Greece
| | - Efstathios S Gonos
- National Hellenic Research Foundation, Institute of Biology, Medicinal Chemistry, and Biotechnology, 116 35 Athens, Greece; Örebro University Medical School, Örebro, Sweden
| |
Collapse
|
22
|
Li X, Thompson D, Kumar B, DeMartino GN. Molecular and cellular roles of PI31 (PSMF1) protein in regulation of proteasome function. J Biol Chem 2014; 289:17392-405. [PMID: 24770418 DOI: 10.1074/jbc.m114.561183] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We investigated molecular features and cellular roles of PI31 (PSMF1) on regulation of proteasome function. PI31 has a C-terminal HbYX (where Hb is a hydrophobic amino acid, Y is tyrosine, and X is any amino acid) motif characteristic of several proteasome activators. Peptides corresponding to the PI31 C terminus also bind to and activate the 20 S proteasome in an HbYX-dependent manner, but intact PI31protein inhibits in vitro 20 S activity. Binding to and inhibition of the proteasome by PI31 are conferred by the HbYX-containing proline-rich C-terminal domain but do not require HbYX residues. Thus, multiple regions of PI31 bind independently to the proteasome and collectively determine effects on activity. PI31 blocks the ATP-dependent in vitro assembly of 26 S proteasome from 20 S proteasome and PA700 subcomplexes but has no effect on in vitro activity of the intact 26 S proteasome. To determine the physiologic significance of these in vitro effects, we assessed multiple aspects of cellular proteasome content and function after altering PI31 levels. We detected no change in overall cellular proteasome content or function when PI31 levels were either increased by moderate ectopic overexpression or decreased by RNA interference (RNAi). We also failed to identify a role of PI31 ADP-ribosylation as a mechanism for regulation of overall 26 S proteasome content and function, as recently proposed. Thus, despite its in vitro effects on various proteasome activities and its structural relationship to established proteasome regulators, cellular roles and mechanisms of PI31 in regulation of proteasome function remain unclear and require future definition.
Collapse
Affiliation(s)
- Xiaohua Li
- From the Department of Physiology, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - David Thompson
- From the Department of Physiology, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Brajesh Kumar
- From the Department of Physiology, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - George N DeMartino
- From the Department of Physiology, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| |
Collapse
|
23
|
Reconstitution of the 26S proteasome reveals functional asymmetries in its AAA+ unfoldase. Nat Struct Mol Biol 2013; 20:1164-72. [PMID: 24013205 PMCID: PMC3869383 DOI: 10.1038/nsmb.2659] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Accepted: 07/26/2013] [Indexed: 12/25/2022]
Abstract
The 26S proteasome is the major eukaryotic ATP-dependent protease, yet the detailed mechanisms used by the proteasomal heterohexameric AAA+ unfoldase to drive substrate degradation remain poorly understood. To perform systematic mutational analyses of individual ATPase subunits, we heterologously expressed the unfoldase subcomplex from Saccharomyces cerevisiae in Escherichia coli and reconstituted the proteasome in vitro. Our studies demonstrate that the six ATPases have distinct roles in degradation, corresponding to their positions in the spiral staircases adopted by the AAA+ domains in the absence or presence of substrate. ATP hydrolysis in subunits at the top of the staircases is critical for substrate engagement and translocation. Whereas the unfoldase relies on this vertical asymmetry for substrate processing, interaction with the peptidase exhibits three-fold symmetry with contributions from alternate subunits. These diverse functional asymmetries highlight how the 26S proteasome deviates from simpler, homomeric AAA+ proteases.
Collapse
|
24
|
Schmidt M, Finley D. Regulation of proteasome activity in health and disease. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1843:13-25. [PMID: 23994620 DOI: 10.1016/j.bbamcr.2013.08.012] [Citation(s) in RCA: 340] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Revised: 08/05/2013] [Accepted: 08/07/2013] [Indexed: 12/13/2022]
Abstract
The ubiquitin-proteasome system (UPS) is the primary selective degradation system in the nuclei and cytoplasm of eukaryotic cells, required for the turnover of myriad soluble proteins. The hundreds of factors that comprise the UPS include an enzymatic cascade that tags proteins for degradation via the covalent attachment of a poly-ubiquitin chain, and a large multimeric enzyme that degrades ubiquitinated proteins, the proteasome. Protein degradation by the UPS regulates many pathways and is a crucial component of the cellular proteostasis network. Dysfunction of the ubiquitination machinery or the proteolytic activity of the proteasome is associated with numerous human diseases. In this review we discuss the contributions of the proteasome to human pathology, describe mechanisms that regulate the proteolytic capacity of the proteasome, and discuss strategies to modulate proteasome function as a therapeutic approach to ameliorate diseases associated with altered UPS function. This article is part of a Special Issue entitled: Ubiquitin-Proteasome System. Guest Editors: Thomas Sommer and Dieter H. Wolf.
Collapse
Affiliation(s)
- Marion Schmidt
- Albert Einstein College of Medicine, Department of Biochemistry, 1300 Morris Park Avenue, Bronx, NY 10461, USA.
| | | |
Collapse
|
25
|
Reconfiguration of the proteasome during chaperone-mediated assembly. Nature 2013; 497:512-6. [PMID: 23644457 PMCID: PMC3687086 DOI: 10.1038/nature12123] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Accepted: 03/27/2013] [Indexed: 01/18/2023]
Abstract
The proteasomal ATPase ring, comprising Rpt1-Rpt6, associates with the heptameric α-ring of the proteasome core particle (CP) in the mature proteasome, with the Rpt carboxy-terminal tails inserting into pockets of the α-ring. Rpt ring assembly is mediated by four chaperones, each binding a distinct Rpt subunit. Here we report that the base subassembly of the Saccharomyces cerevisiae proteasome, which includes the Rpt ring, forms a high-affinity complex with the CP. This complex is subject to active dissociation by the chaperones Hsm3, Nas6 and Rpn14. Chaperone-mediated dissociation was abrogated by a non-hydrolysable ATP analogue, indicating that chaperone action is coupled to nucleotide hydrolysis by the Rpt ring. Unexpectedly, synthetic Rpt tail peptides bound α-pockets with poor specificity, except for Rpt6, which uniquely bound the α2/α3-pocket. Although the Rpt6 tail is not visualized within an α-pocket in mature proteasomes, it inserts into the α2/α3-pocket in the base-CP complex and is important for complex formation. Thus, the Rpt-CP interface is reconfigured when the lid complex joins the nascent proteasome to form the mature holoenzyme.
Collapse
|
26
|
Conformational dynamics of the Rpt6 ATPase in proteasome assembly and Rpn14 binding. Structure 2013; 21:753-65. [PMID: 23562395 DOI: 10.1016/j.str.2013.02.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Revised: 02/26/2013] [Accepted: 02/28/2013] [Indexed: 11/20/2022]
Abstract
Juxtaposed to either or both ends of the proteasome core particle (CP) can exist a 19S regulatory particle (RP) that recognizes and prepares ubiquitinated proteins for proteolysis. RP triphosphatase proteins (Rpt1-Rpt6), which are critical for substrate translocation into the CP, bind chaperone-like proteins (Hsm3, Nas2, Nas6, and Rpn14) implicated in RP assembly. We used NMR and other biophysical methods to reveal that S. cerevisiae Rpt6's C-terminal domain undergoes dynamic helix-coil transitions enabled by helix-destabilizing glycines within its two most C-terminal α helices. Rpn14 binds selectively to Rpt6's four-helix bundle, with surprisingly high affinity. Loss of Rpt6's partially unfolded state by glycine substitution (Rpt6 G³⁶⁰,³⁸⁷A) disrupts holoenzyme formation in vitro, an effect enhanced by Rpn14. S. cerevisiae lacking Rpn14 and incorporating Rpt6 G³⁶⁰,³⁸⁷A demonstrate hallmarks of defective proteasome assembly and synthetic growth defects. Rpt4 and Rpt5 exhibit similar exchange, suggesting that conserved structural heterogeneity among Rpt proteins may facilitate RP-CP assembly.
Collapse
|
27
|
Abstract
The eukaryotic ubiquitin-proteasome system is responsible for most aspects of regulatory and quality-control protein degradation in cells. Its substrates, which are usually modified by polymers of ubiquitin, are ultimately degraded by the 26S proteasome. This 2.6-MDa protein complex is separated into a barrel-shaped proteolytic 20S core particle (CP) of 28 subunits capped on one or both ends by a 19S regulatory particle (RP) comprising at least 19 subunits. The RP coordinates substrate recognition, removal of substrate polyubiquitin chains, and substrate unfolding and translocation into the CP for degradation. Although many atomic structures of the CP have been determined, the RP has resisted high-resolution analysis. Recently, however, a combination of cryo-electron microscopy, biochemical analysis, and crystal structure determination of several RP subunits has yielded a near-atomic-resolution view of much of the complex. Major new insights into chaperone-assisted proteasome assembly have also recently emerged. Here we review these novel findings.
Collapse
Affiliation(s)
- Robert J Tomko
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520, USA.
| | | |
Collapse
|
28
|
Kim YC, Li X, Thompson D, DeMartino GN. ATP binding by proteasomal ATPases regulates cellular assembly and substrate-induced functions of the 26 S proteasome. J Biol Chem 2012; 288:3334-45. [PMID: 23212908 DOI: 10.1074/jbc.m112.424788] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We examined the role of ATP binding by six different ATPase subunits (Rpt1-6) in the cellular assembly and molecular functions of mammalian 26 S proteasome. Four Rpt subunits (Rpt1-4) with ATP binding mutations were incompetent for cellular assembly into 26 S proteasome. In contrast, analogous mutants of Rpt5 and Rpt6 were incorporated normally into 26 S proteasomes in both intact cells and an in vitro assembly assay. Surprisingly, purified 26 S proteasomes containing either mutant Rpt5 or Rpt6 had normal basal ATPase activity and substrate gate opening for hydrolysis of short peptides. However, these mutant 26 S proteasomes were severely defective for ATP-dependent in vitro degradation of ubiquitylated and non-ubiquitylated proteins and did not display substrate-stimulated ATPase and peptidase activities characteristic of normal proteasomes. These results reveal differential roles of ATP binding by various Rpt subunits in proteasome assembly and function. They also indicate that substrate-stimulated ATPase activity and gating depend on the concerted action of a full complement of Rpt subunits competent for ATP binding and that this regulation is essential for normal proteolysis. Thus, protein substrates appear to promote their own degradation by stimulating proteasome functions involved in proteolysis.
Collapse
Affiliation(s)
- Young-Chan Kim
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9040, USA
| | | | | | | |
Collapse
|
29
|
Chondrogianni N, Petropoulos I, Grimm S, Georgila K, Catalgol B, Friguet B, Grune T, Gonos ES. Protein damage, repair and proteolysis. Mol Aspects Med 2012; 35:1-71. [PMID: 23107776 DOI: 10.1016/j.mam.2012.09.001] [Citation(s) in RCA: 177] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Accepted: 09/26/2012] [Indexed: 01/10/2023]
Abstract
Proteins are continuously affected by various intrinsic and extrinsic factors. Damaged proteins influence several intracellular pathways and result in different disorders and diseases. Aggregation of damaged proteins depends on the balance between their generation and their reversal or elimination by protein repair systems and degradation, respectively. With regard to protein repair, only few repair mechanisms have been evidenced including the reduction of methionine sulfoxide residues by the methionine sulfoxide reductases, the conversion of isoaspartyl residues to L-aspartate by L-isoaspartate methyl transferase and deglycation by phosphorylation of protein-bound fructosamine by fructosamine-3-kinase. Protein degradation is orchestrated by two major proteolytic systems, namely the lysosome and the proteasome. Alteration of the function for both systems has been involved in all aspects of cellular metabolic networks linked to either normal or pathological processes. Given the importance of protein repair and degradation, great effort has recently been made regarding the modulation of these systems in various physiological conditions such as aging, as well as in diseases. Genetic modulation has produced promising results in the area of protein repair enzymes but there are not yet any identified potent inhibitors, and, to our knowledge, only one activating compound has been reported so far. In contrast, different drugs as well as natural compounds that interfere with proteolysis have been identified and/or developed resulting in homeostatic maintenance and/or the delay of disease progression.
Collapse
Affiliation(s)
- Niki Chondrogianni
- Institute of Biology, Medicinal Chemistry and Biotechnology, National Helenic Research Foundation, 48 Vas. Constantinou Ave., 116 35 Athens, Greece.
| | - Isabelle Petropoulos
- Laboratoire de Biologie Cellulaire du Vieillissement, UR4-UPMC, IFR 83, Université Pierre et Marie Curie-Paris 6, 4 Place Jussieu, 75005 Paris, France
| | - Stefanie Grimm
- Department of Nutritional Toxicology, Institute of Nutrition, Friedrich-Schiller University, Dornburger Straße 24, 07743 Jena, Germany
| | - Konstantina Georgila
- Institute of Biology, Medicinal Chemistry and Biotechnology, National Helenic Research Foundation, 48 Vas. Constantinou Ave., 116 35 Athens, Greece
| | - Betul Catalgol
- Department of Biochemistry, Faculty of Medicine, Genetic and Metabolic Diseases Research Center (GEMHAM), Marmara University, Haydarpasa, Istanbul, Turkey
| | - Bertrand Friguet
- Laboratoire de Biologie Cellulaire du Vieillissement, UR4-UPMC, IFR 83, Université Pierre et Marie Curie-Paris 6, 4 Place Jussieu, 75005 Paris, France
| | - Tilman Grune
- Department of Nutritional Toxicology, Institute of Nutrition, Friedrich-Schiller University, Dornburger Straße 24, 07743 Jena, Germany
| | - Efstathios S Gonos
- Institute of Biology, Medicinal Chemistry and Biotechnology, National Helenic Research Foundation, 48 Vas. Constantinou Ave., 116 35 Athens, Greece.
| |
Collapse
|
30
|
Nijhawan D, Zack TI, Ren Y, Strickland MR, Lamothe R, Schumacher SE, Tsherniak A, Besche HC, Rosenbluh J, Shehata S, Cowley GS, Weir BA, Goldberg AL, Mesirov JP, Root DE, Bhatia SN, Beroukhim R, Hahn WC. Cancer vulnerabilities unveiled by genomic loss. Cell 2012; 150:842-54. [PMID: 22901813 PMCID: PMC3429351 DOI: 10.1016/j.cell.2012.07.023] [Citation(s) in RCA: 182] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2012] [Revised: 07/21/2012] [Accepted: 07/26/2012] [Indexed: 01/22/2023]
Abstract
Due to genome instability, most cancers exhibit loss of regions containing tumor suppressor genes and collateral loss of other genes. To identify cancer-specific vulnerabilities that are the result of copy number losses, we performed integrated analyses of genome-wide copy number and RNAi profiles and identified 56 genes for which gene suppression specifically inhibited the proliferation of cells harboring partial copy number loss of that gene. These CYCLOPS (copy number alterations yielding cancer liabilities owing to partial loss) genes are enriched for spliceosome, proteasome, and ribosome components. One CYCLOPS gene, PSMC2, encodes an essential member of the 19S proteasome. Normal cells express excess PSMC2, which resides in a complex with PSMC1, PSMD2, and PSMD5 and acts as a reservoir protecting cells from PSMC2 suppression. Cells harboring partial PSMC2 copy number loss lack this complex and die after PSMC2 suppression. These observations define a distinct class of cancer-specific liabilities resulting from genome instability.
Collapse
Affiliation(s)
- Deepak Nijhawan
- Departments of Cancer Biology and Medical Oncology, Dana Farber Cancer Institute
- Broad Institute of Harvard and MIT, Cambridge, MA 02142
- Departments of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Travis I. Zack
- Departments of Cancer Biology and Medical Oncology, Dana Farber Cancer Institute
- Broad Institute of Harvard and MIT, Cambridge, MA 02142
- Biophysics Program, Harvard University
| | - Yin Ren
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139
| | | | - Rebecca Lamothe
- Departments of Cancer Biology and Medical Oncology, Dana Farber Cancer Institute
| | - Steven E. Schumacher
- Departments of Cancer Biology and Medical Oncology, Dana Farber Cancer Institute
- Broad Institute of Harvard and MIT, Cambridge, MA 02142
| | | | - Henrike C. Besche
- Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115
| | - Joseph Rosenbluh
- Departments of Cancer Biology and Medical Oncology, Dana Farber Cancer Institute
- Broad Institute of Harvard and MIT, Cambridge, MA 02142
- Departments of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Shyemaa Shehata
- Departments of Cancer Biology and Medical Oncology, Dana Farber Cancer Institute
| | | | | | - Alfred L. Goldberg
- Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115
| | | | - David E. Root
- Broad Institute of Harvard and MIT, Cambridge, MA 02142
| | - Sangeeta N. Bhatia
- Broad Institute of Harvard and MIT, Cambridge, MA 02142
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139
- Departments of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139
- Howard Hughes Medical Institute, Chevy Chase, MD 20815
| | - Rameen Beroukhim
- Departments of Cancer Biology and Medical Oncology, Dana Farber Cancer Institute
- Broad Institute of Harvard and MIT, Cambridge, MA 02142
- Departments of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - William C. Hahn
- Departments of Cancer Biology and Medical Oncology, Dana Farber Cancer Institute
- Broad Institute of Harvard and MIT, Cambridge, MA 02142
- Departments of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
31
|
Reconstitution of PA700, the 19S regulatory particle, from purified precursor complexes. Methods Mol Biol 2012; 832:443-52. [PMID: 22350904 DOI: 10.1007/978-1-61779-474-2_31] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Abstract
Here, we describe methodology for the in vitro reconstitution of PA700, the 19S regulatory particle of the 26S proteasome, from three purified subcomplexes that closely represent cellular assembly intermediates. These PA700 subcomplexes (denoted PS-1, PS-2, and PS-3) account for all subunits present in purified PA700 but have no overlapping or non-PA700 components. The reconstituted PA700 displays functional features indistinguishable from independently purified PA700, including ATPase activity, deubiquitylating activity, and ATP-dependent binding and activation of the 20S proteasome. This reconstitution assay -provides a platform for exploration of critical biochemical and molecular features of PA700 assembly and for insights to 26S proteasome assembly in intact cells.
Collapse
|
32
|
Tomko RJ, Hochstrasser M. Incorporation of the Rpn12 subunit couples completion of proteasome regulatory particle lid assembly to lid-base joining. Mol Cell 2012; 44:907-17. [PMID: 22195964 DOI: 10.1016/j.molcel.2011.11.020] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2011] [Revised: 11/11/2011] [Accepted: 11/11/2011] [Indexed: 01/10/2023]
Abstract
The 26S proteasome, the central eukaryotic protease, comprises a core particle capped by a 19S regulatory particle (RP). The RP is divisible into base and lid subcomplexes. Lid biogenesis and incorporation into the RP remain poorly understood. We report several lid intermediates, including the free Rpn12 subunit and a lid particle (LP) containing the remaining eight subunits, LP2. Rpn12 binds LP2 in vitro, and each requires the other for assembly into 26S proteasomes. Stable Rpn12 incorporation depends on all other lid subunits, indicating that Rpn12 distinguishes LP2 from smaller lid subcomplexes. The highly conserved C terminus of Rpn12 bridges the lid and base, mediating both stable binding to LP2 and lid-base joining. Our data suggest a hierarchical assembly mechanism where Rpn12 binds LP2 only upon correct assembly of all other lid subunits, and the Rpn12 tail then helps drive lid-base joining. Rpn12 incorporation thus links proper lid assembly to subsequent assembly steps.
Collapse
Affiliation(s)
- Robert J Tomko
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520-8114, USA
| | | |
Collapse
|
33
|
Lee SH, Moon JH, Yoon SK, Yoon JB. Stable incorporation of ATPase subunits into 19 S regulatory particle of human proteasome requires nucleotide binding and C-terminal tails. J Biol Chem 2012; 287:9269-79. [PMID: 22275368 DOI: 10.1074/jbc.m111.316208] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The 26 S proteasome is a large multi-subunit protein complex that degrades ubiquitinated proteins in eukaryotic cells. Proteasome assembly is a complex process that involves formation of six- and seven-membered ring structures from homologous subunits. Here we report that the assembly of hexameric Rpt ring of the 19 S regulatory particle (RP) requires nucleotide binding but not ATP hydrolysis. Disruption of nucleotide binding to an Rpt subunit by mutation in the Walker A motif inhibits the assembly of the Rpt ring without affecting heterodimer formation with its partner Rpt subunit. Coexpression of the base assembly chaperones S5b and PAAF1 with mutant Rpt1 and Rpt6, respectively, relieves assembly inhibition of mutant Rpts by facilitating their interaction with adjacent Rpt dimers. The mutation in the Walker B motif which impairs ATP hydrolysis does not affect Rpt ring formation. Incorporation of a Walker B mutant Rpt subunit abrogates the ATPase activity of the 19 S RP, suggesting that failure of the mutant Rpt to undergo the conformational transition from an ATP-bound to an ADP-bound state impairs conformational changes in the other five wild-type Rpts in the Rpt ring. In addition, we demonstrate that the C-terminal tails of Rpt subunits possessing core particle (CP)-binding affinities facilitate the cellular assembly of the 19 S RP, implying that the 20 S CP may function as a template for base assembly in human cells. Taken together, these results suggest that the ATP-bound conformational state of an Rpt subunit with the exposed C-terminal tail is competent for cellular proteasome assembly.
Collapse
Affiliation(s)
- Seung-Hoon Lee
- Department of Biochemistry, Yonsei University, Seoul, Korea
| | | | | | | |
Collapse
|
34
|
Xu J, Wang S, Zhang M, Wang Q, Asfa S, Zou MH. Tyrosine nitration of PA700 links proteasome activation to endothelial dysfunction in mouse models with cardiovascular risk factors. PLoS One 2012; 7:e29649. [PMID: 22272240 PMCID: PMC3260160 DOI: 10.1371/journal.pone.0029649] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2011] [Accepted: 12/02/2011] [Indexed: 11/19/2022] Open
Abstract
Oxidative stress is believed to cause endothelial dysfunction, an early event and a hallmark in cardiovascular diseases (CVD) including hypertension, diabetes, and dyslipidemia. However, the targets for oxidative stress-mediated endothelial dysfunction in CVD have not been completely elucidated. Here we report that 26S proteasome activation by peroxynitrite (ONOO−) is a common pathway for endothelial dysfunction in mouse models of diabetes, hypertension, and dyslipidemia. Endothelial function, assayed by acetylcholine-induced vasorelaxation, was impaired in parallel with significantly increased 26S proteasome activity in aortic homogenates from streptozotocin (STZ)-induced type I diabetic mice, angiotensin-infused hypertensive mice, and high fat-diets -fed LDL receptor knockout (LDLr−/−) mice. The elevated 26S proteasome activities were accompanied by ONOO−-mediated PA700/S10B nitration and increased 26S proteasome assembly and caused accelerated degradation of molecules (such as GTPCH I and thioredoxin) essential to endothelial homeostasis. Pharmacological (administration of MG132) or genetic inhibition (siRNA knockdown of PA700/S10B) of the 26S proteasome blocked the degradation of the vascular protective molecules and ablated endothelial dysfunction induced by diabetes, hypertension, and western diet feeding. Taken together, these results suggest that 26S proteasome activation by ONOO−-induced PA700/S10B tyrosine nitration is a common route for endothelial dysfunction seen in mouse models of hypertension, diabetes, and dyslipidemia.
Collapse
MESH Headings
- Animals
- Blotting, Western
- Cardiovascular Diseases/metabolism
- Cardiovascular Diseases/physiopathology
- Cells, Cultured
- Cysteine Proteinase Inhibitors/pharmacology
- Diabetes Mellitus, Experimental/metabolism
- Diabetes Mellitus, Experimental/physiopathology
- Dyslipidemias/metabolism
- Dyslipidemias/physiopathology
- Endothelium, Vascular/metabolism
- Endothelium, Vascular/physiopathology
- Enzyme Activation/drug effects
- Human Umbilical Vein Endothelial Cells/drug effects
- Human Umbilical Vein Endothelial Cells/metabolism
- Humans
- Hypertension/metabolism
- Hypertension/physiopathology
- Leupeptins/pharmacology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Nitrosation/drug effects
- Peroxynitrous Acid/metabolism
- Peroxynitrous Acid/pharmacology
- Proteasome Endopeptidase Complex/genetics
- Proteasome Endopeptidase Complex/metabolism
- Proteasome Inhibitors
- Protein Subunits/antagonists & inhibitors
- Protein Subunits/genetics
- Protein Subunits/metabolism
- RNA Interference
- Receptors, LDL/genetics
- Receptors, LDL/metabolism
- Risk Factors
- Thioredoxins/metabolism
- Tyrosine/metabolism
Collapse
Affiliation(s)
- Jian Xu
- Division of Endocrinology and Diabetes, Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America.
| | | | | | | | | | | |
Collapse
|
35
|
Abstract
Proteasome is a highly organized protease complex comprising a catalytic 20S core particle (CP) and two 19S regulatory particles (RP), which together form the 26S structure. The 26S proteasome is responsible for the degradation of most ubiquitylated proteins through a multistep process involving recognition of the polyubiquitin chain, unfolding of the substrate, and translocation of the substrate into the active site in the cavity of the CP. Recent studies have shed light on various aspects of the complex functions of the 26S proteasome. In addition, the recent identification of various proteasome-dedicated chaperones indicates that the assembly pathways of the RP and CP are multistep processes. In this review, we summarize recent advances in the understanding of the proteasome structure, function, and assembly.
Collapse
|
36
|
Chondrogianni N, Gonos ES. Structure and Function of the Ubiquitin–Proteasome System. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2012; 109:41-74. [DOI: 10.1016/b978-0-12-397863-9.00002-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
37
|
Tian G, Park S, Lee MJ, Huck B, McAllister F, Hill CP, Gygi SP, Finley D. An asymmetric interface between the regulatory and core particles of the proteasome. Nat Struct Mol Biol 2011; 18:1259-67. [PMID: 22037170 PMCID: PMC3210322 DOI: 10.1038/nsmb.2147] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2011] [Accepted: 08/18/2011] [Indexed: 12/29/2022]
Abstract
The S. cerevisiae proteasome comprises a 19-subunit regulatory particle (RP) and 28-subunit core particle (CP). To be degraded, substrates must cross the CP-RP interface, a site of complex conformational changes and regulatory events. This interface includes two aligned heteromeric rings: the six ATPase (Rpt) subunits of the RP and the seven α subunits of the CP. Rpt C-termini bind intersubunit cavities of the α ring, thus directing CP gating and proteasome assembly. We used crosslinking to map the Rpt C-termini to the α subunit pockets. This reveals an unexpected asymmetry: one side of the ring shows 1:1 contacts of Rpt2–α4, Rpt6–α3, and Rpt3–α2, whereas, on the opposite side, the Rpt1, Rpt4, and Rpt5 tails each crosslink to multiple α pockets. Rpt-CP crosslinks are all sensitive to nucleotide, implying that ATP hydrolysis drives dynamic alterations at the CP-RP interface.
Collapse
Affiliation(s)
- Geng Tian
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Kriegenburg F, Poulsen EG, Koch A, Krüger E, Hartmann-Petersen R. Redox control of the ubiquitin-proteasome system: from molecular mechanisms to functional significance. Antioxid Redox Signal 2011; 15:2265-99. [PMID: 21314436 DOI: 10.1089/ars.2010.3590] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
In their natural environments, cells are regularly exposed to oxidizing conditions that may lead to protein misfolding. If such misfolded proteins are allowed to linger, they may form insoluble aggregates and pose a serious threat to the cell. Accumulation of misfolded, oxidatively damaged proteins is characteristic of many diseases and during aging. To counter the adverse effects of oxidative stress, cells can initiate an antioxidative response in an attempt to repair the damage, or rapidly channel the damaged proteins for degradation by the ubiquitin-proteasome system (UPS). Recent studies have shown that elements of the oxidative stress response and the UPS are linked on many levels. To manage the extra burden of misfolded proteins, the UPS is induced by oxidative stress, and special proteasome subtypes protect cells against oxidative damage. In addition, the proteasome is directly associated with a thioredoxin and other cofactors that may adjust the particle's response during an oxidative challenge. Here, we give an overview of the UPS and a detailed description of the degradation of oxidized proteins and of the crosstalk between oxidative stress and protein degradation in health and disease.
Collapse
Affiliation(s)
- Franziska Kriegenburg
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5,Copenhagen, Denmark
| | | | | | | | | |
Collapse
|
39
|
Park S, Kim W, Tian G, Gygi SP, Finley D. Structural defects in the regulatory particle-core particle interface of the proteasome induce a novel proteasome stress response. J Biol Chem 2011; 286:36652-66. [PMID: 21878652 DOI: 10.1074/jbc.m111.285924] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Proteasomes consist of a 19-subunit regulatory particle (RP) and 28-subunit core particle (CP), an α(7)β(7)β(7)α(7) structure. The RP recognizes substrates and translocates them into the CP for degradation. At the RP-CP interface, a heterohexameric Rpt ring joins to a heteroheptameric CP α ring. Rpt C termini insert individually into the α ring pockets to form a salt bridge with a pocket lysine residue. We report that substitutions of α pocket lysine residues produce an unexpected block to CP assembly, arising from a late stage defect in β ring assembly. Substitutions α5(K66A) and α6(K62A) resulted in abundant incorporation of immature CP β subunits, associated with a complete β ring, into proteasome holoenzymes. Incorporation of immature CP into the proteasome depended on a proteasome-associated protein, Ecm29. Using ump1 mutants, we identified Ecm29 as a potent negative regulator of RP assembly and confirmed our previous findings that proper RP assembly requires the CP. Ecm29 was enriched on proteasomes of pocket lysine mutants, as well as those of rpt4-Δ1 and rpt6-Δ1 mutants, in which the C-terminal residue, thought to contact the pocket lysine, is deleted. In both rpt6-Δ1 and α6(K62A) proteasomes, Ecm29 suppressed opening of the CP substrate translocation channel, which is gated through interactions between Rpt C termini and the α pockets. The ubiquitin ligase Hul5 was recruited to these proteasomes together with Ecm29. Proteasome remodeling through the addition of Ecm29 and Hul5 suggests a new layer of the proteasome stress response and may be a common response to structurally aberrant proteasomes or deficient proteasome function.
Collapse
Affiliation(s)
- Soyeon Park
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | |
Collapse
|
40
|
Bar-Nun S, Glickman MH. Proteasomal AAA-ATPases: structure and function. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2011; 1823:67-82. [PMID: 21820014 DOI: 10.1016/j.bbamcr.2011.07.009] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2011] [Revised: 07/07/2011] [Accepted: 07/18/2011] [Indexed: 01/18/2023]
Abstract
The 26S proteasome is a chambered protease in which the majority of selective cellular protein degradation takes place. Throughout evolution, access of protein substrates to chambered proteases is restricted and depends on AAA-ATPases. Mechanical force generated through cycles of ATP binding and hydrolysis is used to unfold substrates, open the gated proteolytic chamber and translocate the substrate into the active proteases within the cavity. Six distinct AAA-ATPases (Rpt1-6) at the ring base of the 19S regulatory particle of the proteasome are responsible for these three functions while interacting with the 20S catalytic chamber. Although high resolution structures of the eukaryotic 26S proteasome are not yet available, exciting recent studies shed light on the assembly of the hetero-hexameric Rpt ring and its consequent spatial arrangement, on the role of Rpt C-termini in opening the 20S 'gate', and on the contribution of each individual Rpt subunit to various cellular processes. These studies are illuminated by paradigms generated through studying PAN, the simpler homo-hexameric AAA-ATPase of the archaeal proteasome. The similarities between PAN and Rpts highlight the evolutionary conserved role of AAA-ATPase in protein degradation, whereas unique properties of divergent Rpts reflect the increased complexity and tighter regulation attributed to the eukaryotic proteasome.
Collapse
Affiliation(s)
- Shoshana Bar-Nun
- Department of Biochemistry and Molecular Biology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel.
| | | |
Collapse
|
41
|
Abstract
The 26S proteasome is responsible for a large fraction of the regulated protein degradation in eukaryotic cells. The enzyme complex is composed of a 20S proteolytic core particle (CP) capped on one or both ends with a 19S regulatory particle (RP). The RP recognizes and unfolds substrates and translocates them into the CP. The RP can be further divided into lid and base subcomplexes. The base contains a ring of six AAA+ ATPases (Rpts) that directly abuts the CP and is responsible for unfolding substrates and driving them into the CP for proteolysis. Although 120 arrangements of the six different ATPases within the ring are possible in principle, they array themselves in one specific order. The high sequence and structural similarity between the Rpt subunits presents special challenges for their ordered association and incorporation into the assembling proteasome. In this review, we discuss recent advances in our understanding of proteasomal RP base biogenesis, with emphasis on potential specificity determinants in ring arrangement, and the implications of the ATPase ring arrangement for proteasome assembly.
Collapse
Affiliation(s)
- Robert J. Tomko
- Yale University, Department of Molecular Biophysics & Biochemistry, 266 Whitney Avenue, New Haven, CT 06520-8114, Ph: (203) 432-5101 / Fax: (203) 432-5158
| | - Mark Hochstrasser
- Yale University, Department of Molecular Biophysics & Biochemistry, 266 Whitney Avenue, New Haven, CT 06520-8114, Ph: (203) 432-5101 / Fax: (203) 432-5158
| |
Collapse
|
42
|
Kim YC, DeMartino GN. C termini of proteasomal ATPases play nonequivalent roles in cellular assembly of mammalian 26 S proteasome. J Biol Chem 2011; 286:26652-66. [PMID: 21628461 DOI: 10.1074/jbc.m111.246793] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The 26 S proteasome comprises two multisubunit subcomplexes as follows: 20 S proteasome and PA700/19 S regulatory particle. The cellular mechanisms by which these subcomplexes assemble into 26 S proteasome and the molecular determinants that govern the assembly process are poorly defined. Here, we demonstrate the nonequivalent roles of the C termini of six AAA subunits (Rpt1-Rpt6) of PA700 in 26 S proteasome assembly in mammalian cells. The C-terminal HbYX motif (where Hb is a hydrophobic residue, Y is tyrosine, and X is any amino acid) of each of two subunits, Rpt3 and Rpt5, but not that of a third subunit Rpt2, was essential for assembly of 26 S proteasome. The C termini of none of the three non-HbYX motif Rpt subunits were essential for cellular 26 S proteasome assembly, although deletion of the last three residues of Rpt6 destabilized the 20 S-PA700 interaction. Rpt subunits defective for assembly into 26 S proteasome due to C-terminal truncations were incorporated into intact PA700. Moreover, intact PA700 accumulated as an isolated subcomplex when cellular 20 S proteasome content was reduced by RNAi. These results indicate that 20 S proteasome is not an obligatory template for assembly of PA700. Collectively, these results identify specific structural elements of two Rpt subunits required for 26 S proteasome assembly, demonstrate that PA700 can be assembled independently of the 20 S proteasome, and suggest that intact PA700 is a direct intermediate in the cellular pathway of 26 S proteasome assembly.
Collapse
Affiliation(s)
- Young-Chan Kim
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9040, USA
| | | |
Collapse
|
43
|
Henderson A, Erales J, Hoyt MA, Coffino P. Dependence of proteasome processing rate on substrate unfolding. J Biol Chem 2011; 286:17495-502. [PMID: 21454622 DOI: 10.1074/jbc.m110.212027] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Protein degradation by eukaryotic proteasomes is a multi-step process involving substrate recognition, ATP-dependent unfolding, translocation into the proteolytic core particle, and finally proteolysis. To date, most investigations of proteasome function have focused on the first and the last steps in this process. Here we examine the relationship between the stability of a folded protein domain and its degradation rate. Test proteins were targeted to the proteasome independently of ubiquitination by directly tethering them to the protease. Degradation kinetics were compared for test protein pairs whose stability was altered by either point mutation or ligand binding, but were otherwise identical. In both intact cells and in reactions using purified proteasomes and substrates, increased substrate stability led to an increase in substrate turnover time. The steady-state time for degradation ranged from ∼5 min (dihydrofolate reductase) to 40 min (I27 domain of titin). ATP turnover was 110/min./proteasome, and was not markedly changed by substrate. Proteasomes engage tightly folded substrates in multiple iterative rounds of ATP hydrolysis, a process that can be rate-limiting for degradation.
Collapse
Affiliation(s)
- Allen Henderson
- Department of Microbiology & Immunology, University of California, San Francisco, San Francisco, California 94127, USA
| | | | | | | |
Collapse
|
44
|
Lee SH, Park Y, Yoon SK, Yoon JB. Osmotic stress inhibits proteasome by p38 MAPK-dependent phosphorylation. J Biol Chem 2010; 285:41280-9. [PMID: 21044959 DOI: 10.1074/jbc.m110.182188] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Osmotic stress causes profound perturbations of cell functions. Although the adaptive responses required for cell survival upon osmotic stress are being unraveled, little is known about the effects of osmotic stress on ubiquitin-dependent proteolysis. We now report that hyperosmotic stress inhibits proteasome activity by activating p38 MAPK. Osmotic stress increased the level of polyubiquitinated proteins in the cell. The selective p38 inhibitor SB202190 decreased osmotic stress-associated accumulation of polyubiquitinated proteins, indicating that p38 MAPK plays an inhibitory role in the ubiquitin proteasome system. Activated p38 MAPK stabilized various substrates of the proteasome and increased polyubiquitinated proteins. Proteasome preparations purified from cells expressing activated p38 MAPK had substantially lower peptidase activities than control proteasome samples. Proteasome phosphorylation sites dependent on p38 were identified by measuring changes in the extent of proteasome phosphorylation in response to p38 MAPK activation. The residue Thr-273 of Rpn2 is the major phosphorylation site affected by p38 MAPK. The mutation T273A in Rpn2 blocked the proteasome inhibition that is mediated by p38 MAPK. These results suggest that p38 MAPK negatively regulates the proteasome activity by phosphorylating Thr-273 of Rpn2.
Collapse
Affiliation(s)
- Seung-Hoon Lee
- Department of Biochemistry and Translational Research Center for Protein Function Control, Yonsei University, Seoul 120-749, Korea
| | | | | | | |
Collapse
|
45
|
Kumar B, Kim YC, DeMartino GN. The C terminus of Rpt3, an ATPase subunit of PA700 (19 S) regulatory complex, is essential for 26 S proteasome assembly but not for activation. J Biol Chem 2010; 285:39523-35. [PMID: 20937828 DOI: 10.1074/jbc.m110.153627] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
PA700, the 19 S regulatory subcomplex of the 26 S proteasome, contains a heterohexameric ring of AAA subunits (Rpt1 to -6) that forms the binding interface with a heteroheptameric ring of α subunits (α1 to -7) of the 20 S proteasome. Binding of these subcomplexes is mediated by interactions of C termini of certain Rpt subunits with cognate binding sites on the 20 S proteasome. Binding of two Rpt subunits (Rpt2 and Rpt5) depends on their last three residues, which share an HbYX motif (where Hb is a hydrophobic amino acid) and open substrate access gates in the center of the α ring. The relative roles of other Rpt subunits for proteasome binding and activation remain poorly understood. Here we demonstrate that the C-terminal HbYX motif of Rpt3 binds to the 20 S proteasome but does not promote proteasome gating. Binding requires the last three residues and occurs at a dedicated site on the proteasome. A C-terminal peptide of Rpt3 blocked ATP-dependent in vitro assembly of 26 S proteasome from PA700 and 20 S proteasome. In HEK293 cells, wild-type Rpt3, but not Rpt3 lacking the HbYX motif was incorporated into 26 S proteasome. These results indicate that the C terminus of Rpt3 was required for cellular assembly of this subunit into 26 S proteasome. Mutant Rpt3 was assembled into intact PA700. This result indicates that intact PA700 can be assembled independently of association with 20 S proteasome and thus may be a direct precursor for 26 S proteasome assembly under normal conditions. These results provide new insights to the non-equivalent roles of Rpt subunits in 26 S proteasome function and identify specific roles for Rpt3.
Collapse
Affiliation(s)
- Brajesh Kumar
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9040, USA
| | | | | |
Collapse
|
46
|
Xie Y. Structure, Assembly and Homeostatic Regulation of the 26S Proteasome. J Mol Cell Biol 2010; 2:308-17. [DOI: 10.1093/jmcb/mjq030] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
47
|
Gorbea C, Pratt G, Ustrell V, Bell R, Sahasrabudhe S, Hughes RE, Rechsteiner M. A protein interaction network for Ecm29 links the 26 S proteasome to molecular motors and endosomal components. J Biol Chem 2010; 285:31616-33. [PMID: 20682791 DOI: 10.1074/jbc.m110.154120] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Ecm29 is a 200-kDa HEAT repeat protein that binds the 26 S proteasome. Genome-wide two-hybrid screens and mass spectrometry have identified molecular motors, endosomal components, and ubiquitin-proteasome factors as Ecm29-interacting proteins. The C-terminal half of human Ecm29 binds myosins and kinesins; its N-terminal region binds the endocytic proteins, Vps11, Rab11-FIP4, and rabaptin. Whereas full-length FLAG-Ecm29, its C-terminal half, and a small central fragment of Ecm29 remain bound to glycerol-gradient-separated 26 S proteasomes, the N-terminal half of Ecm29 does not. Confocal microscopy showed that Ecm-26 S proteasomes are present on flotillin-positive endosomes, but they are virtually absent from caveolin- and clathrin-decorated endosomes. Expression of the small central fragment of Ecm29 markedly reduces proteasome association with flotillin-positive endosomes. Identification of regions within Ecm29 capable of binding molecular motors, endosomal proteins, and the 26 S proteasome supports the hypothesis that Ecm29 serves as an adaptor for coupling 26 S proteasomes to specific cellular compartments.
Collapse
Affiliation(s)
- Carlos Gorbea
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, Utah 84112, USA
| | | | | | | | | | | | | |
Collapse
|
48
|
Förster F, Lasker K, Nickell S, Sali A, Baumeister W. Toward an integrated structural model of the 26S proteasome. Mol Cell Proteomics 2010; 9:1666-77. [PMID: 20467039 PMCID: PMC2938054 DOI: 10.1074/mcp.r000002-mcp201] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2010] [Revised: 03/26/2010] [Indexed: 11/06/2022] Open
Abstract
The 26S proteasome is the end point of the ubiquitin-proteasome pathway and degrades ubiquitylated substrates. It is composed of the 20S core particle (CP), where degradation occurs, and the 19S regulatory particle (RP), which ensures substrate specificity of degradation. Whereas the CP is resolved to atomic resolution, the architecture of the RP is largely unknown. We provide a comprehensive analysis of the current structural knowledge on the RP, including structures of the RP subunits, physical protein-protein interactions, and cryoelectron microscopy data. These data allowed us to compute an atomic model for the CP-AAA-ATPase subcomplex. In addition to this atomic model, further subunits can be mapped approximately, which lets us hypothesize on the substrate path during its degradation.
Collapse
Affiliation(s)
- Friedrich Förster
- From the ‡Department of Structural Biology, Max Planck Institute of Biochemistry, D-82152 Martinsried, Germany
| | - Keren Lasker
- ¶Department of Bioengineering and Therapeutic Sciences, Department of Pharmaceutical Chemistry, and California Institute for Quantitative Biosciences (QB3), University of California, San Francisco, California 94158, and
- ‖Blavatnik School of Computer Science, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Stephan Nickell
- From the ‡Department of Structural Biology, Max Planck Institute of Biochemistry, D-82152 Martinsried, Germany
| | - Andrej Sali
- ¶Department of Bioengineering and Therapeutic Sciences, Department of Pharmaceutical Chemistry, and California Institute for Quantitative Biosciences (QB3), University of California, San Francisco, California 94158, and
| | - Wolfgang Baumeister
- From the ‡Department of Structural Biology, Max Planck Institute of Biochemistry, D-82152 Martinsried, Germany
| |
Collapse
|
49
|
Bedford L, Paine S, Sheppard PW, Mayer RJ, Roelofs J. Assembly, structure, and function of the 26S proteasome. Trends Cell Biol 2010; 20:391-401. [PMID: 20427185 PMCID: PMC2902798 DOI: 10.1016/j.tcb.2010.03.007] [Citation(s) in RCA: 187] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2009] [Revised: 03/30/2010] [Accepted: 03/31/2010] [Indexed: 01/15/2023]
Abstract
The 26S proteasome is a large multiprotein complex involved in the regulated degradation of ubiquitinated proteins in the cell. The 26S proteasome has been shown to control an increasing number of essential biochemical mechanisms of the cellular lifecycle including DNA synthesis, repair, transcription, translation, and cell signal transduction. Concurrently, it is increasingly seen that malfunction of the ubiquitin proteasome system contributes to the pathogenesis of disease. The recent identification of four molecular chaperones, in addition to five previously identified chaperones, have provided mechanistic insight into how this cellular megastructure is assembled in the cell. These data, together with new insights into the structure and function of the proteasome, provide a much better understanding of this complex protease.
Collapse
Affiliation(s)
- Lynn Bedford
- School of Biomedical Sciences, University of Nottingham Medical School, Nottingham, UK
| | | | | | | | | |
Collapse
|
50
|
Tomko RJ, Funakoshi M, Schneider K, Wang J, Hochstrasser M. Heterohexameric ring arrangement of the eukaryotic proteasomal ATPases: implications for proteasome structure and assembly. Mol Cell 2010; 38:393-403. [PMID: 20471945 PMCID: PMC2879271 DOI: 10.1016/j.molcel.2010.02.035] [Citation(s) in RCA: 117] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2009] [Revised: 02/01/2010] [Accepted: 02/16/2010] [Indexed: 12/18/2022]
Abstract
The proteasome has a paramount role in eukaryotic cell regulation. It consists of a proteolytic core particle (CP) bound to one or two regulatory particles (RPs). Each RP is believed to include six different AAA+ ATPases in a heterohexameric ring that binds the CP while unfolding and translocating substrates into the core. No atomic-resolution RP structures are available. Guided by crystal structures of related homohexameric prokaryotic ATPases, we use disulfide engineering to show that the eukaryotic ATPases form a ring with the arrangement Rpt1-Rpt2-Rpt6-Rpt3-Rpt4-Rpt5 in fully assembled proteasomes. The arrangement is consistent with known assembly intermediates. This quaternary organization clarifies the functional overlap of specific RP assembly chaperones and led us to identify a potential RP assembly intermediate that includes four ATPases (Rpt6-Rpt3-Rpt4-Rpt5) and their cognate chaperones (Rpn14, Nas6, and Nas2). Finally, the ATPase ring structure casts light on alternative RP structural models and the mechanism of RP action.
Collapse
Affiliation(s)
- Robert J. Tomko
- Yale University, Department of Molecular Biophysics & Biochemistry, 266 Whitney Avenue, New Haven, CT 06520-8114, Ph: (203) 432-5101 / Fax: (203) 432-5158,
| | | | - Kyle Schneider
- Yale University, Department of Molecular Biophysics & Biochemistry, 266 Whitney Avenue, New Haven, CT 06520-8114, Ph: (203) 432-5101 / Fax: (203) 432-5158,
| | - Jimin Wang
- Yale University, Department of Molecular Biophysics & Biochemistry, 266 Whitney Avenue, New Haven, CT 06520-8114, Ph: (203) 432-5101 / Fax: (203) 432-5158,
| | - Mark Hochstrasser
- Yale University, Department of Molecular Biophysics & Biochemistry, 266 Whitney Avenue, New Haven, CT 06520-8114, Ph: (203) 432-5101 / Fax: (203) 432-5158,
| |
Collapse
|